
Annals of Mathematics, 160 (2004), 1129–1140

The McKay conjecture
and Galois automorphisms

By Gabriel Navarro*

Abstract

The main problem of representation theory of finite groups is to find proofs
of several conjectures stating that certain global invariants of a finite group G

can be computed locally. The simplest of these conjectures is the “McKay
conjecture” which asserts that the number of irreducible complex characters of
G of degree not divisible by p is the same if computed in a p-Sylow normalizer
of G. In this paper, we propose a much stronger version of this conjecture
which deals with Galois automorphisms. In fact, the same idea can be applied
to the celebrated Alperin and Dade conjectures.

1. Introduction

Much of the representation theory of finite groups these days is devoted to
several conjectures which state that certain invariants of a finite group G can
be computed locally. Perhaps, the most amazing (and the simplest) of these
conjectures is the McKay conjecture which asserts that if G is a finite group,
p is a prime number and Irrp′(G) is the set of complex irreducible characters
of G of degree not divisible by p, then

|Irrp′(G)| = |Irrp′(NG(P ))| ,

where P is a Sylow p-subgroup of G.
Why these two numbers coincide for every finite group is still a mystery for

which no general explanation has been given. At the same time, this conjecture
has been tested for so many classes of groups, that there is no reasonable doubt
about its validity.

*Research partially supported by the Ministerio de Ciencia, grant BFM2001-1667-C03-
02.
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The purpose of the present paper is to propose a much stronger form of
the McKay conjecture which deals with Galois automorphisms of cyclotomic
fields. As was our intention when we proposed the “congruence form” of the
McKay conjecture in [11], it is our hope that these stronger conjectures will
eventually lead us to understand what is really behind them.

Suppose that G is a finite group of order n. Richard Brauer’s theorem that
every irreducible complex character of G can be afforded by a representation
with entries in the cyclotomic field Qn. Therefore, the Galois group G =
Gal(Qn/Q) permutes the set Irr(G) of the irreducible complex characters of G.
It is well-known that there cannot exist a bijection Irrp′(G) → Irrp′(NG(P ))
which commutes with all the elements of G. (That would imply, for instance,
that the number of rational characters in Irrp′(G) and Irrp′(NG(P )) is the
same, and this is simply false as shown by the group GL(2, 3) with p = 3, for
instance.) We believe, however, that there should exist a bijection commuting
with the elements of a very special subgroup of G.

Conjecture A. Let G be a finite group of order n and let p be a prime.
Let e be a nonnegative integer and let σ ∈ Gal(Qn/Q) be any Galois automor-
phism sending every p′-root of unity ξ to ξpe

. Then σ fixes the same number
of characters in Irrp′(G) as it does in Irrp′(NG(P )).

Of course, what Conjecture A is really proposing is that not only the
sets Irrp′(G) and Irrp′(NG(P )) have the same cardinality, but that there is a
connection between the character values of the elements in both sets.

If p is an odd prime dividing n and θ is any Galois automorphism fixing
p′-roots of unity and having order p−1, we will show that it is a consequence of
Conjecture A that a Sylow p-subgroup P of G is self-normalizing if and only if
the principal character of G is the only irreducible character of G of p′-degree
fixed by θ. (See Theorem (5.3) below.) If σ is the Galois automorphism which
fixes 2-power roots of unity and sends every odd root of unity ξ to ξ2, then it is
a consequence of Conjecture A that a Sylow 2-subgroup of G is self-normalizing
if and only if all irreducible characters of odd degree of G are σ-fixed. (See
Theorem (5.2) below.) In particular, Conjecture A implies that we can read
off from the character table of a finite group G if a Sylow p-subgroup of G is
self-normalizing.

Our Conjecture A is saying something new, even in the classical case where
a Sylow p-subgroup P of G is cyclic (a case that we shall prove in Section 3
below). For instance, if P is cyclic and self-centralizing, then it is true that
χ(x) = χ(xp) whenever χ ∈ Irrp′(G) and x ∈ G has order not divisible by p.
(See Corollary (3.5) below.)

We give another consequence of Conjecture A: If p is an odd prime, then
Conjecture A implies that the number of p-rational characters in Irrp′(G) and
Irrp′(NG(P )) is the same. (See Theorem (5.4) below.)
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When we stated the “congruence form” of the McKay conjecture in [11],
we had noticed that there should be connections between the McKay conjecture
and certain Galois automorphisms. We were assuming in [11], however, that
those Galois automorphisms were fixing p′-roots of unity and had p-power
order. These restrictions now seem unnecessary.

Now, what is the evidence for the validity in Conjecture A? When G

is a group of odd order, M. Isaacs constructed in [9] a canonical bijection
∗ : Irrp′(G) → Irrp′(NG(P )). In this case, ∗ commutes with every Galois
automorphism and therefore Conjecture A follows. More generally, when G is
a solvable group E. C. Dade has recently checked our conjecture ([4]). This is
already a surprisingly difficult theorem. If G = Sn is a symmetric group, then
all irreducible characters of G are rational. Our Conjecture A, predicts that
all irreducible characters of degree not divisible by p of NG(P ) are σ-fixed (for
the “right” σ, of course). This fact has been verified by P. Fong. Also, we
have checked that Conjecture A is true for every sporadic group. This check,
on which we will comment in Section 4, requires considerable work. In Section
3, and using the cyclic defect theory, we will show that the stronger block
version of Conjecture A below is also true for blocks with cyclic defect group.
In particular, this implies Conjecture A if a Sylow p-subgroup of G is cyclic.

The McKay conjecture was generalized to Brauer blocks by J. Alperin,
and we do so for our Conjecture A.

Conjecture B. Let G be a finite group of order n and let p be a prime.
Let e be a nonnegative integer and let σ ∈ Gal(Qn/Q) be any Galois automor-
phism sending every p′-root of unity ξ to ξpe

. Let B ∈ Bl(G) be a p-block of G

with defect group D, and let b ∈ Bl(NG(D)) be the Brauer correspondent of B.
Then σ fixes the same number of height zero ordinary irreducible characters in
B as it does in b.

Since the irreducible characters of G of p′-degree are exactly the height
zero characters in blocks of full defect, it is clear that Conjecture B implies
Conjecture A.

2. Galois automorphisms

Let ξ ∈ C be a primitive n-th root of unity and let Qn = Q(ξ) be the
cyclotomic field. Let Rn = Z[ξ] be the Dedekind domain of algebraic integers
in Qn. Now, the elements of G = Gal(Qn/Q) stabilize Rn.

We are interested in the subgroup H of G consisting of those elements
σ ∈ G for which there is a nonnegative integer e such that σ(δ) = δpe

whenever
δ is a p′-root of unity in 〈ξ〉.

Let us write n = pam, where p does not divide m. Also, we write ξ = ωδ,
where the order of ω is pa and the order of δ is m. Hence, G = K × J , where
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K = {τ ∈ G|τ(δ) = δ} and J = {τ ∈ G|τ(ω) = ω}. Now, K is isomorphic to
the group Gal(Qpa/Q) of order ϕ(pa) and σ ∈ J is such that σ(δ) = δp. Also,
the order t of σ is the order of p modulo m. We easily see that H = K × 〈σ〉
is a group of order ϕ(pa)t.

We shall need the following elementary result on algebraic number theory.

(2.1) Theorem. With the previous notation, H is the subgroup of G
which fixes every prime ideal P of Rn containing p.

Proof . It is well-known that the prime ideals P of Rn containing p are
G-conjugate. Since G is an abelian group, it follows that τ ∈ G fixes some prime
ideal containing p if and only if τ fixes all of them. So let P be a prime ideal
of Rn containing p and let I be the stabilizer of P in G. Now, it is well-known
that

pRn = (P1 · · · Pr)e ,

where e = ϕ(pa), {P1, . . . ,Pr} is the set of all the different prime ideals of
Rn containing p and r = ϕ(m)/t. Therefore, |I| = |G|/r = ϕ(pa)t = |H|.
Hence, it suffices to show that the elements of H stabilize P. First, notice
that ω ≡ 1 modP, since Rn/P is a field of characteristic p. Now, suppose that
τ ∈ K and let f(ξ) ∈ P, where f(x) = a0 + a1x + · · · + asx

s ∈ Z[x]. Then
τ(ξ) = ωkξ for some k. Next,

τ(f(ξ)) = a0 + a1ω
kξ + · · · + as(ωkξ)s ≡ f(ξ) modP ,

and therefore τ(f(ξ)) ∈ P. Finally, it suffices to show that σ(f(ξ)) ∈ P.
First, notice that f(ξ)p ≡ f(ξp) modP. Hence, f(ξp) ∈ P. Now, we can write
σ(ξ) = ωkξp for some k. Then, σ(f(ξ)) ≡ f(ξp) modP, and we deduce that
σ(f(ξ)) ∈ P.

3. The cyclic case

In this section, we prove Conjecture B for blocks with a cyclic defect group.
To do so, we adopt a clever argument by E. C. Dade and W. Feit which was
pointed out to us by Dade.

(3.1) Hypotheses and notation. Suppose that G is a finite group of order
n and let p be a prime number dividing n. Let ξ ∈ C be a primitive n-th
root of unity and let L = Q(ξ) = Qn. Now, Rn = Z[ξ] is the ring of algebraic
integers of L, and a prime ideal P of Rn containing pRn. Now, let K = LP be
the completion of L with respect to P. Let R be the ring of P-adic integers
in K with unique maximal ideal (π). Let F = R/(π) ∼= Rn/P, a field of
characteristic p. Now K and F are splitting fields for G and for any of its
subgroups. Also, K = Qp(ξ) is a finite extension of the p-adic field Qp. Now,
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let G = Gal(Qn/Q) and let H be as in Section 2. Then H fixes P by Theorem
(2.1). Therefore, every τ ∈ H extends to a unique automorphism of K, say τ ,
such that τ(R) = R. In particular, τ((π)) = (π) and therefore, τ defines an
automorphism (of Frobenius type) on the field F.

For blocks, we follow the notation in [13].

(3.2) Lemma. Let D be a p-subgroup of G and suppose that U 
 G is
contained in D. Let Ḡ = G/U . Let b ∈ Bl(NG(D)) have defect group D and
assume that b̄ is a block of NG(D)/U contained in b. Then bG is the unique
block of G containing the block b̄Ḡ of Ḡ.

Proof. Write N = NG(D) and C = CG(D). We claim that b̄ has defect
group D/U . Since D/U 
 N/U , we have that D/U is contained in some defect
group of b̄. On the other hand, a defect group of b̄ is contained in D/U (see
Theorem (9.9.a) of [13]) and this proves the claim. In particular, b̄Ḡ is defined
and has defect group D/U by the First Main Theorem.

Write Ḡ = G/U . Let g ∈ G, ḡ = gU , K = cl(g) and let K̄ = cl(ḡ). If
g ∈ CG(U) is a p′-element, by elementary group theory we have that CḠ(ḡ) =
CG(g)/U . In particular, if K is a class of p′-elements having defect group D,
then K̄ has defect group D/U . Suppose that K is such a class for the rest of
this proof.

Let B̄ be any block of Ḡ = G/U contained in B, a block of G. Let
χ̄ ∈ Irr(B̄) and let χ ∈ Irr(G) be its lift. Then

ωχ(K̂) = |G : CG(g)|χ(g)/χ(1) = |Ḡ : CḠ(ḡ)|χ̄(ḡ)/χ̄(1) = ωχ̄(K̄) .

Hence, λB(K̂) = λB̄( ˆ̄K). Also, since L = K ∩C is a conjugacy class of N with
defect group D (see Lemma (4.16) of [13]), we have that λb(L̂) = λb̄(

̂̄L).
Now, K̄ is a conjugacy class of Ḡ with defect group D̄ and again we have

that K̄ ∩ CḠ(D̄) is a conjugacy class of N/U . Since L̄ is a conjugacy class of
N/U contained in K̄ ∩ CḠ(D̄), we have L̄ = K̄ ∩ CḠ(D̄).

Now, set B̄ = (b̄)Ḡ. By the third paragraph of this proof,

λB(K̂) = λB̄( ̂̄K) = λb̄Ḡ( ̂̄K) = λb̄(
̂K̄ ∩ CḠ(D̄)) = λb̄(

̂̄L) = λb(L̂) = λbG(K̂) .

If we choose a defect class K of bG, we have that λB(K̂) �= 0. Hence, a defect
group of B is contained in D. By Theorem (9.9.a) of [13], we conclude that B

has defect group D and it follows that B = bG.

(3.3) Lemma. Suppose that B is a block of G with cyclic defect group D.
Assume that U < D is a normal subgroup of G and let Ḡ = G/U . Then B

contains a unique block B̄ of Ḡ. Also, B̄ has defect group D/U .
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Proof. Suppose that B̄1 and B̄2 are blocks of Ḡ contained in B. By
Theorem (9.9.a) of [13], we may find a defect group ∆i/U of B̄i contained in
D/U . In particular, ∆i/U is cyclic. Hence, all the characters in B̄i have height
zero (see Theorem VII.2.16) of [5]). Let χ̄i ∈ Irr(B̄i) and let χi ∈ Irr(B) be its
lift. Then

|G : D|p = χi(1)p = χ̄i(1)p = |G/U : ∆i/U | ,

and we conclude that ∆1 = D = ∆2. To prove the lemma, it suffices to show
that

λB̄1
( ˆ̄K) = λB̄2

( ˆ̄K)

for p′-conjugacy classes K̄ of Ḡ with defect group D/U (see, for instance,
Problem (4.5) of [13]). Given such a K̄ choose a p′-element g ∈ G such that
ḡ ∈ K̄ and ḡ ∈ CḠ(D̄). Now, [g, D] ≤ U < D. But D = [D, g] × CD(g) since
g acts on D. Since D is cyclic, it follows that g ∈ CG(D) ⊆ CG(U). Now, the
lemma follows from the third paragraph in the proof of Lemma (3.2).

For blocks with cyclic defect groups, we freely use the notation and the
results in [2] and [5]. Suppose that B is a block of G with a cyclic defect group D

with |D| = pa. Let N = NG(D) and let C = CG(D). Let b0 ∈ Bl(C) be a root
of B. Then (b0)G = B and (b0)N = B0 is the Brauer correspondent of B. If E

is the stabilizer of b0 in N , then E/C is a cyclic group of order e dividing p−1.
Also, E/C acts Frobeniusly on D (and therefore on the irreducible characters
of Irr(D)). Let Λ be a complete set of representatives of the action of E/C

on Irr(D) − 1D. Then |Λ| = (pa − 1)/e. We have that IBr(B) = {ϕ1, . . . , ϕe}.
Also, B has e+|Λ| irreducible ordinary characters. If |Λ| = 1, then these will be
denoted by χ0, χ1, . . . , χe. If |Λ| > 1, then Irr(B) is divided into two natural
families. These are the nonexceptional characters Irrnex(B) = {χ1, . . . , χe}
and the exceptional characters Irrex(B) = {χλ|λ ∈ Λ}.

Assume (3.1) and let H be a subgroup of G. If τ ∈ G, then it is well-
known that τ permutes the blocks of H. (This easily follows, for instance, from
Theorem (3.19) of [13].) Now, by Theorem (2.1), it is easy to check that H acts
naturally on IBr(H). Furthermore, dχϕ = dχτϕτ for χ ∈ Irr(b), ϕ ∈ IBr(H)
and τ ∈ H. Hence, Irr(bτ ) = Irr(b)τ and IBr(bτ ) = IBr(b)τ . Moreover, a defect
group of b is one of bτ . In fact, λbτ (x) = λb(x)τ for x ∈ ZFH. Thus

(bτ )G = (bG)τ .

So Brauer’s First Main Theorem implies that τ fixes B if and only if τ fixes
the Brauer correspondent of B.

(3.4) Theorem. Assume Hypotheses (3.1). Let B be a block of G with a
cyclic defect group D and let B0 be its Brauer correspondent. Let HB be the
subgroup of H fixing the block B.
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(a) There exists a bijection F : Irr(B) → Irr(B0) such that F (χτ ) = F (χ)τ

for all χ ∈ Irr(B) and all τ ∈ HB. Furthermore, if |Λ| > 1, then F sends
the exceptional (nonexceptional) characters of B onto the exceptional
(nonexceptional) characters of B0.

(b) There exists a bijection S : IBr(B) → IBr(B0) such that S(ϕτ ) = S(ϕ)τ

for all ϕ ∈ Irr(B) and all τ ∈ HB.

Proof. We prove the theorem by induction on |G|. We fix a root b0 ∈ Bl(C)
of B. Hence, (b0)N = B0. Let E be the stabilizer of b0 in N , so that |E : C| = e.

If |Λ| > 1, it easily follows from VII.6.3 of [5], that HB permutes the
exceptional (nonexceptional) characters among themselves. If |Λ| = 1, it fol-
lows from Theorem (2.4) and Lemma (3.1) of [6] that HB fixes at least one
character, say χ0, of Irr(B).

Let D̃ be the unique subgroup of D of order p. Then N ⊆ Ñ = NG(D̃).
Also, B̃ = (b0)Ñ = (B0)Ñ is a block of defect group D which induces B and
has Brauer correspondent B0. Notice that B̃ is HB-invariant (by Proposition
(3.9) of [3], for instance).

Next, we claim that parts (a) and (b) of this theorem are true if we replace
B0 by B̃. To prove the claim, we only have to check that Dade’s bijections in
Lemmas (4.8) through (4.10) in [3] are compatible with the action of HB. This
is easily done by using the second paragraph of this proof and the fact that HB

commutes with the Green correspondence and induction of characters. Hence,
by the inductive hypothesis, we may assume that D̃ 
 G.

Now, we freely use the notation and the results in [2]. Recall that Di

is the subgroup of D with |D : Di| = pi, Ci = CG(Di), Ni = NG(Di), so
that C0 = C, N0 = N and Da−1 = D̃. Hence Na−1 = Ñ = G. We have that
Ci ⊆ Ci+1, Ni ⊆ Ni+1, and Di ⊆ Ci ⊆ Ni. Let bi = (b0)Ci . For i = 0, . . . , a−1,
we have that IBr(bi) = {ϕi}. Also, Ca−1 = CG(D̃) 
 G.

If τ ∈ HB, since B is τ -invariant, we have that (b0)τ is a root of B and
it follows that (b0)τ = (b0)nτ for some nτ ∈ N . Also, since N normalizes Ci,
(b0)Ci = bi and τ commutes with block induction, it follows that (bi)τ = (bi)nτ .

Let us write b = ba−1 and ϕ = ϕa−1. By Section 3 of [2], we have that Irr(b)
consists of |D| characters {χλ,b |λ ∈ Irr(D)}. The values of these characters
on x ∈ Ca−1 are:

(1) χλ,b(x) = λ(xp)ϕ(xp′), whenever xp ∈ Da−1.

(2) χλ,b(x) = (δi/|Ci|)
∑

z∈Ni∩Ca−1
λz(xp)(ϕi)z(xp′) if xp is conjugate in Ca−1

to some y such that y ∈ Di − Di+1 for some i = 0, . . . , a − 2. Here, δi is
a sign depending only on i.

(3) χλ,b(x) = 0, otherwise.



1136 GABRIEL NAVARRO

If n ∈ N , by using these formulae and the fact that (Ni ∩ Ca−1)n

= Ni ∩ Ca−1, we easily check that

(χλ,b)n = χλn,bn .

Also,
(χλ,b)τ = χλτ ,bτ

for τ ∈ HB.
Now, the results in Section 4 of [2] tell us that Irr(G|χ1D,b) = {χ1, . . . , χe}

= Irrnex(B). Also, for λ �= 1, we have that (χλ,b)G is irreducible,
(χλ,b)G = (χµ,b)G if and only if λ = µz for some z ∈ E, and that Irrex(B) =

{(χλ,b)G|λ ∈ Λ}. Furthermore, it is straightforward that restriction to
p′-elements defines a natural bijection from Irrnex(B) onto IBr(B).

Now, let f = (b0)NCa−1 (D). By using the arguments in the previous para-
graphs applied to the block B0 in the group N , we have that the block f has pa

irreducible characters {χλ,f |λ ∈ Irr(D)}. Also, Irr(N |χ1D,f ) = {ψ1, . . . , ψe} =
Irrnex(B0), (χλ,f )N is irreducible for λ �= 1D, (χλ,f )N = (χµ,f )N if and only if
λ = µz for some z ∈ E, and that {(χλ,f )N |λ ∈ Λ} = Irrex(B0). Furthermore,
we also have that restriction to p′-elements defines a natural bijection from
Irrnex(B0) onto IBr(B0). Also f τ = fnτ for τ ∈ HB.

We define a bijection F : Irrex(B) → Irrex(B0). For λ �= 1D, we set

F ((χλ,b)G) = (χλ,f )N .

Notice that F is well-defined since (χλ,b)G = (χµ,b)G if and only if λ = µz for
some z ∈ E if and only if (χλ,f )N = (χµ,f )N . We claim that F commutes with
τ ∈ HB. If τ ∈ HB, then

((χλ,b)G)τ = ((χλ,b)τ )G = (χλτ ,bτ )G = (χλτ ,bnτ )G

= ((χλτ ,bnτ )n−1
τ )G = (χ

(λτ )n
−1
τ ,b

)G ,

and by the same reasoning,

((χλ,f )N )τ = (χ
(λτ )n

−1
τ ,f

)N .

Now,

F (((χλ,b)G)τ ) = F ((χ
(λτ )n

−1
τ ,b

)G) = (χ
(λτ )n

−1
τ ,f

)N = F ((χλ,b)G)τ ,

as claimed.
Next, let U = Da−1 
 G and Ḡ = G/U . If U = D, then N = G, B0 = B

and there is nothing to prove. So we may assume that U < D. Now, by
Lemma (3.3), B contains a unique block B̄ with cyclic defect group D/U .
Thus IBr(B̄) = IBr(B). Also, B0 contains a unique block B̄0 with defect
group D/U and IBr(B̄0) = IBr(B0). By Lemma (3.2), we have that B̄0 is the
Brauer correspondent of B̄. By the inductive hypothesis, there is a bijection
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IBr(B̄) → IBr(B̄0) commuting with τ ∈ HB. Hence, we have a bijection
S : IBr(B) → IBr(B0) commuting with every τ ∈ HB. Since restriction to
p-regular elements defines natural bijections of Irrnex(B) or Irrnex(B0) onto
IBr(B) or IBr(B0), respectively, the proof of the theorem is complete.

We mentioned the following consequence of Theorem (3.4) in the intro-
duction.

(3.5) Corollary.Let G be a finite group with a cyclic self -centralizing
Sylow p-subgroup P . Let χ ∈ Irrp′(G) and let x ∈ G be p-regular. Then
χ(x) = χ(xp).

Proof. Let σ be the Galois automorphism fixing p-power roots of unity and
sending ξ �→ ξp for p′-roots of unity ξ. Let C = CG(P ) = P and N = NG(P ).
Suppose that χ ∈ Irr(B), where B is a p-block of G. Since χ has p′-degree,
P is a defect group of B. We claim that B is the principal block of G. By
hypothesis, we have that CG(P ) = P . Therefore, a root b0 of B is the unique
(principal) block of P . By the Third Main Theorem, B = (b0)G is the principal
block of G. Notice also, that (b0)N is the unique block of N . In this case, N is
the stabilizer of b0 in N , and N/P is a cyclic group of order e dividing p − 1.
By Theorem (3.4), it suffices to check that all irreducible characters of N are
σ-fixed. Let ψ ∈ Irr(N) and let λ ∈ Irr(P ) be under ψ. If λ �= 1P , then ψ = λN

is σ-fixed. If λ = 1P , then ψ ∈ Irr(N/P ). Since xp = x for x ∈ N/P , it easily
follows that ψ is σ-fixed.

4. Sporadic groups

Suppose that G is an sporadic simple group and let P be a noncyclic Sylow
p-subgroup of G. We find the character values of every χ ∈ Irrp′(G) in the
ATLAS. In order to check our Conjecture A, we need therefore to know the
character tables of the groups N/P ′, where N = NG(P ). Note that all but
three of the groups N/P ′ are as described in [15]. (Those incorrectly described
are Co3 for p = 3, Fi23 for p = 5 and Fi′24 for p = 3.) Also, the character
tables of the Sylow normalizers N of the sporadic groups (and therefore of
the groups N/P ′) were calculated in his PhD thesis by Th. Ostermann ([14]),
except for the seven groups Th, Fi22, Fi23, Fi′24, HN , B and M . (We should
mention that the character tables of N/P ′ for J4 and p = 3 and G = Ly for
p = 2 exhibited in [14] are not correct.) All these character tables calculated
by Ostermann are now available in the GAP library ([7]). Also, the character
tables of the seven groups not treated by Ostermann have been calculated by
Thomas Breuer for the purposes of this paper and will appear in the library
of the next version of GAP.

With this information, we have checked Conjecture A for every sporadic
group.
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5. Self-normalizing Sylow subgoups

We mentioned in the introduction that a consequence of Conjecture A
that we can tell from the character table of G if a Sylow p-subgroup of G is
self-normalizing. Let us start with the case p = 2. This is a consequence of
the following elementary result.

(5.1) Lemma. Let G be a finite group and assume that x2 is conjugate to
x for every x ∈ G. Then G = 1.

Proof. By hypothesis, we see that G has odd order. Now, suppose that
G > 1 and let p be the smallest prime dividing |G|. Now, we let x ∈ G be of
order p. By hypothesis, there exists g ∈ G such that xg = x2. Now, 〈x〉g =
〈x2〉 = 〈x〉, and therefore g normalizes U = 〈x〉. However, NG(U)/CG(U) has
order dividing p − 1, and therefore NG(U) = CG(U). Thus x = xg = x2 and
x = 1, a contradiction.

(5.2) Theorem. Suppose that G is a finite group of order n, let P ∈
Syl2(G) and let σ ∈ Gal(Qn/Q) be the Galois automorphism fixing 2-roots of
unity and squaring 2′-roots of unity. Assume Conjecture A. Then P = NG(P )
if and only if all irreducible characters of G of odd degree are σ-fixed.

Proof. Assuming Conjecture A, we have to prove that a group G with
a normal abelian Sylow 2-subgroup P is a 2-group if and only if all of its
irreducible characters of G are σ-fixed. Of course, if G is a 2-group, this is
obvious since σ fixes 2-roots of unity. Now, assume that all the irreducible
characters of G are σ-fixed. In particular, all the irreducible characters of
H = G/P are σ-fixed. If ψ ∈ Irr(H) and x ∈ H, we have that ψ(x)σ = ψ(x2).
Therefore, x2 and x are H-conjugate for every x ∈ H, and by Lemma (5.1) we
deduce that H = 1.

P. Fong has shown that this consequence of Conjecture A is also true
for the alternating groups or for SL(2, q). For solvable groups, R. Gow has a
related result (when P/P ′ is elementary abelian, [8]). The obvious odd analog
of Theorem (5.2) does not work. For instance, if G = S3 and p = 7, then
all irreducible characters of G are σ-fixed, while the Sylow 7-subgroup of G is
normal!

(5.3) Theorem. Suppose that G is a finite group of order n, let p be
an odd prime dividing n and let P ∈ Sylp(G). Let θ ∈ Gal(Qn/Q) be fixing
p′-roots of unity and having order p − 1. Assume Conjecture A. Then P =
NG(P ) if and only if the principal character of G is the only irreducible char-
acter of p′-degree of G which is fixed by θ.
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Proof. Write N = NG(P ). Assume first that P < N . Then |Irr(N/P )|
≥ 2. Since all the characters in N/P are θ-fixed, by Conjecture A we deduce
that there are at least two irreducible characters of G of p′-degree that are
θ-fixed. Assume now that P = N . By Conjecture A, it is enough to show
that 1P is the only character of P/P ′ which is θ-fixed. Suppose that 1P �= λ ∈
Irr(P/P ′) is θ-fixed. Then, any power of λ is θ-fixed, and therefore, we may
assume that λ has order p. In particular, λ(x) is a primitive p-th root of unity
for some x ∈ G. Now, θ(λ(x)) = λ(x), and therefore θ acts trivially on the
field Qp. This is impossible since θ has order p − 1.

Recall that χ ∈ Irr(G) is p-rational if χ(g) ∈ Qm for every g ∈ G, where
m is the p′-part of |G|.

(5.4) Theorem. Let G be a finite group, p an odd prime, and let P ∈
Sylp(G). Assume Conjecture A. Then the number of p-rational characters in
Irrp′(G) and Irr(N/P ′) is the same.

Proof. Write |G| = pam, where m is not divisible by p. Then Gal(Q|G|/Qm)
∼= Gal(Qpa/Q) is cyclic. Let τ ∈ Gal(Q|G|/Qm) be any generator. Now, an
irreducible character χ of G (or of NG(P )) is p-rational if and only if χτ = χ.

Finally, we think that there is no reason to restrict ourselves to the
Alperin-McKay conjecture. We believe that the action of H is natural enough
so that the obvious versions of the Alperin Weight conjecture, Dade’s con-
jectures, or the Isaacs-Navarro conjecture should be true. It is perhaps also
worth mentioning that a slightly stronger version of our Conjecture A seems
to hold, namely, that the actions of H on the sets Irrp′(G) and Irrp′(NG(P ))
are permutation isomorphic.
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