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On integral points on surfaces

By P. Corvaja and U. Zannier

Abstract

We study the integral points on surfaces by means of a new method, relying
on the Schmidt Subspace Theorem. This method was recently introduced in
[CZ] for the case of curves, leading to a new proof of Siegel’s celebrated theorem
that any affine algebraic curve defined over a number field has only finitely
many S-integral points, unless it has genus zero and not more than two points
at infinity. Here, under certain conditions involving the intersection matrix of
the divisors at infinity, we shall conclude that the integral points on a surface
all lie on a curve. We shall also give several examples and applications. One
of them concerns curves, with a study of the integral points defined over a
variable quadratic field; for instance we shall show that an affine curve with at
least five points at infinity has at most finitely many such integral points.

0. Introduction and statements

In the recent paper [CZ] a new method was introduced in connection with
the integral points on an algebraic curve; this led to a novel proof of Siegel’s
celebrated theorem, based on the Schmidt Subspace Theorem and entirely
avoiding any recourse to abelian varieties and their arithmetic. Apart from
this methodological point, we observed (see the Remark in [CZ]) that the
approach was sometimes capable of quantitative improvements on the classical
one, and we also alluded to the possibility of extensions to higher dimensional
varieties. The present paper represents precisely a first step in that direction,
with an analysis of the case of surfaces.

The arguments in [CZ] allowed to deal with the special case of Siegel’s
Theorem when the affine curve misses at least three points with respect to its
projective closure. But as is well-known, this already suffices to prove Siegel’s
theorem in full generality. That special case was treated by embedding the
curve in a space of large dimension and by constructing hyperplanes with high
order contact with the curve at some point at infinity; finally one exploited
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the diophantine approximation via Schmidt’s Theorem rather than via Roth’s
theorem, as in the usual approach. Correspondingly, here we shall work with
(nonsingular) affine surfaces missing at least four divisors; but now, unlike the
case of curves, we shall need additional assumptions on the divisors, expressed
in terms of their intersection matrix. These conditions appear naturally when
using the Riemann-Roch theorem to embed the surface in a suitable space and
to construct functions with zeros of large order along a prescribed divisor in
the set, allowing an application of the Subspace Theorem.

The result of this approach is the Main Theorem below. Its assumptions
appear somewhat technical, so we have preferred to start with its corollary
Theorem 1 below; this is sufficient for some applications, such as to Corollary 1,
which concerns the quadratic integral points on a curve. As a kind of “test” for
the Main Theorem, we shall see how it immediately implies Siegel’s theorem
on curves (Ex. 1.5). Still other applications of the method may be obtained
looking at varieties defined in Am by one equation f1 · · · fr = g, where fi, g

are polynomials and deg g is “small”. (A special case arises with “norm form
equations”, treated by Schmidt in full generality; see [S1].) However in general
the variety has singularities at infinity, so, even in the case of surfaces, the
Main Theorem cannot be applied directly to such equation; this is why we
postpone such analysis to a separate paper.

In the sequel we let X̃ denote a geometrically irreducible nonsingular
projective surface defined over a number field k. We also let S be a finite set
of places of k, including the archimedean ones, denoting as usual OS = {α ∈
k : |α|v ≤ 1 for all v �∈ S}.

We view the S-integral points in the classical way; namely, letting X be
an affine Zariski-open subset of X̃ (defined over k), embedded in Am, say, we
define an S-integral point P ∈ X(OS) as a point whose coordinates lie in OS .
For our purposes, this is equivalent with the more modern definitions given
e.g. in [Se1] or [V1].

Theorem 1. Let X̃ be a surface as above, and let X ⊂ X̃ be an affine
open subset. Assume that X̃ \ X = D1 ∪ · · · ∪ Dr, where the Di are distinct
irreducible divisors such that no three of them share a common point. Assume
also that there exist positive integers p1, . . . , pr, c, such that : either

(a) r ≥ 4 and pipj(Di.Dj) = c for all pairs i, j, or

(b) r ≥ 5 and D2
i = 0, pipj(Di.Dj) = c for i �= j.

Then there exists a curve on X containing all S-integral points in X(k).

For both assumptions (a) and (b), we shall see below relevant examples.
One may prove that condition (a) amounts to the piDi being numerically equiv-
alent. Below we shall note that some condition on the intersection numbers
(Di.Dj) is needed (see Ex. 1.1).
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An application of Theorem 1 concerns the points on a curve which are
integral and defined over a field of degree at most 2 over k; we insist that
here we do not view this field as being fixed, but varying with the point. This
situation (actually for fields of any given degree in place of 2) has been studied
in the context of rational points, via the former Mordell-Lang conjecture, now
proved by Faltings; see e.g. [HSi, pp. 439-443] for an account of some results
and several references. For instance, in the quadratic case it follows from
rather general results by D. Abramovitch and J. Harris (see [HSi, Thms. F121,
F125(i)]) that if a curve has infinitely many points rational over a quadratic
extension of k, then it admits a map of degree ≤ 2 either to P1 or to an elliptic
curve. Other results in this direction, for points of arbitrary degree, can be
deduced from Theorem 0.1 of [V2].

For integral points we may obtain without appealing to Mordell-Lang a
result in the same vein, which however seems not to derive directly from the
rational case, at least when the genus is ≤ 2. (In fact, in that case, Mordell-
Lang as applied in [HSi] gives no information at all.) This result will be proved
by applying Theorem 1 to the symmetric product of a curve with itself. We
state it as a corollary, where we use the terminology quadratic (over k) S-
integral point to mean a point defined over a quadratic extension of k, which
is integral at all places of Q except possibly those lying above S.

Corollary 1. Let C̃ be a geometrically irreducible projective curve and
let C = C̃ \ {A1, . . . , Ar} be an affine subset, where the Ai are distinct points
in C̃(k). Then

(i) If r ≥ 5, C contains only finitely many quadratic (over k) S-integral
points.

(ii) If r ≥ 4, there exists a finite set of rational maps ψ : C̃ → P1 of degree
2 such that all but finitely many of the quadratic S-integral points on C

are sent to P1(k) by some of the mentioned maps.

In the next section we shall see that the result is in a sense best-possible
(see Exs. 1.2 and 1.3), and we shall briefly discuss possible extensions. We
shall also state an “Addendum” which provides further information on the
maps in (ii).

As mentioned earlier, we have postponed the statement of our main result
(which implies Theorem 1), because of its somewhat involved formulation.
Here it is:

Main Theorem. Let X̃ be a surface as above, and let X ⊂ X̃ be an affine
open subset. Assume that X̃ \ X = D1 ∪ · · · ∪ Dr, r ≥ 2, where the Di are
distinct irreducible divisors with the following properties:

(i) No three of the Di share a common point.
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(ii) There exist positive integers p1, . . . , pr such that, putting D := p1D1 +
· · · + prDr, D is ample and the following holds. Defining ξi, for i =
1, . . . , r, as the minimal positive solution of the equation D2

i ξ
2−2(D.Di)ξ

+ D2 = 0 (ξi exists; see §2), we have the inequality
2D2ξi > (D.Di)ξ2

i + 3D2pi.

Then there exists a curve on X containing X(OS).

It may be seen that the condition that the Di are irreducible may be
replaced with the one that they have no common components. Also, when
three of them share a point, one may sometimes apply the result after a blow-
up. Finally, the proof shows that we may allow isolated singularities on the
affine surface X.

Our proofs, though not effective in the sense of leading to explicit equa-
tions for the relevant curve, allow in principle quantitative conclusions such as
an explicit estimation of the degree of the curve. Also, the bounds may be
obtained to be rather uniform with respect to the field k; one may use results
due to Schlickewei, Evertse (as for instance in the Remark in [CZ, p. 271]) or
more recent estimates by Evertse and Ferretti [EF]; this last paper uses the
quantitative Subspace Theorem due to Evertse and Schlickewei [ES] to obtain a
quantitative formulation of the main theorem by Faltings and Wüstholz [FW].
However here we shall not pursue in this direction.

1. Remarks and examples

In this section we collect several observations on the previous statements.
Concerning Theorem 1, we start by pointing out that some condition on the
intersection numbers (Di.Dj) is needed.

Example 1.1. Let X̃ = P1 × P1 and let D1, . . . , D4 be the divisors
{0} × P1, {∞} × P1, P1 × {0} and P1 × {∞} in some order. Then, defining
X := X̃ \ (∪4

i=1Di), we see that X is isomorphic to the product of the affine
line minus one point with itself. Therefore the integral points on X are (for
suitable k, S) Zariski dense on X. (On the contrary, Theorem 1 easily implies
that the integral points on P2 minus four divisors in general position are not
Zariski dense, a well-known fact.)

Theorem 1 intersects results due to Vojta; see e.g. [V1, Thms. 2.4.1, 2.4.6]
and [V2, Thm. 2.4.1] which state that the integral points on a smooth variety
X̃ \ D are not Zariski dense, provided D is the sum of at least dim(X) + 2
pairwise linearly equivalent components. He obtained such a result by an
application of the S-unit equation theorem by Evertse and Schlickewei-van der
Poorten. The second paper of Vojta uses very deep methods, related in part
to Faltings’ paper [F1], to study integral points on subvarieties of semiabelian
varieties. In the quoted corollary, this paper in particular improves on the
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results in [V1] . By embedding our surface in a semiabelian variety one may
then deduce the first half of Theorem 1. However, even this second paper by
Vojta seems not to lead directly to the Main Theorem or to the general case of
Theorem 1. We wish also to quote the paper [NW], which again applies Vojta’s
results by giving criteria for certain varieties to be embedded in semiabelian
varieties.

For an application of Theorem 1 (a) see Corollary 1; for Theorem 1 (b),
note that it applies in particular to “generic” surfaces in affine 5-space A5: we
start with a surface X ⊂ A5 defined by three equations fi(x1, . . . , x5) = 0,
where for i = 1, 2, 3, fi are polynomials of degree d in each variable. By embed-
ding A5 in the compactification (P1)5, one obtains a complete surface X̃, which
we suppose to be smooth, with five divisors at infinity D1, . . . , D5, namely the
inverse images of the points at infinity on P1 under the five natural projections.
These divisors in general satisfy assumption (b); the self-intersections vanish
because they are fibers of morphisms to P1 and, for i �= j, (Di.Dj) will be (for
a general choice of the fi) equal to (3d)3.

The conditions on the number of divisors Di and on the (Di.Dj) which
appear in the Main Theorem (and in Theorem 1) come naturally from our
method. One may ask how these assumptions fit with celebrated conjectures
on integral points (see [HSi], [Ch.], [F]). We do not have any definite view here;
we just recall Lang’s point of view, expressed in [L, pp. 225–226]; namely, on
the one hand Lang’s Conjecture 5.1, [L, p. 225], predicts at most finitely many
integral points on hyperbolic varieties; on the other hand, it is “a general idea”
that taking out a sufficiently large number of divisors (or a divisor of large
degree) from a projective variety produces a hyperbolic space. Lang interprets
in this way also the results by Vojta alluded to above.

Our method does not work at all by removing a single divisor. To our
knowledge, only a few instances of this situation appear in the literature; we
may mention Faltings’ theorem on integral points on affine subsets of abelian
varieties [F1, Cor. to Thm. 2] and also a recent paper by Faltings [F2]; this deals
with certain affine subsets of P2 obtained by removing a single divisor. For
the analysis of integral points, one goes first to an unramified cover where the
pull-back of the removed divisor splits into several components. This idea of
working on an unramified cover, with the purpose of increasing the components
at infinity, sometimes applies also in our context (see for this also Ex. 1.4
below).

We now turn to Corollary 1, noting that in some sense its conclusions are
best-possible.

Example 1.2. Let a rational map ψ : C̃ → P1 of degree 2 be given. We
construct an affine subset C ⊂ C̃ with four missing points and infinitely many
quadratic integral points. Let B1, B2 be distinct points in P1(k) and de-
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fine Y := P1 \ {B1, B2}. Lifting B1, B2 by ψ gives in general four points
A1, . . . , A4 ∈ C̃. Define then C = C̃ \ {A1, . . . , A4}. Then ψ can be seen as
a finite morphism from C to Y . Lifting (the possibly) infinitely many inte-
gral points in Y (OS) by ψ produces then infinitely many quadratic S′-integer
points on C (for a suitable finite set S′ ⊃ S).

Concrete examples are obtained e.g. with the classical space curves given
by two simultaneous Pell equations, such as e.g. t2 − 2v2 = 1, u2 − 3v2 = 1.
We now have an affine subset of an elliptic curve, with four points at infinity.
We can obtain infinitely many quadratic integral points by solving in Z e.g.
the first Pell equation, and then defining u =

√
3v2 + 1; or we may solve the

second equation and then put t =
√

2v2 + 1; or we may also solve 3t2−2u2 = 1

and then let v =
√

t2−1
2 . (This is the construction of Example 1.2 for the three

natural projections.)
It is actually possible to show through Corollary 1 that all but finitely

many quadratic integral points arise in this way.1 We in fact have an additional
property for the relevant maps in conclusion (ii), namely:

Addendum to Corollary 1. Assume that ψ is a quadratic map as in
(ii) and that it sends to P1(k) an infinity of the integral points in question.
Then the set ψ({A1, . . . , A4}) has two points. In particular, we have a linear -
equivalence relation

∑4
i=1 εi(Ai) ∼ 0 on Div(C̃), where the εi ∈ {±1} have

zero sum.

When such a ψ exists, the two relevant values of it can be sent to two
prescribed points in P1(k) by means of an automorphism of P1; in practice,
the choice of the maps ψ then reduces to splitting the four points at infinity in
two pairs having equal sum in the Jacobian of C̃; this can be done in at most
three ways, as in the example with the Pell equations. The simple proof for
the Addendum will be given after the one for the corollary. This conclusion
of course allows one to compute the relevant maps and to parametrize all but
finitely many quadratic integral points on an affine curve with four points at
infinity.

Concerning again Corollary 1 (ii), we now observe that “r ≥ 4” cannot be
substituted with r ≥ 3.

Example 1.3. Let C = P1 \ {−1, 0,∞}, realized with the plane equation
X(X + 1)Y = 1. Let r, s run through the S-units in k and define a = s−r−1

2 ,

1On the contrary, the quadratic rational points cannot be likewise described; we can obtain
them as inverse images from P1(k) under any map of degree 2 defined over k, and it is easy
to see that in general no finite set of such maps is sufficient to obtain almost all the points
in question.
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∆ = a2 − r. Then the points given by x = a +
√

∆, y = x′(x′+1)
rs , where

x′ = a −
√

∆, are quadratic S-integral on C. It is possible to show that they
cannot all be mapped to k by one at least of a finite number of quadratic maps.

It is also possible to show that for the affine elliptic curve E : Y 2 = X3−2,
the quadratic integral points (over Z) cannot be all described like in (ii) of
Corollary 1.

Note that E has only one point at infinity. Probably similar examples
cannot be constructed with more points at infinity; namely, (ii) is unlikely to
be best possible also for curves of genus g ≥ 1, in the sense that the condition
r ≥ 4 may be then probably relaxed. In fact, a conjecture of Lang and Vojta
(see [HSi, Conj. F.5.3.6, p. 486]) predicts that if X = X̃ \ D is an affine
variety with KX + D almost ample (i.e. “big”) and D with normal crossings,
the integral points all lie on a proper subvariety. Now, in the proof of our
corollary we work with X̃ equal to C̃(2), the two-fold symmetric power of C̃,
and with D equal to the image in C̃(2) of

∑r
i=1 Ai×C̃. It is then easily checked

that KX + D is (almost) ample precisely when g = 0 and r ≥ 4, or g = 1 and
r ≥ 2 or g ≥ 2 and r ≥ 1. In other words, the Lang-Vojta conjecture essentially
predicts that counterexamples sharper than those given here may not be found.

To prove this, one might try to proceed like in the deduction of Siegel’s
theorem from the special case of three points at infinity. Namely, one may then
use unramified covers, as in [CZ], with the purpose of increasing the number of
points at infinity. (One also uses [V1, Thm. 1.4.11], essentially the Chevalley-
Weil Theorem, to show that lifting the integral points does not produce infinite
degree extensions.) This idea, applied by means of a new construction, has
been recently used also by Faltings [F2] to deal with the integral points on
certain affine subsets of P2.

In the case of the present Corollary 1 a similar strategy does not help. In
fact, the structure of the fundamental group of C̃(2)2 prevents the number of
components of a divisor to increase by pull-back on a cover. However there
exist nontrivial instances beyond the case of curves, and showing one of them
is our purpose in including this further result, namely:

Example 1.4. Let A be an abelian variety of dimension 2, let π : A → A

be an isogeny of degree ≥ 4 and let E be an ample irreducible divisor on A.
We suppose that for σ ∈ ker π no three of the divisors E + σ intersect. Then
there are at most finitely many S-integral points in (A \ π(E))(k).

We remark that this is an extremely special case of a former conjecture
by Lang, proved by Faltings [F1, Cor. to Thm. 2]: every affine subset of an
abelian variety has at most finitely many integral points.

2Angelo Vistoli has pointed out to us that it is the abelianization of π1(C̃).
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We just sketch a proof. Note now that π(E) is an irreducible divisor, so
Theorem 1 cannot be applied directly. Consider D := π∗(π(E)); since π has
degree ≥ 4, we see that D is the sum of r := deg π ≥ 4 irreducible divisors
satisfying the assumptions for Theorem 1, with pi = 1 for i = 1, . . . , r.

Let now Σ be an infinite set of S-integral points in Y (k), where Y =
A \ π(E). By [V, Thm. 1.4.11], π−1(Σ) is a set of S′-integral points on X(k′),
where X = A \ D, for some number field k′ and some finite set S′ of places
of k′. By Theorem 1 applied to X we easily deduce the conclusion, since there
are no curves of genus zero on an abelian variety ([HSi, Ex. A74(b)]).

We conclude this section by showing how the Main Theorem leads directly
to Siegel’s theorem for the case of at least three points at infinity. (As remarked
above, one recovers the full result by taking, when genus(C) > 0, an unramified
cover of degree ≥ 3 and applying the special case and [V, Thm. 1.4.11].)

Example 1.5. We prove: Let C̃ be a projective curve and C = C̃ \
{A1, . . . , As}, s ≥ 3 an affine subset. Then there are at most finitely many
S-integral points on C. This special case of Siegel’s Theorem appears as Theo-
rem 1 in [CZ]. We now show how this follows at once from the Main Theorem.
First, it is standard that one can reduce to nonsingular curves. We then let
X̃ = C̃ × C̃ and X = C ×C. Then X̃ \X is the union of 2s divisors Di of the
form Ai × C̃ or C̃ ×Ai, which will be referred to as of the first or second type
respectively. Plainly, the intersection product (Di.Dj) will be 0 or 1 according
as Di, Dj are of equal or different types. We put in the Main Theorem r = 2s,
p1 = · · · = pr = 1. All the hypotheses are verified except possibly (ii). To
verify (ii), note that (Di.Di) = 0, (D.Di) = s, D2 = 2s2. Therefore ξi = s and
we have to prove that 4s3 > s3 + 6s2 which is true precisely when s > 2.

We conclude that the S-integral points on C × C are not Zariski dense,
whence the assertion.

2. Tools from intersection theory on surfaces

We shall now recall a few simple facts from the theory of surfaces, useful
for the proof of Main Theorem. These include a version of the Riemann-Roch
theorem and involve intersection products. (See e.g. [H, Ch. V] for the basic
theory.)

Let X̃ be a projective smooth algebraic surface defined over the complex
number field C. We will follow the notation of [B] (especially Chapter 1),
which is rather standard. For a divisor D on X̃ and an integer i = 0, 1, 2,
we denote by hi(D) the dimension of the vector space Hi(X̃,O(D)). We shall
make essential use of the following asymptotic version of the Riemann-Roch
theorem:
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Lemma 2.1. Let D be an ample divisor on X̃. Then for positive integers
N we have

h0(ND) =
N2D2

2
+ O(N).

Proof. The classical Riemann-Roch theorem (see e.g. Théorème I.12 of
[B] and the following Remarque I.13) gives

h0(ND) =
1
2
(ND)2 − 1

2
(ND.K) + χ(OX) + h1(ND) − h0(K − ND),

where K is a canonical divisor of X̃. The first term is precisely N2D2/2.
Concerning the other terms, observe that: h1(ND) and h0(K − ND) vanish
for large N ; χ(OX) is constant; the intersection product (ND.K) is linear
in N . The result then follows.

We will need an estimate for the dimension of the linear space of sections of
H0(X,O(ND)) which have a zero of given order on a fixed (effective) curve C.
We begin with a lemma.

Lemma 2.2. Let D be a divisor, C a curve on X̃; then

h0(D) − h0(D − C) ≤ max{0, 1 + (D.C)}.

Proof. In proving the inequality we may replace D with any divisor linearly
equivalent to it. In particular, we may assume that |D| does not contain any
possible singularity of C.

Let us then recall that for every sheaf L the exact sequence

0 → L(−C) → L → L|C → 0

gives an exact sequence in cohomology

0 → H0(X̃,L(−C)) → H0(X̃,L) → H0(C,L|C) → . . .

from which we get

dim(H0(X̃,L)/H0(X̃,L(−C))) ≤ dim H0(C,L|C).

Applying this inequality with L = O(D) we get

h0(D) − h0(D − C) ≤ dim H0(C,O(D)|C).

The sheaf O(D)|C is an invertible sheaf of degree (D.C) on the complete
curve C. (See [B, Lemme 1.6], where C is assumed to be smooth; this makes
no difference because of our opening assumption on |D|.) We can then bound
the right term by max{0, 1 + (D.C)} as wanted.
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Lemma 2.3. Let D be an ample effective divisor on X̃, C be an irre-
ducible component of D. For positive integers N and j we have that either
H0(X̃,O(ND − jC)) = {0} or

0 ≤ h0(ND − jC) − h0(ND − (j + 1)C) ≤ N(D.C) − jC2 + 1.

Proof. Suppose first that (ND − jC.C) ≥ 0. Then Lemma 2.2 applied
with ND − jC instead of D gives what we want. If otherwise ND − jC

has negative intersection with the effective curve C then O(ND − jC) has
no regular sections. In fact, assume the contrary. Then there would exist an
effective divisor E linearly equivalent to ND − jC, whence E.C = (ND −
jC.C) < 0. But E.C must be ≥ 0. In fact, since E is effective we may write
E = E1 + rC, where E1 is effective and does not contain C and where r ≥ 0.
Thus E.C = E1.C + rC2. Now E.C > 0 follows at once, for since E1 is
effective we have E1.C ≥ 0, while since (ND − jC).C < 0 we have C2 > 0.
This contradiction concludes the proof.

Lemma 2.4. Let D be an ample divisor, C be an effective curve. Then

D2C2 ≤ (D.C)2.

Proof. This is in fact well-known (see e.g. [H, Ch. V, Ex. 1.9]). We give
however a short proof for completeness. The inequality is nontrivial only in
the case C2 > 0. Assume this holds. Then if we had D2C2 > (D.C)2, the
intersection form on the rank two group generated by D and C in Pic(X̃)
would be positive definite, which contradicts the Hodge index theorem [H,
Ch. V, Thm. 1.9].

When the variety X̃ and the relevant divisors are defined over a number
field k, one may choose bases in k(X) for the relevant vector spaces H0. This
is a well-known fact which we shall tacitly use in the sequel.

3. Proofs

We shall begin with the proof of the Main Theorem, actually anticipating
a few words on the strategy. Then we shall deduce Theorem 1 from the Main
Theorem. In turn, Theorem 1 shall be employed for the proof of Corollary 1.

Proof of the Main Theorem. We begin with a brief sketch of our strategy,
assuming for simplicity that S consists of just one (archimedean) absolute
value. In the case treated in [CZ], of an affine curve C with missing points
A1, . . . , Ar, r ≥ 3, we first embed C in a high dimensional space by means
of a basis for the space V of regular functions on C with at most poles of
order N at the given points. Then, going to an infinite subsequence {Pi} of
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the integral points on C, we may assume that Pi → A, where A is some Ai.
Linear algebra now gives functions in V vanishing at A with orders ≥ −N ,
≥ −N +1, . . . ,≥ −N +d, where d = dimV . Such functions may be viewed as
linear forms in the previous basis and these vanishings imply that the product
of these functions evaluated at the Pi is small. Then the Subspace Theorem
(recalled below) applies.

The principles are similar in the present case of surfaces, the role of the
points Ai being now played by the divisors Di. However one has to deal
with several new technical difficulties. For instance, the construction of the
functions with large order zeros is no longer automatic and the quantification
now involves intersection indices. Moreover, additional complications appear
when the integral points converge simultaneously to two divisors in the set, i.e.
to some intersection point (this is “Case C” of the proof below).

Now we go on with the details. We shall assume throughout that each of
the divisors Di is defined over k. Also, we assume that each valuation | · |v is

normalized so that if v|p, then |p|v = p
− [kv :Qp]

[k:Q] , where kv is the completion of

k at v, and similarly for archimedean v; namely, we require that |2|v = 2
[kv :R]
[k:Q] .

As usual, for a point (x1 : . . . : xd) ∈ Pd−1(k), (d ≥ 2), we define the projective
height as H(x1 : . . . : xd) =

∏
v max(|x1|v, . . . , |xd|v).

The theorem will follow if we prove that for every infinite sequence of
integral points on X, there exists a curve defined over k containing an infinite
subsequence. In fact, arrange all the curves on X defined over k in a sequence
C1, C2, .... Now, if the conclusion of the theorem is not true, we may find for
each n an integral point Pn on X outside C1∪C2∪· · ·∪Cn. But then no given
curve Cm can contain infinitely many of the points Pi.

Let then {Pi}i∈N be an infinite sequence of pairwise distinct integral points
on X. By the observation just made, we may restrict our attention to any infi-
nite subsequence, and thus we may assume in particular that for each valuation
v ∈ S the Pi converge v-adically to a point P v ∈ X̃(kv).

We recall that Di, i = 1, . . . , r, are certain irreducible divisors on X̃,
and that we put D =

∑r
i=1 piDi, where pi are positive integers (satisfying the

hypotheses of the theorem; in particular D is ample).
Fix a valuation v ∈ S. We shall argue in different ways, according to the

following three possibilities for P v.

Case A: P v does not belong to the support |D| of D.

Case B : P v lies in exactly one of the irreducible components of |D|, which
we call Dv.

Case C : P v lies in exactly two of the Di’s, which we call Dv, Dv
∗ .

Note that our assumption that no three of the Di’s share a common point
implies that no other cases may occur.
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We fix an integer N , sufficiently large to justify the subsequent arguments.
We then consider the following vector space V = VN :

VN = {ϕ ∈ k(X) : div(ϕ) + ND ≥ 0}.
Recall that we are assuming that each Di is defined over k, and in particular we
may apply the results of the previous section. Since X is nonsingular, whence
normal, each function in V is regular on X (by [H, Chap. II, Prop. 6.3A]).
Equivalently, V ⊂ k[X], i.e. every function in V is a polynomial in the affine
coordinates. Let then ϕ1, . . . , ϕd be a basis for V over k. (For large enough N ,
we may assume d ≥ 2.) By the above observation, ϕj ∈ k[X], so on multiplying
all the ϕj by a suitable positive integer, we may assume that all the values
ϕj(Pi) lie in OS .

For v ∈ S, we shall construct suitable k-linear forms L1v, . . . , Ldv in
ϕ1, . . . , ϕd, linearly independent. Our aim is to ensure that the product∏d

j=1 |Ljv(Pi)|v is sufficiently small with respect to the “local height” of the
point (ϕ1(Pi), . . . , ϕd(Pi)).

More precisely, our first aim will be to show that, for a positive number
µv and for all the points in a suitable infinite subsequence of {Pi}, we have

(3.1)
d∏

j=1

|Ljv(Pi)|v �
(

max
j

(|ϕj(Pi)|v)
)−µv

,

where the implied constant does not depend on i.
During this construction, where v is supposed to be fixed, we shall some-

times omit the reference to it, in order to ease the notation.
In Case A, we simply choose Ljv = ϕj . Since now all the functions ϕj are

regular at P v, they are bounded on the whole sequence Pi. Therefore
d∏

j=1

|Ljv(Pi)|v �
(

max
j

(|ϕj(Pi)|v)
)−1

,

where the implied constant does not depend on i, and so (3.1) holds with
µv = 1. (Note that since the constant function 1 lies in V , not all the ϕj can
vanish at Pi.)

We now consider Case B, namely the sequence {Pi} converges v-adically
to a point P v lying in Dv but in no other of the divisors Dj . Since X̃ is
nonsingular, we may choose, once and for all, a local equation tv = 0 at P v for
the divisor Dv, where tv is a suitable rational function on X.

We define a filtration of V = VN by putting

(3.2) Wj := {ϕ ∈ V | ordDv(ϕ) ≥ j − 1 − Npv}, j = 1, 2, . . . .

Here we put pv = pi, if Dv is the divisor Di. Observe that in fact we have a
filtration, since V = W1 ⊃ W2 ⊃ . . . , where eventually Wj = {0}. Starting
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then from the last nonzero Wj , we pick a basis of it and complete it successively
to bases of the previous spaces of the filtration. In this way we shall eventually
find a basis {ψ1, . . . , ψd} of V containing a basis of each given Wj .

In particular, this basis contains exactly dim(Wj/Wj+1) elements in the
set Wj \Wj+1; the order at Dv of every such element is precisely j − 1−Npv.
Hence

(3.3)
d∑

j=1

ordDv(ψj) =
∑
j≥1

(j − 1 − Npv) dim(Wj/Wj+1).

Our next task is to obtain a lower bound for the right-hand side. To do this it
will be convenient to state separately a little combinatorial lemma.

Lemma 3.1. Let d, U1, . . . , Uh ≥ 0 and let R be an integer ≤ h such
that

∑R
j=1 Uj ≤ d. Suppose further that the real numbers x1, . . . , xh satisfy

0 ≤ xj ≤ Uj and
∑h

j=1 xj = d. Then
∑h

j=1 jxj ≥
∑R

j=1 jUj.

Proof. We have

R∑
j=1

jUj +
h∑

j=1

(R + 1 − j)xj ≤
R∑

j=1

jUj +
R∑

j=1

(R + 1 − j)xj

≤
R∑

j=1

jUj +
R∑

j=1

(R + 1 − j)Uj = (R + 1)
R∑

j=1

Uj .

But
∑h

j=1(R + 1 − j)xj = (R + 1)d −
∑h

j=1 jxj , whence

h∑
j=1

jxj ≥
R∑

j=1

jUj + (R + 1)(d −
R∑

j=1

Uj)

and the result follows since d −
∑R

j=1 Uj ≥ 0.

We shall apply the lemma, taking xj := dim(Wj/Wj+1) and defining h to
be the number of nonzero Wj . Observe that

∑h
j=1 xj = dimV = d, consistently

with our previous notation. Recall from the previous section (Lemma 2.1) that,
for D as in the statement of the theorem,

(3.4) d =
N2D2

2
+ O(N),

where the implied constant depends only on the surface X̃ and on the divisor D.
Further, let us define Uj = 1 + N(D.Dv) − jDv2 for j = 1, . . . , h. Note

that, by Lemma 2.3, 0 ≤ xj ≤ Uj for j = 1, . . . , h.
Let ξ denote the minimal positive solution of the equation

Dv2ξ2 − 2(D.Dv)ξ + D2 = 0,
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so ξ = ξi if Dv = Di. Note that by Lemma 2.4 the solutions of this equation
are real, and they cannot all be ≤ 0 because both D2 and D.Dv are positive
(which follows from our assumption that D is ample). We also deduce that

(D.Dv) ≥ ξDv2.

In fact, this is clear if Dv2 ≤ 0. Otherwise both roots must be positive, with
sum 2 (D.Dv)

Dv2 ; and the assertion again follows since ξ is the minimal root.
We now choose λ to be positive, < ξ and such that

(3.5)
λ2(D.Dv)

2
− λ3Dv2

3
− D2pv

2
> 0.

This will be possible by continuity, in view of the assumption (ii) of the
theorem, applied with ξi = ξ. In fact, by assumption we have 2D2ξ >

(D.Dv)ξ2 + 3D2pv.
Now, using the equation for ξ we see that

2D2ξ − (D.Dv)ξ2 = 3(D.Dv)ξ2 − 2Dv2ξ3.

Therefore the previous inequality yields 3(D.Dv)ξ2−2Dv2ξ3−3D2pv > 0. So
(3.5) will be true for all λ sufficiently near to ξ.

Also, since λ < ξ we have, by definition of ξ,

(3.6) (D.Dv)λ − Dv2λ2

2
<

D2

2
.

We shall apply Lemma 3.1, defining R = [λN ]. We first verify that∑R
j=1 Uj ≤ d for large enough N . In fact, we have

R∑
j=1

Uj = RN(D.Dv) − R2Dv2

2
+ O(R + N)

≤N2

(
(D.Dv)λ − Dv2λ2

2

)
+ O(N)

and the conclusion follows from (3.4), since by (3.6) the number between paren-
theses is < D2/2.

Observe that, since 0 ≤ (D.Dv) − ξDv2 ≤ (D.Dv) − λDv2 if Dv2 ≥ 0, we
have Uj > 0 for j ≤ R, provided N is large enough. Thus, if we had R > h,
the sum

∑R
j=1 Uj would be strictly larger than

∑h
j=1 xj = d, a contradiction

which proves that R ≤ h.
We may thus apply Lemma 3.1, which yields

h∑
j=1

jxj ≥
R∑

j=1

jUj =
R∑

j=1

j(1 + N(D.Dv) − jDv2).
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The right side is N3
(

λ2(D.Dv)
2 − λ3Dv2

3 + O(1/N)
)
, so we obtain from

∑
xj = d,

N−3
h∑

j=1

(j − 1 − Npv)xj ≥N−3

 h∑
j=1

jxj − (Npv + 1)d


≥ λ2(D.Dv)

2
− λ3Dv2

3
− D2pv

2
+ O(1/N).

By (3.5) the right side will be positive for large N ; together with (3.3) this
proves that, if N has been chosen sufficiently large,

(3.7)
d∑

j=1

ordDv(ψj) > 0.

Now, the functions ψj may be expressed as linear forms in the ϕ�. We
then put Ljv = ψj . We have

Ljv = tordDv (ψj)
v ρjv,

where ρjv are rational functions on X̃, regular at P v. In particular, the values
ρjv(Pi) are defined for large i and are v-adically bounded as Pi varies. Hence

d∏
j=1

|Ljv(Pi)|v � |tv(Pi)|
∑d

j=1 ordDv (ψj)
v .

By a similar argument, we have

max
j

|ϕj(Pi)|v � |tv(Pi)|−Npv
v .

Both displayed formulas make sense for all but a finite number of the points
Pi, which we tacitly exclude. Then, the implied constants do not depend on i.

From these inequalities we finally obtain
d∏

j=1

|Ljv(Pi)|v �
(

max
j

|ϕj(Pi)|v
)−µv

,

for some positive µv independent of i; therefore we have shown (3.1) in this
case. This concludes our discussion of Case B.

We finally treat Case C, namely the sequence {Pi} converges v-adically
to a point P v ∈ Dv ∩ Dv

∗ , where Dv, Dv
∗ are two distinct divisors in the set

{D1, . . . , Dr}. Similarly to the above, we denote by pv, pv
∗ the corresponding

coefficients in D.
By assumption, P v cannot belong to a third divisor in our set; let us

choose two local equations tv = 0 and t∗v = 0 for Dv, Dv
∗ respectively. Here

tv, t
∗
v are regular functions, vanishing at P v; also, since Dv, D

∗
v are distinct and

irreducible, tv and t∗v are coprime in the local ring of X̃ at P v.
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We shall now consider two filtrations on the vector space V = VN , namely
we put

Wj := {ϕ ∈ V |ordDv(ϕ) ≥ j − 1 − Npv},
W ∗

j := {ϕ ∈ V |ordDv
∗ (ϕ) ≥ j − 1 − Npv

∗}.

The following lemma from linear algebra will be used to construct a suitable
basis for V .

Lemma 3.2. Let V be vector space of finite dimension d over a field k.
Let V = W1 ⊃ W2 ⊃ · · · ⊃ Wh, V = W ∗

1 ⊃ W ∗
2 ⊃ · · · ⊃ Wh∗ be two filtrations

on V . There exists a basis ψ1, . . . , ψd of V which contains a basis of each Wj

and each W ∗
j .

Proof. We argue by induction on d, the case d = 1 being clear. Then we
can certainly suppose (by refining the first filtration) that W2 is a hyperplane
in V . Put W ′

i := W ∗
i ∩ W2. By the inductive hypothesis there exists a basis

ψ1, . . . , ψd−1 of W2 containing basis of both W3, . . . , Wh and W ′
1, . . . , W ′

h∗ . If
all the W ∗

i for i = 2, . . . , h∗ are contained in W2, then W ′
i = W ∗

i for all i > 1;
in this case we just complete {ψ1, . . . , ψd−1} to any basis of V and we are done.
Otherwise, let l be the maximum index with W ∗

l �⊂ W2; in this case let ψd be
any element in W ∗

l \ W2. We claim that {ψ1, . . . , ψd} is a basis of V with the
required property. Plainly it contains a basis of every W1, . . . , Wh. Let i be an
index in {1, . . . , h∗}; we shall prove that the set {ψ1, . . . , ψd} contains a basis
of W ∗

i . This is true by construction if i > l, because in this case W ∗
i = W ′

i ; if
i ≤ l, then the set {ψ1, . . . , ψd} contains the element ψd ∈ W ∗

l ⊂ W ∗
i and it

contains a basis for W ′
i , which is a hyperplane in W ∗

i ; hence it contains a basis
of W ∗

i .
Now, let ψ1, . . . , ψd be a basis as in Lemma 3.2. Again, we define the

linear forms Ljv in the ϕ� to satisfy Ljv = ψj . In analogy with Case B, we
may write

Ljv = tordDv ψj
v t∗v

ordDv∗ψjρjv

where the ρjv ∈ k(X) are regular at P v; so, as before, their values at the Pi

are defined for large i and v-adically bounded as i → ∞. Here we have used
the fact that P v is a smooth point, so the corresponding local ring is a unique
factorization domain; in particular if a regular function is divisible both by
a power of tv and a power of t∗v (which are coprime), it is divisible by their
product.

Then we have
d∏

j=1

|Ljv(Pi)|v � |tv(Pi)|
(
∑d

j=1 ordDv ψj)+(
∑d

j=1 ordDv∗ψj)
v

where the implied constant does not depend on i.
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Again, from the assumption (ii) applied to Dv and Dv
∗ , the same argu-

ment as in Case B gives the analogue of (3.7), both for
∑d

j=1 ordDvψj and for∑d
j=1 ordDv

∗ψj . Hence, as before, we deduce (3.1).
In conclusion, we have proved that (3.1) holds for all v ∈ S, for suitable

choices of µv > 0. Also, the constant function equal to 1 lies in V , so is a linear
combination of the ϕj , so max |ϕj(Pi)|v � 1. Thus, letting µ := minv∈S µv > 0,
we may write

d∏
j=1

|Ljv(Pi)|v �
(

max
j

|ϕj(Pi)|v
)−µ

, v ∈ S.

Our theorem will now follow by a straightforward application of the Sub-
space Theorem. We recall for the reader’s convenience the version we are going
to apply, equivalent to the statement in [S2, Thm. 1D′, p. 178].

Subspace Theorem. For an integer d ≥ 2 and v ∈ S, let L1v, . . . , Ldv

be linearly independent linear forms in X1, . . . , Xd with coefficients in k, and
let ε > 0. Then the solutions (x1, . . . , xd) ∈ Od

S of the inequality

∏
v∈S

d∏
j=1

|Ljv(x1, . . . , xd)|v ≤ H−ε(x1 : . . . : xd)

lie in the union of finitely many proper linear subspaces of kd.

We apply this theorem by putting (x1, . . . , xd) = (ϕ1(Pi), . . . , ϕd(Pi)).
We may assume that H(x1 : . . . : xd) tends to infinity as i → ∞, for otherwise
the projective points (x1 : . . . : xd) would all lie in a finite set, whence the
nonconstant function ϕ1/ϕ2 would be constant, equal say to c, on an infinite
subsequence of the Pi. In this case the theorem follows, since infinitely many
points would then lie on the curve defined on X by ϕ1 − cϕ2 = 0.

But then for large i the points (x1, . . . , xd) satisfy the inequality in the
statement of the Subspace Theorem, by taking for example ε = µ/2. We may
then conclude that some nontrivial linear relation c1ϕ1(Pi)+· · ·+cdϕd(Pi) = 0,
with fixed coefficients c1, . . . , cd, holds on an infinite subsequence of the Pi.
Again, the theorem follows since the ϕj are linearly independent.

Proof of Theorem 1. We first assume part (a) and let p1, . . . , pr, c as
in the statement; namely pipj(Di.Dj) = c for 1 ≤ i, j ≤ r. We have only to
check that the assumptions (i), (ii) for the Main Theorem are verified with this
choice for the pi.

Assumption (i) actually appears also in the present theorem. To verify
(ii) note first that p1D1 + · · · + prDr is automatically ample (e.g. by Nakai-
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Moishezon). Also

(D.Di) =
cr

pi
, D2 = r2c, D2

i =
c

p2
i

,

and it follows that ξi = rpi. Hence inequality (ii) amounts to 2r3cpi > r3cpi +
3r2cpi which is equivalent to r ≥ 4. This concludes the proof of the first half.
We now assume (b) arguing similarly. One finds ξi = rpi/2, and inequality (ii)
in the Main Theorem amounts to r > 4.

Proof of Corollary 1. We start with a few reductions. First, by Siegel’s
theorem we may assume that, given a number field k′, only finitely many of
the points in question are defined over k′. Next, note that we may plainly
enlarge S without affecting the conclusion and we now prove that also k may
be enlarged. It is obvious that Conclusion (i) remains unaffected if k is replaced
by a finite extension k′. We show below that it suffices to show the following
instead of (ii): Let r ≥ 4. Let T denote the set of points on C which are
quadratic over k and integral over the ring of S-integers of k. Then there are
a finite extension k′ of k, a finite number of rational maps ψ1, . . . , ψt ∈ k′(C)
of degree 2 and a finite subset T ′ of T such that for every P ∈ T \ T ′ there is
a map ψi ∈ {ψ1, . . . , ψt} with ψi(P ) ∈ P1(k′).

We assume this last statement and deduce Conclusion (ii) of Corollary 1
from it. Let ψ be one of the maps ψ1, . . . , ψt. We may assume that there is an
infinite subset Σ of T which is sent by ψ to P1(k′). Note that the coordinate
functions Xi in k[C], i = 1, . . . , m, satisfy by assumption quadratic equations
X2

i +aiXi + bi = 0, where ai, bi are rational functions of ψ; by enlarging k′, we
may then assume that ai, bi ∈ k′(ψ). By adding new coordinates expressed as
linear combinations of the original ones, if necessary, the equations show that
k′(C) has degree ≤ 2 over k′(a1, b1, . . . , am, bm). This last field is contained in
k′(ψ), and [k′(C) : k′(ψ)] = 2 by assumption; so k′(ψ) = k′(a1, b1, . . . , am, bm).

By the opening remark only finitely many of the points in Σ can be defined
over k′; in the sequel we tacitly disregard these points. By taking suitable
linear combinations (over k) of the coordinates, we may then assume that for
all points P ∈ Σ and all i = 1, . . . , m, Xi(P ) �∈ k′. Evaluating the equations
at P ∈ Σ we obtain Xi(P )2 + ai(P )Xi(P ) + bi(P ) = 0. Note that both
ai(P ), bi(P ) lie in k′, since we are assuming that ψ sends Σ to P1(k′). The
same equations hold by replacing Xi(P ) with its conjugate over k: in fact
we are assuming that Xi(P ) are quadratic over k, but do not lie in k′, and
this implies that Xi(P ) are of exact degree 2 over k′. But then we see that
ai(P ), bi(P ) actually lie in k. Consider the field L = k(a1, b1, . . . , am, bm).
Since L ⊂ k′(ψ), we see that L is the function field of a curve over k, possibly
reducible over k′. This curve however has the infinitely many k-rational points
obtained by evaluating the ai, bi at P , for P ∈ Σ. Therefore the given curve is
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absolutely irreducible and of genus zero (the latter in view of Siegel’s theorem)
and now the existence of k-rational points gives L = k(ϕ) for a certain function
ϕ ∈ k′(ψ). Since ai(P ), bi(P ) ∈ k, we have ϕ(P ) ∈ k for P ∈ Σ. Now,
C is absolutely irreducible, so k is algebraically closed in k(C). Therefore
[k(C) : k(ϕ)] = [k′(C) : k′(ϕ)] = 2, since k′(ϕ) = k′(ψ). Therefore the function
ϕ may be used instead of ψ to send the points in Σ to P1(k) (rather than
P1(k′)).

We continue by observing that the integral points on C lift to integral
points of a normalization, at the cost of enlarging k and S. Therefore, in view
of what has just been shown, we may assume that C̃ is nonsingular.

We shall then apply Theorem 1 to the surface X̃ = C̃(2) defined as the
symmetric product of C̃ with itself. (We recall from [Se2, III.14] that X̃ is in
fact smooth.) Then we have a projection map π : C̃ × C̃ → X̃ of degree 2.

We let Di, i = 1, . . . , r, be the image in X̃ under π of the divisor Ai× C̃ ⊂
C̃ × C̃.

That the Di intersect transversely, and that no three of them share a
common point follows from the corresponding fact on C̃ × C̃. Also, note that
each Di is ample on X̃, as follows e.g. from the Nakai-Moishezon criterion.
A fortiori , we have that D1+· · ·+Dr is ample. Define X := X̃ \(D1∪. . .∪Dr);
then X is affine and we may fix some affine embedding. (That the symmetric
power of an affine variety is affine follows also from a well-known result on
quotients of a variety by a finite group of automorphisms; see for instance [Bo,
Prop. 6.15].)

Note that π restricts to a morphism from C × C to X.
Let now {Pi} be a sequence of S-integral points on C, such that Pi is

defined over a quadratic extension ki of k. Letting P ′
i ∈ C(ki) be the point

conjugate to Pi over k, we define Qi := (Pi, P
′
i ) ∈ C × C and Ri := π(Qi) ∈

X(ki).
Observe that Ri ∈ X(k). In fact, for any function ϕ ∈ k(X), we have that

ϕ∗ = ϕ ◦ π is a symmetric rational function on C ×C (that is, invariant under
the natural involution of C × C). Therefore ϕ(Ri) = ϕ∗(Pi, P

′
i ) = ϕ∗(P ′

i , Pi).
This immediately implies that ϕ(Ri) is fixed by the Galois group Gal(k̄/k),
proving the claim.

Further, we note that for any ϕ ∈ k[X], there exists a positive integer
m = mϕ such that all the values mϕ(Ri) are S-integers. In fact, note that ϕ∗

is regular on C × C, that is ϕ∗ ∈ k[C × C] = k[C] ⊗k k[C]; this proves the
contention, since for any function ψ ∈ k[C], the values ψ(Pi), ψ(P ′

i ) differ from
S-integers by a bounded denominator, as i varies.

In particular, this assertion holds taking as ϕ the coordinate functions
on X. So, by multiplying such coordinates by a suitable positive integer (which
amounts to apply an affine linear coordinate change on X) we may assume that
the Ri are integral points on X.
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We go on by proving that the assumptions for Theorem 1 are verified in
our situation.

Note that the pull-back of Di in C̃×C̃ is given by π∗(Di) = Ai×C̃+C̃×Ai.
Since any two points on a curve represent algebraically equivalent divisors,
the divisors π∗(Di) must be algebraically equivalent. In particular, they are
numerically equivalent, so the divisors Di are numerically equivalent. Since we
plainly have (π∗(D1).π∗(D2)) = 2, it follows that (Di.Dj) = 1 for all pairs i, j

([B, Prop. I.8]).
In conclusion, we have verified the assumptions for Theorem 1, with r ≥ 4

and p1 = · · · = pr = c = 1.

From Theorem 1 we deduce that the Ri all lie on a certain closed curve
Y ⊂ X. To prove our assertions we may now argue separately with each
absolutely irreducible component of Y . Therefore we assume that the Ri are
contained in the absolutely irreducible curve Y , defined over a number field
containing k. Since Y contains the infinitely many points Ri, all defined over k,
it follows that Y is in fact defined itself over k. Also, Y must have genus zero
and at most two points at infinity, because of Siegel’s theorem. In the sequel
we also suppose, as we may, that Y is closed in X and we let Ỹ be the closure
of Y in X̃ and Z̃ = π−1(Ỹ ), Z = π−1(Y ) = Z̃ \ (∪r

i=1π
∗(Di)).

Assume first that r ≥ 5. Then, since Z̃ is complete at least one of the
natural projections on C̃ is surjective, whence #

(
Z̃ ∩ (∪r

i=1π
∗(Di))

)
≥ 5, and

therefore Z̃ \Z ≥ 5. Hence #(Ỹ \Y ) ≥ 3, since #π−1(R) ≤ 2 for every R ∈ X̃.
But then Siegel’s theorem applies to Y and contradicts the fact that Y has
infinitely many integral points. This proves part (i).

From now on we suppose that r = 4. The case when C is rational can be
treated directly, similarly to Example 1.3 above, even without appealing to the
present methods. By extending the ground field and S, C may be realized as
the plane quartic (X−λ)(X2−1)Y = 1, where λ ∈ k is not ±1. Let (x, y) be a
quadratic S-integral point on C. Denoting the conjugation over k with a dash,
we have that (x− λ)(x′ − λ) =: r, (x− 1)(x′ − 1) =: s, (x + 1)(x′ + 1) =: t are
all S-units in k. Eliminating x, x′ gives 2r− (λ+1)s+(λ−1)t = 2(λ2−1) �= 0.
By S-unit equation-theory, as in [S2, Thm. 2A] or [V, Thm. 2.3.1], this yields
some vanishing subsum for all but finitely many such relations. Say that e.g.
t = 2(λ + 1), 2r = (λ + 1)s, the other cases being analogous. This leads to
x + x′ = λ + 1 − s

2 , xx′ = λ + s
2 , whence x2 − (λ + 1 − s

2)x + λ + s
2 = 0, i.e.

s = −2(x2−(λ+1)x+λ)
x+1 . Then the map given by x �→ −2(x2−(λ+1)x+λ)

x+1 satisfies the
conclusion.

Suppose now that C has positive genus and view C as embedded in its
Jacobian J . For a generic point R ∈ Ỹ , let {(P, Q), (Q, P )} = π−1(R) ∈ Z̃.
Then R �→ P + Q ∈ J is a well-defined rational map from Ỹ to J . But
Y is a rational curve, and it is well-known that then such a map has to be
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constant ([HSi, Ex. A74(b)]), say P + Q = c for π(P, Q) = R ∈ Ỹ , where c is
independent of R. We then have a degree 2 regular map ψ : C̃ → Y defined
by ψ(P ) = π((P, c−P )). It now suffices to note that ψ(Pi) = π((Pi, P

′
i )) = Ri

is an S-integral point in Y (k).

Proof for the Addendum. Let ψ be one of the mentioned maps, and
let {Pi}i∈N be an infinite sequence of distinct quadratic integral points on
C such that ψ(Pi) ∈ k. We have equations X2

i + aiXi + bi = 0, where
ai, bi ∈ k(ψ). By changing coordinates linearly, we may assume, as in the argu-
ment at the beginning of the proof of the Corollary 1, that k(C) is quadratic
over k(a1, b1, . . . , am, bm) and that for each i, the values of the affine coor-
dinates X1, . . . , Xm at Pi are of exact degree 2 over k. Then aj(Pi), bj(Pi)
are S-integers in k, for all i, j in question. The rational map ϕ : P �→
(a1(P ), b1(P ), . . . , am(P ), bm(P )) sends C to an affine curve Y (over k) with
infinitely many S-integral points over k. This curve, whose affine ring is
k[Y ] = k[a1, b1, . . . , am, bm], can have at most two points at infinity, by Siegel’s
theorem. On the other hand, the above quadratic equations for the coordinates
imply that k[C] is integral over k[Y ], whence all of the (four) points at infinity
of C correspond to poles of some ai or bi. Therefore the a1, b1, . . . , am, bm have
altogether at least the four poles A1, . . . , A4 on C̃. But the above rational map
ϕ has degree 2, whence ψ factors through it, namely k(ψ) = k(Y ). Therefore
the curve Y has at least #{ψ(A1), . . . , ψ(A4)} points at infinity. By the above
conclusion this cardinality is at most two, proving the first contention of the
addendum.

As to the second, say that ψ(A1) = ψ(A2) =: α and ψ(A3) = ψ(A4) =: β.
Then ψ−α

ψ−β has divisor3 (A1) + (A2) − (A3) − (A4), yielding a relation of the
mentioned type among the (Ai).
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Università di Udine, Udine, Italy
E-mail address: corvaja@dimi.uniud.it

Scuola Normale Superiore, Pisa Italy
E-mail address: u.zannier@sns.it

References
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