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Unique decomposition of tensor products

of irreducible representations
of simple algebraic groups

By C. S. Rajan

Abstract

We show that a tensor product of irreducible, finite dimensional represen-
tations of a simple Lie algebra over a field of characteristic zero determines the
individual constituents uniquely. This is analogous to the uniqueness of prime
factorisation of natural numbers.

1. Introduction

1.1. Let g be a simple Lie algebra over C. The main aim of this paper
is to prove the following unique factorisation of tensor products of irreducible,
finite dimensional representations of g:

Theorem 1. Let g be a simple Lie algebra over C. Let V1, . . . , Vn and
W1, . . . , Wm be nontrivial, irreducible, finite dimensional g-modules. Assume
that there is an isomorphism of the tensor products,

V1 ⊗ · · · ⊗ Vn � W1 ⊗ · · · ⊗ Wm,

as g-modules. Then m = n, and there is a permutation τ of the set {1, . . . , n},
such that

Vi � Wτ(i),

as g-modules.

The particular case which motivated the above theorem is the following
corollary:

Corollary 1. Let V, W be irreducible g-modules. Assume that

End(V ) � End(W ),

as g-modules. Then V is either isomorphic to W or to the dual g-module W ∗.

When g = sl2, and the number of components is at most two, the theorem
follows by comparing the highest and lowest weights that occur in the tensor
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product. However, this proof seems difficult to generalize (see Subsection 2.1).
The first main step towards a proof of the theorem, is to recast the hypothesis
as an equality of the corresponding products of characters of the individual
representations occurring in the tensor product. A pleasant, arithmetical proof
for sl2 (see Proposition 4), indicates that we are on a right route. The proof in
the general case depends on the fact that the Dynkin diagram of a simple Lie
algebra is connected, and proceeds by induction on the rank of g, by the fact
that any simple Lie algebra of rank l, has a simple subalgebra of rank l − 1.
We analyze the restriction of the numerator of the Weyl character formula of g

to the centralizer of the simple subalgebra, by expanding along the characters
of the central gl1.

We compare the coefficients, which are numerators of characters of the
simple subalgebra, of the highest and the second highest degrees occurring in
the product. The highest degree term is again the character corresponding to
a tensor product of irreducible representations. The second highest degee term
is a sum of the products of irreducible characters. To understand this sum,
we again argue by induction using character expansions. However, instead of
leading to further complicated sums, the induction argument stabilizes, and
we can formulate and prove a linear independence property of products of
characters of a particular type. Combining the information obtained from
the highest and the second highest degree terms occurring in the product, we
obtain the theorem.

The outline of this paper is as follows: first we recall some preliminaries
about representations and characters of semisimple Lie algebras. We then
give the proof for sl2, and also of an auxiliary result which comes up in the
proof by induction. Although not needed for the proof in the general case, we
present the proof for GLn, since the ideas involved in the proof seem a bit more
natural. Here the numerator of the Weyl-Schur character formula appears as
a determinant, which can be looked upon as a polynomial function on the
diagonal torus. The inductive argument arises upon expanding this function
in one of the variables, the coefficients of which are given by the numerators
occurring in the Weyl-Schur character formula for appropriate representations
of GLn−1. We then set up the formalism for general simple g, so that we can
carry over the proof for GLn to the general case.
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ful discussions during the early part of this work. I also thank S. Ilangovan,
R. Parthasarathy, D. Prasad, M. S. Raghunathan, S. Ramanan and
C. S. Seshadri for useful discussions. The arithmetical application to Asai
representations was suggested by D. Ramakrishnan’s work; he had proved a
similar result for the usual degree two Asai representations, and I thank him
for conveying to me his results.
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2. Preliminaries

We fix the notation and recall some of the relevant aspects of the repre-
sentation and structure theory of semisimple Lie algebras. We refer to [H], [S]
for further details.

(1) Let g be a complex semisimple Lie algebra, h a Cartan subalgebra of g,
and Φ ⊂ h∗ the roots of the pair (g, h).

(2) Denote by Φ+ ⊂ Φ, the subset of positive roots with respect to some
ordering of the root system, and by ∆ a base for Φ+.

(3) Let Φ∗ ⊂ h, Φ∗+, ∆∗ be respectively the set of co-roots, positive co-
roots and fundamental co-roots. Given a root α ∈ Φ, α∗ will denote the
corresponding co-root.

(4) Denote by 〈., .〉 : h×h∗ → C the duality pairing. For any root α, we have
〈α∗, α〉 = 2, and the pairing takes values in integers when the arguments
consist of roots and co-roots.

(5) Given a root α, by the properties of the root system, there are reflections
sα, sα∗ of h∗, h respectively, defined by

sα(u) = u − 〈α∗, u〉α and sα∗(x) = x − 〈x, α〉α∗,

where x ∈ h and u ∈ h∗. We have sα(Φ) ⊂ Φ and sα∗(Φ∗) ⊂ Φ∗.

(6) Let W denote the Weyl group of the root system. The Weyl group W is
generated by the reflections sα for α ∈ ∆, subject to the relations (see
[C, Th. 2.4.3])

s2
α = 1 and sαsβsα = ssα(β), ∀ α, β ∈ Φ.(1)

In particular sα and sβ commute if sα(β) = β. There is a natural iso-
morphism between the Weyl groups of the root system and the dual root
system, given by α 	→ α∗ and sα =t sα∗ the transpose of sα∗ . We identify
the two actions of the Weyl group.

(7) Denote by P ⊂ h∗ the lattice of integral weights, given by

P = {µ ∈ h∗ | µ(α∗) ∈ Z,∀α ∈ Φ∗}.

Dually we have a definition of the lattice of integral co-weights P ∗.

(8) Let P+ be the set of dominant, integral weights with respect to the chosen
ordering, defined by

P+ = {λ ∈ P | λ(α∗) ≥ 0,∀α ∈ Φ∗+}.
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The irreducible g-modules are indexed by elements in P+, given by high-
est weight theory. To each dominant, integral weight λ, we denote the
corresponding irreducible g-module with highest weight λ by Vλ. Let
l = |∆| be the rank of g. Index the collection of fundamental roots by
α1, . . . , αl. Denote by ω1, . . . , ωl (resp. ω∗

1, . . . , ω∗
l ), the set of funda-

mental weights (resp. fundamental co-weights) defined by

ωi(α∗
j ) = δij and ω∗

i (αj) = δij , 1 ≤ i, j ≤ l.

The fundamental weights form a Z-basis for P .

(9) Let l(w) denote the length of an element in the Weyl group, given by the
least length of a word in the sα, α ∈ ∆ defining w. Let ε(w) = (−1)l(w)

be the sign character of W .

(10) The Weyl character formula. All the representations considered will be
finite dimensional. Let V be a g-module. With respect to the action of
h, we have a decomposition,

V = ⊕π∈h∗V π,

where V π = {v ∈ V | hv = π(h)v, h ∈ h}.

The linear forms π for which the V π are nonzero belong to the weight
lattice P , and these are the weights of V . Let Z[P ] denote the group
algebra of P , with basis indexed by eπ for π ∈ P . The (formal) character
χV ∈ Z[P ] of V is defined by,

χV =
∑
π∈P

m(π)eπ,

where m(π) = dim(V π) is the multiplicity of π. The character is a
ring homomorphism from the Grothendieck ring K[g] defined by the
representations of g to the group algebra Z[P ]. In particular,

χV ⊗V ′ = χV χV ′ .

The irreducible g-modules are indexed by elements in P+, given by high-
est weight theory. To each dominant, integral weight λ, we denote the
corresponding irreducible g-module with highest weight λ by Vλ, and the
corresponding character by χλ. Let

ρ =
1
2

∑
α∈Φ+

α = ω1 + · · · + ωl.

Define the Weyl denominator D as,

D =
∑

w∈W

ε(w)ewρ ∈ Z[P ].
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The Weyl character formula for Vλ is given by,

χλ =
1
D

∑
w∈W

ε(w)ew(λ+ρ).

Let Sλ =
∑

w∈W ε(w)ew(λ+ρ) denote the numerator occurring in the Weyl
character formula. We have D = S0.

We now recast the main theorem. From the theory of characters, the main
theorem is equivalent to the following theorem:

Theorem 2. Let g be a simple Lie algebra over C. Assume that there are
positive integers n ≥ m, and nonzero dominant weights λ1, . . . , λn, µ1, . . . , µm

in P+ satisfying,

Sλ1 . . . Sλn
= Sµ1 . . . Sµm

(S0)n−m.(2)

Then m = n, and there is a permutation τ of the set {1, . . . , n}, such that

λi = µτ(i), 1 ≤ i ≤ n.

We adopt a slight change in the notation. Assume n ≥ m. Then (2) can
be rewritten as,

Sλ1 . . . Sλn
= Sµ1 . . . Sµn

,(3)

where µi = 0 for m + 1 ≤ i ≤ n.

2.1. sl2 and PRV-components. Let g = sl2. Let Vn denote the irreducible
representation of sl2 of dimension n+1, isomorphic to the symmetric nth power
Sn(V1) of the standard representation V1. Suppose we have an isomorphism of
sl2-modules,

Vn1 ⊗ Vn2 � Vm1 ⊗ Vm2 .

For any pair of positive integers l ≥ k, we have the decompostion,

Vk ⊗ Vl � Vl+k ⊕ Vl+k−2 ⊕ · · · ⊕ Vl−k.

It follows that n1 + n2 = m1 + m2 by comparison of the highest weights.
Assuming n1 ≥ n2 and m1 ≥ m2, we have on comparing the lowest weights
occurring in the tensor product, that n1 − n2 = m1 − m2. Hence the theorem
follows in this special case.

It is immediate from the hypothesis of the theorem, that we have an
equality of the sum of the highest weights corresponding to the irreducible
modules V1, . . . , Vn and W1, . . . , Wm respectively. The above proof for sl2

suggests the use of PRV-components: if Vλ and Vµ are highest weight finite
dimensional g-modules with highest weights λ and µ respectively, and w is
an element of the Weyl group, then it is known that there is a Weyl group



688 C. S. RAJAN

translate λ + wµ of the weight λ + wµ, which is dominant and such that the
corresponding highest weight module Vλ+wµ is a direct summand in the tensor
product module Vλ⊗Vµ (see [SK1]). These are the generalized Parthasarathy-
Ranga Rao-Varadarajan (PRV)-components. The standard PRV-component
is obtained by taking w = w0, the longest element in the Weyl group. But
the above proof for sl2 does not generalize, as the following example for the
simple Lie algebra sp6 shows that it is not enough to consider just the standard
PRV-component:

Example 1.

g = sp6, h = C〈e1, e2, e3〉, ∆ = {e1 − e2, e2 − e3, 2e3}, w0 = −1.

Consider the following highest weights on sp6:

λ1 = 6e1 + 4e2 + 2e3 λ2 = 4e1 + 2e2

µ1 = 6e1 + 2e2 + 2e3 µ2 = 4e1 + 4e2.

Clearly λ1 +λ2 = µ1 +µ2. Since the Weyl group contains sign changes, we see
that there exists an element of the Weyl group such that λ1−λ2 = w(µ1−µ2).

Thus we are led to consider generalized PRV-components. The problem
with this approach is that although the standard PRV-component can be char-
acterised as the component on which the Casimir acts with the smallest eigen-
value, there is no abstract characterisation of the generalized PRV-component
inside the tensor product. It is not clear that a generalized PRV-component of
one side of the tensor product, is also a PRV-component for the other tensor
product. Although the PRV-components occur with ‘high’ multiplicity [SK2],
(greater than or equal to the order of the double coset Wλ\W/Wµ, where Wλ

and Wµ are the isotropy subgroups of λ and µ respectively), the converse is
not true. Even for sl2, it does not seem easy to extend the above proof when
the number of components involved is more than two.

3. GL(2)

The aim of this and the following section is to prove the main theorem in
the context of GL(r):

Theorem 3. Let G = GL(r). Suppose V � Vλ1 ⊗ · · · ⊗ Vλn
and W �

Vµ1 ⊗ · · · ⊗Vµm
are tensor products of irreducible representations with nonzero

highest weights λ1, . . . , µm. Assume that V � W as G-modules. Then n = m

and there is a permutation τ of {1, · · · .n} such that for 1 ≤ i ≤ n,

Vλi
= Vµτ(i) ⊗ detαi ,

for some integers αi.
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Up to twisting by a power of the determinant, we can assume that the
highest weight representations Vλ of GL(r) are parametrized by their ‘normal-
ized’ highest weights,

λ = (a1, · · · ar), a1 ≥ a2 ≥ · · · ≥ ar = 0,

and ai are nonnegative integers. It is enough then to show under the hy-
pothesis of the theorem, that the normalized highest weights coincide. Let
x = (x1, . . . , xr) be a multivariable. We have the symmetric functions (Schur
functions), defined as the quotient of two determinants,

χλ(x) =
|xai+r−i

j |
|xr−i

j |
=

Sλ

D
,

where Sλ denotes the determinant appearing in the numerator and D the
standard Vandermonde determinant appearing in the denominator. It is known
that on the set of regular diagonal matrices the Schur function χλ is equal to the
character of Vλ. Since we have assumed an = 0, we have that the polynomials
Sλ and x1 are coprime, for any highest weight λ.

Hence by character theory, the hypothesis of the theorem can be recast as

Sλ1 . . . Sλn
= Sµ1 . . . Sµn

,(4)

and where µi = 0 for m + 1 ≤ i ≤ n.
Write for 1 ≤ i ≤ n,

λi = (ai1, ai2, . . . , ai(r−1), 0),
µi = (bi1, bi2, . . . , bi(r−1), 0).

2.2. GL(2). We present now the proof of the theorem for GL(2).

Proposition 4. Theorem 3 is true for GL(2).

Proof. Specializing Equation 3 to the case of GL(2), we obtain

(xa1+1
1 − xa1+1

2 ) · · · (xan+1
1 − xan+1

2 ) = (xb1+1
1 − xb1+1

2 ) · · · (xbn+1
1 − xbn+1

2 ),

where for the sake of simplicity we drop one of the indices in the weights.
Specialising the equation to x2 = 1, and letting x = x1, we obtain an equality
of the product of polynomials,

(xa1+1 − 1)(xa2+1 − 1) · · · (xan+1 − 1) = (xb1+1 − 1)(xb2+1 − 1) · · · (xbn+1 − 1).

Assume that a1 = max{a1, . . . , an} and b1 = max{b1, . . . , bn}. For any pos-
itive integer m, let ζm denote a primitive mth root of unity. The left-hand
side polynomial has a zero at x = ζa1+1, and the equality forces the right side
polynomial to vanish at ζa1+1. Hence we obtain that a1 ≤ b1, and by symmetry
b1 ≤ a1. Thus a1 = b1 and χλ1 = χµ1 . Cancelling the first factor from both
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sides, we are left with an equality of a product of characters involving fewer
numbers of factors than the equation we started with, and by induction we
have proved the theorem for GL(2).

Remark 1. It would be interesting to know the arithmetical properties of
the varieties defined by the polynomials Sλ for general semisimple Lie alge-
bras g. It seems difficult to generalize the above arithmetical proof to general
simple Lie algebras. The proof in the general case proceeds by induction on
the rank, finally reducing to the case of sl2.

3.2. A linear independence result. We now prove an auxiliary result for
GL(2), which arises in the inductive proof of Theorem 3.

Lemma 1. Let λ1, . . . , λn be a set of normalized weights in P+. Let c be
a positive integer and ω1 denote the fundamental weight. Then the set

{Sλ1 · · ·Sλi−1Sλi+cω1Sλi+1 · · ·Sλn
| 1 ≤ i ≤ n},

is linearly independent. In particular, suppose that there are subsets I, J ⊂
{1, . . . , n} satisfying the following :∑

i∈I

Sλ1 · · ·Sλi−1Sλi+cω1Sλi+1 · · ·Sλn

=
∑
j∈J

Sλ1 · · ·Sλj−1Sλj+cω1Sλj+1 · · ·Sλn
.

(5)

Then there is a bijection θ : I → J , such that λi = λθ(i).

An equivalent statement can be made in the Grothendieck ring K[g] or
with characters in place of Sλ.

Proof. Suppose we have a relation∑
1≤i≤n

ziSλ1 · · ·Sλi−1Sλi+cω1Sλi+1 · · ·Sλn
= 0,

for some collection of complex numbers zi. For any index i, let

E(i) = {j | λj = λi}.
To show the linear independence, we have to show that for any index i, we
have ∑

j∈E(i)

zj = 0.

Dividing by
∏n

l=1 Sλl
on both sides and equating, we are left with the equation,∑

1≤i≤n

zi
Sλi+cω1

Sλi

= 0.
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Specialising x1 = 1 and writing t instead of x2, we obtain∑
1≤i≤n

zi
1 − tai+c

1 − tai
= 0.

Expand this now as a power series in t. Consider the collection of indices i, for
which ai attains the minimum value, say for i = 1. Equating the coefficient of
ta1 , we see that

∑
j∈E(1) zj = 0. Hence these terms can be removed from the

relation, and we can proceed by induction to complete the proof of the lemma.

Remark 2. In retrospect, both Proposition 4 and Lemma 1, can be proved
by comparing the coefficient of the second highest power of x1 occurring on
both sides of the equation (3), as in the proofs occurring in the next section.
But we have included the proofs here, since it lays emphasis on the arithmetical
properties of the varieties defined by these characters.

4. Tensor products of GL(r)-modules

We now come to the proof of Theorem 3 for arbitrary r. The proof will
proceed by induction on r and the maximum number of components n. We
assume that the theorem is true for GL(s) with s < r, and for GL(r) with
the number of components fewer than n. Associated to the highest weight
λ = (a1, a2, . . . , ar−1, 0) of a GL(r)-irreducible module, define

λ′ = (a2, a3, . . . , ar−1, 0),
λ′′ = (a1 + 1, a3, . . . , ar−1, 0).

We can rewrite

λ′′ = λ′ + c(λ)ω1,

where ω1 = (1, 0, . . . , 0) is the highest weight of the standard representation
of GL(r − 1), and

c(λ) = 1 + (a1 − a2).(6)

Both λ′ and λ′′ are the highest weights of some GL(r−1) irreducible modules.
(Note: 0′′ = 0.)

Expanding Sλ as a polynomial in x1 we obtain,

Sλ(x1, . . . , xr) =(−1)r+1xa1+r−1
1 Sλ′(x2, . . . , xr)

+ (−1)rxa2+r−2
1 Sλ′′(x2, . . . , xr) + Q,

where Q is a polynomial whose x1 degree is less than a2 + r − 2. Substituting
in (3), and equating the top degree term, we have an equality

x
∑

j aj1+n(r−1)

1 Sλ′
1
· · ·Sλ′

n
= x

∑
j bj1+n(r−1)

1 Sµ′
1
· · ·Sµ′

n
.
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Since Sλ and x1 are coprime polynomials for normalized λ, we have in partic-
ular

Sλ′
1
· · ·Sλ′

n
= Sµ′

1
· · ·Sµ′

n
.(7)

Hence by induction it follows that there exists a permutation τ ′ of the set
{1, . . . , n} such that,

λ′
i = µ′

τ ′(i) 1 ≤ i ≤ n.

Remark 3. At this point, with a little bit of extra work, a proof of the
main theorem can be given when the number of components n is at most two.
Substituting xi = ti−1 for 1 ≤ i ≤ n, the determinants Sλ can be evaluated as
Vandermonde determinants. Arguing as in the proof of the main theorem for
GL(2), it can be seen that we have an equality,

{a11, a21} = {b11, b21}.

If we look at the constant coefficients, we obtain an equality,

{a11 − a12, a21 − a22} = {b11 − b12, b21 − b22}.

These two inequalities combine to prove the main theorem when the number
of components is at most two.

Remark 4. The proof does not proceed by restricting to various possible
SL(2) mapping to GL(r), and using the theorem for SL(2). For instance, it
is not even possible to distinguish between a representation and its dual by
restricting to various possible SL(2)’s mapping to GL(r). Morever we have the
following example:

Example 2. Consider the following triples of highest weights on GL(3):

λ1 = (3, 1, 0), λ2 = (2, 2, 0), λ3 = (1, 0, 0),

µ1 = (3, 2, 0), µ2 = (2, 0, 0), µ3 = (1, 1, 0).

The calculations in the foregoing remark give in particular that for any co-root
α∗, the sets of integers

{〈α∗, λi + ρ〉 | 1 ≤ i ≤ 3} = {〈α∗, µi + ρ〉 | 1 ≤ i ≤ 3}

are equal, and it is not possible to differentiate the corresponding sets of high-
est weights. A calculation with the characters of the tensor product indicates
that the term corresponding to the second highest coefficient of x1 in the cor-
responding product of the characters is different. This observation motivates
the rest of the proof of Theorem 1, with which we continue. Let

c1 = min{c(λi) | 1 ≤ i ≤ n} and c2 = min{c(µj) | 1 ≤ j ≤ n}.
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Equating the coefficient of the second highest power of x1 in equation 3, we
obtain that c1 = c2 = c. Let I, J ⊂ {1, . . . , n} denote the sets where for i ∈ I

and j ∈ J , c(λi) (resp. c(µτ ′(j))) attains the minimum value. We obtain on
equating the coefficient of the second highest power of x1 in equation 3:∑

i∈I

Sλ′
1
· · ·Sλ′

i−1
Sλ′

i+cω′
2
Sλ′

i+1
· · ·Sλ′

n
=

∑
j∈J

Sλ′
1
· · ·Sλ′

j−1
Sλ′

j+cω′
2
Sλ′

j+1
· · ·Sλ′

n
.

Suppose there are indices i ∈ I and j ∈ J such that λ′
i = µ′

j and ai1 − ai2 =
bj1 − bj2 = c − 1. It follows that λi = µj . Cancelling these two factors from
the hypothesis of Theorem 3, we can proceed by induction on the number
of components to prove Theorem 3. Thus, the proof of Theorem 3 reduces
now to the proof of the following key auxiliary lemma (applied to GL(r − 1)),
generalizing Lemma 1.

Lemma 2. Let λ1, . . . , λn be a set of normalized weights in P+. Let d be
a positive integer and ω1 denote the fundamental weight. For any index i, let
E(i) = {j | λj = λi}. Suppose there is a relation∑

1≤i≤n

ziSλ1 · · ·Sλi−1Sλi+dω1Sλi+1 · · ·Sλn
= 0,

for some collection of complex numbers zi. Then for any index i,∑
j∈E(i)

zi = 0.

Proof. By Lemma 1, the lemma has been proved for GL(2). We argue by
induction on the number of components n and on r. Let

c = min{c(λi) | 1 ≤ i ≤ n}.

Let M be the subset of {1, . . . , n} consisting of those indices i such that c =
1 + ai1 − ai2. We expand both sides as a polynomial in x1, and compare the
coefficient of the second highest power of x1. Since d > 0, the term Sλi+dω1 in
the product Sλ1 · · ·Sλi+dω1 · · ·Sλn

does not contribute to the coefficient of the
second highest degree term in x1. Further we observe that (λi + dω1)′ = λ′

i.
Hence the contribution to the coefficient of the second highest degree term in
x1 of Sλ1 · · ·Sλi+dω1 · · ·Sλn

is given by,∑
k∈M\M∩{i}

Sλ′
1
· · ·Sλ′

k+cf1 · · ·Sλ′
n
,

where f1 = (1, 0, . . . , 0) is a vector in Zr−1. Hence we obtain,
n∑

i=1

zi

∑
k∈M\M∩{i}

Sλ′
1
· · ·Sλ′

k+cf1 · · ·Sλ′
n

= 0.
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Fix an index i0 ∈ M , and count the number of times λ′
i0

+ cf1 terms occur as
a component in the product. For this, any index i = i0 will contribute. Hence
the above sum can be rewritten as,

(n − 1)
∑
i∈M

ziSλ′
1
· · ·Sλ′

i+cf1 · · ·Sλ′
n

= 0.(8)

Cancelling those polynomials S′
λl

for l ∈ M , we have by induction for any
index i0 ∈ M , ∑

j∈E′(i0)

zj = 0,

where E′(i0) = {j ∈ M | λ′
j = λ′

i0
}. We have assumed that j ∈ M , since we

have cancelled those extraneous terms with indices not in M . But since j and
i0 belong to M , we conclude that λj = λi0 . Hence E′(i0) = E(i0), and we have
proved the lemma.

Remark 5. The surprising fact is that the induction step, rather than
giving expressions where the character sums are spiked at more than one index,
actually yields back Equation 8, which is again of the same type as that in the
hypothesis of the lemma.

It is not clear whether there is a more general context in which the above
result can be placed. For example, fix a weight Λ. Consider the collection of
characters {∏

i∈I

χλi
| I ⊂ P+,

∑
i∈I

λi = Λ

}
.

It is not true that this set of characters is linearly independent, since for a
fixed Λ the cardinality of this set grows exponentially (since it is given by
the partition function), whereas the dimension of the space of homogeneous
polynomials in two variables of fixed degree depends polynomially (in fact
linearly) on the degree.

5. Proof of the main theorem in the general case

We now revert to the notation of Section 2. Our aim is to set up the
correct formalism in the general case, so that we can carry over the inductive
proof for GL(n) given above. Let g be a simple Lie algebra of rank greater
than one. Choose a fundamental root α1 ∈ ∆. Let ∆′ = ∆\{α1}, and let
Φ′ ⊂ Φ be the subset of roots lying in the span of the roots generated by ∆′.
Let

h′ =
∑
α∈∆′

Cα∗.
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It is known that ∆′ is a base for the semisimple Lie algebra g′ defined by,

g′ := h′ ⊕
∑
α∈Φ′

gα,

where gα is the weight space of α corresponding to the adjoint action of g. The
Lie algebra g′ is a semisimple Lie algebra of rank l− 1, and the roots of (g′, h′)
can be identified with Φ′. A special case is when α1 corresponds to a corner
vertex in the Dynkin diagram of g. In this case, g′ will be a simple Lie algebra.

We now want to find a suitable gl1 complement to g′ inside g. This is
given by the following lemma:

Lemma 3. ω∗
1 ∈ h′.

Proof. Suppose we can write,

ω∗
1 =

l∑
i=2

aiα
∗
i ,

for some complex numbers ai. By definition of ω∗
1, we obtain on pairing with

αj for 2 ≤ j ≤ l, the following system of l−1 linear equations, in the unknown
ai:

l∑
i=2

〈α∗
i , αj〉ai = 0.

But the matrix (〈α∗
i , αj〉)2≤i, j≤l is the Cartan matrix of the semisimple Lie

algebra g′, and hence is nonsingular. Thus ai = 0 for i = 2, . . . , l, and that is
a contradiction as ω∗

1 is nonzero.

Let W ′ denote the Weyl group of (g′, h′), which can be identified with the
subgroup of W generated by the fundamental reflections sα for α ∈ ∆′. For
such an α, we have

〈sα(ω∗
1), αj〉 = 〈ω∗

1, αj〉 − 〈ω∗
1, α〉〈α∗, αj〉 = δ1j .

Hence W ′ fixes ω∗
1. Conversely, it follows from the fact that ω∗

1 is orthogonal
to all the roots α2, . . . , αl, that any element of the Weyl group fixing ω∗

1 lies
in the subgroup of W generated by the simple reflections sαi

, 2 ≤ i ≤ l, and
hence lies in W ′ [C, Lemma 2.5.3].

Our next step is to study the restriction of the character χλ to g′⊕gl1 ⊂ g.
Let P ′ denote the lattice of weights of g′. We consider P ′ as a subgroup of P ,
consisting of those weights which vanish when evaluated on ω∗

1.
Choose a natural number m such that π(ω∗

1) ∈ 1
mZ for all weights π ∈ P .

Let Z1 be the subgroup, isomorphic to the integers, of linear forms 1 on h,
which are trivial on h′ and such that 1(ω∗

1) ∈ 1
mZ. We have

P ⊂ Z1 ⊕ P ′,
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and we decompose the character χλ with respect to this direct sum decompo-
sition. Given a weight π ∈ P , denote by π′ ∈ P ′ its restriction to h′. Let l1 be
the weight in P , vanishing on h′ and taking the value 1 on ω∗

1. We define

d1(π) = π(ω∗
1)

as the degree of π along l1. Write any weight π with respect to the above
decomposition as,

π = d1(π)l1 + π′ so that eπ = ed1(π)l1eπ′
.

The numerator of the Weyl character formula decomposes as,

Sλ =
∑

d∈ 1
m

Z

edl1

( ∑
w∈Wd

ε(w)ew(λ+ρ)′

)
,

where Wd = {w ∈ W | (w(λ + ρ))(ω∗
1) = d}.

(9)

We refer to the inner sum as the coefficient of the degree d component along l1,
or as the coefficient of edl1 . Given a dominant integral weight λ ∈ P+, define

a1(λ) = max{wλ(ω∗
1) | w ∈ W},

a2(λ) = max{wλ(ω∗
1) | w ∈ W and wλ(ω∗

1) = a1(λ)}.
The formalism that we require in order to carry over the proof for GL(n) to
the general case, is given by the following lemma:

Lemma 4. Let λ be a regular weight in P+.

(1) The largest value a1(λ) of (wλ)(ω∗
1) for w ∈ W , is attained precisely for

w ∈ W ′. In particular,

a1(λ) = λ(ω∗
1).

(2) The second highest value a2(λ) is attained precisely for w in W ′sα1 , and
the value is given by

a2(λ) = sα1λ(ω∗
1) = a1(λ) − λ(α∗

1).

Proof. 1) By [C, Lemma 2.5.3], we have to show that if wλ(ω∗
1) attains

the maximum value, then w fixes ω∗
1. Since ω∗

1 is a fundamental co-weight, we
have

ω∗
1 − wω∗

1 =
l∑

i=1

niα
∗
i ,

for some nonnegative natural numbers ni. Hence,

λ(ω∗
1 − wω∗

1) =
l∑

i=1

niλ(α∗
i ),
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and the latter expression is strictly positive, if some ni > 0, since λ is regular
and dominant. This proves the first part.

2) We prove the second part by induction on the length l(w) of w. The
statement is clear for the fundamental reflections, which are of length one.
Consider an element of the form wsβ such that wsβλ(ω∗

1) = a2(λ), β is a
fundamental root and l(wsβ) = l(w) + 1. By [C, Lemma 2.2.1 and Th. 2.2.2],
it follows that,

w(β) ∈ Φ+.

We have
λ − wsβλ = (λ − wλ) + w(λ − sβλ)

= (λ − wλ) + 〈β∗, λ〉wβ.

Since wβ ∈ Φ+, and 〈β∗, λ〉 is positive, it follows that

wsβλ(ω∗
1) ≤ wλ(ω∗

1),

with strict inequality if 〈ω∗
1, wβ〉 is positive. Hence by induction we can assume

that w either belongs to W ′, or is of the form w0sα1 , with w0 ∈ W ′. We only
have to consider the second possiblity. We obtain,

(λ − wλ)(ω∗
1) = (λ − sα1λ)(ω∗

1) = 〈α∗
1, λ〉 > 0.

Assuming the hypothesis of Lemma 4 for wsβ, we see that wsβ(ω∗
1) = w(ω∗

1),
and hence obtain that sα1(β) has no α1 component when we expand it as a
linear combination of the fundamental roots. But

sα1(β) = β − 〈α∗
1, β〉α1,

and it follows that 〈α∗
1, β〉 = 0. From the relations defining the Weyl group,

it follows that sα1 and sβ commute, and hence the element wsβ is of the form
w1sα1 for some element w1 ∈ W ′; this concludes the proof of the lemma.

The restriction of the fundamental weights ω2, . . . , ωl to h′ are the fun-
damental weights (with the indexing set ranging from 2, . . . , l, instead of
1, . . . , l − 1) of g′. In particular, the restriction ρ′ of ρ is the sum of the
fundamental weights of g′. For λ ∈ P+, define λ′′ ∈ P ′

+ by,

λ′′ = (sα1(λ + ρ))′ − ρ′.(10)

We have the following corollary, giving the character expansion for the first
two terms along l1:

Corollary 2. With notation as in the character expansion given by equa-
tion (9),

Sλ = ea1(λ+ρ)l1Sλ′ − ea2(λ+ρ)l1Sλ′′ + L(λ),(11)

where L(λ) denotes the terms of degree along l1 less than the second highest
degree.
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Proof. The proof is immediate from Lemma 4 and equation 9, when λ+ ρ

is regular. The second term has the opposite sign, since l(wsα1) = l(w) + 1,
for w ∈ W ′, and the length function of W restricts to the length function of
W ′, taken with respect to ∆ and ∆′ respectively.

We write these facts down explicitly in terms of the fundamental weights.

λ = n1(λ)ω1 + · · · + nl(λ)ωl,

in terms of the fundamental weights, so that λ + ρ = (n1(λ) + 1)ω1 + · · · +
(nl(λ) + 1)ωl. Now,

(λ + ρ)′ = (n2(λ) + 1)ω′
2 + · · · + (nl(λ) + 1)ω′

l.(12)

Let g′ � ⊕s∈Sg′s,

be the decomposition of g′ into simple Lie algebras. For each simple component
g′s of g′, let αs be the unique simple root connected to α1 in the Dynkin diagram
of g. Then

−〈α∗
1, αs〉 = m1s,

is positive for each s. This is possible since we have assumed that g is a simple
Lie algebra of larger rank. A calculation yields,

sα1(λ + ρ)′ =
∑
s∈S

(ns(λ) + 1 + m1s(n1(λ) + 1))ω′
s +

∑
t∈∆\S

ntω
′
t.(13)

For example, if α1 is a corner root, then g′ is simple. Let α2 be the root
adjacent to α1. In this particular case, we have

λ′′ = λ′ + m12(n1(λ) + 1)ω′
2.(14)

We are now in a position to prove the main theorem, the proof of which
is along the same lines as the proof for GL(n). We assume that there is an
equality as in equation (3):

Sλ1 . . . Sλn
= Sµ1 . . . Sµn

.(15)

We now choose a corner root α1, and from equation (2), we obtain,

n∏
i=1

(ea1(λi+ρ)l1Sλ′
i
− ea2(λi+ρ)l1Sλ′′

i
+ L(λi))

=
n∏

i=1

(ea1(µi+ρ)l1Sµ′
i
− ea2(µi+ρ)l1Sµ′′

i
+ L(µi)).

On taking products and comparing the coefficients of the topmost degree, we
get,

Sλ′
1
. . . Sλ′

n
= Sµ′

1
. . . Sµ′

n
.
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By induction, we can thus assume that up to a permutation there is an equality,

(λ′
1, . . . , λ′

n) = (µ′
1, . . . , µ′

n).(16)

Now we compare the term contributing to the second highest degree in the
product. Let I (resp. J) consist of those indices in the set {1, . . . , n}, for
which n1(λi) = λi(α∗

1) (resp. n1(µi)) is minimum. By Part (2) of Lemma
4 and the character expansion as given by Corollary 2, the second highest
degree along l1 in the product is of degree n1(λ + ρ) = n1(λ) + 1 less than the
total degree. In particular the minimum of n1(λi) and the minimum of n1(µj)
coincide, as we vary over the indices. We have the following equality of the
second highest degree terms along l1:∑

i∈I

Sλ′
1
· · ·Sλ′

i−1
Sλ′′

i
Sλ′

i+1
· · ·Sλ′

n
=

∑
j∈J

Sµ′
1
· · ·Sµ′

j−1
Sµ′′

j
Sµ′

j+1
· · ·Sµ′

n
.

From equations (14), and (16), we can recast this equality as,∑
i∈I

Sλ′
1
· · ·Sλ′

i−1
Sλ′

i+dω′
2
Sλ′

i+1
· · ·Sλ′

n

=
∑
j∈J

Sλ′
1
· · ·Sλ′

j−1
Sλ′

j+dω′
2
Sλ′

j+1
· · ·Sλ′

n

(17)

where d = m12(n1(λi) + 1) is a positive integer, since g has been assumed to
be simple.

Granting Lemma 5 given below, the main theorem follows, since we have
indices i0, j0 such that,

λ′
i0 = µ′

j0 and n1(λi0) = n1(µj0),

where the indices i0, j0 are such that the minimum of n1(λi) and n1(µj) is
attained. Hence we have,

λi0 = µj0 .

Cancelling these terms from equation (3), we are left with an equality where
the number of components occurring in the tensor product in the hypothesis
of the main theorem is less than the one we started with, and an induction on
the number n of components in the tensor product proves the main theorem.

Remark 6. When the number of components is at most two, we do not
need Lemma 5. In the above equality (17), we can assume that I ∩J is empty,
and so can take for example I = {1} and J = {2}, to obtain,

Sλ′
1+dω′

2
Sλ′

2
= Sλ′

1
Sλ′

2+dω′
2
.

By induction on the rank, assuming that the main theorem is true with number
of components at most two, we obtain the main theorem for all g.



700 C. S. RAJAN

To complete the proof of the theorem, we have to state the auxiliary linear
independence property, generalizing Lemmas 1 and 2.

Lemma 5. Let g be a simple Lie algebra, and let λ1, . . . , λn be a set of
dominant, integral weights in P+. Let d be a positive integer and ωp denote a
fundamental weight corresponding to the root αp. For any index i, let E(i) =
{j | λj = λi}. Suppose there is a relation∑

1≤i≤n

ziSλ1 · · ·Sλi−1Sλi+dωp
Sλi+1 · · ·Sλn

= 0,

for some collection of complex numbers zi. Then for any index i,∑
j∈E(i)

zi = 0.

Remark 7. Instead of ωp, we can spike up the equation with any nonzero
highest weight λ, but the proof is essentially the same.

The proof of this lemma will be by induction on the rank. For simple Lie
algebras not of type D or E, and if ωp is a fundamental weight corresponding
to a corner root in the Dynkin diagram of g, the proof follows along the same
lines as in the proof of Lemma 2, and that is sufficient to prove the main
theorem in these cases. For Lie algebras of type D and E, the proof becomes
complicated, due to the fact that the root adjacent to a corner root α1 in
the Dynkin diagram of g need not be a corner root in the Dynkin diagram
associated to ∆\{α1}. Before embarking on a proof of this lemma, we will
need a preliminary lemma.

Lemma 6. Assume that Lemma 5 holds for all simple Lie algebras of rank
at most l. Let ⊕s∈Sgs be a direct sum of simple Lie algebras of gs of rank at
most l. For each s ∈ S, assume that we are given dominant, integral weights
λs1, . . . , λsn of gs, a positive integer ds, and a fundamental weight ωs of gs.
Suppose that we have a relation,∑

1≤i≤n

ziSΛ1 · · ·SΛi−1SΛ̂i
SΛi+1 · · ·SΛn

= 0,(18)

for some collection of complex numbers zi, where for 1 ≤ i ≤ n

SΛi
=

∏
s∈S

Sλsi
,

and SΛ̂i
=

∏
s∈S

Sλsi+dsωs
.

Then for any index i, ∑
j∈E(i)

zj = 0,

where E(i) = {j | (λsj)s∈S = (λsi)s∈S}.
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Proof. The proof proceeds by induction on the cardinality of S. Consider
equation (18) as an equation with respect to one of the simple Lie algebras, say
g1. The linear independence property reduces to the case when the number of
simple Lie algebras involved is one less, and we are through by induction.

Now we get back to the proof of Lemma 5.

Proof. By Lemma 1, the lemma has been proved for GL(2). We argue by
induction on the number of components n and on the rank l of g. We assume
that the lemma has been proved for all simple Lie algebras of rank less than
the rank of g. We use the character expansion given by Corollary 2, where we
denote by lp the linear functional corresponding to ω∗

p. Let

g′ � ⊕s∈Sgs,

be the decomposition of g′ into simple Lie algebras (we remove the fundamental
root αp corresponding to the fundamental weight ωp from the Dynkin diagram).
For each s ∈ S, let αs ∈ ∆ be the root adjacent to αp.

Let M be the subset of {1, . . . , n} consisting of those indices i such that
np(λi) attains the minimum. For each s ∈ S, let

cs = min{mps(np(λi) + 1) | i ∈ M}.
We expand both sides using Corollary (2), and compare the coefficient of the
second highest degree along lp. Since d > 0, the term Sλi+dωp

in the prod-
uct Sλ1 · · ·Sλi+dωp

· · ·Sλn
does not contribute to the coefficient of the second

highest degree term in lp. Further we observe that (λi + dω1)′ = λ′
i. Hence

the contribution to the coefficient of the second highest degree term in lp of
Sλ1 · · ·Sλi+dωp

· · ·Sλn
is given by,∑

k∈M\M∩{i}
Sλ′

1
· · ·Sλ′

k−1
Sλ′′

k
Sλ′

k+1
· · ·Sλ′

n
,

where λ′′
k is given by equation (13) as follows:

λ′′
k + ρ′ =

∑
s∈S

(ns(λk) + 1 + mps(np(λk) + 1))ω′
s +

∑
t∈∆\S

ntω
′
t.

Since g is simple and λk +ρ is regular, we notice that the term mps(np(λk +ρ))
is always positive. On rearranging the sum, we obtain,

n∑
i=1

zi

∑
k∈M\M∩{i}

Sλ′
1
· · ·Sλ′′

k
· · ·Sλ′

n
= 0.

Fix an index i0 ∈ M , and count the number of times a given index λ′′
i0

occurs
as a component in the product. For this, any index i = i0 will contribute.
Hence the above sum can be rewritten as,

(n − 1)
∑
i∈M

ziSλ′
1
· · ·Sλ′′

i
· · ·Sλ′

n
= 0.
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Cancel those polynomials S′
λl

for which l ∈ M . We have by Lemma 6, for any
index i0 ∈ M , ∑

j∈E′(i0)

zj = 0,

where E′(i0) = {j ∈ M | λ′
j = λ′

i0
} where we can assume that j ∈ M , since

we have cancelled those extraneous terms with indices not in M . But since
j and i0 belong to M and j is in E(i0), we conclude that λj = λi0 . Hence
E′(i0) = E(i0), and we have proved the lemma.

Remark 8. The main theorem indicates the presence of an ‘irreduciblity
property’ for the characters of irreducible representations of simple algebraic
groups. However the naive feeling that the characters of irreducible represen-
tations are irreducible is false. This can be seen easily for sl2. For GL(n),
consider a pair of highest weights of the form,

µ = ((n − 1)a, (n − 2)a, . . . , a, 0) and λ = ((n − 1)b, (n − 2)b, . . . , b, 0),

for some positive integers k, a, b. Then the characters can be expanded as
Vandermonde determinants and we have,

Sµ =
∏
i<j

(xa+1
i − xa+1

j )

and Sλ =
∏
i<j

(xb+1
i − xb+1

j ).

Thus we see that Sµ divides Sλ if (a + 1)|(b + 1).
It would be of interest to give necessary and sufficient criteria on the

highest weights µ and λ to ensure that Sµ divides Sλ.

6. An arithmetical application

We present here an arithmetical application to recovering l-adic represen-
tations. Corollary 1 was motivated by the question of knowing the relationship
between two l-adic representations given that their adjoint representations are
isomorphic. On the other hand, the application to generalised Asai represen-
tations given below was suggested by the work of D. Ramakrishnan. We refer
to [R] for more details.

Let K be a global field and let GK denote the Galois group over K of an
algebraic closure K̄ of K. Let F be a non-archimedean local field of charac-
teristic zero. Suppose

ρi : GK → GLn(F ), i = 1, 2

are continuous, semisimple representations of the Galois group GK into GLn(F ),
unramified outside a finite set S of places containing the archimedean places
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of K. Given ρ, let χρ denote the character of ρ. For each finite place v of K,
we choose a place v̄ of K̄ dividing v, and let σv̄ ∈ GK be the corresponding
Frobenius element. If v is unramified, then the value χρ(σv̄) depends only on
v and not on the choice of v̄, and we will denote this value by χρ(σv).

Given an l-adic representation ρ of GK , we can construct other naturally
associated l-adic representations. We consider here two such constructions:
the first one, is given by the adjoint representation

Ad(ρ) = ρ ⊗ ρ∗ : GK → GLn2(F ),

where ρ∗ denotes the contragredient representation of ρ.
The second construction is a generalisation of Asai representations. Let

K/k be a Galois extension with Galois group G(K/k). Given ρ, we can asso-
ciate the pre-Asai representation,

As(ρ) = ⊗g∈G(K/k)ρ
g,

where ρg(σ) = ρ(g̃σg̃−1), σ ∈ GK , and where g̃ ∈ Gk is a lift of g ∈ G(K/k).
At an unramified place v of K, which is split completely over a place u of k,
the Asai character is given by,

χAs(ρ)(σv) =
∏
v|u

χρ(σv).

Hence, up to isomorphism, As(ρ) does not depend on the choice of the lifts
g̃. If further As(ρ) is irreducible, and K/k is cyclic, then As(ρ) extends to
a representation of Gk (called the Asai representation associated to ρ when
n = 2 and K/k is quadratic).

Theorem 5. Let

ρi : GK → GLn(F ), i = 1, 2,

be continuous, irreducible representations of the Galois group GK into GLn(F ).
Let R be the representation Ad(ρi) (adjoint case) or As(ρi) (Asai case) asso-
ciated to ρi, i = 1, 2.

Suppose that the set of places v of K not in S, where

Tr(R ◦ ρ1(σv)) = Tr(R ◦ ρ2(σv)),

is a set of places of positive density. Assume further that the algebraic envelope
of the image of ρ1 and ρ2 is connected and that the derived group is absolutely
almost simple. Then the following holds:

(1) (Adjoint case) There is a character χ : GK → F ∗ such that ρ2 is isomor-
phic to either ρ1 ⊗ χ or to ρ∗1 ⊗ χ.

(2) (Asai case) There are a character χ : GK → F ∗, and an element g ∈
G(K/k) such that ρ2 is isomorphic to ρg

1 ⊗ χ.
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