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The Tits alternative for Out(Fn)
II: A Kolchin type theorem

By Mladen Bestvina, Mark Feighn, and Michael Handel*

Abstract

This is the second of two papers in which we prove the Tits alternative
for Out(Fn).
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1. Introduction and outline

Recent years have seen a development of the theory for Out(Fn), the outer
automorphism group of the free group Fn of rank n, that is modeled on Nielsen-
Thurston theory for surface homeomorphisms. As mapping classes have either
exponential or linear growth rates, so free group outer automorphisms have
either exponential or polynomial growth rates. (The degree of the polynomial
can be any integer between 1 and n−1; see [BH92].) In [BFH00], we considered
individual automorphisms with primary emphasis on those with exponential
growth rates. In this paper, we focus on subgroups of Out(Fn) all of whose
elements have polynomial growth rates.

To remove certain technicalities arising from finite order phenomena, we
restrict our attention to those outer automorphisms of polynomial growth
whose induced automorphism of H1(Fn; Z) ∼= Zn is unipotent. We say that
such an outer automorphism is unipotent. The subset of unipotent outer auto-
morphisms of Fn is denoted UPG(Fn) (or just UPG). A subgroup of Out(Fn)
is unipotent if each element is unipotent. We prove (Proposition 3.5) that
any polynomially growing outer automorphism that acts trivially in Z/3Z-
homology is unipotent. Thus every subgroup of polynomially growing outer
automorphisms has a finite index unipotent subgroup.

The archetype for the main theorem of this paper comes from linear
groups. A linear map is unipotent if and only if it has a basis with respect to
which it is upper triangular with 1’s on the diagonal. A celebrated theorem of
Kolchin [Ser92] states that for any group of unipotent linear maps there is a
basis with respect to which all elements of the group are upper triangular with
1’s on the diagonal.

There is an analogous result for mapping class groups. We say that a map-
ping class is unipotent if it has linear growth and if the induced linear map on
first homology is unipotent. The Thurston classification theorem implies that
a mapping class is unipotent if and only if it is represented by a composition of
Dehn twists in disjoint simple closed curves. Moreover, if a pair of unipotent
mapping classes belongs to a unipotent subgroup, then their twisting curves
cannot have transverse intersections (see for example [BLM83]). Thus every
unipotent mapping class subgroup has a characteristic set of disjoint simple
closed curves and each element of the subgroup is a composition of Dehn twists
along these curves.
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Our main theorem is the analogue of Kolchin’s theorem for Out(Fn). Fix
once-and-for-all a wedge Rosen of n circles and permanently identify its fun-
damental group with Fn. A marked graph (of rank n) is a graph equipped
with a homotopy equivalence from Rosen; see [CV86]. A homotopy equiva-
lence f : G → G on a marked graph G induces an outer automorphism of the
fundamental group of G and therefore an element O of Out(Fn); we say that
f : G → G is a representative of O.

Suppose that G is a marked graph and that ∅ = G0 � G1 � · · · � GK = G

is a filtration of G where Gi is obtained from Gi−1 by adding a single edge Ei.
A homotopy equivalence f : G → G is upper triangular with respect to the
filtration if each f(Ei) = viEiui (as edge paths) where ui and vi are closed
paths in Gi−1. If the choice of filtration is clear then we simply say that
f : G → G is upper triangular. We refer to the ui’s and vi’s as suffixes and
prefixes respectively.

An outer automorphism is unipotent if and only if it has a representative
that is upper triangular with respect to some filtered marked graph G (see
Section 3).

For any filtered marked graph G, let Q be the set of upper triangular
homotopy equivalences of G up to homotopy relative to the vertices of G. By
Lemma 6.1, Q is a group under the operation induced by composition. There
is a natural map from Q to UPG(Fn). We say that a unipotent subgroup of
Out(Fn) is filtered if it lifts to a subgroup of Q for some filtered marked graph.

We denote the conjugacy class of a free factor F i by [[F i]]. If F 1∗F 2∗· · ·∗
F k is a free factor, then we say that the collection F = {[[F 1]], [[F 2]], . . . , [[F k]]}
is a free factor system. There is a natural action of Out(Fn) on free factor
systems and we say that F is H-invariant if each element of the subgroup H
fixes F . A (not necessarily connected) subgraph K of a marked real graph
determines a free factor system F(K). A partial order on free factor systems
is defined in subsection 2.8.

We can now state our main theorem.

Theorem 1.1 (Kolchin theorem for Out(Fn)). Every finitely generated
unipotent subgroup H of Out(Fn) is filtered. For any H-invariant free factor
system F , the marked filtered graph G can be chosen so that F(Gr) = F for
some filtration element Gr. The number of edges of G can be taken to be
bounded by 3n

2 − 1 for n > 1.

It is an interesting question whether or not the requirement that H be
finitely generated is necessary or just an artifact of our proof.

Question. Is every unipotent subgroup of Out(Fn) contained in a finitely
generated unipotent subgroup?
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Remark 1.2. In contrast to unipotent mapping class subgroups which are
all finitely generated and abelian, unipotent subgroups of Out(Fn) can be quite
large. For example, if G is a wedge of n circles, then a filtration on G corre-
sponds to an ordered basis {e1, . . . , en} of Fn and elements of Q correspond
to automorphisms of the form ei �→ aieibi with ai, bi ∈ 〈e1, . . . , ei−1〉. When
n > 2, the image of Q in UPG(Fn) contains a product of nonabelian free
groups.

This is the second of two papers in which we establish the Tits alternative
for Out(Fn).

Theorem (The Tits alternative for Out(Fn)). Let H be any subgroup of
Out(Fn). Then either H is virtually solvable, or contains a nonabelian free
group.

For a proof of a special (generic) case, see [BFH97a]. The following
corollary of Theorem 1.1 gives another special case of the Tits alternative
for Out(Fn). The corollary is then used to prove the full Tits alternative.

Corollary 1.3. Every unipotent subgroup H of Out(Fn) either contains
a nonabelian free group or is solvable.

Proof. We first prove that if Q is defined as above with respect to a marked
filtered graph G, then every subgroup Z of Q either contains a nonabelian free
group or is solvable.

Let i ≥ 0 be the largest parameter value for which every element of Z
restricts to the identity on Gi−1. If i = K + 1, then Z is the trivial group and
we are done. Suppose then that i ≤ K. By construction, each element of Z
satisfies Ei �→ viEiui where vi and ui are paths (that depend on the element
of Z) in Gi−1 and are therefore fixed by every element of Z. The suffix map
S : Z → Fn, which assigns the suffix ui to the element of Z, is therefore a
homomorphism. The prefix map P : Z → Fn, which assigns the inverse of vi

to the element of Z, is also a homomorphism.
If the image of P × S : Z → Fn × Fn contains a nonabelian free group,

then so does Z and we are done. If the image of P × S is abelian then, since
Z is an abelian extension of the kernel of P × S, it suffices to show that the
kernel of P ×S is either solvable or contains a nonabelian free group. Upward
induction on i now completes the proof. In fact, this argument shows that Z
is polycyclic and that the length of the derived series is bounded by 3n

2 − 1 for
n > 1.

For H finitely generated the corollary now follows from Theorem 1.1.
When H is not finitely generated, it can be represented as the increasing
union of finitely generated subgroups. If one of these subgroups contains a
nonabelian free group, then so does H, and if not then H is solvable with the
length of the derived series bounded by 3n

2 − 1.
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Proof of the Tits alternative for Out(Fn). Theorem 7.0.1 of [BFH00]
asserts that if H does not contain a nonabelian free group then there is a finite
index subgroup H0 of H and an exact sequence

1 → H1 → H0 → A → 1

with A a finitely generated free abelian group and with H1 a unipotent sub-
group of Out(Fn). Since H1 does not contain a nonabelian free group, by
Corollary 1.3, H1 is solvable. Thus, H0 is solvable and H is virtually solvable.

In [BFH04] we strengthen the Tits alternative for Out(Fn) further by
proving:

Theorem (Solvable implies abelian). A solvable subgroup of Out(Fn)
has a finitely generated free abelian subgroup of index at most 35n2

.

Emina Alibegović [Ali02] has since provided an alternate shorter proof.
The rank of an abelian subgroup of Out(Fn) is ≤ 2n − 3 for n > 1 [CV86].

We reformulate Theorem 1.1 in terms of trees, and it is in this form that
we prove the theorem. There is a natural right action of the automorphism
group of Fn on the set of simplicial Fn-trees produced by twisting the action.
See Section 2 for details. If we identify trees that are equivariantly isomorphic
then this action descends to give an action of Out(Fn). A simplicial Fn-tree is
nontrivial if there is no global fixed point. If T is a simplicial real Fn-tree with
trivial edge stabilizers, then the set of conjugacy classes of nontrivial vertex
stabilizers of T is a free factor system denoted F(T ). The reformulation is as
follows.

Theorem 5.1. For every finitely generated unipotent subgroup H of
Out(Fn) there is a nontrivial simplicial Fn-tree T with all edge stabilizers trivial
that is fixed by all elements of H. Furthermore, there is such a tree with exactly
one orbit of edges and if F is any maximal proper H-invariant free factor
system then T may be chosen so that F(T ) = F .

Such a tree can be obtained from the marked filtered graph produced by
Theorem 1.1 by taking the universal cover and then collapsing all edges except
for the lifts of the highest edge EK . For a proof of the reverse implication,
namely that Theorem 5.1 implies Theorem 1.1, see Section 6.

Along the way we obtain a result that is of interest in its own right. The
necessary background material on trees may be found in Section 2, but also
we give a quick review here. Simplicial Fn-trees may be endowed with metrics
by equivariantly assigning lengths to edges. Given a simplicial real Fn-tree
T and an element a ∈ Fn, the number �T (a) is defined to be the infimum
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of the distances that a translates elements of T . It is through these length
functions that the space of simplicial real Fn-trees is topologized. Again there
is a natural right action of Out(Fn). We will work in the Out(Fn)-subspace T
consisting of those nontrivial simplicial real trees that are limits of free actions.

Theorem 1.4 Suppose T ∈ T and O ∈ UPG(Fn). There is an integer
d = d(O, T ) ≥ 0 such that the sequence {TOk/kd} converges to a tree
TO∞ ∈ T .

This is proved in Section 4 as Theorem 4.22, which also contains an explicit
description of the limit tree in the case that d(O, T ) ≥ 1.

Section 5 is the heart of the proof of Theorem 5.1. For notational sim-
plicity, let us assume that H is generated by two elements, O1 and O2. Given
T ∈ T , let Elliptic(T ) be the subset of Fn consisting of elements fixing a point
of T . Elements of Elliptic(T ) are elliptic. Choose T0 ∈ T such that T0 has
trivial edge stabilizers and such that Elliptic(T0) is H-invariant and maximal,
i.e. such that if T ∈ T has trivial edge stabilizers, if Elliptic(T ) is H-invariant,
and if Elliptic(T0) ⊂ Elliptic(T ), then Elliptic(T0) = Elliptic(T ).

We prove that T0 satisfies the conclusions of Theorem 5.1 but not by a di-
rect analysis of T0. Rather, we consider the “bouncing sequence” {T0, T1, T2, · · · }
in T defined inductively by Ti+1 = TiO∞

i+1 where the subscripts of the outer
automorphisms are taken mod 2. We establish properties of Ti for large i and
then use these to prove that T0 is the desired tree.

The key arguments in Section 5 are Proposition 5.5, Proposition 5.7, and
Proposition 5.13. They focus not on discovering “ping-pong” dynamics (H may
well contain a nonabelian free group), but rather on constructing an element
in H of exponential growth. The connection to the bouncing sequence is as
follows. Properties of the tree Tk = T0O∞

1 O∞
2 . . .O∞

k−1 are reflected in the dy-
namics of the ‘approximating’ outer automorphism O(k) = ON1

1 ON2
2 . . .ONk−1

k−1

where N1 � N2 � · · · � Nk−1 � 1. We verify properties of Tk by proving
that if the property did not hold, then O(k) would have exponential growth.

After the breakthrough of E. Rips and the subsequent successful applica-
tions of the theory by Z. Sela and others, it became clear that trees were the
right tool for proving Theorem 1.1. Surprisingly, under the assumption that
H is finitely generated (which is the case that we are concerned with in this
paper and which suffices for proving that the Tits alternative holds), we only
work with simplicial real trees and the full scale R-tree theory is never used.
However, its existence gave us a firm belief that the project would succeed,
and, indeed, the first proof we found of the Tits alternative used this theory.
In a sense, our proof can be viewed as a development of the program, started
by Culler-Vogtmann [CV86], to use spaces of trees to understand Out(Fn) in
much the same way that Teichmüller space and its compactification were used
by Thurston and others to understand mapping class groups.
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2. Fn-trees

In this section, we collect the facts about real Fn-trees that we will need.
This paper will only use these facts for simplicial real trees, but we sometimes
record more general results for anticipated later use. Much of the material in
this section can be found in [Ser80], [SW79], [CM87], or [AB87].

2.1. Real trees. An arc in a topological space is a subspace homeomorphic
to a compact interval in R. A point is a degenerate arc. A real tree is a
metric space with the property that any two points may be joined by a unique
arc, and further, this arc is isometric to an interval in R (see for example
[AB87] or [CM87]). The arc joining points x and y in a real tree is denoted
by [x, y]. A branch point of a real tree T is a point x ∈ T whose complement
has other than 2 components. A real tree is simplicial if it is equipped with
a discrete subspace (the set of vertices) containing all branch points such that
the edges (closures of the components of the complement of the set of vertices)
are compact. If the subspace of branch points of a real tree T is discrete, then
it admits a (nonunique) structure as a simplicial real tree. The simplicial real
trees appearing in this paper will come with natural maps to compact graphs
and the vertex sets of the trees will be the preimages of the vertex sets of the
graphs.

For a real tree T , a map σ : J → T with domain an interval J is a path in
T if it is an embedding or if J is compact and the image is a single point; in
the latter case we say that σ is a trivial path.

If the domain J of a path σ is compact, define the inverse of σ, denoted
σ or σ−1, to be σ ◦ ρ where ρ : J → J is a reflection.

We will not distinguish paths in T that differ only by an orientation-
preserving change of parametrization. Hence, every map σ : J → T with J

compact is properly homotopic rel endpoints to a unique path [σ] called its
tightening.

If σ : J → T is a map from the compact interval J to the simplicial real
tree T and the endpoints of J are mapped to vertices, then the image of [σ],
if nondegenerate, has a natural decomposition as a concatenation E1 · · ·Ek

where each Ei, 1 ≤ i ≤ k, is a directed edge of T . The sequence E1 · · ·Ek is
called the edge path associated to σ. We will identify [σ] with its associated
edge path. This notation extends naturally if the domain of the path is a ray
or the entire line and σ is an embedding. A path crosses an edge of T if the
edge appears in the associated edge path. A path is contained in a subtree if
it crosses only edges of the subtree. A ray in T is a path [0,∞) → T that is
an embedding.

2.2. Real Fn-trees. By Fn denote a fixed copy of the free group with basis
{e1, . . . , en}. A real Fn-tree is a real tree equipped with an action of Fn by
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isometries. It is minimal if it has no proper Fn-invariant subtrees. If H is
a subgroup of Fn then FixT (H) denotes the subset of T consisting of points
that are fixed by each element of H. If a ∈ Fn, then FixT (a) := FixT (〈a〉).
If X ⊂ T , then StabT (X) is the subgroup of Fn consisting of elements that
leave X invariant. If x ∈ T , then StabT (x) := StabT ({x}). The symbol ‘[[·]]’
denotes ‘conjugacy class’. Define

Point(T ) := {[[StabT (x)]] | x ∈ T, StabT (x) �= 〈1〉}
and

Arc(T ) := {[[StabT (σ)]]

| σ is a nondegenerate arc in T, StabT (σ) �= 〈1〉}.
The length function of a real Fn-tree T assigns to a ∈ Fn the number

�T (a) := infx∈T {dT (x, ax)}.
Length is constant on conjugacy classes, so we also write �T ([[a]]) for �T (a). If
�T (a) is positive, then a (or [[a]]) is hyperbolic in T , otherwise a is elliptic. If
a is hyperbolic in T , then {x ∈ T | dT (x, ax) = �T (a)} is isometric to R. This
set is called the axis of a and is denoted AxisT (a). The restriction of a to its
axis is translation by �T (a). If a is elliptic in T then a fixes a point of T . Thus,
an element of Fn is in Elliptic(T ) if it is trivial or if its conjugacy class is in
Point(T ). A subgroup of Fn is elliptic if all elements are elliptic.

A real Fn-tree T is trivial if FixT (Fn) �= ∅. In particular, a minimal tree
is trivial if and only if it is a point. We will need the following special case of
a result of Serre.

Theorem 2.1 ([Ser80]). Suppose that T is a real Fn-tree where Fn =
〈a1, . . . , ak〉. Suppose that aiaj is elliptic in T for 1 ≤ i, j ≤ k. Then T is
trivial.

2.3. Very small trees. We will only need to consider a restricted class of
real trees.

A real Fn-tree T is very small [CL95] if

(1) T is nontrivial,

(2) T is minimal.

(3) The subgroup of Fn of elements pointwise fixing a nondegenerate arc of
T is either trivial or maximal cyclic, and

(4) for each 1 �= a ∈ Fn, FixT (a) is either empty or an arc.

It follows from (3) that if T is very small and x, y ∈ T , then each element
of StabT ([x, y]) fixes [x, y] pointwise. In particular, if T is simplicial, then no
element of Fn inverts an edge.
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We will need:

Theorem 2.2 ([CM87], [AB87]). Let Q be a finitely generated group,
and let T be a minimal nontrivial Q-tree. Then the axes of hyperbolic ele-
ments of Q cover T .

In the case of simplicial trees, the following theorem is established by
an easy Euler characteristic argument. The generalization to R-trees due to
Gaboriau and Levitt uses more sophisticated techniques.

Theorem 2.3 ([GL95]). Let T be a very small Fn-tree. There is a bound
depending only on n to the number of conjugacy classes of point and arc stabi-
lizers. The rank of a point stabilizer is no more than n with equality if and only
if T/Fn is a wedge of circles and each edge of T has infinite cyclic stabilizer.

2.4. Spaces of real Fn-trees. Let R+ denote the ray [0,∞) and let C
denote the set of conjugacy classes of elements in Fn. The space Tall of non-
trivial minimal real Fn-trees is given the smallest topology such that the map
θ : Tall → RC

+, given by θ(T ) = (�T (a))[[a]]∈C is continuous.
Let TCV denote the subspace of Tall consisting of free simplicial actions.

The closure of TCV in Tall is denoted TV S . The subspace of simplicial trees
in TV S is denoted T . The map θ is injective when restricted to TV S ; see
[CM87]. In other words, if S, T ∈ TV S satisfy θ(S) = θ(T ), then S and T are
equivariantly isometric. In this paper, we only need to work in T although
some results are presented in greater generality.

The automorphism group Aut(Fn) acts naturally on Tall on the right by
twisting the action; i.e., if the action on T ∈ Tall is given by (a, t) �→ a · t and if
Φ ∈ Aut(Fn) then the action on TΦ is given by (a, t) �→ Φ(a)·t. In terms of the
length functions, the action is given by �TΦ(a) = �T (Φ(a)) for Φ ∈ Aut(Fn),
T ∈ Tall, and a ∈ Fn. The subgroup Inner(Fn) of inner automorphisms acts
trivially, and we have an action of Out(Fn) = Aut(Fn)/Inner(Fn). The spaces
TCV , TV S , and T are all Out(Fn)-invariant.

To summarize, for O ∈ Out(Fn) and T ∈ TV S , the following are equivalent.

• O fixes T .

• �T (O([[γ]])) = �T ([[γ]]) for all γ ∈ Fn.

• For any Φ ∈ Aut(Fn) representing O, there is a Φ-equivariant isometry
fΦ : T → T .

2.5. Bounded cancellation constants. We will often need to compare the
length of the same element of Fn in different real Fn-trees. This is facilitated
by the existence of bounded cancellation constants.



10 MLADEN BESTVINA, MARK FEIGHN, AND MICHAEL HANDEL

Definition 2.4. Let S and T be real Fn-trees. The bounded cancellation
constant of an Fn-map f : S → T , denoted BCC(f), is the least upper bound of
numbers B with the property that there exist points x, y, z ∈ S with y ∈ [x, z]
so that the distance between f(y) and [f(x), f(z)] is B.

Cooper [Coo87] showed that if S and T are in TCV and if f is PL, then
BCC(f) is finite. For a map f : X → Y between metric spaces we denote by
Lip(f) the Lipschitz constant of f ; i.e.,

Lip(f) := sup{dY (f(x1), f(x2))/dX(x1, x2) | (x1, x2) ∈ X × X, x1 �= x2}.

The map f is Lipschitz if Lip(f) < ∞. The following generalization of Cooper’s
result is an immediate consequence of Lemma 3.1 of [BFH97a].

Proposition 2.5. Suppose that S ∈ TCV , T ∈ TV S , and f : S → T is a
Lipschitz Fn-map. Then, BCC(f) < ∞.

2.6. Real graphs. In [BFH00], marked graphs were used. Here we will
need graphs with a metric structure.

A real graph is a locally finite graph (one-dimensional CW-complex) whose
universal cover has the structure of a simplicial real tree with covering transfor-
mations acting by isometries. A locally finite graph with specified edge lengths
determines a real graph. Occasionally, it is convenient to view a locally finite
graph as a real graph. To do this, we will specify edge lengths. If no lengths
are mentioned, then they are assumed to be 1.

Let G be a real graph with universal covering p : Γ → G. A map σ : J → G

with domain an interval J is a path if σ = p ◦ σ̃ where σ̃ is a path in Γ. The
terminology for paths in trees transfers directly over to real graphs; cf. [BFH00,
p. 525].

A closed path in G is a path whose initial and terminal endpoints coincide.
A circuit is an immersion from the circle S1 to G; homotopic circuits are not
distinguished. Any homotopically nontrivial map σ : S1 → G is homotopic
to a unique circuit [[σ]]. Circuits are identified with cyclically ordered edge
paths which we call associated edge circuits. A circuit crosses an edge if the
edge appears in the circuit’s associated edge circuit. A circuit is contained
in a subgraph if it crosses only edges of the subgraph. We make standard
identifications between based closed paths and elements of the fundamental
group and between circuits and conjugacy classes in the fundamental group.

A marked real graph is a real graph G together with a homotopy equiv-
alence µ : Rosen → G. The universal cover of a marked real graph has a
structure of a real free Fn-tree that is well-defined up to equivariant isometry.
A real Fn-tree T admits an Fn-equivariant map µ̃ : R̃osen → T . This map is
well-defined up to equivariant homotopy. If the action is free, then the quotient
µ : Rosen → G is a marking.
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A core graph is a finite graph with no vertices of valence 1 or 0. Any con-
nected graph with finitely generated fundamental group has a unique maximal
core subgraph, called its core. The core of a forest is empty.

2.7. Models and normal forms for simplicial Fn-trees. References for
this section are [SW79] and [Ser80]. A map h : Y → Z with Y and Z

CW-complexes is cellular if, for all k, the k-skeleton of Y maps into the k-
skeleton of Z, i.e. h(Y (k)) ⊂ Z(k). Given CW-complexes Y , Z0, and Z1 and
cellular maps gi : Y → Zi, the double mapping cylinder D(g, h) of g and h is
the quotient (Y × [0, 1]) � (Z0 � Z1)/ ∼ where ∼ is the equivalence relation
generated by (y, 0) ∼ g0(y) and (y, 1) ∼ g1(y). The double mapping cylinder
is naturally a CW-complex with a map to [0, 1]. In the case where Z0 = Z1,
we modify the definition of D(g, h) so that corresponding points of Z0 and Z1

are also identified. In this case, D(g, h) has a natural map to S1.
Let Rosen denote a fixed wedge of n oriented circles with a fixed identifi-

cation of π1(Rosen, ∗) with Fn such that the ith circle corresponds to ei. Also
fix a compatible identification of Fn with the covering transformations of the
universal cover R̃osen of Rosen.

Let T be a simplicial real Fn-tree and let T denote the real graph T/Fn.
A graph of spaces over T is a CW-complex X with a cellular map q : X → T

such that:

• For each vertex x of T , q−1(x) is a subcomplex of X.

• For each edge e of T with endpoints v and w (possibly equal), there is a
CW-complex Xe, a pair of cellular maps g : Xe → q−1(v) and h : Xe →
q−1(w), and isomorphisms D(g, h) → q−1(e) and S1 or [0, 1] → e such
that the following diagram commutes.

D(g, h)

��

�� q−1(e)

��
S1or [0, 1] �� e

A vertical subspace of X is a subcomplex of the form q−1(x) for some
vertex x ∈ T . An edge of a vertical subspace is vertical. Other edges of X are
horizontal. An edge path consisting of vertical edges is vertical.

Example 2.6. The quotient R̃osen ×Fn
T of R̃osen × T by the diagonal

action of Fn with the map Q : R̃osen ×Fn
T → T induced by projection

onto the second coordinate is naturally a graph of spaces over T . It is an
Eilenberg-MacLane space. Its fundamental group is naturally identified with
Fn by the map to Rosen induced by projection onto the first coordinate. If x

is a vertex of T , then Q−1(x) is a full subcomplex of R̃osen ×Fn
T isomorphic
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to R̃osen/StabT (x̃) where x̃ is a lift of x to T . In particular, Q−1(x) is a graph
homotopy equivalent to the wedge Rosex of nx circles where nx is the rank of
StabT (x̃). Similarly, if x is a point in the interior of an edge e of T , then the
preimage of x is isomorphic to R̃osen/StabT (ẽ) where ẽ is a lift of e to T . In
particular, Q−1(x) is a graph homotopy equivalent to the wedge Rosee of ne

circles where ne is the rank of StabT (ẽ).

Let M be the set of midpoints of edges of T . A model for T is a graph of
spaces X over T with a homotopy equivalence R̃osen×Fn

T → X such that the
following diagram commutes up to a homotopy supported over the complement
of M:

R̃osen ×Fn
T

������������ Q

������������

X
q �� T

and such that the induced map Q−1(M) → q−1(M) is a homotopy equivalence.
The homotopy equivalence X ← R̃osen ×Fn

T → Rosen identifies conjugacy
classes in π1(X) with conjugacy classes in Fn and is called the induced marking.

The trees in this paper will all be minimal with finitely generated vertex
and edge stabilizers. (In fact, edge stabilizers will be cyclic.) Until Section 5.4,
we will make the following additional requirements of our models.

• If x is a vertex of T , then the vertical subspace q−1(x) is a subcomplex
of X isomorphic to Rosex.

• If e is an edge of T , then Xe is isomorphic to Rosee.

Models satisfying these properties are constructed in [SW79].

Example 2.7. Pictured below is an example of a model X together with
the induced marking µ : Rose2 → X and the quotient map q : X → T . The
µ-image of the edge ‘e1’ is the edge ‘a’ and the µ-image of the edge ‘e2’ is the
only horizontal edge ‘t’. The vertical space is a wedge of two circles. This
model satisfies all of the above properties.

e2

µ

e1

Rose2

t

q

a

X(T ) T

[t−1at]
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Any path in X whose endpoints are vertices is homotopic rel endpoints to
an edge path in X(1) of the form

ν0H1ν1H2ν2 · · ·Hmνm

where νi is a (possibly trivial) vertical edge path and Hi is a horizontal edge
of X. The length of the path is the sum of the lengths q(Hi). Such an edge
path is in normal form unless for some i we have that HiνiHi+1 is homotopic
rel endpoints into a vertical subspace. If σ is a path in X whose endpoints
are vertices, then [σ] is an edge path homotopic rel endpoints to σ that is in
normal form.

If the displayed edge path is not in normal form and if i is as above, then
the path is homotopic to the path obtained by replacing νi−1HiνiHi+1νi+1 by
a path in a vertical subspace that is homotopic rel endpoints. We call this
process erasing a pair of horizontal edges. Any edge path in X may be put
into normal form by iteratively erasing pairs horizontal edges (see [SW79]).
Two paths in normal form that are homotopic rel endpoints have the same
length.

In an analogous fashion, circuits in X have lengths and normal forms. If
σ is a circuit in X, then [[σ]] is a circuit freely homotopic to σ that is in normal
form. Note that lengthX([[σ]]) = �T ([[a]]) where [[a]] is the conjugacy class of
Fn represented by the image of σ under the induced marking of X.

If σ1 and σ2 are paths in X with the same initial points, then the overlap
length of σ1 and σ2 is defined to be

1
2
·
(
lengthX([σ1]) + lengthX([σ2]) − lengthX([σ1σ2])

)
.

Remark 2.8. Suppose that σ1, σ2 and σ3 are paths in X with endpoints at
vertices, that the terminal endpoint of σ1 is the initial endpoint of σ2 and that
the terminal endpoint of σ2 is the initial endpoint of σ3. Let D be the overlap
length of σ̄1 and σ2, let D′ be the overlap length of σ̄2 and σ3 and assume
that lengthX([σ2]) > D + D′. In the proof of Proposition 4.21 we use the fact,
immediate from the definitions, that the following quantities are realized as
lengths of edge paths in T .

• lengthX([σ2]).

• lengthX([σ2]) − (D + D′).

Example 2.9. Let X be as in Example 2.7. Then the overlap length of t

and at is the same as the length in X of t even though the maximal common
initial segment of t and at is degenerate. Of course, at = t[t−1at] are both
normal forms and the maximal common initial segment of t and t[t−1at] is t.
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2.8. Free factor systems. Here we review definitions and background for
free factor systems as treated in [BFH00].

We reserve the notation F i for free factors of Fn. If F 1 ∗ F 2 ∗ · · · ∗ F k

is a free factor and each F i is nontrivial (and so has positive rank), then we
say that the collection F = {[[F 1]], [[F 2]], . . . , [[F k]]} is a nontrivial free factor
system. We refer to ∅ as the trivial free factor system. A free factor system F
is proper if it is not {[[Fn]]}.

We write [[F 1]] � [[F 2]] if F 1 is conjugate to a free factor of F 2 and write
F1 � F2 if for each [[F i]] ∈ F1 there exists [[F j ]] ∈ F2 such that [[F i]] � [[F j ]].
We say that F1 � F2 is proper if F1 �= F2. The next lemma follows immediately
from Lemma 2.6.3 of [BFH00].

Lemma 2.10. There is a bound, depending only on n, to the length of a
chain F1 � F2 � · · · � FN of proper �’s.

We say that a subset X of Fn is carried by the free factor system F if
X ⊂ F i for some [[F i]] ∈ F . A collection X of subsets is carried by F if each
X ∈ X is carried by some element of F .

Let ∂Fn denote the boundary of Fn. Let Rn (for rays) denote the quotient
of ∂Fn by the action of Fn. The natural action of Aut(Fn) on ∂Fn descends to
an action of Out(Fn) on Rn. If G is a marked real graph, then Rn is naturally
identified with the set of rays in G where two rays are equivalent if their
associated edge paths have a common tail. In [BFH00], a parallel treatment
was given using lines instead of rays. The reader is referred there for details.

A free factor F i of Fn gives rise to a subset Ri of Rn. In terms of a tree
T ∈ TCV , a ray represents an element of Ri if it can be Fn-translated so that
its image is eventually in the minimal F i-subtree of T . A ray R ∈ Rn is carried
by F i if R ∈ Ri. It is carried by the free factor system F if it is carried by
F i for some [[F i]] ∈ F . A subset of Rn is carried by F if each element of the
subset is carried by some element of F .

The proof of the following lemma is completely analogous to the proof of
Corollary 2.6.5 of [BFH00].

Lemma 2.11. Let X be a collection of subsets of Fn and let R be a subset
of Rn. Then there is a unique minimal (with respect to �) free factor system
F that carries both X and R.

A (not necessarily connected) subgraph K of a marked real graph deter-
mines a free factor system F(K) as in [BFH00, Ex. 2.6.2]. If T is a simplicial
real Fn-tree with trivial edge stabilizers, then the set of conjugacy classes of
nontrivial vertex stabilizers of T is a free factor system denoted F(T ).
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3. Unipotent polynomially growing outer automorphisms

In this section we bring outer automorphisms into the picture. We will
consider a class of outer automorphisms that is analogous to the class of unipo-
tent matrices. First we review the linear algebra of unipotent matrices.

3.1. Unipotent linear maps. The results in this section are standard. We
include proofs for the reader’s convenience. Throughout this section, R denotes
either Z or C, and V denotes a free R-module of finite rank.

Proposition 3.1. Let f : V → V be an R-module endomorphism. The
following conditions are equivalent :

(1) V has a basis with respect to which f is upper triangular with 1’s on the
diagonal.

(2) (Id − f)rank(V ) = 0.

(3) (Id − f)n = 0 for some n > 0.

Proof. It is clear that (1) implies (2) and that (2) implies (3). To see
that (3) implies (1), assume that (Id − f)n = 0. We may assume that W :=
Im(Id − f)n−1 �= 0. The restriction of Id − f to the submodule W is 0, and
hence each 0 �= v ∈ W is fixed by f . After perhaps replacing v by a root in
the case R = Z, we may assume that v is an f -fixed basis element of V . The
proof now concludes by induction on rank(V ) using the fact that the induced
homomorphism f ′ : V/〈v〉 → V/〈v〉 also satisfies (Id − f ′)n = 0.

An endomorphism f satisfying any of the equivalent conditions of Propo-
sition 3.1 is said to be unipotent.

Corollary 3.2. Let f : V → V be an R-module endomorphism, and let
W be an f -invariant submodule of V which is a direct summand of V . Then
f is unipotent if and only if both the restriction of f to W and the induced
endomorphism on V/W are unipotent.

Proof. The proof is evident if we use Proposition 3.1(1) in the “if” direction
and Proposition 3.1(2) in the “only if” direction.

Corollary 3.3. Let f : V → V be unipotent. If x ∈ V is f -periodic, i.e.
if fm(x) = x for some m > 0, then x is f -fixed, i.e. f(x) = x.

Proof. First assume that R = C. We may assume that

V = span(x, f(x), · · · , fm−1(x)).

Let e1, e2, . . . , em be the standard basis for Cm. There is a surjective linear
map π : Cm → V given by π(ei) = f i−1(x), and f lifts to the linear map
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f : Cm → Cm, f(ei) = ei+1 mod m. For λ ∈ C, the generalized λ-eigenspace is
defined to be

{x ∈ Cm|(λI − f)m(x) = 0}.

Since f is unipotent, the linear map π must map the generalized 1-eigenspace
onto V (and all other generalized eigenspaces to 0). The characteristic poly-
nomial λm − 1 of f has m distinct roots. In particular, the generalized
1-eigenspace is one-dimensional (and equals the 1-eigenspace of f). It follows
that dim(V ) ≤ 1 and f(x) = x.

If R = Z, just tensor with C.

Corollary 3.4. Let f : V → V be unipotent. If W is a direct summand
which is periodic (i.e. fm(W ) = W for some m > 0), then W is invariant (i.e.
f(W ) = W ).

Proof. The restriction of fm to W is unipotent, so there is a basis element
x ∈ W fixed by fm. By Corollary 3.3, f(x) = x. The proof concludes by
induction on rank(W ).

Proposition 3.5. Let A ∈ GLn(Z) have all eigenvalues on the unit circle
(i.e. A grows polynomially). If the image of A in GLn(Z/3Z) is trivial, then
A is unipotent.

Proof. We first argue that some power AN of A is unipotent, i.e. that all
eigenvalues of A are roots of unity. Choose N so that all eigenvalues of AN

are close to 1. Then tr(AN ) is an integer close to n, and thus all eigenvalues
of AN are equal to 1.

Let f = fn1
1 · · · fnm

m be the minimal polynomial for A factored into irre-
ducibles in Z[x]. Let Ai = fni

i (A) and Ki = Ker(Ai). First note that each
Ki �= 0. For example, Im(A2A3 · · ·Am) ⊂ K1 but A2A3 · · ·Am �= 0 since f is
minimal. If A is not unipotent, then some fi, say f1, is not x − 1. Since all
roots of f are roots of unity, f1 is the minimal polynomial for a nontrivial root
of unity and so it divides 1 + x + x2 + · · · + xr−1 for some r > 1. The matrix
I + A + A2 + · · · + Ar−1 has nontrivial kernel (since its nst

1 power vanishes
on K1). A nonzero integral vector v in this kernel satisfies Ar(v) = v and
A(v) �= v. Then Fix(Ar) is a nontrivial direct summand of Zn, the restriction
of A to this summand is nontrivial and periodic, and the induced endomor-
phism of Fix(Ar) ⊗ Z/3Z is the identity. This contradicts the standard fact
that the kernel of GLk(Z) → GLk(Z/3Z) is torsion-free.

3.2. Topological representatives. A homotopy equivalence f : G → G of
a marked real graph induces an outer automorphism O of Fn via the fixed
identification of Fn with the fundamental group of Rosen. If f maps vertices
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to vertices and if the restriction of f to each edge of G is an immersion, then
we say that f is a topological representative of O.

A filtration for a topological representative f : G → G is an increasing
sequence of f -invariant subgraphs ∅ = G0 � G1 � · · · � GK = G. The closure
of Gr \ Gr−1 is called the rth stratum.

If the path σ = σ1σ2 is the concatenation of paths σ1 and σ2, then σ

splits, denoted σ = σ1 ·σ2, if [f i(σ)] = [f i(σ1)][f i(σ2)] for all integers i ≥ 0; see
[BFH00, pp. 553–554]. In this paper, as in [BFH00], it is critically important
to understand the behavior of paths under iteration by f . If a path splits, the
behavior of the path is determined by the behavior of the subpaths.

3.3. Relative train tracks and automorphisms of polynomial growth. The
techniques of this paper depend on being able to find good representatives for
outer automorphisms of polynomial growth.

Definition 3.6. An outer automorphism O ∈ Out(Fn) has polynomial
growth if, given a ∈ Fn, there is a polynomial P ∈ R[x] such that the (re-
duced) word length of Oi([[a]]) is bounded above by P (i). The set of outer
automorphisms having polynomial growth is denoted PG(Fn) (or just PG).

It follows from [BH92] that the definition of polynomial growth given
above agrees with the definition on page 564 of [BFH00]. We start by recalling
the topological representatives for automorphisms having polynomial growth
that were found in [BH92].

Theorem 3.7 ([BH92]). An automorphism O ∈ PG(Fn) has a topologi-
cal representative f : G → G with a filtration ∅ = G0 � G1 � · · · � GK = G

such that

(1) for every edge E ∈ Gi \ Gi−1, the edge path f(E) crosses exactly one edge
in Gi \ Gi−1 and it crosses that edge exactly once.

(2) If F is an O-invariant free factor system, it can be arranged that F =
F(Gr) for some r. If O is the identity on each conjugacy class in F , it
can be arranged that f = Id on Gr.

Definition 3.8. A topological representative as in Theorem 3.7 is called a
relative train track (RTT) representative for O.

3.4 Unipotent representatives and UPG automorphisms.

Definition 3.9. An outer automorphism is unipotent if it has polynomial
growth and its action on H1(Fn; Z) is unipotent. The set of unipotent auto-
morphisms is denoted by UPG(Fn) (or just UPG).
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We now recall a special case of an improvement of RTT representatives
from [BFH00].

Definition 3.10. Let f : G → G be an RTT representative. A nontrivial
path τ in G is a periodic Nielsen path if, for some m ≥ 0, [fm(τ)] = [τ ]. If
m = 1 then τ is a Nielsen path. An exceptional path in G is a path of the form
Eiτ

mEj where Gi \ Gi−1 is the single edge Ei, Gj \ Gj−1 is the single edge Ej ,
τ is a Nielsen path, f(Ei) = Eiτ

p, and f(Ej) = Ejτ
q for some m ∈ Z, p, q > 0.

Theorem 3.11 ([BFH00, Th. 5.1.8]). Suppose that O ∈ UPG(Fn) and
that F is an O-invariant free factor system. Then there is an RTT represen-
tative f : G → G and a filtration ∅ = G0 � G1 � · · · � GK = G representing
O with the following properties:

(1) F = F(Gr) for some filtration element Gr.

(2) Each Gi \ Gi−1 is a single edge Ei satisfying f(Ei) = Ei · ui for some
closed path ui with edges in Gi−1.

(3) Every vertex of G is fixed by f .

(4) Every periodic Nielsen path has period one.

(5) If σ is any path with endpoints at vertices, then there exists M = M(σ)
so that for each m ≥ M , [fm(σ)] splits into subpaths that are either single
edges or are exceptional.

(6) M(σ) is a bounded multiple of the edge length of σ.

Remark 3.12. Another useful condition is

(7) If Ei and Ej are distinct edges of G with nontrivial suffixes ui and uj ,
then ui �= uj .

This property is part of the construction of f : G → G from [BFH00, Th. 5.1.8].
There is an operation called sliding that is used for nonexponentially growing
strata. Condition 1 of [BFH00, Prop. 5.4.3] implies Item (7). Alternatively,
starting with f : G → G satisfying (1–6), f may be enhanced to also satisfy
(7) by replacing Ej with EjĒi.

Definition 3.13. An RTT representative f satisfying Items (1–7) above is
a unipotent representative or a UR. The based closed paths ui are suffixes of f .

Remark 3.14. Note that Item (2) can be restated as

[fk(Ei)] = Ei · ui · [f(ui)] · · · · · [fk−1(ui)]



THE TITS ALTERNATIVE FOR Out(Fn) II 19

for all k > 0. Since exceptional paths do not have nontrivial splittings, the
splitting of [fk(Ei)] guaranteed by Item (5) restricts to a splitting of ui into
single edges and exceptional paths. The immersed infinite ray

Ri = Eiui[f(ui)] · · · [fk−1(ui)] · · ·
is the eigenray associated to Ei. Lifts of Ri to the universal cover of G are
also called eigenrays. The subpaths [fm(ui)] of Ri are sometimes referred to
as blocks.

For example, the map f : G → G on the wedge of two circles with edges
a and b given by f(a) = a, f(b) = ba is a UR. For ω = ba−10bab−1 we may
take M(ω) = 10 in Item (5), since [f10(ω)] = b · (bab−1) is a splitting into an
edge and an exceptional (Nielsen) path. The map given by a �→ a, b �→ ba,
c �→ cba−1 on the wedge of three circles is not a UR since ω = cba−1 does not
eventually split as in Item (5). Replacing ba−1 by b′ yields a UR of the same
outer automorphism.

Definition 3.15. Let f : G → G be a UR with filtration ∅ = G0 � G1 �
· · · � GK = G. The highest edge (or stratum) of G is EK = GK \ GK−1. The
height of a path σ in G, denoted height(σ), is the smallest m such that the
path crosses only edges in Gm. If σ is a path of height m, then a highest edge
in σ is an occurrence of Em or Em in σ. By [BFH00, Lemma 4.1.4], the path
σ naturally splits at the initial endpoints of its highest edges; this is called the
highest edge splitting of σ.

Many arguments in this paper are inductions on height.

Proposition 3.16. If O∈UPG(Fn), then all O-periodic conjugacy classes
are fixed.

Proof. Let f : G → G be a UR for O and let σ be a circuit in G

representing an O-periodic conjugacy class. Consider the highest edge splitting
of σ. Each of the resulting subpaths is an f -periodic Nielsen path. Theorem
3.11(4) now implies that each subpath is f -fixed, and thus σ is f -fixed.

We will also need the following more technical results.

Lemma 3.17 ([BFH00, Lemma 5.7.9]). Suppose that f : G → G is a UR.
There is a constant C so that if ω is a closed path that is not a Nielsen path,
σ = αωkβ is a path, and k > 0, then at most C copies of [fm(ω)] are canceled
when [fm(α)][fm(ωk)][fm(β)] is tightened to [fm(σ)].

The following proposition is the analogue of the fact in linear algebra
that if A is a unipotent matrix and v a nonzero vector, then projectively the
sequence {Ak(v)} converges to an eigenspace of A.
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Proposition 3.18. Let f : G → G be a UR with edge Ei and suffix ui. If
[f(ui)] �= ui, R∗ is an initial segment of Ri, and σ is a path in G that crosses
Ei or its inverse, then there is an N such that, for all k > N , [fk(σ)] contains
R∗ or its inverse as a subpath.

Proof. We argue by induction on height(σ). If height(σ) = i, consider the
splitting of [fM (σ)] into edges and exceptional paths (see Theorem 3.11(5)).
There is a 1-1 correspondence between occurrences of Ei in σ and in [fM (σ)].
Since [f(ui)] �= ui, Ei does not occur in an exceptional path, and hence one of
the subpaths in the splitting is Ei or Ei. Eventually, the iterates contain R∗

or its inverse.
Now assume height(σ) = j > i. Again consider the splitting of [fM (σ)]

into edges and exceptional paths. We first claim that an exceptional path
Esτ

kEt cannot cross Ei or Ei. Indeed, suppose that this exceptional path
does cross Ei or Ei. It must be then that τ crosses Ei or its inverse because
the edges Es and Et have fixed suffixes and so are distinct from Ei and Ei.
But, τ cannot cross Ei of Ei for otherwise, since height(τ) < j, it follows from
the induction hypothesis that high iterates of τ (which equal τ) would have
to contain arbitrarily long segments of Ri. This contradiction establishes the
claim.

If the edge Ei or its inverse occurs in the splitting, we are done. Also, if
there is an edge El in the splitting whose eigenray Rl crosses Ei, then high
iterates of σ contain large segments of Rl, which in turn contain large iterates
of ul, and these eventually contain R∗ by induction.

It remains to exclude the possibility that, for all large m, [fm(σ)] crosses
only edges whose iterates do not cross Ei. Let G′ be the f -invariant subgraph
of G consisting of edges whose f -iterates do not cross Ei or Ei. Since the f -
image of an edge crosses that same edge, each component of G′ is f -invariant.
It follows that the restriction of f to the component G′

0 of G′ that contains
[fm(σ)], for large m, is a homotopy equivalence, see for example [BFH00,
Lemma 6.0.6]. Therefore, σ is homotopic rel endpoints into G′

0. Thus, Ei is
an edge in G′

0, a contradiction.

4. The dynamics of unipotent automorphisms

4.1. Poloynomial sequences. Suppose T ∈ T and O ∈ UPG(Fn). Our goal
in this section is to show that there is a natural number d = d(O, T ) such that
the sequence {TOk/kd}∞k=0 converges to a tree TO∞ ∈ T . This is the content
of Theorem 4.22.

Theorem 4.22 will be proved by showing that if f : G → G is a UR for O,
if h : G → X is a homotopy equivalence from G to a model for T taking
vertices to vertices, and if σ is a path in G with endpoints at vertices, then
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there is a polynomial P such that, for large k, the length of [h(fk(σ))] equals
P (k). Theorem 3.11 completely describes the [fk(σ)]’s. To measure the length
of [h(fk(σ))], we must first transfer fk(σ) to X via h and then put this path
into normal form. The main work is in understanding the cancellation that
occurs when [h(fk(σ))] is put into normal form. All paths will be assumed to
have endpoints that are vertices.

The key properties of a sequence of paths {[fk(σ)]}k are captured in the
following definition.

Definition 4.1. Let G be a real graph. A sequence of paths in G is poly-
nomial if it can be obtained from constant sequences of paths by finitely many
operations of the following four basic types.

(1) (re-indexing and truncation): The sequence of paths {Ak}∞k=k0
is ob-

tained from the sequence of paths {Bk}∞k=k1
by re-indexing and trunca-

tion if there is an integer k′ ≥ k1 − k0 such that Ak = Bk+k′ .

(2) (inversion): The sequence of paths {Ak}∞k=k0
is obtained from the se-

quence of paths {Bk}∞k=k0
by inversion if Ak is the inverse of Bk.

(3) (concatenation): The sequence of paths {Ak}∞k=k0
is obtained from the

sequences of paths {Bk}∞k=k0
and {Ck}∞k=k0

by concatenation if Ak =
BkCk. (As the notation implies, no cancellation occurs in BkCk.)

(4) (integration): The sequence of paths {Ak}∞k=k0
is obtained from the se-

quence of paths {Bk}∞k=k0
by integration if

Ak = Bk0Bk0+1 · · ·Bk.

(Again no cancellation occurs.)

For example, in a wedge of three circles with edges A, B, and C, the
sequences {ABkC} and {ABAB2AB3 · · ·ABk} are polynomial.

A sequence eventually has a property if it may be truncated and re-indexed
so that the resulting sequence has the property. The elements of a sequence
eventually have a property if only finitely many elements do not have the
property.

Lemma 4.2. Let f : G → G be a UR of a unipotent automorphism. Let
σ be a path in G. Then the sequence {[fk(σ)]}∞k=0 is eventually polynomial.

Proof. We use induction on the height of σ. If the height is 1, the sequence
is constant. For the induction step, replace σ by the iterate [fM (σ)] from
Theorem 3.11 so that it splits into subpaths which are either single edges or
exceptional paths. It suffices to prove the statement for these subpaths. The
statement is clear for the exceptional subpaths. For a single edge E with
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f(E) = E · u, the sequence {[fk(E)]} is the concatenation of the constant
sequence {E} with the integral of the sequence {[fk(u)]} by Theorem 3.11(2).

The complexity of a polynomial sequence {Ak}, denoted

complexity({Ak}),
is the minimal number of basic operations needed to make {Ak}. The com-
plexity of a constant sequence is 0.

To measure the lengths of polynomial sequences of paths, we have poly-
nomial sequences of numbers.

Definition 4.3. A sequence of nonnegative real numbers is polynomial if
it can be obtained from constant sequences of nonnegative real numbers by
finitely many operations of the following three basic types.

(1) (re-indexing and truncation): The sequence {pk}∞k=k0
is obtained from

the sequence {qk}∞k=k1
by re-indexing and truncation if there is an integer

k′ ≥ k1 − k0 such that pk = qk+k′ .

(2) (concatenation): The sequence {pk}∞k=k0
is obtained from the sequences

{qk}∞k=k0
and {rk}∞k=k0

by concatenation if pk = qk + rk.

(3) (integration): The sequence {pk}∞k=k0
is obtained from the sequence

{qk}∞k=k0
by integration if

pk = qk0 + qk0+1 + · · · + qk.

The following lemma is immediate from the definitions.

Lemma 4.4. Let {Ak}∞k=k0
be a polynomial sequence of paths in G. Then

the sequence of nonnegative real numbers {lengthG(Ak)}∞k=k0
is polynomial.

The complexity of a polynomial sequence {pk}, denoted

complexity({pk}),
is the minimal number of basic operations needed to make {pk}. The complex-
ity of a constant sequence is 0.

Lemma 4.5. (1) If 0 is an element of a polynomial sequence of nonneg-
ative real numbers, then the sequence is constantly 0.

(2) Unless a polynomial sequence of nonnegative real numbers is constant, it
is increasing.

(3a) If {pk} is a polynomial sequence of real numbers, then there is a polyno-
mial P ∈ R[x] such that P (k) = pk.
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(3b) If {pk} is not constant, if {mj,k}k are the positive constant sequences
used in the integration operations in a particular construction of {pk}, if
m = minj{mj,k}, and if P has degree d, then the leading coefficient of P

is bounded below by m/d!.

(4) If {pk} is a polynomial sequence of nonnegative real numbers and if c ∈ R
is eventually not greater than pk, then the sequence {pk −c} is eventually
polynomial.

Proof. In each case, the proof is by induction on complexity.

(1) The statement is true for constant sequences. If qk and rk are never 0,
then the same is true for qk + rk and qk0 + · · · + qk.

(2) The sum of constant sequences is constant. The sum of increasing
and constant sequences is increasing as long as at least one of the sequences is
increasing.

(3) The proof is an induction on the complexity of {pk}. If {pk} is constant
then P (k) = pk for a constant polynomial P . Suppose {qk} and {rk} are
polynomial sequences, that Q and R are polynomials with Q(k) = qk and
R(k) = rk, that the leading coefficients of Q and R are respectively Q0 and
R0, that deg(Q) ≥ deg(R), and that deg(Q) ≥ 1.

If {pk} is obtained from {qk} by re-indexing and truncation, then there
is a polynomial P with the same degree and leading coefficient as Q so that
P (k) = pk. If pk = qk + rk then P = Q + R. The leading coefficient of P is Q0

if deg(Q) > deg(R) and is Q0 + R0 otherwise.
Finally, suppose that {pk} is obtained from {rk} by integration. We will

need the fact that
∑k

i=0 id is a polynomial of degree d+1 with leading coefficient
1/(d + 1). Using the quoted fact, there is a polynomial P such that deg(P ) =
deg(R) + 1, the leading coefficient of P is R0/ deg(P ), and P (k) = pk. Item
(3) follows easily.

(4) The statement is clear for constant sequences and if {pk} is obtained
by re-indexing and truncating a sequence where the lemma holds. If {pk} is
the sum of sequences {qk} and {rk} for which the statement holds and where
{qk} is not constant, then {qk − c} is eventually polynomial and hence so is
{pk − c} = {qk − c} + {rk}. Finally, suppose {pk}∞k=k0

is obtained from the
nonzero sequence {qk} by integration. Suppose that qk0 + qk0+1 + · · ·+ qk1 > c.
Then pk − c is eventually (qk0 + · · ·+ qk1 − c)+ (qk1+1 + qk1+2 + · · ·+ qk). Thus,
after re-indexing and truncating, we see that {pk − c} is the sum of a constant
sequence and the integral of a polynomial sequence. In particular, {pk − c} is
eventually polynomial.

We now record some general properties of polynomial sequences of paths
that will be needed.
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Lemma 4.6 (Stability in G). If {Ak} is a polynomial sequence of paths
in G, then either {Ak} is constant or, for all N , the initial and terminal paths
of Ak of length N are eventually constant.

Proof. The proof is by induction on the complexity of {Ak}. The con-
clusion is true if {Ak} is constant. The re-indexing and truncation step and
the inversion step follow immediately from definitions. Suppose that {Bk} and
{Ck} are polynomial sequences in G for which the conclusion holds.

If {Ak} is obtained from {Bk} and {Ck} by concatenation, then {Ak} is
constant if and only if {Bk} and {Ck} are constant. Suppose that {Bk = B}
is constant, but that {Ck} is not. If C is eventually the initial path of length
N of Ck, then eventually the initial path of length N of Ak is the initial path
of length N of BC. Eventually, the terminal path of length N of Ak is the
terminal path of length N of Ck. The case where {Bk} is not constant, but
{Ck} is constant is symmetric. Finally, if neither {Bk} nor {Ck} is constant,
then eventually the initial (respectively terminal) path of length N of Ak equals
the initial path of length N of Bk (respectively Ck).

Suppose that {Ak} is obtained from {Bk} by integration. By definition,
the initial path of length N of Ak is eventually constant. If {Bk = B} is
constant, then eventually the terminal path of length N of Ak is the terminal
path of length N of a concatenation of B’s. If {Bk} is not constant, then
eventually the terminal path of length N of Ak is the terminal path of length
N of Bk.

Lemma 4.7. If {Bk} is a polynomial sequence of paths in G and if {A}
and {C} are constant sequences such that eventually the terminal endpoint of
A is the initial endpoint of Bk and the terminal endpoint of Bk is the initial
endpoint of C, then the sequence {[ABkC]} is eventually polynomial.

Proof. The proof is by induction on the complexity of {Bk}. The state-
ment is true if {Bk} is constant. The re-indexing and truncation step and the
inversion step follow immediately from definitions.

Suppose {Bk} = {B′
kB

′′
k} is the concatenation of {B′

k} and {B′′
k} and the

lemma holds for {B′
k} and {B′′

k}. If {B′
k} is constant, then

[ABkC] = [AB′
kB

′′
kC] = [[AB′

k][B
′′
kC]]

and we are done by hypothesis. The case that {B′′
k} is constant is similar.

If {B′
k} and {B′′

k} are not constant then eventually [AB′
kB

′′
kC] = [AB′

k][B
′′
kC]

and again we are done by hypothesis.
Finally, suppose {Bk} is obtained from {B′

k}∞k=k0
by integration and that

the lemma holds for {B′
k}. Choose N so that

N · lengthG(Bk0) > max{lengthG(A), lengthG(C)}.
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Then, eventually

[ABkC] = [AB′
k0

B′
k0+1 · · ·B′

kC]

= [AB′
k0
· · ·B′

k0+N ][B′
k0+N+1 · · ·B′

k−N ][B′
k−N+1 · · ·B′

kC].

Since we have already verified the concatenation step, all three terms give
polynomial sequences.

Definition 4.8. A subgroup H of a group J is primitive if, for all a ∈ J

and all i �= 0, ai ∈ H implies that a ∈ H. An element a of J is primitive if 〈a〉
is a primitive subgroup of J .

Lemma 4.9. Let G′ → G be an immersion of finite graphs such that
Im[π1(G′) → π1(G)] is a primitive finitely generated subgroup of π1(G). Let
{Ak} be a polynomial sequence of paths in G. Assume that for infinitely many
values of k the path Ak lifts to G′ starting at a given vertex x ∈ G′. Then
the same is true for all large k. Furthermore, the lifts form (after truncation)
a polynomial sequence in G′ (so that in particular — see Lemma 4.6 — the
terminal endpoint of these lifts is constant).

The lemma fails if the primitivity assumption is dropped; e.g. take G to
be the circle and G′ the double cover.

Proof. We proceed by induction on the complexity of {Ak}.
Suppose first that the last operation is inversion. For infinitely many k

the other endpoint of the lift of Ak starting at x is a point y ∈ G′ (there are
finitely many preimages of the common terminal endpoint of the Ak’s in G).
Applying the statement of the lemma to {Ak} we learn that for all large k

there is a lift A′
k of Ak that terminates at y. For infinitely many k, A′

k starts
at x, and {A′

k} forms a polynomial sequence. Therefore, for all large k, A′
k

starts at x.
Suppose next that the last operation is concatenation: Ak = BkCk. Then

Bk lifts to G′ starting at x for infinitely many k and thus for all large k, and the
lifts B′

k form a polynomial sequence. Let y be the common terminal endpoint
of the B′

k. Similarly, for all large k the path Ck lifts to a path C ′
k starting at y,

and these paths form a polynomial sequence. Thus A′
k = B′

kC
′
k is a polynomial

sequence starting at x and projecting to Ak.
Finally, suppose that the last operation is integration:

Ak = B1B2 · · ·Bk.

Since Ak is a subpath of Al for all l ≥ k, it follows from our assumptions that
each Ak lifts to a path A′

k starting at x0 = x. Infinitely many of these end
at the same point y1. Thus for infinitely many k the path Bk lifts starting at
y1. It follows that, for all sufficiently large k, Bk lifts to a path starting at y1
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and ending at a point y2. Repeating this procedure, we produce a sequence
{y1, y2, · · · } such that Bk eventually lifts to a path starting at yj and ending
at yj+1. Choose i < j such that yi = yj . For large k there are lifts of Bk that
connect yi to yi+1, yi+1 to yi+2,..., yj−1 to yj . By the primitivity assumption
we must have yi = yi+1 = · · · = yj . Therefore the sequence {y1, y2, · · · } is
eventually constant, i.e. yk = y for all large k. Thus for large k the path Bk

lifts to B′
k beginning and ending at y. The claim now follows.

Lemma 4.10. If {Ak} is a polynomial sequence of closed paths in G based
at say x, if Z is a primitive cyclic subgroup of π1(G, x), and if, for infinitely
many k, Ak represents an element of Z, then eventually Ak represents an
element of Z.

Proof. Let (G′, x′) → (G, x) be an immersion such that Im[π1(G′, x′) →
π1(G, x)] = Z. By Lemma 4.9, eventually Ak lifts to a closed path in G′ based
at x′.

Throughout the rest of this section, p : Γ → G denotes the universal
covering of the marked real graph G, T is a tree in in T , X is a model for
T , and h : G → X a cellular homotopy equivalence such that the image of
each edge of G is in normal form. By subdividing if necessary, we may as-
sume that h−1(X(0)) = G(0). In particular, the h-image of each edge of G is
either horizontal or vertical. Edges of the former type are h-horizontal; edges
of the latter type are h-vertical. Recall (Section 2.7) that X comes with a map
q : X → T = T/Fn. By Proposition 2.5, BCC(q̃h : Γ → T ) < ∞ where q̃h

is a lift of qh. By definition, if AB is a concatenation of paths in G, then the
overlap length of [h(A)] and [h(B)] is less than BCC(q̃h).

The main technical result of this section is Proposition 4.21 which states
that if {Ak} is a polynomial sequence of closed paths in G, then {�T ([[Ak]])}
is eventually a polynomial sequence of real numbers.

Example 4.11. Suppose that G = Rose2 with X and f as in Example 2.7.
Suppose also that the edge ‘t’ has length 1. The sequence {e1e

−1
2 e1e

k
2}∞k=1 is

polynomial. Yet,

{�T ([[e1e
−1
2 e1e

k
2]]}∞k=1 = {0, 1, 2, 3 · · · }

is eventually polynomial, but is not a polynomial sequence of nonnegative real
numbers (see Lemma 4.5(1)).

Definition 4.12. A polynomial sequence {Ak} of paths in G is elliptic
(with respect to h) if [h(Ak)] = νk with νk vertical. A sequence {νk} of
vertical edge paths in X is elliptic if for some elliptic sequence {Ak} of edge
paths in G, [h(Ak)] = νk.
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Lemma 4.13. The image of G(0) under h is X(0). If x, y ∈ G(0) and if
P is a path in X between h(x) and h(y), then there is a unique path Q in G

between x and y such that [hQ] = [P ].

Proof. We are assuming that h−1(X(0)) = G(0). Since T is minimal, qh is
onto. Since q induces a bijection between X(0) and T

(0), the first statement fol-
lows. The second statement follows from the assumption that h is a homotopy
equivalence.

Definition 4.14. A polynomial sequence of paths in G is short if it is a
concatenation of constant and elliptic sequences.

Lemma 4.15. Let {Ak} be a short polynomial sequence in G. Then Ak is
a concatenation of paths

Ak = V0,kĤ1V1,kĤ2 · · · ĤMVM,k(∗)

such that

(1) {Vi,k}k is an elliptic sequence in G,

(2) Ĥi is an h-horizontal edge of G, and

(3) eventually [h(Ak)] = h(V0,k)H1h(V1,k)H2 · · ·HMh(VM,k) where h(Ĥi) =
Hi.

Proof. By writing elements of constant sequences as concatenations of
h-vertical and h-horizontal edges, we have

Ak = V0,kĤ1V1,kĤ2 · · · ĤMVM,k

with all the desired properties except perhaps Item (3).
We proceed by induction on the number of elliptic sequences in the con-

catenation. If there are no elliptic sequences, then {Ak} is constant and the
conclusion follows. If [h(Ak)] is not eventually as in Item (4) then there is an
i such that, for infinitely many k, ĤiVi,kĤi+1 is elliptic. For these values of k,
the path [h(ĤiVi,kĤi+1)] has a common initial and terminal endpoint z. Let
x be the initial endpoint of Ĥi and let y be the terminal endpoint of Ĥi+1.
By Lemma 4.13, there is path σ in G connecting y to x such that [h(σ)] is
the trivial path at z. By Lemma 4.7, [ĤiVi,kĤi+1σ] is a polynomial sequence
of paths. By Lemma 4.10 and the fact that edge stabilizers in T are primi-
tive cyclic, [ĤiVi,kĤi+1σ] and hence [ĤiVi,kĤi+1] is eventually elliptic. Thus,
V ′

k := Vi−1,kĤiVi,kĤi+1Vi+1,k is eventually elliptic. Now,

Ak = V0,kĤ1V1,kĤ2 · · · Ĥi−1V
′
kĤi+2 · · · ĤMVM,k

has fewer elliptic sequences in the concatenation.
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Definition 4.16. We call the expression (∗) a stable normal form for {Ak}.
It is obtained by erasing pairs of h-horizontal edges Ĥi and Ĥi+1 such that
[h(Vi−1,kĤiVi,kĤi+1Vi+1,k)] is vertical for infinitely many k (equivalently even-
tually vertical).

Remark 4.17. It follows from Lemma 4.15 that if {Ak} is short then the
length in X of [h(Ak)] is eventually constant.

Definition 4.18. A polynomial sequence of paths {Ak} in G is long if,
given N > 0, there are sequences {Bk}, {Ck}, and {Dk} such that

(1) {Bk} and {Dk} are short,

(2) eventually the lengths of [h(Bk)] and [h(Dk)] are at least N , and

(3) eventually Ak = BkCkDk.

Lemma 4.19. Suppose that {Bk} is short. Then, the integral {Ak} =
{B1B2 · · ·Bk} either is eventually long or eventually short.

Proof. Let Bk = V0,kĤ1V1,kĤ2 · · · ĤMVM,k be a stable normal form. Sup-
pose that the stable normal form for the short polynomial sequence {BkBk+1}
has N h-horizontal edges. There are two cases.

Case 1. Assume N > M . Since the stable normal form for BkBk+1 is ob-
tained by erasing terminal h-horizontal edges from Bk and initial h-horizontal
edges from Bk+1,

• eventually Bk = B1,kB2,kB3,k where {Bi,k}k are polynomial sequences,

• {Vk} := {B3,kB1,k+1} is eventually elliptic,

• the stable normal form for B2,k has a positive number of h-horizontal
edges, and

• eventually

[h(BkBk+1)] = [h(B1,k)][h(B2,k)][h(Vk)][h(B2,k+1)][h(B3,k+1)].

It follows that eventually

[h(Bk · · ·Bk+L)] = [h(B1,k)][h(B2,k)](
[h(Vk)][h(B2,k+1)][h(Vk+1)][h(B2,k+2)] · · · [h(Vk+L−1)][h(B2,k+L)]

)
[h(B3,k+L)].

In particular, the length in X of [h(Bk · · ·Bk+L)] goes to infinity with L.
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Since

B1B2 · · ·Bk = (B1 · · ·BL)(BL+1BL+2 · · ·Bk−L)(Bk−L+1 · · ·Bk),

the integral of {Bk} is eventually a concatenation of three polynomial se-
quences. The first and third are short. By choosing L large, the length in
X of the stable normal form of the h-image of the first and third sequences
can be made arbitrarily large. It follows that this integral is eventually long.

Case 2. Assume N ≤ M . Then, at least half of the terminal h-horizontal
edges of Bk are erased with initial h-horizontal edges of Bk+1 in putting BkBk+1

into normal form. Note that in this case, M is even. Indeed, otherwise the
middle h-horizontal edge of Bk is erased with the middle h-horizontal edge of
Bk+1; but these are the same oriented edges, a contradiction. Set

Vk := VM

2
,kĤM

2
+1 · · ·Vk−1,kĤkVM,kV0,k+1Ĥ1 · · ·VM

2
−1,k+1ĤM

2
VM

2
,k+1.

By assumption, {Vk} is eventually an elliptic polynomial sequence. Now

B1B2 · · ·Bk = V0,1Ĥ1 · · ·VM

2
−1,1ĤM

2
V1V2 · · ·Vk−1ĤM

2
+1VM

2
+1,k · · · ĤMVM,k.

We see that the integral of {Bk} is eventually short.

Lemma 4.20. (1) A polynomial sequence of paths {Ak} in G is either
short or long.

(2) Suppose that {A1,k}, {A2,k} and {Ak} := {A1,kA2,k} are polynomial se-
quences of paths in G. The overlap length in X of [h(A1,k)] and [h(A2,k)]
is eventually constant.

Proof. (1) The proof is by induction on the complexity of {Ak}. Con-
stant sequences are short. If {Ak} is obtained by truncating and re-indexing a
short (respectively long) sequence, then {Ak} is short (respectively long). The
inverse of a short (respectively long) sequence is short (respectively long).

Suppose {Bk} and {Ck} are short. Suppose {Dk} = {D1,kD2,kD3,k} is
long with {D1,k} and {D3,k} short. Suppose {Ek} = {E1,kE2,kE3,k} is long
with {E1,k} and {E3,k} short. If {Ak} = {BkCk} then {Ak} is short. If {Ak} =
{DkEk} = {(D1,k)(D2,kD3,kE1,kE2,k)(E3,k)} then {Ak} is long. If {Ak} =
{BkEk} = {(BkE1,k)(E2,k)(E3,k)}, then {Ak} is long. Indeed, {BkE1,k} and
{E3,k} are short, and if the lengths in X of [h(E1,k)] and [h(E3,k)] are greater
than N + C where C is the eventual length of [h(Bk)], then the lengths in
X of [h(BkE2,k)] and [h(E3,k)] are eventually greater than N . The other case
{Ak} = {DkCk} is symmetric with the case {Ak} = {BkEk}.

If {Ak} is the integral of a short sequence, then the conclusion follows from
Lemma 4.19. Suppose that {Ak} is the integral of a long sequence {Dk} as
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above. Suppose further that the lengths of [h(D1,k)] and [h(D3,k)] are greater
than 2N if k ≥ K and that N is greater than BCC(q̃h). Then, eventually

Ak = (D1D2 · · ·DK)(DK+1DK+2 · · ·Dk−1D1,kD2,k)(D3,k).

Further, the length in X of [h(D1D2 · · ·DK)] is at least N . It follows that
{Ak} is long.

(2) There are four cases depending on whether or not {A1,k} or {A2,k} is
short or long. Let {Bk}, {Ck}, {Dk}, and {Ek} be as in the proof of (1) above.
If both {A1,k} and {A2,k} are short, then so is {Ak}, and the conclusion follows
from Lemma 4.15.

Choose N to be longer than BCC(q̃h). Then, the overlap length of
[h(A1,k)] and [h(A2,k)] is less than N . Suppose that {A1,k} = {Dk} and
{A2,k} = {Ek}. Suppose that the lengths in X of [h(D3,k)] and [h(E1,k)] are
eventually greater than N . Then, the overlap length of [h(A1,k)] and [h(A2,k)]
is eventually the same as the overlap length of [h(D3,k)] and [h(E1,k)]. Thus,
we are reduced to the case of short sequences.

The other two cases, {A1,k} = {Bk}, {A2,k} = {Ek} and {A1,k} = {Dk},
{A2,k} = {Ck}, similarly reduce to the case of short sequences.

Proposition 4.21. If {Ak} is a polynomial sequence of paths (respectively
closed paths) in G, then the sequence {lengthX([h(Ak)])} (respectively
{�T ([[Ak)]])}) of real numbers is eventually polynomial. If P is a polynomial
such that eventually P (k) = lengthX([h(Ak)]) (respectively {�T ([[Ak]])}) then
the leading coefficient of P is bounded below by m/ deg(P )! where m is the
length of the shortest edge of T .

Proof. We prove the statements about sequences of paths; the case of
closed paths is similar and is left to the reader. The proof is by induction on the
complexity of {Ak} with the induction statement being that {lengthX([h(Ak)])}
is eventually polynomial and that the positive constant sequences of real num-
bers used in the integration operations are realized as lengths of edge paths
in T . This directly proves the first statement of the proposition and the second
follows from Lemma 4.5(3b).

The case that {Ak} has zero complexity follows from the first item in
Remark 0.1. We now assume the desired result for all polynomial paths with
complexity less than that of {Ak}.

By Lemma 4.20(1), {Ak} either is short or long. In the former case, the
induction statement follows from Remark 4.17 and the first item in Remark
0.1. We now assume that {Ak} is long.

If {Ak} is obtained from a sequence satisfying the inductive statement by
inversion or by truncation and re-indexing, then {Ak} satisfies the inductive
statement.
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Suppose that {Ak} is the concatenation of {A1,k} and {A2,k} where both
{A1,k} and {A2,k} satisfy the inductive statement, and at least one of {A1,k}
and {A2,k} is not short. Let A be the eventual overlap length of [h(A1,k)] and
[h(A2,k)] (see Lemma 4.20(2)). Then, eventually the length in X of [h(Ak)]
equals

lengthX([h(A1,k)]) + lengthX([h(A2,k)]) − 2A.

Lemma 4.5(4) implies that {lengthX([h(Ak)])} is eventually polynomial and
hence that the inductive statement is satisfied.

Finally, suppose that {Ak} is the integral of the sequence {Bk} where
{Bk} satisfies the induction statement. By Lemma 4.20(2), the overlap length
of [h(Bk)] and [h(Bk+1)] is eventually a constant B. After re-indexing and
truncating, {lengthX([h(Ak)])} is {2B} plus the integral of {lengthX([h(Bk)])−
2B}. The latter sequence is polynomial by Lemma 4.5(4) and is eventually the
length of an edge path in T by the second item in Remark 0.1 with D = D′ = B.
This completes the induction step and so also the proof of the proposition.

Let T ∈ T , O ∈ UPGFn
, and a ∈ Fn. By Lemma 4.2 and Proposition 4.21,

the sequence {�T (Ok([[a]]))} is eventually polynomial. The degree d(O, T, a)
of the polynomial is uniformly bounded by the number of strata in a UR for O.
Let d(O, T ) = max{d(O, T, a) | a ∈ Fn}.

Theorem 4.22. Suppose T ∈ T and O ∈ UPG(Fn). Set d = d(O, T ).
Then, the sequence {TOk/kd} converges to a tree TO∞ ∈ T .

Proof. By Lemma 4.2 and Proposition 4.21 and the definition of d, the
sequences

{�T (Ok([[a]]))/kd}
converge for all a ∈ Fn and not all of these limits are 0. Hence, the sequence
{TOk/dk} converges to a nontrivial Fn-tree. That this tree is very small follows
from the fact, proved in [CL95], that TV S ∪ {trivial action} is closed under
limits.

By Lemma 4.5(3), if P is a polynomial of degree d such that eventually
P (k) = �T (Ok([[a]])), then the leading coefficient of P is bounded below by a
nonzero constant depending only on d and the lengths of the edges of T . It
follows that the collection of nonzero numbers of the form lim �T (Ok([[a]]))/kd

are bounded away from 0, and so TO∞ is simplicial.

Question. Does Theorem 4.22 hold for trees in TV S?

Definition 4.23. Trees T for which d(O, T ) = 0, i.e. for which the sequence

{�T (Ok([[γ]]))}∞k=0

is eventually constant for every γ ∈ Fn, are O-nongrowers. Others are O-
growers. If d(O, T ) = 1, then we say that T grows linearly under O.
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Remark 4.24. There exist nongrowers that are not fixed. An example is
the F2-tree T pictured below. The first map Rose2 → X is the marking and
is given by identifying the two bold arcs. (Recall that the edges of Rose2 are
identified with the elements of the standard basis {e1, e2}.) All edges of X are
horizontal except for the image e1. The tree T is O-nongrowing where O is
represented by the automorphism given by e1 �→ e1, e2 �→ e1e2. Such examples
do not exist in SLn(Z) or the mapping class group of a surface.

e2

e1

Rose2 X

q

T

Nongrowers are also responsible for the existence of automorphisms O and
compact sets K ⊂ PTV S in the complement of Fix(O) with the property that
for no k is KOk contained in a prescribed small neighborhood of Fix(O). Here
PTV S is the space of homothety classes of very small Fn-trees. A concrete
example can be described as follows. Let O ∈ Out(F4) be represented by the
automorphism given by e1 �→ e1 and ei �→ eie1 if i > 1. The compact set K

consists of the bi-infinite sequence {. . . , T−2, T−1, T0, T1, T2, . . . } together with
the limiting tree T∞. The tree T k is pictured below. Here we have indicated the
marking by the elements of F4 on the closed edges (i.e. loops) of X. Only the
edge marked e1 is vertical. Passing to the limit as k goes to infinity amounts
to opening up the loops of T which in the limit correspond to e2 and e3. Now
notice that TkOk converges to a nonfixed nongrower (which is a tree just like
T∞ except for a permutation of {e2, e3, e4}).

It is, however, true that if K is a compact subset of PTV S consisting of
growers, then the accumulation set of the sequence KOk is a subset of Fix(O).

4.2. Explicit limits. The goal of this section is to give an explicit con-
struction of TO∞ for T ∈ T in the case that d = d(O, T ) ≥ 1, an assumption
we make for the rest of this section. The case that O has linear growth was
done by Cohen and Lustig in [CL95]. Let f : G → G be a UR representing
O. Unless otherwise stated, paths in graphs are assumed to begin and end at
vertices.

Notation 4.25. For a path σ in G, f#(σ) is the path [f(σ)].
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e2e
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By Theorem 3.11(5), a sufficiently high iterate of a path σ has a splitting
into exceptional subpaths and single edges. The following lemma implies that
σ itself has a decomposition (not necessarily a splitting) of this sort.

Lemma 4.26. Maximal exceptional subpaths of a path do not overlap.

Proof. Suppose that σ1 = Eiτ
kĒj is an exceptional subpath of σ and

that σ2 is an exceptional subpath of σ that intersects σ1 in a proper nontrivial
subpath of σ1. Either the initial edge of σ2 is contained in σ1 and is not Ei

or the terminal edge of σ2 is contained in σ1 and is not Ēj . These two cases
are interchanged when σ is replaced by σ̄ so that there is no loss in assuming
that the former holds. The heights of the first and last edges of an exceptional
path are strictly greater than the height of any other edge in the exceptional
path. Thus if σ2 contains Ēj then Ēj is the first or last edge of σ2. Since no
exceptional path begins with Ēj , σ2 cannot extend past Ēj and σ2 is a subpath
of σ1.

Lemma 4.26 implies that there is a well defined decomposition σ = σ1 . . . σm

into single edges and maximal exceptional subpaths. We call this the canonical
decomposition of σ.

Definition 4.27. Let h : G → X be a homotopy equivalence of G to
a model for T taking vertices to vertices. For any path σ ⊂ G with end-
points at vertices let d(σ) = d(σ, X) be the degree of the polynomial sequence
lengthX([h(fk(σ))]), and let

LG(σ) = lim
k→∞

lengthX([h(fk(σ))])/kd.

The notation LG is chosen to remind the reader that LG is a length function on
paths in G. Proposition 4.21 implies that LG(σ) is well defined. By definition,
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LG([f(σ)]) = LG(σ) for all σ. Theorem 4.22 implies that LG agrees with the
length function induced by TO∞ on circuits in G.

The problem with this definition of LG is that it requires iteration and
taking limits. For any path σ ⊂ G, let L∗

G(σ) =
∑m

i=0 LG(σi) where σ =
σ1 . . . σm is the canonical decomposition of σ. We show below (Proposition
4.32) that LG = L∗

G. Along with Lemma 4.28, this allows us to compute LG

directly once its value on a finite number of paths is known.
We say that an edge Ei is linear if its suffix ui is a Nielsen path; in this

case we write ui = τni

i for a primitive Nielsen path τi and some ni > 0. If τ is
a primitive Nielsen path and if there is more than one linear edge whose suffix
is an iterate of τ then we say that {Ei : τi = τ} is the linear family associated
to τ . By reordering the edges of G we may assume that the edges in a linear
family are consecutively numbered, say {Ei : s ≤ i ≤ t}.

The following lemma gives LG(σ) when σ is a linear edge or an exceptional
path.

Lemma 4.28. Suppose that τ is a primitive Nielsen path, that Ei and Ek

belong to the linear family associated to τ and that σ = Eiτ
mĒk. Then

(1) If �T ([[τ ]]) = 0 then d(Ei) = d(Ek) = d(σ) = 0 and LG(Ei) = LG(Ek) =
LG(σ) = 0.

(2) If �T ([[τ ]]) > 0 then d(Ei) = d(Ek) = 1 and d(σ) ≤ 1. In particular, if
d > 1, then LG(Ei) = LG(Ek) = LG(σ) = 0.

(3) If �T ([[τ ]]) > 0 and d = 1, then LG(Ei) = ni · �T ([[τ ]]), LG(Ek) = nk ·
�T ([[τ ]]) and LG(σ) = �T ([[τ ]]) · |ni − nk|.

Proof. This is a direct consequence of the bounded cancellation lemma
and the fact that for any a ∈ Fn and m > 0, �T ([[am]]) = m �T ([[a]]).

Lemma 4.29. If σ has a splitting σ = σ1 · · ·σm into exceptional subpaths
and single edges, then σ = σ1 · · ·σm is the canonical decomposition of σ and
LG(σ) = L∗

G(σ).

Proof. Lemma 4.26 implies that if τ is a maximal exceptional subpath of
σ then τ = σj . . . σk for some 1 ≤ j ≤ k ≤ m. Since exceptional paths have no
nontrivial splittings, j = k and τ = σj . This proves that σ = σ1 · · ·σm is the
canonical decomposition of σ. Lemma 4.20(2) implies that there is a uniform
bound between lengthX([h(fk(σ))]) and

∑
lengthX([h(fk(σi))]). The equality

LG(σ) = L∗
G(σ) therefore follows from the assumption that d ≥ 1.

We say that an edge Ei is below the edge Ej , i �= j, if the canonical
decomposition of either f(Ej) or f(Ēj) contains a term that is not a Nielsen
path and that has Ei as its initial edge. If Ei is not below any edge then it is
topmost.
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Lemma 4.30. LG(σ) = L∗
G(σ) = 0 if σ is any of the following :

• a suffix,

• an edge that is not topmost,

• an edge that is fixed by f ,

• a Nielsen path.

Proof. Suppose that u is the suffix of an edge E. Remark 3.14 and
Theorem 3.11(2) imply that u has a splitting u = u1 · · ·um into exceptional
subpaths and single edges and that f(E) has a splitting f(E) = E · u1 · · ·um.
Lemma 4.29 and the fact that LG([f(E)]) = LG(E) therefore imply the first
item and that each LG(ui) = L∗

G(ui) = 0. Since LG and L∗
G agree on edges,

to prove the second and third items we need only prove that LG(E) = 0 when
E is either not topmost or is fixed. The former case follows from Lemma 4.28
applied to a ui as above and the latter from the assumption that d ≥ 1.

If σ is a Nielsen path then σ = [fk(σ)] for all k so that σ has a splitting
into exceptional subpaths and single edges. Lemma 4.29 implies that L∗

G(σ) =
LG(σ). Since d ≥ 1, LG(σ) = 0.

Lemma 4.31. Assume that L∗
G(α) = 0.

• If the initial endpoint of σ equals the terminal endpoint of α then L∗
G([ασ])

= L∗
G(σ).

• If the terminal endpoint of σ equals the initial endpoint of α then L∗
G([σα])

= L∗
G(σ).

Proof. Since L∗
G(ρ) = L∗

G(ρ̄) for all ρ, the two items are equivalent.
We prove the first item by induction on the number of terms in the canon-

ical decomposition of α. Let σ = σ1 . . . σm be the canonical decomposition
of σ. If α is a single edge there are four cases to consider. If ασ1 . . . σm

is the canonical decomposition of [ασ] then L∗
G([ασ]) = L∗

G(σ) + LG(α) =
L∗

G(σ). If σ1 = ᾱ then σ2 . . . σm is the canonical decomposition of [ασ] and
so L∗

G([ασ]) = L∗
G(σ) − LG(α) = L∗

G(σ). If α = Ēi and σ1 = Eiτ
mĒk is an

exceptional path, then the canonical decomposition of [ασ] is the canonical
decomposition of the Nielsen path τm followed by Ēk followed by σ2 . . . σm.
By Lemma 4.28, LG(σ1) = LG(Ek) = 0. By Lemma 4.30, L∗

G(τm) = 0. Thus
L∗

G([ασ]) = L∗
G(σ)−LG(σ1)+L∗

G(τm)+LG(Ek) = L∗
G(σ). The remaining case

is that α = Ei, that σ begins with τmĒk and that Eiτ
mĒk is an exceptional

path. Then L∗
G(σ) = L∗

G([ᾱ[ασ]]) = L∗
G([ασ]) by the previous case. This

completes the proof when α is a single edge.
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If α = Eiτ
mĒk is exceptional, then there are three cases. By Lemma 4.28,

LG(Ei) = LG(Ek). By Lemma 4.30, L∗
G(τm) = 0. If the initial edge of σ is not

Ek then L∗
G([ασ]) = L∗

G(α) + L∗
G(σ) = L∗

G(σ). If σ1 = Ek then L∗
G([ασ]) =

L∗
G(σ) − LG(Ek) + L∗

G(τm) + LG(Ei) = L∗
G(σ). Finally, if σ1 = Ekτ

pĒl is
exceptional then the canonical decomposition of [ασ] is (Eiτ

m+pĒl)σ2 . . . σm

so L∗
G([ασ]) = L∗

G(σ)−LG(Eiτ
mĒk)+L∗

G(Eiτ
m+pĒl) = L∗

G(σ). This completes
the proof when there is only one term in the canonical decomposition of α.

In general, let α1 be the first term in the canonical decomposition and
write α = α1α

′. Then L∗
G([ασ]) = L∗

G([α1[α′σ]]) = L∗
G([α′σ]) = L∗

G(σ) where
the last equality is by induction.

Proposition 4.32. For any path σ ⊂ G, LG(σ) = L∗
G(σ).

Proof. By Theorem 3.11(5), LG(σ) = LG([fk(σ)]) = L∗
G([fk(σ)]) for all

sufficiently large k. It therefore suffices so show that L∗
G is f#-invariant.

We argue by induction on the height h(σ) of σ. For h(σ) = 0 the statement
is vacuously true. Assume that height(σ) = h and that L∗

G([f(σ)]) = L∗
G(σ)

for paths σ with height at most h − 1. If Eh is part of a linear family, denote
this family {Ei : s ≤ i ≤ t}; otherwise let s = h. The edges Ei with s ≤ i ≤ h

are all highest edges so that there is a splitting (see Definition 3.15) of σ into
subpaths of the following types: µ, Eiµ, µĒi and EiµĒj where s ≤ i, j ≤ h and
where µ is contained in Gs−1. The canonical decomposition of σ is a refinement
of this splitting and so it suffices to assume that σ has one of these forms.

The case that σ = µ follows by induction. Suppose that σ = Eiµ. Since
f is a homotopy equivalence and fixes all vertices, there is a path ηi of height
at most s − 1 such that f#(ηi) is the suffix ui of Ei. By Lemma 4.31 and
the inductive hypothesis, L∗

G(ηi) = L∗
G(ui) = 0. Since µ and [uif(µ)] are

contained in Gs−1, Ei is the first term in the canonical decompositions of
σ = Eiµ and [f(σ)] = Ei[uif(µ)]. Thus L∗

G(f#(σ)) = L∗
G(f#([[Eiη̄i][ηiµ]])) =

L∗
G(Eif#([ηiµ])) = LG(Ei) + L∗

G(f#([ηiµ])) = LG(Ei) + L∗
G([ηiµ]) = LG(Ei) +

L∗
G(µ) = L∗

G(σ). The µĒi case follows by symmetry. If σ = EiµĒj is excep-
tional, then so is [f(σ)] and Lemma 4.28 completes the proof. Otherwise both
Ei and Ēj are terms in the canonical decomposition of both σ and [f(σ)]. In
this case, one writes σ = [[Ehη̄i][ηiµη̄j ][ηjĒh]] and argues as in the σ = Ehµ

case.

Our remaining task is to explicitly construct a tree whose length function
agrees with L∗

G.

Lemma 4.33. Let Ĝ be the subgraph consisting of edges E with LG(E)=0.
If d ≥ 2, then TO∞ is the tree obtained from G by collapsing the components
of Ĝ to points and assigning each remaining edge E the length LG(E).
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Proof. By Lemma 4.28 each exceptional subpath of σ is contained in Ĝ.
One may therefore compute L∗(σ) by writing σ as a concatenation of edges
and adding up the LG-length of each edge.

For the remainder of the section we assume that d = 1. To each edge
E of G, assign a formal length LG(E). By reordering the edges of G we
may assume that the edges in a linear family with positive formal length are
consecutively numbered, say {Ei : s ≤ i ≤ t}, and that within such a linear
family, formal lengths are increasing; equivalently, nj > ni if s ≤ i < j ≤ t.

If Ei and Ej are distinct edges in a linear family then
lengthG(EjĒi) > L∗(EjĒi) by Lemma 4.28. To create a graph G′ that as-
signs the correct lengths to exceptional paths of positive formal length, we fold
edges within linear families {Ei : s ≤ i ≤ t} of positive formal length as follows.
First fold part of Ēt over all of Ēt−1. Denote the unfolded part of Et by E′

t

and assign it a formal length equal to LG(Et) − LG(Et−1). Next fold part of
Ēt−1 over all of Ēt−2 denoting the unfolded part of Et−1 by E′

t−1 and assign it
a formal length equal to LG(Et−1)−LG(Et−2). Continue this down the linear
family with the last fold defining E′

s+1. Repeat this for all linear families with
positive formal length. An edge E ⊂ G that is not subdivided in this process
determines an edge in G′ that we label E′ and assign a formal length equal to
LG(E). Let g : G → G′ be the total folding map. If Ei is a member of a linear
family with positive length {Ei : s ≤ i ≤ t} then g(Ei) = E′

iE
′
i−1 . . . E′

s. We
will not use f to induce a homotopy equivalence of G′ but simply use G′ as
the basis for the construction of TO∞.

For each linear edge Ei ⊂ G, let ηi = EiτiĒi be the primitive Nielsen path
determined by Ei. Denote [g(ηi)] by η′i and let τ ′

i be the subpath satisfying
η′i = E′

iτ
′
iĒ

′
i. If g(Ei) is a single edge E′

i, then τ ′
i = [g(τi)]. Otherwise Ei is

an element of an exceptional family {Ei : s ≤ i ≤ t} and i > s. In that case
τ ′
i = E′

i−1 . . . E′
sτiĒ

′
s . . . Ē′

i−1 = η′i−1.

Remark 4.34. By Theorem 3.11(5), a path σ ⊂ G is a Nielsen path if and
only if it is a concatenation of subpaths, each of which is either a fixed edge
or [ηk

i ] = Eiτ
k
i Ēi for some integer k.

Lemma 4.35. Suppose that σ is a path in G and that σ = σ1 . . . σm is its
canonical decomposition. Denote [g(σ)] by σ′ and [g(σi)] by σ′

i. Then

• σ′ = σ′
1 . . . σ′

m is a decomposition into subpaths.

• The maximal subpaths {α′
k} of σ′ of the form η′l

m are disjoint .

• Each α′
k is contained in some σ′

j.

• For each j, the sum of the formal lengths of the edges of σ′
j that are not

contained in any α′
k equals LG(σj).
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Proof. We begin by enumerating the possible values of σ′
j . If σj is a single

edge Ei then σ′
j = E′

i unless Ei is contained in a linear family {Ej : s ≤ j ≤ t}
and i > s. In that case, σ′

j = E′
iE

′
i−1 . . . E′

s. If σj = Eiτ
m
s Ēk where s ≤ k ≤

i ≤ t then σ′
j = E′

iE
′
i−1 . . . E′

k+1E
′
k . . . E′

sτ
m
i Ē′

s . . . Ē′
k = E′

iE
′
i−1 . . . E′

k+1[η
′
k
m].

Given these possibilities, the third item implies the second and fourth items.
If the first item fails then some σ̄′

j and σ′
j+1 have a common initial edge.

Examining the values above and keeping in mind that the initial edges of σ̄j

and σj+1 are distinct, we see that the only possibility is that σj = Ei and
σj+1 begins with Ēs for some linear family {Ej : s ≤ j ≤ t} with s ≤ i ≤ t.
But then there is an exceptional subpath that overlaps with σj and σj+1 in
contradiction to the definition of canonical subpath. This proves the first item.

The homotopy equivalence g induces a bijection on paths with endpoints
at vertices. Given a subpath µ′ ⊂ σ′ let µ ⊂ σ be the smallest path (not
necessarily with endpoints at vertices) satisfying [g(µ)] = µ′. Suppose that
µ′ = [η′l

m]. If El is not part of a linear family then µ must have endpoints
at vertices and so, by uniqueness, must be [ηl

m]. In particular, µ is contained
in some σj and so µ′ is contained in some σ′

j . If El is part of a linear family
then it may be that one or both endpoints of µ are contained in the interior of
edges in the same linear family as El. In this case the path ν obtained from µ

by including the edges that contain the endpoints of µ has image of the form
Ē′

jτ
′
s
mĒ′

k. By uniqueness ν is exceptional and we conclude as before that µ′

is contained in a single σ′
j . This proves the third item and so also the second

and fourth items.

Definition 4.36. Let Ĝ′ be the subgraph of G′ consisting of edges with
formal length zero and let T 0 be the tree determined from G′ by collapsing
the components of Ĝ′ to points and making the length of each remaining edge
equal to its formal length. For i > 0 we will inductively define T i working our
way up the strata of G. If Ei is not a linear edge with positive formal length,
then g(Ei) = E′

i is a single edge and we define T i = T i−1. Otherwise, define
T i to be the tree obtained from T i−1 by pulling τ ′

i over E′
i [BF91, p. 452].

Remark 4.34 implies that τ ′
i is elliptic in T i−1 and so this operation is well

defined. Denote the tree obtained at the end of the process by T ′.

Lemma 4.37. If d = 1 then TO∞ = T ′.

Proof. Given a circuit σ contained in G, denote [g(σ)] by σ′ and let {α′
k}

be as in Lemma 4.35. By Lemma 4.35, it suffices to show that �T ′([[σ′]]) equals
the sum of the formal lengths of the edges of σ′ that are not contained in any
α′

k. But this is exactly how T ′ was constructed.
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Remark 4.38. Nontrivial edge stabilizers of TO∞ all arise from Defini-
tion 4.36. We record for future use the fact that each nontrivial edge stabilizer
of T ′ is generated by a conjugate of a root of a linear suffix of f .

4.3. Primitive subgroups. From the homology, it is clear that if the ele-
ments of a free factor system are permuted under a unipotent outer automor-
phism, then each is invariant, and the restriction is unipotent. We will show
moreover that a periodic free factor (or even a vertex stabilizer of a tree in TV S)
is invariant. Our argument uses only that vertex stabilizers are primitive.

Recall that a subgroup H of a group J is primitive if, for all a ∈ J and
all i �= 0, ai ∈ H implies that a ∈ H. An element a of J is primitive if 〈a〉 is a
primitive subgroup of J .

Lemma 4.39. Let H be a finitely generated nontrivial primitive subgroup
of Fn. Then the normalizer N(H) of H in Fn is H.

Proof. Let T be a minimal free simplicial Fn-tree and let TH be a minimal
H-invariant subtree of T . Let γ ∈ N(H). Then γ(TH) = TH and so the axis
of γ is in TH and projects to a circuit in TH/H. Thus, a power of γ is in H.
Since H is primitive, γ is in H.

Lemma 4.40. Let H be a subgroup of Out(Fn) and let H be a finitely gen-
erated primitive subgroup of Fn whose conjugacy class is H-invariant. Then,
the restriction map ρH : H → Out(H) is well -defined. Further, if H ⊂ PG(Fn),
then H|H := ρH(H) ⊂ PG(H).

Proof. The first statement is an easy consequence of Lemma 4.39. The
second statement follows from the fact that the inclusion of a finitely generated
subgroup into Fn is a quasi-isometry, see for example [Sho91].

Proposition 4.41. Suppose that O ∈ UPG(Fn) and that H ⊆ Fn is a
primitive finitely generated subgroup. If Ok([[H]]) = [[H]] for some k > 0, then
O([[H]]) = [[H]]. Furthermore, if Φ ∈ Aut(Fn) is a lift of O with Φk(H) = H

then Φ(H) = H.

The statement is false without the primitivity assumption as the following
example shows: F2 = 〈e1, e2〉, Φ(e1) = e1, Φ(e2) = e1e2, H = 〈e2

1, e2〉, k = 2.

Proof. By Proposition 3.16, we may assume that rank(H) > 1. Let
f : G → G be a UR for O such that f is linear on each edge of G. By
p : G′ → G denote the covering space of G corresponding to H. There is a lift
g : G′ → G′ of fk. We claim that, after replacing g by a power if necessary, g

fixes a vertex. Indeed, by linear algebra, some power gm of g will have negative
Lefschetz number. Any fixed point v of negative index of gm composed with
the retraction to the core is fixed under gm. The claim now follows from the
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observations that p(v) is a fixed point for a positive power of f , that a positive
power of a UR is also a UR, and that the only fixed points of a UR that is
linear on edges are vertices and fixed edges.

We now use v and p(v) as base points. Let σ be a closed path in G′

based at v. The sequence {[gi(σ)]} forms a sequence of lifts of a subse-
quence of the sequence {[f j(p(σ))]}. The latter is eventually a polynomial
sequence (Lemma 4.2), and hence by Lemma 4.9 eventually the based closed
path [f j(p(σ))] lifts to a based closed path in G′. Applying this to closed
paths σ representing generators of π1(G′, v) we conclude that f j eventually
lifts to G′. Thus, eventually Oj([[H]]) = [[H]], and the claim follows.

For the “furthermore” part of the proposition let v be the base point and
choose g so that v is fixed.

Definition 4.42. A circuit in a graph is primitive if it is not a proper power
of another circuit.

Lemma 4.43. Let G be a finite connected core graph with oriented edges.
Suppose that f : G → G is a cellular homeomorphism preserving orientations
and inducing a nontrivial permutation of the edges. Then either

(1) there is a primitive circuit σ = E1E2 · · ·Em that is nontrivially rotated
by f , i.e. there is a p, 0 < p < m, such that f(Ei) = Ep+i (subscripts are
taken mod m), or

(2) there is an f -fixed vertex such that f nontrivially permutes the edges
containing v.

Proof. First suppose that v, f(v), . . . , fm(v) = v is a nontrivial orbit of
vertices with m minimal. Choose an embedded path τ connecting v and f(v).
If τf(τ) · · · fm(τ) is essential, then [[τf(τ) · · · fm(τ)]] is a circuit as in (1). If
not, then a vertex in τ is as in (2).

If f fixes the vertices of G, then the common vertex of a nontrivial orbit
of edges is as in (2).

Proposition 4.44. Suppose that O ∈ UPG(Fn) and that H ⊆ Fn is a
primitive finitely generated subgroup whose conjugacy class is fixed by O. Then
the restriction (see Lemma 4.40) O|H ∈ UPG(H).

Proof. It is obvious that O|H ∈ PG(H). We argue that the action on
homology is unipotent. Let f : G → G be a UR for O. By p : G′ → G denote
the covering space of G corresponding to H and let f ′ : G′ → G′ be a lift of f .
By C denote the core of G′. Let ρ : G′ → C be the nearest point retraction. If
C does not contain any lifts of the highest edge E ⊂ G, then we may argue by
induction on the number of strata. Therefore we assume that C contains lifts
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of E. From C form a finite graph Ĉ by collapsing all edges that do not project
to E. The map ρf ′ induces a cellular isomorphism f̂ : Ĉ → Ĉ. Since C is
finite, f̂ has finite order. The main step of the proof is to argue that f̂ = id.

If f̂ is not the identity, then, according to Lemma 4.43, there are two
cases. Suppose first that there is a primitive circuit σ = E1E2 · · ·Em that
is nontrivially rotated by f̂ . Here each Ei is a lift of E or of E, and, say,
f̂(Ei) = Ep+i, 0 < p < m (indices are taken mod m).

Choose a path in C of the form E1τE2 where τ does not cross any lifts
of E or E. The sequence {[f ′k(τ)]}∞k=1 projects to an eventually polynomial
sequence. Further, for infinitely many values of k (those in the same congruence
class modulo the order of p in m) these paths have common initial and common
terminal endpoints. It follows from Lemma 4.9 that for large k and any i there
is a path that joins Eip+1 and Eip+2 and projects to the same path as [f ′k(τ)].
Repeat this construction for every f̂ -orbit of consecutive edges in σ to obtain
a primitive circuit in C that projects to a proper power. This contradicts the
primitivity assumption and shows that f̂ = id in this case.

The second case is that there is an f̂ -fixed vertex v of Ĉ such that f̂ non-
trivially permutes the edges containing v. Let E1, E2, . . . , Em be a minimal
f̂ -orbit of edges with initial vertex v. Let E′

1, E
′
2, . . . , E

′
m be the correspond-

ing lifts to C with initial vertices v′1, v
′
2, . . . , v

′
m. Note that these vertices are

distinct because p is an immersion. We may now repeat the argument given
in the first case with τ a path connecting v1 and v2 that does not cross a lift
of E or E, and ultimately reach the same contradiction.

If σ is any circuit in C representing a cycle, then (f ′
∗ − id)(σ) is a cycle

supported in the cores of the components of

C \ (∪{interiors of lifts of E}).
Inductively, it follows that a high power of f ′

∗ − id kills σ. Thus, O|H ∈
UPG(H).

4.4. Unipotent automorphisms and trees. See Section 2 for definitions.

Proposition 4.45. Let O ∈ UPG(Fn) and T ∈ TV S. Suppose that,
Point(T ) and Arc(T ) are O-invariant. Then,

(1) each element of Arc(T ) is O-invariant,
(2) each element of Point(T ) is O-invariant, and
(3) if [[V ]] ∈ Point(T ), then O|V ∈ UPG(V ).

Proof. By Theorem 2.3, Arc(T ) is a finite set. Item (1) follows by Propo-
sition 3.16.

Similarly, each of the finitely many elements of Point(T ) is O-periodic, and
hence is O-invariant by Proposition 4.41. The restriction of O is unipotent by
Proposition 4.44.
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Remark 4.46. If T ∈ TV S is fixed by O ∈ Out(Fn), then the hypotheses
of Proposition 4.45 are satisfied.

Lemma 4.47. Let f : G → G be a cellular homeomorphism of a connected
finite graph. Suppose that f fixes all valence one vertices and induces a unipo-
tent map of H1(G; Z). Then either f is homotopic rel vertices to the identity
or there is a homeomorphism G to S1 that conjugates f to a rotation.

Proof. After a homotopy relative to vertices, we may assume that every
point is periodic. If G is a circle, the claim is clear. We may therefore assume
that either G has valence one vertices or negative Euler characteristic. In either
case Fix(f) �= ∅. We will assume that Fix(f) �= G and derive a contradiction.

After replacing f by an iterate if necessary, we may assume that all non-
fixed points have the same period, say k > 1. Choose a shortest arc α in G

that intersects Fix(f) exactly in its (possibly equal) endpoints ∂α. Suppose
that there exists v ∈ α \ ∂α such that f(v) ∈ α. Since v is not a fixed point,
either v or f(v) is not the midpoint of α. But then there is path in α ∪ f(α)
that intersects Fix(f) exactly in its boundary and that is shorter than α. We
conclude that α, f(α), . . . fk−1(α) intersect only in their endpoints. It follows
that there is a nonfixed periodic class under the action of fk on the homology
of the subgraph ∪k−1

i=0 f i(α). This contradicts Corollary 3.3.

Proposition 4.48. Assume n > 1. Suppose O ∈ UPG(Fn) fixes T ∈ T .
Let Φ ∈ Aut(Fn) be a lift of O and let fΦ : T → T be a Φ-equivariant isometry.
Then fΦ fixes all orbits of vertices and directions.

Proof. The map fΦ induces a periodic homeomorphism fΦ of the quotient
graph T = T/Fn. If x ∈ T is a vertex such that FixT (StabT (x)) = {x}, then
the image of x in T is fΦ-fixed by Proposition 4.45. In particular, fΦ fixes all
valence 1 vertices. Since the induced action on homology of T is unipotent,
by Lemma 4.47, fΦ either is the identity or is conjugate to a rotation of the
circle. The latter is impossible since Elliptic(T ) �= {1}.

Lemma 4.49. Let O ∈ UPG(Fn), S ∈ TV S , and a ∈ Fn. Suppose
�SO∞(a) > 0. Then there is a K such that �S(OK′

(a)) > 0 for all K ′ > K.

Proof. This is immediate by the definition of limits.

Proposition 4.50. Let f : G → G be a UR for O ∈ UPG(Fn) and let
T ∈ TV S be O-nongrowing. If a ∈ Fn is elliptic in TO∞, then a is elliptic
in T .

Proof. We first comment that, by the definition of nongrowing, if x ∈ Fn

is elliptic in TO∞ then there is k(x) such that Ok([[x]]) is elliptic in T for
k > k(x).
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Let V = 〈a1, . . . , ap〉 be a point stabilizer of TO∞ containing a. By the
above comment, there is a k such that, for all pairwise products aiaj , we have
Ok([[aiaj ]]) is elliptic in T . By Theorem 2.1, Ok([[V ]]) is elliptic in T .

Since V is a point stabilizer of the O-fixed tree TO∞, O([[V ]]) = [[V ]] by
Theorem 2.3 and Proposition 4.41. So [[V ]], and hence a, is elliptic in T .

5. A Kolchin theorem for unipotent automorphisms

The rest of the paper is devoted to the proof of our main theorem.

Theorem 5.1. For every finitely generated unipotent subgroup H of
Out(Fn), there is a tree in T with all edge stabilizers trivial that is fixed by
all elements of H. Furthermore, there is such a tree with exactly one orbit of
edges and if F is any maximal proper H-invariant free factor system then T

can be chosen so that F(T ) = F .

We fix notation as follows. Let F be a maximal H-invariant proper free
factor system. Choose a generating set

H = 〈O1,O2, . . . ,Ok〉

and for 1 ≤ l ≤ k let fl : Gl → Gl be a UR for Ol with a filtration element
Gl

r(l) such that F(Gl
r(l)) = F . Choose T0 ∈ T with trivial edge stabilizers and

with F(T0) = F .

Definition 5.2. The bouncing sequence associated with the above choices
is the sequence of simplicial trees

{T0, T1, T2, · · · }

in T defined by
Ti = Ti−1O∞

i

where subscripts of the Oi’s are taken mod k (see Theorem 4.22).

We prove Theorem 5.1 by showing that the bouncing sequence is eventu-
ally constant and that the limit tree satisfies the conclusions of the theorem.
As intermediate steps, we show that Ti is Oi+1 nongrowing for all sufficiently
large i (Proposition 5.7) and that the edge stabilizers of Ti are trivial for all
sufficiently large i (Lemma 5.10). It turns out that the bouncing sequence is
constant. This is reflected, for example, in Lemma 5.10 where having estab-
lished properties of Ti for large i, the properties then hold for all i.

Before starting the proof, we give some examples of what can happen if
F is not assumed to be maximal.
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Example 5.3. Recall that F2 = 〈e1, e2〉. Set H = 〈O〉 with O represented
by the automorphism Φ given by Φ(e1) = e1, Φ(e2) = e2e1, and let T0 ∈ TCV .
Then, T0O∞ is the tree T from Example 2.7. The tree T is O-fixed, and so
the bouncing sequence is eventually constant. However, T has nontrivial edge
stabilizers, and in this case the iteration scheme fails to discover a tree as in
the conclusion of Theorem 5.1. Here F is trivial. We can discover a larger
invariant proper free factor system, namely {[[〈e1〉]]}, by looking at the edge
stabilizer.

Example 5.4. Recall F3 = 〈e1, e2, e3〉. Set H = 〈O1,O2〉, where Oi is
represented by the automorphism Φi given by Φ1(e1) = e1, Φ1(e2) = e2e1,
Φ1(e3) = e3, Φ2(e1) = e1, Φ2(e2) = e2, and Φ2(e3) = e−1

2 e1e2e3. Notice
that the basis {e1, e2, e2e3} is better adapted to Φ2 since Φ2(e2e3) = e1e2e3.
Consider the trees in T whose models are pictured below.

e2

e1

e2e3

X(T0)

O∞
1

X(T1)

O∞
2

X(T2)

e2

e2

e2

e1

e1

e1

e2e3

e3

e3

O∞
1

In the illustration, group elements indicate the image of the markings, and
the only vertical edges are the ones corresponding to e1. All edge stabilizers
are trivial and in each case the indicated tree has infinite cyclic vertex sta-
bilizers (always conjugate to 〈e1〉). The tree T1 is the limit T0O∞

1 , T2 is the
limit T1O∞

2 , etc. The tree T2 is combinatorially isomorphic to T0, i.e. T0 and
T2 belong to the same open cone of T . Notice, however, that T0 and T2 are not
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homothetic: the ratio �(e2)/�(e2e3) is smaller in T2 than in T0. The bouncing
sequence indeed bounces between two open cones in T , so it does not stabilize.
All trees in the sequence are nongrowers under all elements of H. The ratios
�Ti

(e2)/�Ti
(e2e3) converge to 0. Here F is {[[〈e1〉]]}. We see that the edge

marked e2 gets relatively shorter and shorter in the bouncing sequence. This
tells us how to enlarge F to a larger H-invariant free factor system, namely
{[[〈e1, e2〉]]}.

5.1. F contains the suffixes of all nonlinear edges.

Proposition 5.5. If E is a nonlinear edge of Gl with suffix u, then u is
contained in Gl

r(l).

Proof. To simplify notation we write f, G and Gr for fl, G
l and Gl

r(l).
Suppose that u is not contained in Gr. If E is crossed by the suffix u′

of an edge E′ then E′ is not a linear edge and u′ is not contained in Gr. We
may therefore assume that E is the edge in the highest stratum. Since Gr is
f -invariant and f fixes all vertices, [fk(u)] is not contained in Gr for any k.
Thus, the eigenray R = E · u · [f(u)] · [f2(u)] · . . . is not carried by F .

The edge E determines a splitting of Fn as either a free product or an
HNN-extension. Let FE denote the resulting free factor system. Since E is
not an edge of Gr, F � FE . Also, F �= FE since FE carries R, but F does
not.

The argument breaks up into two cases.

Case 1. FE carries HR. In this case, the smallest free factor system
F ′ carrying F and HR is proper (since F ′ � FE), is H-invariant (since both
F and HR are), and satisfies F � F ′ properly (since R is not carried by F).
This contradicts the choice of F .

Case 2. FE does not carry HR. In this case, we will show that H
contains an element of exponential growth. There is an element of H such
that, when represented as a homotopy equivalence g : G → G, [g(R)] crosses
infinitely many E’s. The idea is that the image of a path containing E’s under
a high power of f contains long initial subpaths of R, and the image under g

of a path with long initial subpaths of R contains lots of E’s. This feedback
gives rise to exponential growth. We now make this more precise.

Let R∗ denote an initial subpath of R with the property that [g(R∗)] =
STU is the concatenation of three paths such that the lengths of S and U

are at least BCC(g) and such that the number of times that T crosses E and
E is at least five. Let M be the length of [g(R∗)]. Choose N so that, for
all paths τ starting with E of length no more than M , [fN (τ)] starts with
ER∗ (see Proposition 3.18). We claim that the element of H represented by
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gfN has exponential growth. Indeed, since Fn and the universal cover of G

are quasi-isometric, it is enough to find a circuit σ in G such that the length
of [[(gfN )i(g(σ))]] grows exponentially in i. We show that σ can be taken to
be any circuit containing ER∗ as a subpath. If this is the case, then [[g(σ)]]
contains [g(R∗)] except that perhaps initial and terminal subpaths of length
less than BCC(g) may have been lost. In particular, [[g(σ)]] crosses five E’s
and E’s separated by a distance of no more than M . It follows that the highest
edge splitting of [[g(σ)]] induced by initial vertices of the E’s (and terminal
vertices of the E’s) contains at least two subpaths crossing E’s or E’s and
with length at most M . By our choice of N , [[fNg(σ)]] contains two disjoint
subpaths of the form ER∗ or its inverse. So, [[gfNg(σ)]] contains two disjoint
copies of [g(R∗)] or its inverse except for a loss of initial and terminal subpaths
of length less than BCC(g) and so contains at least two disjoint subpaths each
crossing five E’s or E’s that are separated by a distance of no more than M .
This pattern continues and the number of such subpaths containing three E’s
or E’s at least doubles with each application of gfN .

Corollary 5.6. (1) If i = l mod k then Ti−1 is Oi-growing if and
only if there is a linear edge E in Gl whose suffix u has positive length
in Ti−1; in this case the growth is linear.

(2) If σ ⊂ Gl is a circuit and lTi
(σ) > 0 then there is a suffix u as in (1)

such that for every N > 0, [[fk(σ)]] contains [fN (u)] as a subpath for all
sufficiently large k.

Proof. Proposition 5.5 implies that for any circuit σ contained in Gl there
exists a constant K such that each [[fk

l (σ)]] has a decomposition into at most
K subpaths, each of which is either a single edge, a path contained in Gl

r(l), or
of the form um

j for some fixed suffix uj of fl. Up to a uniform bound, the only
terms that contribute to �T i−1([[fk

l (σ)]]) are those of the form um
j and these

contribute m · �T i−1(uj). This proves (1).
For (2), we use the notation of Definition 4.27. There is no loss in assuming

that the canonical decomposition of σ is a splitting. Proposition 5.5 implies
that d(E) = 0 for all nonlinear edges. Lemma 4.29 then implies that at least
one of the terms in the canonical decomposition of σ is a linear edge of positive
length or an exceptional path of positive length. In either case, (2) follows.

5.2. Bouncing sequences stop growing.

Proposition 5.7. Ti is eventually Oi+1-nongrowing.

Proof. To simplify notation we assume that i = 0 mod k. Let U be the
(finite) set of suffixes of f1 that are fixed by f1. Set K = |U|. We will show
that there are at most K values of i such that Ti is O1-growing.
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Suppose to the contrary that Ti0 , Ti1 , · · · , TiK
are O1-growing with i0 <

i1 < · · · < iK and each il = 0 mod k.

Sublemma 5.8. There are wi ∈ H, 1 ≤ i ≤ K, and ui ∈ U , 0 ≤ i ≤ K

such that, given M ≥ 0, [[fB
1 (wi(ui))]] contains [uM

i−1] as a subpath for all
large B.

Proof of Sublemma 5.8. By Corollary 5.6, there is uK ∈ U such that
�TiK

(uK) > 0. Since TiK
= TiK−1+1O∞

2 · · · O∞
iK−iK−1

, we may approximate

TiK
by TiK−1+1wK where wK = ON2

2 · · · ONiK−iK−1

iK−iK−1
for suitably chosen Nj .

In particular, we may assume that �TiK−1+1wK
(uK) > 0. In other words,

�TiK−1+1(wK(uK)) > 0. Corollary 5.6 then provides a suffix uK−1, such that
�TiK−1

(uK−1) > 0 and such that [[fB
1 (wK(uK))]] contains [uM

K−1] as a subpath
for all large B. The argument may be repeated starting with uK−1, etc. The
sublemma follows.

We now continue with the proof of Proposition 5.7. Two of the ui’s pro-
duced in the sublemma are equal, say u0 = uK . We shall show that there exists
an element in H of exponential growth, a contradiction that will establish the
proposition.

Let C be as in Lemma 3.17 for the UR f1, and let A be such that the length
in G of [wi(ui)A] is larger than twice BCC(wi) (with wi realized as homotopy
equivalence on G). Choose B so that the circuit [[fBwi(ui)]] contains uC+2+A

i−1

as a subpath.
We claim that OB

1 w1 · · · OB
1 wK has exponential growth. Indeed, we will

show that if σ is any path in G containing L occurrences of uC+2+A
i whose

interiors are disjoint, then [fB
1 wi(σ)] contains 2L occurrences of uC+2+A

i−1 with
disjoint interiors. After all, when we apply wi to σ, we obtain for each oc-
currence of uC+2+A

i an occurrence of [wi(uC+2
i )] (at most [wi(uA

i )] is lost by
our choice of A). After applying fB

1 , by Lemma 3.17 we see L occurrences of
[fB

1 wi(u2
i )] with disjoint interiors. Finally, by our choice of B, each [fB

1 wi(u2
i )]

contains two copies of uC+2+A
i−1 with disjoint interiors.

5.3. Bouncing sequences never grow. Recall (Section 2.2) that, for a
simplicial tree T , Arc(T ) denotes the set of conjugacy classes of stabilizers of
nondegenerate arcs of T .

Lemma 5.9. Suppose that T ∈ T , that O ∈ UPG(Fn), and that T is
O-nongrowing. Set T ′ = TO∞. Then, Arc(T ′) ⊂ Arc(T ). Further, elements
of Arc(T ′) are O-invariant.

Proof. Let [[〈e〉]] ∈ Arc(T ′). We claim that there is an arc [x, y] in T ′ and
elements a, b ∈ Fn such that
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• [x, y] ∩ FixT ′(e) is nondegenerate,

• a and b are elliptic in T ′,

• FixT ′(a) ∩ [x, y] = {x}, and

• FixT ′(b) ∩ [x, y] = {y}.

Indeed, since the axes of hyperbolic elements cover T ′ (Theorem 2.2) there is
an element c ∈ Fn such that AxisT ′(c) has nondegenerate overlap with the arc
FixT ′(e). If we choose m large enough so that cm([x, y]) is disjoint from [x, y]
then we may take a to be c−mecm, b to be cmec−m, x to be the point in FixT ′(a)
minimizing distance to FixT ′(e), and y the point in FixT ′(b) minimizing the
distance to FixT ′(e). This establishes the claim.

Keeping in mind that �T ′(ab) is twice the distance in T ′ between FixT ′(a)
and FixT ′(b), we see that �T ′(ab) > �T ′(ae)+�T ′(be). Since T is O-nongrowing,
eventually we have �T ′(ab) = �T (Φi(ab)), etc. where Φ ∈ Aut(Fn) repre-
sents O. Therefore, eventually Φi(a), Φi(b), and Φi(e) are elliptics in T , and
�T (Φi(ab)) > �T (Φi(ae))+�T (Φi(be)). Hence, Φi(e) is eventually a stabilizer of
a nondegenerate arc of T . Since by Theorem 2.3 there are only finitely many
conjugacy classes of arc stabilizers in T , it follows that the sequence {[[Φi(e)]]}
takes only finitely many values, and is therefore constant by Proposition 3.16.
The lemma follows.

Lemma 5.10. For all 1 ≤ l ≤ k and for all i ≥ 0,

(1) F contains the fl-suffix of every edge in Gl.

(2) Ti is an Oi+1 nongrower.

(3) The edge stabilizers of Ti are trivial.

(4) F(Ti) = F .

Proof. The main step in the proof is to show that (2), (3) and (4) hold
eventually, which is to say, for all sufficiently large i. By Proposition 5.7 there
is a largest s ≥ 0 such that Ts is an Os+1 grower. By Remark 4.38 all nontrivial
arc stabilizers of Ts+1 are generated by conjugates of roots of linear suffixes of
fs. Lemma 5.9 implies that if 〈e〉 is a nontrivial edge stabilizer of Ti for i ≥ s

then e is conjugate to a root of a linear suffix of fs. Lemma 5.9 also implies
that the sequence {Arc(Ti)} is eventually constant and that if Arc(Ti) is not
eventually trivial then there is linear suffix u of fs such that [u] is H-invariant.
The free factor system given by the highest edge of Gs contains both F and
[u]. Therefore, the smallest free factor system that contains both F and [u] is
proper, and it is also H-invariant (since both F and [u] are), and it properly
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contains F (since it carries [u], while F does not). This contradicts the choice
of F and shows that edge stabilizers of Ti are eventually trivial.

By Proposition 4.50, {Elliptic(Ti)} eventually forms a nonincreasing se-
quence. Since the edge stabilizers of Ti are eventually trivial, the collection
of nontrivial vertex stabilizers of Ti may be recovered from Elliptic(Ti) as the
collection of maximal subgroups of Fn in the set Elliptic(Ti). So, eventu-
ally the sequence {F(Ti)} is a decreasing sequence of free factor systems. By
Lemma 2.10, this sequence is eventually constant, hence eventually H-invariant
and hence eventually F(Ti) = F .

Having established (2) and (4) for large i, Corollary 5.6 implies (1) and
then (2) for all i. Lemma 5.9 and induction then imply (3) for all i. The proof
given above that (4) holds for large i now shows that (4) holds for all i.

5.4. Finding Nielsen pairs.

Definition 5.11. Let T ∈ T have trivial edge stabilizers, and let H be
a unipotent subgroup of Out(Fn). Assume that conjugacy classes of vertex
stabilizers of T are O-invariant for all O ∈ H. We say that distinct nontrivial
vertex stabilizers V and W of T form a Nielsen pair for H if, for all O ∈ H
and all lifts Φ of O to Aut(Fn) there exists a ∈ Fn such that Φ(V ) = V a and
Φ(W ) = W a. (It suffices to check this for one lift.)

Here is an alternative description. Let Ṽ(2) denote the set of unordered
pairs of distinct nontrivial vertex stabilizers of T . There is a natural diagonal
action of Aut(Fn) on Ṽ(2). This action descends to an action of Out(Fn) on
V(2) := Ṽ(2)/Inner(Fn). If V and W are distinct nontrivial vertex stabilizers,
then the corresponding element of V(2) is denoted [[V, W ]]. The pair V , W is
a Nielsen pair for H if [[V, W ]] is a fixed point for the action of H on V(2).

For example, if T is fixed by H and V , W are nontrivial stabilizers of neigh-
boring vertices, then V and W form a Nielsen pair. The following Lemma 5.12
is an immediate consequence of the definition.

Lemma 5.12. Let T and H be as in Definition 5.11.

• If T ′ is another simplicial Fn-tree that has the same vertex stabilizers
as T , then two vertex stabilizers V and W form a Nielsen pair in T if
and only if they form a Nielsen pair in T ′.

• If H = 〈O1,O2, . . . ,Ok〉 and two vertex stabilizers V and W of T form
a Nielsen pair for 〈Oi〉 for all i, then they form a Nielsen pair for H.

Proposition 5.13. Let H = 〈O1, . . . ,Ok〉 be a unipotent subgroup of
Out(Fn), and let T ∈ T be such that

• T has trivial edge stabilizers,
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• F(T ) = F where F is maximal and H-invariant,

• T is Oi-nongrowing for all i.

Then T contains a Nielsen pair for H.

The rest of this section is devoted to the proof of Proposition 5.13, which
appears ahead, after some preparation. By hi : Gi → Gi denote a UR for Oi

such that

(1) F = F(Gi
r(i)) for some filtration element Gi

r(i), and

(2) if E is an edge outside Gi
r(i), then hi(E) = Eu for some closed path u

(depending on i and E) in Gi
r(i).

Such a representative exists. Indeed, by Theorem 3.11 there is a UR hi satis-
fying everything except perhaps the condition that u is contained in Gi

r(i). It
follows from Corollary 5.6 applied to H = 〈Oi〉, T0 = T , and fi = hi that any
hi satisfies this last condition as well.

Using Lemma 5.12, we shall detect that two vertex stabilizers V and W

of T form a Nielsen pair for H by examining for every i whether they form a
Nielsen pair for 〈Oi〉 in the tree Si obtained from the universal cover of Gi by
collapsing all edges that project to Gi

r(i).
Edge paths P in Gi are of the form ν0H1ν1H2 · · ·Hpνp where each Hj is an

edge not in Gi
r(i) and each νj is a path in Gi

r(i). We call the subpaths νj vertical
elements and the letter H is chosen for horizontal (with Gi as a model for the
tree obtained from the universal cover of Gi by collapsing edges that project
to Gi

r(i)). Some of the νj ’s could be trivial paths. When P is such a path,

then the iterates hN
i (P ) have a similar form ν

(N)
0 H1ν

(N)
1 H2 · · ·Hpν

(N)
p . For

each j, the sequence {ν(N)
j } is seen to be eventually polynomial by application

of Lemmas 4.2 and 4.7 to the pieces of the splitting of hN
i (P ) at the endpoints

of Hk where suffixes do not develop. We say that a vertical element νj is
inactive if ν

(N)
j is independent of N . Otherwise, νj is active. Of course, hi and

the edge path P are implicit in these definitions. Even trivial νj ’s could be
active. It follows from Lemma 4.13 applied to these same pieces that ‘inactive’
is equivalent to ‘eventually inactive’.

When i �= j there is a homotopy equivalence φij : Gi → Gj given by
markings. We may assume that this map sends vertices to vertices and restricts
to a homotopy equivalence Gi

r(i) → Gj
r(j). Let C be a constant larger than the

BCC of any lift of φij to universal covers. Let ν be a vertical element in a path
P in Gi. We can transfer P to another Gj using φij and tightening. The path
[φij(ν)] has length bounded above and below by a linear function in the length
of ν, and then at most 2C is added or subtracted. In particular, if the length of
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ν is larger than some constant C0 > 2C, then ν induces a well-defined vertical
element in Gj . Short ν’s can disappear and new short vertical elements can
appear in [φij(P )].

Choose constants C1 ≤ C2 ≤ · · · ≤ C7k such that if a vertex element ν

has length ≤ Ci (0 ≤ i < 7k) and is transferred to some other graph, then the
induced vertex element has length ≤ Ci+1. Also, fix ε ∈ (0, 1/14k).

Lemma 5.14. For a sufficiently large integer m > 0, the following state-
ments hold.

(1) Let Ni = 22(7k−i+1)m

, and let Ii,l be the interval[
(1 − lε)Ni, (1 + lε)Nm

i

]
for i = 1, 2, . . . , 7k, l = 1, 2, . . . , 14k. Then Ii,1 ⊂ Ii,2 ⊂ · · · ⊂ Ii,14k and
the intervals Ii,14k are pairwise disjoint for i = 1, 2, . . . , 7k. Furthermore,
the intervals Ii,14K are disjoint from [0, C7k].

(2) If a vertex element ν in an edge path P in Gi is active and has length
≤ (1 + 14kε)Nm

i+1 (which is the right-hand endpoint of Ii+1,14k), then the
hi-iterated vertex element ν(Ni) has length in Ii,1.

(3) If a vertex element ν in an edge path P in Gi has length in Ip,l (l < 14k),
then, after transferring to Gj , ν induces a vertex element whose length
belongs to Ip,l+1.

(4) If a vertex element ν in an edge path P in Gi has length in Ij,l and
if i > j and l < 14k, then the iterated vertex element ν(Ni) in hNi

i (P ) has
length in Ij,l+1.

We think of the first index in intervals Ii,l as measuring the order of
magnitude of lengths of vertex elements. The second index is present only for
technical reasons: there is a slight loss when transferring from one graph to
another (3), and when applying “lower magnitude maps” (4).

Proof of Lemma 5.14. To see that the right-hand endpoint of Ii+1,14k is
to the left of the left-hand endpoint of Ii,14k we have to show that

(1 + 14kε)22(7k−i)m+m < (1 − 14kε)22(7k−i+1)m

i.e. that
2[2(7k−i+1)m−2(7k−i)m−m] >

1 + 14kε

1 − 14kε
.

That the latter inequality holds for large m follows from the observation that
the exponent of the left-hand side

2(7k−i)m(2m − 1) − m

goes to infinity as m → ∞.
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It follows from Theorem 3.11(5) and (6) that there are polynomials Qi

and Ri with nonnegative coefficients such that whenever ν is an active ver-
tex element in a path P in Gi, then the length of ν(N) is in the interval
[N − Ri(�Gi(ν)), (1 + �Gi(ν))Qi(N)]. The proof now reduces to the fact that
exponential functions grow faster than polynomial functions. For example, (2)
follows from the inequalities

Ni − Ri((1 + 14kε)Nm
i+1) > (1 − 14kε)Ni

and
(1 + (1 + 14kε))Nm

i+1Qi(Ni) < (1 + 14kε)Nm
i .

If we assume without loss of generality that Ri(x) = xd then the first inequality
simplifies to

Ni

Nm+d
i+1

>
(1 + 14kε)d

14kε
.

Again, the left-hand side amounts to 2exp with

exp = 2(7k−i)m(2m − m − d)

and it goes to infinity as m → ∞. The proof of the second inequality and of
the other claims in the lemma are similar. (For (3) use the fact that there is a
linear function L such that if σ is a vertex element of a path P ′ induced by a
vertex element ν of a path P , then the length of σ is bounded by L(length(ν)).)

We will argue that if there are no H-Nielsen pairs in T , then the element
ON7k

7k · · · ON2
2 ON1

1 ∈ H has exponential growth.
Start with a circuit P1 in G1 that is not contained in G1

r(1) and all of
whose vertex elements have length ≤ C1. This circuit is the first generation.
Then apply hN1

1 to obtain hN1
1 (P1) and transfer this new circuit via φ12 to G2.

The resulting circuit P2 is the second generation. Then apply hN2
2 and transfer

to G3 to obtain the third generation circuit P3, etc. The circuit P7k whose
generation is 7k lives in G7k. Then repeat this process cyclically: apply hN7k

7k

and transfer to G1 to get a circuit P7k+1 of (7k + 1)st generation etc.
Suppose that ν is a vertex element of some Pi. If ν(Ni) has length ≥ C0,

then ν(Ni) induces a well-defined vertex element ν ′ in Pi+1. We say that ν

gives rise to ν ′.
We will now label some of the vertex elements of the Pi’s with positive

integers. Consider maximal (finite or infinite) chains ν1, ν2, · · · of vertex ele-
ments such that νi gives rise to νi+1. In particular, there is an integer s such
that νi is a vertex element of Pi+s for i ≥ 1. If the length of the chain is
≥ 7k, then label νi by the integer i. If the chain has < 7k vertex elements,
we will leave all of them unlabeled. All labels > 1 in Pi correspond to unique
labels in Pi−1. A birth is the introduction of label 1. A death is an occurrence
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of a labeled vertex element that does not give rise to a vertex element in the
next generation. Any labeled vertex element can be traced backwards to its
birth. Traced forward, any labeled vertex element either eventually dies, or
lives forever (and the corresponding label goes to infinity).

Lemma 5.15. If a vertex element ν in some Pi is not labeled, then ν is
hi-inactive and its length is ≤ C7k.

Proof. The first element ν1 of a maximal chain ν1, ν2, . . . , νs, s < 7k, must
have length ≤ C1. Indeed, assume not. Say ν1 is a vertex element in Pi+1.
By the choice of P1 we must have i ≥ 1. With a transfer to Gi, ν1 induces a
vertex element ν ′ of length > C0. Now ν ′ = σ(Ni) and σ gives rise to ν1, so the
chain was not maximal.

If all νi’s are inactive, then the claim about the length follows from the
definition of constants Ci. If νi is the first active element of the chain, then
νi+1 has length in Ii,2 by Lemma 5.14(2). With each generation the second
index of the interval increases by two until 7k generations are complete (by
(3) and (4)) or its length increases to some Ij,2 with j < i by (2), and its life
continues at least 7k more generations. This contradicts s < 7k.

Lemma 5.16. If two vertex elements in Pi are labeled with no labeled ver-
tex elements between them, then either at least one of them dies in the next
< k generations, or a birth occurs between them in the next < k generations.

Proof. If not, then the path between two such vertex elements is a Nielsen
path (i.e., its lift to T connects two vertices whose stabilizers form a Nielsen
pair).

Lemma 5.17. Consider the cyclically ordered set of labels in each Pi.

(1) If two labels are adjacent, at least one is < 3k.

(2) If two labels have one label between them, then at least one is < 4k.

(3) If two labels have two labels between them, then at least one is < 5k.

(4) If two labels have three labels between them, then at least one is < 6k.

Proof. Let a and b be two adjacent labels in some Pi with a, b ≥ 3k and
assume that i is the smallest such i. Consider the ancestors of the two labels.
According to Lemma 5.16, a death must occur between the two in some Pi−s

with s < k. Thus in Pi−s we have labels · · · (a − s) · · ·x · · · (b − s) · · · and
x ≥ 7k. The dots between (a − s) and (b − s) are vertex elements that die
before reaching Pi, and their labels are therefore ≥ 6k. By our choice of i we
conclude that x is the only label between (a − s) and (b − s). Now consider
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further ancestors of (a − s), x, and (b − s). Again by Lemma 5.16, a death
must occur between vertex elements labeled (a− s) and x in some Pi−s−t with
t < k. We thus have two adjacent labels ≥ 5k in Pi−s−t, contradicting the
choice of i.

Now suppose that in some Pi we have labels · · · axb · · · and a, b ≥ 4k. By
(1) we must have x < 3k. If a death occurs between a and x, or between b

and x, in the previous k generations, then we obtain a contradiction to (1). If
not, then by Lemma 5.16 we conclude that x < k and then we have adjacent
labels a − x − 1 and b − x − 1 in Pi−x−1 contradicting (1).

Proofs of (3) and (4) are analogous.

Proof of Proposition 5.13. Suppose that there are no H-Nielsen pairs
in T . Let C0, C1, . . . , C7k and ε be constants as explained above. Let m be an
integer satisfying Lemma 5.14, and consider the labeling of vertex elements in
paths Pi as above. The fact that ON7k

7k · · · ON2
2 ON1

1 ∈ H grows exponentially
now follows from the observation that the number of labels in Pi+k is at least
equal to the number of labels in Pi multiplied by 5/4. Indeed, consider the
labels in Pi that will die before reaching Pi+k. All such labels have to be ≥ 6k

(since a vertex element cannot die before reaching the ripe old age of 7k). By
Lemma 5.17, any two such labels have at least three labels a, b, and c between
them. By Lemma 5.16, there will be at least one birth between a and b and at
least one birth between b and c between generations i + 1 and i + k. Thus the
number of deaths is at most a quarter of the number of labels in Pi, and the
number of births is at least twice the number of deaths. The above inequality
follows.

5.5. Distances between the vertices.

Lemma 5.18. Let V and W be two vertex stabilizers of T0 and let dj

denote the distance between the vertices in Tj fixed by V and W . If V and W

form a Nielsen pair for H, then d0 = d1 = d2 = · · · .

Proof. Choose nontrivial elements v ∈ V and w ∈ W . The distance
between the vertices in Tj fixed by V and W equals 1

2�Tj
(vw) and the dis-

tance in Tj+1 is analogously 1
2�Tj+1(vw). The latter number can be computed

as 1
2�Tj

(ÔN
j+1(v)ÔN

j+1(w)) for large N , where Ôj+1 denotes a lift of Oj+1 to
Aut(Fn) (since Tj is Oj+1-nongrowing). This in turn equals the distance in
Tj between the vertices fixed by ÔN

j+1(V ) and ÔN
j+1(W ). But that equals the

distance between the vertices fixed by V and W since V and W form a Nielsen
pair for 〈Oj+1〉.

Lemma 5.19. Let Dj ⊂ R denote the set of distances between two distinct
vertices in Tj with nontrivial stabilizer. Then

(1) Dj is discrete.
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(2) Dj ⊇ Dj+1.

(3) There are finitely many Fn-equivalence classes of paths P joining two
vertices of Tj with nontrivial stabilizer and with length(P ) = minDj .

(4) If V and W are two nontrivial vertex stabilizers of Tj such that the
distance between the corresponding vertices is minDj , then V and W

form a Nielsen pair for 〈Oj〉.

(5) minDj ≤ minDj+1, and

(6) if minDj = minDj+1 then any two nontrivial vertex stabilizers V and
W in Tj+1 realizing the minimal distance also realize minimal distance
in Tj.

Proof. (1) Every element of Dj is a real number that can be represented
as a linear combination of (finitely many) edge lengths of Tj with nonnegative
integer coefficients. Hence Dj is discrete.

(2) Every element of Dj+1 has the form 1
2�Tj

(ÔN
j+1(v)ÔN

j+1(w)) (see the
proof of Lemma 5.18) and hence occurs also as an element of Dj .

(3) Let P be such a path. The quotient map Tj → Tj/Fn is either injective
on P or identifies only the endpoints of P , hence there are only finitely many
possible images of P in the quotient graph. If two such paths have the same
image, then they are Fn-equivalent.

(4) Since Oj fixes Tj , for any lift Ôj ∈ Aut(Fn) of Oj we can choose an
Ôj-invariant isometry φ : Tj → Tj . By Proposition 4.48 and Lemma 4.47, φ

induces the identity in the quotient graph. Therefore the immersed path P

joining the vertices fixed by V and W is mapped by φ to a translate of itself
(we are using the fact that all interior vertices of P have trivial stabilizer).

(5) is a consequence of (2).

(6) Choose a lift Ôj+1 ∈ Aut(Fn) of Oj+1. For large N , the distance in
Tj+1 between the vertices fixed by V and W has the form 1

2�Tj
(ÔN

j+1(v)ÔN
j+1(w)).

It follows that for large N the immersed path PN joining vertices in Tj fixed
by ÔN

j+1(V ) and ÔN
j+1(W ) has length minDj . By (4), V and W form a Nielsen

pair for hj and therefore the paths PN are translates of each other and have
length minDj .

5.6. Proof of Theorem 5.1. We are now ready for the proof of Theorem 5.1
which is reformulated as follows.

Theorem 5.20. Let H = 〈O1,O2, . . . ,Ok〉 be a unipotent subgroup of
Out(Fn). By F denote a maximal H-invariant proper free factor system.
Let T0 ∈ T have trivial edge stabilizers and satisfy F(T0) = F . Then, the



56 MLADEN BESTVINA, MARK FEIGHN, AND MICHAEL HANDEL

bouncing sequence that starts with T0 is eventually constant. The stable value
T is a simplicial tree with trivial edge stabilizers, a single orbit of edges and
F(T ) = F .

Proof. By Lemma 5.10, the sequence consists of nongrowers, the vertex
stabilizers are independent of the tree in the sequence, and all edge stabilizers
are trivial. By Proposition 5.13, eventually all trees contain Nielsen pairs
for H. By Lemma 5.18 it follows that the numbers minDj of Lemma 5.19
are bounded above and hence stabilized. Say minDj+1 = minDj+2 = · · · =
minDj+k. Let V and W be two nontrivial vertex stabilizers in Tj+k that realize
minDj+k. By Lemma 5.19, the vertex stabilizers V and W form a Nielsen
pair for every 〈Oi〉, and hence for H. Let P be the embedded path joining
the corresponding vertices. Since P realizes the minimum distance between
vertices with nontrivial stabilizer, its projection into the quotient graph is an
embedding except perhaps at the endpoints (cf. the proof of Lemma 5.19(3)). If
P projects onto the quotient graph, then this quotient graph has one edge and
Tj+k is fixed by H. If P does not project onto the quotient graph, we obtain
a contradiction by collapsing P and its translates and thus constructing an
H-invariant proper free factor system strictly larger than F .

6. Proof of the main theorem

In this section we show that Theorem 5.1 implies Theorem 1.1.
Recall from the introduction that for a marked graph G with a filtra-

tion ∅ = G0 ⊂ G1 ⊂ · · · ⊂ GK = G the set of upper triangular homotopy
equivalences of G up to homotopy relative to the vertices is denoted by Q.

Lemma 6.1. Q is a group under the operation induced by composition.

Proof. Since the composition of upper triangular homotopy equivalences
is clearly upper triangular, it suffices to show that if f is upper triangular, then
there exists an upper triangular g such that fg(Ei) and gf(Ei) are homotopic
rel endpoints to Ei for 1 ≤ i ≤ K. We define g(Ei) inductively starting with
g(E1) = E1. Assume that g is defined on Gi−1 and that fg(Ej) and gf(Ej)
are homotopic rel endpoints to Ej for each j < i. If f(Ei) = viEiui, define
g(Ei) = v′iEiu

′
i where u′

i equals g(ui) and v′i equals g(vi). Since vi is a path in
Gi−1 with endpoints at vertices, fg(vi) is homotopic rel endpoints to vi. Thus
f(v′i) is homotopic rel endpoints to vi and vif(v′i) is homotopic rel endpoints
to the trivial path. A similar argument shows that uif(u′

i) is homotopic rel
endpoints to the trivial path and hence that fg(Ei) = f(v′i)viEiuif(u′

i) is
homotopic rel endpoints to Ei. A similar argument showing that gf(Ei) is
homotopic rel endpoints to Ei completes the proof.
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Proof that Theorem 5.1 implies Theorem 1.1. The proof is by induction
on n. The n = 1 case is obvious so we may assume that Theorem 1.1 holds for
rank less than n. By Theorem 5.1 there is an H invariant free factor system
F ′ represented by either one free factor of rank n− 1 or two free factors whose
rank adds to n. Moreover, if F is an H-invariant proper free factor system we
may assume that F � F ′.

We will give the argument in the case that F ′ = {[[F 1]], [[F 2]]} where
Fn = F 1 ∗ F 2. The remaining case is analogous; details for both cases can be
found in the first part of the proof of Lemma 2.3.2 of [BFH00].

The free factor system F induces free factor systems F1 and F2 of F 1 and
F 2. By the inductive hypothesis, there are filtered marked graphs Ki with
filtration elements realizing F i and there are lifts of H|F i to Qi, the group
of upper triangular homotopy equivalences of Ki up to homotopy relative to
vertices. Define G to be the graph obtained from the disjoint union of K1

and K2 by adding an edge E with initial endpoint at a vertex v1 ∈ K1 and
terminal endpoint at a vertex v2 ∈ K2. We may assume that F i is identified
with π1(Ki, vi). Collapsing E to a point gives a homotopy equivalence of G

to a graph whose fundamental group is naturally identified with F 1 ∗F 2 = Fn

and so provides a marking on G. A filtration on K1∪K2 is obtained by taking
unions of filtration elements of F1 and of F2. Adding E as a final stratum
produces a filtration of G in which F is realized by a filtration element.

For each O ∈ H, let fi ∈ Qi be the lift of O|F i and let Φi be an automor-
phism representing O whose restriction to F i agrees with the automorphism
induced by fi under the identification of F i with π1(Ki, vi). Then Φ1 = icΦ2

for some c ∈ Fn. Represent c by a closed path γ based at v1 and define
f : G → G to agree with fi on Ki and by f(E) = [γE]. Then f : G → G

is a topological representative of O and Corollary 3.2.2 of [BFH00] implies
that, up to homotopy relative to vertices, f(E) = ū1Eu2 for some closed paths
ui ⊂ Ki. In other words f represents an element in the group Q of upper
triangular homotopy equivalences of G up to homotopy relative to vertices.

It remains to arrange that O �→ f defines a homomorphism from H to Q.
It is convenient to subdivide E into edges Ei with common initial endpoint at
the midpoint of E and with terminal endpoint at vi. Thus f(Ei) = Eiui and
the fundamental groups of Ki ∪ Ei are identified with F i. The automorphism
f# of Fn induced by f preserves both F 1 and F 2; this uniquely determines both
f#|F 1 and f#|F 2 . Replacing ui with a different path vi ⊂ Ki replaces f#|F i

with iaf#|F i where a is the nontrivial element of Fn represented by the closed
path viūi. If Ki has rank greater than one then f#|F i �= iaf#|F i and so ui is
uniquely determined by f#|F i . If Ki has rank one then f#|F i is independent
of the choice of ui and we always choose ui to be trivial. In either case O �→ f

defines a homomorphism from H to Q.
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