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Isomonodromy transformations
of linear systems of difference equations

By Alexei Borodin

Abstract

We introduce and study “isomonodromy” transformations of the matrix
linear difference equation Y (z + 1) = A(z)Y (z) with polynomial A(z). Our
main result is construction of an isomonodromy action of Zm(n+1)−1 on the
space of coefficients A(z) (here m is the size of matrices and n is the degree of
A(z)). The (birational) action of certain rank n subgroups can be described by
difference analogs of the classical Schlesinger equations, and we prove that for
generic initial conditions these difference Schlesinger equations have a unique
solution. We also show that both the classical Schlesinger equations and the
Schlesinger transformations known in isomonodromy theory, can be obtained
as limits of our action in two different limit regimes.

Similarly to the continuous case, for m = n = 2 the difference Schlesinger
equations and their q-analogs yield discrete Painlevé equations; examples in-
clude dPII, dPIV, dPV, and q-PVI.

Introduction

In recent years there has been considerable interest in analyzing a certain
class of discrete probabilistic models which in appropriate limits converge to
well-known models of random matrix theory. The sources of these models are
quite diverse, they include combinatorics, representation theory, percolation
theory, random growth processes, tiling models and others.

One quantity of interest in both discrete models and their random matrix
limits is the gap probability – the probability of having no particles in a given
set. It is known, due to works of many people (see [JMMS], [Me], [TW],
[P], [HI], [BD]), that in the continuous (random matrix type) setup these
probabilities can be expressed through solution of an associated isomonodromy
problem for a linear system of differential equations with rational coefficients.

The goal of this paper is to develop a general theory of “isomonodromy”
transformations for linear systems of difference equations with rational coef-
ficients. This subject is of interest in its own right. As an application of
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the theory, we show in a subsequent publication that the gap probabilities
in the discrete models mentioned above are expressible through solutions of
isomonodromy problems for such systems of difference equations. In the case
of one-interval gap probability this has been done (in a different language) in
[Bor], [BB]. One example of the probabilistic models in question can be found
at the end of this introduction.

Consider a matrix linear difference equation

Y (z + 1) = A(z)Y (z).(1)

Here
A(z) = A0z

n + A1z
n−1 + · · · + An, Ai ∈ Mat(m, C),

is a matrix polynomial and Y : C → Mat(m, C) is a matrix meromorphic
function. 1 We assume that the eigenvalues of A0 are nonzero and that their
ratios are not real. Then, without loss of generality, we may assume that A0

is diagonal.
It is a fundamental result proved by Birkhoff in 1911, that the equa-

tion (1) has two canonical meromorphic solutions Y l(z) and Y r(z), which are
holomorphic and invertible for �z � 0 and �z � 0 respectively, and whose
asymptotics at z = ∞ in any left (right) half-plane has a certain form. Birkhoff
further showed that the ratio

P (z) = (Y r(z))−1Y l(z),

which must be periodic for obvious reasons, is, in fact, a rational function in
exp(2πiz). This rational function has just as many constants involved as there
are matrix elements in A1, . . . , An. Let us call P (z) the monodromy matrix of
(1).

Other results of Birkhoff show that for any periodic matrix P of a specific
form, there exists an equation of the form (1) with prescribed A0, which has
P as the monodromy matrix. Furthermore, if two equations with coefficients
A(z) and Ã(z), Ã0 = A0, have the same monodromy matrix, then there exists
a rational matrix R(z) such that

Ã(z) = R(z + 1)A(z)R−1(z).(2)

The first result of this paper is a construction, for generic A(z), of a homo-
morphism of Zm(n+1)−1 into the group of invertible rational matrix functions,
such that the transformation (2) for any R(z) in the image, does not change
the monodromy matrix.

If we denote by a1, . . . , amn the roots of the equation detA(z) = 0 (called
eigenvalues of A(z)) and by d1, . . . , dn certain uniquely defined exponents of
the asymptotic behavior of a canonical solution Y (z) of (1) at z = ∞, then

1Changing Y (z) to (Γ(z))kY (z) readily reduces a rational A(z) to a polynomial one.
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the action of Zm(n+1)−1 is uniquely defined by integral shifts of {ai} and {dj}
with the total sum of all shifts equal to zero. (We assume that ai −aj /∈ Z and
di − dj /∈ Z for any i �= j.)

The matrices R(z) depend rationally on the matrix elements of {Ai}n
i=1

and {ai}mn
i=1 (A0 is always invariant), and define birational transformations of

the varieties of {Ai} with given {ai} and {dj}.
There exist remarkable subgroups Zn ⊂ Zm(n+1)−1 which define birational

transformations on the space of all A(z) (with fixed A0 and with no restric-
tions on the roots of detA(z)), but to see this we need to parametrize A(z)
differently.

To define the new coordinates, we split the eigenvalues of A(z) into n

groups of m numbers each:

{a1, . . . , amn} = {a(1)
1 , . . . , a(1)

m } ∪ · · · ∪ {a(n)
1 , . . . , a(n)

m }.
The splitting may be arbitrary. Then we define Bi to be the uniquely deter-
mined (remember, everything is generic) element of Mat(m, C) with eigenval-
ues

{
a

(i)
j

}m

j=1
, such that z − Bi is a right divisor of A(z):

A(z) = (A0z
n−1 + A′

1z
n−1 + · · · + A′

n−1)(z − Bi).

The matrix elements of {Bi}n
i=1 are the new coordinates on the space of A(z).

The action of the subgroup Zn mentioned above consists of shifting the
eigenvalues in any group by the same integer assigned to this group, and also
shifting the exponents {di} by the same integer (which is equal to minus the
sum of the group shifts). If we denote by {Bi(k1, . . . , kn)} the result of applying
k ∈ Zn to {Bi}, then the following equations are satisfied:

Bi(. . . ) − Bi(. . . , kj + 1, . . . ) =Bj(. . . ) − Bj(. . . , ki + 1, . . . ),(3)

Bj(. . . , ki + 1, . . . )Bi(. . . ) =Bi(. . . , kj + 1, . . . )Bj(. . . ),(4)

Bi(k1 + 1, . . . , kn + 1) =A−1
0 Bi(k1, . . . , kn)A0 − I,(5)

where i, j = 1, . . . , n, and dots in the arguments mean that other kl’s remain
unchanged. We call them the difference Schlesinger equations for the reasons
that will be clarified below. Note that (3) and (4) can be rewritten as(
z−Bi(. . . , kj +1, . . . )

)(
z−Bj(. . . )

)
=

(
z−Bj(. . . , ki +1, . . . )

)(
z−Bi(. . . )

)
.

Independently of Birkhoff’s general theory, we prove that the difference
Schlesinger equations have a unique solution satisfying

Sp(Bi(k1, . . . , kn)) = Sp(Bi) − ki, i = 1, . . . , n,(6)

for an arbitrary nondegenerate A0 and generic initial conditions {Bi = Bi(0)}.
(The notation means that the eigenvalues of Bi(k) are equal to those of Bi

shifted by −ki.) Moreover, the matrix elements of this solution are rational
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functions in the matrix elements of the initial conditions. This is our second
result.

In order to prove this claim, we introduce yet another set of coordinates
on A(z) with fixed A0, which is related to {Bi} by a birational transformation.
It consists of matrices Ci ∈ Mat(m, C) with Sp(Ci) = Sp(Bi) such that

A(z) = A0(z − C1) · · · (z − Cn).

In these coordinates, the action of Zn is described by the relations

(7)
(
z + 1 − Ci

)
· · ·

(
z + 1 − Cn

)
A0

(
z − C1

)
· · ·

(
z − Ci−1

)
=

(
z + 1 − C̃i+1

)
· · ·

(
z + 1 − C̃n

)
A0

(
z − C̃1

)
· · ·

(
z − C̃i

)
,

Cj = Cj(k1, . . . , kn), C̃j = Cj(k1, . . . , ki−1, ki + 1, ki+1, . . . , kn) for all j.

Again, we prove that there exists a unique solution to these equations sat-
isfying Sp(Ci(k)) = Sp(Ci) − ki, for an arbitrary invertible A0 and generic
{Ci = Ci(0)}. The solution is rational in the matrix elements of the initial
conditions.

The difference Schlesinger equations have an autonomous limit which con-
sists of (3), (4), and

(5-aut) Bi(k1 + 1, . . . , kn + 1) = A−1
0 Bi(k1, . . . , kn)A0,

(6-aut) Sp(Bi(k1, . . . , kn)) = Sp(Bi), i = 1, . . . , n.

The equation (7) then becomes

(7-aut)
(
z − Ci

)
· · ·

(
z − Cn

)
A0

(
z − C1

)
· · ·

(
z − Ci−1

)
=

(
z − C̃i+1

)
· · ·

(
z − C̃n

)
A0

(
z − C̃1

)
· · ·

(
z − C̃i

)
.

The solutions of these equations were essentially obtained in [V] via a gen-
eral construction of commuting flows associated with set-theoretical solutions
of the quantum Yang-Baxter equation; see [V] for details and references.

The autonomous equations can also be explicitly solved in terms of abelian
functions associated with the spectral curve {(z, w) : det(A(z) − wI) = 0},2
very much in the spirit of [MV, §1.5]. We hope to explain the details in a
separate publication.

The whole subject bears a strong similarity (and not just by name!) to the
theory of isomonodromy deformations of linear systems of differential equations
with rational coefficients:

dY(ζ)
dζ

=

(
B∞ +

n∑
k=1

Bi

ζ − xi

)
Y(ζ),(8)

2It is easy to see that the curve is invariant under the flows.
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which was developed by Schlesinger around 1912 and generalized by Jimbo,
Miwa, and Ueno in [JMU], [JM] to the case of higher order singularities. If
we analytically continue any fixed (say, normalized at a given point) solution
Y(ζ) of (8) along a closed path γ in C avoiding the singular points {xk} then
the columns of Y will change into their linear combinations: Y 
→ YMγ . Here
Mγ is a constant invertible matrix which depends only on the homotopy class
of γ. It is called the monodromy matrix corresponding to γ. The monodromy
matrices define a linear representation of the fundamental group of C with
n punctures. The basic isomonodromy problem is to change the differential
equation (8) so that the monodromy representation remains invariant.

There exist isomonodromy deformations of two types: continuous ones,
when xi move in the complex plane and Bi = Bi(x) form a solution of a sys-
tem of partial differential equations called Schlesinger equations, and discrete
ones (called Schlesinger transformations), which shift the eigenvalues of Bi and
exponents of Y(ζ) at ζ = ∞ by integers with the total sum of shifts equal to 0.

We prove that in the limit when

Bi = xiε
−1 + Bi, ε → 0,

our action of Zm(n+1)−1 in the discrete case converges to the action of Schlesinger
transformations on Bi. This is our third result.

Furthermore, we argue that the “long-time” asymptotics of the Zn-action
in the discrete case (that is, the asymptotics of Bi([x1ε

−1], . . . , [xnε−1])),
ε small, is described by the corresponding solution of the Schlesinger equa-
tions. More exactly, we conjecture that the following is true.

Take Bi = Bi(ε) ∈ Mat(m, C), i = 1, . . . , n, such that

Bi(ε) − yiε
−1 + Bi → 0, ε → 0.

Let Bi(k1, . . . , kn) be the solution of the difference Schlesinger equations (3.1)–
(3.3) with the initial conditions {Bi(0) = Bi}, and let Bi(x1, . . . , xn) be the
solution of the classical Schlesinger equations (5.4) with the initial conditions
{Bi(y1, . . . , yn) = Bi}. Then for any x1, . . . , xn ∈ R and i = 1, . . . , n, we have

Bi

(
[x1ε

−1], . . . , [xnε−1]
)
+[xiε

−1]−yiε
−1+Bi(y1−x1, . . . , yn−xn) → 0, ε → 0.

In support of this conjecture, we explicitly show that the difference
Schlesinger equations converge to the conventional Schlesinger equations in
the limit ε → 0.

Note that the monodromy representation of π1(C \ {x1, . . . , xn}) which
provides the integrals of motion for the Schlesinger flows, has no obvious analog
in the discrete situation. On the other hand, the obvious differential analog
of the periodic matrix P , which contains all integrals of motion in the case
of difference equations, gives only the monodromy information at infinity and
does not carry any information about local monodromies around the poles
x1, . . . , xn.
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Most of the results of the present paper can be carried over to the case
of q-difference equations of the form Y (qz) = A(z)Y (z). The q-difference
Schlesinger equations are, cf. (3)–(6),

(3q)

(4q)

(5q)

(6q)

Bi(. . . ) − Bi(. . . , qkj+1, . . . ) = Bj(. . . ) − Bj(. . . , qki+1, . . . ),

Bj(. . . , qki+1, . . . )Bi(. . . ) = Bi(. . . , qkj+1, . . . )Bj(. . . ),

Bi(qk1+1, . . . , qkn+1) = q−1A−1
0 Bi(qk1 , . . . , qkn)A0,

Sp(Bi(qk1 , . . . , qkn)) = q−kiSp(Bi), i = 1, . . . , n.

The q-analog of (7) takes the form

(7q)
(
z − q−1Ci

)
· · ·

(
z − q−1Cn

)
A0

(
z − C1

)
· · ·

(
z − Ci−1

)
=

(
z − q−1C̃i+1

)
· · ·

(
z − q−1C̃n

)
A0

(
z − C̃1

)
· · ·

(
z − C̃i

)
,

Cj = Cj(qk1 , . . . , qkn), C̃j = Cj(qk1 , . . . , qki−1 , qki+1, qki+1 , . . . , qkn) for all j.

A more detailed exposition of the q-difference case will appear elsewhere.
Similarly to the classical case, see [JM], discrete Painlevé equations of

[JS], [Sak] can be obtained as reductions of the difference and q-difference
Schlesinger equations when both m (the size of matrices) and n (the degree
of the polynomial A(z)) are equal to two. For examples of such reductions
see [Bor, §3] for difference Painlevé II equation (dPII), [Bor, §6] and [BB, §9]
for dPIV and dPV, and [BB, §10] for q-PVI. This subject still remains to be
thoroughly studied.

As was mentioned before, the difference and q-difference Schlesinger equa-
tions can be used to compute the gap probabilities for certain probabilistic
models. We conclude this introduction by giving an example of such a model.
We define the Hahn orthogonal polynomial ensemble as a probability measure
on all l-point subsets of {0, 1, . . . , N}, N > l > 0, such that

Prob{(x1, . . . , xl)} = const ·
∏

1≤i<j≤l

(xi − xj)2 ·
l∏

i=1

w(xi),

where w(x) is the weight function for the classical Hahn orthogonal polynomi-
als:

w(x) =
(

α + x

x

)(
β + N − x

N − x

)
, α, β > −1 or α, β < −N.

This ensemble came up recently in harmonic analysis on the infinite-dimensional
unitary group [BO, §11] and in a statistical description of tilings of a hexagon
by rhombi [Joh, §4].

The quantity of interest is the probability that the point configuration
(x1, . . . , xl) does not intersect a disjoint union of intervals [k1, k2] � · · · �
[k2s−1, k2s]. As a function in the endpoints k1, . . . , k2s ∈ {0, 1, . . . , N}; this
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probability can be expressed through a solution of the difference Schlesinger
equations (3)–(6) for 2 × 2 matrices with n = deg A(z) = s + 2, A0 = I,

Sp(Bi) = {−ki,−ki}, i = 1, . . . , 2s,

Sp(B2s+1) � Sp(B2s+2) = {0,−α, N + 1, N + 1 + β},
and with certain explicit initial conditions. The equations are also suitable for
numerical computations, and we refer to [BB, §12] for examples of those in the
case of a one interval gap.

I am very grateful to P. Deift, P. Deligne, B. Dubrovin, A. Its, D. Kazhdan,
I. Krichever, G. Olshanski, V. Retakh, and A. Veselov for interesting and
helpful discussions.

This research was partially conducted during the period the author served
as a Clay Mathematics Institute Long-Term Prize Fellow.

1. Birkhoff’s theory

Consider a matrix linear difference equation of the first order

Y (z + 1) = A(z)Y (z).(1.1)

Here A : C → Mat(m, C) is a rational function (i.e., all matrix elements of
A(z) are rational functions of z) and m ≥ 1. We are interested in matrix
meromorphic solutions Y : C → Mat(m, C) of this equation.

Let n be the order of the pole of A(z) at infinity, that is,

A(z) = A0z
n + A1z

n−1 + lower order terms .

We assume that (1.1) has a formal solution of the form

Y (z) = znze−nz

(
Ŷ0 +

Ŷ1

z
+

Ŷ2

z2
+ . . .

)
diag

(
ρz
1 zd1 , . . . , ρz

m zdm

)
(1.2)

with ρ1, . . . , ρm �= 0 and det Ŷ0 �= 0.3

It is easy to see that if such a formal solution exists then ρ1, . . . , ρm must
be the eigenvalues of A0, and the columns of Ŷ0 must be the corresponding
eigenvectors of A0.

Note that for any invertible T ∈ Mat(m, C), (TY )(z) solves the equation

(TY )(z + 1) = (TA(z)T−1) (TY )(z).

Thus, if A0 is diagonalizable, we may assume that it is diagonal without loss
of generality. Similarly, if A0 = I and A1 is diagonalizable, we may assume
that A1 is diagonal.

3Substituting (1.2) in (1.1) we use the expansion
(

z+1
z

)nz
= enz ln(1+z−1) = en − nen

2z
+ . . .

to compare the two sides.
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Proposition 1.1. If A0 = diag(ρ1, . . . , ρm), where {ρi}m
i=1 are nonzero

and pairwise distinct, then there exists a unique formal solution of (1.1) of the
form (1.2) with Ŷ0 = I.

Proof. It suffices to consider the case n = 0; the general case is reduced
to it by considering (Γ(z))nY (z) instead of Y (z), because

Γ(z) =
√

2π zz− 1
2 e−z

(
1 +

1
12

z−1 + . . .

)
.

(More precisely, this expression formally solves Γ(z + 1) = zΓ(z).)
Thus, we assume n = 0. Then we substitute (1.2) into (1.1) and compute

Ŷk one by one by equating the coefficients of z−l, l = 0, 1, . . . . If Ŷ0 = I then
the constant coefficients of both sides are trivially equal. The coefficients of
z−1 give

Ŷ1A0 + diag(ρ1d1, . . . , ρmdm) = A0Ŷ1 + A1.(1.3)

This equality uniquely determines {di} and the off-diagonal entries of Ŷ1, be-
cause

[Ŷ1, A0]ij = (ρj − ρi)(Ŷ1)ij .

Comparing the coefficients of z−2 we obtain

(Ŷ2 − Ŷ1)A0 + Ŷ1 diag(ρ1d1, . . . , ρmdm) + . . . = A0Ŷ2 + A1Ŷ1 + . . . ,

where the dots stand for the terms which we already know (that is, those
which depend only on ρi’s, di’s, Ai’s, and Ŷ0 = I). Since the diagonal values of
A1 are exactly ρ1d1, . . . ρndn by (1.3), we see that we can uniquely determine
the diagonal elements of Ŷ1 and the off-diagonal elements of Ŷ2 from the last
equality.

Now let us assume that we already determined Ŷ1, . . . , Ŷl−2 and the off-
diagonal entries of Ŷl−1 by satisfying (1.1) up to order l − 1. Then comparing
the coefficients of z−l we obtain

(Ŷl − (l − 1)Ŷl−1)A0 + Ŷl−1 diag(ρ1d1, . . . , ρmdm) + . . . = A0Ŷl + A1Ŷl−1 + . . . ,

where the dots denote the terms depending only on ρi’s, di’s, Ai’s, and
Ŷ0, . . . , Ŷl−2. This equality allows us to compute the diagonal entries of Yl−1

and the off-diagonal entries of Yl. Induction on l completes the proof.

The condition that the eigenvalues of A0 are distinct is not necessary for
the existence of the asymptotic solution, as our next proposition shows.

Proposition 1.2. Assume that A0 = I and A1 = diag(r1, . . . , rn) where
ri−rj /∈ {±1,±2, . . . } for all i, j = 1, . . . , n. Then there exists a unique formal
solution of (1.1) of the form (1.2) with Ŷ0 = I.
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Proof. As in the proof of Proposition 1.1, we may assume that n = 0.
Comparing constant coefficients we see that ρ1 = · · · = ρm = 1. Then equating
the coefficients of z−1 we find that di = ri, i = 1, . . . , m. Furthermore, equating
the coefficients of z−l, l ≥ 2 we find that

[Ŷl−1, A1] − (l − 1)Ŷl−1

is expressible in terms of Ai’s and Ŷ1, . . . , Ŷl−2. This allows us to compute all
Ŷi’s recursively.

We call two complex numbers z1 and z2 congruent if z1 − z2 ∈ Z.

Theorem 1.3 (G. D. Birkhoff [Bi1, Th. III]). Assume that

A0 = diag(ρ1, . . . , ρm),

ρi �= 0, i = 1, . . . , m, ρi/ρj /∈ R for all i �= j.

Then there exist unique solutions Y l(z) (Y r(z)) of (1.1) such that :

(a) The function Y l(z) (Y r(z)) is analytic throughout the complex plane ex-
cept possibly for poles to the right (left ) of and congruent to the poles of
A(z) (respectively, A−1(z − 1));

(b) In any left (right ) half-plane Y l(z) (Y r(z)) is asymptotically represented
by the right-hand side of (1.2).

Remark 1.4. Part (b) of the theorem means that for any k = 0, 1, . . . ,∣∣∣∣∣Y l,r(z) z−nzenz diag(ρ−z
1 z−d1 , . . . , ρ−z

m z−dm) − Ŷ0 −
Ŷ1

z
− · · · − Ŷk−1

zk−1

∣∣∣∣∣≤ const
zk

for large |z| in the corresponding domain.
Theorem 1.3 holds for any (fixed) choices of branches of ln(z) in the left

and right half-planes for evaluating z−nz = e−nz ln(z) and z−dk = e−dk ln(z), and
of a branch of ln(ρ) with a cut not passing through ρ1, . . . , ρm for evaluating
ρ−z

k = e−z ln ρk . Changing these branches yields the multiplication of Y l,r(z)
by a diagonal periodic matrix on the right.

Remark 1.5. Birkhoff states Theorem 1.3 under a more general assump-
tion: he only assumes that the equation (1.1) has a formal solution of the form
(1.2). However, as pointed out by P. Deligne, Birkhoff’s proof has a flaw in
case one of the ratios ρi/ρj is real. The following counterexample was kindly
communicated to me by Professor Deligne.

Consider the equation (1.1) with m = 2 and

A(z) =
[
1 1/z

0 1/e

]
.
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The formal solution (1.2) has the form

Y (z) =
(

I +
[
0 a

0 0

]
z−1 + . . .

) [
1 0
0 e−z

]
with a = e/(1 − e).

Actual solutions that we care about have the form

Y (z) =
[
1 u(z)
0 e−z

]
where u(z) is a solution of u(z + 1) = u(z) + e−z/z. In a right half-plane we
can take

ur(z) = −
∞∑

n=0

e−(z+n)

z + n
.

The first order approximation of ur(z) anywhere except near nonpositive inte-
gers is

ur(z) ∼ −
∞∑

n=0

e−(z+n)

z
=

ae−z

z
.

Next, terms can be obtained by expanding 1/(z + n).
In order to obtain a solution which behaves well on the left, it suffices to

cancel the poles:

ul(z) = ur(z) +
2πi

e2πiz − 1
.

The corresponding solution Y l(z) has the needed asymptotics in sectors of the
form π/2 + ε < arg z < 3π/2 + ε, but it has the wrong asymptotic behavior as
z → +i∞. Indeed, limz→+i∞ ul(z) = −2πi.

On the other hand, we can take

ũl(z) = ul(z) + 2πi = ur(z) +
2πi e2πiz

e2πiz − 1
,

which has the correct asymptotic behavior in π/2 − ε < arg z < 3π/2 − ε, but
fails to have the needed asymptotics at −i∞.

Remark 1.6. In the case when |ρ1| > |ρ2| > · · · > |ρm| > 0, a result
similar to Theorem 1.3 was independently proved by R. D. Carmichael [C].
He considered the asymptotics of solutions along lines parallel to the real axis
only. Birkhoff also referred to [N] and [G] where similar results had been proved
somewhat earlier.

Now let us restrict ourselves to the case when A(z) is a polynomial in z.
The general case of rational A(z) is reduced to the polynomial case by the
following transformation. If (z − x1) · · · (z − xs) is the common denominator
of {Akl(z)} (the matrix elements of A(z)), then

Ȳ (z) = Γ(z − x1) · · ·Γ(z − xs) · Y (z)
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solves Ȳ (z + 1) = Ā(z)Ȳ (z) with polynomial

Ā(z) = (z − x1) · · · (z − xs)A(z).

Note that the ratio P (z) = (Y r(z))−1 Y l(z) is a periodic function. (The
relation P (z + 1) = P (z) immediately follows from the fact that Y l,r solves
(1.1).) From now on let us fix the branches of ln(z) in the left and right half-
planes mentioned in Remark 1.4 so that they coincide in the upper half-plane.
Then the structure of P (z) can be described more precisely.

Theorem 1.7 ([Bi1, Th. IV]). With the assumptions of Theorem 1.3,
the matrix elements pkl(z) of the periodic matrix P (z) = (Y r(z))−1Y l(z) have
the form

pkk(z) = 1 + c
(1)
kk e2πiz + · · · + c

(n−1)
kk e2π(n−1)iz + e2πidke2πniz,

pkl(z) = e2πλklz
(
c
(0)
kl + c

(1)
kl e2πiz + · · · + c

(n−1)
kl e2π(n−1)iz

)
(k �= l),

where c
(s)
kl are some constants, and λkl denotes the least integer as great as the

real part of (ln(ρl) − ln(ρk))/2πi.

Thus, starting with a matrix polynomial A(z) = A0z
n +A1z

n−1 + · · ·+An

with nondegenerate A0 = diag(ρ1, . . . , ρm), ρk �= ρl for k �= l, we construct the
characteristic constants {dk}, {c(s)

kl } using Proposition 1.1 and Theorems 1.3,
1.7.

Note that the total number of characteristic constants is exactly the same
as the number of matrix elements in matrices A1, . . . , An. Thus, it is natural
to ask whether the map

(A1, . . . , An) 
→
(
{dk}, {c(s)

kl }
)

is injective or surjective (the constants ρ1, . . . , ρn being fixed). The following
partial results are available.

Theorem 1.8 ([Bi2, §17]). For any nonzero ρ1, . . . , ρm, ρi/ρj /∈ R for
i �= j, there exist matrices A1, . . . , An such that the equation (1.1) with A0 =
diag(ρ1, . . . ρm) either possesses the prescribed characteristic constants {dk},
{c(s)

kl }, or else constants {dk + lk}, {c(s)
kl }, where l1, . . . , lm are integers.

Theorem 1.9 ([Bi1, Th. VII]). Assume there are two matrix polynomi-
als A′(z) = A′

0z
n + · · · + A′

n and A′′(z) = A′′
0z

n + · · · + A′′
n with

A′
0 = A′′

0 = diag(ρ1, . . . ρm), ρk �= 0, ρk/ρl /∈ R for k �= l,

such that the sets of the characteristic constants for the equations Y ′(z + 1) =
A′(z)Y ′(z) and Y ′′(z+1) = A′′(z)Y ′′(z) are equal. Then there exists a rational
matrix R(z) such that

A′′(z) = R(z + 1)A′(z)R−1(z),
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and the left and right canonical solutions Y l,r of the second equation can be
obtained from those of the first equation by multiplication by R on the left :

(Y ′′)l,r = R (Y ′)l,r.

2. Isomonodromy transformations

The goal of this section is to construct explicitly, for given A(z), ratio-
nal matrices R(z) such that the transformation A(z) 
→ R(z + 1)A(z)R−1(z),
cf. Theorem 1.9 above, preserves the characteristic constants (more generally,
preserves {c(s)

kl } and shifts dk’s by integers).
Let A(z) be a matrix polynomial of degree n ≥ 1, A0 = diag(ρ1, . . . , ρm),

and ρi’s are nonzero and their ratios are not real. Fix mn complex numbers
a1, . . . , amn such that ai − aj /∈ Z for any i �= j. Denote by M(a1, . . . , amn;
d1, . . . , dm) the algebraic variety of all n-tuples of m by m matrices A1, . . . , An

such that the scalar polynomial

det A(z) = det(A0z
n + A1z

n−1 + · · · + An)

of degree mn has roots a1, . . . , amn, and ρi

(
di − n

2

)
= (A1)ii (this comes from

the analog of (1.3) for arbitrary n).

Theorem 2.1. For any κ1, . . . , κmn ∈ Z, δ1, . . . , δm ∈ Z,
mn∑
i=1

κi +
m∑

j=1

δj = 0,

there exists a nonempty Zariski open subset A of M(a1, . . . , amn; d1, . . . , dm)
such that for any (A1, . . . , An) ∈ A there exists a unique rational matrix R(z)
with the following properties:

Ã(z) = R(z + 1)A(z)R−1(z) = Ã0z
n + Ã1z

n−1 + · · · + Ãn, Ã0 = A0,

(Ã1, . . . , Ãn) ∈ M(a1 + κ1, . . . , amn + κmn; d1 + δ1, . . . , dm + δm),

and the left and right canonical solutions of Ỹ (z + 1) = Ã(z)Ỹ (z) have the
form

Ỹ l,r = R Y l,r,

where Y l,r are left and right canonical solutions of Y (z + 1) = A(z)Y (z).
The map (A1, . . . , An) 
→ (Ã1, . . . , Ãn) is a birational map of algebraic

varieties.

Remark 2.2. The theorem implies that the characteristic constants {c(s)
kl }

for the difference equations with coefficients A and Ã are the same, while the
constants dk are being shifted by δk ∈ Z.
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Note also that if we require that all dk’s do not change, then, by virtue of
Theorem 1.9, Theorem 2.1 provides all possible transformations which preserve
the characteristic constants. Indeed, if A′′(z) = R(z+1)A′(z)R−1(z) then zeros
of detA′′(z) must be equal to those of detA′(z) shifted by integers.

Proof. Let us prove the uniqueness of R first. Assume that there exist two
rational matrices R1 and R2 with needed properties. This means, in particular,
that the determinants of the matrices

Ã(1) = R1(z + 1)A(z)R−1
1 (z) and Ã(2) = R2(z + 1)A(z)R−1

2 (z)

vanish at the same set of mn points ãi = ai +κi, none of which are different by
an integer. Denote by Ỹ r

1 = R1Y
r and Ỹ r

2 = R2Y
r the right canonical solutions

of the corresponding equations. Then Ỹ r
1 (Ỹ r

2 )−1 = R1R
−1
2 is a rational matrix

which tends to I at infinity. Moreover,(
Ỹ r

1 (Ỹ r
2 )−1

)
(z + 1) = Ã(1)(z)

(
Ỹ r

1 (Ỹ r
2 )−1

)
(z)

(
Ã(2)(z)

)−1
.

Since Ỹ r
1 (Ỹ r

2 )−1 is holomorphic for �z � 0, the equation above implies that
this function may only have poles at the points which are congruent to ãi (zeros
of det Ã(2)(z)) and to the right of them. (Recall that two complex numbers
are congruent if their difference is an integer.) But since Ỹ r

1 (Ỹ r
2 )−1 is also

holomorphic for �z � 0, the same equation rewritten as(
Ỹ r

1 (Ỹ r
2 )−1

)
(z) =

(
Ã(1)(z)

)−1 (
Ỹ r

1 (Ỹ r
2 )−1

)
(z + 1) Ã(2)(z)

implies that this function may only have poles at the points ãi (zeros of
det Ã(1)(z)) or at the points congruent to them and to the left of them. Thus,
Ỹ r

1 (Ỹ r
2 )−1 = R1R

−1
2 is entire, and by Liouville’s theorem it is identically equal

to I. The proof of uniqueness is complete.
To prove the existence we note, first of all, that it suffices to provide a

proof if one of the κi’s is equal to ±1 and one of the δj ’s is equal to ∓1 with
all other κ’s and δ’s equal to zero. The proof will consist of several steps.

Lemma 2.3. Let A(z) be an m by m matrix -valued function holomorphic
near z = a, and detA(z) = c(z − a) + O

(
(z − a)2

)
as z → a, where c �= 0.

Then there exists a unique (up to a constant) nonzero vector v ∈ Cm such that
A(a)v = 0. Furthermore, if B(z) is another matrix -valued function which is
holomorphic near z = a, then (BA−1)(z) is holomorphic near z = a if and
only if B(a)v = 0.

Proof. Let us denote by E1 the matrix unit which has 1 as its (1, 1)-entry
and 0 as all other entries. Since detA(a) = 0, there exists a nondegenerate
constant matrix C such that A(a)CE1 = 0 (the first column of C must be a
0-eigenvector of A(a)). This implies that

H(z) = A(z)C(E1(z − a)−1 + I − E1)
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is holomorphic near z = a. On the other hand, detH(a) = cdetC �= 0.
Thus, A(a) = H(a)(I − E1)C−1 annihilates a vector v if and only if C−1v is
proportional to (1, 0, . . . , 0)t. Hence, v must be proportional to the first column
of C. The proof of the first part of the lemma is complete.

To prove the second part, we notice that

(BA−1)(z) = B(z)C(E1(z − a)−1 + I − E1)H−1(z)

which is bounded at z = a if and only if B(a)CE1 = 0.

More generally, we will denote by Ei the matrix unit defined by

(Ei)kl =
{

1, k = l = i,

0, otherwise.

Lemma 2.4 ([JM, §2 and Appendix A]). For any nonzero vector v =
(v1, . . . , vm)t, Q ∈ Mat(m, C), a ∈ C, and i ∈ {1, . . . , m}, there exists a linear
matrix -valued function R(z) = R−1(z − a) + R0 with the properties

R(z)
(
I + Qz−1 + O

(
z−2

))
z−Ei = I + O(z−1), z → ∞,

R0 v = 0,

if and only if vi �= 0. In this case, R±1(z) is given by

R(z) = Ei(z − a) + R0, R−1(z) = I − Ei + R1(z − a)−1, det R(z) = z − a,

(R0)kl =


v−1
i

∑
s �=i Qisvs, k = l = i,

−Qil, k = i, l �= i,

−v−1
i vk, k �= i, l = i,

δkl, k �= i, l �= i,

R1 = v−1
i v

[
Qi1, . . . , Qi,i−1, 1, Qi,i+1, . . . , Qim

]
.

The proof is straightforward.

Now we return to the proof of Theorem 2.1. Assume that κ1 = −1, δi = 1
for some i = 1, . . . , m, and all other κ’s and δ’s are zero. Since a1 is a simple
root of detA(z), by Lemma 2.3 there exists a unique (up to a constant) vector
v such that A(a)v = 0. Clearly, the condition vi �= 0 defines a nonempty
Zariski open subset of M(a1, . . . , amn; δ1, . . . ; δm). On this subset, let us take
R(z) to be the matrix afforded by Lemma 2.4 with a = a1 and Q = Ŷ1 (we
assume that Ŷ0 = I, see Proposition 1.1). Then by the second part of Lemma
2.3, (A(z)R−1(z))−1 = R(z)A−1(z) is holomorphic and invertible near z = a1

(the invertibility follows from the fact that detR(z)A−1(z) tends to a nonzero
value as z → a1). Thus, Ã(z) = R(z + 1)A(z)R−1(z) is entire, hence, it is a
polynomial. Since

det Ã(z) =
z + 1 − a1

z − a1
det A(z) = c (z + 1 − a1)(z − a2) · · · (z − amn), c �= 0,
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the degree of A(z) is ≥ n. Looking at the asymptotics at infinity, we see that
deg A(z) ≤ n, which means that Ã is a polynomial of degree n:

Ã(z) = Ã0z
n + · · · + Ãn, Ã0 �= 0.

Denote by Y l,r the left and right canonical solutions of Y (z + 1) =
A(z)Y (z) (see Theorem 1.3 above). Then Ỹ l,r := R Y l,r are solutions of
Ỹ (z + 1) = Ã(z)Ỹ (z). Moreover, their asymptotics at infinity at any left
(right) half-plane, by Lemma 2.4, is given by an expansion of the form (1.2)

with ˆ̃
Y0 = I, ρ̃k = ρk for all k = 1, . . . , m, and

d̃k =
{

dk + 1, k = i,

dk, k �= i.

This implies that Ã0 = diag(ρ1, . . . , ρm), and that Ỹ l,r are the left and right
canonical solutions of the equation Ỹ (z+1) = Ã(z)Ỹ (z). Indeed, their asymp-
totic expansion at infinity must also be a formal solution of the equation, the
fact that Ỹ l,r are holomorphic for �z � 0 (� 0) follows from the analogous
property for Y l,r, and the location of possible poles of Ỹ r is easily determined
from the equation.

For future reference let us also find a (unique up to a constant) vector ṽ

such that Ãt(a1−1) ṽ = 0. This means that R−t(a1−1)At(a1−1)Rt(a1) ṽ = 0.
Lemma 2.4 then implies that

ṽ =
[
(Ŷ1)i1, . . . , (Ŷ1)i,i−1, 1, (Ŷ1)i,i+1, . . . , (Ŷ1)im

]t

is a solution. Note that ṽi �= 0.
Now let us assume that κ1 = 1 and δi = −1 for some i = 1, . . . , m. By

Lemma 2.3, there exists a unique (up a to a constant) vector w such that
At(a1)w = 0. The condition wi �= 0 defines a nonempty Zariski open subset of
M(a1, . . . , amn; δ1, . . . δm). On this subset, denote by R′(z) the rational matrix-
valued function afforded by Lemma 2.4 with a = a1, v = w, and Q = −Ŷ t

1

(again, we assume that Ŷ0 = I). Set

R(z) := (R′)−t(z − 1).

Then by Lemma 2.4

R(z)
(
I + Ŷ1z

−1 + O
(
z−2

))
zEi = I + O(z−1), z → ∞.

Furthermore, by Lemma 2.3, R−t(z + 1)A−t(z) is holomorphic and invertible
near z = a1. Hence, Ã(z) = R(z +1)A(z)R−1(z) is entire (note that R−1(z) =
(R′)t(z − 1) is linear in z). The rest of the argument is similar to the case
κ1 = −1, δi = 1 considered above.
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Finding a solution w̃ to Ã(a1 + 1)w̃ = 0 is equivalent to finding a solution
to R′(a1)w̃ = 0. One such solution has the form

w̃ =
[
−(Ŷ1)1i, . . . ,−(Ŷ1)i−1,i, 1,−(Ŷ1)i+1,i, . . . ,−(Ŷ1)mi

]t

and all others are proportional to it. Note that its ith coordinate is nonzero.
From what was said above, it is obvious that the image of the map

M(a1, . . . , amn; δ1, . . . , δm) → M(a1 − 1, . . . , amn; δ1, . . . , δi + 1, . . . , δm)

is in the domain of definition of the map

M(a1 − 1, . . . , amn; δ1, . . . , δi + 1, . . . , δm) → M(a1, . . . , amn; δ1, . . . , δm)

and the other way around. On the other hand, the composition of these maps in
either order must be equal to the identity map due to the uniqueness argument
in the beginning of the proof. Hence, these maps are inverse to each other, and
they establish a bijection between their domains of definition. The rationality
of the maps follows from the explicit formula for R(z) in Lemma 2.4. The
proof of Theorem 2.1 is complete.

Remark 2.5. Quite similarly to Lemma 2.4, the multiplier R(z) can be
computed in the cases when two κ’s are equal to ±1 or two δ’s are equal to ±1
with all other κ’s and δ’s being zero; cf. [JM].

Assume κi = −1 and κj = 1. Denote by v and w the solutions of A(ai) v

= 0 and At(aj)w = 0. Then R exists if and only if (v, w) := vtw = wtv �= 0,
in which case

R(z) = I +
R0

z − aj − 1
, R−1(z) = I − R0

z − ai
, detR(z) =

z − ai

z − aj − 1
,

R0 =
aj − ai + 1

(v, w)
vwt.

Now assume δi = 1, δj = −1. Then we must have det R(z) = 1 and

R(z)
(
I + Ŷ1z

−1 + Ŷ2z
−2 + O(z−3)

)
zEj−Ei = I + O(z−1), z → ∞.

The solution exists if and only if (Ŷ1)ij �= 0, in which case it has the form

R(z) = Eiz + R0, R−1(z) = Ejz + R−1
0 ,

with (R0)kl given by

l = i l = j l �= i, j

k = i
−(Ŷ2)ij+

∑
s �=i (Ŷ1)is(Ŷ1)sj

(Ŷ1)ij

−(Ŷ1)ij −(Ŷ1)il

k = j 1
(Ŷ1)ij

0 0

k �= i, j − (Ŷ1)kj

(Ŷ1)ij

0 δkl,
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and (R−1
0 )kl given by

l = i l = j l �= i, j

k = i 0 (Ŷ1)ij 0

k = j − 1
(Ŷ1)ij

− (Ŷ2)ij

(Ŷ1)ij

+ (Ŷ1)jj − (Ŷ1)il

(Ŷ1)ij

k �= i, j 0 (Ŷ1)kj δkl .

3. Difference Schlesinger equations

In this section we give a different description for the transformations
A 
→ Ã of Theorem 2.1 with

κi1 = · · · = κim
= ±1, δ1 = · · · = δm = ∓1,

and all other κi’s equal to zero, and for compositions of such transformations.
In what follows we always assume that our matrix polynomials A(z) =

A0z
n + . . . have nondegenerate highest coefficients: det A0 �= 0. We also

assume that mn roots of the equation detA(z) = 0 are pairwise distinct; we
will call them the eigenvalues of A(z). For an eigenvalue a, there exists a
(unique) nonzero vector v such that A(a) v = 0, see Lemma 2.3. We will
call v the eigenvector of A(z) corresponding to the eigenvalue a. The word
generic everywhere below stands for “belonging to a Zariski open subset” of
the corresponding algebraic variety.

We start with few simple preliminary lemmas.

Lemma 3.1. The sets of eigenvalues and corresponding eigenvectors de-
fine A(z) up to multiplication by a constant nondegenerate matrix on the left.

Proof. If there are two matrix polynomials A′ and A′′ with the same eigen-
values and eigenvectors, then (A′(z))−1A′′(z) has no singularities in the finite
plane. Moreover, since the degrees of A′(z) and A′′(z) are equal, (A′(z))−1A′′(z)
∼ (A′

0)
−1A′′

0 as z → ∞. Liouville’s theorem concludes the proof.

We will say that z − B, B ∈ Mat(m, C), is a right divisor of A(z) if
A(z) = Â(z)(z − B), where Â(z) is a polynomial of degree n − 1.

Lemma 3.2. A linear function z−B is a right divisor of A(z) if and only
if

A0B
n + A1B

n−1 + · · · + An = 0.

Proof. See, e.g., [GLR].
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Lemma 3.3. Let α1, . . . , αm be eigenvalues of A(z) and v1, . . . , vm be the
corresponding eigenvectors. Assume that v1, . . . , vm are linearly independent.
Take B ∈ Mat(m, C) such that Bvi = αivi, i = 1, . . . , m. Then z−B is a right
divisor of A(z). Moreover, B is uniquely defined by the conditions that z − B

is a right divisor of A(z) and Sp(B) = {α1, . . . , αm}.

Proof. For all i = 1, . . . , m,

(A0B
n +A1B

n−1 + · · ·+An)vi = (A0α
n
i +A1α

n−1
i + · · ·+An)vi = A(αi)vi = 0.

Lemma 3.2 shows that z − B is a right divisor of A(z).
To show uniqueness, assume that

A(z) = Â′(z)(z − B′) = Â′′(z)(z − B′′).

This implies (A′′(z))−1A′(z) = (z − B′′)(z − B′)−1. Possible singularities of
the right-hand side of this equality are z = αi, i = 1, . . . , m, while possi-
ble singularities of the left-hand side are all other eigenvalues of A(z). Since
the eigenvalues of A(z) are pairwise distinct, both sides are entire. But
(z − B′′)(z − B′)−1 tends to I as z → ∞. Hence, by Liouville’s theorem,
B′ = B′′.

Now let us assume that the eigenvalues a1, . . . , amn of A(z) are divided
into n groups of m numbers:

{a1, . . . , amn} = {a(1)
1 , . . . , a(1)

m } ∪ · · · ∪ {a(n)
1 , . . . , a(n)

m }.
Lemma 3.3 shows that for a generic A(z) we can construct uniquely

defined B1, . . . , Bn ∈ Mat(m, C) such that for any i = 1, . . . , n, Sp(Bi) =
{a(i)

1 , . . . , a
(i)
m } and z−Bi is a right divisor of A(z).4 By Lemma 3.1, B1, . . . , Bn

define A(z) uniquely up to a left constant factor, because the eigenvectors of
Bi must be eigenvectors of A(z).

Lemma 3.4. For generic B1, . . . , Bn ∈ Mat(m, C) with Sp(Bi) = {a(i)
j },

there exists a unique monic degree n polynomial A(z) = zn + A1z
n−1 + . . .

such that z − Bi are its right divisors. The matrix elements of A1, . . . , An are
rational functions of the matrix elements of B1, . . . , Bn and eigenvalues

{
a

(i)
j

}
.

Remark 3.5. 1. Later on we will show that, in fact, these rational func-
tions do not depend on

{
a

(i)
j

}
.

2. Clearly, the condition of A(z) being monic can be replaced by the
condition of A(z) having a prescribed nondegenerate highest coefficient A0.

4It is obvious that the condition on A(z), used in Lemma 3.3, is an open condition. The

corresponding set is nonempty because it contains diagonal A(z) where the
{
a
(k)
i

}
are the

roots of Akk(z). Similar remarks apply to all appearances of the word “generic” below.
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Proof. The uniqueness follows from Lemma 3.1. To prove the existence
part, we use induction on n. For n = 1 the claim is obvious. Assume that we
have already constructed Â(z) = zn−1 + Â1z

n−1 + . . . such that B1, . . . , Bn−1

are its right divisors. Let {vi} be the eigenvectors of Bn with eigenvalues
{a(n)

i }. Set wi = Â(a(n)
i )vi and take X ∈ Mat(m, C) such that Xwi = a

(n)
i wi

for all i = 1, . . . , m. (The vectors {wi} are linearly independent generically.)
Then A(z) = (z − X)Â(z) has all needed properties. Indeed, we just need to
check that z −Bn is its right divisor (the rationality follows from the fact that
computing the eigenvectors with known eigenvalues is a rational operation).
For any i = 1, . . . , m,

(Bn
n + A1B

n−1
n + · · · + An)vi =

(
(a(n)

i )
n

+ A1(a
(n)
i )

n−1
+ · · · + An

)
vi

= (a(n)
i − X)Â(a(n)

i )vi = (a(n)
i − X)wi = 0.

Lemma 3.2 concludes the proof.

Thus, we have a birational map between matrix polynomials A(z) =
A0z

n + . . . with a fixed nondegenerate highest coefficient and fixed mutu-
ally distinct eigenvalues divided into n groups of m numbers each, and sets of
right divisors {z−B1, . . . , z−Bn} with Bi having the eigenvalues from the ith
group. We will treat {Bi} as a different set of coordinates for A(z).

It turns out that in these coordinates some multipliers R(z) of Theorem 2.1
take a very simple form. We will redenote by κ

(i)
j the numbers κ1, . . . , κmn used

in Theorem 2.1 in accordance with our new notation for the eigenvalues of A(z).
Denote the transformation of Theorem 2.1 with

κ
(i)
j = −ki ∈ Z, i = 1, . . . , n, j = 1, . . . , m; δ1 = · · · = δm =

n∑
i=1

ki

by S(k1, . . . , kn).

Proposition 3.6. The multiplier R(z) for S(0, . . . , 0,
(i)

1 , 0, . . . , 0) is equal
to the right divisor z−Bi of A(z) corresponding to the eigenvalues a

(i)
1 , . . . , a

(i)
m .

Proof. It is easy to see that if Bi has eigenvalues a
(i)
1 , . . . , a

(i)
m , and z −Bi

is a right divisor of A(z) then R(z) = z − Bi satisfies all the conditions of
Theorem 2.1.

Conversely, if R(z) is the corresponding multiplier then R(z) is a product
of n elementary multipliers with one κ equal to −1 and one δ equal to +1.
The explicit construction of the proof of Theorem 2.1 shows that all these
multipliers are polynomials; hence, R(z) is a polynomial. The fact that δ1 =
· · · = δm implies that R(z) is a linear polynomial of the form z−B for some B ∈
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Mat(m, C) (to see this, it suffices to look at the asymptotics of the canonical
solutions). We have

A(z) = R−1(z + 1)Ã(z)R(z) = (z + I − B)−1Ã(z)(z − B).

Comparing the determinants of both sides we conclude that Sp(B) =
{a(i)

1 , . . . , a
(i)
m }. Since no two eigenvalues are different by an integer, B and

B − I have no common eigenvalues. This implies that (z + I −B)−1Ã(z) must
be a polynomial, and hence z − B is a right divisor of A(z).

For any k = (k1, . . . , kn) ∈ Zn we introduce matrices B1(k), . . . , Bn(k)
such that the right divisors of S(k1, . . . , kn)A(z) have the form z −Bi(k) with

Sp(Bi(k)) = {a(i)
1 − ki, . . . , a

(i)
n − ki}, i = 1, . . . , n.

They are defined for generic A(z) from the varieties M(· · · ) introduced in the
previous section.

Proposition 3.7 (difference Schlesinger equations).The matrices {Bi(k)}
(whenever they exist) satisfy the following equations:

Bi(. . . ) − Bi(. . . , kj + 1, . . . ) = Bj(. . . ) − Bj(. . . , ki + 1, . . . ),(3.1)

Bj(. . . , ki + 1, . . . )Bi(. . . ) = Bi(. . . , kj + 1, . . . )Bj(. . . ),(3.2)

Bi(k1 + 1, . . . , kn + 1) = A−1
0 Bi(k1, . . . , kn)A0 − I,(3.3)

where i, j = 1, . . . , n, and dots in the arguments mean that other kl’s remain
unchanged.

Remark 3.8. The first two equations above are equivalent to

(3.4)
(
z − Bi(. . . , kj + 1, . . . )

)(
z − Bj(. . . )

)
=

(
z − Bj(. . . , ki + 1, . . . )

)(
z − Bi(. . . )

)
.

Proof of Proposition 3.7. The uniqueness part of Theorem 2.1 implies
that

S(0, . . . , 0,
(i)

1 , 0, . . . , 0) ◦ S(0, . . . , 0,
(j)

1 , 0, . . . , 0) ◦ S(k1, . . . , kn)

= S(0, . . . , 0,
(j)

1 , 0, . . . , 0) ◦ S(0, . . . , 0,
(i)

1 , 0, . . . , 0) ◦ S(k1, . . . , kn).

Thus, the corresponding products of the multipliers are equal, which gives
(3.4). This proves (3.1), (3.2). The relation (3.3) follows from the fact that
the multiplier for S(1, . . . , 1) is equal to A−1

0 A(z), and Ã(z) = S(1, . . . , 1) =
A−1

0 A(z + 1)A0. This means that the right divisors for Ã(z) can be obtained
from those for A(z) by shifting z by 1 and conjugating by A0.
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Theorem 3.9. Fix mn complex numbers
{
a

(i)
j

}n,m

i=1,j=1
such that no two

of them are different by an integer, and an integer M > 0. Then for generic
B1, . . . , Bn ∈ Mat(m, C), Sp(Bi) =

{
a

(i)
j

}m

j=1
, there exists a unique solution

{Bi(k1, . . . , kn) : max
i=1,...,n

|ki| ≤ M}

of the difference Schlesinger equations (3.1)–(3.3) with

Sp(A0) = {ρ1, . . . , ρn}, ρi/ρj /∈ R for i �= j, ρi �= 0 for i = 1, . . . , n,

such that

Sp(Bi(k1, . . . , kn)) = Sp(Bi) − ki and Bi(0, . . . , 0) = Bi for all i = 1, . . . , n.

The matrix elements of Bi(k) are rational functions of the matrix elements
of the initial conditions {Bi}n

i=1. Moreover, these rational functions do not
depend on the eigenvalues

{
a

(j)
i

}
.

Remark 3.10. As we will see later, this theorem also extends to the case
of arbitrary invertible A0.

Proof. The existence and rationality of the flows have already been proved.
Indeed, without loss of generality we can assume that A0 is diagonal (the equa-
tions (3.1)–(3.3) remain intact if we conjugate all Bi(k) and A0 by the same
constant matrix). By Lemma 3.4 we can construct a (unique) degree n polyno-
mial A(z) with the highest coefficient A0, such that {Bi} is the set of its right
divisors. Then, using Theorem 2.1, we can define S(k) and hence {Bi(k)}. By
Proposition 3.7 they will satisfy (3.1)–(3.3). Moreover, all operations involved
in this construction are rational.

Thus, it remains to prove uniqueness and the fact that the rational func-
tions involved do not depend on the eigenvalues. A simple computation shows
that for any X, Y, S, T ∈ Mat(m, C), the relation (z−X)(z−Y ) = (z−S)(z−T )
implies

Y = (X − S)−1S(X − S), T = (X − S)−1X(X − S),(3.5)

X = (Y − T )T (Y − T )−1, S = (Y − T )Y (Y − T )−1,(3.6)

whenever the corresponding matrices are invertible; cf. [GRW]. Applying this
observation to (3.4), we see that, generically, {Bi = Bi(0, . . . , 0)} uniquely
define all

Bi(ε
(i)
1 , . . . , ε

(i)
i−1,

(i)

0 , ε
(i)
i+1, . . . , ε

(i)
n ), ε

(i)
j = 0, 1.(3.7)

Moreover, they are all given by rational expressions involving the initial con-
ditions {Bi} only. To move further, we need the following lemma.
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Lemma 3.11. For generic X, Y ∈ Mat(m, C) with fixed disjoint spectra,
there exist unique S, T ∈ Mat(m, C) such that

(z − X)(z − Y ) = (z − S)(z − T ), Sp(S) = Sp(Y ), Sp(T ) = Sp(X).

The matrix elements of S and T are rational functions of the matrix elements
of X and Y which do not depend on the spectra of X and Y .

Proof 1. Lemma 3.3 proves the uniqueness and shows how to con-
struct T if we know the eigenvalues x1, . . . , xm of X and vectors vi such that
(xi − X)(xi − Y )vi = 0. If we normalize vi’s in the same way, for example, by
requiring the first coordinate to be equal to 1 (this can be done generically),
then using the construction of Lemma 3.3 we obtain the matrix elements of T

as rational functions in the matrix elements of X, Y and x1, . . . , xn. However,
it is easy to see that these rational functions are symmetric with respect to
the permutations of x1, . . . , xn, which means that they depend only on the
elementary symmetric functions

∑
i1<···<ik

xi1 · · ·xik
of xi’s. But these are the

coefficients of the characteristic polynomial of X, and hence they are express-
ible as polynomials in the matrix elements of X.

Proof 2 (see [O]). The uniqueness follows from Lemma 3.3. To prove the
existence, denote by Λ the solution of the equation Y Λ−ΛX = I. Generically,
it exists, it is unique and invertible. Set

S = X + Λ−1, T = Y − Λ−1.

Then it is easy to see that (z−X)(z−Y ) = (z−S)(z−T ). Furthermore, if Y

and T have a common eigenvalue then they must have a common eigenvector,
which contradicts the invertibility of Y − T = Λ−1. Hence, Sp(T ) = Sp(X)
and Sp(S) = Sp(Y ).

Remark 3.12. In the case of 2 by 2 matrices, it is not hard to produce an
explicit formula for S and T in terms of X and Y :

S = (X + Y − TrY )Y (X + Y − TrY )−1,(3.8)

T = (X + Y − TrX)−1X(X + Y − Tr X).

Now let us return to the proof of Theorem 3.9. Recall that we already
proved that the initial conditions define (3.7) uniquely. Now let us use (3.4)
with

(k1, . . . , kn) = (1, . . . , 1,
(j)

0 , 1, . . . , 1), j �= i.

By (3.3), we know what Bi(1, . . . , 1) is. Thus, we know both matrices on
the left-hand side of (3.4), and hence, by Lemma 3.11, we can compute both

matrices on the right-hand side of (3.4), in particular, Bi(1, . . . , 1,
(j)

0 , 1, . . . , 1).
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Now take (3.4) with

(k1, . . . , kn) = (1, . . . , 1,
(j)

0 , 1, . . . , 1,
(l)

0 , 1, . . . , 1),

where i, j, l are pairwise distinct. Applying Lemma 3.11 again, we find all

Bi(1, . . . , 1,
(j)

0 , 1, . . . , 1,
(l)

0 , 1, . . . , 1).

Continuing the computations in this fashion (changing one more 1 to 0 in
(k1, . . . , kn) on each step), we obtain all

Bi(ε
(i)
1 , . . . , ε

(i)
i−1,

(i)

1 , ε
(i)
i+1, . . . , ε

(i)
n ), ε

(i)
j = 0, 1.

Together with (3.3) (and (3.7)) this computes all Bi(k) with max |ki| ≤ 1.
Iterating this procedure, we complete the proof.

4. An alternative description of the Schlesinger flows

The goal of this section is to provide yet another set of coordinates for the
polynomials A(z), in which the flows described in the previous section can be
easily defined. In particular, this will lead to a different proof of Theorem 3.9,
which will be valid for an arbitrary invertible A0.

Proposition 4.1. With the assumptions of Theorem 3.9, the monic de-
gree n polynomial

(z − B1(0, 1, . . . , 1))(z − B2(0, 0, 1, . . . , 1)) · · · (z − Bn(0, . . . , 0))

has z − Bi, i = 1, . . . , n, as its right divisors.

This statement and Theorem 3.9 provide a proof for Remark 3.5(1).

Proof. Using (3.4) we obtain, for (j > i),(
z − Bi(0, . . . , 0,

(j)

1 , . . . , 1)
) (

z − Bj(0, . . . , 0,
(j+1)

1 , . . . , 1)
)

=
(

z − Bj(0, . . . , 0,
(i)

1 , 0, . . . , 0,
(j+1)

1 , . . . , 1)
) (

z − Bi(0, . . . , 0,
(j+1)

1 , . . . , 1)
)

.

Using this commutation relation, we can move the factor (z −Bi(· · · )), in the
product above, to the right most position, where it will turn into

(z − Bi(0, . . . , 0)) = (z − Bi).

Let us introduce the notation (l1, . . . , ln ∈ Z)

Ci(l1, . . . , ln) := Bi(l1, . . . , li, li+1 + 1, . . . , ln + 1), i = 1, . . . , n.
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If we denote by A(z) the polynomial of degree n with highest coefficient A0

such that the {z − Bi} are its left divisors, then the definition of Bi(k) and
Proposition 4.1 imply that for any l = (l1, . . . , ln) ∈ Zn,

S(l1, . . . , ln)A(z) = A0

(
z − C1(l)

)
· · ·

(
z − Cn(l)

)
.(4.1)

(To apply Proposition 4.1, we also used an easy fact that for any solution
{Bi(k)} of (3.1)–(3.3) and any l1, . . . , ln ∈ Z,

B′
i(k1, . . . , kn) := Bi(k1 + l1, . . . , kn + ln), i = 1, . . . , n,

also form a solution of (3.1)–(3.3).)

Lemma 4.2. The map {Bi} 
→ {Ci} is birational.

Proof. The rationality of the forward map follows from Theorem 3.9.
The rationality of the inverse map follows from Lemma 3.3 (indeed, we just
need to find the right divisors of the known matrix S(l1, . . . , ln)A(z)). Even
though it looks like to construct Bi we need to know the eigenvalues of Ci, it
is clear that by normalizing the eigenvectors of A(z) corresponding to these
eigenvalues, in the same way, we will obtain a formula for Bi which will be
symmetric with respect to the permutations of these eigenvalues. Thus we can
rewrite it through the matrix elements of Ci’s only (this argument was used in
the first proof of Lemma 3.11 above).

Our goal is to describe the transformations S(k) in terms of {Ci}. We
need a preliminary lemma which generalizes Lemma 3.11.

Lemma 4.3. For generic X1, . . . , XN ∈ Mat(m, C) with fixed disjoint
spectra and any permutation σ ∈ SN , there exist unique Y1, . . . , YN ∈ Mat(m, C)
such that Sp(Yi) = Sp(Xi) for all i = 1, . . . , N , and

(z − X1) · · · (z − XN ) = (z − Yσ(1)) · · · (z − Yσ(N)).

The matrix elements of {Yi} are rational functions of the matrix elements of
{Xi} which do not depend on the spectra of {Xi}.

Proof. The existence and rationality claims follow from Lemma 3.11,
because elementary transpositions (i, i + 1) generate the symmetric group SN .
To show uniqueness, we rewrite the equality

(z − Y ′
1) · · · (z − Y ′

N ) = (z − Y ′′
1 ) · · · (z − Y ′′

N ), Sp(Y ′
i ) = Sp(Y ′′

i ),

in the form

(z − Y ′′
1 )−1(z − Y ′

1) =
(
(z − Y ′′

2 ) · · · (z − Y ′′
N )

)(
(z − Y ′

2) · · · (z − Y ′
N )

)−1
.

If the spectrum of Y ′′
1 is disjoint with the spectra of Y ′

2 , . . . , Y
′
m, then both sides

of the last equality are entire because they cannot possibly have common poles.
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Since both sides tend to I as z → ∞, by Liouville’s theorem we conclude that
both sides are identically equal to I, and Y ′

1 = Y ′′
1 . Induction on N concludes

the proof.

Proposition 4.4. With the assumptions of Theorem 3.9, the {Ci(l)} sat-
isfy the equations(

z + 1 − Ci

)
· · ·

(
z + 1 − Cn

)
A0

(
z − C1

)
· · ·

(
z − Ci−1

)
(4.2)

=
(
z + 1 − C̃i+1

)
· · ·

(
z + 1 − C̃n

)
A0

(
z − C̃1

)
· · ·

(
z − C̃i

)
,

Cj = Cj(l1, . . . , ln), C̃j = Cj(l1, . . . , li−1, li + 1, li+1, . . . , ln) for all j,

and

Ci(l1 + 1, . . . , ln + 1) = A−1
0 Ci(l1, . . . , ln)A0 − I.(4.3)

In both equations i = 1, . . . , n is arbitrary.

Proof. The relation (4.3) is a direct corollary of (3.3). Let us prove (4.2).
Proposition 3.6 implies that the multiplier for the shift

(l1, . . . , ln) 
→ (l1, . . . , li−1, li + 1, li+1, . . . , ln)

has the form R(z) = z − Bi(l). Thus, (4.1) gives

A0(z − C̃1) · · · (z − C̃n)(z − Bi(l)) = (z + 1 − Bi(l))A0(z − C1) · · · (z − Cn).

Comparing the spectra of factors on both sides and applying Lemma 4.3, we
get

A0(z − C̃1) · · · (z − C̃i) = (z + 1 − Bi(l))A0(z − C1) · · · (z − Ci−1),

(z − C̃i+1) · · · (z − C̃n)(z − Bi(l)) = (z − Ci) · · · (z − Cn).

Combining these two relations and shifting z 
→ z + 1 in the second one, we
arrive at (4.2).

Theorem 4.5. Fix mn complex numbers
{
a

(i)
j

}n,m

i=1,j=1
such that no two

of them are different by an integer, an integer M > 0, and any nondegener-
ate A0 ∈ Mat(m, C). Then for generic C1, . . . , Cn ∈ Mat(m, C), Sp(Ci) ={
a

(i)
j

}m

j=1
, there exists a unique solution

{Ci(l1, . . . , ln) : max
i=1,...,n

|li| ≤ M}

of the equations (4.2) and, consequently, (4.3), such that

Sp(Ci(l1, . . . , ln)) = Sp(Ci)− li and Ci(0, . . . , 0) = Ci for all i = 1, . . . , n.
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The matrix elements of Ci(l) are rational functions of the matrix elements of
the initial conditions {Ci}n

i=1, and these rational functions do not depend on
the eigenvalues

{
a

(j)
i

}
. Moreover,

Bi(k1, . . . , kn) := Ci(k1, . . . , ki, ki+1 − 1, . . . , kn − 1), i = 1, . . . , n,

solves the difference Schlesinger equations (3.1)–(3.3).

Remark 4.6. If the ratios of eigenvalues of A0 are not real then Theo-
rem 3.9, Lemma 4.2, and Proposition 4.4 provide a proof of Theorem 4.5.
However, our goal is to provide an independent proof of this theorem, thus
giving a different proof of Theorem 3.9 with arbitrary invertible A0; cf. Re-
mark 3.10.

To prove Theorem 4.5 we will develop a rather general formalism.

(a) Semigroup. Let P be a semigroup and P0 be its subset. We assume
that every element of P0 has a type. The types of two different elements
p1, p2 ∈ P0 may be the same, which will be denoted by t(p1) = t(p2), and may
be disjoint, which will be denoted by t(p1) ⊥ t(p2). The types may also be
neither equal nor disjoint.

Assumption 4.7. For any elements p1, . . . , pN ∈ P0 such that their types
are pairwise disjoint :

t(pi) ⊥ t(pj), i �= j, 1 ≤ i, j ≤ N,

and for any permutation σ ∈ SN there exist unique elements p̂1, . . . p̂N ∈ P0

such that t(p̂i) = t(pi), i = 1, . . . , N , and

p1 · · · pN = p̂σ(1) · · · p̂σ(N).

We will be interested in the situation when

P = PMat(m,C) =
{

zk + Q1z
k−1 + · · · + Qk |Qi ∈ Mat(m, C), 1 ≤ i ≤ k

}
,

P0 = P
Mat(m,C)
0 = {z − Q |Q ∈ Mat(m, C)} ,

t(z − Q) = {z ∈ C | det(z − Q) = 0} = Sp(Q).

The notions of equality and disjointness for types are the natural ones for
the m-point subsets of C. Lemma 4.3 shows that PMat(m,C) and P

Mat(m,C)
0

satisfy Assumption 4.7 generically.

Proposition 4.8. Let P be a semigroup satisfying Assumption 4.7. As-
sume that there is an equality in P of the form(

p
(1)
1 · · · p(1)

m1

)
· · ·

(
p
(k)
1 · · · p(k)

mk

)
=

(
q
(1)
1 · · · q(1)

m1

)
· · ·

(
q
(k)
1 · · · q(k)

mk

)
,(4.4)
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where all p
(j)
i , q

(j)
i are from P0, the types of all elements on the left-hand side are

pairwise disjoint, the types of all elements on the right-hand side are pairwise
disjoint, and {

t(p(j)
1 ), . . . , t(p(j)

mj
)
}

=
{

t(q(j)
1 ), . . . , t(q(j)

mj
)
}

for all j = 1, . . . , k. Then

p
(j)
1 · · · p(j)

mj
= q

(j)
1 · · · q(j)

mj
, j = 1, . . . , k.

Proof. By Assumption 4.7, for any j = 1, . . . , k, there exist q̂
(j)
1 , . . . , q̂

(j)
mj

such that
q
(j)
1 · · · q(j)

mj
= q̂

(j)
1 · · · q̂(j)

mj

and t(p(j)
i ) = t(q̂(j)

i ). Then by the uniqueness part of Assumption 4.7 applied to
(4.4) we obtain p

(j)
i = q̂

(j)
i for all i, j. This immediately implies the claim.

We, essentially, used Proposition 4.8 in the proof of Proposition 4.4 above.

(b) Commuting flows on sequences. Denote by P the set of all sequences
{pk}k∈Z ⊂ P0 such that the types of all elements of a sequence are pairwise
disjoint.

Fix an integer n > 0. For any l ∈ Z we define a map Fl : P → P as
follows:

Fl : {pk}k∈Z 
→ {qk}k∈Z,

pl+µnpl+µn+1 · · · pl+(µ+1)n−1 = ql+µn+1ql+µn+2 · · · ql+(µ+1)n, µ ∈ Z,

t(qj) =
{

t(pj−n), if (j − l) divides n,

t(pj), otherwise.

In this definition µ ranges over all integers, and for each µ we use Assump-
tion 4.7 for σ = (12 · · ·n) ∈ Sn. Clearly, Fl is invertible.

It is convenient to denote

Fl1

(
Fl2

(
· · ·Flm ({pk})

))
= {pl1,...,lm

k }.

Then the second line in the definition above takes the form

pl+µnpl+µn+1 · · · pl+(µ+1)n−1 = pl
l+µn+1p

l
l+µn+2 · · · pl

l+(µ+1)n.

For example, for n = 2 we have

p2s−1p2s = p1
2sp

1
2s+1, t(p1

2s) = t(p2s), t(p1
2s+1) = t(p2s−1), s ∈ Z,

p2sp2s+1 = p2
2s+1p

2
2s+2, t(p2

2s+1) = t(p2s+1), t(p2
2s+2) = t(p2s), s ∈ Z.

It is immediately seen from the definition that Fl+µn = Fl and

pl,l+1,...,l+n−1
k = pk−n(4.5)

for any k, l ∈ Z.
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Theorem 4.9. (i) For any i, j ∈ Z, Fi and Fj commute. That is,

pi,j
k ≡ pj,i

k for any {pk} ∈ P.

(ii) For any {qk} ∈ P and any i, j ∈ Z such that 0 < j − i < n, set

pk = qi+1,...,j
k . Then

qj
i pj = pi

j qi.(4.6)

Remark 4.10. Part (i) of this theorem means that we have defined an
action of Zn on P. There is a much larger group which acts on P. Let
π : Z → Z be a bijection such that for any k ∈ Z the sets

Ik = {i ∈ Z : i < k, π(i) > π(k)}, Jk = {j ∈ Z : j > k, π(j) < π(k)}

are finite: I = {i1, . . . , is}, J = {j1, . . . , jt}. Then, given a sequence {pk} ∈ P,
we define {pπ

k} ∈ P by

pi1 · · · pis
pk pj1 · · · pjt

= p′j1 · · · p
′
jt

pπ
π(k) p′i1 · · · p

′
is

where t(p′l) = t(pl) and t
(
pπ

π(k)

)
= t(pk). One can show that this defines an

action of the group of all π satisfying the condition above on the space P.
The maps {Fl} correspond to shifts by n along n nonintersecting arithmetic
progressions {l + µn : µ ∈ Z}, hence they must commute.

Proof of Theorem 4.9. Because Fl = Fl+n, it suffices to assume that
0 < j − i < n. Consider the product

Π = pipi+1 . . . pj+2n−1.

On one hand, we have

Π =
(
pi · · · pi+n−1

)(
pi+n · · · pi+2n−1

)
pi+2n · · · pj+2n−1

=
(
pi

i+1 · · · pi
i+n

)(
pi

i+n+1 · · · pi
i+2n

)
pi+2n · · · pj+2n−1

= pi
i+1 · · · pi

j−1

(
pi

j · · · pi
j+n−1)p

i
j+n · · · pi

i+2n pi+2n · · · pj+2n−1

= pi
i+1 · · · pi

j−1 pj,i
j+1 · · · p

j,i
j+n pi

j+n · · · pi
i+2n pi+2n · · · pj+2n−1.

On the other hand, we have

Π = pi · · · pj−1

(
pj · · · pj+n−1

)(
pj+n · · · pj+2n−1

)
= pi · · · pj−1

(
pj

j+1 · · · p
j
j+n

)(
pj

j+n+1 · · · p
j
j+2n

)
= pi · · · pj−1 pj

j+1 · · · p
j
i+n−1

(
pj

i+n · · · p
j
i+2n−1

)
pj

i+2n · · · p
j
j+2n

= pi · · · pj−1 pj
j+1 · · · p

j
i+n−1 pi,j

i+n+1 · · · p
i,j
i+2n pj

i+2n · · · p
j
j+2n.
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Thus, we obtain

(4.7)(
pi

i+1 · · · pi
j−1 pj,i

j+1 · · · p
j,i
i+n

)(
pj,i

i+n+1 · · · p
j,i
j+n

)(
pi

j+n · · · pi
i+2n pi+2n · · · pj+2n−1

)
=

(
pi · · · pj−1 pj

j+1 · · · p
j
i+n−1

)(
pi,j

i+n+1 · · · p
i,j
j+n

)(
pi,j

j+n+1 · · · p
i,j
i+2n pj

i+2n · · · p
j
j+2n

)
.

Comparing the types in the three factors on the left and on the right, we see
that we are in a position to apply Proposition 4.8. It implies, in particular,
that the middle factors are equal. Since the order of the types in the middle
factors is the same, these middle factors must be equal termwise:

pj,i
k = pi,j

k , i + n + 1 ≤ k ≤ j + n.

Because Fl = Fl+n for all n, and i and j are arbitrary, we see that
pj,i

k = pi,j
k , i + 1 ≤ k ≤ j. Switching from (i, j) to (j, i + n), we get pi,j

k = pj,i
k

for j + 1 ≤ k ≤ i + n. Thus, the commutativity relation is proved for
i + 1 ≤ k ≤ i + n, and thus for all k ∈ Z. The proof of the first part of
Theorem 4.9 is complete.

In order to prove Theorem 4.9(ii), we need to compare the first and the
third factors of the two sides of (4.7). The first factors give

pi
i+1 · · · pi

j−1 pj,i
j+1 · · · p

j,i
i+n = pi · · · pj−1 pj

j+1 · · · p
j
i+n−1.

Commuting pi on the right-hand side to the right and using Proposition 4.8,
we see that

pi · · · ps = pi
i+1 · · · pi

s xs,i(4.8)

where i + 1 ≤ s ≤ j − 1, xs,i ∈ P0, and t(xs,i) = t(pi). Since j is arbitrary (but
j− i < n), we can assume that i+1 ≤ s ≤ i+n−2. Note that (4.8) also holds
for s = i + n − 1 with xi+n−1,i = pi

i+n, as follows from the definition of Fi.
Similarly, looking at the third factors and substituting F−1

j {pk} for {pk},
we get

pt · · · pj = yt,j

(
F−1

j {pk}
)

t
· · ·

(
F−1

j {pk}
)

j−1
(4.9)

where j − n + 2 ≤ t ≤ j − 1, yt,j ∈ P0, and t(yt,j) = t(pj). Again, this also

holds for t = j − n + 1 with yj+n−1,j =
(
F−1

j {pk}
)

j−n
.

Lemma 4.11. For i + 1 ≤ s ≤ i + n − 1,

xs,i =
(
F−1

i+1 ◦ · · · ◦ F−1
s {pk}

)
i
.

Proof. Induction on s−i. To prove both the base s = i+1 of the induction
and the induction step we first use (4.9) to write

pi · · · ps = yi,s

(
F−1

s {pk}
)
i
· · ·

(
F−1

s {pk}
)
s−1
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and now use the induction hypothesis on the factors after yi,s to obtain

pi · · · ps = yi,s

(
FiF

−1
s {pk}

)
i+1

· · ·
(
FiF

−1
s {pk}

)
s−1

(
F−1

i+1 ◦ · · · ◦ F−1
s {pk}

)
i
.

(If s = i + 1 then the second step is empty.) Since

t
((

F−1
i+1 ◦ · · · ◦ F−1

s {pk}
)
i

)
= t(xs,i) = t(pi),

comparing with (4.8) we conclude that xs,i =
(
F−1

i+1 ◦ · · · ◦ F−1
s {pk}

)
i
.

This argument works for s ≤ i+n−2. For s = i−n+1 the lemma follows
from (4.5).

Now we return to the second part of Theorem 4.9. Applying Lemma 4.11
to all but one factor in pi · · · pj , and then to all factors in pi · · · pj , we obtain

pi · · · pj = pi
i+1 · · · pi

j−1

(
F−1

i+1 ◦ · · · ◦ F−1
j−1{pk}

)
i
pj

= pi
i+1 . . . pi

j−1p
i
j

(
F−1

i+1 ◦ · · · ◦ F−1
j {pk}

)
i
.

In the last two products all but the last two factors coincide. By Proposi-
tion 4.8, this means that the products of the last two also coincide:(

F−1
i+1 ◦ · · · ◦ F−1

j−1{pk}
)

i
pj = pi

j

(
F−1

i+1 ◦ · · · ◦ F−1
j {pk}

)
i
.

Renaming F−1
i+1 ◦ · · · ◦ F−1

j {pk} by {qk} we arrive at (4.6). The proof of Theo-
rem 4.9 is complete.

(c) Proof of Theorem 4.5. Let us concentrate on the case P = PMat(m,C),
P0 = P

Mat(m,C)
0 ; see (a) above. Since Assumption 4.7 generically holds in this

case (see Lemma 4.3), we will be acting as if it always holds, keeping in mind
that all the claims we prove hold only generically. Set pi = z−Ci, i = 1, . . . , n,
where Ci = Ci(0, . . . , 0) are as in Theorem 4.5. More generally, define

pi+µn = z − µ − Aµ
0Ci(0, . . . , 0)A−µ

0 , i = 1, . . . , n, µ ∈ Z,(4.10)

where A0 is an arbitrary invertible element of Mat(m, C). The assumption
that no two numbers of the set {a(i)

j } are different by an integer guarantees
that {pk} ∈ P. Now define {Ci(l1, . . . , ln)} by(
F l1

1 · · ·F ln
n {pk}

)
i+µn

= z−µ−Aµ
0Ci(l1, . . . , ln)A−µ

0 , i = 1, . . . , n, µ ∈ Z.

(It is immediately seen that the subset of P consisting of sequences
{pk = z − Qk} such that Qk+n = I + A0QkA

−1
0 is stable under the flows

F1, . . . , Fn which shows that the Ci(l) are well-defined.) The very definition
of Fi implies (4.2). Furthermore, (4.3) is a direct corollary of (4.5). It is
easy to see that Sp(Ci(l)) = Sp(Ci) − li, and this gives the existence part of
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Theorem 4.5. The uniqueness and rationality claims follow from Lemma 4.3.
Finally, let us show that

Bi(k1, . . . , kn) = Ci(k1, . . . , ki, ki+1 − 1, . . . , kn − 1)

solves (3.1)–(3.3). The relation (3.3) is equivalent to (4.3). We will derive (3.4)
(and hence (3.1), (3.2)) from Theorem 4.9(ii).

Fix 1 ≤ i < j ≤ n and define

{p̃k} = F k1
1 · · ·F kn

n {pk}, {q̃k} = F−1
i+1 ◦ · · · ◦ F−1

j {p̃k}.

Then

p̃j = z − Cj(k1, . . . , kn) = z − Bj(k1, . . . , kj , kj+1 + 1, . . . , kn + 1),

q̃i = z − Bi(k1, . . . , kj , kj+1 + 1, . . . , kn + 1),

p̃i
j = z − Bj(k1, . . . , ki−1, ki + 1, ki+1, . . . , kj , kj+1 + 1, . . . , kn + 1),

q̃j
i = z − Bi(k1, . . . , kj−1, kj + 1, . . . , kn + 1).

If we apply the shift

kj+1 
→ kj+1 − 1, . . . , kn 
→ kn − 1,

then the equality q̃j
i p̃j = p̃i

j q̃i turns into (3.4). This completes the proof of
Theorem 4.5.

Remark 4.12. The set of sequences {pk = z − Qk} with Qk+n = I +
A0QkA

−1
0 is also stable under the action of permutations π : Z → Z (see

Remark 4.10) of the form

π(i + µn) = σ(i) + µn, σ ∈ Sn, i = 1, . . . , n, µ ∈ Z.

Defining Ĉi(l) = Ci(l) + liI, we obtain a birational action of the semidirect
product Zn � Sn on {Ĉ1, . . . , Ĉn} ∈ (Mat(m, C))n which preserves the spectra
of Ĉ ′

is.

Remark 4.13. If instead of (4.10) we use periodic initial conditions

pi+µn = z − Ci, i = 1, . . . , n, µ ∈ Z,

which corresponds to the autonomous limit of the difference Schlesinger equa-
tions mentioned in the introduction, then the maps F1, . . . , Fn are exactly
the monodromy maps constructed by Veselov [V] in the framework of set-
theoretical solutions of the quantum Yang-Baxter equation. We refer to [V]
for details and further references on the subject.

Remark 4.14. Solutions of the q-difference Schlesinger equations men-
tioned in the introduction are obtained from consideration of {pk = z − Qk}
with Qk+n = qA0QkA

−1
0 .
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5. Continuous limit

We start with a brief survey of the classical deformation theory for linear
matrix differential equations, which is due to Riemann, Schlesinger, Fuchs, and
Garnier; see [JMU], [JM] for details.

Consider a first order matrix system of ordinary linear differential equa-
tions

dY
dζ

= B(ζ)Y(ζ), B(ζ) = B∞ +
n∑

k=1

Bk

ζ − xk
.(5.1)

Here all matrices are in Mat(m, C). We will assume that all Bk’s can be
diagonalized:

Bk = GkTkG
−1
k , Tk = diag(t(k)

1 , . . . , t(k)
m ), k = 1, . . . , n,

B∞ = G∞ diag(s1, . . . , sn)G−1
∞

where t
(k)
i − t

(k)
j /∈ Z, i �= j, for all k �= ∞, and si �= sj , i �= j.

Alternatively, we may also consider

dY
dζ

= B(ζ)Y(ζ), B(ζ) =
n∑

k=1

Bk

ζ − xk
,(5.2)

in which case we assume (in addition to the above assumption on Bk, k =
1, . . . , m) that

−
n∑

k=1

Bk = G∞T∞G−1
∞ , T∞ = diag(t(∞)

1 , . . . , t(∞)
m ),

with t
(∞)
i − t

(∞)
j /∈ Z for i �= j.

Since we can conjugate Y and {Bk} by G∞, we may set G∞ = I without
loss of generality.

One can show, see e.g. [JMU, Prop. 2.1], that there exists a unique formal
solution Y(ζ) of (5.1) or (5.2) of the form

Y(ζ) = Ŷ(ζ) exp(T (ζ)), Ŷ(ζ) = I + Ŷ1ζ
−1 + Ŷ2ζ

−2 + . . . ,(5.3)

where

T (ζ) =
{

diag(s1, . . . , sn)z + T∞ ln(z−1) for (5.1),
T∞ ln(z−1) for (5.2),

with T∞ = diag(t(∞)
1 , . . . , t

(∞)
m ). (This formula is also the definition of T∞ for

(5.1).) This is the analog of Propositions 1.1 and 1.2.
It turns out that for (5.2) the series in (5.3) is convergent, and after

multiplication by exp(T (ζ)) it defines a holomorphic (near ζ = ∞) multi-
valued function Y∞(ζ). However, in the case of (5.1) this series is, gener-
ally speaking, divergent. Then the analog of Theorem 1.3 holds. Namely,
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there exist unique holomorphic solutions Y l,r of (5.1), defined for �ζ � 0 and
�ζ � 0, respectively, such that they have the asymptotic expansion (5.3)
as ζ → ∞.5 Since both these functions solve the same differential equation,
there exist constant matrices S± such that the analytic continuations of Y l,r

in �ζ � 0 (� 0) are related by Y l = YrS±. The matrices S± are called the
Stokes multipliers.

It is also possible to determine the nature of solutions of (5.1), (5.2) near
the poles x1, . . . , xk. Namely, one can show that there exist locally holomorphic
functions

Ŷ(k)(ζ) = I + Y(k)
1 (z − xk) + Y(k)

2 (z − xk)2 + . . .

such that for any solution Y(ζ), there exist constant matrices Ck such that
locally near ζ = xk

Y(ζ) = GkŶ(k)(ζ) exp
(
Tk ln(z − xk)

)
Ck.

(Recall that the {Gk} were defined above by Bk = GkTkG
−1
k .) In particular,

if we fix paths from ζ = ∞ (or ±∞ for (5.1)), then we can define {Ck} for the
(analytic continuations of the) canonical solutions Y∞ or Y l,r.

Thus, to any equation of the form (5.1) or (5.2), we associate the follow-
ing monodromy data: {Tk}n

k=1 and T∞, {Ck}n
k=1 computed for the canonical

solution Y∞ or Y l,r, and in the case of (5.1) we also add the Stokes multipliers
S± and the exponents s1, . . . , sm.

If we analytically continue any solution Y(ζ) of (5.1) or (5.2) along a
closed path γ in C avoiding the singular points {xk} then the columns of Y
will change into their linear combinations: Y 
→ YMγ . Here Mγ is a constant
invertible matrix which depends only on the homotopy class of γ. It is called
the monodromy matrix corresponding to γ. If γ is a positive loop around xk

then the corresponding monodromy matrix Mk for the canonical solution Y∞

or Y l,r can be computed using the monodromy data introduced above:

Mk = C−1
k exp(2πiTk)Ck.

The basic problem of the isomonodromy deformation of the linear system
(5.1) or (5.2) is to change B(ζ) in such a way that the monodromy data, or,
more generally, the monodromy matrices {Mk} remain invariant.

There are two types of isomonodromy deformations, both discovered by
Schlesinger [Sch] and later generalized to the case of singularities of higher
order in [JMU], [JM].

The first type is a continuous deformation which allows the singularities
x1, . . . , xn to move and describes the {Bk} as functions of xj ’s. This deforma-
tion leaves the whole set of monodromy data intact. The evolution of the {Bk}

5As in the case of difference equations, one has to be careful in choosing the sector where
ζ may tend to ∞. One may always take arg ζ ∈ (π/2 + ε, 3π/2 − ε) for �ζ � 0 and
arg ζ ∈ (−π/2 + ε, π/2 − ε) for �ζ � 0. If si − sj /∈ R, these sectors may be extended.
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is described by a system of partial differential equations called the Schlesinger
equations:

∂Bl

∂xj
=

[Bj ,Bl]
xj − xl

,
∂Bj

∂bj
=

∑
1≤l≤n

l �=j

[Bj ,Bl]
xl − xj

− [Bj ,B∞] , j, l = 1, . . . , n,

(5.4)

where for (5.2) the term with B∞ is dropped.
It is not hard to show that this system has a local solution for arbitrary

initial conditions {Bk(xo
1, . . . , x

o
n)}. It is a much deeper fact (proved indepen-

dently in [Mal], [Miw]) that the Schlesinger equations with arbitrary initial
conditions have a global meromorphic solution on the universal covering space
of

{(x1, . . . , xn) ∈ Cn : xi �= xj for i �= j}.

To describe this fact, one often says that the system of Schlesinger equations
enjoys the Painlevé property.

The second deformation (or, better to say, transformation) is an action
of Zm(n+1)−1 on the space of B(z), which consists of multiplying Y(z) by an
appropriate rational function on the left: Y(z) 
→ R(z)Y(z). Such a trans-
formation (called Schlesinger transformation) is uniquely determined by the
shifts

t
(k)
j 
→ t

(k)
j + λ

(k)
j , k = 1, . . . , n,∞,

of the eigenvalues of Bk. Here all λ
(k)
j are integers, and their total sum is equal

to zero. Schlesinger transformations exist for generic {Bk}; see [JM]. Clearly,
these transformations change the monodromy data, but they do not change
the monodromy matrices {Mk} and the Stokes multipliers S±.

Now let us take a difference equation of the type considered earlier:

Y (z + 1) = A(z)Y (z), A(z) = A0z
n + A1z

n−1 · · · + An.(5.5)

We distinguish two cases (cf. Propositions 1.1 and 1.2):

• A0 is diagonal and has pairwise distinct nonzero eigenvalues;

• A0 = I, A1 is diagonal and no two eigenvalues of A1 are different by an
integer.

As explained in Section 4, see Proposition 4.1, we can generically represent
A(z) in the form

A(z) = A0(z − C1) · · · (z − Cn),

where the eigenvalues
{
a

(i)
j

}
of {Ci} are zeros of det A(z) divided into n groups

of m numbers. We assume, as usual, that no two eigenvalues are different by
an integer.
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Suppose that A(z) depends on a small parameter ε, and as ε → 0,

Ci − yiε
−1 + Bi → 0, i = 1, . . . , n, (A0 − I)ε−1 − B∞ → 0, ε → 0,

(5.6)

for some pairwise distinct complex numbers y1, . . . , yn and some B1, . . . ,Bn,

B∞ ∈ Mat(m, C). (The limit relation for A0 is omitted in the case A0 = I.)
Note that if we multiply the unknown function Y (z) in (5.5) by∏

i Γ(z − yiε
−1), then (5.5) takes the form(∏

i

Γ(z + 1 − yiε
−1)Y (z + 1)

)
= (I + B∞ε + o(ε))

×
(

I +
B1 + o(1)
z − y1ε−1

)
· · ·

(
I +

Bn + o(1)
z − ynε−1

) (∏
i

Γ(z − yiε
−1)Y (z)

)
.

If we now assume that
∏

i Γ((ζ + yi)ε−1)Y (ζε−1) tends to a holomorphic func-
tion Y(ζ), then the difference equation above in the limit ε → 0 turns into the
differential equation (5.1) (or (5.2)) with xi = yi.

Substituting the asymptotic relations (5.6) into (4.2), we see that for any
fixed l1, . . . , ln ∈ Z,

Ci(l1, . . . , ln) + li − yiε
−1 + Bi → 0, i = 1, . . . , n, ε → 0.

(This conclusion is based on the fact that if X = xε−1 + X0 + o(1), Y =
yε−1 + Y0 + o(1), where x, y ∈ C, x �= y, and (z −X)(z − Y ) = (z − S)(z − T )
with Sp(S) = Sp(Y ), Sp(T ) = Sp(X), then S = Y + o(1), T = X + o(1); see
the explicit construction of T in Lemma 3.3.)

In particular, for any k1, . . . , kn ∈ Z,

Bi(k1, . . . , kn) + ki − yiε
−1 + Bi → 0, i = 1, . . . , n, ε → 0.

(See §4 for the relation of {Bi} and {Ci}.) Thus, on finite intervals Bi(k) +
ki − yiε

−1 is approximately constant. However, if we assume that the
{Bi(k) + ki − yiε

−1} for k of size ε−1 approach some smooth functions of εkj :

Bi

(
[x1ε

−1], . . . , [xnε−1]
)
+[xiε

−1]−yiε
−1+Bi(y1−x1, . . . , yn−xn) → 0, ε → 0.

Bi(0, . . . , 0) = Bi, i = 1, . . . , n,

then the corresponding equation (5.5) converges to (5.1) with {Bi = Bi(x)}
and xi replaced by yi − xi. Furthermore, the difference Schlesinger equations
(3.1)–(3.3) tend to

∂Bl

∂xj
=

[Bl,Bj ]
(yj − xj) − (yl − xl)

,

n∑
l=1

∂Bl

∂xj
= [Bl,B∞] , j, l = 1, . . . , n.

Comparing these equations to (5.4), we are led to the following:
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Conjecture 5.1. For generic B1, . . . ,Bn,B∞ and pairwise distinct y1, . . . ,

yn ∈ C, take Bi = Bi(ε) ∈ Mat(m, C), i = 1, . . . , n such that

Bi(ε) − yiε
−1 + Bi → 0, ε → 0.

Let Bi(k1, . . . , kn) be the solution of the difference Schlesinger equations (3.1)–
(3.3) with the initial conditions {Bi(0) = Bi}, and let Bi(x1, . . . , xn) be the
solution of the classical Schlesinger equations (5.4) with the initial conditions

Bi(y1, . . . , yn) = Bi, i = 1, . . . , n.

Then for any x1, . . . , xn ∈ R and i = 1, . . . , n,

Bi

(
[x1ε

−1], . . . , [xnε−1]
)
+[xiε

−1]−yiε
−1+Bi(y1−x1, . . . , yn−xn) → 0, ε → 0.

As for isomonodromy deformations of the second kind (Schlesinger trans-
formations), we are able to prove an asymptotic result rigorously. We will
consider the case of equation (5.1); for (5.2) the situation is similar.

Fix{
t
(k)
j

}
1≤k≤n, 1≤j≤m

⊂ C, t
(k1)
j1

− t
(k2)
j2

/∈ Z unless j1 = j2, k1 = k2.

For any

Bk ⊂ Mat(m, C), Sp(Bk) =
{
t
(k)
j

}m

j=1
, k = 1, . . . , n,

and pairwise distinct x1, . . . , xn ∈ C, we define

Bk(ε) = xkε
−1 − Bk, k = 1, . . . , n, ε �= 0.

Then

Sp(Bk(ε)) =
{

a
(k)
j

}m

j=1
, a

(k)
j = xkε

−1 − t
(k)
j , j = 1, . . . , m.

We also fix B∞ = diag(s1, . . . , sm), si �= sj for i �= j. Set

A0(ε) = I + εB∞.

Lemma 5.2. For generic B1, . . . ,Bn and |ε| small enough, there exists
a unique degree n polynomial A(z, ε) = A0(ε)zn + A1(ε)zn−1 + . . . having
{z − Bk(ε)} as its right divisors.

Proof. According to Lemma 3.4, the statement is true for large |ε|. On
the other hand, for fixed {Bk} the existence of A(z) is an open condition on ε,
and if it holds for large |ε|, it also holds for |ε| small enough.

Theorem 5.3. Fix any integers
{
λ

(i)
j

}m

j=1
, i = 1, . . . , n,∞, of total sum 0:

m∑
j=1

(
n∑

i=1

λ
(i)
j + λ

(∞)
j

)
= 0.
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Then for generic B1, . . .Bn and small enough |ε|, there exists the transforma-
tion of Theorem 2.1 for the equation Y (z + 1) = A(z, ε)Y (z) with

κ
(i)
j = −λ

(i)
j , 1 ≤ k ≤ n, δj = −λ

(∞)
j , 1 ≤ j ≤ m.

Furthermore, denote by {B̃k} the coefficients of (5.1) after the correspond-
ing Schlesinger transformation, and denote by {B̃k(ε)} the matrices such that
{z − B̃k(ε)} are the right divisors of the transformed Ã(z, ε). Then

∆ B̃i(ε)∆−1 − xiε
−1 + B̃i → 0, ε → 0, i = 1, . . . , n,

where ∆ = diag(εδ1 , . . . , εδn).

Remark 5.4. It is easy to verify the statement of Theorem 5.3 if λ
(i)
j =

−λ
(∞)
j = ±1 for some fixed i and all j = 1, . . . , m, with all other λ’s being

zero. Then B̃i(ε) = Bi(ε; 0, . . . , 0,±
(i)

1 , 0, . . . , 0). As mentioned above, for any
fixed k1, . . . , kn ∈ Z, we have the asymptotics

Bi(ε; k1, . . . , kn) + ki − xiε
−1 + Bi → 0, ε → 0.

Hence, Theorem 5.3 implies that

B̃k =
{

Bk, k �= i,

Bi ± I, k = i.

This is immediately verified by the fact that the multiplier R(ζ) for the (con-
tinuous) Schlesinger transformation in this case equals R(ζ) = (ζ − xi)±1.

Proof of Theorem 5.3. Arguing as in the proof of Lemma 5.2, we can
show that all the statements used in this proof which hold generically (like
the existence of the polynomial with given right divisors), also hold for generic
B1, . . . ,Bn and small enough ε. Thus, we will ignore the questions of genericity
from now on.

Note that we can decompose the transformations of Theorem 5.3 in both
discrete and continuous cases into compositions of elementary ones of the same
type (those, for which exactly one of {λ(i)

j } is equal to ±1, and exactly one of

{λ(∞)
j } is equal to ∓1, with all others being zero). It is clear that the claim

of the theorem follows from a slightly more general claim for the elementary
transformations: we assume that

∆0 Bl(ε)∆−1
0 − xlε

−1 + Bl → 0, ε → 0, l = 1, . . . , n,(5.7)

with some diagonal ∆0 containing integral powers of ε on the diagonal. We
also need to conclude that

∆∆0 B̃l(ε)∆−1
0 ∆−1 − xlε

−1 + B̃l → 0, ε → 0, l = 1, . . . , n.(5.8)
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Let us consider the elementary transformations with λ
(1)
j = 1, λ

(∞)
i = −1.

Denote by R(z, ε) and R(ζ) the corresponding multipliers for the discrete and
continuous equations. According to the proof of Theorem 2.1,

R(z, ε) = (z−x1ε
−1+t

(1)
j )Ei+R0(ε), R−1(z, ε) = I−Ei+

R1(ε)

z − x1ε−1 + t
(1)
j

are given by the formulas of Lemma 2.4 with Q = Ŷ1(ε), and v = v(ε) be-
ing an eigenvector of B1(ε) with the eigenvalue x1ε

−1 − t
(1)
j . Similarly, [JM,

Appendix A] shows that

R(ζ) = (ζ − x1)Ei + R0, R−1(z) = I − Ei +
R1

ζ − x1

are given by the same formulas with Q = Ŷ1 and v being an eigenvector of
B1 with the eigenvalue t

(1)
j . (Note that only the off-diagonal elements of Q

participate in the formulas.)

Lemma 5.5. Under the assumption (5.7),

∆∆0R0(ε)∆−1
0 → R0, ε ∆0R1(ε)∆−1

0 ∆−1 → R1, ε → 0

where ∆ = εEi.

Proof. First we note that (5.7) implies that in the projective space the
vector ∆0v(ε) tends to v as ε → 0. Next, it is easy to see that the difference
Schlesinger equations preserve the asymptotics (5.7):

∆0 Bl(ε; k1, . . . , kn)∆−1
0 + kl − xlε

−1 + Bl → 0, ε → 0,(5.9)

for any k1, . . . , kn ∈ Z. In particular,

∆0 Cl(ε)∆−1
0 − xlε

−1 + Bl → 0, ε → 0.

Thus, from

A(z, ε) = A0(ε)(z − C1(ε)) · · · (z − Cn(ε)) = A0(ε)zn + A1(ε)zn−1 + . . .

we conclude that

A1(ε) = −
n∑

l=1

Cl(ε) = diagonal part + ∆−1
0

(
n∑

l=1

Bl + o(1)

)
∆0.

By (1.3) we also know that ε(sj − si)(Ŷ1(ε))kl = (A1(ε))kl for all k �= l. Since
Ŷ1 =

∑n
l=1 Bi, the statement follows from the explicit formulas of Lemma 2.4.
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A direct computation shows that (here we use the fact that R0B1R1 =
t
(1)
j R0R1 = 0, which follows from the explicit formulas of [JM, Appendix A])

B̃1 =R0

(
B∞ +

n∑
k=2

Bk

x1 − xk

)
R1 + EiR1,(5.10)

B̃l = ((xl − x1)Ei + R0)Bl

(
I − Ei +

R1

xl − x1

)
, l = 2, . . . , n.(5.11)

Let us prove (5.8) for l ≥ 2 first. Consider the composition of the elemen-

tary transformation (for the difference equation) in question with S(0, . . . , 0,
(l)

1 ,

0, . . . , 0); see Section 3 for the notation. By the uniqueness part of Theorem

2.1, this is equivalent to making S(0, . . . , 0,
(l)

1 , 0, . . . , 0) first, and applying the
elementary transformation after that. Denote the multiplier of this second
elementary transformation by R̂(z, ε). Now,

R̂(z, ε) = (z−x1ε
−1+t

(1)
j )Ei+R̂0(ε), R̂−1(z, ε) = I−Ei+

R̂1(ε)

z − x1ε−1 + t
(1)
j

.

Using Proposition 3.6, we obtain

(z − B̃l(ε))R(z, ε) = R̂(z, ε)(z − Bl(ε)).

Substituting z = xlε
−1 and conjugating by ∆0, we get

∆0B̃l(ε)∆−1
0 − xlε

−1

=
(
∆0R̂(xlε

−1, ε)∆−1
0

) (
∆0Bl(ε)∆−1

0 − xlε
−1

) (
∆0R

−1(xlε
−1, ε)∆−1

0

)
.

Because of (5.9), the limit relations of Lemma 5.5 also hold for R̂0, R̂1. Using
them, Lemma 5.5 itself, (5.7) and (5.11), we arrive at (5.8) for l ≥ 2.

Thus, it remains to prove (5.8) for l = 1. We have

Ã(z, ε) =R(z + 1, ε)A0(z − C1(ε)) · · · (z − Cn(ε))R−1(z, ε)(5.12)

= A0(z − C̃1(ε)) · · · (z − C̃n(ε)).

The relation (5.8) for l ≥ 2 implies that

∆∆0 C̃l(ε)∆−1
0 ∆−1 − xlε

−1 + B̃l → 0, ε → 0, l = 2, . . . , n.

Substituting these estimates and similar ones for Cl and setting z =
(w + x1)ε−1 − t

(1)
j , we can rewrite (5.12) as follows (note that A0 is diago-

nal and hence it commutes with ∆0):

((w − x1 + ε)Ei + ∆∆0R0(ε)∆−1
0 )(I + εB∞)

(
I + ε

B1 + o(1)
w − x1

)
· · ·

(
I + ε

Bn + o(1)
w − xn

)
×

(
I − Ei +

ε∆0R1(ε)∆−1
0 ∆−1

w − x1

)
= (I + εB∞)

(
I + ε

x1ε
−1 − ∆∆0C̃1(ε)∆−1

0 ∆−1

w − x1

)

×
(

I + ε
B̃2 + o(1)
w − x2

)
· · ·

(
I + ε

B̃n + o(1)
w − xn

)
.
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Comparing the residues of both sides at w = x1 and looking at terms of order ε,
we see that

x1ε
−1 − ∆∆0C̃1(ε)∆−1

0 ∆−1 → B̃1,

where B̃1 is as given by (5.10). (We need to use Lemma 5.5 and the relation
R0(ε)R1(ε) = 0 here.) Since the difference Schlesinger equations preserve the
asymptotics (5.8) (cf. (5.9)), we get (5.8) for l = 1, and thus for all l.

The proof that (5.7) implies (5.8) in the case λ
(1)
j = −λ

(∞)
j = −1 is very

similar. Let us outline the necessary changes. The multipliers have the form

R(z, ε) = I − Ei +
Rt

1(ε)

z − 1 − x1ε−1 + t
(1)
j

,

R−1(z, ε) = (z − 1 − x1ε
−1 + t

(1)
j )Ei + Rt

0(ε),

where R0(ε), R1(ε) are as in Lemma 2.4 with v = v(ε) a solution of
At(x1ε

−1 − t
(1)
j , ε) v(ε) = 0 and Q = −Ŷ t

1 (ε); see the proof of Theorem 2.1.
Similarly,

R(ζ) = I − Ei +
Rt

1

ζ − x1
, R−1(ζ) = (ζ − x1)Ei + Rt

0,

where R0 and R1 are as in Lemma 2.4 with v an eigenvector of Bt
1 with the

eigenvalue t
(1)
j , and Q = −Ŷt

1. Similarly to Lemma 5.5, (5.7) implies

∆0R
t
0(ε)∆

−1
0 ∆−1 → Rt

0, ε ∆∆0R
t
1(ε)∆

−1
0 → Rt

1, ε → 0

with ∆ = ε−Ei . Similarly to (5.10), (5.11), we have

B̃1 =Rt
1

(
B∞ +

n∑
k=2

Bk

x1 − xk

)
Rt

0 −Rt
1Ei,

B̃l =
(

I − Ei +
Rt

1

xl − x1

)
Bl ((xl − x1)Ei + Rt

0), l = 2, . . . , n.

Using the same argument, composing our elementary transformation with

S(0, . . . , 0,
(l)

1 , 0, . . . , 0), we prove (5.8) for l ≥ 2. Then substituting estimates
for Cl’s and C̃l’s into Ã(z, ε) = R(z + 1, ε)A(z, ε)R−1(z, ε), we get (with z =
(w + x1)ε−1 − t

(1)
j )(

I − Ei +
ε∆∆0R

t
1(ε)∆

−1
0

w − x1

)
(I + εB∞)

(
I + ε

B1 + o(1)
w − x1

)
· · ·

(
I + ε

Bn + o(1)
w − xn

)
×((w − x1 − ε)Ei + ∆0R

t
0(ε)∆

−1
0 ∆−1) = (I + εB∞)

×
(

I + ε
x1ε

−1 − ∆∆0C̃1(ε)∆−1
0 ∆−1

w − x1

) (
I + ε

B̃2 + o(1)
w − x2

)
· · ·

(
I + ε

B̃n + o(1)
w − xn

)
.

Comparing the residues of both sides at w = x1 and taking terms of order ε,
we recover the estimate of type (5.8) for C̃1(ε), and hence for B̃1(ε). The proof
of Theorem 5.3 is complete.
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[JMMS] M. Jimbo, T. Miwa, T. Môri, and M. Sato, Density matrix of an impenetrable Bose
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