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Abstract

We prove an identity of Kloosterman integrals which is the fundamental
lemma of a relative trace formula for the general linear group in n variables.

1. Introduction

One of the simplest examples of Langlands’ principle of functoriality is the
quadratic base change. Namely, let E/F be a quadratic extension of global
fields and z �→ z the corresponding Galois conjugation. The base change
associates to every automorphic representation π of GL(n, F ) an automorphic
representation Π of GL(n, E). If n = 1 then π is an idèle class character and
Π(z) = π(zz). An automorphic representation Π of GL(n, E) is a base change
if and only if it is invariant under the Galois action. The existence of the base
change is established by the twisted trace formula [3]. Formally, if f and f ′

are smooth functions of compact support on G(EA) and G(FA) respectively,
then one defines

Kf (x, y) =
∑

ξ∈GL(n,E)

f(x−1ξy) , Kf ′(x, y) =
∑

ξ∈GL(n,F )

f ′(x−1ξy) .

*The author was partially supported by NSF grant DMS-9619766.
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The identity of the twisted trace formula is that∫
Kf (x, x)dx =

∫
Kf ′(x, x)dx ,

for many pairs of functions (f, f ′). The existence of such an identity depends
on a simple relation between orbital integrals of the form∫

f(xγx−1)dx ,

∫
f ′(xγ′x−1)dx .

In turn, to establish such a relation one needs to compare at almost all places
v of F inert in E the orbital integrals of specific functions. This is the funda-
mental lemma [9].

There is another possible characterization of the base change. Indeed, in
the case n = 1, Π is a base change if and only if it is trivial on the group of
elements of norm 1, that is, on the unitary group in one variable. Thus it is
natural to conjecture that a representation Π is a base change if and only if it
is distinguished by some unitary group H: this means that there is an element
φ in the space of H such that the period integral∫

H(F )\H(FA)
φ(h)dh

does not vanish.
To establish this conjecture one is led to consider a relative trace formula

of the form∫ ∫
Kf (h, u)dhθ(uu) =

∫ ∫
Kf ′(tu1, u2)θ(u1)θ(u2)du1du2;(1)

here Nn denotes the group of upper triangular matrices with unit diagonal,
u ∈ Nn(E)\Nn(EA), u1, u2 ∈ Nn(F )\Nn(FA); θ is a character of Nn(FA)
trivial on Nn(F ) and in general position. One needs to establish this identity
for many pairs (f, f ′). This depends on the comparison of orbital integrals of
the form∫ ∫

f(hξu)θ(uu)dudh ,

∫
f ′(tu1ξ

′u2)θ(u1u2)du1u2)du1du2 .

Just as in the case of the standard trace formula, at almost all places v of
F inert in E, one needs to establish a certain relation between the orbital
integrals of specific functions. The integrals are closely related to Kloosterman
sums. The relation is the fundamental lemma for the relative trace formula.
The purpose of this paper is to prove this fundamental lemma.

Before we describe the result in more details we remark that the same set
up should apply to the stabilizer H of an automorphism of order 2 of a reductive
group G. However, the information obtained from the conjectural relative trace
formula depends on the particular case at hand. In many cases, the period
integral is related to the special values of L-functions. For a discussion of the
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meaning of the period integral here see [6, (6)]. Of course one expects to have
in the general situation a fundamental lemma. See for instance [7] and [11]
where the proof of the fundamental lemma at hand is conceptual.

In the case at hand, we need to consider all forms of the unitary group
simultaneously. Moreover, integrating a function over H produces a function
on H\G, thus a function of the space S(n × n) of Hermitian matrices. It is
then more convenient to adopt a slightly different point of view. The group
G(E) = GL(n, E) operates on S(n×n) by s �→ tgsg. If Ψ is in C∞

c (S(n×n, FA))
we construct a function ΘΨ(g) on G(E)\G(EA) by

ΘΨ(g) =
∑

ξ∈S(n×n,F )

Ψ( tgξg) .

The invariant space spanned by the functions ΘΨ is the automorphism spectrum
of the space of Hermitian matrices. The (cuspidal) automorphism representa-
tions which appear in the spectrum are exactly the cuspidal representations π

which are distinguished by the stabilizer H of some point in S(n × n, F ); thus
H is indeed a unitary group.

We consider a similarly defined space of functions on (G(F )\G(FA))2. The
group GL(n, F ) × GL(n, F ) operates on GL(n, F ) by s �→ tg1sg2. To every
function Φ in C∞

c (GL(n, FA)) we associate a function ΘΦ(g1, g2) defined by

ΘΦ(g1, g2) =
∑

ξ∈GL(n,F )

Φ( tg1ξg2) .

We consider the invariant space spanned by these functions. The automor-
phism cuspidal representations π = π1 ⊗ π2 which appear in the space are
exactly those distinguished by the twisted diagonal subgroup {(tg−1, g)}, that
is, those π for which π1 is contragradient to π2.

We replace (1) by∫
N(E)\N(EA)

ΘΨ(n)θ(nn)dn =
∫

(N(F )\N(FA))2
ΘΦ(n1, n2)θ(n1n2)dn1dn2 ,(2)

and we say that Ψ matches Φ if the identity holds. One wants to prove that
any Ψ matches a Φ and conversely.

The notion of global matching depends on the notion of local matching
that we now describe in the context of a quadratic unramified extension of
local non Archimedean fields. Thus we let E/F be such an extension. We let
η be the corresponding (unramified) quadratic character of F×. We assume
the residual characteristic is not 2. We denote by v(•) the valuation of F . We
let q be the cardinality of the residual field of F and set | x |F = q−v(x). We
let ψ be an additive character of F whose conductor is the ring of integers OF

of F . We let PF be the maximal ideal in OF and � a generator of PF . We
denote by dx the self dual Haar measure on F . We let Nn be the group of
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upper triangular matrices with unit diagonal in GL(n). We define a character
θn or simply θ : Nn(F ) → C× by

θ(u) = ψ

(∑
i

ui,i+1

)
.

Locally, it is best to consider orbital integrals for smooth functions of compact
support on M(n×n, F ). Let Φ be a such a function. We define the Kloosterman
integral

Ω(Φ, ψ : a) :=
∫

Nn(F )×Nn(F )
Φ( tu1au2)θ(u1u2)du1du2

where

a = diag(a1, a2, a3, . . . , an)

is a diagonal matrix with

ai ∈ F× , 1 ≤ i ≤ n − 1 , an ∈ F ,

and du is the Haar measure on Nn(F ) such that∫
Nn(OF )

du = 1 .

We often write Ω(Φ, ψ : a) as a function of n variables:

Ω(Φ, ψ : a1, a2, a3, . . . , an) .

Likewise, we define a character u �→ θ(uu) of Nn(E) by

θ(uu) = ψ

(∑
i

(ui,i+1 + ui,i+1)

)
.

We let H(n × n, E/F ) be the space of Hermitian matrices. Let Ψ be a
smooth function of compact support on H(n×n, E/F ). We define the relative
Kloosterman integral

Ω(Ψ, E/F, ψ : a) :=
∫

Nn(E)
Ψ( tuau)θ(uu)du

where a is as above and du is the Haar measure on Nn(E) such that∫
Nn(OE)

du = 1 .

We say that Φ matches Ψ for ψ (see [6]) and we write Φ
ψ↔ Ψ if

Ω(Φ, ψ : a) = γ(a)Ω(Ψ, E/F, ψ : a) ,

where

γ(a) = η(a1)η(a1a2) · · · η(a1a2 · · · an−1) .
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By the results of [6, (3), (4), (5)] this identity implies similar identities for the
other orbital integrals.

The fundamental lemma takes then the following form.

Theorem 1 (The Fundamental Lemma). Let Φn be the characteristic
function of M(n × n,OF ) and Ψn be the characteristic function of

M(n × n,OE) ∩ H(n × n, E/F ).

Then Φn
ψ↔ Ψn; that is,

Ω(Φn, ψ : a) = γ(a)Ω(Ψn, E/F, ψ : a) .

Ngo [12, (1)] formulates the identity in terms of trigonometric sums rather
than integrals. Indeed (loc. cit.)

Ω(Φn, ψ : a) :=
∑

θ(u1u2) ,

where the sum is over

(u1, u2) ∈ (Nn(F )/Nn(OF ))2, tu1au2 ∈ M(m × m,OF ) ,

and

Ω(Ψn, E/F, ψ : a) =
∑

θ(uu) ,

where the sum is over

u ∈ Nn(E)/Nn(OE) , tuau ∈ M(n × n,OE) .

As Ngo observes, the above result appears then as a generalization of the
following classical identity. Let k be a finite field, k′ its quadratic extension,
ψ : k → C× a nontrivial character. Then, for c ∈ k×,∑

x1, x2 ∈ k

x1x2 = c

ψ(x1 + x2) = −
∑

x ∈ k′

xx = c

ψ(x + x) .(3)

It is a striking fact that our proof is ultimately based on this identity, or
rather, on the slightly more general Weil formula that we now recall. Define
the Fourier transform of Φ ∈ C∞(E) by

Φ̂(z) =
∫

E
Φ(u)ψ(−uz − uz)du .

Then, for a ∈ F×,∫
E

Φ̂(z)ψ(azz)dz = |a|−1
F η(a)

∫
E

Φ(z)ψ
(
−zz

a

)
dz .

The sophisticated cohomological interpretation of the fundamental lemma of [2]
is not needed.
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Our purpose is to prove the above fundamental lemma. Originally, the
fundamental lemma conjectured by the author and Ye was that the respective
characteristic functions of the sets

GL(n,OF ) , GL(n,OE) ∩ H(n × n, E/F )

match. Ngo [12] stated and proved the fundamental lemma in the above form
in the case of positive characteristic. As will be apparent in the proof, it is
essential to use Ngo’s formulation. The proof is based on the fact, previously
proved by the author [6, (4)] that the orbital integrals at hand are invariant
under an integral transform. The proof of the fundamental lemma is based
on the fact that the invariance property and support conditions characterize
the orbital integrals. The author takes this opportunity to thank one of the
referees of [6, (4)] for a crucial comment on the case of GL(2).

We first recall the results in question. We define the normalized orbital
integrals

Ω̃(Φ, ψ : a) := |a1||a1a2| · · · |a1a2 · · · an−1|
×Ω(Φ, ψ : a).

We note that for n = 1

Ω̃(Φ, ψ : a) = Ω(Φ, ψ : a) = Φ(a) .

Then, for Φ ∈ S(M(n × n, F )),

Ω̃(Φ̌, ψ : a1, a2, . . . , an)(4)

=
∫

Ω̃(Φ, ψ : p1, p2, · · · , pn)

×ψ

(
−

i=n∑
i=1

pian+1−i +
i=n−1∑

i=1

1
pian−i

)
dpndpn−1 · · · dp1 .

The multiple integral is only an iterated integral. Here Φ̌ is the Fourier trans-
form of Φ (suitably defined). We note that Φn is its own Fourier transform
and that it is invariant under conjugation by the diagonal matrix

diag(1,−1, 1,−1, . . . ) .(5)

It follows that

Ω̃(Φn, ψ : a) = Ω̃(Φn, ψ : a) ,

and the function Ω̃(Φn, ψ : a) satisfies the following functional equation:

(6)

ω(a1, a2, . . . , am) =
∫

ω(p1, p2, · · · , pm)

×ψ

(
−

i=m∑
i=1

piam+1−i +
i=m−1∑

i=1

1
piam−i

)
dpmdpm−1 · · · dp1 .
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If g is an n×n matrix, then we let gi be the submatrix formed with the first i

rows and the first i columns of g. We set ∆i(g) = det gi. The functions ∆i are
constant on the orbits. It follows that the function Ω̃(Φn, ψ : a) is supported
on the set defined by

|a1| ≤ 1 , |a1a2| ≤ 1 , |a1a2 · · · an−1| ≤ 1 , |a1a2 · · · an−1an| ≤ 1 .(7)

Finally, the following result is well known in the context of Kloosterman sums.

Proposition 1. Suppose that

1 ≤ i ≤ n − 1

and

|a1a2 · · · ai| = 1 .

Then

Ω̃(Φn, ψ : a) = Ω̃(Φi, ψ : a1, a2, . . . , ai)Ω̃(Φn−i, ψ : ai+1, ai+2, . . . , an) .(8)

Similarly we define

Ω̃(Ψ, E/F, ψ : a)

:= η(a1)|a1|η(a1a2)|a1a2| · · · η(a1a2 · · · an−1)|a1a2 · · · an−1|
×Ω(Ψ, E/F, ψ : a) .

The condition Φ
ψ↔ Ψ is equivalent to

Ω̃(Φ, ψ : a) = Ω̃(Ψ, E/F, ψ : a) .

The function Ω̃(Ψn, E/F, ψ : a) has properties analogous to the properties of
Ω̃(Φn, ψ : a).

Now we set

ω(a) := Ω̃(Φn, ψ : a) − Ω̃(Ψn, E/F, ψ : a) .(9)

We note that by the results of [6, (4)],

ω(a) = Ω̃(Φ, ψ : a)

for some function Φ. The fundamental lemma amounts to saying that the
function (9) vanishes identically.

The function (9) satisfies (6) and is supported on the set defined by (7).
The case n = 1 being vacuous, we may assume n > 1 and the fundamental
lemma true for m ≤ n− 1. From Proposition (1) which is valid for Ψn as well,
we see that ω is supported on the set defined by

|a1a2 · · · ai| ≤ |�| , 1 ≤ i ≤ n − 1 , |a1a2 · · · an| ≤ 1 .(10)
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We will use this to prove that ω = 0. As a matter of fact, we will only use the
fact that ω is supported on the set defined by

|a1a2 · · · ai| ≤ 1 , 2 ≤ i ≤ n , |a1| ≤ |�| .(11)

We state this as a proposition.

Proposition 2. Suppose that ω is the normalized orbital integral of some
function. Suppose further that ω satisfies the functional equation (6) and is
supported on the set (11). Then ω vanishes identically

In the next section, for the sake of completeness, we verify Proposition 1.
The rest of the paper is devoted to the proof of Proposition 2.

2. Proof of Proposition 1

With the notation of the proposition, it amounts to the same to prove the
corresponding identity for the unnormalized orbital integrals:

Ω(Φn, ψ : a) = Ω(Φi, ψ : a1, a2, . . . , ai)Ω(Φn−i, ψ : ai+1, ai+2, . . . , an) .(12)

To see this is true we introduce the following partial orbital integral, as a
function on GL(i, F ) × M((n − i) × (n − i), F ):

(13)

Ωi
n−i [Φ, ψ : Ai, Bn−i] :=

∫
Φ

[(
1i 0
tY 1n−i

) (
Ai 0
0 Bn−i

) (
1i X

0 1n−i

)]
×θ

[(
1i X

0 1n−i

) (
1i Y

0 1n−i

)]
dXdY .

If Φ = Φn and |det Ai| = 1 then in the above integral X and Y range over the
set of matrices with integral entries. Then

Ωi
n−i [Φn, ψ : Ai, Bn−i] = Φi(Ai)Φn−i(Bn−i) .(14)

On the other hand, the orbital integral of a given function Φ can be computed
in stages as

Ω(Φ, ψ : a)(15)

=
∫ ∫

Ωi
n−i

[
Φ, ψ : tu1a

iu2,
tv1a

n−iv2

]
θi(u1u2)du1du2θn−i(v1v2)dv1dv2,

where

ai = diag(a1, a2, . . . ai) , an−i = diag(ai+1, ai+2, . . . an) .

If |a1a2 · · · ai| = 1 then |dettu1a
iu2| = 1 and the identity (13) follows from (14)

and (15).
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3. The Kloosterman transform

We will denote by In the space of functions ω on (F×)n−1×F of the form

ω(a1, a2, . . . , an) = Ω̃(Φ, ψ : a) .

By conjugating by the diagonal matrix (5), we see that the space does not
change if we replace ψ by ψ. If ω is in this space we denote by Kn,ψ(ω) the
right-hand side of (6). We call it the Kloosterman transform of ω. It is an
element of In.

To make the definition of the Kloosterman transform more precise, we
define inductively two sequences of functions. First we set

σ0(a1, a2, . . . , an) := µ0(a1, a2, . . . , an) := ω(a1, a2, . . . , an) .

Then we set

µ1(a1, a2, . . . , an−1, b1) :=
∫

σ0(a1, a2, . . . , an−1, an)ψ(−anb1)dan ,

σ1(a1, a2, . . . , an−1, b1) = µ1(a1, a2, . . . , an−1, b1)ψ
(

1
an−1b1

)
.

Inductively, if 1 ≤ i ≤ n − 1 and we have defined

σi(a1, a2, . . . , an−i, bi, bi−1, . . . , b1) ,

then we define

µi+1(a1, a2, . . . , an−i−1, bi+1, bi, . . . , b1)

:=
∫

σi(a1, a2, . . . , an−i, bi, bi−1, . . . , b1)ψ(−an−ibi+1)dan−i

and

σi+1(a1, a2, . . . , an−i−1, bi+1, bi, . . . , b1)

:= µi+1(a1, a2, . . . , an−i−1, bi+1, bi, . . . , b1)ψ
(

1
an−i−1bi+1

)
.

In particular

σn(bn, bn−1, . . . , b1) := µn(bn, bn−1, . . . , b1) .

Note that our definition of σn and σ0 is in accordance with the convention that
an empty product has the value 1. We emphasize that the integral defining
µi+1 is absolutely convergent. Moreover, for fixed i, the functions σi and µi

have the same support. We have then

Kn,ψ(b1, b2, . . . bn) = µn(bn, bn−1, . . . , b1) .

For n = 1 the Kloosterman transform is just the Fourier transform. Just as for
the ordinary Fourier transform, there is an inversion formula: the composition
Kn,ψ ◦ Kn,ψ is the identity. More precisely, let us set

µ̌n−i(b1, b2, . . . , bi, an−i, an−i−1, . . . , a1) := σi(a1, a2, . . . , an−i, bi, bi−1, . . . , b1)
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σ̌n−i(b1, b2, . . . , bi, an−i, an−i−1, . . . , a1) := µi(a1, a2, . . . , an−i, bi, bi−1, . . . , b1).

Then ∫
σ̌n−i−1(b1, b2, . . . , bi, bi+1, an−i−1, . . . a1)ψ(bi+1an−i)dbi+1

= µ̌n−i(b1, b2, . . . , bi, an−i, an−i−1, . . . , a1)

and

σ̌n−i(b1, b2, . . . , bi, an−i, an−i−1, . . . , a1)

= µ̌n−i(b1, b2, . . . , bi, an−i, an−i−1, . . . , a1)ψ
(

1
bian−i

)
.

In particular,

σ̌n(an, an−1, . . . , a1) = µ0(a1, a2 . . . , an)

is just the inversion formula. We then have a principle of symmetry: we can
exchange the variables (a∗) and (b∗), the left and the right, and the character
ψ and the character ψ.

Proposition 2 is a consequence of the following more precise result.

Proposition 3. Suppose that ω ∈ In, that ω is supported on the set (11)
and its Kloosterman transform Kn,ψ(ω) is supported on the set (7). Then
ω = 0.

We now give several consequences of the above definitions. In what follows
ω is in In and we define functions µi and σi as above. It will be convenient to
express the results and assumptions on the support of the functions at hand
in terms of diagrams. Each diagram has two rows consisting of indexed boxes
such as

k

r ,
k

= r

where r ≥ 0 is an integer. In the bottom row, the boxes are a shorthand
notation for

|a1a2 · · · ak| ≤ |�r| , |a1a2 · · · ak| = |�r|

respectively. In the top row they are a shorthand notation for

|bkbk−1 · · · b1| ≤ |�r| , |bkbk−1 · · · b1| = |�r|

respectively. In each diagram the indices are increasing in the bottom row and
decreasing in the top row. Indices in boxes in the same column add up to n+1.
For consistency we introduce dummy boxes

0

= 0 .



KLOOSTERMAN IDENTITIES OVER A QUADRATIC EXTENSION 765

Thus, in the bottom row say, a diagram

k

= r
k+1

s

stands for

|a1a2 · · · ak| = |�r| , |ak+1| ≤ |�s−r| .

The assumptions in Proposition 3 can be described in terms of the following
diagram:

n

0
n−1

0
n−2

0 . . .
3

0
2

0
1

0
0

= 0

0

= 0
1

1
2

0
3

0 . . .
n−2

0
n−1

0
n

0

(16)

The bottom row is a shorthand notation for the conditions

|a1a2a3 · · · ai| ≤ 1 , 2 ≤ i ≤ n , |a1| ≤ |�| .

The assumption of Proposition 3 is that they are satisfied on the support of µ0.
Likewise, the top row is a shorthand notation for the conditions

|bibi−1 · · · b1| ≤ 1 , 1 ≤ i ≤ n .

The assumption of Proposition 3 is that they are satisfied on the support of µn.
In a diagram if the highest index in the top row (the first on the left) is k

then the top row indicates conditions on the support of

µk(a1, a2 . . . an−k, bk, bk−1, . . . b1)

or what amounts to the same

σk(a1, a2 . . . an−k, bk, bk−1, . . . b1) .

Likewise, if the highest index in the bottom row (the first on the right) is k

then the bottom row indicates conditions on the support of

µn−k(a1, a2 . . . , ak, bn−k, bn−k−1, . . . b1)

or

σn−k(a1, a2 . . . , ak, bn−k, bn−k−1, . . . b1) .

All diagrams have the general form

n−u

sn−u

n−u−1

sn−u−1 . . .
v+2

sv+2

v+1

sv+1

v

= µ

u

= ν
u+1

ru+1

u+2

ru+2 . . .
n−v−1

rn−v−1

n−v

rn−v

(17)
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where all the indices are ≥ 0 and ≤ n. In general all entries in boxes are
implicitly assumed to be integers ≥ 0. The entry in a box indexed by n or 0
is always 0. Sometimes we drop the indices from the notation if this does not
create ambiguities.

It will be convenient to use the statement that the diagram (17) holds.
This means the following. We are given (sometimes only implicitly)

a1, a2, . . . , au,

such that

|a1a2 · · · au| = |�ν |(18)

and

bv, bv−1, . . . , b1,

such that

|bvbv−1 · · · b1| = |�µ| .(19)

The conditions indicated by the diagram hold on the support of the functions

µn−u(a1, a2, . . . , au, bn−u, bn−u−1, . . . bv+1, bv, . . . b1)

and

µv(a1, a2, . . . , au, au+1, au+2, . . . , an−v, bv, bv−1, . . . , b1)

Note our use of quantifiers. The variables

a1, a2, . . . , au, , bv, bv−1, . . . , b1,(20)

have fixed values. The other variables are free.
We say that the diagram (17) holds trivially if in fact

µn−u(a1, a2, . . . , au, bn−u, bn−u−1, . . . bv+1, bv, . . . b1) = 0

and

µv(a1, a2, . . . , au, au+1, au+2, . . . , an−v, bv, bv−1, . . . , b1) = 0.

Again in this equality the variables (20) have given values satisfying (18)
and (19) and the equalities hold for all values of the remaining variables. Since
µn−u is obtained from µv by repeatedly multiplying by a nonzero factor and
taking a Fourier transform, it is clear that each equality is equivalent to the
other. Our assumption is that the diagram (16) holds and our goal is to prove
that the diagram (16) holds trivially.
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Often we will not display the full diagram but only its front end. Thus
instead of displaying the full diagram (17) we may display only the part

n−u

sn−u

n−u−1

sn−u−1 . . .
n−k+1

sn−k+1

n−k

sn−k

u

= ν
u+1

ru+1

u+2

ru+2 . . .
k

rk

(21)

and we will say that the (full) diagram holds. It is understood that there are
in fact more unwritten boxes on the right and in particular a last box of the
form

= µ

in the top row. The box may be a dummy box. The partial diagram (21)
reminds us that

µn−k(a1, a2, . . . , au, au+1, . . . , ak, bn−k, . . . b1) 
= 0

⇒ |a1a2 · · · auau+1 · · · ai| ≤ |�ri | , u + 1 ≤ i ≤ k .

Again this follows from the fact that µn−k is obtained from µv by repeatedly
multiplying by a nonzero factor and taking a Fourier transform. Suppose that
the diagram (17) holds. If we choose

bn−k, bn−k−1, . . . , bv+1,

such that

|bn−kbn−k−1 · · · bv+1bvbv−1 · · · b1| = |�sn−k |

then we can say that the following diagram holds

n−u

sn−u

n−u−1

sn−u−1 . . .
n−k+1

sn−k+1

n−k

= sn−k

u

= ν
u+1

ru+1

u+2

ru+2 . . .
k

rk

(22)

In particular, if the diagram (22) holds trivially for all such choices of

bn−k, bn−k−1, . . . , bv+1 ,

then the original diagram (17) holds with sn−k replaced by sn−k + 1 (17).
Finally, we have a principle of symmetry. Any result or statement implies

a similar result or statement where the variables (ai) and (bj) are interchanged
and the diagrams are replaced by the diagrams obtained after reflections about
the horizontal axis and the vertical axis.

Our starting point is the following principle, which is valid even for n =
i + 1, r = 0.
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Lemma 1 (Uncertainty Principle 1). If the diagram
i+1

s
i

∗

n−i−1

= r
n−i

r + m

holds, then the following diagram holds
i+1

s
i

s + m

n−i−1

= r
n−i

r + m

Proof. Before proving the assertion of the lemma, we explain our notation.
We are given

a1, a2, . . . , an−i−1

such that

|a1a2 · · · an−i−1| = |�r| .
We assume that

µi(a1, a2, . . . , an−i−1, an−i, bi, . . . , b1) 
= 0 ⇒ |an−i| ≤ |�m|
µi+1(a1, a2, . . . , an−i−1, bi+1, bi, . . . , b1) 
= 0 ⇒ |bi+1bi · · · b1| ≤ |�s| .

We want to show that in fact

µi+1(a1, a2, . . . , an−i−1, bi+1, bi, . . . , b1) 
= 0 ⇒ |bi · · · b1| ≤ |�s+m|
Indeed the function

bi+1 �→ µi+1(a1, a2, . . . , an−i−1, bi+1, bi, . . . , b1)

has support contained in the set

|bi+1| ≤ |�s(bi · · · b1)−1| .
It is the Fourier transform of the function

an−i �→ σi(a1, a2, . . . , an−i−1, an−i, bi, . . . , b1)

with support contained in the set

|an−i| ≤ |�m| .
By the uncertainty principle we get

|�s(bi · · · b1)−1�m| ≥ 1

or

|bi · · · b1| ≤ |�s+m|
which is the assertion of the lemma.
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Lemma 2 (Uncertainty Principle 2). If the following diagram holds

i+1

s
i

=s + m

n−i−1

= r
n−i

r + m

then the functions

bi+1 �→µi+1(a1, a2, . . . , an−i−1, bi+1, bi, . . . , b1)(23)

an−i �→σi(a1, a2, . . . , an−i−1, an−i, bi, . . . , b1)(24)

are constant on their respective supports.

Proof. Again we are given

a1, a2, . . . , an−i−1

such that

|a1a2 · · · an−i−1| = |�r|

and

bi, bi−1, . . . , b1

such that

|bibi−1 · · · b1| = |�s+m| .

The assumption is that

µi+1(a1, a2, . . . , an−i−1, bi+1, bi, . . . , b1) 
= 0 ⇒ |bi+1| ≤ |�−m|

and

σi(a1, a2, . . . , an−i−1, an−i, bi, . . . , b1) 
= 0 ⇒ |an−i| ≤ |�m| .

Since these functions form a Fourier pair

µi+1(a1, a2, . . . , an−i−1, bi+1, bi, . . . , b1)

takes a constant value for |bi+1| ≤ |�−m| and is 0 otherwise while

σi(a1, a2, . . . , an−i−1, an−i, bi, . . . , b1)

takes a constant value for |an−i| ≤ |�m| and is 0 otherwise.

So far we have not used the fact that the ratio of σi and µi is an oscillatory
factor. We do in the following lemma.
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Lemma 3 (adjacent variables). Let

a1, a2, . . . , an−i−1 , bi−1, . . . , b2, b1

be given. Suppose that for |an−i| = |�s|, and |bi| = |�t| the function

σi(•, an−i, bi, •)

does not depend on an−i while the function

µi(•, an−i, bi, •)

does not depend on bi. If s+t > 0 then in fact, for |an−i| = |�s| and |bi| = |�t|

σi(•, an−i, bi, •) = 0 , µi(•, an−i, bi, •) = 0 .

Proof. We assume this is not true. We fix an−i with |an−i| = |�s|. Next,
we choose ε such that

|ε| = |ε + an−i| = |�s| .

This is always possible if the residual characteristic is not 2. Then

σi(•, an−i + ε, bi, •) = σi(•, an−i, bi, •) .

This implies the relation

ψ

(
ε

an−i(an−i + ε)bi

)
=

µi(•, an−i + ε, bi, •)
µi(•, an−i, bi, •)

.

Now the right-hand side does not depend on bi for |bi| = |�t|. Thus the same
is true of the left-hand side. Since∣∣∣∣ ε

an−i(an−i + ε)

∣∣∣∣ = |�−s| .

This amounts to saying that ψ(u) is constant on the shell {u : |u| = |�−s−t|}.
Since s + t > 0, this is a contradiction which proves the lemma.

4. Key lemmas

In this section µ ≥ 0 is an integer. We study diagrams ending in following
pattern:

= µ

µ



KLOOSTERMAN IDENTITIES OVER A QUADRATIC EXTENSION 771

Lemma 4. If the diagram

m = µ

∗ µ

holds, then the following diagram holds

m = µ

m µ

If, furthermore,

k

m
k−1

= µ

n−k

= m
n−k+1

µ

holds, then the function

bk �→ µk(•, bk, •)

does not depend on bk on its support, in particular, on the shell

{bk : |bk| = |�m−µ|} .

Proof. In view of the principle of symmetry this is a restatement of
Lemmas 1 and 2.

Lemma 5. Suppose 2m0 > m1 + µ. Then if the diagram

k+1

m1

k

m0

k−1

= µ

n−k−1

= m1

n−k

m0

n−k+1

µ

holds, it holds trivially.

Proof. We are given

bk−1, bk−2, . . . , b1

such that

|bk−1bk−2 · · · b1| = |�µ|

and

a1, a2, . . . , an−k−1
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such that

|a1a2 · · · an−k−1| = |�m1 | .
We let s ≥ 0 be an integer such that the following diagram holds:

m1 m0 + s = µ

= m1 m0 µ

By Lemma 4 the following diagram holds

m1 m0 + s = µ

= m1 m0 + s µ

We then show that the diagram
k+1

m1

k

= m0 + s

n−k−1

= m1

n−k

m0 + s

holds trivially. To that end, we let bk be such that

|bk| = |�m0+s−µ| .
We have to prove that

µk(•, an−k, bk, •) = 0 , σk(•, an−k, bk, •) = 0 .(25)

As before,

σk(•, an−k, bk, •) 
= 0 ⇒ |an−k| ≤ |�m0+s−m1 |

µk+1(•, bk+1, bk, •) 
= 0 ⇒ |bk+1| ≤ |�m1−m0−s|.
Thus σk(•, an−k, bk, •) does not depend on an−k on its support; thus it suffices
to prove (25) for

|an−k| = |�m0+s−m1 | .
Then |a1a2 · · · an−k| = |�m0+s| and so by Lemma 4, µk(•, an−k, bk, •) does not
depend on bk. Since

m0 + s − µ + m0 + s − m1 = 2s + 2m0 − µ − m1 > 0

we can use the pair (an−k, bk) as the adjacent variables of Lemma 3 to ob-
tain (25). Thus we may replace s by s + 1. Hence the diagram

k+1

m1

k

t
k−1

= µ

n−k−1

= m1

n−k

m0

n−k+1

µ

holds, then for any t > 0 and our conclusion follows.
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Lemma 6. Suppose k ≥ 1, r ≥ 0, k + r ≤ n − 1. Let µ ≥ 0. Then if the
diagram

k+r

mr

k+r−1

mr−1 . . . . . .
k+1

m1

k

m0

k−1

= µ

n−k−r

∗
n−k−r−1

∗ . . . . . .
n−k−1

∗
n−k

∗
n−k+1

µ

holds, then the following diagram holds

k+r

mr

k+r−1

mr−1 . . . . . .
k+1

m1

k

m0

k−1

= µ

n−k−r

mr

n−k−r−1

mr−1 . . . . . .
n−k−1

m1

n−k

m0

n−k+1

µ

Proof. We have already established this assertion for r = 0 (Lemma 4).
Thus we may assume r ≥ 1 and our assertion is established for r− 1. Thus we
already know that the following diagram holds:

k+r

mr

k+r−1

mr−1 . . . . . .
k+1

m1

k

m0

k−1

= µ

n−k−r

∗
n−k−r−1

mr−1 . . . . . .
n−k−1

m1

n−k

m0

n−k+1

µ

Thus it is a matter of proving that if

k+r

mr

k+r−1

mr−1 . . . . . .
k+1

m1

k

m0

k−1

= µ

n−k−r

= θ
n−k−r−1

mr−1 . . . . . .
n−k−1

m1

n−k

m0

n−k+1

µ

holds, then it holds trivially unless θ ≥ mr. Thus assume θ < mr and the
diagram holds. Let s ≥ 0 be such that the following diagram holds:

k+r

mr

k+r−1

mr−1 + s . . . . . .
k+1

m1

k

m0

k−1

= µ

n−k−r

= θ
n−k−r−1

mr−1 . . . . . .
n−k−1

m1

n−k

m0

n−k+1

µ

By the induction hypothesis the following diagram holds

k+r

mr

k+r−1

mr−1 + s . . . . . .
k+1

m1

k

m0

k−1

= µ

n−k−r

= θ
n−k−r−1

mr−1 + s . . . . . .
n−k−1

m1

n−k

m0

n−k+1

µ
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By the uncertainty principle the following diagram holds as well

k+r

mr

k+r−1

mr−1 + s + mr − θ . . . . . .
k+1

m1

k

m0

k−1

= µ

n−k−r

= θ
n−k−r−1

mr−1 + s . . . . . .
n−k−1

m1

n−k

m0

n−k+1

µ

So we have replaced s by s + mr − θ > s. Thus, for any t > 0, the following
diagram holds

k+r

mr

k+r−1

t . . . . . .
k+1

m1

k

m0

k−1

= µ

n−k−r

= θ
n−k−r−1

mr−1 . . . . . .
n−k−1

m1

n−k

m0

n−k+1

µ

and our conclusion follows.

5. Proof of Proposition 3

In this section, we consider diagrams of the following form

ν mk mk−1 . . . . . . m2 m1 = µ

= ν mk mk−1 . . . . . . m2 m1 µ

where k ≥ 1. We call the double sum

2(m1 + m2 + · · ·mk)

the weight of the diagram. We will prove the following result.

Proposition 4. Suppose k ≥ 1 and the diagram

n−u

ν mk mk−1 . . . . . . m2 m1

v

= µ

u

= ν mk mk−1 . . . . . . m2 m1

n−v

µ

holds. Let w be the weight of the diagram. If

w > k(µ + ν) ,

then the diagram holds trivially.

In more detail, we fix a1, a2, . . . , au such that

|a1a2 · · · au| = |�ν |
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and bv, bv−1, . . . , b1 such that

|bvbv−1 · · · b1| = |�µ| .
We assume that the conditions indicated by the diagram hold on the supports
of the functions

µn−u(a1, a2, . . . , au, bn−u, bn−u−1, . . . , bv+1, bv, . . . b1)

and

µv(a1, a2, . . . , au, au+1, . . . , an−v, bv, . . . , b1) .

The conclusion is that the supports are in fact empty; that is, the functions
vanish. In particular, we may use this result to prove Proposition 3. Indeed,
the diagram (16) holds. By the uncertainty principle the following diagram
holds as well:

n

0
n−1

1
n−2

0 . . .
3

0
2

0
1

0
0

= 0

0

= 0
1

1
2

0
3

0 . . .
n−2

0
n−1

0
n

0

(26)

From Proposition 4 it follows that the diagram (26) holds trivially which is the
conclusion of Proposition 3. It remains to prove Proposition 4.

Proof of Proposition 4. If k = 1, then the assertion is Lemma 5.
Now we assume k > 1 and our assertion established for 1 ≤ i < k. We

assume

w = 2(m1 + m2 + · · · + mk) , w > k(µ + ν).(27)

We will show then in fact a diagram of the form

ν m1
k m1

k−1 . . . . . . m1
2 m1

1 = µ

= ν m1
k m1

k−1 . . . . . . m1
2 m1

1 µ

holds with a weight w1 which verifies w1 > w and thus w1 > k(µ+ν). This will
prove our assertion. Indeed, by induction, we find then sequences of integers
(mi

j) such that the following diagrams hold

ν mi
k mi

k−1 . . . . . . mi
2 mi

i = µ

= ν mi
k mi

k−1 . . . . . . mi
2 mi

1 µ

and the sequence

wi := 2(mi
1 + mi

2 + · · · + mi
k)
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tends to infinity. Thus there is at least one index j such that the sequence mi
j

tends to infinity and that shows that the supports of the relevant functions are
empty.

We will show that there is at least one index i, 2 ≤ i ≤ k, such that in the
bottom row the box

mi

can replaced by

mi + 1

or there is an index i, k − 1 ≥ i ≥ 1 such that in the top row the box

mk−i

can replaced by

mk−i + 1

Note that by Lemma 6, in the first case, we can then replace mi by mi + 1 in
the top row as well, likewise for the second case. Correspondingly, the weight
w is increased by 2 and we are done. To prove the existence of the index in the
bottom or the top row, we proceed again by contradiction. We assume there is
no such index. In the bottom row, this means that for every i with 2 ≤ i ≤ k,
the following diagram holds nontrivially

mi mi−1 mi−2 . . . . . . m2 m1 = µ

= mi mi−1 mi−1 . . . . . . m2 m1 µ

By the induction hypothesis, this implies

2(m1 + m2 + · · · + mi−1) ≤ (i − 1)(mi + µ) .(28)

This inequality is trivially true for i = 1 as both sides are then 0. Adding up
these inequalities together we get

i=k∑
i=1

2(k − i)mi ≤
k∑

i=1

(i − 1)mi +
k(k − 1)

2
µ

or
k∑

i=1

(2k − 3i + 1)mi ≤
k(k − 1)

2
µ .(29)

Likewise, considering the top row we obtain

k∑
i=1

(2k − 3(k − i + 1) + 1)mi ≤
k(k − 1)

2
ν
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or
k∑

i=1

(−k + 3i − 2)mi ≤
k(k − 1)

2
ν .(30)

Adding up the inequalities (29) and (30) we obtain

(k − 1)
k∑

i=1

mi ≤
k(k − 1)

2
(µ + ν)

or

2(m1 + m2 + · · · + mk) ≤ k(µ + ν)

which contradicts (27). This concludes the proof.

6. Complement

We can also characterize the function

Ωn(a) := Ω(Φn, ψ : a)

by properties of support. The function Ωn is not zero. Indeed by Proposition 1
we see that

|a1| = |a2| = · · · = |an| = 1 ⇒ Ωn(a) = 1 .

Proposition 5. Suppose ω ∈ In is supported on the set (7) and its
Kloosterman transform is supported on the same set. Then ω = cΩn for a
suitable constant c.

Proof. Our assertion is trivial for n = 1. Thus we may assume n > 1 and
our assertion proved for n − 1. Fix a1 with |a1| = 1. Then the function

(a2, a3, . . . , an) �→ ω(a1, a2, . . . , an)

has for Kloosterman transform (in n − 1 variables) the function

(b1, b2, . . . , bn−1) �→ µn−1(a1, bn−1, bn−2, . . . , b1) .

It satisfies the assumption of the proposition for n − 1; thus

ω(a1, a2 . . . , an) = θ(a1)Ωn−1(a2, a2 . . . , an) ,

where θ is a function on O×
F . Since Ωn−1 is invariant under the Kloosterman

transform, we get

µn−1(a1, bn−1, bn−2, . . . , b1) = θ(a1)Ωn−1(b1, b2, . . . , bn−1) .

To determine the function θ we choose b1, b2, . . . , bn−1 such that

|b1| = |b2| = · · · = |bn−1| .
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We get then

µn−1(a1, bn−1, bn−2, . . . , b1) = θ(a1) .

On the other hand,

|bn−1bn−2 · · · b1| = 1 .

Considering the diagram
n

0
n−1

= 0

0

= 0
1

0

and using Lemma (2) we see that

µn−1(a1, bn−1, bn−2, . . . , b1)

does not depend on a1 with |a1| = 1. Thus θ has a constant value c. We have
found that

µn−1(a1, bn−1, bn−2, . . . , b1) = cΩn−1(b1, b2, . . . , bn−1)

for |a1| = 1 and all bi. Using the fact that Ωn−1 is invariant under Kn−1,ψ we
get

ω(a1, a2, . . . , an) = cΩn−1(a2, . . . , an)

for |a1| = 1. On the other hand, for |a1| = 1,

Ωn(a1, a2, . . . , an) = Ωn−1(a2, . . . , an) .

It follows that

ω − cΩn

vanishes for |a1| = 1. By Proposition 3 it vanishes identically and we are done.
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Selberg Trace Formula and Related Topics (Brunswick, Maine, 1984), Contemp. Math.
53 (1986), 39–49.
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