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Positive extensions,

Fejér-Riesz factorization and
autoregressive filters in two variables

By Jeffrey S. Geronimo and Hugo J. Woerdeman*

Abstract

In this paper we treat the two-variable positive extension problem for
trigonometric polynomials where the extension is required to be the reciprocal
of the absolute value squared of a stable polynomial. This problem may also be
interpreted as an autoregressive filter design problem for bivariate stochastic
processes. We show that the existence of a solution is equivalent to solving
a finite positive definite matrix completion problem where the completion is
required to satisfy an additional low rank condition. As a corollary of the main
result a necessary and sufficient condition for the existence of a spectral Fejér-
Riesz factorization of a strictly positive two-variable trigonometric polynomial
is given in terms of the Fourier coefficients of its reciprocal.

Tools in the proofs include a specific two-variable Kronecker theorem
based on certain elements from algebraic geometry, as well as a two-variable
Christoffel-Darboux like formula. The key ingredient is a matrix valued poly-
nomial that appears in a parametrized version of the Schur-Cohn test for sta-
bility. The results also have consequences in the theory of two-variable orthog-
onal polynomials where a spectral matching result is obtained, as well as in
the study of inverse formulas for doubly-indexed Toeplitz matrices. Finally,
numerical results are presented for both the autoregressive filter problem and
the factorization problem.
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1. Introduction

The trigonometric moment problem, orthogonal polynomials on the unit
circle, predictor polynomials, stable factorizations, etc., have led to a rich
and exciting area of mathematics. These problems were considered early in
20th century in the works of Carathéodory, Fejér, Kolomogorov, Riesz, Schur,
Szegö, and Toeplitz, and wonderful accounts of this theory may be found in
classical books, such as [44], [35], [2], and [1]. The theory is not only rich in
its mathematics but also in its applications, most notably in signal processing
[36], systems theory [31], [30], prediction theory [23, Ch. XII], and wavelets
[16, Ch. 6]. More recently, these problems have been studied in the context of
unifying frameworks from which the classical results appear as special cases.
We mention here the commutant lifting approach [31], the reproducing kernel
Hilbert space approach [25], the Schur parameter approach [15], and the band
method approach [28], [40], [66].

About halfway through the 20th century, multivariable variations started
to appear. Several questions lead to extensive multivariable generalizations
(e.g, [47], [48], [18], [19], [21]), while others lead to counterexamples ([10], [58],
[33], [22], [54], [53]). In this paper we solve some of the two-variable problems
that heretofore remained unresolved. In particular, we solve the positive ex-
tension problem that appears in the design of causal bivariate autoregressive
filters. As a result we also solve the spectral matching problem for orthogo-
nal polynomials and the spectral Fejér-Riesz factorization problem for strictly
positive trigonometric polynomials of two variables. In the next section we will
present these three main results. It may be helpful to first read Section 1.3 in
which some terminology and some notational conventions are introduced.
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1.1. The main results.

1.1.1. The positive extension problem. A polynomial p(z) is called stable
if p(z) �= 0 for z ∈ D := {z ∈ C : |z| ≤ 1}. For such a polynomial define
its spectral density function by f(z) = 1

p(z)p(1/z)
. Recall the following classical

extension problem: given are complex numbers ci, i = 0,±1,±2, . . . ,±n, find a
stable polynomial of degree n so that its spectral density function f has Fourier
coefficients f̂(k) = ck, k = −n, . . . , n. The solution of this problem goes back
to the works of Carathéodory, Toeplitz and Szegö, and is as follows: A solution
exists if and only if the Toeplitz matrix C := (ci−j)n

i,j=0 is positive definite
(notation: C > 0). In that case, the stable polynomial p(z) = p0 + · · · + pnzn

(which is unique when we require p0 > 0) may be found via the Yule-Walker
equation 

c0 c̄1 · · · c̄n

c1 c0
. . .

...
...

. . . . . . c̄1

cn · · · c1 c0




p0

p1
...

pn

 =


1
p0

0
...
0

 .

This result was later generalized to the matrix-valued case in [17] and [26] and
in the operator-valued case in [41]. The spectral density function f of p has in
fact a so-called maximum entropy property (see [9]), which states that among
all positive functions on the unit circle with the prescribed Fourier coefficients
ck, k = −n, . . . , n, this particular solution maximizes the entropy integral

1
2π

∫ π

−π
log(f(eiθ))dθ.

The elegant proofs of these results in [26] have lead to the band method, which
is a general framework for solving positive and contractive extension problems.
It was initiated in [28], and pursued in [40], [66], [56], and other papers (see
also [37, Ch. XXXV] and references therein).

In this paper we generalize the above result to the two-variable case. Un-
like the one-variable case, it does not suffice to write down a single matrix
and check whether it is positive definite. In fact, one needs to solve a positive
definite completion problem where the to-be-completed matrix is also required
to have a certain low rank submatrix. The precise statement is the following.

Theorem 1.1.1. Complex numbers ck,l, (k, l) ∈ {0, . . . , n}×{0, . . . , m},
are given. There exists a stable (no roots in D2) polynomial

p(z, w) =
n∑

k=0

m∑
l=0

pklz
kwl

with p00 > 0 so that its spectral density function

f(z, w) := (p(z, w)p(1/z, 1/w))−1
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has Fourier coefficients f̂(k, l) = ckl, (k, l) ∈ {0, . . . , n} × {0, . . . , m}, if and
only if there exist complex numbers ck,l, (k, l) ∈ {1, . . . , n}×{−m, . . . ,−1}, so
that the (n + 1)(m + 1) × (n + 1)(m + 1) doubly indexed Toeplitz matrix

Γ =

C0 · · · C−n
...

. . .
...

Cn · · · C0

 ,

where

Cj =

 cj0 · · · cj,−m
...

. . .
...

cjm · · · cj0

 , j = −n, . . . , n,

and c−k,−l = c̄k,l, has the following two properties:

(1) Γ is positive definite;

(2) The (n + 1)m × (m + 1)n submatrix of Γ obtained by removing scalar
rows 1 + j(m + 1), j = 0, . . . , n, and scalar columns 1, 2, . . . , m + 1, has
rank nm.

In this case one finds the column vector

[p2
00 p00p01 · · · p00p0m p00p10 · · · p00p1m p00p20 · · · · · · p00pnm]T

as the first column of the inverse of Γ. Here T denotes a transpose.

A more general version will appear in Section 2.4. The main motivation
for this problem is the bivariate autoregressive filter problem, which we shall
discuss in Section 3.2.

1.1.2. Two-variable orthogonal polynomials. The theory of one-variable
orthogonal polynomials is well-established, beginning with the results of Szegö
[61], [62]. The following is well known.

A positive Borel measure ρ with support on the unit circle containing at
least n + 1 points is given. Let {φi(z)}, i = 0, . . . , n, be the unique sequence
of polynomials such that φi(z) is a polynomial of degree i in z with positive
leading coefficient and

∫ π
−π φi(eiθ)φj(eiθ)dρ(θ) = δi−j. Then pn(z) := ←−

φ n(z) =

znφn(1
z ) is stable and has spectral matching, i.e., 1

|pn(eiθ)|2 has the same Fourier
coefficients ci as ρ for i = 0,±1,±2· · · ,±n.

In this paper we explore the two-variable case. In the papers by
Delsarte, Genin and Kamp [18], [19] the first steps were made towards a general
multivariable theory. We add to this the following spectral matching result.
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Theorem 1.1.2. Given is a positive Borel measure ρ with support on the
bitorus T2, denote the Fourier coefficients of ρ by cu, u ∈ Z2, and suppose that

det(cu−v)u,v∈{0,... ,n}×{0,... ,m} > 0.

Let φ(z, w) =
∑n

k=0

∑m
l=0 φklz

kwl be the polynomial so that φnm > 0,∫ π

−π

∫ π

−π
φ(eiθ, eiη)e−ikθ−ilηdρ(θ, η) = 0,

(n, m) �= (k, l) ∈ {0, . . . , n} × {0, . . . , m},

and ∫ π

−π

∫ π

−π
φ(eiθ, eiη)φ(eiθ, eiη)dρ(θ, η) = 1.

Then p(z, w) = znwmφ(1/z, 1/w) is stable (no roots inside D2) and the Fourier
coefficients c̃u of 1

|p(eiθ,eiη)|2 satisfy c̃u = cu, u ∈ {0, . . . , n}×{0, . . . , m}, if and
only if

rank(cu−v)u∈{1,... ,n}×{0,... ,m}
v∈{0,... ,n}×{1,... ,m}

= nm.(1.1.1)

In that case, c̃u = cu, u ∈ {−n, . . . , n} × {−m, . . . , m}.

One of the main tools in proving this result is the establishment of a
two-variable Christoffel-Darboux-like formula (see Proposition 2.3.3).

1.1.3. Fejér -Riesz factorization. The well-known Fejér-Riesz lemma
states that a trigonometric polynomial f(z) = f−nz−n + · · · + fnzn that takes
on nonnegative values on the unit circle (i.e., f(z) ≥ 0 for |z| = 1) can be
written as the modulus squared of a polynomial of the same degree. That is,
there exists a polynomial p(z) = p0 + · · · + pnzn such that

f(z) = |p(z)|2, |z| = 1.

In fact, one may choose p(z) to be outer, i.e., p(z) �= 0, |z| < 1. In the
nonsingular case when f(z) > 0, |z| = 1, one may choose p(z) to be stable.
This factorization result has many applications, among others in H∞-control
(see, e.g., [32]) and in the construction of compactly supported wavelets (see
[16, Ch. 6]). A natural question is whether analogs of the Fejér-Riesz lemma
exist for functions of several variables. One such variation is the following: let

f(z, w) =
m∑

l=−m

n∑
k=−n

fklz
kwl, |z| = |w| = 1,

be so that f(z, w) > 0 for all |z| = |w| = 1. Does there exist a stable polynomial
p(z, w) =

∑m
l=0

∑n
k=0 pklz

kwl so that

f(z, w) = |p(z, w)|2, |z| = |w| = 1?(1.1.2)



844 JEFFREY S. GERONIMO AND HUGO J. WOERDEMAN

In general, this question has a negative answer, as f(z, w) may not even be
written as a sum of square magnitudes of polynomials of the same degree ([10],
[58]), let alone as a sum with one term, which necessarily has the same degree.
As an aside, we mention that a strictly positive trigonometric polynomial may
always be written as a sum of square magnitudes of polynomials that typically
will be of higher degree [24, Cor. 5.2]. From a “degree of freedom” argument the
general failure of factorization (1.1.2) is not too surprising. Indeed, if f(z, w)
is positive on the bitorus, one may perturb the (n+1)(m+1)+nm coefficients
fkl = f∗

−k,−l, (k, l) ∈ {0, . . . , n} × {0, . . . , m} ∪ {1, . . . , n} × {−m, . . . ,−1},
independently while remaining positive. If one wants to perturb p(z, w) while
maintaining equality in (1.1.2), one only has (n + 1)(m + 1) coefficients pkl,
(k, l) ∈ {0, . . . , n} × {0, . . . , m} to perturb, leading to a generic impossibility.
(Note that one may always assume that p00 ∈ R and that necessarily f00 ∈ R,
so that the difference in count is indeed nm complex variables.)

As a consequence of the positive extension result, we arrive at the following
characterization for when a stable factorization (1.1.2) exists.

Theorem 1.1.3. Suppose that f(z, w) =
∑n

k=−n

∑m
l=−m fklz

kwl is
positive for |z| = |w| = 1. Then there exists a polynomial p(z, w) =∑n

k=0

∑m
l=0 pklz

kwl with p(z, w) �= 0 for |z|, |w| ≤ 1, and f(z, w) = |p(z, w)|2 if
and only if the matrix Γ as in Theorem 1.1.1 built from the Fourier coefficients

ck,l := 1̂
f (k, l) of the reciprocal of f , satisfies condition (2) of Theorem 1.1.1.

In that case, the polynomial p is unique up to multiplication with a complex
number of modulus 1.

A more general version will appear in Section 3.3.

1.2. Overall strategy and organization. There exist many different proofs
for the classical one-variable problem described in Subsection 1.1.1. Several
of these methods may be generalized to deal with the following two-variable
variation: given ckl = c−k,−l, k ∈ Z, l = −m, . . . , m, find a stable function
p(z, w) =

∑∞
k=0 pk0z

k +
∑∞

k=−∞
∑m

l=1 pklz
kwl whose spectral density function

f has Fourier coefficients f̂(k, l) = ckl, k ∈ Z, l = −m, . . . , m. We shall refer
to this two-variable problem as the “strip” case, because of the shape of the
region Sm := Z × {−m, . . . , m} ⊂ Z2. Papers where this case appears include
[19], [55] (reflection coefficient approach), [6], [56] (band method approach). In
this paper we deal with a finite index set in Z2 where the Fourier coefficients
of the sought spectral density function are specified. A standard case we will
consider is the set Λ+ ∪ (−Λ+) with Λ+ = {0, . . . , n} × {0, . . . , m}. As it is
known how to deal with the strip case one would like to determine the Fourier
coefficients in a strip containing Λ+ ∪ (−Λ+), and then solve the problem from
there. The main question is how to do this. The answer we have found lies in
a parametrized version of the Gohberg-Semencul formula [43]. The following
simple observation turns out to be crucial.
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Observation 1. Let p(z, w) =
∑n

k=0

∑m
l=0 pklz

kwl be a stable polyno-
mial, and let f(z, w) := 1

p(z,w)p(1/z,1/w) be its spectral density function. Write
p(z, w) =

∑m
l=0 pl(z)wl and

f(z, w) =
∞∑

i=−∞

∞∑
j=−∞

fijz
iwj =

∞∑
j=−∞

fj(z)wj .

Then

[(fi−j(z))m
i,j=0]

−1

=

p0(z) ©
...

. . .
pm(z) · · · p0(z)


p̄0(1/z) · · · p̄m(1/z)

. . .
...

© p̄0(1/z)



−

p̄m+1(1/z) ©
...

. . .
p̄1(1/z) · · · p̄m+1(1/z)


pm+1(z) · · · p1(z)

. . .
...

© pm+1(z)

 := Em(z),

where pm+1(z) ≡ 0. Moreover, Em(z) is a matrix-valued trigonometric poly-
nomial in z of degree n.

This last observation implies that Em(z) is uniquely determined by the
Fourier coefficients Fi = (fi,k−l)m

k,l=0, i = −n, . . . , n, of the matrix-valued
function (fi−j(z))m

i,j=0. Moreover, it is known exactly [26, §6] how to construct
Em(z) from F−n, . . . , Fn. For this construction we need to know fik, (i, k) ∈
{−n, . . . , n} × {−m, . . . , m} = Λ+ − Λ+. Since Λ+ − Λ+ �= Λ+ ∪ (−Λ+)
we first need to solve for the unknowns fik = f−i,−k, (i, k) ∈ {1, . . . , n} ×
{−m, . . . ,−1}. It turns out that for the resolution of this step the particular
structure of Em(z) plays an important role. The crucial observation here is
again a simple one, namely:

Observation 2. If Mm−1(z) is a stable matrix polynomial so that Em−1(z)
= Mm−1(z)Mm−1(z)∗, z ∈ T, then

Mm(z) :=
(

p0(z) 0
col(pi(z))m

i=1 Mm−1(z)

)
is a stable matrix polynomial satisfying Em(z) = Mm(z)Mm(z)∗, z ∈ T.
With the help of this observation we are able to find the conditions the un-
knowns in fjk, (j, k) ∈ Λ+ −Λ+, need to satisfy in order to lead to a solution.
These main observations will appear in Chapter 2 which contains the solution
of the positive extension problem.

We now describe the organization of the paper in detail. Chapter 2 con-
tains the main positive extension result and is organized as follows. In Sec-
tion 2.1 we study matrix polynomials of the form Em(z) as above, and extract
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the crucial structure they contain. As a by-product we formulate a test for
stability of two-variable polynomials that only uses one-variable root tests. In
Section 2.2 we study the Fourier coefficients of the spectral density function
corresponding to a stable polynomial, and exhibit their low rank behavior.
This low rank behavior ultimately leads to the solution of the positive exten-
sion problem. In Section 2.3 we show that the polynomial constructed from the
completed data has the desired properties (stability and “spectral matching”
= the matching of the Fourier coefficients of its spectral density function). In
Section 2.4 we formulate and solve the general positive extension problem for
arbitrary given finite data.

Chapter 3 contains several consequences of the main result. The positive
extension problem is recast in the settings of two-variable orthogonal poly-
nomials and of bivariate autoregressive filter design. These interpretations of
the main results appear in Sections 3.1 and 3.2, respectively. In Section 3.3 we
state and prove the spectral Fejér-Riesz factorization result for strictly positive
trigonometric polynomials. In Section 3.4 we present what our result means for
a possible generalization of the Gohberg-Semencul formula to doubly indexed
Toeplitz matrices.

In the appendix, finally, we provide an alternative way to prove one di-
rection of the positive extension result. The method here uses minimal rank
completions within the class of doubly indexed Toeplitz matrices.

1.3. Conventions and notation. For purposes of easy reference we men-
tion in this section the most important notational conventions used in this
paper.

Symbols for several frequently used sets are N, N0, Z, T, D, R, C, and
C∞, which stand for the sets of positive integers, nonnegative integers, inte-
gers, complex numbers of modulus one, complex numbers of modulus less than
one, real numbers, complex numbers, and complex numbers including infinity,
respectively.

In this paper we shall deal with subsets of Z2 and with orderings on
them. The most frequently used ordering is the lexicographical ordering which
is defined by

(k, l) <lex (k1, l1) ⇐⇒ k < k1 or (k = k1 and l < l1).

We shall also use the reverse lexicographical ordering which is defined by

(k, l) <revlex (k1, l1) ⇐⇒ (l, k) <lex (l1, k1).

Both these orderings are linear orders and in addition they satisfy

(k, l) < (m, n) =⇒ (k + p, l + q) < (m + p, n + q).(1.3.1)

In such a case, one may associate a halfspace with the ordering which is defined
by {(k, l) : (0, 0) < (k, l)}. In the case of the lexicographical ordering we shall
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denote the associated halfspace by H and refer to it as the standard halfspace.
In the case of the reverse lexicographical ordering we shall denote the associated
halfspace by H̃. Instead of starting with the ordering, one may also start with
a halfspace Ĥ of Z2 (i.e., a set Ĥ satisfying Ĥ + Ĥ ⊂ Ĥ, Ĥ ∩ (−Ĥ) = ∅,
Ĥ ∪ (−Ĥ) ∪ {(0, 0)} = Z2) and define an ordering via

(k, l) <Ĥ (k1, l1) ⇐⇒ (k1 − k, l1 − l) ∈ Ĥ.

We shall refer to the order <Ĥ as the order associated with Ĥ.
Throughout the paper we shall use matrices whose rows and columns

are indexed by subsets of Z2. For example, if I = {(0, 0), (1, 0), (0, 1)} and
J = {(2, 1), (2, 2), (2, 3)}, then

C = (cu−v)u∈I,v∈J

is the 3 × 3 matrix

C =

c−2,−1 c−2,−2 c−2,−3

c−1,−1 c−1,−2 c−1,−3

c−2,0 c−2,−1 c−2,−2

 .

The matrix C may be referred to as an I×J matrix. The first row in this matrix
will be referred to as the (0, 0)th, while, for instance, the second column will be
referred to as the (2, 2)th. The entries are referred to according to the row and
column index. Thus for example, in this particular matrix, the ((1, 0), (2, 3))
entry contains the element c−1,−3. The inverse of this matrix has rows and
columns that are indexed by J and I, respectively. In other words, C−1 is
a J × I matrix. In the case when C is invertible, we may for example have
statements of the form: (C−1)(2,2),(0,1) = 0 if and only if

rank
(

c−2,−1 c−2,−3

c−1,−1 c−1,−3

)
≤ 1,

which is a true statement by Kramer’s rule. In parts of the paper the in-
dex sets I and J may be given without an order (e.g., I = {1, . . . , n} ×
{. . . , m − 2, m − 1, m}), in which case any order may be chosen. Clearly, in
that case the statements made about the matrices will be independent of the
chosen order, such as statements about rank and zeroes in the inverse. When
I = J we will always choose the same order for the rows and columns, as in
this case we may want to make statements about self-adjointness and positive
definiteness. In algebraic manipulations with matrices indexed by subsets of Z2

common sense rules apply. For example, if C is an I×J matrix and D a J ×K

matrix, then CD is an I × K matrix whose (i, k)th entry equals
∑

j∈J cijdjk.
Quite often we will encounter matrices whose rows and columns are indexed
by the particular set Λ+ = {0, . . . , n} × {0, . . . , m}. It is a useful observa-
tion that when we order Λ+ in the lexicographical ordering, the corresponding
matrix is an (n + 1) × (n + 1) block Toeplitz matrix whose block entries are
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themselves (m + 1)× (m + 1) Toeplitz matrices. In the reverse lexicographical
order we also get such a doubly-indexed Toeplitz matrix, but now the matrix
is an (m+1)× (m+1) block matrix whose blocks are of size (n+1)× (n+1).

Row and column vectors may be indexed by subsets of Z2. The notation

row(ck)k∈K , col(ck)k∈K

stands for a row and column vector containing the entries ck, k ∈ K, in some
order, respectively. We shall also use the more conventional notation

row(Fi)n
i=1 =

(
F1 · · · Fn

)
, col(Fi)n

i=1 =

F1
...

Fn

 .

Polynomials and pseudopolynomials (negative powers are allowed) in one
and two variables will appear. For a one-variable polynomial p(z) =

∑n
i=0 piz

i,
we have the notation

p(z) :=
n∑

i=0

piz
n,←−p (z) := znp(

1
z
) =

n∑
i=0

pn−iz
i.

The polynomial ←−p (z) is called the reverse of p(z). In this definition it is
important to know how many terms (of which some may be zero) p(z) has.
We shall use the term “degree” here, so that the polynomial p(z) above has
degree n. It is a slight deviation from the standard way of using the term degree
as its use usually implies that the coefficient of the highest degree monomial is
nonzero. For our two variables we shall use z and w. The monomial ziwj will
in shorthand be denoted by

(
z
w

)k where k = (i, j). When K ⊂ Z2 is a finite set
and pk, k ∈ K, are complex numbers, then p(z, w) =

∑
k∈K pk

(
z
w

)k is called a
pseudopolynomial. For this pseudopolynomial we define

p(z, w) =
∑
k∈K

pk

(
z

w

)k

.

In addition, we have a notion of “reverse” for a two-variable pseudopolynomial,
but in this case the index set K needs to be ordered, say K = {k0, . . . , km}.
In that case,

←−p (z, w) =
(

z

w

)km

p(
1
z
,

1
w

).

It is a slight abuse of notation not to include the ordering of K in the notation
of ←−p (z, w), but in all instances we will make clear what order on K applies
(or, at least indicate which element of K appears last in the ordering).

For polynomials of one or two variables we shall allow ∞ as a root. In
one variable, we say that a(z) =

∑n
i=0 anzn has a root at infinity when an = 0.

Equivalently, ∞ is a root of a(z) if and only if 0 is a root of ←−a (z). As a
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consequence, we get the following interpretation of ∞ as a root for polynomials
of two variables. Let

p(z, w) =
n∑

i=0

m∑
j=0

pijz
iwj =

m∑
j=0

pj(z)wj =
n∑

i=0

p̃i(w)zi

be a polynomial of degree (n, m). Then p(z,∞) = 0 corresponds to the state-
ment pm(z) = 0, while p(∞, w) = 0 corresponds to the statement p̃n(w) = 0.
The statement p(∞,∞) = 0 corresponds to pnm = 0. Finally, for an r × r

matrix polynomial G(z) =
∑n

i=0 Giz
i of degree n, we say that ∞ is in the

spectrum of G if detGn = 0. This is equivalent to the statement that the
polynomial det(G(z)) of degree rn has a root at ∞.

We will need the notions of left and right stable factorizations of matrix-
valued trigonometric polynomials. We say that a polynomial a(z) is stable if
a(z) �= 0, z ∈ D. A square matrix polynomial G(z) is called stable if detG(z) is
stable. Let A(z) =

∑n
i=−n Aiz

i be a matrix-valued trigonometric polynomial
that is positive definite on T, i.e., A(z) > 0 for |z| = 1. In particular, since the
values of A(z) on the unit circle are Hermitian, we have Ai = A∗

−i, i = 0, . . . , n.
The positive matrix function A(z) allows a left stable factorization, that is, we
may write

A(z) = M(z)M(1/z)∗, z ∈ C \ {0},

with M(z) a stable matrix polynomial of degree n. In the scalar case, this is
the well-known Fejér-Riesz factorization and goes back to the early 1900’s. For
the matrix case the result goes back to [57] and [46]. When we require that
M(0) is lower triangular with positive diagonal entries, the stable factorization
is unique. We shall refer to this unique factor M(z) as the left stable factor of
A(z). Similarly, we define right variations of the above notions. In particular,
if N(z) is so that A(z) = N(1/z)∗N(z), z ∈ C\{0}, N(z) is stable and N(0) is
lower triangular with positive diagonal elements, then N(z) is called the right
stable factor of A(z). For scalar functions f of two variables, stability is defined
as f(z, w) �= 0 for (z, w) ∈ D×T∪{0}×D. As we shall see in Proposition 2.1.1,
when f is a polynomial stability is equivalent to f(z, w) �= 0, (z, w) ∈ D2.

Cholesky factorizations of positive definite matrices will play an important
role as well. Given a positive definite matrix M , we say that L is its lower
Cholesky factor when L is lower triangular, has positive entries on the diagonal
and satisfies M = LL∗. We say that U is the upper Cholesky factor of M

when U is upper triangular, has positive entries on the diagonal and satisfies
M = UU∗.

We also mention the notation f̂(k) which stands for the kth Fourier coef-
ficient of f . In the case when k ∈ Z we are considering a function on T, while
in the case when k ∈ Z2 we are considering a function on T2. The support of f̂

is the set {k : f̂(k) �= 0}. Finally, we will frequently use the Kronecker delta,
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which is defined as δu = 1 when u = 0 and δu = 0 otherwise. Here u typically
ranges in a subset of Z or Z2.
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2. Stable polynomials and positive extensions

In this chapter we treat the positive extension problem where, given a
finite number of Fourier coefficients, a stable polynomial is sought whose spec-
tral density function has the prescribed Fourier coefficients. We will show that
the required positive extension exists if and only if a structured partial ma-
trix has a positive definite structured completion satisfying a certain low rank
condition. In order to show the necessity we shall study stable polynomials
and their density functions. In particular, we shall find expressions for the
Fourier coefficients of the corresponding spectral density function in terms of
realizations of a one-variable matrix polynomial that we associate with the
stable polynomial. This matrix polynomial may be viewed as a parametrized
Schur-Cohn expression. The sufficiency proof is achieved by showing that a
completed matrix as described above has an associated predictor polynomial
that is stable and that has the spectral matching property. For this latter
part, we first prove a useful formula that may be interpreted as a two-variable
Christoffel-Darboux like formula. Along the way we will also obtain a stability
test for two-variable polynomials that consists of two one-variable root tests
and a single matrix positive definiteness test.

2.1. Stability via one-variable root tests. The classical Schur-Cohn test
states that a polynomial a(z) = a0 + · · · + anzn is stable if and only if

 a0 ©
...

. . .
an−1 · · · a0


ā0 · · · ān−1

. . .
...

© ā0

 −

ān ©
...

. . .
ā1 · · · ān


an · · · a1

. . .
...

© an

 > 0.

(2.1.1)
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In this section we study two-variable stable polynomials. By definition p(z, w)
is stable if p(z, w) �= 0 for (z, w) ∈ D × T ∪ {0} × D. Consequently, one may
write p(z, w) =

∑n
i=0 ai(w)zi and require that (2.1.1) holds for ai = ai(w)

for all w ∈ T. It is therefore natural in this context to study matrix-valued
trigonometric polynomials of the type (2.1.1) where ai are polynomials. We will
do this in this section and obtain a stability test for two-variable polynomials
that only requires one-variable root tests. More importantly, we develop the
basic results needed to solve the positive extension problem. We start with
some preliminary material.

Let f be a complex valued continuous function of two variables whose
domain includes D × T ∪ {0} × D. We say that f is stable if f(z, w) �= 0 for
(z, w) ∈ D × T ∪ {0} × D. Note that stability of f implies that f is invertible
as a function on the bitorus T2. We have the following equivalent statements
for the stability of polynomials p of degree (n, m), that is, polynomials of the
form

p(z, w) =
n∑

i=0

m∑
j=0

pijz
iwj .(2.1.2)

Note that we do not have any nonzero requirements on the coefficients of p,
so that the degree has to be specified along with the polynomial. The (k, l)th

Fourier coefficient of a function q(z, w) is denoted by q̂(k, l).

Proposition 2.1.1. Let p(z, w) be a polynomial of degree (n, m). The
following are equivalent :

(i) p is stable,

(ii) p̂−1(k, l) = 0 for all (k, l) ∈ {(k, l) : k < 0 or (k = 0 and l < 0)},

(iii) p̂−1(k, l) = 0 for all (k, l) ∈ {(k, l) : k < 0 or l < 0},

(iv) p(z, w) �= 0 for all |z| ≤ 1 and |w| ≤ 1.

The equivalence of (i) and (ii) holds for all stable functions and actually
provides the motivation for its definition.

Proof. For (i) ⇒ (ii) use [29] to see that stability implies that p̂−1(k, l) = 0
for k < 0. In addition, it follows from p(0, w) �= 0 for |w| ≤ 1 that p̂−1(0, l) = 0
for l < 0. For (iii) ⇒ (iv) use the fact that (iii) implies p−1 has an absolutely
summable Fourier expansion of the form

p−1(z, w) =
∑
k,l≥0

p̂−1(k, l)zkwl, |z| = |w| = 1.

Thus p−1 can be extended for values of z and w inside the unit disk, proving
(iv). The implication (iv) ⇒ (i) is trivial.
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It remains to show (ii) ⇒ (iii). For this write

p(z, w) =
n∑

j=0

p̃j(w)zj ,

and

p−1(z, w) =
∞∑

k=0

qk(w)zk.

Thus q̂k(l) = p̂−1(k, l). Note that q̂0(l) = 0, l < 0. Since p(z, w)p−1(z, w) ≡ 1,

p̃0(w)q0(w) ≡ 1

and
j∑

l=0

p̃j−l(w)ql(w) ≡ 0, j ≥ 1.

We proceed by induction. Suppose that for j ≤ k, with k ≥ 0, we have shown
that q̂j(s) = 0, s < 0. Then

qk+1(w) = −1
p̃0(w)

(∑k
l=0 p̃k+1−l(w)ql(w)

)
= −q0(w)

(∑k
l=0 p̃k+1−l(w)ql(w)

)
contains only nonnegative powers of w. Thus q̂k+1(s) = 0, s < 0.

We introduce the notion of intersecting zeros. We will allow for roots to
be at ∞ as explained in Section 1.3. Given a polynomial p(z, w) of degree
(n, m), we say that a pair (z, w) ∈ C2

∞ is an intersecting zero of p if

p(z, w) = 0 = ←−p (z, w).(2.1.3)

In general a polynomial could have continua of intersecting zeros. We will
see that when p is stable, it only has a finite number of them. In fact, the
intersecting roots will play a crucial role in the stability test we develop. This is
because they appear in the description of the spectrum of matrix trigonometric
polynomials constructed from a parametrized Schur-Cohn-type test. This is
part of the content of the following proposition.

For a stable polynomial p(z, w) we define its spectral density function by

f(z, w) = 1/(p(z, w)p(z−1, w−1)),

where for p as in (2.1.2) we let p(z, w) =
∑n

i=0

∑m
j=0 pijz

iwj . Note that when
p(z0, w0) �= 0 for some |z0| = |w0| = 1, then f(z0, w0) > 0. In particular, if p

is stable, then f > 0 on T2. In addition, for a square matrix-valued function
G(z) we define its spectrum by Σ(G) = {z : detG(z) = 0}. In case G(z) is
a matrix polynomial we allow for ∞ to be in the spectrum of G as explained
in Section 1.3. So in this case Σ(G) ⊂ C∞. We remind the reader that the
definition of left stable factor may be found in Section 1.3.
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Proposition 2.1.2. Let p(z, w) be a stable polynomial of degree (n, m)
with p(0, 0) > 0, and let f(z, w) be its spectral density function. Write

p(z, w) =
m∑

i=0

pi(z)wi, f(z, w) =
∞∑

i=−∞
fi(z)wi.

Put pi(z) ≡ 0 for i > m. Then the following hold :

(i) Tk(z) := (fi−j(z))k
i,j=0 > 0 for all k ∈ N0 and all z ∈ T.

(ii) For all k ≥ m − 1 and for all z in the domain of Tk with z �∈ Σ(Tk):
(2.1.4)

Tk(z)−1 =

p0(z) ©
...

. . .
pk(z) · · · p0(z)


p̄0(1/z) · · · p̄k(1/z)

. . .
...

© p̄0(1/z)



−

p̄k+1(1/z) ©
...

. . .
p̄1(1/z) · · · p̄k+1(1/z)


pk+1(z) · · · p1(z)

. . .
...

© pk+1(z)


=: Ek(z).

(iii) For k ≥ m− 1, the left stable factors Mk(z) and Mk+1(z) of the positive
trigonometric matrix polynomials Ek(z) and Ek+1(z), respectively, satisfy

Mk+1(z) =
[

p0(z) 0
col(pl(z))k+1

l=1 Mk(z)

]
.(2.1.5)

(iv) The spectra of Mm−1,
←−
Mm−1 and znEm−1 are given by

Σ(Mm−1) = {z ∈ C∞ \ D : ∃w such that (z, w) is an intersecting zero of p},
Σ(←−Mm−1) = {z ∈ D : ∃w such that (z, w) is an intersecting zero of p},

Σ(znEm−1) = {z ∈ C∞ : ∃w such that (z, w) is an intersecting zero of p}
⊂ C∞ \ T.

In particular, p has only a finite number of intersecting zeros. In ad-
dition, for k ≥ m, Σ(Mk) = Σ(Mm−1) ∪ {z ∈ C∞ : p0(z) = 0},
Σ(←−M k) = Σ(←−Mm−1)∪{z ∈ C∞ : ←−p0 (z) = 0}, Σ(znEk) = Σ(Mk)∪Σ(←−M k).

Note that the statement above shows that Ek(z) > 0, z ∈ T, as Ek(z) =
Tk(z)−1. One may also see this by using the Schur-Cohn test for stability.

We shall use the following lemma.

Lemma 2.1.3. Let p(z, w) =
∑m

i=0 pi(z)wi be a polynomial of degree (n, m),
and let Em−1(z) be defined by (2.1.4). Then

Σ(znEm−1) = {z ∈ C∞ : ∃w such that (z, w) is an intersecting zero of p}
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The ideas in the proof below appeared earlier in the context of Bezoutians
(see, e.g., the proof of Theorem 1 in Section 13.3 of [52]).

Proof. Write ←−p (z, w) =
∑m

i=0 qi(z)wi, or equivalently, set qj(z) =
znpm−j(1/z). First suppose that pm(z) ≡ 0 and qm(z) ≡ 0. Then (z,∞)
is an intersecting root for every z ∈ C∞. Moreover, it is easy to see that
the first column of znEm−1(z) is the constant zero column, and consequently
Σ(znEm−1) = C∞. Thus the result follows in this case.

Suppose now that qm(z) �≡ 0. Consider the Sylvester matrix

S(z) =



p0(z) © q0(z) ©
...

. . .
...

. . .
pm−1(z) · · · p0(z) qm−1(z) . . . q0(z)
pm(z) . . . p1(z) qm(z) . . . q1(z)

. . .
...

. . .
...

© pm(z) © qm(z)


(2.1.6)

corresponding to p(z, w) and ←−p (z, w) viewed as polynomials in w. Since the
determinant of S(z) is the resultant of these two polynomials, we obtain that
there exists a w so that (2.1.3) holds if and only if S(z) is singular. Notice
that if we write S(z) as

S(z) =
(

α(z) znβ(z)
γ(z) znδ(z)

)
,(2.1.7)

with all blocks of size m×m, then α(z) and β(z) are lower triangular Toeplitz,
and therefore they commute. The matrices γ(z) and δ(z) are upper triangular
Toeplitz and commute as well. Moreover, by (2.1.4), Em−1(z) = α(z)δ(z) −
β(z)γ(z). By using Schur complements we have for z �∈ Σ(δ) that

det S(z) = det(α(z) − β(z)δ(z)−1γ(z)) det(znδ(z)) = det(znEm−1(z)),

where in the last step we used the product rule for determinants and the
fact that γ(z) and δ(z) commute. Since Σ(δ) is finite (due to qm(z) �≡ 0) ,
detS(z) = det(znEm−1(z)) for all z, and thus it follows that z is a zero of
det(znEm−1(z)) if and only if S(z) is singular. This yields the description of
Σ(znEm−1).

The case when pm(z) �≡ 0 is similar.

Proof of Proposition 2.1.2. (i). Fix |z| = 1. Since f(z, w) > 0 for all
|w| = 1, the multiplication operator g(w) → f(z, w)g(w) is a positive definite
operator on the Lebesgue space L2(T). But then so is its restriction to the
linear span of {1, w, . . . , wk}. This yields (i).

(ii). Fix |z| = 1. Since f(z, w)p(z, w) = 1/p(z, 1/w) is analytic for w ∈
C∞ \D, the 0, . . . , k Fourier coefficients of f(z, w)p(z, w) viewed as a function



POSITIVE EXTENSIONS 855

of w are 1/p0(z), 0, . . . , 0. In other words,

Tk(z)


p0(z)
p1(z)

...
pk(z)

 =


1/p0(z)

0
...
0

 , k ≥ m.

Equation (2.1.4) for |z| = 1 now follows directly from the celebrated Gohberg-
Semencul formulas [43]. Since both sides of (2.1.4) are rational, we get that
(2.1.4) holds for all z in the domain of Tk with z �∈ Σ(Tk).

(iii). Let Mk(z) be the stable factor of Ek(z). Define Mk+1(z) via (2.1.5).
Writing out the product Mk+1(z)Mk+1(1/z̄)∗ and comparing it to Ek+1(z), it is
straightforward to see that Mk+1(z)Mk+1(1/z̄)∗ = Ek+1(z). Since both p0(z)
and Mk(z) are stable, Mk+1(z) is stable as well. Moreover, since p0(0) > 0
and Mk(0) is lower triangular with positive diagonal entries, the same holds
for Mk+1(0). Thus Mk+1(z) must be the stable factor of Ek+1(z).

(iv). By Lemma 2.1.3 the description of Σ(znEm−1) follows. But then it
also follows that z is a zero of the stable factor Mm−1(z) of Em−1(z) if and
only if z ∈ C∞ \ D and (z, w) is an intersecting zero of p for some w. The
description of Σ(←−Mm−1) follows by symmetry. The expressions for Σ(←−M k),
Σ(Mk), and Σ(znEk), k ≥ m, follow directly from (iii).

One can state several variations of the above result. We state the following
one. It may be proven by using the above result (with the roles of z and w

reversed) together with the observation that if A is a Toeplitz matrix then
JAT J = A where J is the matrix with 1’s on the anti-diagonal and zeros
elsewhere. The latter implies, for instance, that the right and left spectral
factors Nk and Mk, respectively, of Ek are related by Nk = JMT

k J . The
proposition may also be proven directly. The details are omitted.

Proposition 2.1.4. Let p(z, w) be a stable polynomial of degree (n, m)
with p(0, 0) > 0, and let f(z, w) be its spectral density function. Write

p(z, w) =
n∑

i=0

p̃i(w)zi, f(z, w) =
∞∑

i=−∞
f̃i(w)zi.

Put p̃i(w) ≡ 0 for i > n. Then the following hold :

(i) T̃k(w) := (f̃i−j(w))k
i,j=0 > 0 for all k ∈ N0 and all w ∈ T.

(ii) For all k ≥ n − 1 and for all w in the domain of T̃K with w �∈ Σ(T̃k):
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(2.1.8)

T̃k(w)−1 =

p̃0(1/w) · · · p̃k(1/w)
. . .

...
© p̃0(1/w)


p̃0(w) ©

...
. . .

p̃k(w) · · · p̃0(w)



−

p̃k+1(w) · · · p̃1(w)
. . .

...
© p̃k+1(w)


p̃k+1(1/w) ©

...
. . .

p̃1(1/w) · · · p̃k+1(1/w)


=: Ẽk(w).

(iii) For k ≥ n − 1, the right stable factors M̃k(w) and M̃k+1(w) of the posi-
tive trigonometric matrix polynomials Ẽk(w) and Ẽk+1(w), respectively,
satisfy

M̃k+1(w) =
[

M̃k(w) 0
row(p̃k+1−l(w))k

l=0 p̃0(w)

]
.(2.1.9)

(iv) The spectra of M̃n−1,
←−̃
Mn−1 and wmẼn−1 are given by

Σ(M̃n−1) = {w ∈ C∞ \ D : ∃z such that (z, w) is an intersecting zero of p},
Σ(

←−̃
Mn−1) = {w ∈ D : ∃z such that (z, w) is an intersecting zero of p},

Σ(wmẼn−1) = {w ∈ C∞ : ∃z such that (z, w) is an intersecting zero of p}
⊂ C∞ \ T.

In particular, p has only a finite number of intersecting zeros. In addi-
tion, for k ≥ n, Σ(M̃k) = Σ(M̃n−1) ∪ {w ∈ C∞ : p̃0(w) = 0}, Σ(

←−̃
M k) =

Σ(
←−̃
Mn−1) ∪ {w ∈ C∞ : ←−̃p0 (w) = 0}, Σ(wmẼk) = Σ(M̃k) ∪ Σ(

←−̃
M k).

We now obtain a criterion for stability in terms of intersecting zeros.

Theorem 2.1.5. Let p(z, w) be a polynomial of degree (n, m) of two vari-
ables. The following conditions are equivalent :

(i) p(z, w) is stable,

(ii) p(z, a) �= 0 for all |z| ≤ 1 and some |a| = 1, p(b, w) �= 0 for all |w| ≤ 1
and some |b| ≤ 1, and the intersecting zeros of p lie in D × (C∞ \ D) ∪
(C∞ \ D) × D.

(iii) p(z, a) �= 0 for all |z| ≤ 1 and some |a| = 1, p(b, w) �= 0 for all |w| ≤ 1
and some |b| ≤ 1, and every intersecting zero (z, w) of p satisfies |z| �= 1
or |w| �= 1.
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(iv) p(b, w) �= 0 for all |w| ≤ 1 and some |b| ≤ 1, Ẽn−1(a) > 0 for some
|a| = 1, and det Ẽn−1(w) �= 0 for all |w| = 1.

Clearly, one may reverse the roles of z and w, and obtain additional equiv-
alences.

Proof. That (i) implies (ii) follows directly from Proposition 2.1.1(iv).
For (ii) → (iv) note that the stability of p(z, a) is equivalent to Ẽn−1(a) > 0.
Moreover, Σ(wmẼn−1) = {w : ∃z such that (z, w) is an intersecting zero of p}
does not contain any elements from T.

For (iv) → (iii) notice that Ẽn−1(a) > 0 is equivalent to p(z, a) being
stable. In addition, since Σ(wmẼn−1) ∩ T = ∅, we have by the variation of
Lemma 2.1.3 with the roles of z and w interchanged, that all intersecting zeros
of p(z, w) satisfy |w| �= 1.

Finally, in order to see that (iii) implies (i) suppose that (iii) is satisfied.
We claim that p(z, w) �= 0 for |z| = |w| = 1. Indeed, suppose by contradiction
that p(z0, w0) = 0, for some |z0| = |w0| = 1. Then, by taking complex conju-
gates, we get 0 =

∑n
i=0

∑m
j=0 pij

1
zi
0

1
wj

0
=

←−p (z0,w0)
zn
0 wm

0
, and thus ←−p (z0, w0) = 0 as

well. This contradicts (iii). The result now follows from Theorem 2 in [60] (see
also Theorem 3 in [20]).

It should be observed that checking stability via Theorem 2.1.5(iv) may
be done by two single variable polynomial root tests (e.g., check that p(0, w)
is stable and that det Ẽn−1(w) �= 0, |w| = 1) and a positive definiteness test
(e.g., Ẽn−1(1) > 0). We note that in [8] a test of this type was alluded to, but
a proof is not present there.

2.2. Fourier coefficients of spectral density functions. In the following we
show that the spectral density function of a stable polynomial of degree (n, m)
has an associated Hankel operator of rank nm. This is done by developing
formulas for the Fourier coefficients appearing in the Hankel operator. The
spectrum (= the set of eigenvalues) of a constant square matrix A is denoted
by σ(A). Further, denote δu = 0 for u �= (0, 0) and δ(0,0) = 1.

Theorem 2.2.1. Let p(z, w) =
∑n

i=0

∑m
j=0 pijz

iwj be a stable polynomial
of degree (n, m), and let f(z, w) be its spectral density function. Then there
exists a row vector x ∈ Cnm, a column vector y ∈ Cnm and commuting matrices
S, S̃ ∈ Cnm×nm such that

σ(S) = {z ∈ D : ∃w such that (z, w) is an intersecting zero of p},(2.2.1)

σ(S̃) = {w ∈ D : ∃z such that (z, w) is an intersecting zero of p},
and

f̂(k, j) = xS̃m+j−1Sn−1−ky, k ≤ n − 1, j ≥ −m + 1.(2.2.2)
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Choose x, y, S and S̃ as follows:

x = row(f̂((n − 1, 0) − u))u∈∆,(2.2.3)

y = col(δu+(0,−m+1))u∈∆, S = Φ−1Φ1, S̃ = Φ−1Φ2,

where
Φ = (f̂(u − v))u,v∈∆, Φ1 = (f̂(u − v − (1, 0)))u,v∈∆,

Φ2 = (f̂(u − v + (0, 1))u,v∈∆

and ∆ = {0, . . . , n − 1} × {0, . . . , m − 1}. In particular the matrix

(f̂(u − v))u∈{...,n−2,n−1}×{0,1,... }
v∈{0,1,... }×{...,m−2,m−1}

(2.2.4)

has rank equal to nm.

In case n = m = 2 and the lexicographical ordering is used, equa-
tion (2.2.3) yields the choice

x=
(
f̂(1, 0) f̂(1,−1) f̂(0, 0) f̂(0,−1)

)
, y =

(
0 1 0 0

)T
,

Φ =


f̂(0, 0) f̂(0,−1) f̂(−1, 0) f̂(−1,−1)
f̂(0, 1) f̂(0, 0) f̂(−1, 1) f̂(−1, 0)
f̂(1, 0) f̂(1,−1) f̂(0, 0) f̂(0,−1)
f̂(1, 1) f̂(1, 0) f̂(0, 1) f̂(0, 0)

 ,

Φ1 =


f̂(−1, 0) f̂(−1,−1) f̂(−2, 0) f̂(−2,−1)
f̂(−1, 1) f̂(−1, 0) f̂(−2, 1) f̂(−2, 0)
f̂(0, 0) f̂(0,−1) f̂(−1, 0) f̂(−1,−1)
f̂(0, 1) f̂(0, 0) f̂(−1, 1) f̂(−1, 0)


and

Φ2 =


f̂(0, 1) f̂(0, 0) f̂(−1, 1) f̂(−1, 0)
f̂(0, 2) f̂(0, 1) f̂(−1, 2) f̂(−1, 1)
f̂(1, 1) f̂(1, 0) f̂(0, 1) f̂(0, 0)
f̂(1, 2) f̂(1, 1) f̂(0, 2) f̂(0, 1)

 .

Notice that the above result is reminiscent of (one direction of) the clas-
sical Kronecker Theorem (see, e.g., [69]) which relates functions with a finite
number of poles in D with a low rank Hankel operator. In addition, the choice
of the matrices (2.2.3) has the flavor of a two-variable version of Silverman’s
algorithm [59, Proof of Th. 11] for finding realizations.

Clearly, the matrix (2.2.4) may be interpreted as a restriction of the mul-
tiplication operator Mf on the Lebesgue space L2(T2) with symbol f . Indeed,
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if for Λ ⊆ Z2 we denote by PΛ the orthogonal projector on L2(T2) given by

PΛ

 ∑
(k,l)∈Z2

cklz
kwl

 =
∑

(k,l)∈Λ

cklz
kwl,(2.2.5)

then PIMfPJ : ImPJ → ImPI has a matrix representation (with respect to
the canonical basis {zkwl}k,l)

(f̂(u − v))u∈I,v∈J .

Proof of Theorem 2.2.1. We shall use the notation of Propositions 2.1.2
and 2.1.4. The strategy of the proof is as follows. The matrix-valued functions
T̃l(w) and Tk(z) both have inverses that are matrix-valued trigonometric poly-
nomials (use part (ii) of Propositions 2.1.2 and 2.1.4). Therefore, their Fourier
coefficients may be represented as CAiB, i ≥ 0, for appropriately chosen finite
matrices A, B, and C. Since the matrix valued functions T̃l(w) and Tk(z) are
closely related, the representations of their Fourier coefficients are closely re-
lated as well. Using this the desired representation of the Fourier coefficients
of f are found. Let us start.

For k ≥ m−1, consider the equality Tk(z) = Mk(1/z)∗−1Mk(z)−1. Notice
that Mk(z) is a (k+1)×(k+1) matrix polynomial of degree n, and that Mk(0)
is invertible. Thus ←−

Mk(z) = znMk(1/z)∗ is a polynomial of degree n with an
invertible leading term Mk(0)∗. As Mk is stable and ←−

M k is anti-stable (all
spectra inside the unit circle), they do not have a common spectrum. Since,
in addition ←−

M k has an invertible leading term, there exist by Theorem 3.5 in
[39] matrix polynomials Pk(z) and Qk(z) of degree at most n − 1 so that

←−
Mk(z)Pk(z) + Qk(z)Mk(z) ≡ Ik+1.

Moreover, Qk(z) is given by

Qk(z) = − 1
2πi

∫
T

←−
Mk(z) −←−

Mk(λ)
z − λ

←−
Mk(λ)−1Mk(λ)−1dλ.

Notice that by the particular structure of Mk(z), as described in Proposition
2.1.2(iii),

Qk(z) =
(
∗ ∗
∗ Qk−1(z)

)
, k ≥ m,

and also

Mk(0)∗−1Qk(z) =
(
∗ ∗
∗ Mk−1(0)∗−1Qk−1(z)

)
, k ≥ m.(2.2.6)

Now

Tk(z) =Mk(1/z)∗−1(←−Mk(z)Pk(z) + Qk(z)Mk(z))Mk(z)−1

= znPk(z)Mk(z)−1 + zn←−Mk(z)−1Qk(z).
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As Pk(z)Mk(z)−1 is analytic in D,

Tk(z) = zn←−Mk(z)−1Qk(z) + O(zn).(2.2.7)

Next, we write ←−
Mk(z)−1Qk(z) in realization form, as follows. Write

Mk(0)∗−1←−Mk(z) = znI + L
(k)
n−1z

n−1 + · · · + L
(k)
0 ,

Mk(0)∗−1Qk(z) =Q
(k)
n−1z

n−1 + · · · + Q
(k)
0 .

Note that by Proposition 2.1.2(iii) ,

L
(k)
j =

(
(pn−j,0

p00
) ∗

0 L
(k−1)
j

)
, k ≥ m, j = 0, . . . , n.(2.2.8)

By repeatedly using (2.2.8) we obtain,

L
(k)
j =


(pn−j,0

p00
) ∗

. . .
(pn−j,0

p00
)

© L
(m−1)
j

 , k ≥ m, j = 0, . . . , n,(2.2.9)

where (pn−j,0

p00
) appears k −m + 1 times. By [7, Th. II.2.3] (we transpose twice

to apply the result directly), we have

←−
Mk(z)−1Qk(z) = Ĉ(zI − Â)−1B̂, z �∈ Σ(←−Mk),(2.2.10)

where

Ĉ =
(
0 · · · 0 Ik+1

)
, B̂ = col(Q(k)

j )n−1
j=0 , Â =


0 · · · 0 −L

(k)
0

I 0 −L
(k)
1

...
. . .

...
...

0 · · · I −L
(k)
n−1

 ,

which are of size (k + 1)×n(k + 1), n(k + 1)× (k + 1) and n(k + 1)×n(k + 1),
respectively. The representation (2.2.10) is called a realization of the ratio-
nal matrix function ←−

Mk
−1Qk (see, e.g., [7]). Due to (2.2.9) we may apply a

permutation π̂k to Â so that we obtain the following block upper triangular
form

A := π̂kÂπ̂−1
k =


T ∗

. . .
T

© S′

 ,
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where

T =


0 · · · 0 −(pn0

p00
)

1 0 −(pn−1,0

p00
)

...
. . .

...
...

0 · · · 1 −(p1,0

p00
)

 , S′ =


0 · · · 0 −L

(m−1)
0

I 0 −L
(m−1)
1

...
. . .

...
...

0 · · · I −L
(m−1)
n−1

 ,

and the matrix T appears k − m + 1 times in A. Notice that σ(S′) =
Σ(←−Mm−1) ⊂ D. The permutation π̂k transforms Ĉ and B̂ into

C := Ĉπ̂−1
k =


E1 ©

. . .
E1

© Em

 , B := π̂kB̂ =


∗
...
∗

W ′
k

 ,

where
El =

(
0 · · · 0 Il

)
is of size l × nl and W ′

k = col(PQ
(k)
j )n−1

j=0 with P the m × (k + 1) matrix
P = [0 Im]. With the help of (2.2.6) it is straightforward to check that

W ′
k =

(
∗ W ′

k−1

)
, k ≥ m.(2.2.11)

Expanding (2.2.10), we now obtain from (2.2.7) and the definition of Tk(z)
that

(fi−l(z))k
i,l=0 =

∞∑
i=0

zn−i−1CAiB + O(zn).

By taking the jth Fourier coefficient on both sides, and writing only the last
m rows, we get

Hjk :=

fj,k−m+1 · · · fj0 · · · fj,−m+1
...

...
. . .

...
fjk · · · fj,m−1 · · · fj0

(2.2.12)

= Em(S′)n−j−1W ′
k, j ≤ n − 1, k ≥ m − 1.

In a similar way, but now using Proposition 2.1.4, we obtain

H̃lj :=

 f0j · · · f−n+1,j · · · f−l,j
...

. . .
...

...
fn−1,j · · · f0j · · · f−l+n−1,j

(2.2.13)

= Fn(Ŝ∗)m+j−1Ŵl, j ≥ −m + 1, l ≥ n − 1,

where σ(Ŝ) = Σ(
←−̃
Mn−1) ⊂ D,

Fn =
(
0 · · · 0 In

)
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is of size n × nm, and Ŵl is a matrix of size nm × l with the property that

Ŵl =
(
Ŵl−1 ∗

)
, l ≥ n.

Notice that Hjk defined in (2.2.12) and H̃lj defined in (2.2.13) are related
in the following way

(Hi−j,k)n−1 l
i=0, j=0 = π1[(H̃l,i−j)0i=−m+1,

0
j=−l]π2,

where π1 and π−1
2 are appropriately chosen permutations (that convert reverse

lexicographical ordering to lexicographical ordering). Notice that π2 depends
on k and l, but we will suppress this dependency. Combining (2.2.12) and
(2.2.13) we therefore get

(2.2.14) col(Em(S′)n−1−j)n−1
j=0 row((S′)jW ′

k)
l
j=0

= π1col(Fn(Ŝ∗)j)m−1
j=0 row((Ŝ∗)k−jŴl)k

j=0π2.

When k = m− 1 and l = n− 1, (2.2.14) equals the invertible nm×nm matrix
Φ = (fu−v)u,v∈{0,... ,n−1}×{0,... ,m−1}; i.e.,

Φ = col(Em(S′)n−1−j)n−1
j=0 row((S′)jW ′

m−1)
n−1
j=0(2.2.15)

= π1col(Fn(Ŝ∗)j)m−1
j=0 row((Ŝ∗)m−1−jŴn−1)m−1

j=0 π2.

Thus the nm × nm matrices

col(Em(S′)n−1−j)n−1
j=0 , col(Fn(Ŝ∗)j)m−1

j=0 , row((S′)jW ′
m−1)

n−1
j=0

and
row((Ŝ∗)m−1−jŴn−1)m−1

j=0

are all invertible. We now let

K = row((S′)jW ′
m−1)

n−1
j=0 , L = row((Ŝ∗)m−1−jŴn−1)m−1

j=0 π2,

and put
E = EmK , S = K−1S′K , F̃ = FnL , S̃ = L−1Ŝ∗L.

Then (2.2.15) yields

Φ = col(ESn−1−j)n−1
j=0 = π1col(F̃ S̃j)m−1

j=0 .(2.2.16)

Let x denote the first row of E, which by (2.2.16) equals the ((n − 1)m + 1)th

row of Φ. As π1 picks out the jth scalar row from each block to make the jth

block, we have by (2.2.16) that x equals the last row of F̃ . In fact, we obtain
from (2.2.16) that

F̃ = col(xSn−1−j)n−1
j=0 , E = col(xS̃j)m−1

j=0 ,(2.2.17)
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and, more generally,

F̃ S̃i = col(xS̃iSn−1−j)n−1
j=0 ,

ESr = col(xSrS̃j)m−1
j=0 , i = 0, . . . , m − 1; r = 0, . . . , n − 1.

Also, let
Wk = K−1W ′

k , W̃l = L−1Ŵl.

Then the definitions of K and L yield

Inm = row(SjWm−1)n−1
j=0 = row(S̃m−1−jW̃n−1)m−1

j=0 π2,(2.2.18)

and, by (2.2.14) and (2.2.16),

row(SjWk)l
j=0 = row(S̃k−jW̃l)k

j=0π2, k ≥ m − 1, l ≥ n − 1.(2.2.19)

Denoting the last column of Wk by y (which by (2.2.11) is independent of k),
we get from (2.2.18) that y is the mth column of Inm and also equals the first
column of W̃l. In addition, from (2.2.19),

SjWk = row(S̃k−rSjy)k
r=0, S̃iW̃l = row(SrS̃iy)l

r=0, k ≥ m − 1, l ≥ n − 1.

(2.2.20)

In particular, W̃l = [y · · · Sly], and thus S̃iW̃l = [S̃iy · · · S̃iSly]. Comparing
this with the representation of S̃iW̃l in (2.2.20) we obtain

SjS̃ky = S̃kSjy, k ≥ 0, j ≥ 0.(2.2.21)

Since

Inm = row(SjWm−1)n−1
j=0 = row(Sjrow(S̃m−1−ry)m−1

r=0 )n−1
j=0(2.2.22)

= row(S̃m−1−jW̃n−1)m−1
j=0 π2 = row(S̃m−1−jrow(Sry)n−1

r=0 )m−1
j=0 π2,

we have by (2.2.21) that SS̃ = S̃S, and thus S and S̃ commute. It follows now
from (2.2.12) that

Hjk = ESn−j−1Wk = col(xS̃j)m−1
j=0 Sn−j−1row(S̃k−ry)k

r=0.

By inspection (2.2.2) follows directly.
Moreover, using equation (2.2.16) we obtain

ΦS = (col(ESn−j−1)n−1
j=0 )S = col(EmSn−j−1)n−2

j=−1

= col(EmSn−j−1)n−2
j=−1row(SjWm−1)n−1

j=0 = (Hi−j,m−1)n−2
i=−1,

n−1
j=0 = Φ1.

Thus S is as in (2.2.3). Similarly, we obtain that S̃ is given by (2.2.3).
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Finally, the fact that the infinite matrix (2.2.4) has rank nm follows from
the observation that

(2.2.23)

(f̂(u − v))u∈{...,n−2,n−1}×{0,1,... }
v∈{0,1,... }×{...,m−2,m−1}

= col(xSn−1−kS̃j)(k,j)∈{...,n−2,n−1}×{0,1,... }

×row(SkS̃m−1−jy)(k,j)∈{0,1,... }×{...,m−2,m−1}.

It should be noticed that the proof of Theorem 2.2.1 also gives a way to
derive formulas for the other Fourier coefficients of f . These now also involve
the matrices

T =


0 · · · 0 −(pn0

p00
)

1 0 −(pn−1,0

p00
)

...
. . .

...
...

0 · · · 1 −(p1,0

p00
)

 and


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−(p0m

p00
) −(p0,m−1

p00
) · · · −(p01

p00
)

 .

As those formulas do not play a critical role in the positive extension result,
we do not pursue this here.

2.3. Stability and spectral matching of a predictor polynomial. Before we
come to the positive extension result, we would first like to address the following
question. Let Λ+ = {0, . . . , n} × {0, . . . , m} and let complex numbers cu,
u ∈ Λ+ − Λ+ = {−n, . . . , n} × {−m, . . . , m} be given so that (cu−v)u,v∈Λ+

> 0. Then we can define an inner product on the finite-dimensional space
{
(

z
w

)v : v ∈ Λ+} by setting

〈
(

z

w

)v

,

(
z

w

)u

〉c = cv−u.

When we perform a Gram-Schmidt orthogonalization procedure on the basis
{
(

z
w

)v : v ∈ Λ+}, we obtain polynomials φv(z, w), v ∈ {0, . . . , n}×{0, . . . , m}.
It is well known that in the one-variable case the reverses of these polynomials
are stable and have a spectral matching property (see also Subsection 1.1.2).
The following result states that under an additional condition on the numbers
cu the polynomial φnm has similar properties. As we shall see in the next
section, the polynomial ←−φ nm(z, w) yields exactly the solution to the positive
extension result.

If (cv,w)v∈M,w∈N is a matrix whose entries are indexed by the sets M and
N (⊂ Z2, in our case), then

[(cv,w)v∈M,w∈N ]−1
A

B

denotes the submatrix in its inverse that corresponds to the rows indexed by
A ⊂ N and columns indexed by B ⊂ M . When no specific statement is made
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about the ordering of the elements of M and N , one may choose any ordering.
When M = N we give the rows and the columns the same ordering.

Theorem 2.3.1. Let Λ+ = {0, . . . , n}×{0, . . . , m} and cu, u ∈ Λ+−Λ+,
be given so that (cu−v)u,v∈Λ+ > 0. Put

q(z, w) = row
((

z

w

)u)
u∈Λ+

[
(cu−v)u,v∈Λ+

]−1 col(δu)u∈Λ+ ,(2.3.1)

and let p(z, w) = q(z, w)/
√

q(0, 0). The predictor polynomial p(z, w) is stable
and satisfies

cu =
1

(2πi)2

∫ ∫
T2

(
z

w

)−u 1
|p(z, w)|2

dz

z

dw

w
, u ∈ Λ+ − Λ+,(2.3.2)

if and only if [
(cu−v)u,v∈Λ+\{(0,0)}

]−1
{1,...,n}×{0}
{0}×{1,...,m}

= 0.(2.3.3)

It should be noted that it may happen that p(z, w) is stable without
condition (2.3.3) being satisfied (after all, the set of stable pseudopolynomials
is open). However, in that case (2.3.2) does not hold. The following example
illustrates this.

Example 2.3.2. Let Λ+ = {0, 1}×{0, 1}, and c00 = 1, c01 = 1
4 = c1,−1, c10 =

0 = c11. Then (cu−v)u,v∈Λ+ > 0 and,

p(z, w) = (224 − 60w − 16z − 4zw)/
√

46816.

It is easy to see that p(z, w) is stable. Computing the Fourier coefficients of
f(z, w) = 1/(p(z, w)p(1/z, 1/w) yields

f̂(0, 0) ≈ 1.0104, f̂(0, 1) ≈ 0.2702, f̂(1, 0) ≈ −0.0725,

f̂(1, 1) ≈ −0.2007, f̂(1,−1) ≈ −0.0194.

The proof of the above theorem depends heavily on the theory of matrix
polynomials orthogonal on the unit circle, therefore we recall some results from
[17]. As usual, we denote the halfspaces associated with the lexicographical
ordering and reverse lexicographical ordering by H and H̃, respectively. Let

Γk
n =


Ck

0 Ck
−1 · · · Ck

−n

Ck
1 Ck

0 · · · Ck
1−n

...
...

. . .
...

Ck
n Ck

n−1 · · · Ck
0

 ,
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where Ck
−i = (Ck

i )∗ is the (k + 1) × (k + 1) Toeplitz matrix given by

Ck
i =

ci,0 · · · ci,−k
...

. . .
...

ci,k · · · ci,0

 , i = −n, . . . , n.

Likewise, in reverse lexicographic order, set

Γ̃k
m =


C̃k

0 C̃k
−1 · · · C̃k

−m

C̃k
1 C̃k

0 · · · C̃k
1−m

...
...

. . .
...

C̃k
m C̃k

m−1 · · · C̃k
0

 ,

where C̃k
−i = (C̃k

i )∗ is the (k + 1) × (k + 1) Toeplitz matrix given by

C̃k
i =

c0,i · · · c−k,i
...

. . .
...

ck,i · · · c0,i

 , i = −m, . . . , m.

Observe that in the lexicographical ordering (cu−v)u,v∈Λ+ = Γm
n while in the

reverse lexicographical ordering (cu−v)u,v∈Λ+ = Γ̃n
m.

Given Γs = (Ci−j)s
i,j=0 > 0 with Cl being matrices of size r × r, we set

As(x) = [Ir xIr · · · xs Ir]Γ−1
s [Ir 0 · · · 0]T

and
Bs(x) = [0 · · · 0 Ir]Γ−1

s [xsIr · · ·xIr Ir]T ,

where Ir is the r × r identity matrix. Then one of the versions of the matrix
Christoffel-Darboux formula (formula (66) of Theorem 13 in [17]) yields

(2.3.4) (1 − xx1)[Ir xIr · · ·xsIr]Γ−1
s [Ir x1Ir · · ·xs

1Ir]∗

= As(x)As(0)−1As(x1)∗ − (xx1)s+1Bs

(
1
x

)∗
Bs(0)−1Bs

(
1
x1

)
.

If we let Us denote the upper Cholesky factor of Γ−1
s , then

Us =
(

Us−1 ∗
0 Xss

)
for some matrix Xss, and

Bs(x) = Xss[0 · · · 0 Ir]U∗
s [xsIr · · ·xIr Ir]T .

Using this we see easily that

[Ir xIr · · ·xsIr]Γ−1
s [Ir x1Ir · · ·xs

1Ir]∗(2.3.5)

= [Ir xIr · · ·xs−1Ir]Γ−1
s−1[Ir x1Ir · · ·xs−1

1 Ir]∗

+(xx̄1)sBs(
1
x̄

)∗Bs(0)−1Bs(
1
x̄1

).
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But then (2.3.4) and (2.3.5) give the useful variation of the matrix Christoffel-
Darboux formula:

(2.3.6) (1 − xx1)[Ir xIr · · ·xs−1Ir]Γ−1
s−1[Ir x1Ir · · ·xs−1

1 Ir]∗

= As(x)As(0)−1As(x1)∗ − (xx1)sBs

(
1
x

)∗
Bs(0)−1Bs

(
1
x1

)
.

An important property given by [17, Th. 6] is that if Γk is positive then
A(x) is stable. If the matrices Cl are themselves Toeplitz matrices, they sat-
isfy Cl = Jr−1C

T
l Jr−1, where Jr = (δi+j−r)r

i,j=0. This yields that B(x) =
Jr−1A(x)T Jr−1, as was also observed in [18, after Th. 9] . We will apply the
above result to the cases when Cl = Cm

l and when Cl = Cm−1
l . Equivalently,

these are the cases when Γs = Γm
n and when Γs = Γm−1

n , respectively. We
therefore define for i = m − 1, m,

Ai
n(z) = [Ii+1 zIi+1 · · · znIi+1](Γi

n)−1[Ii+1 0 · · · 0]T ,(2.3.7)

Bi
n(z) = [0 · · · 0 Ii+1](Γi

n)−1[znIi+1 zn−1Ii+1 · · · Ii+1]T .

Likewise, for the reverse lexicographical order, we define for i = n − 1, n,

Ãi
m(w) = [Ii+1 wIi+1 · · · wmIi+1](Γ̃i

m)−1[Ii+1 0 · · · 0]T ,(2.3.8)

B̃i
m(w) = [0 · · · 0 Ii+1](Γ̃i

m)−1[wmIi+1 wn−1Ii+1 · · · Ii+1]T .

The matrices Bi
n(z) and B̃i

m(w) satisfy Bi
n(z) = JiA

i
n(z)T Ji and B̃i

m(w) =
JiÃ

i
m(w)T Ji. Let Li

n be the lower Cholesky factor of (Γi
n)−1, i = m−1, m. We

then define

(2.3.9)

P i(z, w) := [1w · · · wi][Ii+1 zIi+1 · · · znIi+1]Li
n[Ii+1 0 · · · 0]T

= [1w · · · wi][Ii+1 zIi+1 · · · znIi+1](Γi
n)−1[((Y i

n)−1)T 0 · · · 0]T

= [1w · · ·wi]Ai
n(z)(Y i

n)−1,

where Ai
n(z) is given by (2.3.7) and (Y i

n)∗ is the lower Cholesky factor of Ai
n(0).

From the relation between Ai
n(z) and Bi

n(z), and from Bi
n(z) = JiA

i
n(z)T Ji we

see that for i = m − 1, m,

[←−P i(z, w)]T := znwi[P i(1/z̄, 1/w̄)∗]T = [1w · · · wi]znBi
n(1/z̄)∗(Xi

n)∗−1Ji,

(2.3.10)

where Xi
n(= Ji(Y i

n)T Ji) is the upper Cholesky factor of Bi
n(0). It follows from

the definition of p(z, w) in Theorem 2.3.1 that the first column of Pm is p(z, w).
Thus we shall write

Pm(z, w) = [p(z, w) wP (1)(z, w)],(2.3.11)
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where P (1)(z, w) is some row-valued polynomial in z and w. From the definition
for Pm we find

[←−P m(z, w)]T = znwm[p(
1
z
,

1
w

)
1
w

(P (1)(
1
z
,

1
w

)∗)T ] = [←−p (z, w)
←−−
P (1)(z, w)T ].

(2.3.12)

Likewise for i = n − 1, n set

(2.3.13)

P̃ i(z, w) := [1 z · · · zi][Ii+1 wIi+1 · · · wm Ii+1]L̃i
m[Ii+1 0 · · · 0]T

= [1 z · · · zi][Ii+1 wIi+1 · · · wm Ii+1](Γ̃i
m)−1[((Ỹ i

m)−1)T 0 · · · 0]T

= [1 z · · · zi]Ãi
m(w)(Ỹ i

m)−1,

where L̃i
m is the lower Cholesky factor of (Γ̃i

m)−1 and (Ỹ i
m)∗ is the lower

Cholesky factor of Ãi
m(0). Also

[
←−̃
P i(z, w)]T := ziwm[P̃ i(1/z̄, 1/w̄)∗]T = [1 z · · · zi]wmB̃i

m(1/w̄)∗(X̃i
w)∗−1J̃i.

(2.3.14)

Similarly, as above,

P̃n(z, w) = [p(z, w) wP̃ (1)(z, w)],(2.3.15)

for some row-valued polynomial P̃ (1)(z, w).
We now state a Christoffel-Darboux-like formula.

Proposition 2.3.3. Let Λ+ = {0, . . . , n} × {0, . . . , m} and cv,
v ∈ Λ+ − Λ+, be given so that (cu−t)u,t∈Λ+ > 0 and[

(cu−v)u,v∈Λ+\{(0,0)}
]−1

{1,...,n}×{0}
{0}×{1,...,m}

= 0(2.3.16)

holds. Then

p(z, w)p(z1, w1) −←−p (z, w)←−p (z1, w1)(2.3.17)

= (1 − ww1)Pm−1(z, w)Pm−1(z1, w1)
∗

+(1 − zz1)
←−−−
P̃n−1(z, w)T

←−−−
P̃n−1(z1, w1)∗

T .

We need the following observation regarding Cholesky factors.

Lemma 2.3.4. Let A be a positive definite r × r matrix and suppose that
for some 1 ≤ j < k ≤ r (A−1)kl = 0, l = 1, . . . , j. Then the lower Cholesky
factor L of A−1 satisfies Lkl = 0, l = 1, . . . , j. Moreover, if Ã is the (r− 1)×
(r − 1) matrix obtained from A by removing the kth row and column, and L̃ is
the lower Cholesky factor of Ã−1, then

Lil = L̃il, i = 1, . . . , k − 1; l = 1, . . . , j,(2.3.18)
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and

Li+1,l = L̃il, i = k, . . . , r − 1; l = 1, . . . , j.(2.3.19)

In other words, the first j columns of L and L̃ coincide after the kth row (which
contains zeros in columns 1, . . . , j) in L has been removed.

Proof. Since the first j columns of a lower Cholesky factor of a matrix M

are linear combinations of the first j columns of M , the first statement follows.
The second part follows from the above observation and the following general
rule: if M = (Mij)3i,j=1 is an invertible block matrix with square diagonal
entries, (Mij)2i,j=1 is invertible, and (Nij)3i,j=1 = M−1 satisfies N13 = 0, then(

M11 M12

M21 M22

)−1

=
(

N11 ∗
N21 ∗

)
.

To see this, write out the first two rows of the product MN = I to see that(
M11 M12

M21 M22

) (
N11

N21

)
=

(
I

0

)
.

Proof of Proposition 2.3.3. We use the notation introduced in this section.
We first show that condition (2.3.16) and a repeated use of Lemma 2.3.4 imply
the following equalities:

P (1)(z, w) = Pm−1(z, w), P̃ (1)(z, w) = P̃n−1(z, w),(2.3.20)

where P (1) and P̃ (1) are as introduced in (2.3.11) and (2.3.15), and Pm−1 and
P̃m−1 are as defined in (2.3.9) and (2.3.14), respectively. Indeed, for the first
equality in (2.3.20) observe that (2.3.11) and (2.3.9) yield

Pm(z, w) = [p(z, w) wP (1)(z, w)]

= [1 · · · wm][Im+1 zIm+1 · · · znIm+1]Lm
n [Im+1 0 · · · 0]T .

Denoting by L̂ the matrix obtained from Lm
n by removing its first row and

column, we find that

P (1)(z, w) = [1 · · · wm−1 z

w
· · · zwm−1 · · · · · · zn

w
· · · znwm−1]L̂[Im 0 · · · 0]T .

By (2.3.16) the matrix L̂ contains zeros in the first m columns at rows mj +1,
j = 1, . . . , n. Repeated use of Lemma 2.3.4 now gives that

P (1)(z, w) = [1 · · · wm−1][Im zIm · · · znIm]Lm−1
n [Im 0 · · · 0]T = Pm−1(z, w).

This yields the first equality in (2.3.20). The second equality follows analo-
gously.
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We now prove (2.3.17). Apply (2.3.6) with Γs−1 = Γm
n−1 and multiply

(2.3.6) with [1w · · · wm] on the left and [1w1 · · · wm
1 ]∗ on the right to obtain

(1 − zz1)[1w · · · wm][Im+1 · · · zn−1Im+1](2.3.21)

×(Γm
n−1)

−1[Im+1 · · · zn−1
1 Im+1]∗[1w1 · · · wm

1 ]∗

= [1w · · · wm](Am
n (z)(Y m

n )−1(Y m∗
n )−1Am

n (z1)∗

−(zz1)nBm
n (

1
z
)∗(Xm∗

n )−1(Xm
n )−1Bm

n (
1
z1

))[1w1 · · · wm
1 ]∗.

Next, use (2.3.9), (2.3.10), (2.3.11), (2.3.12) and (2.3.20) to obtain

(1 − zz1)[1 · · ·wm][Im+1 · · · zn−1Im+1](2.3.22)

×(Γm
n−1)

−1[Im+1 · · · zn−1
1 Im+1]∗[1 · · ·wm

1 ]∗

= Pm(z, w)Pm(z1, w1)∗ − [
←−
Pm(z, w)]T [

←−
Pm(z1, w1)∗]T

= p(z, w)p(z1, w1) + ww1P
m−1(z, w)Pm−1(z1, w1)∗

−←−p (z, w))←−p (z, w) −←−
P m−1(z, w)

T←−
P m−1(z1, w1)∗

T
.

Applying now (2.3.6) with Γs−1 = Γm−1
n−1 , multiplying with [1w · · · wm−1] on

the right and [1w1 · · · wm−1
1 ]∗ on the left gives

(2.3.23)

Pm−1(z, w)Pm−1(z1, w1)∗ −←−
P m−1(z, w)

T←−
P m−1(z1, w1)∗

T

= (1 − zz1)[1 · · ·wm−1][Im · · · zn−1Im](Γm−1
n−1 )−1[Im · · · zn−1

1 Im]∗[1 · · ·wm−1
1 ]∗.

Subtracting (2.3.23) from (2.3.22) yields

(2.3.24)

p(z, w)p(z, w) −←−p (z, w))←−p (z, w)

= (1 − ww1)Pm−1(z, w)Pm−1(z1, w1)∗

+(1 − zz1)([1w · · · wm][Im+1 · · · zn−1Im+1]

×(Γm
n−1)

−1[Im+1 · · · zn−1
1 Im+1]∗[1 · · ·wm

1 ]∗

−[1 · · ·wm−1][Im · · · zn−1Im](Γm−1
n−1 )−1[Im · · · zn−1

1 Im]∗[1 · · ·wm−1
1 ]∗).

Next we put the rows and columns of Γm
n−1 in reverse lexicographical order and

note that Γm
n−1 becomes Γ̃n−1

m . Thus

(2.3.25)

[1 w · · · wm][Im+1 · · · zn−1Im+1](Γm
n−1)

−1[Im+1 · · · zn−1
1 Im+1]∗[1 · · ·wm

1 ]∗

= [1 z · · · zn−1][In · · ·wmIn](Γ̃n−1
m )−1[In · · ·wm

1 In]∗[1 · · · zn−1
1 ]∗

=
←−−−
P̃n−1(z, w)T

←−−−
P̃n−1(z, w)∗T

+[1 z · · · zn−1][In · · ·wm−1In](Γ̃n−1
m−1)

−1[In · · ·wm−1
1 In]∗[1 · · · zn−1

1 ]∗,
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where in the last equality we use an observation as in (2.3.5). Since Γ̃n−1
m−1 and

Γm−1
n−1 are just reorderings of each other we finally obtain by combining (2.3.24)

and (2.3.25)

p(z, w)p(z, w) −←−p (z, w)←−p (z, w)

= (1 − ww1)Pm−1(z, w)Pm−1(z1, w1)
∗

+(1 − zz1)
←−−−
P̃n−1(z, w)T

←−−−
P̃n−1(z1, w1)∗

T ,

which is the desired resulting equation.

With the above result we can now prove Theorem 2.3.1. First we remind
the reader of the following useful well known fact (see [45]; see also Theorem
2.5 in [67]).

Lemma 2.3.5. Let A be a matrix of size p × q and D be a matrix of size
(n − p) × (n − q) and let B, C, P, Q, R, S be matrices of appropriate sizes so
that [

A B

C D

]−1

=
[
P Q

R S

]
.

Then
q − rankC = p − rankR.

In particular, R = 0 if and only if rankC = q − p.

For the sake of completeness we shall provide a proof for this lemma.

Proof. Since CP = −DR , P [kerR] ⊆ kerC. Likewise, since RA = −SC,
we get A[kerC] ⊆ kerR. Consequently,

AP [kerR] ⊆ A[kerC] ⊆ kerR.

Since AP + BR = I , AP [kerR] = kerR, and thus

A[kerC] = kerR.

This yields dim kerC ≥ dim kerR. By reversing the roles of C and R one
obtains also that dim kerR ≥ dim kerC. This gives dim ker R = dim kerC,
yielding the lemma.

Proof of Theorem 2.3.1. Let Λ+ = {0, . . . , n} × {0, . . . , m} and cu, u ∈
Λ+ − Λ+, be given so that (cu−v)u,v∈Λ+ > 0 and (2.3.3) holds. First we show
that p(z, w) is stable. Set z1 = z and w1 = w, |w| = 1 in (2.3.17), to obtain

|p(z, w)|2 − |←−p (z, w)|2 = (1 − |z|2)
←−−−
P̃n−1(z, w)

←−−−
P̃n−1(z, w)∗.
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If p(z0, w0) = 0 in the region |z| < 1 and |w| = 1 then the above equation
and equation (2.3.14) imply that B̃n−1

m (w0)∗ must have a left eigenvector with
eigenvalue zero. However, this leads to a contradiction since det(B̃n−1

m (w0)∗)
�= 0 for |w| = 1 . A similar argument also applies for the region |w| < 1, |z| = 1.
If p(z0, w0) = 0 with |z0| = 1 = |w0| then so does ←−p (z0, w0). From (2.3.17) with
z1 = z0 we find that this would imply that Pm−1(z0, w0)Pm−1(z0, w1)∗ = 0
for arbitrary |w1| < 1. However from (2.3.9) with z = z0 we see this cannot
happen since det(Am−1

n (z0)) �= 0. It now follows from Theorem 2.1.5(iii) that
p(z, w) is stable.

Next we show that p(z, w) satisfies equation (2.3.2). We begin by writing
p(z, w) =

∑m
i=0 pi(z)wi. Then straightforward algebraic manipulations (or,

alternatively, see [51, §4]) show that

(2.3.26)

p(z, w)p(1/z̄, w1) − ww̄1
←−p (z, w)←−p (1/z̄, w1)

1 − ww̄1

= (1, . . . , wm)

(p0(z) ©
...

. . .
pm(z) · · · p0(z)


p̄0(1/z) · · · p̄m(1/z)

. . .
...

© p̄0(1/z)



−

p̄m+1(1/z) ©
...

. . .
p̄1(1/z) · · · p̄m+1(1/z)


pm+1(z) · · · p1(z)

. . .
...

© pm+1(z)

) 1
...

w̄m
1

 ,

where pm+1(z) ≡ 0. Furthermore, by (2.3.17) with z1 = 1/z̄,

p(z, w)p(1/z̄, w1) −←−p (z, w)←−p (1/z̄, w1)
1 − ww̄1

= Pm−1(z, w)Pm−1(1/z̄, w1)∗.

Multiplication of both sides by ww̄1 and addition of p(z, w)p(1/z̄, w1) to both
sides yields

(2.3.27)

p(z, w)p(1/z̄, w1) − ww̄1
←−p (z, w)←−p (1/z̄, w1)

1 − ww̄1
= Pm(z, w)Pm(1/z̄, w1)∗,

where we used that

Pm(z, w) = [p(z, w) wPm−1(z, w)].
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Combining (2.3.26), (2.3.27), and (2.3.9) we find

(2.3.28)

Em(z) =

p0(z) ©
...

. . .
pm(z) · · · p0(z)


p̄0(1/z) · · · p̄m(1/z)

. . .
...

© p̄0(1/z)



−

p̄m+1(1/z) ©
...

. . .
p̄1(1/z) · · · p̄m+1(1/z)


pm+1(z) · · · p1(z)

. . .
...

© pm+1(z)


= Am

n (z)Am
n (0)−1Am

n (1/z̄)∗.

Recall that Am
n (z) is stable [17, Th. 6]. Therefore, on the unit circle we find

that Em(z) > 0. Let F (z) = Em(z)−1 and write

F (z) =
∞∑
−∞

Fnzn.

Note that by the Gohberg-Semencul formula F (z) is Toeplitz for every z. Fur-
thermore, we get, using the stability of Am

n (z), that

F (z)Am
n (z) = Am

n (1/z̄)∗−1Am
n (0) = I + O(1/z).

Comparing the 0, . . . , n Fourier coefficients on both sides yields the equationF0 · · · F−n
...

. . .
...

Fn · · · F0


A0

...
An

 =

I
...
0

 ,(2.3.29)

where Am
n (z) =

∑n
i=0 Aiz

i. On the other hand, by the definition (2.3.7) of
Am

n (z) Cm
0 · · · Cm

−n
...

. . .
...

Cm
n · · · Cm

0


A0

...
An

 =

I
...
0

 .(2.3.30)

By the matrix version of the Gohberg-Semencul formula (see [38]) a positive
definite block Toeplitz matrix is uniquely determined by the first block column
of its inverse. It therefore follows that the equations (2.3.29) and (2.3.30) are
the same, or in other words,

Cm
l = Fl, l = −n, . . . , n.(2.3.31)

Since F (z) is Toeplitz we may write F (z) = (fi−j(z))m
i,j=0. Fix z ∈ T. By

(2.3.28) we may view p(z, w) =
∑m

i=0 pi(z)wi as the polynomial in w formed
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from taking the first column of the lower Cholesky factor of F (z)−1(= Em(z)).
But then the one-variable theory (see subsection 1.1.2) gives that

fl(z) =
1
2π

∫ 2π

0

e−ilθ

|p(z, eiθ)|2 dθ, l = −m, . . . , m.

Now (2.3.31) yields that for l = −m, . . . , m,

ckl = f̂l(k) =
1
2π

∫ 2π

0
fl(eiη)e−ikηdη

=
1

(2π)2

∫ 2π

0

∫ 2π

0

e−ilθ−ikη

|p(eiη, eiθ)|2 dθdη, k = −n, . . . , n.

This proves (2.3.2)
For the converse, let p(z, w) be stable. Observe that cu defined in (2.3.2)

is the uth Fourier coefficient of the spectral density function associated with
p(z, w). But then it follows directly from Theorem 2.2.1 that

nm = rank Φ ≤ rank(cu−v)u∈{1,... ,n}×{0,... ,m}
v∈{0,... ,n}×{1,... ,m}

= rank(cv−u) v∈{−1,... ,n−1}×{0,... ,m−1}
u∈{0,... ,n−1}×{−1,... ,m−1}

≤ nm.

Now, by Lemma 2.3.5 we obtain (2.3.3).

2.4. Positive extensions. Let H = {(n, m) : n > 0 or (n = 0 and m > 0)}
be the standard halfspace in Z2, and let Λ+ be a finite set in H ∪ {(0, 0)}
containing (0, 0). We consider the following problem which arises in the design
of autoregressive filters. For given complex numbers ckl, (k, l) ∈ Λ+, find if
possible a pseudopolynomial

p(z, w) =
∑

(k,l)∈Λ+

cklz
kwl, |z| = |w| = 1,

so that

(i) p(z, w) is stable

(ii) 1
|p(z,w)|2 has Fourier coefficients ck,l for (k, l) ∈ Λ+.

In the one-variable case where Λ+ = {0, 1, 2, . . . , n} the necessary and
sufficient condition is that the finite Toeplitz matrix

C =

c0 · · · c−n
...

. . .
...

cn · · · c0


is positive definite, where c−k = c̄k for k ∈ {1, . . . , n}. In that case, the desired
polynomial equals

p(z) = p
−1/2
0 (p0 + p1z + · · · + pnzn), |z| = 1,
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where p0
...

pn

 = C−1


1
0
...
0

 .

In this section we shall give necessary and sufficient conditions for the
two-variable problem in terms of positive definite matrix completions. We
start with the case when

Λ+ = {0, . . . , n} × {0, . . . , m}.

As usual, we denote by δu the Kronecker delta on Z2, i.e., δu = 0 for u �= (0, 0)
and δ(0,0) = 1.

Theorem 2.4.1. Let Λ+ = {0, . . . , n}×{0, . . . , m}, and let cu, u ∈ Λ+, be
given complex numbers. Put c−u = c̄u, u ∈ Λ+. The following are equivalent :

(i) There exists a stable polynomial p with support (p̂) ⊆ Λ+ such that 1
|p|2

has Fourier coefficients 1̂
|p|2 (u) = cu, u ∈ Λ+;

(ii) There exist complex numbers cu, u ∈ (Λ+ − Λ+)\(Λ+ ∪ −Λ+) so that

(cu−v)u,v∈Λ+ > 0
and

rank(cu−v)u∈{1,...,n}×{0,...,m}
v∈{0,...,n}×{1,...,m}

= nm;(2.4.1)

(iii) There exist complex numbers cu, u ∈ (Λ+ − Λ+)\(Λ+ ∪ −Λ+) so that

(cu−v)u,v∈Λ+ > 0
and [

(cu−v)u,v∈Λ+\{(0,0)}
]−1
{1,...,n}×{0}
{0}×{1,...,m}

= 0.

(iv) For all pairs of sets S1 and S2 with

{1, . . . , n} × {0, . . . , m} ⊆ S1 ⊆{1, 2, . . . } × {. . . , m − 1, m},(2.4.2)

{0, . . . , n} × {1, . . . , m} ⊆ S2 ⊆{. . . , n − 1, n} × {1, 2, . . . },

there exist cu, u ∈ (S − S)\(Λ+ ∪ (−Λ+)), where S = {(0, 0)} ∪ S1 ∪ S2,
such that ∑

u∈S−S

|cu| < ∞,

(cu−v)u,v∈S > 0 (acting on l2(S)),
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and

rank(cu−v)u∈S1
v∈S2

= nm;(2.4.3)

(v) For some pair of sets S1 and S2 satisfying (2.4.2) there exist cu,
u ∈ (S − S)\(Λ+ ∪ (−Λ+)), where S = {(0, 0)} ∪ S1 ∪ S2, such that∑

u∈S−S

|cu| < ∞

(cu−v)u,v∈S > 0 (acting on l2(S)),

and
rank(cu−v)u∈S1

v∈S2

= nm;

(vi) For all pairs of finite sets S1 and S2 satisfying (2.4.2) there exist cu,
u ∈ (S − S)\(Λ+ ∪ (−Λ+)), where S = {(0, 0)} ∪ S1 ∪ S2, such that

(cu−v)u,v∈S > 0
and

[(cu−v)u,v∈S1∪S2 ]
−1
S2\S1

S1\S2

= 0.

(vii) For some pair of finite sets S1 and S2 satisfying (2.4.2) there exist cu,
u ∈ (S − S)\(Λ+ ∪ (−Λ+)), where S = {(0, 0)} ∪ S1 ∪ S2, such that

(cu−v)u,v∈S > 0
and

[(cu−v)u,v∈S1∪S2 ]
−1
S2\S1

S1\S2

= 0.

In case one of (i)–(vii) (and thus all of (i)–(vii)) hold, put

(qu)u∈Λ+ =
[
(cu−v)u,v∈Λ+

]−1 (δu)u∈Λ+(2.4.4)

and let

p(z, w) = q
−1/2
00

 ∑
(k,l)∈Λ+

qklz
kwl

 .(2.4.5)

Then p(z, w) is a polynomial satisfying (i), and p(z, w) is unique up to multi-
plication with a constant of modulus 1.

Proof. The equivalence of (ii) and (iii) follows directly from Lemma 2.3.5.
The implications (iv) → (vi) and (vii) → (v) also follow from Lemma 2.3.5.
The implications (ii) → (v), (iv) → (v), (iv) → (ii), (iii) → (vii), (vi) →
(vii), (vi) → (iii) are tautologies. The implication (v) → (ii) follows from the
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observation that the matrices appearing in (ii) are submatrices of the matrices
appearing in (v), and the fact that (cu−v)u,v∈Λ+ > 0 implies that

rank(cu−v)u∈{1,...,n}×{0,...,m}
v∈{0,...,n}×{1,...,m}

≥ nm.(2.4.6)

For the equivalence of (i)–(vii) it remains to prove the implications (i) → (iv)
and (iii) → (i).

Assume that a stable polynomial p(z, w) as in (i) exists. Let f(z, w) be
the spectral density function of p(z, w) and put

ck = f̂(k), k ∈ Z2.

Then, because of (i), for k ∈ Λ+ this definition of ck coincides with the pre-
scribed ck’s. In addition, f is in the Wiener class, so that

∑
u∈Z2 |cu| < ∞.

Moreover, since f(z, w) > 0 for |z| = |w| = 1, the multiplication operator
Mf : L2(T2) → L2(T2) defined by Mf (g)(z, w) = f(z, w)g(z, w) is positive
definite. Letting S1, S2 and S be as in (iv), we get that the restriction of Mf

to PS(L2(T2)) is positive definite. Here, for K ⊂ Z2, the projection PK is the
orthogonal projection of L2(T2) onto the subspace of functions with Fourier
support in K. That is, PK(

∑
av

(
z
w

)
) =

∑
v∈K av

(
z
w

)
. Thus we obtain the

positive definiteness of (cu−v)u,v∈S . In addition, since the matrix in (2.4.3) is
the adjoint of a submatrix of the matrix in (2.2.4), we get by Theorem 2.2.1
that

rank(cu−v)u∈S1
v∈S2

≤ nm.

This together with observation (2.4.6) which is valid in this case, we obtain
(2.4.3). This proves (i) → (iv).

Assume now that (iii) holds. Define p(z, w) as in (2.4.5). By Theorem

2.3.1, p is stable, and moreover, cu = 1̂
|p|2 (u), u ∈ Λ+ − Λ+. This proves (i).

Suppose now that (i)–(vii) are valid, and let p(z, w) be as under (i). By
multiplying with a constant of modulus one we may choose p(z, w) so that
p(0, 0) = p00 > 0. Let f(z, w) be the spectral density function corresponding
to p(z, w). Then f(z, w)p(z, w) = 1

p(1/z,1/w) . Since p(z, w) is stable,

PH∪{(0,0)}(fp) = PH∪{(0,0)}

(
1
p̄

)
=

1
p00

,

where in the last step we used the stability and H is the standard halfspace
in Z2. Thus, in particular,

PΛ+(fp) =
1

p00
,

which in matrix notation gives that

(cu−v)u,v∈Λ+(pu)u∈Λ+ =
(

1
p00

δu

)
u∈Λ+

.
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By multiplying both sides with p00 it follows that p(z, w) is given by (2.4.5)
where qu, u ∈ Λ+, is given by (2.4.4).

Remark 2.4.2. Note that in fact the proof shows that 1̂
|p|2 (u) = cu,

u ∈ S − S, for all applicable S.

In the appendix we shall provide an alternative proof of (ii) → (i) based
on minimal rank completions, and the full strip positive extension problem
(see [5], [6]).

Note that the proof of Theorem 2.4.1 yields that the polynomial p(z, w)
with p00 > 0 is uniquely determined by the matrix (cu−v)u,v∈Λ+ . One may ask
whether in turn all unknown entries cu, u ∈ (Λ+ − Λ+)\(Λ+ ∪ −Λ+) in this
matrix are determined by the conditions in Theorem 2.4.1(ii). When n = 1
or m = 1, it is not hard to see that the rank condition (2.4.1) determines cu,
u ∈ (Λ+−Λ+)\(Λ+∪−Λ+) uniquely. For example, when n = 1 the coefficients
c1,−1, . . . , c1,−m are determined uniquely by the equations

c1,−j = [c0,−1 · · · c0,−m][(c0,i−k)m−1
i,k=0]

−1[c1,−j+1 · · · c1,−j+m]T , j = 1, . . . , m.

(2.4.7)

It is still an open problem whether the coefficients cu, u ∈ (Λ+ − Λ+)\
(Λ+ ∪ −Λ+) are determined uniquely in general by the conditions in Theo-
rem 2.4.1(ii). If not, it would mean that there are cases in which there are
multiple solutions p to the problem. Our computations so far have led us to
believe, however, that this cannot occur.

Another natural question is whether the existence of cu, u ∈ (Λ+ − Λ+)\
(Λ+ ∪−Λ+) so that (cu−v)u,v∈Λ+ > 0, automatically implies the existence of a
choice for cu, u ∈ (Λ+ −Λ+)\(Λ+ ∪−Λ+) so that in addition condition (2.4.1)
is satisfied. This is false. For example, one may take n = 1, m = 3, c00 = 7.7,
c01 = 6.3, c02 = 4.5, c03 = 2.5, c10 = 3, c11 = 1.5, c12 = 2 and c13 = 1.6. By
setting c1,−1 = 4.9301, c1,−2 = 7.2776 and c1,−3 = 7.0593 (which we determined
using the software of [3]), one may check that one obtains a positive definite
matrix (cu−v)u,v∈Λ+ (its smallest eigenvalue is 0.0099). However, equation
(2.4.7) forces c1,−1 = 2.4372, c1,−2 = 1.9405 and c1,−3 = 1.1570, which does
not give a positive definite matrix (it has an eigenvalue equal to −0.5228; even
the submatrix obtained by deleting the (0, 0) column and row has a negative
eigenvalue −0.3535).

Theorem 1.1.1 follows directly from Theorem 2.4.1.

Proof of Theorem 1.1.1. Let cu, u ∈ Λ+, be given so that cu, u ∈
(Λ+−Λ+)\(Λ+∪−Λ+) exist satisfying (1) and (2) in the statement of Theorem
1.1.1. Thus Theorem 2.4.1(ii) is satisfied, yielding the existence of a stable
polynomial p(z, w) =

∑n
k=0

∑m
l=0 pk,lz

kwl with p00 > 0 as in (i).
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Conversely, given a stable polynomial satisfying Theorem 2.4.1(i), Theo-
rem 2.4.1(ii) is valid, yielding (1) and (2) in Theorem 1.1.1.

We shall now build up to the general case of a finite set Λ+ ⊆ H. We first
consider the case when {(0, 0)} ⊆ Λ+ ⊆ {0, . . . , n} × {0, . . . , m}.

Theorem 2.4.3. Let {(0, 0)} ⊆ Λ+ ⊆ {0, . . . , n}×{0, . . . , m}, and let cu,
u ∈ Λ+, be given complex numbers. Put c−u = c̄u, u ∈ Λ+. The following are
equivalent :

(i) There exists a stable polynomial p with support (p̂) ⊆ Λ+ such that 1
|p|2

has Fourier coefficients 1̂
|p|2 (u) = cu, u ∈ Λ+;

(ii) There exist complex numbers cu, u ∈ {−n, . . . , n} × {−m, . . . , m}\
(Λ+ ∪ −Λ+) so that

(cu−v)u,v∈{0,...,n}×{0,...,m} > 0,(2.4.8) [
(cu−v)u,v∈{0,...,n}×{0,...,m}\{(0,0)}

]−1
{1,...,n}×{0}
{0}×{1,...,m}

= 0,(2.4.9)

and [
(cu−v)u,v∈{0,...,n}×{0,...,m}

]−1
{0,...,n}×{0,...,m}\Λ+
{0}×{0}

= 0.(2.4.10)

In case (i) (and (ii)) holds, a solution p is given by (2.4.4) and (2.4.5).

Note that (ii) in this theorem reduces to Theorem 2.4.1(iii) in the case
when Λ+ = {0, . . . , n} × {0, . . . , m}. One may also formulate analogs of The-
orem 2.4.1 (ii), (iv)–(vii) but we leave this to the interested reader.

Proof. Suppose (i) is valid. Let f(z, w) be the spectral density function
of p(z, w) and put

cu = f̂(u), u ∈ Z2.

Now the polynomial p(z, w) satisfies Theorem 2.4.1(i) for the collection of
numbers {cu, u ∈ {0, . . . , n}×{0, . . . , m}}. Thus Theorem 2.4.1(iii) and (2.4.4)
and (2.4.5) are valid. Theorem 2.4.1(iii) implies the first two conditions in
(ii). Since p is given by (2.4.4) and (2.4.5) (up to a constant) we have that
support(p̂) ⊆ Λ+ implies (2.4.10). This shows that (ii) is valid.

Next, assume that (ii) is valid. The first two properties in (ii) give that
Theorem 2.4.1(iii) is satisfied. Thus Theorem 2.4.1(i) is valid, yielding that

there exists a stable polynomial given by (2.4.4) and (2.4.5) so that 1̂
|p|2 (u) = cu,

u ∈ {0, . . . , n}× {0, . . . , m}. Thus, in particular, this polynomial has the right
match,

1̂
|p|2 (u) = cu, u ∈ Λ+,
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and, moreover, by the construction of p by (2.4.4) and (2.4.5) one sees that
condition (2.4.10) yields that support (p̂) ⊆ Λ+. This shows that (i) is valid.

Next consider an index set of the following type:

J(n, m, q) =
n⋃

i=0

{i} × {−iq, . . . , m − iq}, n, m ≥ 0, q ∈ Z.

Thus, J(n, m, 0) = {0, . . . , n}×{0, . . . , m}. We have the following proposition.

Proposition 2.4.4. Let n, m be nonnegative integers and q ∈ Z, and let
{(0, 0)} ⊆ ∆+ ⊆ J(n, m, q). Let du, u ∈ ∆+, be given complex numbers. Put
Λ+ = {(k, l + kq) : (k, l) ∈ ∆+} and

c(r,s) = d(r,s−rq), (r, s) ∈ Λ+.

Then Λ+ ⊆ J(n, m, 0). Moreover, the following are equivalent.

(i) There exists a stable pseudopolynomial q(z, w) with support (q̂) ⊆ ∆+

such that 1̂
|q|2 (u) = du, u ∈ ∆+.

(ii) There exists a stable polynomial p(z, w) with support (p̂) ⊆ Λ+ such that
1

|p|2 (u) = cu, u ∈ Λ+.

Proof. Use the correspondence q(z, w) = p
(

z
wq , w

)
, |z| = |w| = 1.

It remains to observe that any finite {(0, 0)} ⊂ Λ+ ⊆ H ∪ {(0, 0)} is a
subset of some J(n, m, q). Indeed, let

n = max{k : (k, l) ∈ Λ+} (≥ 0),

q =−min
{⌊

l

k

⌋
: (k, l) ∈ Λ+, k ≥ 1

}
,

and
m = max{l + kq : (k, l) ∈ Λ+} (≥ 0).

Then Λ+ ⊆ J(n, m, q). Consequently, we have, by applying a combination of
Proposition 2.4.4 and Theorem 2.4.3, the problem introduced in the beginning
of this section reduced to a finite positive definite matrix completion problem
where the completion is required to be block Toeplitz with Toeplitz matrix
entries satisfying certain inverse constraints. As established in [64], finding
such completions (if they exist) is numerically feasible. We shall give some
numerical results in Section 4.3. Interesting open questions remain regarding
the d-variable case (when d ≥ 3), and also whether, for instance, if {cu, u ∈ Λ+}
and {dk, u ∈ Λ+} satisfy the conditions of Theorem 2.4.1 the sum sequence
{cu + du, u ∈ Λ+} also satisfies these conditions.
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Partial necessary conditions for the autoregressive filter problem appear
in [11] (see also [12]), where it was shown that if Theorem 2.4.3(i) holds then[

(cu−v)u,v∈Λ+−Λ+

]−1
(Λ+−Λ+)\Λ+
{0}×{0}

= 0.(2.4.11)

That this condition is not sufficient is shown by the following example. Let
Λ+ = {(0, 0), (1, 0), (0, 1)}, and c00 = 1, c01 = .25, c10 = .25. If we choose
c1,−1 = .125 and c1,−2 = 5/16, then (2.4.11) is satisfied. Computing for p we
find p(z, w) = 9

8− 1
4z− 1

4w, which is stable (since |p(z, w)| ≥ 9
8− 1

4− 1
4 > 0 when

|z| ≤ 1 and |w| ≤ 1). However, the function 1
|p|2 does not have the prescribed

Fourier coefficients, as

1̂
|p|2 (0, 0) = 0.9923,

1̂
|p|2 (0, 1) =

1̂
|p|2 (1, 0) = 0.0545.

The correct choice is given by c1,−1 = 0.0625 and c1,−2 = 0.0156, yielding the
stable polynomial p(z, w) = 1.1333 − 0.2667z − 0.2667w satisfying

1̂
|p|2 (0, 0) = 1,

1̂
|p|2 (0, 1) =

1̂
|p|2 (1, 0) = 0.25.

Let us end this section with a comparison to the extension problem for
positive-definite functions as considered in [58]. There, a pattern Λ ⊆ Z2 is
said to have the extension property if every sequence (cu)u∈Λ−Λ which satisfies
the positivity requirement

(cu−v)u,v∈Λ ≥ 0,(2.4.12)

admits the existence of a positive Borel measure µ on T2 so that

ck,l =
∫

T2

zkwldµ(z, w), (k, l) ∈ Λ − Λ.

Note that in our terminology, we would let Λ+ = (Λ − Λ) ∩ (H ∪ {(0, 0)}).
Moreover, we study the strictly positive definite case and look for a measure
of the special form

dµ(z, w) =
1

|p(z, w)|2
dzdw

(2πi)2zw
,(2.4.13)

where p(z, w) is a stable polynomial with Fourier support in Λ+. Following
[58] a construction of a positive extension is given in [4] in the case that Λ =
{0, 1} × {0, . . . , m}, which in our terminology corresponds to the case when
Λ+ = {0}×{0, . . . , m}∪{1}×{−m, . . . , m}. We remark that their construction
does not yield a measure of the form (2.4.13) (see formula (3) in [4]), and indeed
one cannot expect that strict positive definiteness in (2.4.12) yields a measure
of this special form as the rank condition (2.4.1) also needs to be satisfied.
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3. Applications of the extension problem

In this chapter we treat four applications of the extension results. They
concern two-variable orthogonal polynomials, two-variable stable autoregres-
sive filters, Fejér-Riesz factorization for two-variable trigonometric functions,
and inverse formulas for doubly indexed Toeplitz matrices.

3.1. Orthogonal and minimizing pseudopolynomials. We fix H = {(n, m) :
n ≥ 1 or (n = 0 and m > 0)} ⊆ Z2 to be the standard halfspace in Z2. Let
ρ be a positive Borel measure on T2 and L2(ρ, T2) be the space of functions
square integrable with respect to ρ, i.e.

∫
T2 |f(θ, φ)|2dρ < ∞. On this space

there is a natural inner product given by

〈f, g〉ρ =
∫

T2

f(θ, φ)ḡ(θ, φ)dρ,(3.1.1)

for all f, g ∈ L2(ρ, T2). We denote the Fourier coefficients of ρ by ckl,
(k, l) ∈ Z2, which are given by

ck,l =
∫

T2

e−ikθe−ikφdρ(θ, φ).

Let Λ+ be a finite subset of H ∪ {(0, 0)} containing (0, 0), and suppose that ρ

is such that

(cu−v)u,v∈Λ+ > 0.(3.1.2)

As mentioned before, for v = (k, l) ∈ Z2 we denote by
(

z
w

)v the monomial(
z
w

)v = zkwl. For an ordered set {v0, . . . , vm} we let C(v0, . . . , vm) denote the
(m + 1) × (m + 1) matrix

C(v0, . . . , vm) := (cvi−vj
)m
i,j=0.

Definition 3.1.1. For an ordered subset {v0, . . . , vm} of Λ+ with v0 =
(0, 0), we define the orthogonal pseudopolynomials [33] φ

(
v0, . . . , vi;

(
z
w

))
, i =

0, . . . , m, by the relations,

φ

(
v0, . . . , vi;

(
z

w

))
=

i∑
j=0

ai,j

(
z

w

)vj

,(3.1.3)

with ai,i > 0, and

〈φ(v0, . . . , vi), φ(v0, . . . , vj)〉ρ = δvi−vj
i, j = 0, · · · , m.(3.1.4)

Here δv = 0 if v �= (0, 0) and δ(0,0) = 1. For the construction of φ(v0, . . . , vi;
(

z
w

)
)
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the above orthogonality equations are equivalent to

〈φ(v0, . . . , vi),
(

z

w

)vj

〉ρ =
1

ai,i
δvi−vj

j = 0, · · · , i.

Thus,

φ
(
v0, . . . , vi;

(
z
w

))
=

det



cv0−v0 · · · cv0−vi

...
...

cvi−1−v0 · · · cvi−1−vi(
z

w

)v0

· · ·
(

z

w

)vi


√

det C(v0,...,vi) det C(v0,...,vi−1)
.

(3.1.5)

They are called pseudopolynomials since negative powers of z and w may
arise. From the above equations we see that the orthogonal pseudopolynomi-
als φ

(
v0, . . . , vi;

(
z
w

))
, i = 0, . . . , m, form a basis for the space spanned by the

monomials {
(

z
w

)v0 , · · · ,
(

z
w

)vm}.
As usual the monic orthogonal pseudopolynomials solve the following min-

imization problem: Let Π(v0, · · · , vm) be the set of polynomials with exponents
taken from {v0, · · · , vm} with the coefficient of

(
z
w

)vm equal to one. Then
ammφ

(
v0, . . . , vm;

(
z
w

))
is the solution to the minimization problem

min
π∈Π(v0,··· ,vm)

∫
T2

|π(θ, φ)|2dρ(θ, φ).

Another important set of polynomials called minimizing pseudopolynomi-
als studied in [18] can be characterized as follows.

Definition 3.1.2. For an ordered subset {v0, . . . , vm} of Λ+ with v0 =
(0, 0), we define the minimizing pseudopolynomial p

(
v0, . . . , vm;

(
z
w

))
by

p

(
v0, . . . , vm;

(
z

w

))
=

1
k(v0, . . . , vm)

(3.1.6)

×
((

z

w

)v0

· · ·
(

z

w

)vm
)

C(v0 · · · vm)−1


1
0
...
0

 ,

where

k(v0, . . . , vm) =

√
detC(v1 · · · vm)
detC(v0 · · · vm)

.
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Alternative formulas for the minimizing polynomials are given by

p

(
v0, . . . , vm;

(
z

w

))
=

det



(
z

w

)v0

· · ·
(

z

w

)vm

cv1−v0 · · · cv1−vm

...
...

...
cvm−v0 · · · cvm−vm


√

detC(v0, . . . , vm) detC(v1, . . . , vm)

and

p

(
v0, . . . , vm;

(
z

w

))
=

((
z

w

)v0

· · ·
(

z

w

)vm
)

L1,

where L1 is the first column of the lower triangular Cholesky factor L of
C(v0 · · · vm)−1 (= LL∗). It should be noted that in [18] the normalization
constant 1

k(v0,... ,vm) does not appear in the definition of the minimizing pseudo-
polynomial. For our purposes it is convenient to include this factor in the
definition. In the definition above the 2-tuples v0, . . . , vm are ordered, however
it is easy to check that for any permutation π on {0, . . . , m} with π(0) = 0

p

(
vπ(0), . . . , vπ(m);

(
z

w

))
= p

(
v0, . . . , vm;

(
z

w

))
.

Thus, on occasion we shall also write p
(
∆;

(
z
w

))
where ∆ is the set {v0, . . . , vm},

and it is understood that
(
0
0

)
is first in the ordering. Minimizing pseudopoly-

nomials appear naturally in the following context. Let

Φρ : span{
(

z

w

)vk

: k = 0, . . . , m} → R

be given by
Φρ(g) = 〈g, g〉ρ − 2 Re(g00).

Then (see [18],[19]) Φρ is minimized by k(v0, . . . , vm)p
(
v0, . . . , vm;

(
z
w

))
. In

taking the reverse polynomial of p
(
v0, . . . , vm;

(
z
w

))
the term of

(
z
w

)vm is taken
to appear last. In other words, if p

(
v0, . . . , vm;

(
z
w

))
=

∑m
i=0 ai

(
z
w

)vi , then
←−p

(
v0, · · · , vm;

(
z
w

))
=

(
z
w

)vmp
(

1
z , 1

w

)
.

There is a close relationship between the two sets of pseudopolynomials
introduced in this section, namely:

←−p
(

v0, . . . , vm;
(

z

w

))
(3.1.7)

=
(

z

w

)vm

p

(
vm − vm, vm − vm−1, . . . , vm − v0;

(
1/z

1/w

))
= φ

(
vm − vm, vm − vm−1, . . . , vm − v0;

(
z

w

))
.
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Both sets of polynomials appear also in a prediction context. In Section 3
of [42] there is an eloquent explanation of the one-variable prediction theory.
One easily adjusts this to the bivariate context and sees that p(v0, . . . , vm;

(
z
w

)
)

appears in backward prediction, while the pseudopolynomial φ(v0, . . . , vm;
(

z
w

)
)

plays a role in forward prediction. We will not further pursue this here.
In Lemmas 3.1.3, 3.1.4, 3.1.5 and Theorem 3.1.6 we recall some familiar

properties of the minimizing pseudopolynomials and their reverses. Using the
connection (3.1.7), one may state comparable properties of the orthogonal
pseudopolynomials. We will focus our attention mostly on the minimizing
pseudopolynomials, following the lead of [18] and [19].

The first lemma follows from the two determinantal formulas above, and
describes their orthogonal properties.

Lemma 3.1.3 ([18, Cor. of Th. 1]). Let ρ be a positive Borel measure on
T2 with Fourier coefficients cu, u ∈ Z2. Let {(0, 0)} ⊂ Λ+ ⊂ H ∪ {(0, 0)} be a
finite set and assume that (3.1.2) holds. Further, let {v0, . . . , vm} be an ordered
subset of Λ+ with v0 = (0, 0). Denote p(z, w) = p

(
v0, . . . , vm;

(
z
w

))
. Then p

satisfies, and up to an overall complex constant of modulus one is determined
by the orthonormal relations

〈p, p〉ρ = 1(3.1.8)

and

〈p,

(
z

w

)vi

〉ρ = 0, 0 < i ≤ m,(3.1.9)

with the inner product defined as in (3.1.1). The above undetermined complex
constant is uniquely fixed by requiring the trailing coefficient of p to be positive.

Note that equation (3.1.7) and the definition of φ(v0, . . . , vm;
(

z
w

)
) imply

that

〈←−p ,

(
z

w

)vm−vi

〉ρ = βmδi, 0 ≤ i ≤ m,

where βm =
√

det C(vm···v0)
det C(vm···v1)

�= 0.
Next we will see that there is a recurrence relation among the minimizing

pseudopolynomials. To this end let

C(v0 · · · vm | w0 · · ·wm) = (cvi−wj
)i,j=0,··· ,m

be the matrix with rows indexed by vi and columns indexed by wi.
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Lemma 3.1.4. The minimizing pseudopolynomial p
(
v0 · · · vm;

(
z
w

))
satis-

fies the relation

(3.1.10)

p

(
v0 · · · vm;

(
z

w

))
=

k(v0 · · · vm)
k(v0 · · · vm−1)

(
p

(
v0 · · · vm−1;

(
z

w

))

+α(v0 · · · vm)
(

z

w

)v1

←−p
(

vm − vm · · · vm − v1;
(

z

w

)))
,

where
α(v0 · · · vm) =

(−1)m detC(v1 · · · vm | v0 · · · vm−1)√
detC(v0 · · · vm−1) detC(v1 · · · vm)

.

Furthermore,

(3.1.11)

←−p
(

v0 · · · vm;
(

z

w

))
=

k(v0 · · · vm)
k(v0 · · · vm−1)

((
z

w

)vm−vm−1

←−p
(

v0 · · · vm−1;
(

z

w

))

+ α(v0 · · · vm)p
(

vm − vm, vm − vm−1 · · · vm − v1;
(

z

w

)))
.

We remark that equation (3.1.10) is given in Theorem 2 of [18].

Proof. ←−p
(
vm − vm, vm − vm−1, · · · vm − v1;

(
z
w

))
is characterized up to

multiplication by a constant by its orthogonality to
(

z
w

)−vi+v1 , i = 0, 1, . . . ,

m − 1. Now(
z

w

)−v1
(

p

(
v0 · · · vm;

(
z

w

))
− k(v0 · · · vm)

k(v0 · · · vm−1)
p

(
v0 · · · vm−1;

(
z

w

)))

is orthogonal to
(

z

w

)−vi+v1

, i = 0, . . . , m−1, which gives (3.1.10) up to a scalar

factor. By comparing coefficients of
(

z

w

)vm

on both sides of the recurrence

relation we find that

α(v0 · · · vm)

=
(−1)m detC(v1 · · · vm | v0 · · · vm−1)

√
detC(v1 · · · vm−1)√

detC(v0 · · · vm−1) detC(vm−1 − vm−1 · · · vm−1 − v1) detC(v1 · · · vm)
.

Equation (3.1.10) now follows since

detC(v1 · · · vi) = detC(vi − vi−1 · · · vi − v1).

Equation (3.1.11) is obtained by taking reversals in equation (3.1.10).
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From the definition of k and α in terms of determinants it is easy to
see that the following are true. Let wj = vm − vm−j , j = 0, . . . , m, then
α(w0 · · ·wm) = α(v0 · · · vm) = α(−v0 · · · − vm). Moreover, the Jacobi identity
implies that

k2(v0 · · · vm)
k2(v0 · · · vm−1)

(
1 − |α(v0 · · · vm)|2

)
= 1.

Lemma 3.1.5. The minimizing pseudopolynomial p
(
v0 · · · vm;

(
z
w

))
satis-

fies the relation

(3.1.12)

p

(
v0 · · · vm;

(
z

w

))
p

(
v0 · · · vm;

(
z1

w1

))

−←−p
(

vm − vm · · · vm − v0;
(

z

w

))
←−p

(
vm − vm · · · vm − v0;

(
z1

w1

))

= p

(
v0 · · · vm−1;

(
z

w

))
p

(
v0 · · · vm−1;

(
z1

w1

))
−

(
z

w

)v1

←−p
(

vm − vm · · · vm − v1;
(

z

w

))

×
(

z1

w1

)v1←−p
(

vm − vm · · · vm − v1;
(

z1

w1

))
.

Proof. Set

pm

( z

w

)
= p

(
v0 · · · vm;

(
z

w

))
and

pi
m

( z

w

)
= ←−p

(
vm − vm · · · vm − vi;

(
z

w

))
,

for i = 0, 1. From the recurrence relation we find

pm

( z

w

)
pm

(
z1

w1

)
=

k2(v0 · · · vm)
k2(v0 · · · vm−1)

[
pm−1

( z

w

)
pm−1

(
z1

w1

)

+α(v0 · · · vm)
(

z

w

)v1

←−p 1
m−1

( z

w

)
pm−1

(
z1

w1

)

+α(v0 · · · vm)
(

z1

w1

)v1

pm−1

( z

w

)
←−p 1

m−1

(
z1

w1

)

+α(v0 · · · vm)α(v0 · · · vm)
(

z

w

)v1 (
z1

w1

)v1

←−p 1
m−1

( z

w

)
←−p 1

m−1

(
z1

w1

)]
.
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Also,

←−p 0
m

(
z

w

)
←−p 0

m

(
z1

w1

)
=

k2(vm − vm · · · vm − v0)
k2(vm − vm · · · vm − v1)

×
[(

z

w

)v1
(

z1

w1

)v1←−p 1
m−1

(
z

w

)
←−p 1

m−1

(
z1

w1

)

+
(

z1

w1

)v1

α(vm − vm · · · vm − v0)pm−1

( z

w

)
←−p 1

m−1

(
z1

w1

)

+
(

z

w

)v1

α(vm − vm · · · vm − v0)pm−1

(
z1

w1

)
←−p 1

m−1

( z

w

)
+α(vm − vm · · · vm − v0)α(vm − vm · · · vm − v0)pm−1

( z

w

)
pm−1

(
z1

w1

)]
.

Now using the relations between α(v0 · · · vm) and α(vm − vm · · · vm − v0) and
k(v0 · · · vm) and k(vm−vm · · · v0−v1), and then subtracting the lower equation
from the upper gives the result.

The theorem below in the case of reverse lexicographical ordering is
Theorem 8 in [18].

Theorem 3.1.6. Let ρ be a positive Borel measure on T2 with Fourier
coefficients cu, u ∈ Z2. Let {(0, 0)} ⊂ Λ+ ⊂ H ∪ {(0, 0)} be a finite set and
assume that (3.1.2) holds. Further, order Λ+ as Λ+ = {v0, . . . , vm}. The
pseudopolynomials

{(
z
w

)vip
(
vi − vi, vi+1 − vi · · · vm − vi;

(
z
w

))
: i = 0, . . . , m

}
form an orthonormal basis of the space {

(
z
w

)v : v ∈ Λ+} endowed with the
inner product 〈, 〉ρ. Furthermore, if

P (z, w) =[
p

(
v0 − v0, . . . , vm − v0;

(
z

w

))
,

(
z

w

)v1

p

(
v1 − v1, . . . , vm − v1;

(
z

w

))
,

. . . ,

(
z

w

)vm

p

(
vm − vm;

(
z

w

))]
,

then P =
[(

z
w

)v0 · · ·
(

z
w

)vm
]
L, where L is the lower triangular Cholesky factor

of C(v0, . . . , vm)−1 i.e., C(v0, . . . , vm)−1.

Note that in this theorem the order of the rows and columns in
C(v0, . . . , vm) is important. Furthermore, the indices arising in the lth pseu-
dopolynomial above can be read off from the lower triangular part of the lth

column of the matrix C in the ordering chosen.
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Proof. For 0 ≤ j ≤ i ≤ m we need to show that

(3.1.13) 〈
(

z

w

)vj

p

(
vj − vj , . . . , vm − vj ;

(
z

w

))
,(

z

w

)vi

p

(
vi − vi, . . . , vm − vi;

(
z

w

))
〉ρ = δi,j .

The result for i = j follows from equation (3.1.8) with

p

(
z

w

)
= p

(
vj − vj , vj+1 − vj , . . . , vm − vj ;

(
z

w

))
.

For i > j the above result will follow if it can be shown that

〈p
(

vj − vj , . . . , vm − vj ;
(

z

w

))
,

(
z

w

)(vi−vj)

〉ρ = 0,

for i = j + 1, . . . , m. But this is exactly the content of equation (3.1.9).
Consequently we see that the polynomials

(
z
w

)vip
(
vi − vi, . . . , vm − vi;

(
z
w

))
,

i = 0, . . . , m, are linearly independent and thus they form a basis for
{
(

z
w

)v : v ∈ Λ+}.
In matrix form we see that (3.1.13) can be rewritten as L∗C(v0, . . . , vm)L

= I which implies that C(v0, . . . , vm)−1 = LL∗. Since L has positive diago-
nal elements we see that each pseudopolynomial must have a positive trailing
coefficient which uniquely specifies the pseudopolynomial.

Up until this point ordering on the monomials has not played any special
role. In the results that follow the ordering will be important.

As noted in [18, Th. 7], Theorem 3.1.6 allows us to connect certain min-
imizing pseudopolynomials with the matrix orthogonal polynomials in (2.3.7)
and (2.3.8), as follows. From Theorem 3.1.6, and equation (2.3.9) with i = m

it follows that,

Pm(z, w) = [p(0)(z, w) wp(1)(z, w) · · ·wmp(m)(z, w)],

where

p(j)(z, w) = p

(
{0} × {0, . . . , m − j} ∪ {1, . . . , n} × {−j, . . . , m − j};

(
z
w

))
,

j = 0, . . . , m.

This coupled with (2.3.20) in Section 2.3 implies that

Pm(z, w) = [p(z, w) wPm−1(z, w)],(3.1.14)

where P (m−1) has the following representation in terms of pseudopolynomials,

Pm−1(z, w) = [p(1)(z, w) wp(2)(z, w) · · ·wm−1p(m−1)(z, w)].

Analogous formulas for P̃ i, i = n, n − 1, also hold. With this we can recast
Proposition 2.3.3 as follows.
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Theorem 3.1.7. Let ρ be a positive Borel measure on T2 with Fourier
coefficients cu, u ∈ Z2. Let Λ+ = {0, . . . , n} × {0, . . . , m} and assume that
(3.1.2) holds. In addition, assume that[

(cu−v)u,v∈Λ+\{(0,0)}
]−1

{1,...,n}×{0}
{0}×{1,...,m}

= 0.(3.1.15)

Then

p

(
Λ+;

(
z

w

))
p

(
Λ+;

(
z1

w1

))
−←−p

(
Λ+;

(
z

w

))
←−p

(
Λ+;

(
z1

w1

))
(3.1.16)

= (1 − ww1)
m∑

k=1

(ww1)k−1p

(
Qk;

(
z

w

))
p

(
Qk;

(
z1

w1

))

+(1 − zz1)
n∑

k=1

←−p
(

Q̃k;
(

z

w

))
←−p

(
Q̃k;

(
z1

w1

))
,

where

Qk = {0}×{0, . . . , m−k}∪{1, . . . , n}×{−k+1, . . . , m−k}, k = 1, . . . , m,

and

Q̃k = {0, . . . , n − k} × {0} ∪ {−k + 1, . . . , n − k} × {1, . . . , m},

and Qk and Q̃k are ordered so that (n, m − k) and (n − k, m) appear last,
respectively.

In addition, we may recast Theorem 2.3.1 in the current context as follows.

Theorem 3.1.8. Let Λ+ = {0, . . . , n}×{0, . . . , m} be ordered lexicograph-
ically, and let ρ be a positive Borel measure on T2 so that its Fourier coeffi-
cients cu, u ∈ Z2 satisfy (cu−v)u,v∈Λ+ > 0. Then the polynomial p(Λ+;

(
z
w

)
) is

stable and satisfies

cu =
1

(2πi)2

∫ ∫
T2

(
z

w

)−u 1
|p(Λ+;

(
z
w

)
)|2

dz

z

dw

w
, u ∈ Λ+ − Λ+,(3.1.17)

if and only if [
(cu−v)u,v∈Λ+\{(0,0)}

]−1
{1,...,n}×{0}
{0}×{1,...,m}

= 0.(3.1.18)

Similarly, the orthogonal polynomial φ(Λ+;
(

z
w

)
) is anti -stable (i.e., φ(Λ+;

(
z
w

)
)

�= 0 for (z, w) ∈ (C∞ \ D)2) and satisfies

cu =
1

(2πi)2

∫ ∫
T2

(
z

w

)−u 1
|φ(Λ+;

(
z
w

)
)|2

dz

z

dw

w
, u ∈ Λ+ − Λ+,(3.1.19)

if and only if (3.1.18) holds.
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Proof. The first part is exactly the statement in Theorem 2.3.1. For the
second part, use the connection (3.1.7) and the fact that (n, m)−Λ+ = Λ+.

Proof of Theorem 1.1.2 follows directly from Theorem 3.1.8.

3.2. Stable autoregressive filters. Two-dimensional signal processing
has been an important field of study in the last decades. Early influential
papers in this area are the ones by Whittle [63], and Helson and Lowdenslager
[47], [48], where many of the one-dimensional results were generalized to the
two-dimensional situation after introduction of a notion of causality based on
halfspaces.

In this section we shall show how the positive extension results may
be interpreted in the context of autoregressive filters. We consider stochas-
tic processes X = (xu)u∈Z2 depending on two discrete variables defined on
a fixed probability space (Ω,A, P ). We shall consider zero mean processes
X = (xu)u∈Z2 ; i.e., E(xu) = 0 for all u. Recall that the space L2(Ω,A, P ) of
square integrable random variables endowed with the inner product

〈x, y〉 := E(y∗x)

is a Hilbert space. A stochastic process X = (xu)u∈Z2 is called a (wide sense)
stationary process on Z2 if for u, v ∈ Z2 we have that

E(x∗
uxv) = E(x∗

u+pxv+p) =: RX(u − v), for all p ∈ Z2.

It is known that the function RX , termed the covariance function of X, defines
a positive semi-definite function on Z2; i.e.,

p∑
i,j=1

αiᾱjRX(ui − uj) ≥ 0,

for all p ∈ N, α1, . . . , αp ∈ C, u1, . . . , up ∈ Z2. The theorem of Herglotz,
Bochner and Weil (see, e.g., [49, Ch. 8]) on positive definite functions states
that for such a function RX there is a positive regular bounded measure µX

defined for Borel sets on the torus [0, 2π]2 such that

RX(u) =
∫

e−i〈u,t〉dµX(t),

for all two tuples of integers u. The measure µX is referred to as the spectral
distribution measure of the process X. The spectral density fX(t) of the process
X is the spectral density of the absolutely continuous part of µX , i.e., the
absolutely continuous part of µX equals

fX(t1, t2)
dt1dt2
(2π)2

.

Let H be the standard halfspace in Z2, and let (0, 0) ∈ Λ+ ⊂ H ∪ {(0, 0)}
be a finite set. A zero-mean stationary stochastic process X = (xu)u∈Z2
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is said to be AR(Λ+) (autoregressive), if there exist complex numbers ak,

k ∈ Λ+ \ {(0, 0)}, so that for every u

xu +
∑

v∈Λ+

v 
=(0,0)

avxu−v = eu, u ∈ Z2,(3.2.1)

where {eu ;u ∈ Z2} is a white noise zero mean process with variance σ2, for
some positive σ. The AR(Λ+) process is said to be causal if there is a solution
to equations (3.2.1) of the form

xu =
∑

v∈H∪{(0,0)}
φveu−v, u ∈ Z2,

with
∑

v∈H∪{(0,0)}
|φv| < ∞. The bivariate (AR) model problem concerns the

following. Given autocorrelation elements

cu = E(xux̄0), u ∈ Λ+,

determine, if possible, the coefficients av, v ∈ Λ+ \ {(0, 0)}, and the variance
σ2 of a causal autoregressive filter representation (3.2.1). It is well known that
if (3.2.1) is causal then

p(z, w) :=
1
σ

1 +
∑

0 
=v∈Λ+

av

(
z

w

)v


is stable and its spectral density function has Fourier coefficients equal to
E(xux̄0). Conversely, a solution p(z, w) =

∑
u∈Λ+

pu

(
z
w

)u to the positive ex-
tension problem with given data cu, u ∈ Λ+, yields a solution to the stable bi-
variate autoregressive filter problem by putting σ = 1

p00
, and au = pu

p00
. We may

therefore interpret the results of Section 2.4 in terms of autoregressive filters.
Below is this interpretation for the case when Λ+ = {0, . . . , n} × {0, . . . , m}.

Theorem 3.2.1. There exists a causal solution to (3.2.1) for the given
autocorrelation elements ck,l, (k, l) ∈ {0, . . . , n} × {0, . . . , m} if and only if
there exist complex numbers ck,l, (k, l) ∈ {1, . . . , n} × {−m, . . . ,−1}, so that
the (n + 1)(m + 1) × (n + 1)(m + 1) doubly indexed Toeplitz matrix

Γ =

C0 · · · C−n
...

. . .
...

Cn · · · C0

 ,

where

Cj =

 cj0 · · · cj,−m
...

. . .
...

cjm · · · cj0

 , j = −n, . . . , n,

and c−k,−l = c̄k,l, has the following two properties:
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(1) Γ is positive definite;

(2) The (n + 1)m × (m + 1)n submatrix of Γ obtained by removing scalar
rows 1 + j(m + 1), j = 0, . . . , n, and scalar columns 1, 2, . . . , m + 1, has
rank nm.

In this case the vector
1
σ2

[anm · · · an0 · · · a0m · · · a01 1]

is the last row of the inverse of Γ.

Proof. Let cu, u ∈ Λ+, be given so that cu, u ∈ (Λ+ − Λ+)\(Λ+ ∪ −Λ+)
exist satisfying (1) and (2) in the statement of the theorem. Thus Theorem
2.4.1(ii) is satisfied, yielding the existence of a stable polynomial p(z, w) =∑n

k=0

∑m
l=0 pk,lz

kwl with p00 > 0 as in (i) of Theorem 2.4.1. Put now, σ = 1
p00

and akl = pklp00, (k, l) �= (0, 0). These choices for σ and ak,l provide the
desired AR representation (3.2.1). That the solution is causal follows from
Proposition 2.1.1.

Conversely, when a causal solution to the AR representation (3.2.1) is
given, one may set p00 = 1

σ and pk,l = akl

σ , (k, l) �= (0, 0), and obtain a
stable polynomial satisfying Theorem 2.4.1(i). Thus Theorem 2.4.1(ii) is valid,
yielding (1) and (2) in Theorem 3.2.1.

For other sets Λ+ one needs to use the appropriate result of Section 2.4.
Based on characterization Theorem 2.4.3(ii) for the existence of a causal

solution to the AR model problem, a numerical algorithm was developed in [64]
for computing the solution. The algorithm has been implemented in MATLAB
and several experiments have been executed. We cite here two experiments.

Experiment 1. For the given data

c00 = 8, c01 = 4, c02 = 1, c03 = .25, c04 = 0.01, c12 = 2, c13 = 0.5,

c14 = 0.03, c15 = 0.006, c24 = 1, c25 = 0.1, c26 = 0.01, c27 = 0.001,

the program arrives at the pseudopolynomial (in MATLAB short format)

p(z, w) =
1√

0.1925
(0.1925 − 0.1215w + 0.0450w2 − 0.0158w3 + 0.0049w4

−0.0521zw2 + 0.0486zw3 − 0.0239zw4 + 0.0083zw5 − 0.0157z2w4

+0.0157z2w5 − 0.0089z2w6 + 0.0034z2w7).

After computing the Fourier coefficients of 1/|p(w, z)|2 (by using 2D-fft and
2D-ifft with grid size 64) we arrive at an error of 1.1026e-09. The error is
the Euclidian norm of the vector of differences of the given and the obtained
Fourier coefficients.
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Experiment 2. For the data

c00 = 1, c01 = .4, c02 = .1, c03 = .04, c10 = .2,

c11 = .05, c12 = .02, c13 = .005, c20 = .1, c21 = .05, c22 = .01,

c23 = .003, c30 = .04, c31 = .015, c32 = .002, c33 = .0005,

we find the pseudopolynomial

1√
1.2646

(1.2646 − .5572w + .1171w2 − .0429w3 − .2612z + .1791zw

−.0791zw2 + .0324zw3 − .0607z2 − .0171z2w + .0336z2w2 − .0143z2w3

−.0132z3 + .0107z3w − .0058z3w2 + .0037z3w3).

The error here is 2.0926e-11.

3.3. Fejér-Riesz factorization. The well-known Fejér-Riesz lemma, in the
nonsingular case, states that a trigonometric polynomial f(z) = f−nz−n+· · ·+
fnzn that takes on positive values on the circle (i.e., f(z) > 0 for |z| = 1) can
be written as the modulus squared of a stable polynomial of the same degree.
That is, there exists a stable polynomial p(z) = p0 + · · · + pnzn such that

f(z) = |p(z)|2, |z| = 1.

In this section we obtain a two-variable variation of this result.
Let H be the standard halfspace in Z2, and let Λ+ be a subset of H ∪

{(0, 0)} containing (0, 0). Let f(z, w) be a Wiener function with Fourier sup-
port in Λ+ − Λ+. Thus

f(z, w) =
∑

(k,l)∈Λ+−Λ+

fklz
kwl ,

∑
(k,l)∈Λ+−Λ+

|fkl| < ∞.

Supposing that f(z, w) > 0 for |z| = |w| = 1, we ask the question whether
there exists a stable Wiener function p(z, w) with Fourier support in Λ+ so
that f(z, w) = |p(z, w)|2, (z, w) ∈ T2. For the case when Λ+ is the strip
Λ+ = {(n, m) : 0 < n ≤ r or (n = 0 and m ≥ 0)} this question was answered
affirmatively in [5], [6]. Also, for the truncated strip Λ+ = {(n, m) : 0 < n < r

or (n = 0 and m ≥ 0) or (n = r and m ≤ s)} the answer is affirmative, as
was observed in [56]. It needs to be noted that in both these two cases (as
well as in the classical one-variable case) Λ+ − Λ+ = Λ+ ∪ (−Λ+), which was
conjectured by A. Seghier to be crucial for a direct factorization result to exist.
In the following theorem we shall deal with the case when Λ+ is a finite subset
of Z2. In that case we always have that Λ+ − Λ+ �= Λ+ ∪ (−Λ+) (unless
Λ+ lies on a line, reducing it to the one-variable case). One may of course
consider algebras of functions other than the Wiener algebra (e.g., continuous
functions, essentially bounded functions); however, for the case when |Λ+| < ∞
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the problem is independent of the choice of any reasonable algebra. Recall that

J(n, m, q) =
n⋃

i=0

{i} × {−iq, . . . , m − iq}, n, m ≥ 0, q ∈ Z.

Theorem 3.3.1. Let (0, 0) ∈ Λ+ ⊂ H be a finite set, and suppose that

f(z, w) =
∑

(k,l)∈Λ+−Λ+

fklz
kwl,

is positive on the bitorus. Let crs, (r, s) ∈ Z2, denote the Fourier coefficients of
1

f(z,w) . The following are equivalent :

(i) There exists a stable pseudopolynomial p(z, w) with support (p̂) ⊆ Λ+

such that f(z, w) = |p(z, w)|2, |z| = |w| = 1;

(ii) For some J(n, m, q) with Λ+ ⊆ J(n, m, q)

[
(cu−v)u,v∈J(n,m,q)\{(0,0)}

]−1
{(1,−q),(2,−2q),...,(n,−nq)}
{0}×{1,...,m}

= 0(3.3.1)

and [
(cu−v)u,v∈J(n,m,q)

]−1
J(n,m,q)\Λ+
{0}×{0}

= 0.(3.3.2)

(iii) For all J(n, m, q) with Λ+ ⊆ J(n, m, q) (3.3.1) and (3.3.2) hold.

In the case one of (i)–(iii) (and thus all of (i)–(iii)) hold, there exists

p(z, w) = q
−1/2
00

 ∑
(k,l)∈Λ+

qklz
kwl

 ,(3.3.3)

where

(qu)u∈Λ+ =
[
(cu−v)u,v∈Λ+

]−1 (δu)u∈Λ+ .(3.3.4)

Proof. Choose J(n, m, q) so that Λ+ ⊆ J(n, m, q). Using the change of
variables f̃(z, w) := f(zwq, w) = |p(zwq, w)|2 =: |p̃(z, w)|2, we get that the
Fourier coefficients c̃kl of 1

f̃
satisfy c̃kl = ck,l+kq, so that the corresponding

Fourier support is J(n, m, 0). We may therefore without loss of generality
assume that q = 0.

(i) → (iii). Consider the set of Fourier coefficients {ckl, (k, l) ∈ Λ+}. This
collection satisfies the conditions in Theorem 2.4.3(i), and therefore we may
find complex numbers cu ∈ (J(n, m, 0) − J(n, m, 0)) \ (Λ+ ∪ (−Λ+)) so that
(2.4.8), (2.4.9) and (2.4.10) are satisfied. Moreover, they are obtained in the
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proof of Theorem 2.4.3 by letting cu = 1̂
|p|2 (u). Note that conditions (2.4.9)

and (2.4.10) coincide with conditions (3.3.1) and (3.3.2), finishing the proof of
(i) → (iii).

The implication (iii) → (ii) is trivial.
For (ii) → (i), observe that the coefficients cu satisfy (2.4.8), (2.4.9) and

(2.4.10). Indeed, (2.4.9) and (2.4.10) follow directly from (3.3.1) and (3.3.2),
while (2.4.8) follows from the positivity of f . Introduce now the stable p(z, w)

as in (3.3.3) and (3.3.4), obtaining that 1̂
|p|2 (u) = cu = 1̂

f (u), u ∈ Λ+ − Λ+

(see Remark 2.4.2). Consequently, 1
|p|2 and 1

f are both, in the terminology of
[4], positive extensions of {cu}u∈Λ+−Λ+ whose reciprocal has Fourier support
in Λ+ −Λ+. By the uniqueness result of the maximum entropy extension (see
[68] or Theorem 3.1 in [4]) , 1

|p|2 = 1
f , yielding (i).

Proof of Theorem 1.1.3. Follows directly from Theorem 3.3.1 with Λ+ =
J(n, m, 0), and Proposition 2.1.1.

Note that in terms of inner/outer factorizations Theorem 3.3.1 gives a
criterion for when an invertible pseudopolynomial P has an outer factor with
the same Fourier support. Indeed, one lets f = |P |2 and checks whether
conditions (3.3.1) and (3.3.2) hold. If so, p as in (3.3.3) gives the outer factor

(since support(p̂±1) ⊆ H ∪ {(0, 0)}) and P
p has modulus constant equal to 1.

The criterion in Theorem 3.3.1 allows for a numerical algorithm to obtain
the factor p, when it exists. Let us illustrate this in the following example.

Example 3.3.2. Let

f(z, w) =
2∑

i=−2

2∑
j=−2

ziwj(
2−|i|∑
r=0

2−|j|∑
s=0

2−2(r+s)−|i|−|j|).

Computing the Fourier coefficients of the reciprocal of f (using MATLAB;
truncating the Fourier series at index 64), we get:

c0,0 = 1.6125, c0,1 = c1,0 = −0.6450, c0,2 = c2,0 = −0.0806, c1,−2 = 0.0322,

c1,−1 = 0.2580, c1,1 = 0.2580, c1,2 = c2,1 = 0.0322, c2,−2 = 0.0040,

c2,−1 = 0.0322, c2,2 = 0.0040,

where only the first four decimal digits show. In order to check (3.3.1) (where
n = m = 2, q = 0) we compute
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c0,0 c0,−1 c−1,1 c−1,0 c−1,−1 c−2,1 c−2,0 c−2,−1

c0,1 c0,0 c−1,2 c−1,1 c−1,0 c−2,2 c−2,1 c−2,0

c1,−1 c1,−2 c0,0 c0,−1 c0,−2 c−1,0 c−1,−1 c−1,−2

c1,0 c1,−1 c0,1 c0,0 c0,−1 c−1,1 c−1,0 c−1,−1

c1,1 c1,0 c0,2 c0,1 c0,0 c−1,2 c−1,1 c−1,0

c2,−1 c2,−2 c1,0 c1,−1 c1,−2 c0,0 c0,−1 c0,−2

c2,0 c2,−1 c1,1 c1,0 c1,−1 c0,1 c0,0 c0,−1

c2,1 c2,0 c1,2 c1,1 c1,0 c0,2 c0,1 c0,0



−1

=



0.9375 0.3750 0.0000 0.4688 0.1875 0.0000 0.2344 0.0938
0.3750 0.9375 0.0000 0.1875 0.4688 0.0000 0.0938 0.2344
0.0000 0.0000 0.9375 0.4688 0.2344 0.3750 0.1875 0.0938
0.4688 0.1875 0.4688 1.3477 0.5625 0.1875 0.5625 0.2344
0.1875 0.4688 0.2344 0.5625 1.1719 0.0938 0.2344 0.4922
0.0000 0.0000 0.3750 0.1875 0.0938 0.9375 0.4688 0.2344
0.2344 0.0938 0.1875 0.5625 0.2344 0.4688 1.1719 0.4922
0.0938 0.2344 0.0938 0.2344 0.4922 0.2344 0.4922 0.9961


,

which has zeroes in the required positions. Since Λ+ = J(2, 2, 0) the condition
(3.3.2) is void. Computing p(z, w) one finds p(z, w) =

∑2
k,l=0 2−k−lzkwl.

Our result is quite different from results regarding writing positive trigono-
metric polynomials as sums of squares of (pseudo-)polynomials (see, e.g., [10],
[58], [4]), again stressing the fact that we are considering functions of more
than one variable. For example, the positive function |z − 4|2 + |w − 2|2 can-
not be written as |p(z, w)|2 where p is a pseudopolynomial (i.e., p has finite
Fourier support). One may, however, write |z − 4|2 + |w − 2|2 = |p(z, w)|2
when one allows p to be a Wiener function with infinite Fourier support
{0} × {0, 1, 2, . . . } ∪ {1} × {. . . ,−2,−1, 0} and in that case p can be chosen to
be stable as well (see [56]).

3.4. Inverses of doubly-indexed Toeplitz matrices. Due to the results
developed in Section 2.3, we may formulate the following procedure for finding
the inverse of a doubly indexed positive definite Toeplitz matrix that satisfies
a low rank condition. In particular, it shows that in this case the matrix is
fully determined by the first column of its inverse. Recall that the notion of a
left stable factor is defined in Section 1.3.

Theorem 3.4.1. Let C be a positive definite block Toeplitz matrix C =
(Ci−j)n

i,j=0 whose blocks Cj = (cj,k−l)m
k,l=0 are also Toeplitz. Suppose in addi-

tion that

rank(cu−v)u∈{0,... ,n}×{1,... ,m}
v∈{1,... ,n}×{0,... ,m}

= nm.
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Let the (i(m + 1) + j)th entry of the first column of C−1 be denoted by qij ,
i = 0, . . . , n, j = 0, . . . , m. Then p(z, w) := 1√

q00

∑n
i=0

∑m
j=0 qijz

iwj is stable.
Furthermore, let

Em−1(z) :=

 p0(z) ©
...

. . .
pm−1(z) · · · p0(z)


p̄0(1/z) · · · p̄m−1(1/z)

. . .
...

© p̄0(1/z)



−

p̄m(1/z) ©
...

. . .
p̄1(1/z) · · · p̄m(1/z)


pm(z) · · · p1(z)

. . .
...

© pm(z)

 ,

where p(z, w) =
∑m

i=0 pi(z)wi. Then the following formula for C−1 holds:

C−1 =


P0

P1 P0
...

...
. . .

Pn Pn−1 · · · P0




P ∗
0 P ∗

1 · · · P ∗
n

P ∗
0 · · · P ∗

n−1
. . .

...
P ∗

0



−


0

Jm(P ∗
n)T Jm 0
...

. . . . . .
Jm(P ∗

1 )T Jm · · · Jm(P ∗
n)T Jm 0




0 JmP T
n Jm · · · JmP T

1 Jm

0
. . .

...
. . . JmP T

n Jm

0

,

where

Pi =
(

pi0 0
col(pij)m

j=1 Fi

)
,

and F (z) =
∑n

i=0 Fiz
i is the left stable factor of Em−1(z).

Proof. Let p(z, w) be as above. It follows from Theorem 2.3.1 in Chapter 2
that p(z, w) is stable. In addition, it is straightforward to check that

p(z, w)p(1/z̄, w1) −←−p (z, w)←−p (1/z̄, w1)
1 − ww̄1

= (1, . . . , wm−1)Em−1(z)

 1
...

w̄m−1
1

 .

(3.4.1)

We have used a similar observation in the proof of Theorem 2.3.1. Furthermore,
by (2.3.17) with z1 = 1/z̄,

p(z, w)p(1/z̄, w1) −←−p (z, w)←−p (1/z̄, w1)
1 − ww̄1

= Pm−1(z, w)Pm−1(1/z̄, w1)∗.

(3.4.2)
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Combining (3.4.1), (3.4.2), and (2.3.9) of Section 2.3 we find

Em−1(z) = Am−1
n (z)Am−1

n (0)−1Am−1
n (1/z̄)∗,(3.4.3)

where Am−1
n (z) is as defined in (2.3.7). Since Am−1

n (z)(Y m−1
n )−1 is stable

(use [17, Th. 6] where (Y m−1
n )∗ is the lower Cholesky factor of Am−1

n (0)),
and is lower triangular at 0 with positive diagonal entries, we must have
that Am−1

n (z)(Y m−1
n )−1 is the left stable factor F (z) of E(z). Thus F (z) =

Am−1
n (z)(Y m−1

n )−1. By Proposition 2.1.2(iii) we now have that P (z) is the left
stable factor of Em(z). By equation (2.3.28) P (z) = Am

n (z)(Y m
n )−1. By the

definition (2.3.7) of Am
n (z), this yields that col(Pi)n

i=0 is the first column of the
lower Cholesky factor of C−1. The result now follows from the matrix version
of the Gohberg-Semencul formula (see [38]).

Though the above result gives a way to construct C−1 based solely on
its first column, the formula does not have the simple algebraic form as the
classical Gohberg-Semencul [43] formula does. When n = m = 1 the formula
for C−1 is as follows:

C−1 =


p00 p01 p10 p11

p01 f p01p10

p00
p10

p10
p10p01

p00
f p01

p11 p10 p01 p00

 ,

where

f =
1

2p00
(p2

00 + |p10|2 + |p01|2 − |p11|2 + (p4
00 − 2|p10|2p2

00 − 2p2
00|p01|2

−2p2
00|p11|2 + |p10|4 − 2|p01|2|p10|2 − 2|p10|2|p11|2 + |p01|4

−2|p01|2|p11|2 + |p11|4 + 4p11p10p01p00 + 4p10p11p01p00)1/2).

Here it was assumed that c1,−1 = c01c10
c00

. Clearly, the formula for the (2,2) entry
(or, to be more precise, the ((0, 1), (0, 1)) entry) of C−1 is uniquely determined
by the first column of C−1, but the formula also involves taking square roots,
a feature that is not present in the classical Gohberg-Semencul formula. This
suggests that an algebraic formula as simple the classical Gohberg-Semencul
formula may not exist for doubly-indexed Toeplitz matrices.

Appendix

In this appendix we present an alternative proof of Theorem 2.4.1 (ii) →
(i). Assume that cu, u ∈ {−n, . . . , n} × {−m, . . . , m} are given so that

(cu−v)u,v∈Λ+ > 0(A.1)
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and

(A.2) rank(cu−v)u∈{1,... ,n}×{0,... ,m}
v∈{0,... ,n}×{1,... ,m}

= nm.

Let Cj be the (m + 1) × (m + 1) Toeplitz matrix

Cj =

 cj0 · · · cj,−m
...

. . .
...

cjm · · · cj0

 , j ∈ {−n, . . . , n},

and Γk the (k + 1) × (k + 1) block Toeplitz matrix

Γk =

C0 · · · C−k
...

. . .
...

Ck · · · C0

 , k ∈ {0, . . . , n}.

By (A.1) , Γn > 0. Introduce the matrix-valued trigonometric polynomial

F (λ) =
n∑

j=−n

λjCj , |λ| = 1.

By the results in Section 6 of [26] (see also [34], Section III.2 in [66] or Sec-
tion II.3 in [40]) there exist unique (m + 1) × (m + 1) matrices Cj , |j| > n, so
that ∞∑

j=−∞
‖Cj‖ < ∞,

and Fext(λ) :=
∑∞

j=−∞ λjCj satisfies

Fext(λ) > 0, |λ| = 1,

F̂−1
ext (k) = 0, |k| > n.

These matrices Cj = C∗
−j , j > n, are given inductively by

(A.3) Cn+j =
[
Cn+j−1 · · ·Cj

]
Γ−1

n−1

C1
...

Cn

 , j = 1, 2, . . . ,

(see e.g., [27], [13], [14], [15]). We claim that because of (A.2), the matrices
Cj , j > n, are Toeplitz.

Lemma A.1. The matrices Cj , |j| > n, are Toeplitz matrices.

Proof. Let P and Q be the (m + 1) × m matrices

P =


0 · · · 0
1 ©
© . . .

1

 , Q =


1 ©
© . . .

1
0 · · · 0

 .



POSITIVE EXTENSIONS 901

Note that an (m + 1) × (m + 1) matrix M is Toeplitz if and only if

P ∗MP = Q∗MQ.

Condition (A.2) tells us that

(A.4) rank


C1P C0P · · · C−n+1P

C2P C1P · · · C−n+2P
...

CnP Cn−1P · · · C0P

 = nm.

We also have that

(A.5) rank

 P ∗C0P · · · P ∗C−n+1P
...

P ∗Cn−1P · · · P ∗C0P

 = nm,

since this matrix is a principal submatrix of size nm × nm of the positive
definite matrix Γn.

Consider now the partial matrices

(A.6)

(
n+1⊕
i=1

J1

)
C1 C0 · · · C−n+1

C2 C1 · · · C−n+2
...

...
...

Cn Cn−1 · · · C0

? Cn · · · C1


(

n+1⊕
i=1

J2

)

where
(J1, J2) ∈ {(Im+1, P ), (Q∗, Im+1), (P ∗, P ), (Q∗, Q)}.

Recall from [50] (see also [65] or Section IV.2 [66]) that[
A B

? C

]
has a unique minimal rank completion if and only if

rank
[
A B

]
= rank B = rank

[
B

C

]
and in that case [

A B

CB(−1)A C

]
is the minimal rank completion, where B(−1) is a generalized inverse of B. The
rank of this unique minimal rank completion equals rank(B).

From (A.4) and (A.5) and the Toeplitz structure it is not hard to see that
all four partial matrices in (A.6) satisfy this uniqueness condition, and that
the unique minimal rank completion of (A.6) is given by completing with

J1Cn+1J2,
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where Cn+1 is as given by (A.3). We next note that, due to the Toeplitz
structure of C−n+1, . . . , Cn, we have that the partial matrices in (A.6) with
(J1, J2) = (P ∗, P ) and (J1, J2) = (Q∗, Q) are the same. Therefore, they have
the same unique minimal rank completion, and thus

P ∗Cn+1P = Q∗Cn+1Q,

giving that Cn+1 is Toeplitz. In addition,

Im

(
n+2⊕
i=1

J1

) C1
...

Cn+1

 ⊆ Im

(
n+2⊕
i=1

J1

)C0 · · · C−n+1
...

...
Cn · · · C1

(
n⊕

i=1

J2

)
for all four possibilities of (J1, J2).

By repeating the same arguments for taller matrices (A.6) (i.e., block rows
are added) one may show that Cn+2, Cn+3, . . . are Toeplitz as well.

Since Cj , |j| > n, are Toeplitz, we may define cjk, |j| > n, |k| ≤ m, via
setting

Cj =

 cj0 · · · cj,−m
...

...
cjm · · · cj0

 , |j| > n.

Let now
fC(z, w) =

∑
j∈Z

|k|≤m

cjkz
jwk, |z| = |w| = 1.

We may now apply Theorem 1.1 in [6], where the positive definiteness of the
Toeplitz operator follows from Fext(λ) > 0, |λ| = 1. It is not hard to see
(because of the construction of Cj , |j| > n) that the function xD(x)−1/2 in
Theorem 1.1 of [6] corresponds exactly to p(z, w) in (2.4.5) of Theorem 2.4.1.

Thus by Theorem 1.1 in [6] , p is stable, and 1̂
|p|2 (u) = cu, u ∈ Z×{−m, . . . , m}.

Thus, we have established Theorem 2.4.1(i).
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