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Quiver varieties and t-analogs of
q-characters of quantum affine algebras

By Hiraku Nakajima*

Abstract

We consider a specialization of an untwisted quantum affine algebra of
type ADE at a nonzero complex number, which may or may not be a root
of unity. The Grothendieck ring of its finite dimensional representations has
two bases, simple modules and standard modules. We identify entries of the
transition matrix with special values of “computable” polynomials, similar to
Kazhdan-Lusztig polynomials. At the same time we “compute” q-characters
for all simple modules. The result is based on “computations” of Betti numbers
of graded/cyclic quiver varieties. (The reason why we use “ ” will be explained
at the end of the introduction.)
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Introduction

Let g be a simple Lie algebra of type ADE over C, Lg = g ⊗ C[z, z−1]
be its loop algebra, and Uq(Lg) be its quantum universal enveloping algebra,
or the quantum loop algebra for short. It is a subquotient of the quantum
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affine algebra Uq(ĝ), i.e., without central extension and degree operator. Let
Uε(Lg) be its specialization at q = ε, a nonzero complex number. (See §1 for
definition.)

It is known that Uε(Lg) is a Hopf algebra. Therefore the category
RepUε(Lg) of finite dimensional representations of Uε(Lg) is a monoidal (or
tensor) abelian category. Let RepUε(Lg) be its Grothendieck ring. It is known
that RepUε(Lg) is commutative (see e.g., [15, Cor. 2]).

The ring RepUε(Lg) has two natural bases, simple modules L(P ) and
standard modules M(P ), where P is the Drinfeld polynomial. The latter were
introduced by the author [33].

The purpose of this article is to “compute” the transition matrix between
these two bases. More precisely, we define certain “computable” polynomials
ZPQ(t), which are analogs of Kazhdan-Lusztig polynomials for Weyl groups.
Then we show that the multiplicity [M(P ) : L(Q)] is equal to ZPQ(1). This
generalizes a result of Arakawa [1] who expressed the multiplicities by Kazhdan-
Lusztig polynomials when g is of type An and ε is not a root of unity. Fur-
thermore, coefficients of ZPQ(t) are equal to multiplicities of simple modules
of subquotients of standard modules with respect to a Jantzen filtration if we
combine our result with [16], where the transversal slice is as given in [33].

Since there is a slight complication when ε is a root of unity, we assume
ε is not so in this introduction. Then the definition of ZPQ(t) is as follows.

Let Rt
def.= RepUε(Lg) ⊗Z Z[t, t−1], which is a t-analog of the representation

ring. By [33], Rt is identified with the dual of the Grothendieck group of a
category of perverse sheaves on affine graded quiver varieties (see Section 4
for the definition) so that (1) {M(P )} is the specialization at t = 1 of the
dual base of constant sheaves of strata, extended by 0 to the complement,
and (2) {L(P )} is that of the dual base of intersection cohomology sheaves of
strata. A property of intersection cohomology complexes leads to the following
combinatorial definition of ZPQ(t): Let be the involution on Rt, dual to the
Grothendieck-Verdier duality. We denote the two bases of Rt by the same
symbols M(P ), L(P ) at the specialization at t = 1 for simplicity. Let us
express the involution in the basis {M(P )}P , classes of standard modules:

M(P ) =
∑

Q:Q≤P

uPQ(t)M(Q),

where ≤ is a certain ordering < among P ’s. We then define an element L(P ) by

L(P ) = L(P ), L(P ) ∈ M(P ) +
∑

Q:Q<P

t−1Z[t−1]M(Q).(0.1)

The above polynomials ZPQ(t) ∈ Z[t−1] are given by

M(P ) =
∑

Q:Q≤P

ZPQ(t)L(Q).
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The existence and uniqueness of L(P ) (and hence of ZPQ(t)) is proved exactly
as in the case of the Kazhdan-Lusztig polynomial. In particular, it gives us a
combinatorial algorithm computing ZPQ(t), once uPQ(t) is given.

In summary, we have the following analogy:

Rt the Iwahori-Hecke algebra Hq

standard modules {M(P )}P {Tw}w∈W

simple modules {L(P )}P Kazhdan-Lusztig basis {C ′
w}w∈W

See [22] for definitions of Hq, Tw, C ′
w.

The remaining task is to “compute” uPQ(t). For this purpose we introduce
a t-analog χ̂ε,t of the q-character, or ε-character. The original ε-character χε,
which is a specialization of our t-analog at t = 1, was introduced by Knight [23]
(for Yangian and generic ε) and Frenkel-Reshetikhin [15] (for generic ε) and
Frenkel-Mukhin [13] (when ε is a root of unity). It is an injective ring homo-
morphism from RepUε(Lg) to Z[Y ±

i,a]i∈I,a∈C∗ , a ring of Laurent polynomials
of infinitely many variables. It is an analog of the ordinary character homo-
morphism of the finite dimensional Lie algebra g. Our t-analog is an injective
Z[t, t−1]-linear map

χ̂ε,t : Rt → Ŷt
def.= Z[t, t−1, Vi,a, Wi,a]i∈I,a∈C∗ .

We have a simple, explicit definition of an involution on Ŷt (see (2.3)). The
involution on Rt is the restriction. Therefore the matrix (uPQ(t)) can be
expressed in terms of values of χ̂ε,t(M(P )) for all P .

We define χ̂ε,t as the generating function of Betti numbers of nonsingular
graded/cyclic quiver varieties. We axiomatize its properties. The axioms are
purely combinatorial statements in Ŷt, involving no geometry nor representa-
tion theory of Uε(Lg). Moreover, the axioms uniquely characterize χ̂ε,t, and
give us an algorithm for computation. Therefore the axioms can be considered
as a definition of χ̂ε,t. When g is not of type E8, we can directly prove the ex-
istence of χ̂ε,t satisfying the axioms without using geometry or representation
theory of Uε(Lg).

Two of the axioms are most important. One is the characterization of the
image of χ̂ε,t. Another is the multiplicative property.

The former is a modification of Frenkel-Mukhin’s result [12]. They give a
characterization of the image of χε, as an analog of the Weyl group invariance
of the ordinary character homomorphism. And they observed that the charac-
terization gives an algorithm computing χε at l -fundamental representations.
This property has no counterpart in the ordinary character homomorphism for
g, and is one of the most remarkable features of χε. We use a t-analog of their
characterization to “compute” χ̂ε,t for l -fundamental representations.

A standard module M(P ) is a tensor product of l -fundamental repre-
sentations in RepUε(Lg) (see Corollary 3.7 or [39]). If χ̂ε,t would be a ring
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homomorphism, then χ̂ε,t(M(P )) is just a product of χ̂ε,t of l -fundamental
representations. This is not true under the usual ring structures on Rt and
Ŷt. We introduce ‘twistings’ of multiplications on Rt, Ŷt so that χ̂ε,t is a ring
homomorphism. The resulting algebras are not commutative.

We can add another column to the table above by [25].

U−
q : the − part of the quantized enveloping algebra

PBW basis
canonical basis

In fact, when g is of type A, affine graded quiver varieties are varieties used for
the definition of the canonical base [25]. Therefore it is more natural to relate
Rt to the dual of U−

q . In this analogy, χ̂ε,t can be considered as an analog of
Feigin’s map from U−

q to the skew polynomial ring ([18], [19], [2], [38]). We
also have an analog of the monomial base, (E((c)) in [25, 7.8]. See also [7],
[38].)

This article is organized as follows. In Section 1 we recall results on quan-
tum loop algebras and their finite dimensional representations. In Section 2
we introduce a twisting of the multiplication on Ŷt. In Section 3 we give ax-
ioms which χ̂ε,t satisfies and derive their consequences. In particular, χ̂ε,t is
uniquely determined from the axioms. In Section 4 we introduce graded and
cyclic quiver varieties, which will be used to prove the existence of χ̂ε,t sat-
isfying the axioms. In Sections 5, 6, 7 we check that a generating function
of Betti numbers of nonsingular graded/cyclic quiver varieties satisfies the ax-
ioms. In Section 8 we prove the characterization of simple modules mentioned
above. In Section 9 we study the case ε = ±1 in detail. In Section 10 we
state a conjecture concerning finite dimensional representations studied in the
literature [37], [17].

In this introduction and also in the main body of this article, we enclose
the word compute in quotation marks. What we actually do in this article
is to give a purely combinatorial algorithm to compute something. The au-
thor wrote a computer program realizing the algorithm for computing χ̂ε,t for
l -fundamental representations when g is of type E. Up to this moment (2001,
April), the program produces the answer except two l -fundamental represen-
tations of E8. It took three days for the last successful one, and the remaining
ones are inaccessible so far. In this sense, our character formula is not com-
putable in a strict sense.

The result of this article for generic ε was announced in [34].

Acknowledgement. The author would like to thank D. Hernandez and
E. Frenkel for pointing out mistakes in an earlier version of this paper.
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1. Quantum loop algebras

1.1. Definition. Let g be a simple Lie algebra of type ADE over C. Let
I be the index set of simple roots. Let {αi}i∈I , {hi}i∈I , {Λi}i∈I be the sets of
simple roots, simple co-roots and fundamental weights of g respectively. Let P

be the weight lattice, and P ∗ be its dual. Let P+ be the semigroup of dominant
weights.

Let q be an indeterminant. For nonnegative integers n ≥ r, define

[n]q
def.=

qn − q−n

q − q−1
,

[n]q!
def.=

{
[n]q[n − 1]q · · · [2]q[1]q (n > 0),
1 (n = 0),

[
n

r

]
q

def.=
[n]q!

[r]q![n − r]q!
.

Later we consider another indeterminant t. We define a t-binomial coefficient
[ n

r ]t by replacing q by t.
Let Uq(Lg) be the quantum loop algebra associated with the loop algebra

Lg = g ⊗ C[z, z−1] of g. It is an associative Q(q)-algebra generated by ei,r,
fi,r (i ∈ I, r ∈ Z), qh (h ∈ P ∗), hi,m (i ∈ I, m ∈ Z \ {0}) with the following
defining relations:

q0 = 1, qhqh′
= qh+h′

, [qh, hi,m] = 0, [hi,m, hj,n] = 0,

qhei,rq
−h = q〈h,αi〉ei,r, qhfi,rq

−h = q−〈h,αi〉fi,r,

(z − q±〈hj ,αi〉w)ψs
i (z)x±

j (w) = (q±〈hj ,αi〉z − w)x±
j (w)ψs

i (z),[
x+

i (z), x−
j (w)

]
=

δij

q − q−1

{
δ
(w

z

)
ψ+

i (w) − δ
( z

w

)
ψ−

i (z)
}

,

(z − q±2〈hj ,αi〉w)x±
i (z)x±

j (w) = (q±2〈hj ,αi〉z − w)x±
j (w)x±

i (z),∑
σ∈Sb

b∑
p=0

(−1)p

[
b

p

]
q

x±
i (zσ(1)) · · ·x±

i (zσ(p))x
±
j (w)

· · ·x±
i (zσ(p+1))x

±
j (zσ(b)) = 0, if i �= j,

where s = ±, b = 1−〈hi, αj〉, and Sb is the symmetric group of b letters. Here
δ(z), x+

i (z), x−
i (z), ψ±

i (z) are generating functions defined by

δ(z) def.=
∞∑

r=−∞
zr, x+

i (z) def.=
∞∑

r=−∞
ei,rz

−r, x−
i (z) def.=

∞∑
r=−∞

fi,rz
−r,

ψ±
i (z) def.= q±hi exp

(
±(q − q−1)

∞∑
m=1

hi,±mz∓m

)
.
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We also need the following generating function

p±i (z) def.= exp

(
−

∞∑
m=1

hi,±m

[m]q
z∓m

)
.

Also, ψ±
i (z) = q±hip±i (qz)/p±i (q−1z).

Let e
(n)
i,r

def.= en
i,r/[n]q!, f

(n)
i,r

def.= fn
i,r/[n]q!. Let UZ

q (Lg) be the Z[q, q−1]-

subalgebra generated by e
(n)
i,r , f

(n)
i,r and qh for i ∈ I, r ∈ Z, h ∈ P ∗.

Let UZ
q (Lg)+ (resp. UZ

q (Lg)−) be the Z[q, q−1]-subalgebra generated by

e
(n)
i,r (resp. f

(n)
i,r ) for i ∈ I, r ∈ Z, n ∈ Z>0. Now, UZ

q (Lg)0 is the Z[q, q−1]-
subalgebra generated by qh, the coefficients of p±i (z) and[

qhi ;n
r

]
def.=

r∏
s=1

qhiqn−s+1 − q−hiq−n+s−1

qs − q−s

for all h ∈ P , i ∈ I, n ∈ Z, r ∈ Z>0. Thus, UZ
q (Lg) = UZ

q (Lg)+ · UZ
q (Lg)0 ·

UZ
q (Lg)− ([5, 6.1]).

Let ε be a nonzero complex number. The specialization UZ
q (Lg)⊗Z[q,q−1]C

with respect to the homomorphism Z[q, q−1] 	 q 
→ ε ∈ C∗ is denoted by
Uε(Lg). Set

Uε(Lg)± def.= UZ
q (Lg)± ⊗Z[q,q−1] C, Uε(Lg)0 def.= UZ

q (Lg)0 ⊗Z[q,q−1] C.

It is known that Uq(Lg) is isomorphic to a subquotient of the quantum
affine algebra Uq(ĝ) defined in terms of Chevalley generators ei, fi,
qh (i ∈ I ∪ {0}, h ∈ P ∗ ⊕ Zc). (See [11], [2].) Using this identification,
we define a coproduct on Uq(Lg) by

∆qh = qh ⊗ qh, ∆ei = ei ⊗ q−hi + 1 ⊗ ei,

∆fi = fi ⊗ 1 + qhi ⊗ fi.

Note that this is different from one in [27], although there is a simple relation
between them [20, 1.4]. The results in [33] hold for either co-multiplication
(tensor products appear in (1.2.19) and (14.1.2)). In [34, §2] another co-
multiplication was used.

It is known that the subalgebra UZ
q (Lg) is preserved under ∆. Therefore

Uε(Lg) also has an induced coproduct.
For a ∈ C∗, there is a Hopf algebra automorphism τa of Uq(Lg), given by

τa(ei,r) = arei,r, τa(fi,r) = arfi,r, τa(hi,m) = amhi,m, τa(qh) = qh,

which preserves UZ
q (Lg) ⊗Z[q,q−1] C[q, q−1] and induces an automorphism of

Uε(Lg), which is denoted also by τa.
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We define an algebra homomorphism from Uε(g) to Uε(Lg) by

ei 
→ ei,0, fi 
→ fi,0, qh 
→ qh (i ∈ I, h ∈ P ∗).(1.2)

(See [33, §1.1] for the definition of Uε(g).)

1.2. Finite dimensional representation of Uε(Lg). Let V be a Uε(Lg)-
module. For λ ∈ P , we define

Vλ
def.=

{
v ∈ V

∣∣∣∣ qhv = ε〈h,λ〉v,

[
qhi ; 0

r

]
v =

[
〈hi, λ〉

r

]
ε

v

}
.

The module V is said to be of type 1 if V =
⊕

λ Vλ. In what follows we consider
only modules of type 1.

By (1.2) any Uε(Lg)-module V can be considered as a Uε(g)-module.
This is denoted by Res V . The above definition is based on the definition of
type 1 representation of Uε(g), i.e., V is of type 1 if and only if ResV is of
type 1.

A Uε(Lg)-module V is said to be an l-highest weight module if there exists
a vector v such that Uε(Lg)+ · v = 0, Uε(Lg)0 · v ⊂ Cv and V = Uε(Lg) · v.
Such v is called an l-highest weight vector.

Theorem 1.3 ([5]). A simple l -highest weight module V with an l -highest
weight vector v is finite dimensional if and only if there exists an I-tuple of
polynomials P = (Pi(u))i∈I with Pi(0) = 1 such that

qhv = ε〈h,
∑

i deg PiΛi〉v,

[
qhi ; 0

r

]
v =

[
deg Pi

r

]
ε

v,

p+
i (z)v = Pi(1/z)v, p−i (z)v = c−1

Pi
zdeg PiPi(1/z)v,

where cPi
is the top term of Pi, i.e., the coefficient of udeg Pi in Pi.

The I-tuple of polynomials P is called the l-highest weight, or the Drinfeld
polynomial of V . We denote the above module V by L(P ) since it is determined
by P .

For i ∈ I and a ∈ C∗, the simple module L(P ) with

Pi(u) = 1 − au, Pj(u) = 1 if j �= i,

is called an l-fundamental representation and denoted by L(Λi)a.
Let V be a finite dimensional Uε(Lg)-module with the weight space de-

composition V =
⊕

Vλ. Since the commutative subalgebra Uε(Lg)0 preserves
each Vλ, we can further decompose V into a sum of generalized simultaneous
eigenspaces of Uε(Lg)0.
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Theorem 1.4 ([15, Prop. 1], [13, Lemma 3.1], [33, 13.4.5]). Simultaneous
eigenvalues of Uε(Lg)0 have the following forms:

ε〈h,deg Q1
i−deg Q2

i 〉 for qh,

[
deg Q1

i − deg Q2
i

r

]
ε

for
[
qhi ; 0

r

]
,

Q1
i (1/z)

Q2
i (1/z)

for p+
i (z),

c−1
Q1

i
zdeg Q1

i Q1
i (1/z)

c−1
Q2

i
zdeg Q2

i Q2
i (1/z)

for p−i (z),

where Q1
i , Q2

i are polynomials with Q1
i (0) = Q2

i (0) = 1 and cQ1
i
, cQ2

i
are as

above.

We simply write the I-tuple of rational functions (Q1
i (u)/Q2

i (u)) by Q.
A generalized simultaneous eigenspace is called an l-weight space. The cor-
responding I-tuple of rational functions is called an l-weight. We denote the
l -weight space by VQ.

The q-character, or ε-character [15], [13] of a finite dimensional Uε(Lg)-
module V is defined by

χε(V ) =
∑
Q

dimVQ eQ.

The precise definition of eQ will be explained in the next section.

1.3. Standard modules. We will use another family of finite dimensional
l -highest weight modules, called standard modules.

Let w ∈ P+ be a dominant weight. Let wi = 〈hi,w〉 ∈ Z≥0. Let Gw =∏
i∈I GL(wi, C). Its representation ring R(Gw) is the invariant part of the

Laurent polynomial ring:

R(Gw)

= Z[x±
1,1, . . . , x

±
1,w1

]Sw1⊗Z[x±
2,1, . . . , x

±
2,w2

]Sw2⊗· · ·⊗Z[x±
n,1, . . . , x

±
n,wn

]Swn ,

where we put a numbering 1, . . . , n to I. In [33], we constructed a UZ
q (Lg)⊗Z

R(Gw)-module M(w) such that it is free of finite rank over R(Gw)⊗Z[q, q−1]
and has a vector [0]w satisfying

ei,r[0]w = 0 for any i ∈ I, r ∈ Z,

M(w) =
(
UZ

q (Lg)− ⊗Z R(Gw)
)

[0]w,

qh[0]w = q〈h,w〉[0]w,

p+
i (z)[0]w =

wi∏
p=1

(
1 − xi,p

z

)
[0]w,

p−i (z)[0]w =
wi∏

p=1

(
1 − z

xi,p

)
[0]w.
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If an I-tuple of monic polynomials P (u) = (Pi(u))i∈I with deg Pi = wi is given,
then we define a standard module by the specialization

M(P ) = M(w) ⊗R(Gw)[q,q−1] C,

where the algebra homomorphism R(Gw)[q, q−1] → C sends q to ε and xi,1, . . . ,

xi,wk
to roots of Pi. The simple module L(P ) is the simple quotient of M(P ).

The original definition of the universal standard module [33] is geomet-
ric. However, it is not difficult to give an algebraic characterization. Let
M(Λi) be the universal standard module for the dominant weight Λi. It is a
UZ

q (Lg)[x, x−1]-module. Let W (Λi) = M(Λi)/(x − 1)M(Λi). Then we have:

Theorem 1.5 ([35, 1.22]). Put a numbering 1, . . . , n on I. Let wi =
〈hi,w〉. The universal standard module M(w) is the UZ

q (Lg) ⊗Z R(Gλ)-sub-
module of

W (Λ1)⊗w1 ⊗ · · · ⊗ W (Λn)⊗wn ⊗ Z[q, q−1, x±
1,1, . . . , x

±
1,w1

, · · · , x±
n,1, . . . , x

±
n,wn

]

(the tensor product is over Z[q, q−1]) generated by
⊗

i∈I [0]⊗λi

Λi
. (The result

holds for the tensor product of any order.)

It is not difficult to show that W (Λi) is isomorphic to a module studied
by Kashiwara [21] (V (λ) in his notation). Since his construction is algebraic,
the standard module M(w) has an algebraic construction.

We also prove that M(P 1P 2) is equal to M(P 1) ⊗ M(P 2) in the rep-
resentation ring RepUε(Lg) later. (See Corollary 3.7.) Here the I-tuple of
polynomials (PiQi)i for P = (Pi)i, Q = (Qi)i is denoted by PQ for brevity.

2. A modified multiplication on Ŷt

We use the following polynomial rings in this article:

Ŷt
def.= Z[t, t−1, Vi,a, Wi,a]i∈I,a∈C∗ ,

Yt
def.= Z[t, t−1, Yi,a, Y

−1
i,a ]i∈I,a∈C∗ ,

Y
def.= Z[Yi,a, Y

−1
i,a ]i∈I,a∈C∗ ,

Y
def.= Z[yi, y

−1
i ]i∈I .

We consider Ŷt as a polynomial ring in infinitely many variables Vi,a, Wi,a

with coefficients in Z[t, t−1]. So a monomial means a monomial only in Vi,a,
Wi,a, containing no t, t−1. The same convention applies also to Yt.

For a monomial m ∈ Ŷt, let wi,a(m), vi,a(m) ∈ Z≥0 be the degrees in Vi,a,
Wi,a; i.e.,

m =
∏
i,a

V
vi,a(m)
i,a W

wi,a(m)
i,a .
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We also define

ui,a(m) def.= wi,a(m) − vi,aε−1(m) − vi,aε(m) +
∑

j:Cji=−1

vj,a(m).

When ε is not a root of unity, we define (ũi,a(m))i∈I,a∈C∗ for a monomial
m in Ŷt, as the solution of

ui,a(m) = ũi,aε−1(m) + ũi,aε(m) −
∑

j:aij=−1

ũj,a(m).

To solve the system, we may assume that ui,a(m) = 0 unless a is a power of q.
Then the above is a recursive system, since q is not a root of unity. Thus, it
has a unique solution such that ũi,qs(m) = 0 for sufficiently small s. Note that
ũi,a(m) is nonzero for possibly infinitely many a’s, although ui,a(m) is not.

If m1, m2 are monomials, we set

d(m1, m2) def.=
∑
i,a

(
vi,aε(m1)ui,a(m2) + wi,aε(m1)vi,a(m2)

)
(2.1)

=
∑
i,a

(
ui,a(m1)vi,aε−1(m2) + vi,a(m1)wi,aε−1(m2)

)
.

From the definition, d( , ) satisfies

d(m1m2, m3) = d(m1, m3) + d(m2, m3),(2.2)

d(m1, m2m3) = d(m1, m2) + d(m1, m3).

When ε is not a root of unity, we also define

d̃(m1, m2) def.= −
∑
i,a

ui,a(m1)ũi,aε−1(m2).

Since ui,a(m2) = 0 except for finitely many a’s, this is well-defined. Moreover,
we have

d̃(m1, m2) = d(m1, m2) + d̃W (m1, m2),

where d̃W is defined as d̃ by replacing ui,a by wi,a. Here we have used ũi,a(m) =
w̃i,a(m) − vi,a(m).

We define a ring involution on Ŷt by

t = t−1, m = t2d(m,m)m,(2.3)

where m is a monomial in Vi,a, Wi,a. We define a ring involution on Yt by
t = t−1, Y ±

i,a = Y ±
i,a.

We define a new multiplication ∗ on Ŷt by

m1 ∗ m2 def.= t2d(m1,m2)m1m2,
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where m1, m2 are monomials and m1m2 is the usual multiplication of m1 and
m2. By (2.2) it is associative. (NB: The multiplication in [34] was m1 ∗m2 def.=
t2d(m2,m1)m1m2. This is because the coproduct is changed.)

From the definition we have

m1 ∗ m2 = m2 ∗ m1.(2.4)

Let us give an example which will be important later. Suppose that m is
a monomial with ui,a(m) = 1, ui,b(m) = 0 for b �= a for some i. Then

[m(1 + Vi,aε)]
∗n def.= m(1 + Vi,aε) ∗ · · · ∗ m(1 + Vi,aε)︸ ︷︷ ︸

n times

(2.5)

= mn
n∑

r=0

tr(n−r)

[
n

r

]
t

V r
i,aε.

When ε is not a root of unity, there is another multiplication ∗̃ defined by

m1∗̃m2 def.= td̃(m1,m2)−d̃(m2,m1)m1m2.

We define a Z[t, t−1]-linear homomorphism Π̂: Ŷt → Yt by

m =
∏
i,a

V
vi,a(m)
i,a W

wi,a(m)
i,a 
−→ t−d(m,m)

∏
i,a

Y
ui,a(m)
i,a .(2.6)

This is not a ring homomorphism with respect to either the ordinary multi-
plication or ∗. However, when ε is not a root of unity, we can define a new
multiplication on Yt so that the above is a ring homomorphism with respect
to this multiplication and ∗̃. It is because ε(m1, m2) involves only ui,a(m1),
ui,a(m2). We denote also by ∗̃ the new multiplication on Yt. We have

Π̂(m1 ∗ m2) = td̃W (m1,m2)−d̃W (m2,m1)Π̂(m1)∗̃Π̂(m2),(2.7)

Π̂ ◦ = ◦ Π̂.

Further we define homomorphisms Πt : Yt → Y, Π: Y → Z[y±i ] by

Πt : Yt 	
t 
−→ 1

Yi,a 
−→ Yi,a

∈ Y, Π: Y 	 Yi,a 
−→ yi ∈ Z[yi, y
−1
i ]i∈I .

The composition Ŷt → Y or Ŷt → Z[y±i ] is a ring homomorphism with respect
to both the usual multiplication and ∗.

Definition 2.8. A monomial m ∈ Ŷt is said to be i-dominant if ui,a(m) ≥ 0
for any i ∈ I. A monomial m ∈ Ŷt is said to be l-dominant if it is i-dominant
for all i ∈ I, i.e., Π̂(m) contains only nonnegative powers of Yi,a. Similarly a
monomial m ∈ Y is called l-dominant if it contains only nonnegative powers
of Yi,a. Note that a monomial m ∈ Z[yi, y

−1
i ]i∈I contains only nonnegative

powers of yi if and only if it is dominant as a weight of g.
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Let

m =
∏
i,a

Y
ui,a

i,a

be a monomial in Y with ui,a ∈ Z. We associate to m an I-tuple of rational
functions Q = (Qi) by

Qi(u) =
∏
a

(1 − au)ui,a .

Conversely an I-tuple of rational functions Q = (Qi) with Qi(0) = 1 determines
a monomial in Y. We denote it by eQ. This is the eQ mentioned in the previous
section. Note that eQ is l -dominant if and only if Q is an I-tuple of polynomials.

We also use a similar identification between an I-tuple of polynomials
P = (Pi) with Pi(0) = 1 and a monomial m in Wi,a (i ∈ I, a ∈ C∗):

m =
∏
i,a

W
wi,a

i,a ←→ P = (Pi); Pi(u) =
∏
a

(1 − au)wi,a .

We denote m also by eP , hoping that it makes no confusion.

Definition 2.9. Let m, m′ be monomials in Ŷt. We say that m ≤ m′ if
m/m′ is a monomial in Vi,a (i ∈ I, a ∈ C∗). We say m < m′ if m ≤ m′

and m �= m′. It defines a partial order among monomials in Ŷt. Similarly
for monomials m, m′ in Y, we say m ≤ m′ if m/m′ is a monomial in Π̂(Vi,a)
(i ∈ I, a ∈ C∗). For two I-tuples of rational functions Q, Q′, we say Q ≤ Q′

if eQ ≤ eQ′
. Finally for monomials m, m′ in Z[yi, y

−1
i ]i∈I , we say m ≤ m′ if

m/m′ is a monomial in Π ◦ Πt ◦ Π̂(Vi,a) (i ∈ I, a ∈ C∗). But this is nothing
but the usual order on weights.

3. A t-analog of the q-character: Axioms

A main tool in this article is a t-analog of the q-character:

χ̂ε,t : Rt = RepUε(Lg) ⊗Z Z[t, t−1] → Ŷt.

For the definition we need geometric constructions of standard modules, so
we will postpone it to Section 4. In this section, we explain properties of χ̂ε,t

as axioms. Then we show that these axioms uniquely characterize χ̂ε,t, and
in fact, give us an algorithm for “computation”. Thus we may consider the
axioms as the definition of χ̂ε,t.

Our first axiom is the highest weight property:

Axiom 1. The value of χ̂ε,t at a standard module M(P ) has a form

χ̂ε,t(M(P )) = eP +
∑

am(t)m,

where each monomial m satisfies m < eP .
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Composing maps Ŷt → Yt, Yt → Y, Y → Z[y±i ] in Section 2, we define
maps

χε,t = Π̂ ◦ χ̂ε,t : Rt → Yt,

χε = Πt ◦ χε,t : RepUε(Lg) → Y, χ = Π ◦ χε : RepUε(Lg) → Z[yi, y
−1
i ]i∈I .

χ̂ε,t is a homomorphism of Z[t, t−1]-modules, not of rings.
Frenkel-Mukhin [12, 5.1, 5.2] proved that the image of χε is equal to⋂

i∈I

(
Z[Y ±

j,a]j:j �=i,a∈C∗ ⊗ Z[Yi,b(1 + Vi,bε)]b∈C∗

)
.

We define its t-analog, replacing (1 + Vi,bε)n by
n∑

r=0

tr(n−r)

[
n

r

]
t

V r
i,bε.

More precisely, for each i ∈ I, let K̂t,i be the Z[t, t−1]-linear subspace of Ŷt

generated by elements

Ei(m) def.= m
∏
a

ui,a(m)∑
ra=0

tra(ui,a(m)−ra)

[
ui,a(m)

ra

]
t

V ra

i,aε,(3.1)

where m is an i-dominant monomial, i.e., ui,a(m) ≥ 0 for all a ∈ C∗. Let

K̂t
def.=

⋂
i

K̂t,i, Kt
def.= Π̂(K̂t) ⊂ Yt.

Axiom 2. The image of χ̂ε,t is contained in K̂t.

The next axiom is about the multiplicative property of χ̂ε,t. As explained
in the introduction, it is not multiplicative under the usual product structure
on Rt.

Axiom 3. Suppose that two I-tuples of polynomials P 1 = (P 1
i ), P 2 = (P 2

i )
with P 1

i (0) = P 2
i (0) = 1 satisfy the following conditions:

a/b /∈ {εn | n ∈ Z, n ≥ 2} for any pair a, b with(3.2)

P 1
i (1/a) = 0, P 2

j (1/b) = 0 (i, j ∈ I).

Then
χ̂ε,t(M(P 1P 2)) = χ̂ε,t(M(P 1)) ∗ χ̂ε,t(M(P 2)).

We have the following special case

χ̂ε,t(M(P 1P 2)) = χ̂ε,t(M(P 1))χ̂ε,t(M(P 2))

under the stronger condition a/b /∈ εZ by the definition of ∗.
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The last axiom is about specialization at a root of unity. Suppose that ε is
a primitive s-th root of unity. We choose and fix q, which is not a root of unity.
The axiom will say that χ̂ε,t(M(P )) can be written in terms of χ̂q,t(M(Pq))
for some Pq.

By Axiom 3, more precisely, the sentence following Axiom 3, we may
assume that inverses of roots of Pi(u) = 0 (i ∈ I) are contained in aεZ for
some a ∈ C∗. Therefore

Pi(u) =
s−1∏
n=0

(1 − aεnu)Ni,n ,

with Ni,n ∈ Z≥0. We define Pq = ((Pq)i) by

(Pq)i(u) =
s−1∏
n=0

(1 − aqnu)Ni,n ,

and set Ni,n = 0 if n /∈ {0, . . . , s − 1}.
Let

χ̂q,t(M(Pq)) =
∑

am(t)m.

By previous axioms, each m is written as

m = ePq

∏
i∈I,n∈Z

V
Mi,n

i,aqn =
∏

i∈I,n∈Z
W

Ni,n

i,aqnV
Mi,n

i,aqn(3.3)

with Mi,n ∈ Z≥0. By previous axioms Mi,n is independent of q (cf. Theo-
rem 3.5(4)). We define monomials m|q=ε, m[k] by

m|q=ε
def.=

∏
i∈I,n∈Z

W
Ni,n

i,aεnV
Mi,n

i,aεn ,(3.4)

m[k] def.=
∏

i∈I,n∈Z
W

Ni,n+k

i,aqn V
Mi,n+k

i,aqn .

Note that m|q=ε = m[k]|q=ε if k ≡ 0 mod s. Now,

D−(m) def.=
∑
k<0

dq(m, m[ks]),

where we define dq as d in (2.1) replacing ε by q.

Axiom 4.

χ̂ε,t(M(P )) =
∑

t2D−(m) am(t)m|q=ε.

We can consider similar axioms for χε = Πt ◦ Π̂ ◦ χ̂ε,t. Axioms 3 and 4
are simplified when t = 1. Axiom 3 is χε(M(P 1P 2)) = χε(M(P 1))χε(M(P 2)).
Axiom 4 says χε(M(P )) = χq(M(P ))|q=ε. The original χε defined in [15], [13]
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satisfies those axioms: Axioms 1 and 2 were proved in [12, Th. 4.1, Th. 5.1].
Axiom 3 was proved in [15, Lemma 3]. Axiom 4 was proved in [13, Th. 3.2].

Let us give few consequences of the axioms.

Theorem 3.5. (1) The map χε,t (and hence also χ̂ε,t) is injective. The
image of χε,t is equal to Kt.

(2) Suppose that a Uε(Lg)-module M has the following property : χ̂ε,t(M)
contains only one l -dominant monomial m0. Then χ̂ε,t(M) is uniquely deter-
mined from m0 and the condition χ̂ε,t(M) ∈ K̂t.

(3) Let m be an l -dominant monomial in Yt, considered as an element of
the dual of Rt by taking the coefficient of χε,t at m. Then {m | m is l -dominant}
is a base of the dual of Rt.

(4) The χ̂ε,t is unique, if it exists.

(5) χ̂ε,t(τ∗
a (V )) is obtained from χ̂ε,t(V ) by replacing Wi,b, Vi,b by Wi,ab,

Vi,ab.

(6) The coefficient of a monomial m in χ̂ε,t(M(P )) is a polynomial in t2.
(In fact, it will become clear that it is a polynomial in t2 with nonnegative
coefficients.)

Proof. These are essentially proved in [15], [12]. So our proof is sketchy.

(1) Since χε,t(M(P )) equals Π̂(eP ) plus the sum of lower monomials, the
first assertion follows by induction on <. The second assertion follows from
the argument in [12, 5.6], where we use the standard module M(P ) instead of
simple modules.

(2) Let m be a monomial appearing in χ̂ε,t(M), which is not m0. It is not
l -dominant by the assumption. By Axiom 2, m appears in Ei(m′) for some
monomial m′ appearing in χ̂ε,t(M). In particular, we have m < m′. Repeating
the argument for m′, we have m < m0.

The coefficient of m in χ̂ε,t(M) is equal to the sum of coefficients of m

in Ei(m′) for all possible m′’s. (i is fixed.) Again by induction on <, we can
determine the coefficient inductively.

(3) By Axiom 1, the transition matrix between {M(P )} and the dual base
of {m} above is upper-triangular with diagonal entries 1.

(4) By Axiom 4, we may assume that ε is not a root of unity. Consider the
case Pi(u) = 1− au, Pj(u) = 1 for j �= i for some i. By [12, Cor. 4.5], Axiom 1
implies that the χ̂ε,t(M(P )) for P does not contains l -dominant terms other
than eP . (See Proposition 4.13 below for a geometric proof.) In particular,
χ̂ε,t(M(P )) is uniquely determined by (2) above in this case. We use Axiom 3
to “calculate” χ̂ε,t(M(P )) for arbitrary P as follows. We order inverses of
roots (counted with multiplicities) of Pi(u) = 0 (i ∈ I) as a1, a2, . . . , so that
ap/aq �= εn for n ≥ 2 if p < q. This is possible since ε is not a root of unity.
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For each ap, we define a Drinfeld polynomial Qp by

Qp
ip

(u) = (1 − apu), Qp
j (u) = 1 (j �= ip),

if 1/ap is a root of Pip
(u) = 0. Therefore we have Pi =

∏
p Qp

i . By our choice,

χ̂ε,t(M(P )) = χ̂ε,t(M(Q1)) ∗ χ̂ε,t(M(Q2)) ∗ · · ·
by Axiom 3. Each χ̂ε,t(M(Qp)) is uniquely determined by the above discussion.
Therefore χ̂ε,t(M(P )) is also uniquely determined.

(5) It is enough to check the case V = M(P ). In this case, τ∗
a (M(P )) is

the standard module with Drinfeld polynomial P (au). The assertion follows
from the axioms.

(6) This also follows from the axioms. By Axiom 4, we may assume ε is
a root of unity. By Axiom 3, we may assume M(P ) is an l -fundamental rep-
resentation. In this case, the assertion follows from Axiom 2, since tr(n−r) [ n

r ]t
is a polynomial in t2.

In [12, §5.5], Frenkel-Mukhin gave an explict combinatorial algorithm to
“compute” χ̂ε,t(M) for M as in (2). We will give a geometric interpretation of
their algorithm in Section 5.

By the uniqueness, we get:

Corollary 3.6. The χε coincides with the ε-character defined in [15],
[13].

By [15, Th. 3], χ is the ordinary character of the restriction of a Uε(Lg)-
module to a Uε(g)-module.

As promised, we prove:

Corollary 3.7. In the representation ring RepUε(Lg),

M(P 1P 2) = M(P 1) ⊗ M(P 2)

for any I-tuples of polynomials P 1, P 2.

Proof. Since χε is injective, it is enough to show that χε(M(P 1P 2)) =
χε(M(P 1))χε(M(P 2)).

In fact, it is easy to prove this equality directly from the geometric defi-
nition in (4.12). However, we prove it only from the axioms.

By Axiom 4, we may assume ε is not a root of unity. We order inverses
of roots (counted with multiplicities) of P 1

i P 2
i (u) = 0 (i ∈ I) as in the proof of

Theorem 3.5(4). Then we have

χε(M(P 1P 2)) =
∏
p

χε(M(Qp))

by Axiom 3. The product can be taken in any order, since RepUε(Lg) is
commutative. Each ap is either the inverse of a root of P 1

i (u) = 0 or P 2
i (u) = 0.
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We divide ap’s into two sets accordingly. Then the products of χε(M(Qa)) over
groups are equal to χε(M(P 1)) and χε(M(P 2)) again by Axiom 3. Therefore
we get the assertion.

We also give another consequence of the axioms.

Theorem 3.8. The K̂t is invariant under the multiplication ∗ and the
involution on Ŷt. Moreover, Rt has an involution induced from one on Ŷt.
When ε is not a root of unity, it also has a multiplication induced from that
on Yt.

The following proof is elementary, but less conceputal. We will give an-
other geometric proof in Section 6.

Remark 3.9. The multiplication on Rt in an earlier version was not as-
sociative, although it works for the computation of tensor product decompo-
sitions of two simple modules. A modification of the multiplication here was
inspired by a paper of Varagnolo-Vasserot [40].

Proof. For simplicity, we assume that ε is not a root of unity. The proof
for the case when ε is a root of unity can be given by a straightforward modi-
fication.

Let us show f ∗ g ∈ K̂t for f , g ∈ K̂t. By induction and (2.5) we may
assume that f is of the form

m′ (1 + Vi,bε) ,

where m′ is a monomial with ui,b(m′) = 1, ui,c(m′) = 0 for c �= b, and that
g = Ei(m) is as in (3.1). By a direct calculation, we get

t−2d(m′,m)f ∗ g − Ei(mm′)

=
(
t2n− 1

)
mm′

∏
a�=bε−2

ui,a(m)∑
ra=0

tra(ui,a(m)−ra)

[
ui,a(m)

ra

]
t

V ra
i,aε

n−1∑
s=0

ts(n−s)

[
n − 1

s

]
t

V s+1
i,bε−1

where n = ui,bε−2(m). If n = 0, then the right-hand side is zero, so the assertion
is obvious. If n �= 0, then

ui,a

(
mm′Vi,bε−1

)
=

{
ui,bε−2(m) − 1 if a = bε−2,

ui,a(m) otherwise.

Therefore the above expression is equal to
(
t2n − 1

)
Ei

(
mm′Vi,bε−1

)
.

Next we show the closedness of the image under the involution. By (2.4)
and the above assertion, we may assume f = m′ (1 + Vi,bε) as above. We
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further assume m′ does not contain t, t−1. Then we get

f = t2d(m′,m′)f.

This is contained in K̂t.
Now we can define ∗̃ and on Rt so that

χε,t(V ) = Π̂
(
χ̂ε,t(V )

)
= χε,t(V ),

χε,t(V1∗̃V2) =χε,t(V1)∗̃χε,t(V2),

where we have assumed that ε is not a root of unity for the second equality. By
the above discussion together with (2.7), the right-hand sides are contained in
Kt, and therefore in the image of χε,t by Theorem 3.5(1). Since χε,t is injective
by Theorem 3.5(1), V , V1 ∗ V2 are well-defined.

Remark 3.10. In this article, the existence of χ̂ε,t satisfying the axioms is
provided by a geometric theory of quiver varieties. But the author conjectures
that there exists a purely combinatorial proof of the existence, independent of
quiver varieties or the representation theory of quantum loop algebras. When
g is of type A or D, such a combinatorial construction is possible [36]. When g

is E6, E7, an explict construction of χ̂ε,t is possible with the use of a computer.

4. Graded and cyclic quiver varieties

Suppose that a finite graph (I, E) of type ADE is given. The set I is the
set of vertices, while E is the set of edges.

Let H be the set of pairs consisting of an edge together with its orientation.
For h ∈ H, we denote by in(h) (resp. out(h)) the incoming (resp. outgoing)
vertex of h. For h ∈ H we denote by h the same edge as h with the reverse
orientation. We choose and fix a function ε : H → C∗ such that ε(h)+ε(h) = 0
for all h ∈ H.

Let V , W be I×C∗-graded vector spaces such that the (i×a)-component,
denoted by Vi(a), is finite dimensional and 0 for all but finitely many times
i × a. In what follows we consider only I × C∗-graded vector spaces with this
condition. For an integer n, we define vector spaces by

L•(V, W )[n] def.=
⊕

i∈I,a∈C∗

Hom (Vi(a), Wi(aεn)) ,(4.1)

E•(V, W )[n] def.=
⊕

h∈H,a∈C∗

Hom
(
Vout(h)(a), Win(h)(aεn)

)
.

If V and W are I × C∗-graded vector spaces as above, we consider the
vector spaces

M• ≡ M•(V, W ) def.= E•(V, V )[−1] ⊕ L•(W, V )[−1] ⊕ L•(V, W )[−1],(4.2)
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where we use the notation M• unless we want to specify V , W . The above
three components for an element of M• is denoted by B, α, β respectively.
(NB: In [33] α and β were denoted by i, j respectively.) The Hom(Vout(h)(a),
Vin(h)(aε−1))-component of B is denoted by Bh,a. Similarly, we denote by αi,a,
βi,a the components of α, β.

We define a map µ : M• → L•(V, V )[−2] by

µi,a(B, α, β) =
∑

in(h)=i

ε(h)Bh,aε−1Bh,a + αi,aε−1βi,a,

where µi,a is the (i, a)-component of µ.

Let GV
def.=

∏
i,a GL(Vi(a)). It acts on M• by

(B, α, β) 
→ g · (B, α, β) def.=
(
gin(h),aε−1Bh,ag

−1
out(h),a, gi,aε−1αi,a, βi,ag

−1
i,a

)
.

The action preserves the subvariety µ−1(0) in M•.

Definition 4.3. A point (B, α, β) ∈ µ−1(0) is said to be stable if the fol-
lowing condition holds:

If an I × C∗-graded subspace S of V is B-invariant and contained in
Kerβ, then S = 0.

Let us denote by µ−1(0)s the set of stable points.

Clearly, the stability condition is invariant under the action of GV . Hence we
may say an orbit is stable or not.

We consider two kinds of quotient spaces of µ−1(0):

M•
0(V, W ) def.= µ−1(0)//GV , M•(V, W ) def.= µ−1(0)s/GV .

Here // is the affine algebro-geometric quotient, i.e., the coordinate ring of
M•

0(V, W ) is the ring of GV -invariant functions on µ−1(0). In particular, it is
an affine variety. It is the set of closed GV -orbits. The second one is the set-
theoretical quotient, but coincides with a quotient in the geometric invariant
theory (see [32, §3]). The action of GV on µ−1(0)s is free thanks to the stability
condition ([32, 3.10]). By a general theory, there exists a natural projective
morphism

π : M•(V, W ) → M•
0(V, W ).

(See [32, 3.18].) The inverse image of 0 under π is denoted by L•(V, W ). We
call these varieties cyclic quiver varieties or graded quiver varieties, according
as ε is a root of unity or not.

Let M
• reg
0 (V, W ) ⊂ M•

0(V, W ) be a possibly empty open subset of M•
0(V, W )

consisting of free GV -orbits. It is known that π is an isomorphism on
π−1(M• reg

0 (V, W )) [32, 3.24]. In particular, M
• reg
0 (V, W ) is nonsingular and is

pure dimensional.



1076 HIRAKU NAKAJIMA

A GV -orbit through (B, α, β), considered as a point of M•(V, W ), is de-
noted by [B, α, β].

We associate polynomials eW , eV ∈ Ŷt to graded vector spaces V , W by

eW =
∏

i∈I,a∈C∗

W
dim Wi(a)
i,a , eV =

∏
i∈I,a∈C∗

V
dim Vi(a)
i,a .(4.4)

Suppose that we have two I × C∗-graded vector spaces V , V ′ such that
Vi(a) ⊂ V ′

i (a) for all i, a. Then M•
0(V, W ) can be identified with a closed

subvariety of M•
0(V

′, W ) by the extension by 0 to the complementary subspace
(see [33, 2.5.3]). We consider the limit

M•
0(∞, W ) def.=

⋃
V

M•
0(V, W ).

It is known that the above stabilizes at some V (see [33, 2.6.3, 2.9.4]). The
complement M•

0(V, W )\M
• reg
0 (V, W ) consists of a finite union of M

• reg
0 (V ′, W )

for smaller V ′’s [32, 3.27, 3.28]. Therefore we have a decomposition

M•
0(∞, W ) =

⊔
[V ]

M
• reg
0 (V, W ),(4.5)

where [V ] denotes the isomorphism class of V . The transversal slice to each
stratum was constructed in [33, §3.3]. Using it, we can check

If M
• reg
0 (V, W ) �= ∅, then eV eW is l -dominant.(4.6)

If M
• reg
0 (V, W ) ⊂ M

• reg
0 (V ′, W ), then eV ′ ≤ eV .(4.7)

On the other hand, we consider the disjoint union for M•(V, W ):

M•(W ) def.=
⊔
[V ]

M•(V, W ).

Note that there are no obvious morphisms between M•(V, W ) and M•(V ′, W )
since the stability condition is not preserved under the extension. We have a
morphism M•(W ) → M•

0(∞, W ), still denoted by π.
The original quiver varieties [30], [32] are the special case when ε = 1

and Vi(a) = Wi(a) = 0 except a = 1. On the other hand, the above varieties
M•(W ), M•

0(∞, W ) are fixed point set of the original quiver varieties with
respect to a semisimple element in a product of general linear groups. (See
[33, §4].) In particular, it follows that M•(V, W ) is nonsingular, since the
corresponding original quiver variety is so. This can also be checked directly.

Since the action is free, V and W can be considered as I × C∗-graded
vector bundles over M•(V, W ). We denote them by the same notation. We
consider E•(V, V ), L•(W, V ), L•(V, W ) as vector bundles defined by the same
formula as in (4.1). By the definition, B, α, β can be considered as sections of
those bundles.
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We define a three-term sequence of vector bundles over M•(V, W ) by

C•
i,a(V, W ) : Vi(aε)

σi,a−−→
⊕

h:in(h)=i

Vout(h)(a) ⊕ Wi(a)
τi,a−−→ Vi(aε−1),(4.8)

where

σi,a =
⊕

in(h)=i

Bh,aε ⊕ βi,aε, τi,a =
∑

in(h)=i

ε(h)Bh,a + αi,a.

This is a complex thanks to the equation µ(B, α, β) = 0. We assign the degree
0 to the middle term. By the stability condition, σi,a is injective.

We define the rank of complex C• by
∑

p(−1)p rankCp. Then

rankC•
i,a(V, W ) = ui,a(eV eW ).

We denote the right-hand side by ui,a(V, W ) for brevity.
There exists a three term complex of vector bundles over M•(V 1, W 1) ×

M•(V 2, W 2):

L•(V 1, V 2)[0] σ21

−−→

E•(V 1, V 2)[−1]

⊕
L•(W 1, V 2)[−1]

⊕
L•(V 1, W 2)[−1],

τ21

−−→ L•(V 1, V 2)[−2](4.9)

where

σ21(ξ) = (B2ξ − ξB1) ⊕ (−ξα1) ⊕ β2ξ,

τ21(C ⊕ I ⊕ J) = εB2C + εCB1 + α2J + Iβ1.

We assign the degree 0 to the middle term. By the same argument as in [32,
3.10], σ21 is injective and τ21 is surjective. Thus the quotient Ker τ21/ Im σ21

is a vector bundle over M•(V 1, W 1) × M•(V 2, W 2). Its rank is given by

d(eV 1
eW 1

, eV 2
eW 2

).(4.10)

If V 1 = V 2, W 1 = W 2, then the restriction of Ker τ21/ Im σ21 to the
diagonal is isomorphic to the tangent bundle of M•(V, W ) (see [33, Proof of
4.1.4]). In particular, we have

dimM•(V, W ) = d(eV eW , eV eW ).(4.11)

Let us give the definition of χ̂ε,t. We define χ̂ε,t for all standard modules
M(P ). Since {M(P )}P is a basis of RepUε(Lg), we can extend it linearly to
any finite dimensional Uε(Lg)-modules.

The relation between standard modules and graded/cyclic quiver varieties
is as follows (see [33, §13]): Choose W so that eW = eP , i.e.,

Pi(u) =
∏
a

(1 − au)dim Wi(a).
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Then a standard module M(P ) is defined as H∗(L•(W ), C), which is equipped
with a structure of a Uε(Lg)-module by the convolution product. Moreover,
its l -weight space M(P )Q is⊕

V :eV eW =eQ

H∗(L•(V, W ), C).

Here Hk( , C) denotes the Borel-Moore homology with complex coefficients. If
ε is not a root of unity, then V is determined from Q. So the above has only
one summand.

Let

χ̂ε,t(M(P )) def.=
∑
[V ]

(−t)k dimHk(L•(V, W ), C) eV eW .(4.12)

Since Hk(L•(V, W ), C) vanishes for odd k [33, §7], we may replace (−t)k by tk.
In particular, it is clear that coefficients of χ̂ε,t(M(P )) are polynomials in t2

with positive coefficients.
In subsequent sections we prove that the above χ̂ε,t satisfies the axioms.

By definition, it is clear that χ̂ε,t satisfies Axiom 1.
Note that Corollary 3.6 follows directly from this geometric definition ([33,

13.4.5]).
We give a simple consequence of the definition:

Proposition 4.13. Assume ε is not a root of unity. Suppose that all
roots of Pi(u) = 0 have the same value (e.g., Pi(u) = 1 − au, Pj(u) = 1 for
j �= i for some i). Then M(P ) has no l -dominant term other than eP .

This was proved in [12, Cor. 4.5]. But we give a geometric proof.

Proof. Take W so that eW = eP . It is enough to show that ui,a(V, W ) < 0
for some i, a if M•(V, W ) �= ∅ and V �= 0.

By the assumption, there is a nonzero constant a such that Wi(b) = 0 for
all i, b �= a. By the stability condition, we have Vi(b) = 0 if b �= aεn for some
n ∈ Z>0. Let n0 be the maximum of such n, and suppose Vi(aεn0) �= 0. Since
Wi(aεn0+1) = Vi(aεn0+1) = Vi(aεn0+2) = 0, we have

ui,aεn0+1(V, W ) = rankC•
i,aεn0+1(V, W ) < 0.

5. Proof of Axiom 2: Analog of the Weyl group invariance

For a complex algebraic variety X, let e(X;x, y) denote the virtual Hodge
polynomial defined by Danilov-Khovanskii [9] using a mixed Hodge strucuture
of Deligne [10]. It has the following properties.

(1) e(X;x, y) is a polynomial in x, y with integral coefficients.
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(2) If X is a nonsingular projective variety, then

e(X;x, y) =
∑
p,q

(−1)p+qhp,q(X)xpyq,

where the hp,q(X) are the Hodge numbers of X.

(3) If Y is a closed subvariety in X, then

e(X;x, y) = e(Y ;x, y) + e(X \ Y ;x, y).

(4) If f : Y → X is a fiber bundle with fiber F which is locally trivial in the
Zarisky topology, then e(Y ;x, y) = e(X;x, y)e(F ;x, y).

We define the virtual Poincaré polynomial of X by pt(X) def.= e(X; t, t).
(In fact, this reduction does not loose any information. The argument in
5.2 shows that e(X;x, y) appearing here is a polynomial in xy.) The actual
Poincaré polynomial is defined as

Pt(X) =
2 dim X∑

k=0

(−t)k dimHk(X, C),

where Hk(X, C) is the Borel-Moore homology of X with complex coefficients.

Remark 5.1. Instead of virtual Poincaré polynomials, we can use numbers
of rational points in the following argument, if we define graded/cyclic varieties
over an algebraic closure of a finite field k. As a consequence, those numbers
are special values of “computable” polynomials P (t) at t =

√
#k.

Lemma 5.2. The virtual Poincaré polynomial of L•(V, W ) is equal to the
actual Poincaré polynomial. Moreover, it is a polynomial in t2. The same
holds for M•(V, W ).

Proof. In [33, §7] we showed that L•(V, W ) has a partition into locally
closed subvarieties X1, . . . , Xn with the following properties:

(1) X1 ∪ X2 ∪ · · · ∪ Xi is closed in L•(V, W ) for each i.

(2) Each Xi is a vector bundle over a nonsingular projective variety whose
homology groups vanish in odd degrees.

A partition satisfying property (1) is called an α-partition. (More precisely, it
was shown in [33, §7] that Xi is a fiber bundle with an affine space fiber over
the base with the above property. The statement above was shown in [35].)

By the long exact sequence in homology groups, we have Pt(L•(V, W )) =∑
i Pt(Xi). On the other hand, by the property of the virtual Poincaré poly-

nomial, pt(L•(V, W )) =
∑

i pt(Xi). Since Xi satisfies the required properties
in the statement, it follows that L•(V, W ) satisfies the same property.

There is an α-partition with property (2) also for M•(V, W ), so that we
have the same assertion.
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Recall the complex (4.8). For a C∗-tuple of nonnegative integers (na) ∈
ZC∗

≥0, let

M•
i;(na)(V, W )

def.=

{
[B, α, β] ∈ M•(V, W )

∣∣∣∣∣ codimVi(ε−1a) Im τi,a = na for each a ∈ C∗
}

.

This is a locally closed subset of M•(V, W ). We also set

L•
i;(na)(V, W ) def.= M•

i;(na)(V, W ) ∩ L•(V, W ).

There are partitions

M•(V, W ) =
⊔
(na)

M•
i;(na)(V, W ), L•(V, W ) =

⊔
(na)

L•
i;(na)(V, W ).

Let Qi,a(V, W ) be the middle cohomology of the complex C•
i,a(V, W ) (4.8);

i.e.,
Qi,a(V, W ) def.= Ker τi,a/ Im σi,a.

Over each stratum M•
i;(na)(V, W ) it defines a vector bundle. In particular, over

the open stratum M•
i;(0)(V, W ), i.e., points where τi,a is surjective for all i, its

rank is equal to

rankC•
i,a(V, W ) = ui,a(V, W ).(5.3)

Suppose that a point [B, α, β] ∈ M•
i;(na)(V, W ) is given. We define a new

graded vector space V ′ by V ′
i (ε−1a) def.= Im τi,a. The restriction of (B, i, j) to

V ′ also satisfies the equation µ = 0 and the stability condition and thus defines
a point in M•(V ′, W ). It is clear that this construction defines a map

p : M•
i;(na)(V, W ) → M•

i;(0)(V
′, W ).(5.4)

Let G(na, Qi,ε−2a(V ′, W )|M•
i;(0)(V

′,W )) denote the Grassmann bundle of
na-planes in the vector bundle obtained by restricting Qi,ε−2a(V ′, W ) to
M•

i;(0)(V
′, W ). Let ∏

a

G(na, Qi,ε−2a(V ′, W )|M•
i;(0)(V

′,W ))

be their fiber product over M•
i;(0)(V

′, W ). By [33, 5.5.2] there exists a commu-
tative diagram∏

a

G(na, Qi,ε−2a(V ′, W )|M•
i;(0)(V

′,W ))
π−−−→ M•

k;(0)(V
′, W )%∼=

∥∥∥
M•

i;(na)(V, W )
p−−−→ M•

i;(0)(V
′, W ),
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where π is the natural projection. (The assumption ε �= ±1 there was unnec-
essary. See Section 9.)

Since the projection (5.4) factors through π, it induces

p : L•
i;(na)(V, W ) → L•

i;(0)(V
′, W ).

Therefore,

pt

(
L•

i;(na)(V, W )
)

=
∏
a

t
na(rank C•

i,ε−2a
(V ′,W )−na)

[
rankC•

i,ε−2a(V
′, W )

na

]
t

pt

(
L•

i;(0)(V
′, W )

)
.

Using (5.3), we get

χ̂ε,t(M(P )) =
∑
[V ′]

pt

(
L•

i;(0)(V
′, W )

)
eV ′

eW

×
∏
a

tra(ui,a(V ′,W )−ra)

ui,a(V ′,W )∑
ra=0

[
ui,a(V ′, W )

ra

]
t

V ra

i,aε.

This shows that χ̂ε,t(M(P )) is contained K̂t and completes the proof of
Axiom 2.

As promised, we give an algorithm computing χ̂ε,t(M) for M as in
Theorem 3.5(2). Although we will explain it only when M is a standard
module M(P ), a modification to the general case is straightforward, if we
interpret pt(L•

i;(na)(V, W )) suitably. Moreover, we use the Grassmann bundle

(5.4) instead of the condition χ̂ε,t(M) ∈ K̂t.
We “compute” the virtual Poincaré polynomials pt(L•

i;(na)(V, W )) by in-
duction. The first step of the induction is the case V = 0. In this case, L•(0, W )
is a single point, so that pt(L•(0, W )) = 1. Moreover, L•(0, W ) = L•

i;(0)(0, W )
for all i.

Suppose that we have already “computed” all pt(L•
i;(n′

λ)(V
′, W )) for

dimV ′ < dimV . If (na) �= (0), then by the Grassmann bundle (5.4) and the
induction hypothesis, we can “compute” pt(L•

i;(na)(V, W )). By the assumption
in Theorem 3.5(2), eV eW is not l -dominant; hence there exist i, a such that
ui,a(V, W ) < 0. Then L•

i;(0)(V, W ) is the empty set by [33, 5.5.5]. Therefore,

pt (L•(V, W )) =
∑

(na) �=(0)

pt

(
L•

i;(na)(V, W )
)

.

We have already “computed” the right-hand side. Now, of course,

pt

(
L•

i;(0)(V, W )
)

= 0.
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For j �= i,

pt

(
L•

j;(0)(V, W )
)

= pt (L•(V, W )) −
∑

(na) �=(0)

pt

(
L•

j;(na)(V, W )
)

.

The right-hand side is already “computed”.

Remark 5.5. (1) Note that the above argument shows that pt(L•(V, W ))
is a polynomial in t2 without appealing to [33, §7] as in Lemma 5.2. In fact,
nonsingular quasi-projective varieties appearing in Lemma 5.2 are examples
of graded quiver varieties such that the above argument can be applied; i.e.,
the corresponding standard modules satisfy the condition in Theorem 3.5(2).
Therefore, the above gives a new proof of the vanishing of odd homology
groups.

(2) If the reader carefully compares our algorithm with Frenkel-Mukhin’s
one [12], he/she finds a difference. The coloring si of a monomial m = eV eW

is ∑
(na) �=(0)

pt=1

(
L•

i;(na)(V, W )
)

in our algorithm. This might possibly be a negative integer, while it is assumed
to be nonnegative in [12]. Therefore, we must modify their definition of the
admissibility of a monomial m. Let us consider all values si such that m is not
i-dominant. We say m is admissible if all values are the same. In our case, si

is pt=1 (L•(V, W )) if m is not i-dominant; hence L•
i;(0)(V, W ) = ∅. Therefore it

is independent of i.

6. Proof of Axiom 3: Multiplicative property

By [31] it has been known that Betti numbers of arbitrary quiver varieties
are determined by special cases corresponding to fundamental weights. We
will use the same idea in this section.

Let W 1, W 2, W be I×C∗-graded vector spaces such that Wi(a) = W 1
i (a)⊕

W 2
i (a) for i ∈ I, a ∈ C∗. Let P 1, P 2 be I-tuples of polynomials corresponding

to W 1, W 2. Then W corresponds to P 1P 2.
We define a map M•(W 1) × M•(W 2) → M•(W ) by(

[B1, α1, β1], [B2, α2, β2]
)

−→ [B1 ⊕ B2, α1 ⊕ α2, β1 ⊕ β2].(6.1)

We define a
∏

i,a GL(Wi(a))-action on M•(W ) by

s ∗ [B, α, β] def.= [B, αs−1, sβ].

We define a one-parameter subgroup λ : C∗ →
∏

i,a GL(Wi(a)) by

λ(t) =
⊕
i,a

idW 1
i (a) ⊕ t idW 2

i (a) .
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Then (6.1) is a closed embedding and the fixed point set M•(W )λ(C∗) is its
image by [35, 3.2]. We identify M•(W 1) × M•(W 2) with its image hereafter.
The fixed point set M•(V, W )λ(C∗) is the union of M•(V 1, W 1)×M•(V 2, W 2)
with V ∼= V 1 ⊕ V 2.

Let

Z•(V 1, W 1;V 2, W 2)
def.=

{
[B, α, β] ∈ M•(W )

∣∣∣ lim
t→0

λ(t) ∗ [B, α, β] ∈ M•(V 1, W 1) × M•(V 2, W 2)
}

.

We also define Z̃•(V 1, W 1;V 2, W 2) by replacing M•(V 1, W 1) × M•(V 2, W 2)
by L•(V 1, W 1)×L•(V 2, W 2). These are studied in [35]. They are nonsingular,
locally closed subvarieties of M•(W ) [loc. cit., 3.7].

Let Z•(W 1;W 2), Z̃•(W 1, W 2) be their union over [V 1], [V 2] respectively.
These are closed subvarieties of M•(W ) [loc. cit., 3.6]. By [loc. cit., 3.7, 3.13],
the partition

Z•(W 1;W 2) =
⊔

[V 1],[V 2]

Z•(V 1, W 1;V 2, W 2)

is an α-partition such that each stratum Z•(V 1, W 1;V 2, W 2) is isomorphic
to the total space of the vector bundle Ker τ21/ Im σ21 over M•(V 1, W 1) ×
M•(V 2, W 2) in (4.9). (More precisely, we restrict the result of [loc. cit.] to the
fixed point set.)

Similarly

Z̃•(W 1;W 2) =
⊔

V 1,V 2

Z̃•(V 1, W 1;V 2, W 2)

is an α-partition such that each stratum Z•(V 1, W 1;V 2, W 2) is isomorphic to
the restriction of Ker τ21/ Im σ21 to L•(V 1, W 1) × L•(V 2, W 2).

Proposition 6.2. (1) The virtual Poincaré polynomial of Z̃•(W 1;W 2)
(more precisely that of each connected component of Z̃•(W 1;W 2)) is equal to
its actual Poincaré polynomial. Moreover, it is a polynomial in t2. The same
holds for Z•(W 1;W 2).

(2) Now,

χ̂ε,t(M(P 1)) ∗ χ̂ε,t(M(P 2)) =
∑

[V 1],[V 2]

Pt(Z̃•(V 1, W 1;V 2, W 2)) eV 1
eV 2

eW 1
eW 2

.

(6.3)

(3) The above expression is contained in K̂t.

Proof. (1) This can be shown exactly as in Lemma 5.2.



1084 HIRAKU NAKAJIMA

(2) The rank of the vector bundle Ker τ21/ Im σ21 is equal to d(eW 1
eV 1

,

eW 2
eV 2

) (see (4.10)). By the property of virtual Poincaré polynomials, we get
the assertion.

(3) Exactly the same as Section 5.

Axiom 3 follows from the above and the following assertion proved in [35,
6.12]:

Z̃•(W 1;W 2) = L•(W )

under the condition (3.2).
As promised, we give

A different proof of Theorem 3.8. We only prove the second statement.
In fact, it is not difficult to show that the following argument also implies the
first statement.

We will prove that our χ̂ε,t satisfies Axiom 4 in the next section. There-
fore, it is enough to check the assertion for χ̂ε,t given by the geometric defini-
tion (4.12).

By Theorem 3.5(1) and Proposition 6.2, we get the statement regarding
the multiplication.

Similarly, for the proof of the statement regarding the involution, it is
enough to show

χ̂ε,t(M(P )) ∈ K̂t.

This follows from

χ̂ε,t(M(P )) =
∑
[V ]

Pt(M•(V, W )) eV eW .(6.4)

In fact, the same argument as in the proof of Section 5 shows that the
right-hand side is contained in K̂t.

Let us prove (6.4). Since L•(V, W ) is homotopic to M•(V, W ) [33, 4.1.2],
its usual homology group is isomorphic to that of M•(V, W ). Since L•(V, W ) is
compact, the usual homology group is isomorphic to the Borel-Moore homol-
ogy. Therefore, the Poincaré duality for M•(V, W ), which is applicable since
M•(V, W ) is nonsingular, implies

t2 dim M•(V,W )P1/t (L•(V, W )) = Pt (M•(V, W )) .

Since dimM•(V, W ) = d(eV eW , eV eW ) (see (4.11)), we get (6.4).

7. Proof of Axiom 4: Roots of unity

In this section, we use a C∗-action on M•(V, W ) to calculate Betti num-
bers. This idea originally appeared in [31] and [30, §5].
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We assume that ε is a primitive s-th root of unity (s ∈ Z>0).
We may assume α = 1 in the setting of Axiom 4. We consider V , W as

I × (Z/sZ)-graded vector spaces.
We define a C∗-action on M•(V, W ) by

t � (B, α, β) = (tB, tαs(t)−1, ts(t)β), (t ∈ C∗),

where s(t) ∈
∏

GL(Wi(a)) is defined by

s(t) =
⊕

i∈I, 0≤n<s

tn idWi(εn) .

Now, s(t) preserves the equation µ(B, α, β) = 0 and commutes with the ac-
tion of GV . Therefore it induces an action on the affine cyclic quiver variety
M•

0(V, W ). The action preserves the stability condition. Therefore it induces
action on M•(V, W ). These induced actions are also denoted by �. The map
π : M•(V, W ) → M•

0(V, W ) is equivariant.

Lemma 7.1. Let [B, α, β] ∈ M•(V, W ). The flow t � [B, α, β] for t ∈ C∗

has a limit when t → 0.

Proof. By a generality theory, it is enough to show that t � [B, α, β] stays
in a compact set. Since π is proper, we only need to show that π(t� [B, α, β]) =
t � π([B, α, β]) stays in a compact set.

By [28] the coordinate ring of M•
0(V, W ) is generated by functions of forms

〈χ, βi,εn+1Bh1,εn+2 . . . BhN ,εn+N+1αj,εn+N+2〉
where χ is a linear form on Hom

(
Wi,εn , Wj,εn+N+2

)
, and i = in(h1), out(h1) =

in(h2), . . . , out(hN ) = j. By the C∗-action, this function is multiplied by

tn+1tN t−r+1 = tn+N+2−r

where we assume 0 ≤ n < s and r is the integer such that 0 ≤ r < s and r ≡
n+N +2 mod s. Then n+N +2−r is nonnegative. Therefore t�π([B, α, β])
stays in a compact set for any [B, α, β].

We want to identify a fixed point set in M•(V, W ) with some quiver
variety M•(Vq, Wq) defined for q which is not a root of unity. We first
explain a morphism from M•(Vq, Wq) to M•(V, W ). Corresponding vector
spaces M•(Vq, Wq) are I × Z-graded vector spaces. Suppose that Vq, Wq are
I × Z-graded vector spaces such that (Wq)i(qk) = 0 unless 0 ≤ k < s (no
condition for Vq). We consider Wq as an I × (Z/sZ)-graded vector space sim-
ply identifying Z/sZ with {0, 1, . . . , s − 1}. Let us denote by W the resulting
I × (Z/sZ)-graded vector space. We define an I × (Z/sZ)-graded vector space
V by

Vi(εn) def.=
⊕

k �≡n mod s

(Vq)i(qk).
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If a point in M•(Vq, Wq) is given, it defines a point in M•(V, W ) in an obvious
way. The map M•(Vq, Wq) → M•(V, W ) preserves the equation µ = 0 and the
stability condition. It is equivariant under the GVq

action, where GVq
→ GV

is an obvious homomorphism. Therefore, we have a morphism

M•(Vq, Wq) → M•(V, W ).(7.2)

Note that Wq is uniquely determined by W , while Vq is not determined from V .

Lemma 7.3. A point [B, α, β] ∈ M•(V, W ) is fixed by the C∗-action if and
only if it is contained in the image of (7.2) for some Vq. Moreover, the map
(7.2) is a closed embedding.

Proof. Fix a representatitve (B, α, β) of [B, α, β]. Then [B, α, β] is a fixed
point if and only if there exists λ(t) ∈ GV such that

t � (B, α, β) = λ(t)−1 · (B, α, β).

Such a λ(t) is unique since the action of GV is free. In particular, λ : C∗ → GV

is a group homomorphism.
Let Vi(εn)[k] be the weight space of Vi(εn) with eigenvalue tk. The above

equation means that

Bh,εn+1

(
Vout(h)(ε

n+1)[k + 1]
)
⊂ Vin(h)(ε

n)[k], αi,εn+1(Wi(εn+1)) ⊂ Vi(εn)[n],

βi,εn (Vi(εn)[k]) = 0 if k �= n.

Let us define an I × C∗-graded subspace S of V by

Si(εn) def.=
⊕

k �≡n mod s

Vi(εn)[k].

The above equations imply that S is contained in Kerβ and B-invariant.
Therefore S = 0 by the stability condition. This means that [B, α, β] is in
the image of (7.2) if we set

(Vq)i(qk) def.= Vi(εk)[k].

Conversely, a point in the image is a fixed point. Since λ is unique, the
map (7.2) is injective.

Let us consider the differential of (7.2). The tangent space of M•(V, W )
at [B, i, j] is the middle cohomology group of the complex

L•(V, V )[0] σ21

−−→

E•(V, V )[−1]

⊕
L•(W, V )[−1]

⊕
L•(V, W )[−1].

τ21

−−→ L•(V, V )[−2](7.4)
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Similarly the tangent space of M•(Vq, Wq) is the middle cohomology of a com-
plex with V , W replaced by Vq, Wq. We have a natural morphism between the
complexes so that the induced map between cohomology groups is the differ-
ential of (7.2). It is not difficult to show the injectivity by using the stability
condition.

Let us consider the tangent space T of M•(V, W ) at [B, α, β] ∈ M•(Vq, Wq)
⊂ M•(V, W ), which is the middle cohomology of (7.4). Let V =

⊕
k V [k] be

the weight space decomposition as in the proof of the above lemma. The
tangent space T has a weight decomposition T =

⊕
k T [k], where T [k] is the

middle cohomology of

⊕
n

L•(V [n], V [n + k])[0]
σ21

−−→

⊕
n E•(V [n], V [n + k − 1])[−1]

⊕⊕
n L•(W [n], V [n + k − 1])[−1]

⊕⊕
n L•(V [n], W [n + k − 1])[−1],

τ21

−−→
⊕

n

L•(V [n], V [n + k − 2])[−2]

where W [n] = W (εn) if 0 ≤ n < s and 0 otherwise. The rank of the complex
is equal to {

dq(eVqeWq , eVqeWq [k]) if k ≡ 0 mod s,

0 otherwise.

Here eVqeWq [k] is defined as in (3.4).

We consider the Bialynicki-Birula decomposition of M•(V, W ):

M•(V, W ) =
⊔

[Vq] S(Vq, Wq),

S(Vq, Wq)
def.= {x ∈ M•(V, W ) | limt→0 t � x ∈ M•(Vq, Wq)} .

By a general theory, each S(Vq, Wq) is a locally closed subvariety of M•(V, W ),
and the natural map S(Vq, Wq) → M•(Vq, Wq) is a fiber bundle whose fiber is
an affine space of dimension equal to

∑
k>0 dimT [k]. By the above formula, it

is equal to ∑
k>0

dq(eVqeWq , eVqeWq [ks]).

We write this number as D+(eVqeWq).
By a property of virtual Poincaré polynomials, we have

Pt(M•(V, W )) =
∑
[Vq]

t2D+(eVq eWq )Pt(M•(Vq, Wq)).

(Recall that the virtual Poincaré polynomials coincide with the actual Poincaré
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polynomials for these varieties.) Combining this with an argument in the proof
of (6.4), we have

Pt(L•(V, W )) = t2d(eV eW ,eV eW )P1/t(M
•(V, W ))

=
∑
[Vq]

t2d(eV eW ,eV eW )−2D+(eVq eWq )P1/t(M
•(Vq, Wq))

=
∑
[Vq]

t2d(eV eW ,eV eW )−2D+(eVq eWq )−2dq(eVq eWq ,eVq eWq )Pt(L•(Vq, Wq)).

Since

d(eV eW , eV eW ) = dimT =
∑

k

dimT [k] =
∑

k

dq(eVqeWq , eVqeWq [ks]),

we have

d(eV eW , eV eW ) − D+(eVqeWq) − dq(eVqeWq , eVqeWq)

=
∑
k<0

dq(eVqeWq , eVqeWq [ks]) = D−(eVqeWq).

Thus we have checked Axiom 4.

Remark 7.5. When ε = 1, there is a different C∗-action so that the index
D−(m) can be read off from am(t). See [34, §7].

8. Perverse sheaves on graded/cyclic quiver varieties

The following is the main result of this article:

Theorem 8.1. (1) There exists a unique base {L(P )} of Rt such that

L(P ) = L(P ), L(P ) ∈ M(P ) +
∑

Q:Q<P

t−1Z[t−1]M(Q).

(2) The specialization of L(P ) at t = 1 coincides with the simple module
with Drinfeld polynomial P .

As mentioned in the introduction, the relation between M(P ) and L(P )
in Rt (not in its specialization) can be understood by a Jantzen filtration [16].

For a later purpose we define matrices in the Laurent polynomial ring of t:

cPQ(t) def.= the coefficient of eQ in χε,t(M(P )),

(cPQ(t)) def.= (cPQ(t))−1,

M(P ) =
∑
Q

ZPQ(t)L(Q).



T -ANALOGS OF Q-CHARACTERS 1089

When ε is not a root of unity, there is an isomorphism between Rt and
the dual of the Grothendieck group of a category of perverse sheaves on affine
graded quiver varieties [33, §14]. The full detailed proof of the above theorem
was explained in [34]. However, the latter group becomes larger when ε is a
root of unity. So we modify Rt to R̃t, and give a proof of the above theorem
in this R̃t.

Let us fix an I-tuple of polynomials P throughout this section. Let I be
the set of l -dominant monomials m ∈ Ŷt such that m ≤ eP . We consider a
Z[t, t−1]-module with basis I, and denote it by R̃t.

For each monomial m ∈ I, let Pm be an I-tuple of polynomials given
by (Pm)i(u) def.=

∏
a(1 − ua)ui,a(m). In other words, Pm is determined so that

Π̂(ePm) = Π̂(m). If ε is not a root of unity, then Pm = Pm′ implies m = m′

by the invertibility of the ε-analog of the Cartan matrix. But it is not true in
general. This is the reason why we need a modification.

We modify χ̂ε,t of the standard module M(Pm) so that it has the image
in R̃t as follows: If

χ̂ε,t(M(Pm)) =
∑

n

an,m(t)ePmn,
then, we define

Mm
def.=

∑
n∗

an∗,m(t) t−d(ePmn∗,ePmn∗)mn∗,

where the summation runs only over n∗ such that mn∗ is l -dominant. The
Mm is contained in R̃t by Axiom 1. And χ̂ε,t(M(Pm)) is recovered from Mm.
Let us denote the coefficient of mn∗ by cmn(t), where n = mn∗ ∈ I; that is,

Mm =
∑

n

cmn(t)n.(8.2)

We have cmm = 1 and cmn(t) = 0 for n � m. In particular, {Mm}m is a base
of R̃t.

We define an involution on R̃t by

t = t−1, m = m.

We define a map R̃t → Rt by Mm 
→ M(Pm). When ε is not a root
of unity, this map is injective and the image is the submodule spanned by
M(P ′)’s such that Π̂(eP ′

) ≤ Π̂(eP ). The map intertwines the involutions.
Also,

Mm =
∑

n

cmn(t−1)n =
∑
n,s

cmn(t−1)cns(t)Ms,

where (cns(t)) is the inverse matrix of (cmn(t)). Let

umn(t) def.=
∑

s

cms(t−1)csn(t), or equivalently Mm =
∑

n

umn(t)Mn.

(8.3)

By the axioms, umm(t) = 1 and umn(t) = 0 if n � m.
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Lemma 8.4. There exists a unique element Lm ∈ R̃t such that

Lm = Lm, Lm ∈ Mm +
∑

n:n<m

t−1Z[t−1]Mn.

Although the proof is exactly the same as the one in [25, 7.10], we give it
for the convenience of the reader.

Proof. Let

Mm =
∑
n≤m

Zmn(t)Ln.

Then the condition for {Lm} is equivalent to the following system:

Zmm(t) = 1, Zmn(t) ∈ t−1Z[t−1] for n < m,(8.5a)

Zmn(t−1) =
∑

s:n≤s≤m

ums(t)Zsn(t).(8.5b)

The equation can be rewritten as

Zmn(t−1) − Zmn(t) =
∑

s:n≤s<m

ums(t)Zsn(t).

Let Fmn(t) be the right-hand side. We can solve this system uniquely by
induction: If Zsn(t)’s are given, Zmn(t) is uniquely determined by the above
equation and Zmn(t) ∈ t−1Z[t−1], provided Fmn(t−1) = −Fmn(t). We can
check this condition by the induction hypothesis:

Fmn(t−1) =
∑

s:n≤s<m

ums(t−1)Zsn(t−1)

=
∑

s:n≤s<m

∑
t:n≤t≤s

ums(t−1)ust(t)Ztn(t)

=−
∑

t:n≤t<m

umt(t)Ztn(t) = −Fmn(t),

where
∑

s:t≤s≤m ums(t−1)ust(t) = 0 for t < m.

The proof of Theorem 8.1(1) is exactly the same. Since the map R̃t → Rt

intertwines the involution, the image of Lm is equal to L(Pm). Therefore
Theorem 8.1(2) is equivalent to the following statement:

Theorem 8.6. The multiplicity [M(P ) : L(Q)] is equal to∑
n

ZeP ,n(1),

where the summation is over the set {n | eQ = Π̂(n)}.

The following proof is just a modification of that given in [34].
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We choose W so that eP = eW as before. Let Db(M•
0(∞, W )) be the

bounded derived category of complexes of sheaves whose cohomology sheaves
are constant along each connected component of a stratum M

• reg
0 (V, W ) of

(4.5). (The connectedness of M
• reg
0 (V, W ) is not known.) If M

• reg
0 (V, W )α is a

connected component of M
• reg
0 (V, W ), then IC(M• reg

0 (V, W )α) is the intersec-
tion homology complex associated with the constant local system CM

• reg
0 (V,W )α

on M
• reg
0 (V, W )α. Then Db(M•

0(∞, W )) is the category of a complex of sheaves
which are finite direct sums of complexes of the forms IC(M• reg

0 (V, W )α)[d]
for various V , α and d ∈ Z, thanks to the existence of transversal slices
[33, §3].

We associate a monomial m = eV eW to each [V ]. It gives us a bijective
correspondence between the set of monomials m with m ≤ eP and the set of
isomorphism classes of I × C∗-graded vector spaces. If M

• reg
0 (V, W ) �= ∅, the

corresponding monomial m is l -dominant, i.e., m ∈ I. We choose a point in
M

• reg
0 (V, W ) and denote it by xm.

Let CM•(V ′,W ) be the constant local system on M•(V ′, W ). Then
π∗CM•(V ′,W ) is an object of Db(M•

0(∞, W )) again by the transversal slice
argument. From the decomposition theorem of Beilinson-Bernstein-Deligne,
we have

π∗(CM•(V ′,W )[dimC M•(V ′, W )]) ∼=
⊕
V,α,k

LV,α,k(V ′, W ) ⊗ IC(M• reg
0 (V, W )α)[k]

(8.7)

for some vector space LV ′,α,k(V, W ) [33, 14.3.2]. We set

Lmn(t) def.=
∑

k

dimLV,α,k(V ′, W ) t−k,(8.8)

where V , V ′ are determined so that m = eV eW , n = eV ′
eW . By the de-

scription of the transversal slice [33, §3], dimLV,α,k is independent of α. So
α can disappear on the left-hand side. Applying the Verdier duality to both
sides of (8.7) and using the self-duality of π∗(CM•(V ′,W )[dimC M•(V ′, W )]) and
IC(M• reg

0 (V, W )α), we find Lm′m(t) = Lm′m(t−1).
By our definition of Mm, we have

Mm =
∑
[Vn]

t− dim M•(Vn,Wm)Pt(L•(Vn, Wm))meVn ,

where Wm is given by dim(Wm)i,a = ui,a(m). By [33, §3], this is equal to
(8.9)

Mm =
∑
[Vn]

t− dim M•(Vn,Wm)Pt

(
π−1(xm) ∩ M•(Vn ⊕ Vm, W )

)
meVn

=
∑
[V ′]

∑
k

tdim M•(Vm,W )−kdimHk(i!xm
π∗CM•(V ′,W )[dimM•(V ′, W )]) eV ′

eW ,

where Vm is given so that eVmeW = m.
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Let

Zmn(t) def.=
∑
k,α

dimHk(i!xm
IC(M• reg

0 (V, W )α)) tdim M
• reg
0 (Vm,W )−k,

where n = eV eW . By the defining property of the intersection homology, we
have (8.5a) and Zmn(t) = 0 if n � m.

Substituting (8.7) into (8.9), we get

cmn(t) =
∑

s

Zms(t)Lsn(t).(8.10)

Now Lsn(t) = Lsn(t−1) and (8.3) imply (8.5b).
Let Z•(W ) be the fiber product M•(W ) ×M•

0(∞,W ) M•(W ). Let A =
H∗(Z•(W ), C) be its Borel-Moore homology group, equipped with an algebra
structure by the convolution (see [33, 14.2]). Taking direct sum with respect
to V ′ in (8.7), we have a linear isomorphism (forgetting gradings)

π∗(CM•(W )) =
⊕
V,α

LV,α ⊗ IC(M• reg
0 (V, W )α),

where LV,α =
⊕

[V ′],k LV,α,k(V ′, W ). By a general theory (see [8] or [33, 14.2]),
{LV,α} is a complete set of mutually nonisomorphic simple A-modules. More-
over, taking H∗(i!xm

) of both sides, we have

H(π−1(xm), C)) =
⊕
V,α

LV,α ⊗ H∗(i!xm
IC(M• reg

0 (V, W )α)),

which is an equality in the Grothendieck group of A-modules. Here the
A-module structure on the right-hand side is given by a : ξ ⊗ ξ′ 
→ aξ ⊗ ξ′.

By [33, §13], there exists an algebra homomorphism Uε(Lg) → A. More-
over [33, §14.3], each LV,α is a simple l -highest weight Uε(Lg)-module. Its
Drinfeld polynomial is Q such that Π̂(eV eW ) = eQ. (It is possible to have two
different V , V ′ give isomorphic Uε(Lg)-modules.) Combining this with the
discussions above, we get Theorem 8.6.

Remark 8.11. If one enlarges the commutative subalgebra Uε(Lg)0 of
Uε(Lg), then one can recover a bijective correspondence between simple Uε(Lg)-
modules and strata of affine quiver varieties. When g is of type An, such an
enlargement is Uε(Lgln+1) (cf. [14]).

9. Specialization at ε = ±1

When ε = ±1, simple modules can be described explicitly [13, §4.8]. We
study their χ̂ε,t in this section.

Let P be an I-tuple of polynomials. We choose I×C∗-graded vector space
W so that eW = eP as before.
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First consider the case ε = 1. The W can be considered as a collection
of I-graded vector spaces {W a}a∈C∗ , where W a

i
def.= Wi(a). Then from the

definition of cyclic quiver varieties, it is clear that

M•(W ) ∼=
∏
a

M(W a), and M•
0(∞, W ) ∼=

∏
a

M0(∞, W a),

Here M(W a) and M0(∞, W a) are the original quiver varieties corresponding
to W a. Let P a be an I-tuple polynomial defined by P a

i (u) = (1− au)dim Wi(a).
The P a is, of course, determined directly from P . From the above description,
we have

M(P ) =
⊗

a

M(P a), χ̂ε,t(M(P )) =
∏
a

χ̂ε,t(M(P a)).(9.1)

The latter also follows directly from Axiom 3.
Next, consider the case ε = −1. We choose and fix a function o : I → {±1}

such that o(i) = −o(j) if aij �= 0, i �= j. We define an I-graded vector space

W a by W a
i

def.= Wi(o(i)a). Then we have

M•(W ) ∼=
∏
a

M(W a), M•
0(∞, W ) ∼=

∏
a

M0(∞, W a).

More precisely, M•(V, W ) =
∏

a M(V a, W a) with V a def.=
⊕

i Vi(−o(i)a). Let
P a be an I-tuple of the polynomial defined by P a

i (u) = (1−o(i)au)dim Wi(o(i)a).
The P a is again determined directly from P . We have (9.1) also in this case.

Recall that we have an algebra homomorphism Uε(g) → Uε(Lg) (1.2). By
[27, §33], U−1(g) is isomorphic to U1(g). Moreover, the universal enveloping
algebra U(g) of g is isomorphic to the quotient of U1(g) by the ideal generated
by qh − 1 (h ∈ P ∗) [3, 9.3.10]. In particular, the category of type 1 finite
dimensional Uε(g)-modules is equivalent to the category of finite dimensional
g-modules. Therefore we consider Res M(P ) as a g-module.

Thanks to the fact that π : M(W ) → M0(∞, W ) is semismall, we have
the following [33, §15]:

Theorem 9.2. (1) L(P ) =
⊗

a L(P a).
(2) For each a, Res(L(P a)) is simple as a g-module. Its highest wight is

Λa =
∑

i deg P a
i Λi.

We want to interpret this result from χ̂ε,t. We may assume that there
exists only one nontrivial P a. All other P b’s are 1.

We identify an I-tuple of polynomials P whose roots are 1/a with a dom-
inant weight by

P 
→ deg P
def.=

∑
i

deg Pi Λi, λ =
∑

i

λiΛi 
→ Pλ; (Pλ)i(u) = (1 − au)λi .

We give an explicit formula of ZPQ(t), not based on inductive procedure:
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Theorem 9.3. (1) ZPQ(1) is equal to the multiplicity of the simple
g-module L(deg Q) of highest weight deg Q in Res M(P ).

(2) cPQ(t) is a polynomial in t−1, so that cPQ(∞) makes sense.

(3) We have χε,t(L(P )) =
∑
Q

cPQ(∞) eQ + non l-dominant terms,

or equivalently ZPQ(t) =
∑
R

cPR(t)cRQ(∞).

(4) The coefficient cPQ(∞) is equal to the weight multiplicity of the dom-
inant weight deg Q in L(deg P ).

Proof. (1) is clear.

(2), (3) By the fact that π : M(W a) → M0(∞, W a) is semismall, we have
LV,α,k = 0 (in (8.7)) for k �= 0, hence LPQ(t) (in (8.8)) is a constant. Then
cPQ(t) is a polynomial in t−1 by (8.10) and (8.5a). Therefore cPQ(∞) makes
sense. We have cPQ(∞) = LPQ(t) = LPQ(0) again by (8.10) and (8.5a). Thus
we get the assertion.

(4) By (3), we have

χ(L(P )) =
∑
Q

cPQ(∞)edeg Q + nondominant terms.

Since χ is the ordinary character, the assertion is clear.

Note that the multiplicity of a simple (resp. Weyl) Uε(g)-module in
Res M(P ) for generic (resp. a root of unity) ε is independent of ε. There-
fore ZPQ(1) gives it. (See [34, §7].)

10. Conjecture

There is a large amount of literature on finite dimensional Uε(Lg)-modules.
Some special classes of simple finite dimensional Uε(Lg)-modules are studied
intensively: tame modules [37] and Kirillov-Reshetikhin modules [17] (see also
the references therein). For tame modules, there are explicit formulae of χε

in terms of Young tableaux. For Kirillov-Reshetikhin modules, there are con-
jectural explicit formulae of χ (i.e., decomposition numbers of restrictions to
Uε(g)-modules).

Although our computation applies to arbitrary simple modules, our poly-
nomials ZPQ(t) are determined recursively, and it is difficult to obtain explicit
formulae in general. Thus those modules should have a very special feature
among arbitrary modules. For Kazhdan-Lusztig polynomials, a special class is
known to have explicit formulae. Those are Kazhdan-Lusztig polynomials for
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Grassmannians studied in [24]. A geometric interpretation was given in [41].
Based on an analogy between Kazhdan-Lusztig polynomials and our polyno-
mials, we propose a class of finite dimensional Uε(Lg)-modules. It is a class
of small standard modules.

Definition 10.1. (1) A finite dimensional Uε(Lg)-module M is called spe-
cial if it satisfies the condition in Theorem 3.5(2), i.e., χε(M) contains only
one l -dominant monomial.

(2) Let M(P ) be a standard module with l -highest weight P . We say
M(P ) is small if cQR(t) ∈ t−1Z[t−1] for any Q, R ≤ P with Q �= R. Similarly
M(P ) is called semismall if cQR(t) ∈ Z[t−1] for any Q, R ≤ P .

Remark 10.2. (1) By the geometric definition of χ̂ε,t (4.12), M(P ) is
(semi)small if and only if π : M•(V, W ) → M•

0(V, W ) is (semi)small for any
V such that eV eW is l -dominant.

(2) By definition, M(Q) is (semi)small if M(P ) is (semi)small and Q ≤ P .

(3) The (semi)smallness of M(P ) is related to (semi)tightness of monomi-
als in U−

q [26].

Since a finite dimensional simple Uε(Lg)-module contains at least one
l -dominant monomial, namely the one corresponding to the l -highest weight
vector, a special module is automatically simple. The converse is not true in
general. For example, if g = sl2, P = (1− u)2(1− ε2u), then one can compute
(say, by our algorithm)

χε(L(P )) = Y 2
1,1Y1,ε2 + Y1,1 + Y 2

1,1Y
−1
1,ε4 + 2Y1,1Y

−1
1,ε2Y

−1
1,ε4 + Y −2

1,ε2Y
−1
1,ε4 .

This has two l -dominant monomial terms.

Theorem 10.3. Suppose M(P ) is small. Then for any I-tuple of poly-
nomials Q ≤ P , the corresponding simple module L(Q) is special.

Proof. By the characterization of ZQR(t) in (8.5), we have ZQR(t) =
cQR(t) for all Q, R ≤ P . Therefore∑

R

ZQR(t)χε,t(L(R)) = χε,t(M(Q)) =
∑
R

ZQR(t)eR + non l -dominant terms.

Hence we have χε,t(L(R)) is eR plus non l -dominant terms.

Conjecture 10.4. Standard modules corresponding to tame modules and
Kirillov -Reshetikhin modules are small.

Kyoto University, Kyoto 606-8502, Japan
E-mail address: nakajima@math.kyoto-u.ac.jp
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