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Boundary behavior for groups
of subexponential growth

By Anna Erschler

Abstract

In this paper we introduce a method for partial description of the Poisson
boundary for a certain class of groups acting on a segment. As an application
we find among the groups of subexponential growth those that admit noncon-
stant bounded harmonic functions with respect to some symmetric (infinitely
supported) measure µ of finite entropy H(µ). This implies that the entropy
h(µ) of the corresponding random walk is (finite and) positive. As another
application we exhibit certain discontinuity for the recurrence property of ran-
dom walks. Finally, as a corollary of our results we get new estimates from
below for the growth function of a certain class of Grigorchuk groups. In par-
ticular, we exhibit the first example of a group generated by a finite state
automaton, such that the growth function is subexponential, but grows faster
than exp(nα) for any α < 1. We show that in some of our examples the growth
function satisfies exp( n

ln2+ε(n)
) ≤ vG,S(n) ≤ exp( n

ln1−ε(n)
) for any ε > 0 and any

sufficiently large n.

1. Introduction

Let G be a finitely generated group and µ be a probability measure on G.
Consider the random walk on G with transition probabilities p(x|y) = µ(x−1y),
starting at the identity. We say that the random walk is nondegenerate if
µ generates G as a semigroup. In the sequel we assume, unless otherwise
specified, that the random walk is nondegenerate.

The space of infinite trajectories G∞ is equipped with the measure which
is the image of the infinite product measure under the following map from G∞

to G∞:
(x1, x2, x3 . . . ) → (x1, x1x2, x1x2x3 . . . ).
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Definition. Exit boundary. Let A∞
n be the σ-algebra of measurable

subsets of the trajectory space G∞ that are determined by the coordinates
yn, yn+1, . . . of the trajectory y. The intersection A∞ = ∩nA∞

n is called the
exit σ-algebra of the random walk. The corresponding G-space with measure
is called the exit boundary of the random walk.

Equivalently, the exit boundary is the space of ergodic components of the
time shift in the path space G∞.

Recall that a real-valued function f on the group G is called µ-harmonic
if f(g) =

∑
x f(gx)µ(x) for any g ∈ G.

It is known that the group admits nonconstant positive harmonic functions
with respect to some nondegenerate measure µ if and only if the exit boundary
of the corresponding random walk is nontrivial. The exit boundary can be
defined in terms of bounded harmonic functions ([24]), and then it is called
the Poisson (or Furstenberg) boundary.

There is a strong connection between amenability of the group and trivial-
ity of the Poisson boundary for random walks on it. Namely, any nondegenerate
random walk on a nonamenable group has nontrivial Poisson boundary and
any amenable group admits a symmetric measure with trivial boundary (see
[24], [23] and [26]). First examples of symmetric random walks on amenable
groups with nontrivial Poisson boundary were constructed in [24], where for
some of the examples the corresponding measure has finite support.

Below we recall the definition of growth for groups.
Consider a finitely generated group G, let S = (g1, g2, . . . , gm) be a fi-

nite generating set of G, lS and dS be the word length and the word metric
corresponding to S.

Recall that a growth function of G is

vG,S(n) = #{g ∈ G : lS(g) ≤ n}.

Note that if S1 and S2 are two sets of generators of G, then there exist K1,

K2 > 0 such that for any n, vG,S1(n) ≤ vG,S2(K2n) and vG,S2(n) ≤ vG,S1(K1n).
A group G is said to have polynomial growth if for some A, d > 0 and

any positive integer n, vG,S(n) ≤ And. A group G is said to have exponential
growth if vG,S(n) ≥ Cn for some C > 1. (Obviously, for any G, S vG,S(n) ≤
(2m − 1)n for any G, S.)

Clearly, the property of having exponential or polynomial growth does not
depend on the set of generators chosen. The group is said to be of subexpo-
nential growth if it is not of exponential growth.

Recall that any group of subexponential growth is amenable. It is known
(see Section 4) that the Poisson boundary is trivial for random walks on a
group of subexponential growth if the corresponding measure µ has finite first
moment (in particular, for any µ with finite support).
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Moreover, any random walk on a finitely generated group of polynomial
growth has trivial Poisson boundary. The aim of this paper is to show that this
statement is not valid for subexponential growth. That is, for series of groups
of intermediate growth we construct a random walk on them with nontrivial
Poisson boundary. Some of our examples admit such random walks with a
measure having finite entropy.

2. Grigorchuk groups Gw

It is known that a group has polynomial growth if and only if it is virtually
nilpotent ([18]) and that any solvable or linear group has either polynomial or
exponential growth (see [25] and [32] for solvable and [28] for linear case). The
first examples of groups of intermediate (not polynomial and not exponential)
growth were constructed by R. I. Grigorchuk in [13]. Below we recall one of
his constructions from [13].

First we introduce the following notation. For any i ≥ 1 fix a bijective
map mi : (0, 1] → (0, 1]. Consider an element g that acts on (0, 1] as follows.
On (0, 1

2 ] it acts as m1 on (0, 1], on (1
2 , 3

4 ] it acts as m2 on (0, 1], on (3
4 , 7

8 ] it
acts as m3 on (0, 1] and so on.

More precisely, take r ≥ 1 and put

∆r =
(

1 − 1
2(r−1)

, 1 − 1
2r

]
.

Consider the affine map αr from ∆r onto (0, 1]. Note that (0, 1] is a disjoint
union of ∆r (r ≥ 1). The map g : (0, 1] → (0, 1] is defined by

g(x) = α−1
r (mr(αr(x)))

for any x ∈ ∆r.
In this situation we write

g = m1, m2, m3, . . . .

Let a be a cyclic permutation of the half-intervals of (0, 1]. That is,

a(x) = x +
1
2

for x ∈ (0, 1
2 ] and a(x) = x − 1

2
for x ∈ (1

2 , 1].

2.1. Groups Gw. Let P = a and T be an identity map on (0, 1]. We use
here this notation as well as for b and d defined below following the original
paper of Grigorchuk [13].

Consider any infinite sequence w = PPTPTPTPPP . . . of symbols P

and T such that each symbol P and T appears infinitely many times in w. We
denote the set of such sequences by Ω∗. Let b act on (0, 1] as w, that is

b = P, P, T, P, T, P, T, P, P, P . . .
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and d act on (0, 1] as

d = P, P, P, P, P, P, P, P, P, P . . . .

Let Gw be the group generated by a, b and d. For any w ∈ Ω∗ the group Gw

is of intermediate growth [13].

Remark 1. In the notation of [13], the Gw are the groups that correspond
to sequences of 0 and 1 with infinite numbers of 0 and 1 (that is, from Ω1 in the
notation of [13]) In the papers of Grigorchuk the groups above are defined as
groups acting on the segment (0, 1) with all dyadic points being removed. Then
the action is continuous. We use other notation and do not remove dyadic
points. Then the overall action is not continuous; however, it is continuous
from the left.

In the sequel we use the following notation. If a and b are permutations
on the segments of [0, 1] as above, or more generally for any a and b acting on
[0, 1] we write ab(x) = b(a(x)) (not a(b(x))) for any x ∈ [0, 1].

3. Statement of the main result

Consider an action of a finitely generated group G on (0, 1]. We assume
that the action satisfies the following property (LN). For any g ∈ G, x, y ∈ (0, 1]
such that g(x) = y and any δ > 0 there exist ε > 0 such that

g((x − ε, x]) ⊂ (y − δ, y].

That is, g is continuous from the left and g(y′) < g(y) for each y and
y′ < y close enough to y.

Definition. The action satisfies the strong condition (∗) if there exists a
finite generating set S of G such that for any g ∈ S and x ∈ (0, 1] satisfying
x �= 1 or g(x) �= 1 there exist a ∈ R and ε > 0 such that for any y ∈ (x − ε, x]

g(y) = y + a.

Definition. The action satisfies the weak condition (∗) if there exists a
finite generating set S of G such that for any g ∈ S and x ∈ (0, 1] satisfying
x �= 1 there exist a ∈ R and ε > 0 such that for any y ∈ (x − ε, x]

g(y) = y + a.

For g ∈ G define the germ germ(g) as the germ of the map g(t) + 1− g(1)
in the left neighborhood of 1. More generally, for g ∈ G and y ∈ (0, 1] define
the germ germy(g) as the germ of the map g(t + y − 1) + 1 − g(y) in the left
neighborhood of 1.

Below we introduce a notion of the group of germs Germ(G). We will
need this notion for the description of the Poisson boundary.
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Definition. Let G act on (0, 1] by LN maps. The group of germs Germ(G)
of this action is the group generated by germy(g), where g ∈ G and y ∈ (0, 1].
Composition is the operation in Germ(G).

Remark 2. If G satisfies LN, then the group Germ(G) is well defined.

Proof. Note that for any g ∈ G and δ > 0 there exists ε > 0 such that

g((y − ε, y]) ⊂ (g(y) − δ, g(y)].

Consequently,

(1 − g(y)) + g(t + y − 1) ⊂ (1 − δ, 1]

for any t ∈ (1 − ε, 1]
Hence the composition of germs is well defined.

Let Germ1(G) be the subgroup of Germ(G) generated by germ1(g) =
germ(g) for g ∈ G.

Remark 3. If the action of G on (0, 1] satisfies the weak condition (∗)
then Germ(G) = Germ1(G).

Example 1. Let G = Gw for some w ∈ Ω∗. Put c = bd and S = a, b, c, d.
Then the action is by LN maps and satisfies the strong condition (∗). Moreover,
Germ(G) = Z/2Z + Z/2Z. Consider the subgroup H = Hw of G = Gw

generated by ad. Clearly, Germ(H) = Z/2Z.
The main result of this paper is the following theorem.

Theorem 1. Let G act on (0, 1] by LN maps and the action satisfy the
strong condition (∗). Assume that there exists g ∈ G such that gm(1) �= 1 for
any m ≥ 1 and that the subgroup generated by {germy(g)|y ∈ (0, 1]} is not
equal to Germ(G). Assume also that Germ(G) is finite. Let H be the subgroup
of G generated by g. Then

(1) The group G admits a symmetric measure µ of finite entropy H(µ) such
that the Poisson boundary is nontrivial.

(2) For any 0 < ε < 1 the measure µ above can be chosen in such a way that
its support supp(µ) is equal to H ∪ K for some finite set K and there
exists C > 0 such that for any m ∈ Z

µ(gm) =
C

|m|1+ε
.

(3) For any p > 1 the measure µ above can be chosen in such a way that its
support supp(µ) is equal to H ∪K for some finite set K and there exists
C > 0 such that for any m ∈ Z

µ(gm) =
C lnp(|m| + 1)

|m|2 .
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Let G = Gw and H = Hw be as in Example 1. In Section 4 we will show
that G, H satisfy the assumption the theorem above and hence G admits a
symmetric measure of finite entropy with nontrivial Poisson boundary.

This shows that some groups of subexponential growth admit symmetric
measures of finite entropy such that the Poisson boundary is nontrivial.

However, the entropic criterion for triviality of the boundary yields that
any finitely supported measure (or, more generally, any measure having finite
first moment) on a group of subexponetial growth has trivial boundary (see
Section 4).

Let G be a finitely generated group, S be a symmetric finite generating
set of G and H be a subgroup of G. Recall that the Schreier graph of G

with respect to H is the graph whose vertexes are right cosets H\G, that is,
{Hg : g ∈ G} and for any s ∈ S and g ∈ G there is an edge connecting {Hg}
and {Hgs}.

In Section 6 we will give a criterion for a graph being the Schreier graphs
of (G, Stab(1)) for groups G of intermediate growth acting on (0, 1] with strong
condition (∗). As a corollary of this criterion and our previous results we get
the following example: there exist a finitely generated group A, a subgroup
B of A, a finite set K ⊂ A and a sequence of probability measures µi with
the following properties. For any i the support of µi ⊂ K. The sequence µi

converges pointwise (on K) to a measure µ (clearly, µ is a probability measure
and suppµ ⊂ K) and the subgroup B is a transient set for (A, µ); but for any
i the subgroup B is recurrent for (A, µ).

In Section 6 as a corollary of Theorem 1 we get the following theorem.

Theorem 2. Let G act on (0, 1] by LN maps and the action satisfy the
strong condition (∗). Assume that there exists g ∈ G such that gm(1) �= 1 for
any m ≥ 1 and that the subgroup generated by {germy(g)|y ∈ (0, 1]} is not
equal to Germ(G). Assume also that Germ(G) is finite. Then for any ε > 0
there exists N such that for any n > N

vG,S(n) ≥ exp
(

n

ln2+ε(n)

)
.

This theorem can be applied in particular to any group Gw, w ∈ Ω∗.
Considering w = PTPTPTPT . . . and G = Gw we obtain the first example
of a (finite state) automatic group of intermediate growth for which vG,S(n)
grows faster than exp(nα) for any α < 1 (see Section 6).

In Subsection 6.1 we give an upper bound for the growth function of Gw

(under some assumption on w). Combining this with Theorem 2 we obtain
first examples of groups G with the growth function satisfying

exp
(

n

ln2+ε(n)

)
≤ vG,S(n) ≤ exp

(
n

ln1−ε(n)

)
for any ε > 0 and any sufficiently large n.
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For further applications of Theorem 1 to growth of groups see [10].
In the last section we discuss possible generalizations of Theorem 1. We

obtain examples of groups with the growth function bounded from above by
exp(nγ) for some γ < 1 (and sufficiently large n) which admit symmetric
measures with nontrivial Poisson boundary. (This is in contrast to Theorem 2.)

4. Proof of the main result

Recall that a Markov kernel ν on a countable set X is a set of probability
measures on X νx(y) = ν(x, y) ( x ∈ X). A Markov kernel defines a Markov
operator on X with transition probabilities

p(x|y) = ν(x, y).

This operator acts on l2(X): if f ∈ l2(X), then

νf(x) =
∑
x∈X

ν(x, y)f(y).

A Markov kernel is called doubly stochastic if ν̃x(y) = ν(y, x) is also
Markovian.

A weaker statement of the proposition below appears for the first time
in [2].

Proposition 1 (Varopoulos, [29], [30]). Let ν1(x, y), ν2(x, y) be doubly
stochastic kernels on a countable set X and assume that ν1 is symmetric, that
is, ν1(x, y) = ν1(y, x). Suppose that there exists k ≥ 0 such that

ν1(x, y) ≤ kν2(x, y)

for any x, y ∈ X. Let ξ be a probability measure on [0, 1] and ξn =
∫ 1
0 λndξ(λ).

(1) Then for any 0 ≤ f ∈ l2(X)∑
n≥0

ξn〈νn
2 f, f〉 ≤ k

∑
n≥0

ξn〈νn
1 f, f〉.

(2) Let pi
n(x, x) (i = 1 or 2) be the n step transition probability for νi. Then∑

n≥0

ξnp2
n(x, x) ≤ k

∑
n≥0

ξnp2
n(x, x).

(This follows from (1) applied to a delta function f such that f(x) = 1.)

(3) If ν2 is recurrent, then ν1 is also recurrent (following from (2) applied to
a delta measure ξ such that ξ(1) = 1).

We will mostly apply Proposition 1 for the case when both ν1 and ν2 are
symmetric measures on the cosets H\G (for some group G and its subgroup H).
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Proposition 2. Let G act on (0, 1] by LN maps. Assume that the action
satisfies the strong condition (∗) and that H is a subgroup of G. Assume also
that Germ(H) �= Germ(G), Germ(H) is of finite index in Germ(G) and that
µ is a probability measure on G such that StabG(1) is transient for (G, µ).
Assume also that that suppµ ⊂ H ∪ K for some finite set K ⊂ G and that
the random walk is nondegenerate. Then the Poisson boundary of (G, µ) is
nontrivial.

Proof of Proposition 2. Consider the cosets

Γ = Germ(G)/Germ(H)

and a map πH : G → Γ defined by

g → germ(g) mod Germ(H).

Lemma 4.1. With probability one, πH(g) stabilizes along an infinite tra-
jectory of (G, ν).

Proof. Consider an infinite trajectory

y1, y2, y3, y4, . . .

where yi+1 = yigi+1, gi+1 ∈ supp(ν).
Note that the weak condition (∗) for (G, S) implies that

germ(gg′) = germ(g)

whenever g(1) �= 1 and g′ ∈ S.
Moreover, for any finite set K ⊂ G there exists a finite set Σ ⊂ [0, 1] such

that
germ(gg′) = germ(g)

whenever g(1) /∈ Σ and g′ ∈ K. Now, for any finite K ⊂ G and any k ∈ K fix
a word uk in the letters of the generating set S representing k in G; that is

k = uk = sk
1s

k
2s

k
3 . . . sk

ik
,

where sk
j ∈ S for any 1 ≤ j ≤ ik. Put

K̃ = {sk
1s

k
2s

k
3 . . . sk

j : k ∈ K, 1 ≤ j ≤ ik}

and
Σ = {k̃−1(1), k̃ ∈ K̃}.

Note that if g(1) /∈ Σ, then (gk̃)(1) = k̃(g(1)) �= 1 and hence germ(gk̃s) =
germ(gk̃) for any k̃ ∈ K̃ and s ∈ S. Arguing by induction on ik we conclude
that germ(gk) = germ(g) for any k ∈ K.
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Since Stab(1) is transient for (G, ν) and since Σ is a finite set, for almost
all trajectories of this random walk there exists N such that yi(1) /∈ Σ for any
i ≥ N .

Consider some i > N and yi+1 = yigi+1. We shall prove that πH(yi+1) =
πH(yi). Since gi+1 ∈ supp(ν) ⊂ K ∪ H, either gi+1 ∈ K or gi+1 ∈ H.

First case. gi+1 ∈ K. We know that yi(1) /∈ Σ , and hence

germ(yi+1) = germ(yi).

Consequently,

πH(yi+1) = germ(yi+1) mod Germ(H) = germ(yi) mod Germ(H) = πH(yi).

Second case. gi+1 ∈ H. Let x = yi(1). Note that

germx(gi+1) ∈ Germ(H).

Consequently,

germ1(yi+1) = germ1(yi) ◦ germx(gi+1) ≡ germ1(yi) mod Germ(H).

Thus

πH(yi+1) = πH(yi).

Lemma 4.2. For any γ ∈ Γ

Pr( lim
i→∞

πh(yi) = γ) �= 0.

Proof. Recall that Γ is finite since Germ(H) is of finite index in Germ(G).
Therefore, ∑

γ∈Γ

Pr( lim
i→∞

πH(yi) = γ) = 1.

Consequently, there exists γ0 ∈ Γ such that

Pr( lim
i→∞

πH(yi)) = γ0 �= 0.

Note that there exists g ∈ G such that germ(g) ◦ γ0 = γ.
There exist s1, s2, . . . , sm ∈ S such that

g = s1s2 . . . sm.

Consider an infinite trajectory y1, y2, y3, . . . such that

lim
i→∞

πH(yi) = γ0.

Consider now the trajectory z = (z1, z2, z3, . . . ) such that z1 = s1,
z2 = s1s2, z3 = s1s2s3, . . . zm = s1s2s3 . . . sm = g and zm+k = gyk for
any k ≥ 1.
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Note that
lim

j→∞
πH(zj) = γ.

Consequently,

Pr( lim
i→∞

πH(yi) = γ) ≥ ν(s1)ν(s2) . . . ν(sm) Pr( lim
i→∞

πH(yi) = γ0) > 0.

Now we return to the proof of Proposition 2. Take γ ∈ Γ and consider the
set of trajectories A

y = (y1, y2, y2, . . . )

such that
lim
i→∞

πH(yi) = γ.

Obviously, A is a measurable set in the set of infinite trajectories.
Since Γ contains at least two distinct elements, Lemma 4.2 and Lemma

4.3 imply that
0 < ν∞(A) < 1.

It is clear that if two trajectories coincide after a finite number of steps and one
of them belongs to A, then the other also belongs to A. Therefore A defines a
subset Ã in the exit boundary such that its measure in the boundary is equal
to ν∞(A). And this implies that the exit boundary is nontrivial.

Remark 4. In Lemma 4.2 we used only that the action satisfies the
weak condition (∗). For Lemma 4.3 the assumption that the action satisfies
the strong condition (∗) is also not necessary. In fact, we used that the action
satisfies the weak condition (∗) and that for any g ∈ G there exists g̃ ∈ Stab(1)
such that germ(g) ≡ germ(g̃) mod Germ(H).

Remark 5. The lamplighter boundary. Under the assumptions of Propo-
sition 2 (or more generally for any action satisfying the weak condition (∗),
see Remark 4) we proved that germ1(g) mod Germ(H) stabilizes with proba-
bility 1 along infinite trajectories of the random walk.

In fact, in the same way we see that germy(g) mod Germ(H) stabilizes
for any y ∈ [0, 1].

(Note that this statement makes sense only if y belongs to the G-orbit
of 1. Otherwise germy(g) is always trivial because of the weak condition (∗).)

Denote the G-orbit of 1 by ∆. To each g ∈ G one can attach a map Mg

from ∆ to Germ(G) mod Germ(H) and with probability 1 this map stabilizes
pointwise along infinite trajectories of the random walk. (We know this for each
point, and since ∆ is countable it implies that this happens for all the points.)
Note that G acts on the space of such maps Mg by ‘taking the composition’.
We call this space the lamplighter boundary of the action of G on (0, 1] with
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respect to the subgroup H. (For this definition we can consider arbitrary H,
not necessarily as in Proposition 2. For example we can consider H = {e}.)

But under the assumptions of Proposition 2 the lamplighter boundary
can be naturally endowed with a probability measure coming from the space
of infinite trajectories G∞. Hence we can identify it with some µ-boundary
(that is, with a quotient of the Poisson boundary).

Definitions. Let X be a countable space with a discrete probability
measure ν. The entropy of ν is defined as H(ν) = −

∑
x ν(x)ln(ν(x)).

The entropy of a random walk on (G, µ) (see [1]) is the limit

h(µ) = lim
n→∞

H(µ∗n)/n.

The drift of the random walk (G, µ) is

l(µ) = lim
n→∞

Eµ∗n l(g)
n

,

where l denotes the word length with respect to some finite generating set of G.
The exponential growth rate of G with respect to a finite generating set S

is
v = vG,S = lim

n→∞
n

√
vG,S(n).

It is not difficult to see that the limits in the three definitions above do
exist (see [19]; for v see also e.g. [21]).

It is known that for any random walk on G, h(µ) ≤ ln(v)l(µ) ([19]).
Consequently, any simple random walk (or, more generally, any random walk
such that the transition measure µ has finite first moment) on a group of
subexponential growth has zero entropy.

This is in contrast to the following result.

Theorem 1. Let G act on (0, 1] by LN maps and the action satisfies the
strong condition (∗). Assume that there exists g ∈ G such that gm(1) �= 1 for
any m ≥ 1 and that the subgroup generated by {germy(g)|y ∈ (0, 1]} is not
equal to Germ(G). Assume also that Germ(G) is finite. Let H be the subgroup
of G generated by g. Then

(1) The group G admits a symmetric measure µ of finite entropy H(µ) such
that the Poisson boundary is nontrivial.

(2) For any 0 < ε < 1 the measure µ above can be chosen in such a way that
its support supp(µ) is equal to H ∪ K for some finite set K and there
exists C > 0 such that for any m ∈ Z

µ(gm) =
C

|m|1+ε
.
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(3) For any p > 1 the measure µ above can be chosen in such a way that its
support supp(µ) is equal to H ∪K for some finite set K and there exists
C > 0 such that for any n ∈ Z

µ(gn) =
C lnp(|n| + 1)

|n|2 .

Proof of Theorem 1. Take the symmetric probability measure ν on
H = Z,

ν((g)N ) =
C

|N |(1+ε)
.

This measure is transient for any 0 < ε < 1 [27]. The entropy of this measure

H(ν) ∼
∑
N

(1 + ε)ln(|N |)
|N |(1+ε)

is obviously finite.
Note that Stab(1) is transient for (H, ν) since by the previous lemma we

know that H ∩ StabG(1) = e.
Take any symmetric finite generating set S of G and consider the measure

µ2 equidistributed on S. Put µ = 1
2(ν + µ2). Obviously, µ is symmetric and

H(µ) < ∞).
From (3) of Proposition 1 we deduce that Stab(1) is transient for (G, µ).

Hence we can apply Proposition 2 and get that the Poisson boundary of (G, µ)
is nontrivial. So (1) and (2) of the theorem are proved.

Now we are going to prove (3). Consider the symmetric probability mea-
sure on H such that

ν(gn) =
C1 lnp(|n| + 1)

|n|2 .

We want to show that ν is transient. In fact, consider the real part of the
Fourier transform of ν

φ(t) =
∑
n∈Z

cos(tn)ν(n).

Note that for 1 ≥ t ≥ 0

1 − φ(t) =
∑
n∈Z

(1 − cos(tn))ν(n) ≥
[1/t]∑
n=0

(1 − cos(tn))ν(n).

Note also that there exists A > 0 such that (1 − cos(x)) ≥ Ax2 for any
0 ≤ x ≤ 1. Hence

1 − φ(t) ≥ A

[1/t]∑
n=0

(tn)2
C1 lnp(|n| + 1)

|n|2 = AC1t
2

[1/t]∑
n=0

lnp(|n| + 1)
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Now
∑m

n=0 lnp(|n| + 1) ≥ A2m for some positive A2 and any m large
enough. Therefore,

1 − φ(t) ≥ A3t|ln(t)|p

for 0 < t < 1 and some A3 > 0. This implies that∫ 1

0

1
1 − φ(t)

≥ 1
A3

∫ 1

0

1
t|ln(t)|p < ∞,

since p > 1. By the Recurrence Criterion (see e.g. [11]) this implies that ν is
transient.

As before, we observe that then Stab(1) is transient for (H, ν). We take
a symmetric nondegenerate finitely supported measure µ2 and consider µ =
1
2(ν + µ2).

From (3) of Proposition 1 we deduce that Stab(1) is transient for (G, µ).
Hence we can apply Proposition 2 and get that the Poisson boundary of (G, µ)
is nontrivial.

Corollary 1. For any w ∈ Ω the group Gw admits a symmetric measure
µ such that H(µ) < ∞, but the entropy of the random walk h(µ) > 0.

Proof . For the proof of the corollary it is sufficient to show that the group
satisfies the assumption of Theorem 1. This is done in the following lemma,
which statement is unexplicitly contained in [13, proof of Lemma 2.1].

Lemma 4.3. For G = Gw (ad)k /∈ StabG(1) for any k ≥ 1.

Proof of the lemma. Observe that ad(0.5, 1] = (0, 0.5] and that ad(0, 0.5] =
(0.5, 1]. Hence if k is odd then (ad)k(1) ∈ (0, 0.5]. Consequently, if (ad)k ∈
StabG(1) then k is even.

Let k = 2l. Note that (ad)2 acts on (0.5, 1] in the same way as (ad) acts
on (0, 1]. If (ad)k(1) = 1 then (ad)l(1) = 1. Arguing by induction on k we
come to the contradiction.

5. Applications to recurrence

The random walk on a finitely generated group G is called simple if the
corresponding measure µ is equidistributed on some finite symmetric generat-
ing set of G. A random walk on a graph with finite valency of each vertex is
called simple if from each vertex it walks with equal probability to one of its
neighbors.

We say that a graph is recurrent if the simple random walk on it is recur-
rent. It is well known (and follows from (3) of Proposition 1) that the fact that
the Schreier graph of G with respect to H is recurrent does not depend on the
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choice of the finite (symmetric) generating set of G (and more generally, the
property of the graph to be recurrent is preserved by quasi-isometries).

Proposition 3. Suppose that a group of intermediate growth G acts on
(0, 1] by LN maps and that the action satisfies the strong condition (∗). Then
the Schreier graph of (G, Stab(1)) is recurrent. Moreover, for any finitely sup-
ported (not necessarily symmetric) measure µ on G such that supp(µ) gener-
ates G as a semigroup the corresponding random walk on the Schreier graph
of (G, Stab(1)) is recurrent .

Proof. Consider a finitely supported measure µ on G and assume that the
corresponding random walk on the Schreier graph of (G, Stab(1)) is transient.

Put H = e. Note that G, µ, H and K = supp(µ) satisfy the assumption
of Proposition 2. Consequently, (G, µ) has nontrivial Poisson boundary. But
this is impossible since G has intermediate growth. This contradiction proves
the proposition.

Various examples of Schreier graphs of (G, Stab(1)) are constructed in [3].
In that paper it was announced that in some examples the Schreier graphs
have polynomial growth nd for large d. By the proposition above all these
graphs are recurrent, whenever G is of subexponential growth.

Discontinuity of recurrence. An example. Consider the group G = Gw for
some w ∈ W ∗. As before, H is a subgroup of G generated by ad. Consider any
measure µ such that suppµ = {ad, da} and such that µ(ad) �= µ(da). Clearly,
the random walk (H, µ) is transient. Since H ∩ Stab(1) = e this implies that
the random walk on the Schreier graph of (G, Stab(1)) is transient. Now take
a finite symmetric generating set K of G such that ad, da ∈ K. Take any
sequence of measures µi such that supp(µi) = K and the sequence µi tends
pointwise to µ.

Since K generates G the proposition above implies that random walk on
the Schreier graph of (G, Stab(1)) is transient for any µi (i ∈ N).

Note that a discontinuity as in the example above cannot happen for a
symmetric measure µ, as follows from (3) of Proposition 1.

6. Applications to growth of groups

Theorem 2. Let G act on (0, 1] by LN maps and let the action satisfy
the strong condition (∗). Assume that there exists g ∈ G such that gm(1) �= 1
for any m ≥ 1 and that the subgroup generated by {germy(g)|y ∈ (0, 1]} is not
equal to Germ(G). Assume also that Germ(G) is finite. Then for any ε > 0
there exists N such that for any n > N

vG,S(n) ≥ exp
(

n

ln2+ε(n)

)
.
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Corollary 2. For any w ∈ Ω∗ and ε > 0 the growth function of Gw

satisfies

(�) vGw,S(n) ≥ exp
(

n

ln2+ε(n)

)
for any n large enough (as already mentioned this group has subexponential
growth).

Proof. The corollary follows from Theorem 2 and Lemma 4.3. (Compare
with Corollary 1.)

In [13] it was shown that for any subexponential function f there exists a
group G of intermediate growth such that (up to a natural equivalence relation)
vG,S is asymptotically greater than f .

However, these examples from [13] are not generated by a finite state
automaton. Moreover, for the known (finite state) automatic groups of subex-
ponential growth (e.g. the first Grigorchuk group) there exists α < 1 such that
for any n large enough

vG,S(n) ≤ exp(nα).

Now automatic groups satisfying (�) can be constructed using Corollary 2.
In fact, take

w = PTPTPTPTPTPT . . . .

It is not difficult to see that G is generated by the finite state automaton
shown in Figure 1.

The growth function can be defined for any finite state automata [16].
In that paper it is observed that this growth function is equal to the growth
function of the semigroup generated by the automaton. The case when the
automaton is invertible (that is, the corresponding semigroup is a group) is of
particular interest.

d a b

c1

(0,0)

(0,0)

(1,1) (1,1)(0,1) (1,0)

(0,0)

(0,0)

(1,1)

(1,1)

Figure 1.
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In [13] it was shown that G = Gw is commensurable with G + G + G + G.
Moreover, it is possible to check that G is commensurable with G + G.

Let B(e, r) denote the ball of radius r in the word metric, centered at e.

Lemma 6.1. Let µ be a probability measure on G such that

µ(G \ B(e, r)) ≤ C
lnβ(r + 2)

r

for any r large enough and some β > 1, C > 0.
Then there exist C ′, p > 0 such that for any n large enough

µ∗n(B(e, C ′n ln2β(n)) > p.

(The initial form of this lemma was slightly changed after a talk with
Th. Delzant.)

Proof of the lemma. Consider the measure ν on Z+ defined by ν(z) =
µ(S(e, z)) for any positive integer z. Clearly, it suffices to prove the statement
of the lemma for ν. We know that

ν([r + 1,∞)) ≤ C
lnβ(r + 2)

r
.

Take R0 such that lnβ(r+2)
r increases on [R0,∞) and consider a measure

ν0 on Z+ such that

ν0([r + 1,∞)) = C
lnβ(r + 2)

r

for any integer r ≥ R0. Put

m(n) =
n

ln2α(n + 2)
.

Since m(n) increases on Z+, there exists A1, C2 > 0 such that

M =
∑
n≥0

n

ln2β(n + 2)
ν(n) =

∑
n≥0

m(n)ν(n) = A1 +
∑

n≥R0

m(n)ν(n)

≤A1 +
∑

n≥R0

m(n)ν0(n) ≤ A1 + C2

∑
n≥R0

1
n lnβ(n + 2)

< ∞.

The last inequality is due to the fact that β > 1.
Note that m(n) = n

ln2α(n+2)
satisfies m(a + b) ≤ m(a) + m(b) for any

a, b ≥ 0. Hence for any probability measures ν1 and ν2 on Z+∑
n≥0

m(n)ν1 ∗ ν2(n) ≤
∑
n≥0

m(n)ν1(n) +
∑
n≥0

m(n)ν2(n).

Therefore, ∑
n≥0

m(n)ν∗k(n) ≤ k
∑
n≥0

m(n)ν(n) = kM.
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Consider R = 3kM ln2β(k). Note that for k large enough R
ln2β(R+2)

≥
2kM . Hence

µ∗k([0, R]) ≥ 1/2.

Proof of Theorem 2. Let H be the subgroup of G generated by g. Take
ε > 0. From 3 of Theorem 1 we know that there exists a symmetric measure µ

on G such that supp(µ) = H ∪K, where K is some finite generating set of G,

µ(gn) = A2
lnβ(|n| + 1)

n2
,

for some 1 < β < 1 + ε/2 and A2 > 0, and µ has nontrivial Poisson boundary.
Since the entropy of this measure is finite, the entropy on the random

walk h(µ) is positive ([24]).
Put C3 = l(g). Note that l(gn) ≥ C3n. Consider C4 = max l(k) for any

k ∈ K. Note that for any r > C4

µ(G \ B(e, r)) ≤
∞∑

i=r/C3

lnβ(|i| + 1)
i2

≤ C
lnβ(r + 2)

r
,

for some C > 0 (since β > 1).
Hence we can apply Lemma 6.1 and obtain that the convolution µ∗n is

concentrated with positive probability on the ball B(e, C ′n ln2β(n)). Since the
entropy of the random walk is positive, Shannon’s theorem [24] implies that
the number of elements in this ball grow exponentially. That is, there exists
some c2 > 0 such that for any n > N

#
(
B(e, C ′n ln2β(n)

)
≥ exp(c2n).

This inequality implies the statement of the theorem.

Remark 6. The same estimate as in Corollary 5 can be proved for the
subgroup G = G̃w of Gw generated by ad and b. Let H be the subgroup of this
subgroup generated by ad. Note that G and H do not satisfy the assumptions
of Proposition 2, Theorem 1 and Theorem 2, but one can use Remark 4 instead.

6.1. Estimates from above for the growth function.

Theorem 3. Let w = w1, w2, w3 . . . be the sequence of P and T satisfying
the following property. There exists M ≥ 2 such that for any i ≥ 1 the elements
wi, wi+1, . . . wi+M−1 are not all equal (that is, there are both P and T among
them). Consider G = Gw. Then there exist D > 0 such that

vG,S(n) ≤ exp
(

Dln(ln(n))n
ln(n)

)
for any sufficiently large n.
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Combining Theorem 3 above and Corollary 2 we obtain

Corollary 2′. Let w = PTPTPTPTPT . . . (or any other sequence
satisfying the assumption of Theorem 3). Then

exp
(

n

ln2+ε(n)

)
≤ vGw,S(n) ≤ exp

(
n

ln1−ε(n)

)
for any ε > 0 and any sufficient large n.

Proof of Theorem 3. The idea of the proof is similar to that in [13].
Take w ∈ Ω∗. Let σ be the one-sided shift (that is, if w = w1, w2, w3, . . . , then
σ(w) = w2, w3, . . . ). Let Hr = Hr,w be the subgroup of Gw defined by

Hr,w = {h ∈ Gw : h

(( i

2r

i + 1
2r

])
=

( i

2r

i + 1
2r

]
for any 0 ≤ i ≤ 2r − 1. Let βi be the linear map from

(
i
2r , i+1

2r

]
onto (0, 1].

Note that for any 0 ≤ i ≤ 2r − 1 and any g ∈ Hr,w

βi

(
g(β−1

i )
)
∈ Gσr(w).

This defines a map

φr : Hw,r → Gσr(w) + Gσr(w) + · · · + Gσr(w)︸ ︷︷ ︸
2r

.

The group Gσr(w) is generated by a, bσr(w), cσr(w) and dσr(w). In the
product we consider the generating set which is the union of these generators
of Gσr(w). Below we always consider the word metric in this product which
corresponds to this generating set.

For any g ∈ G consider a shortest word ug in the generating set S =
{a, b, c, d}, representing g. Any such word clearly has the form a ∗ a ∗ a · · · ∗ a,
a ∗ a ∗ a . . . a∗, ∗a ∗ a . . . a∗ or ∗a ∗ a · · · ∗ a, where ∗ stands for b, c or d. Let
δb(ug), δc(ug) and δd(ug) be the number of entries (in the word ug) of b, c and
d respectively.

Let Dε
w(n) consist of the elements g of G such that there exists a shortest

word ug of length n, representing g and satisfying

δb(ug) ≤ n(
1
2
− ε), δc(ug) ≤ n(

1
2
− ε)

and

δd(ug) ≤ n(
1
2
− ε).

The first part of the following lemma is proved in [13].
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Lemma 6.2. 1) Let r be such that w1 = w2 = · · · = wr �= wr+1. Then for
any g ∈ Hw,r ∩ Dε

w(n)

l(φr+1(g)) ≤
(
1 − ε

4

)
n + 2r+1

for any n and any 0 < ε < 1/4.
2) Let r be such that not all of the elements w1, w2, . . . wr are equal. Then

for any g ∈ Hw,r ∩ Dε
w(n)

l(φr(g)) ≤
(
1 − ε

4.1

)
n

for any 1002r+1

n < ε < 1/4 and any n.

Proof. For (1) see [13, Lemma 6.3]. The second statement follows from 1)
since for any r and any g

l(φr(g)) ≤ n + 2r

(see [13]).

Let γ(n) = γG,S(n) be the number of elements of G of length n. By
definition vG,S(n) = γG,S(1) + γG,S(2) + · · · + γG,S(n).

Note that the index of Hr in G is at most C = 2r!. Hence there exists C2,
depending only on r, such that

vG,S(n) ≤ C|{g ∈ Hw,r|lG,S(g) ≤ n + C2}|
for any n ≥ 0. Let

γε
G(r) = |(Hw,r ∩ (S(e, r)Dε

w(r))|,
where S(e, r) is the sphere of radius r in the word metric of G, S, centered at e.
Put vε

G(r) = γε
G(1) + γε

G(2) + · · · + γε
G(r).

Suppose that r and ε satisfy the assumption of the second part of the
lemma. Then

vG,S(n) ≤ C

 ∑
n1+n2+...nC≤

(1−ε/4.1)(n+C2)

C∏
i=1

vGσr(w),S
(ni) + vε

Gσr(w),S(n+C2)


for any n > Ñ , for Ñ , C and C2 depending only on r, as follows from the
second part of the lemma.

There exists N , depending only on r such that

(1 − ε/4.1)(n + C2) < (1 − ε/5)n

for any ε > 40C2 and any n > N . Under this assumption

vG,S(n) ≤ C

 ∑
n1+n2+...nC≤

(1−ε/5)n

C∏
i=1

vGσr(w),S
(ni) + vε

Gσr(w),S(n+C2)

 .
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Lemma 6.3. There exist A′
1, C

′
3, A1, C3 > 0 and depending only on r such

that for any 0 < ε < 1/4 and any n

γε
G(n) ≤ C ′

3C
A′

1εn
n/2 2C′

3εn

and
vε
G(n) ≤ C3C

A1εn
n/2 2C3εn.

Proof. Note that

δb(ug) + δc(ug) + δd(ug) = [
n

2
] + x,

x = 0, 1 or −1, for any geodesic word ug of length n. If g /∈ Dε(n) then there
exists a geodesic word ug, representing g such that either

δb(ug) ≥ (
1
2
− ε)n

or δc(ug) ≥ (1
2 − ε)n, or δd(ug) ≥ (1

2 − ε)n.
Hence

γε
G(n) ≤ 3

(
Cεn

[n/2] + Cεn
[n/2]−1 + Cεn

[n/2]+1+
)

2εn.

This implies the first inequality in the statement of the lemma. Clearly, the
second inequality follows from the first one.

Now consider εn = 10C/ln(n). Note that 40C2/n < εn < 1/4 and
1002r+1/n < εn for any sufficiently large n.

Assume again that w, r satisfy the assumptions of the second part of
Lemma 6.2. Lemma 6.3 implies that there exist A, B, N > 0, depending only
on r such that

vG,S(n) ≤ C

 ∑
n1+n2+...nC≤

(1−εn/5)n

C∏
i=1

vGσr(w),S
(ni) + AC

Bn/ln(N)
n/2


for any n > N .

Note that Stierling’s formula implies that

ln
(
CLln(n)

n

)
= O

(
ln(ln(n))n

ln(n)

)
and hence there exists F > 0 such that

vG,S(n) ≤ C

 ∑
n1+n2+...nC≤

(1−εn/5)n

C∏
i=1

vGσr(w),S
(ni) + exp

(
F ln(ln(n))n

ln(n)

) .

Put
fm(n) = max vGw,S(n),
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where the maximum is taken over all w satisfying the assumption of the
theorem with a given constant m. (The function is well defined, since for
vGw, S(n) ≤ 4n for any w and any positive integer n.) Note that if w is as
above, then σ(w) satisfies the assumption of the theorem with the same con-
stant m. Consider r = m. There exists N , depending on m, such that for
some C ≥ 2

fm(n) ≤ C

 ∑
n1+n2+...nC≤

(1−εn/5)n

C∏
i=1

fm(ni) + exp
(

F ln(ln(n))n
ln(n)

)
for any n ≥ N .

Lemma 6.4. Let f : N → R+ be the function satisfying

f(n) ≤ C

 ∑
n1+n2+...nC≤
(1−2C/ln(n))n

C∏
i=1

f(ni) + exp
(

F ln(ln(n))n
ln(n)

)
for any n ≥ N . Then there exists D > 0 such that

f(n) ≤ exp
(

Dln(ln(n))n
ln(n)

)
for any sufficiently large n.

Proof. Note that

f(n)≤C

(
nC max

n1+n2+...nC≤
(1−2C/ln(n))n

C∏
i=1

f(ni) + exp
(

F ln(ln(n))n
ln(n)

))

≤n2C

(
max

n1+n2+...nC≤
(1−2C/ln(n))n

C∏
i=1

f(ni) + exp
(

F ln(ln(n))n
ln(n)

))

for any sufficiently large n.
Note that exp(x) + exp(y) ≤ 2 exp(max(x, y)), and hence

f(n)≤n2C max

(
ln

(
max

n1+n2+...nC≤
(1−2C/ln(n))n

C∏
i=1

f(ni)

)
,
F ln(ln(n))n

ln(n)

)

= n2C max

((
max

n1+n2+...nC≤
(1−2C/ln(n))n

C∑
i=1

ln(f(ni))

)
,
F ln(ln(n))n

ln(n)

)
.
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Put g(n) = ln(f(n). This function satisfies

g(n) ≤ 2Cln(n) + max

((
max

n1+n2+...nC≤
(1−2C/ln(n))n

C∑
i=1

g(ni)

)
,
F ln(ln(n))n

ln(n)

)
for any sufficiently large n.

Consider

g0(n) =
ln(ln(n + 1000))(n + 1000)

ln(n + 1000)
.

Lemma 6.5. (1) The function g0(n) is concave on [0,∞).

(2) There exists N1 > N such that for any n > N1

g0

(
n(1 − 2C/ln(n))

C

)
+ 2Cln(n) ≤ g0(n).

The proof of this lemma is omitted.
Now we return to the proof of Lemma 6.4. Take N1 as in the second part

of Lemma 6.5, such that
2Cln(n) ≤ Fg0(n)

for any n ≥ N1.
Take F1 ≥ 2F such that

g(n) ≤ F1g0(n)

for any 1 ≤ n < N1. We are going to prove that then the inequality above
holds for any positive integer n. The proof is by induction on n. Suppose that
the inequality holds for any n < n′, n′ ≥ N1. Note that

Fg0(n′) + 2Cln(n′) ≤ 2Fg0(n′) ≤ F1g0(n′)

and that, since g0 is concave and since n′ satisfies the assumption of the second
part of Lemma 6.5

max

(
max

n1+n2+...nC≤
(1−2C/ln(n′))n′

C∑
i=1

F1g0(ni)

)
+ 2Cln(n′)

≤ CF1g0(
(1 − 2C/ln(n′))n′

C
) + 2Cln(n′)

≤ F1

(
g0(

(1 − 2C/ln(n′))n′

C
) + 2Cln(n′)

)
≤ F1g0(n′).

This implies that g(n′) ≤ F1g0(n′) and completes the proof of the lemma.

Now we apply Lemma 6.4 to f(n) = fm(n) and this completes the proof
of the theorem.
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7. Generalizations

In this section we weaken the assumptions of Theorem 1 and prove under
these assumptions that the group admits a symmetric measure with nontrivial
exit boundary. The difference between Theorem 1 and Theorem 4 below is
that we do not assume in Theorem 4 that the subgroup H has an element of
infinite order (and with infinite orbit of 1 with respect to the action on (0, 1]).
Thus the following theorem can be applied to torsion groups.

Theorem 4. Suppose that G acts on (0, 1] by LN maps and that the ac-
tion satisfies the strong condition (∗). Suppose also that there exists a finitely
generated subgroup H in G such that Germ(H) �= Germ(G), Germ(H) is of
finite index in Germ(G) and the index

[H : H ∩ StabG(1)] = ∞.

Then there exists a symmetric measure µ on G such that the Poisson boundary
of (G, µ) is nontrivial.

Corollary 3. As before, let a be a cyclic permutations of (0, 1/2] and
(1/2, 1]. Consider elements

b1 = PPTPPT PPTPPT PPTPPT . . . ,

b2 = TPPTPP TPPTPP TPPTPP . . . ,

and
b3 = PPTTPP PPTTPP PPTTPP . . . .

(b1, b2 and b3 are periodic with period 6.) Let G be the group generated by
a, b1, b2 and b3, and H be the subgroup of G generated by a, b1, b2.

By construction, H is isomorphic to the first Grigorchuk group ([13]).

Note that Germ(G) = (Z/2Z)3 �= Germ(H) = (Z/2Z)2. Note also that
Stab(1) is of infinite index in H. Hence we can apply Theorem 3 and conclude
that G admits a measure with nontrivial Poisson boundary.

Remark 7. Let G be as in the corollary above. Let H6 be the subgroup
of G such that for any 0 ≤ i < 26

h

(
(

i

26
,
i + 1
26

]
)

= (
i

26
,
i + 1
26

]

for any h ∈ H6. Clearly, H6 is of finite index in G.
Consider the system S = {a, b1, b2, b3, ab1b2, b2b3, b3, b1, b1b2b3} of genera-

tors of G. Note that for any b �= a, b ∈ S,

b = w1, w2, w3, . . .

and for any i at least one of the elements wi, wi+1, . . . wi+5 is equal to T .
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Then similarly to the case of the first Grigorchuk group [13], one can check
that there is an injective map

ψ : H → G + G + · · · + G︸ ︷︷ ︸
26

and β1, β2 > 0 such that β1 < 1 and for any h ∈ H6

l(ψ(h)) ≤ β1lG,S(h) + β2.

(Here the word metric in the direct sum corresponds to the system of generators
which is the union of generators of G.)

This implies that there exists α < 1 for any n large enough and that the
growth function of G satisfies

vG,S(n) ≤ exp(nα).

Before starting to prove Theorem 4, we prove the following lemma.

Lemma 7.1. Let A be a finitely generated group and B be a subgroup of
infinite index in A. Then there exists a symmetric measure ν on A such that
B is transient with respect to ν.

Recall that B is transient with respect to ν if and only if the induced
random walk (A/B, ν) on the cosets A/B is transient.

Proof of the lemma. Consider a symmetric measure µ with finite support
on A containing l elements. Note that

lim
n→∞

µ∗n(B) = 0.

In fact, consider the Schreier graph of (A, B). Since it is infinite, it contains
an infinite array. For the proof of the formula it suffices to compare (A/B, ν)
with the simple random walk on this array and to use (2) of Proposition 1 for
the Lebesgue measure ξ on [0, 1]. In this case ξn = n−1 and we see that∑

n

1
n

µ∗n(B) < ∞.

Hence for some subsequence of µ∗n(B) tends to 0. But since µ∗2n(B)
decreases in n (this follows from the spectral theorem) and since µ∗2n(B) ≥
1
l µ

∗(2n−1)(B) this implies that
lim

n→∞
µ∗n(B) = 0.

Now consider a sequence ni ∈ N and ai ∈ R, ai ≥ 0, such that
∑n

i=1 ai = 1.
Put

ν =
n∑

i=1

aiµ
∗ni .

It is clear that ν is a probability measure on A.
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Note that

ν∗k =

(
n∑

i=1

aiµ
∗ni

)∗k

=
∑

i1,i2,...,ik≥0

ai1ai2 . . . aik
µ∗(ni1+ni2+···+nik

).

Hence

ν∗k(B) =
∑

i1,i2,...,ik≥0

ai1ai2 . . . aik
µ∗(ni1+ni2+···+nik

)(B).

Note that for any d > 0 there exists a decreasing sequence ai ≥ 0 and a
constant C > 0 such that for any k ∈ N(

k∑
i=1

ak

)k

≤ C

kd
.

Take ai as above and assume that the sequence ni satisfies µ∗m(B) < 1/id

for any m ≥ ni. Note that such sequences ni do exist since µ∗m(B) → 0 as
m → ∞.

Also,

ν∗k(B) =
∑

i1,i2,...,ik≥0

ai1ai2 . . . aik
µ∗(ni1+ni2+···+nik

)(B)

=
∑

i1,i2,...,ik≤k

ai1ai2 . . . aik
µ∗(ni1+ni2+···+nik

)(B)

+
∑

i1,i2,...,ik:
∃j:ij>k

ai1ai2 . . . aik
µ∗(ni1+ni2+···+nik

)(B).

The first term is not greater than∑
i1,i2,...,ik≤k

ai1ai2 . . . aik
= (a1 + a2 + · · · + ak)k ≤ C

kd
.

Note that for each multi-index in the second term

(ni1 + ni2 + · · · + nik
) ≥ nij

≥ nk.

Consequently the second term is at most∑
i1,i2,...,ik:

∃j:ij>k

ai1ai2 . . . aik

1
kd

≤ 1
kd

∑
i1,i2,...,ik

ai1ai2 . . . aik
≤ 1

kd
(a1 + a2 + a3 + . . . )k =

1
kd

.

Consequently for any k ≥ 1

ν∗k(B) ≤ C + 1
kd

.
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Hence taking d > 1 we get

∞∑
k=1

ν∗k(B) < ∞.

This implies that B is transient.

The assumption in the lemma above that A is finitely generated can be
dropped. To see this, it suffices to consruct a measure µ on A such that

µ∗i(B) → 0 as i → ∞.

And then the previous argument applies.

Proof of Theorem 4. Take a finite symmetric set of generators S such
that (G, S) satisfies the strong condition (∗). Consider a measure ν1 on H such
that H ∩ Stab(1) is transient for (H, ν1). This is possible due to the previous
lemma since H ∩ Stab(1) is of infinite index in H. Let ν2 be the measure
equidistributed on S.

Put

ν =
1
2
(ν1 + ν2).

Let k(ν1), k(ν2) and k(ν) be the induced kernels on G/Stab(1). Clearly,

k(ν)(x, y) =
1
2
(k(ν1)(x, y) + k(ν2)(x, y))

for any x, y ∈ G/Stab(1).
We know that Stab(1) is transient for (G, ν1), and hence the random walk

(G/Stab(1), k(ν1)) is transient. Since ν1 ≤ 2ν, Proposition 1 implies that
(G/Stab(1), k(ν)) is transient. That is Stab(1) is transient for (G, ν). Hence
(G, ν) satisfies the assumption of Proposition 2 and, consequently, the Poisson
boundary of (G, ν) is nontrivial.

I would like to thank R. I. Grigorchuk and V. A. Kaimanovich for useful
discussions. I am grateful to R. Muchnik for turning my attention to the groups
Gw and for discussions on the upper bounds for the growth function of Gw (see
Theorem 3).



BOUNDARY BEHAVIOR FOR GROUPS OF SUBEXPONENTIAL GROWTH 1209

University of Lille 1, Villeneuve d’Ascq, France
E-mail address: erschler@pdmi.ras.ru, erschler@agat.univ-lille1.fr

References

[1] A. Avez, Entropie des groupes de type fini, C. R. Acad. Sci. Paris Sér . A-B 275A
(1972), A1363–A1366.
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Conference on Random Walks (Kleebach, 1979), Astérisque 74, 47–98, Soc. Math.
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