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On a vanishing conjecture appearing in
the geometric Langlands correspondence

By D. Gaitsgory*

Introduction

0.1. This paper should be regarded as a sequel to [7]. There it was
shown that the geometric Langlands conjecture for GLn follows from a certain
vanishing conjecture. The goal of the present paper is to prove this vanishing
conjecture.

Let X be a smooth projective curve over a ground field k. Let E be an
m-dimensional local system on X, and let Bunm be the moduli stack of rank
m vector bundles on X.

The geometric Langlands conjecture says that to E we can associate a
perverse sheaf FE on Bunm, which is a Hecke eigensheaf with respect to E.

The vanishing conjecture of [7] says that for all integers n < m, a cer-
tain functor Avd

E , depending on E and a parameter d ∈ Z+, which maps the
category D(Bunn) to itself, vanishes identically, when d is large enough.

The fact that the vanishing conjecture implies the geometric Langlands
conjecture may be regarded as a geometric version of the converse theorem.
Moreover, as will be explained in the sequel, the vanishing of the functor Avd

E

is analogous to the condition that the Rankin-Selberg convolution of E, viewed
as an m-dimensional Galois representation, and an automorphic form on GLn

with n < m is well-behaved.
Both the geometric Langlands conjecture and the vanishing conjecture

can be formulated in any of the sheaf-theoretic situations, e.g., Q�-adic sheaves
(when char(k) �= �), D-modules (when char(k) = 0), and sheaves with coeffi-
cients in a finite field F� (again, when char(k) �= �).

When the ground field is the finite field Fq and we are working with �-adic
coefficients, it was shown in [7] that the vanishing conjecture can be deduced
from Lafforgue’s theorem that establishes the full Langlands correspondence
for global fields of positive characteristic; cf. [9].

*The author is a prize fellow at the Clay Mathematics Institute.
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The proof to be given in this paper treats the cases of various ground
fields and coefficients uniformly, and in particular, it will be independent of
Lafforgue’s results.

However, we will be able to treat only the case of characteristic 0 coeffi-
cients, or, more generally, the case of F�-coefficients when � is > d, where d is
the parameter appearing in the formulation of the vanishing conjecture.

0.2. Let us briefly indicate the main steps of the proof. First, we show
that instead of proving that the functor Avd

E vanishes, it is sufficient to prove
that it is exact, i.e., that it maps perverse sheaves to perverse sheaves. The
{ exactness } → { vanishing } implication is achieved by an argument involv-
ing the comparison of Euler-Poincaré characteristics of complexes obtained by
applying the functor Avd

E for various local systems E of the same rank.
Secondly, we show that the functor Avd

E can be expressed in terms of the
“elementary” functor Av1

E using the action of the symmetric group Σd. (It is
this step that does not allow one to treat the case of F�-coefficients if � ≤ d.)

Thirdly, we define a certain quotient triangulated category D̃(Bunn) of
D(Bunn) by “killing” objects that one can call degenerate. (This notion of
degeneracy is spelled out using what we call Whittaker functors.)

The main properties of the quotient D̃(Bunn) are as follows: (0) D̃(Bunn)
inherits the perverse t-structure from D(Bunn), (1) the Hecke functors defined
on D(Bunn) descend to D̃(Bunn) and are exact, and (2) the subcategory of
objects of D(Bunn) that map to 0 in D̃(Bunn) is orthogonal to cuspidal com-
plexes.

Next we show that properties (0) and (1) above and the irreducibility
assumption on E formally imply that the elementary functor Av1

E is exact on
the quotient category. From that, we deduce that the functor Avd

E is also exact
modulo the subcategory of degenerate sheaves.

Finally, by induction on n we show that Avd
E maps D(Bunn) to the sub-

category of cuspidal sheaves, and, using property (2) above, we deduce that
once Avd

E is exact modulo degenerate sheaves, it must be exact.

0.3. Let us now explain how the the paper is organized. In Section 1
we recall the formulation of the vanishing conjecture. In addition, we discuss
some properties of the Hecke functors.

In Section 2 we outline the proof of the vanishing conjecture, parallel to
what we did above. We reduce the proof to two statements: one is Theo-
rem 2.14 which says that the functor Av1

E is exact on the quotient category,
and the other is the existence of the quotient category D̃(Bunn) with the de-
sired properties.

In Section 3 we prove Theorem 2.14. Sections 4–8 are devoted to the con-
struction of the quotient category and verification of the required properties.
Let us describe the main ideas involved in the construction.
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We start with some motivation from the theory of automorphic functions,
following [12] and [13].

Let K be a global field, and A the ring of adeles. Let P be the mirabolic
subgroup of GLn. It is well-known that there is an isomorphism between the
space of cuspidal functions on P (K)\GLn(A) and the space of Whittaker func-
tions on N(K)\GLn(A), where N ⊂ GLn is the maximal unipotent subgroup.
Moreover, this isomorphism can be written as a series of n − 1 Fourier trans-
forms along the topological group K\A.

In Sections 4 and 5 we develop the corresponding notions in the geomet-
ric context. For us, the space of functions on P (K)\GLn(A) is replaced by
the category D(Bun′

n), and the space of Whittaker functions is replaced by a
certain subcategory in D(Q) (cf. Section 4, where the notation is introduced).

The main result of these two sections is that there exists an exact “Whit-
taker” functor W : D(Bun′

n) → DW (Q). The exactness is guaranteed by an
interpretation of W as a series of Fourier-Deligne transform functors.

In Section 6 we show that the kernel ker(W ) ⊂ D(Bun′
n) is orthogonal to

the subcategory Dcusp(Bun′
n) of cuspidal sheaves.

In Section 7 we define the action of the Hecke functors on D(Bun′
n) and

DW (Q), and show that the Whittaker functor W commutes with the Hecke
functors. The key result of this section is Theorem 7.8, which says that the
Hecke functor acting on DW (Q) is right-exact. This fact ultimately leads to
the desired property (1) above, that the Hecke functor is exact on the quotient
category.

Finally, in Section 8 we define our quotient category D̃(Bunn).

0.4 Conventions. In the main body of the paper we will be working over a
ground field k of positive characteristic p (which can be assumed algebraically
closed) and with �-adic sheaves. All the results carry over automatically to the
D-module context for schemes over a ground field of characteristic 0, where
instead of the Artin-Schreier sheaf we use the corresponding D-module “ex”
on the affine line. This paper allows us to treat the case of F� coefficients,
when � > d (cf. below) in exactly the same manner.

We follow the conventions of [7] in everything related to stacks and derived
categories on them. In particular, for a stack Y of finite type, we will denote
by D(Y) the corresponding bounded derived category of sheaves on Y. If Y is
of infinite type, but has the form Y = ∪

i
Yi, where Yi is an increasing family

of open substacks of finite type (the basic example being Bunn), D(Y) is by
definition the inverse limit of D(Yi).

Throughout the paper we will be working with the perverse t-structure on
D(Y), and will denote by P(Y) ⊂ D(Y) the abelian category of perverse sheaves.
For F ∈ D(Y), we will denote by hi(F) its perverse cohomology sheaves.

For a map Y1 → Y2 and F ∈ D(Y2) we will sometimes write F|Y1 for the
∗ pull-back of F on Y1.
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For a group Σ acting on Y we will denote by DΣ(Y) the corresponding
equivariant derived category. In most applications, the group Σ will be finite,
which from now on we will assume.

If the action of Σ on Y is trivial, we have the natural functor of invari-
ants F �→ (F)Σ : DΣ(Y) → D(Y). This functor is exact when we work with
coefficients of characteristic zero, or when the order of Σ is co-prime with the
characteristic.

The exactness of this functor is crucial for this paper, and it is the reason
why we have to assume that � > d, since the finite groups in question will be
the symmetric groups Σd′ , d′ ≤ d.

0.5. Acknowledgments. I would like to express my deep gratitude to
V. Drinfeld for his attention and many helpful discussions. His ideas are present
in numerous places in this paper. In particular, the definition of Whittaker
functors, which is one of the main technical tools, follows a suggestion of his.

I would also like to thank D. Arinkin, A. Beilinson, A. Braverman,
E. Frenkel, D. Kazhdan, I. Mirković, V. Ostrik, K. Vilonen and
V. Vologodsky for moral support and stimulating discussions, and especially
my thesis adviser J. Bernstein, who has long ago indicated the ideas that are
used in the argument proving Theorem 2.14.

1. The conjecture

1.1. We will first recall the formulation of the Vanishing Conjecture, as
it was stated in [7]. Let Bunn be the moduli stack of rank n vector bundles
on our curve X. Let Modd

n denote the stack classifying the data of (M, M′, β),
where M, M′ ∈ Bunn, and β is an embedding M ↪→ M′ as coherent sheaves,
and the quotient M′/M (which is automatically a torsion sheaf) has length d.

We have the two natural projections

Bunn

←
h←− Modd

n

→
h−→ Bunn,

which remember the data of M and M′, respectively.
Let X(d) denote the d-th symmetric power of X. We have a natural map

s : Modd
n → X(d), which sends a triple (M, M′, β) to the divisor of the map

Λn(M) → Λn(M′). In addition, we have a smooth map s : Modd
n → Cohd

0,
where Cohd

0 is the stack classifying torsion coherent sheaves of length d. The
map s sends a triple as above to M′/M.

Recall that to a local system E on X, Laumon associated a perverse sheaf
Ld

E ∈ P(Cohd
0). The pull-back s∗(Ld

E) (which is perverse up to a cohomological
shift) can be described as follows:
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Let
◦
Xd denote the complement to the diagonal divisor in X(d). Let

◦
Modd

n

denote the preimage of
◦
Xd under s, and let

◦
s :

◦
Modd

n →
◦
Xd be the corre-

sponding map. Unlike s, the map
◦
s is smooth. Finally, let j denote the open

embedding of
◦

Modd
n into Modd

n.
Consider the symmetric power of E as a sheaf E(d) ∈ D(X(d)), and let

◦
E(d) denote its restriction to

◦
Xd. It is easy to see that

◦
E(d) is lisse.

We have:

s∗(Ld
E) 	 j!∗

(
◦
s∗(

◦
E(d))

)
.(1)

1.2. We introduce the averaging functor Avd
E : D(Bunn) → D(Bunn) as

follows:

F ∈ D(Bunn) �→
←
h !

(→
h∗(F) ⊗ s∗(Ld

E)
)

[nd].

Let us note immediately, that this functor is essentially Verdier self-dual,
in the sense that

D(Avd
E(F)) 	 Avd

E∗(D(F)),

where E∗ is the dual local system. This follows from the fact that the map

s×
→
h : Modd

n → Cohd
0 ×Bunn is smooth of relative dimension nd, and the map

←
h is proper.

The following conjecture was proposed in [7]:

Conjecture 1.3. Assume that E is irreducible, of rank > n. Then for d,
which is greater than (2g − 2) · n · rk(E), the functor Avd

E is identically equal
to zero.

1.4. Let us discuss some rather tautological reformulations of Conjec-

ture 1.3. Consider the map
←
h ×

→
h : Modd

n → Bunn ×Bunn; it is representable,

but not proper, and set Kd
E := (

←
h ×

→
h)!(s∗(Ld

E)) ∈ D(Bunn ×Bunn).
Let M ∈ Bunn be a geometric point (corresponding to a morphism denoted

ιM : Spec(k) → Bunn), and let δM ∈ D(Bunn) be (ιM)!(Ql). Note that since
the stack Bunn is not separated, ιM need not be a closed embedding; therefore,
δM is a priori a complex of sheaves.

Lemma 1.5. The vanishing of the functor Avd
E is equivalent to each of

the following statements:

(1) For every M ∈ Bunn, the object Avd
E(δM) ∈ D(Bunn) vanishes.

(2) The object Kd
E ∈ D(Bunn ×Bunn) vanishes.
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Proof. First, statements (1) and (2) above are equivalent: For M, the stalk
of Avd

E(δM) at M′ ∈ Bunn is isomorphic to the stalk of Kd
E at (M × M′) ∈

Bunn ×Bunn.
Obviously, Conjecture 1.3 implies statement (1). Conversely, assume that

statement (1) above holds. Let Av−d
E∗ be the (both left and right) adjoint

functor of Avd
E ; explicitly,

Av−d
E∗(F) =

→
h !

(←
h∗(F) ⊗ s∗(Ld

E∗)
)

[nd].

It is enough to show that Av−d
E∗ identically vanishes. However, by adjoint-

ness, for an object F ∈ D(Bunn), the co-stalk of Av−d
E∗(F) at M ∈ Bunn is

isomorphic to RHomD(Bunn)(Avd
E(δM), F).

1.6. The assertion of the above conjecture is a geometric analog of the
statement that the Rankin-Selberg convolution L(π, σ), where π is an auto-
morphic representation of GLn and σ is an irreducible m-dimensional Galois
representation with m > n, has an analytic continuation and satisfies a func-
tional equation.

More precisely, let X be a curve over a finite field, and K the corresponding
global field. Then it is known that the double quotient

GLn(K)\GLn(A)/GLn(O)

can be identified with the set (of isomorphism classes) of points of the stack
Bunn.

By passing to the traces of the Frobenius, we have a function-theoretic
version of the averaging functor; let us denote it by Funct(Avd

E), which is now
an operator from the space of functions on GLn(K)\GLn(A)/GLn(O) to itself.

Now, let fπ be a spherical vector in some unramified automorphic repre-
sentation π of GLn(A). One can show that

Σ
d≥0

Funct(Avd
E)(fπ) = L(π, E) · fπ,(2)

where the L-function L(π, E) is regarded as a formal series in d.
The assertion of Conjecture 1.3 implies that the above series is a polyno-

mial of degree ≤ m · n · (2g − 2). And this is the same estimate as the one
following from the functional equation, which L(π, E) is supposed to satisfy.

1.7. In the rest of this section we will make several preparatory steps
towards the proof of Conjecture 1.3.

Recall that the Hecke functor H : D(Bunn) → D(X × Bunn) is defined
using the stack H = Mod1

n, as

F �→ (s ×
←
h)!(

→
h∗(F))[n].
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In the sequel it will be important to introduce parameters in all our con-
structions. Thus, for a scheme S, we have a similarly defined functor

HS : D(S × Bunn) → D(S × X × Bunn).

For an integer d let us consider the d-fold iteration HS×Xd−1 ◦ · · · ◦ HS×X

◦HS , denoted

H�d
S : D(S × Bunn) → D(S × Xd × Bunn).

Proposition 1.8. The functor H�d
S maps D(S×Bunn) to the equivariant

derived category DΣd(S×Xd×Bunn), where Σd is the symmetric group acting
naturally on Xd.

Proof. In the proof we will suppress S to simplify the notation. Let
ItModd

n denote the stack of iterated modifications; i.e., it classifies the data of
a pair of vector bundles M, M′ ∈ Bunn together with a flag

M = M0 ⊂ M1 ⊂ · · · ⊂ Md = M′,

where each Mi/Mi−1 is a torsion sheaf of length 1.

Let r denote the natural map ItModd
n → Modd

n, and let
←̃
h and

→̃
h be the

two maps from ItModd
n to Bunn equal to

←
h ◦ r and

→
h ◦ r, respectively. We

will denote by s̃ the map ItModd
n → Xd, which remembers the supports of the

successive quotients Mi/Mi−1.
It is easy to see that the functor F �→ H�d(F) can be rewritten as

F �→ (s̃ ×
←̃
h)!(

→̃
h∗(F))[nd].(3)

We will now introduce a stack intermediate between Modd
n and ItModd

n.
Consider the Cartesian product

IntModd
n := Modd

n ×
X(d)

Xd.

Note that IntModd
n carries a natural action of the symmetric group Σd via its

action on Xd. Let
˜̃←
h,

˜̃→
h be the corresponding projections from IntModd

n to
Bunn, and ˜̃s the map IntModd

n → Xd. All these maps are Σd-invariant.
We have a natural map rInt : ItModd

n → IntModd
n.

Lemma 1.9. The map rInt is a small resolution of singularities.

The proof of this lemma follows from the fact that IntModd
n is squeezed

between ItModd
n and Modd

n, and the fact that the map r : ItModd
n → Modd

n is
known to be small from the Springer theory, cf. [2].
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Hence, the direct image of the constant sheaf on ItModd
n under rInt is iso-

morphic to the intersection cohomology sheaf ICIntModd
n
, up to a cohomological

shift.
Therefore, by the projection formula, the expression in (3) can be rewrit-

ten as

(˜̃s × ˜̃←
h)!

(˜̃→
h∗(F) ⊗ ICIntModd

n

)
[−dim(Bunn)].(4)

However, since the map
˜̃→
h is Σd-invariant, and ICIntModd

n
is a Σd-equivariant

object of D(IntModd
n), we obtain that

˜̃→
h∗(F)⊗ ICIntModd

n
is naturally an object

of DΣd(IntModd
n). Similarly, since the map

˜̃←
h is Σd-invariant, the expression

in (4) is naturally an object of DΣd(Bunn).

1.10. Let ∆(X) ⊂ Xi be the main diagonal. Obviously, the symmetric
group Σi acting on Xi stabilizes ∆(X). Hence, for an object F ∈ DΣi(S ×
Xi × Bunn), it makes sense to consider

HomΣi
(ρ, F|S×∆(X)×Bunn

) ∈ D(S × X × Bunn)

for various representations ρ of Σi. In particular, let us consider the following
functor D(S × Bunn) → D(S × X × Bunn) that sends F to

HomΣi
(sign, H�i

S (F)|S×∆(X)×Bunn
),

where sign is the sign representation of Σi.
The following has been established in [7]:

Proposition 1.11. The functor

F �→ HomΣi
(sign, H�i

S (F)|S×∆(X)×Bunn
)

is zero if i > n and for i = n it is canonically isomorphic to

F �→ (idS ×m)∗(F)[n],

where m : X ×Bunn → Bunn is the multiplication map, i.e., m(x,M) = M(x).

Proof. Again, to simplify the notation we will suppress the scheme S.
Let Modi,∆

n denote the preimage of ∆(X) ⊂ Xi inside IntModi
n. Note

that the symmetric group Σi acts trivially on Modi,∆
n , and the ∗-restriction

ICIntModi
n
|Modi,∆

n
is a Σi-equivariant object of D(Modi,∆

n ).
Note also that for i = n, Modi,∆

n contains X ×Bunn as a closed subset via

(x,M) �→ (M, M(x), xi) ∈ Modi
n ×

X(i)
Xi.
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The following is also a part of the Springer correspondence; cf. [2, §3]:

Lemma 1.12. The object

HomΣi
(sign, ICIntModi

n
|Modi,∆

n
)

is zero if i > n, and for i = n it is isomorphic to the constant sheaf on
X × Bunn ⊂ Modi,∆

n cohomologically shifted by [dim(Bunn) + n].

This lemma and the projection formula imply the proposition.

1.13. We will now perform manipulations analogous to the ones of
Proposition 1.8 and Proposition 1.11 with the averaging functor Avd

E .
Let us observe that for d = 1, the averaging functor can be described as

follows:
Av1

E(F) 	 p!(H(F) ⊗ q∗(E)),

where p and q are the projections X × Bunn → Bunn and X × Bunn → X,
respectively.

We introduce the functor ItAvd
E : D(Bunn) → D(Bunn) as a d-fold itera-

tion of Av1
E .

Proposition 1.14. The functor ItAvd
E maps D(Bunn) to the equivariant

derived category DΣd(Bunn).

Proof. First, it is easy to see that ItAvd
E(F) can be rewritten as

p!(H�d(F) ⊗ q∗(E�d)),

where p, q are the two projections from Xd × Bunn to Bunn and Xd, respec-
tively.

Hence, the assertion that ItAvd
E(F) naturally lifts to an object of the

equivariant derived category DΣd(Bunn) follows from Proposition 1.8.

The next assertion allows us to express the functor Avd
E via Av1

E . This
is the only essential place in the paper where we use characteristic zero coeffi-
cients.

Proposition 1.15. There is a canonical isomorphism of functors

Avd
E(F) 	 (ItAvd

E(F))Σd .

Proof. The following lemma was proved in the original paper of Laumon
(cf. [10]):

Lemma 1.16. The direct image Sprd
E := r!(s̃∗(E�d)) ∈ D(Modd

n) is natu-
rally Σd-equivariant. Moreover,

s∗(Ld
E) 	 (Sprd

E)Σd .
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Using the projection formula and the lemma, we can rewrite ItAvd
E(F) as

←
h !(

→
h∗(F) ⊗ Sprd

E)[nd].

(It is easy to see that the Σd-equivariant structure on ItAvd
E(F), which arises

from the last expression is the same as the one constructed before.)
Using Lemma 1.16 we conclude the proof.

2. Strategy of the proof

In this section we will reduce the assertion of Conjecture 1.3 to a series of
theorems, which will be proved in the subsequent sections.

2.1. By induction we will assume that Conjecture 1.3 holds for all n′

with n′ < n. We will deduce Conjecture 1.3 for n from the following weaker
statement:

Theorem 2.2. Let E, n and d be as in Conjecture 1.3. Then the functor
Avd

E : D(Bunn) → D(Bunn) is exact in the sense of the perverse t-structure.

First we will prove that Theorem 2.2 implies Conjecture 1.3. In fact, we
will give two proofs: the one discussed below is somewhat simpler, but at
some point it resorts to some nontrivial results from the classical theory of
automorphic functions. The second proof, which is due to A. Braverman, will
be given in the appendix.

Thus, let us assume that Theorem 2.2 holds. Using Lemma 1.5(1), to
prove Conjecture 1.3, it suffices to show that Avd

E(F) = 0, whenever F is a
perverse sheaf, which appears as a constituent in some δM for M ∈ Bunn. Set
F′ = Avd

E(F). By Theorem 2.2, we know that F′ is perverse.

Lemma 2.3. To show that a perverse sheaf F′ on a stack Y vanishes, it is
sufficient to show that the Euler -Poincaré characteristics of its stalks F′

y at all
y ∈ Y are zero.

Proof. If F′ �= 0, there exists a locally closed substack Y0 ⊂ Y, such that
F′|Y0 is a lisse sheaf, up to a cohomological shift. But then the Euler-Poincaré
characteristics of F′ on Y0 are obviously nonzero.

Now we have the following assertion, which states that the Euler-Poincaré
characteristics of Avd

E(F) do not depend on the local system.

Lemma 2.4. Let E′ be any other local system on X (irreducible or not)
with rk(E′) = rk(E). Then the pointwise Euler -Poincaré characteristics of
Avd

E(F) and Avd
E′(F) are the same for any F ∈ D(Bunn).
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Proof. We will deduce the lemma from the following theorem of Deligne,
cf. [8]:

Let f : Y1 → Y2 be a proper map of schemes, and let S and S′ be two
objects of D(Y1), which are étale-locally isomorphic. Then the Euler -Poincaré
characteristics of f!(S) and f!(S′) at all points of Y2 coincide.

We apply this theorem in the following situation:

Y2 = Bunn, Y1 = Modd
n, S :=

→
h∗(F)⊗ s∗(Ld

E), S′ :=
→
h∗(F)⊗ s∗(Ld

E′), and

f =
←
h .
The assertion of the lemma follows from the fact that s∗(Ld

E) and s∗(Ld
E′)

are étale-locally isomorphic, because E and E′ are.

Thus, it suffices to show that for our F ∈ P(Bunn) and some local system
E′ of rank equal to that of E, the Euler-Poincaré characteristics of the stalks
of Avd

E′(F) vanish.
When we are working in the �-adic situation over a finite field, the required

fact was established in [7] where we exhibited a local system E′, for which the
functor Avd

E′ was zero.1

In particular, we obtain that in the �-adic situation over a finite field
the vanishing of the Euler-Poincaré characteristics takes place when E′ is the
trivial local system.

Using the fact that our initial perverse sheaf F was of geometric origin,
the standard reduction argument (cf. [1, §6.1.7]) implies the vanishing of the
Euler-Poincaré characteristics for the trivial local system in the setting of
�-adic sheaves over any ground field, and, when the field equals C, also for
constructible sheaves with complex coefficients.

By the Riemann-Hilbert correspondence, this translates to the required
vanishing statement in the setting of D-modules over C, and, hence, over any
field of characteristic zero.

2.5. Thus, from now on, our goal will be to prove Theorem 2.2. In view
of Proposition 1.15, a natural idea would be to show that the “elementary”
functor Av1

E is exact. The latter, however, is false.
Recall that Av1

E is a composition of H : D(Bunn) → D(X×Bunn) followed
by the functor F �→ p!(q∗(E) ⊗ F) : D(X × Bunn) → D(Bunn).

As it turns out, the source of the nonexactness of Av1
E is the fact that

the Hecke functor H is not exact, except when n = 1. Therefore, we will first
consider the latter case, which would be the prototype of the argument in
general.

1This part of the argument will be replaced by a different one in the appendix.
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2.6. The case n = 1. Of course, the assertion of Conjecture 1.3 in this
case is known, cf. [5]. However, the proof we give below is completely different.

First, let us note that it is indeed sufficient to show that the functor Av1
E

is exact:
The exactness of Av1

E implies that the functor ItAvd
E is exact for any

d. Since the coefficients of our sheaves are of characteristic 0, from Proposi-
tion 1.15 we obtain that Avd

E is a direct summand of ItAvd
E , and, therefore, is

exact as well.
To prove that Av1

E is exact, it is enough to show that for an irreducible
perverse sheaf F, Av1

E(F) has no cohomologies above 0 (because Av1
E is essen-

tially Verdier self-dual).
For n = 1, Bunn is the Picard stack Pic, and the Hecke functor can be

identified with the pull-back F �→ m∗(F)[1], where m : X × Pic → Pic is the
multiplication map. We have:

Av1
E(F) 	 p!(m∗(F)[1] ⊗ q∗(E)),

where p and q are the two projections X × Pic to Pic and X, respectively.
Since the map m is smooth, the sheaf m∗(F)[1] is also perverse and

irreducible,2 and m∗(F)[1] ⊗ q∗(E) is perverse. Since p is a projection with
1-dimensional fibers, it is enough to show that

h1 (p! (m∗(F)[1] ⊗ q∗(E))) = 0.

We will argue by contradiction. If F1 = h1 (p! (m∗(S)[1] ⊗ q∗(E))) �= 0, by
adjunction we have a surjective map

m∗(F)[1] ⊗ q∗(E) → p∗(F1)[1],(5)

which gives rise to a map

m∗(F)[1] → E∗[1] � F1.(6)

Since E was assumed irreducible, sub-objects of the right-hand side of
(6) are in bijection with sub-objects of F1. Therefore, since the map of (5) is
surjective, so is the map in (6). By the irreducibility of F, it must, therefore,
be an isomorphism.

We claim that this cannot happen if the rank of E is greater than 1.
Indeed, let us consider the pull-back

(id×m)∗ (m∗(F)) [2] ∈ P(X × X × Pic).

On the one hand, we know that it is isomorphic to E∗[1] � m∗(F1)[1]. On
the other hand, it is equivariant with respect to the permutation group Σ2

acting on X × X.

2The fact that we can control irreducibility under the Hecke functors is another simplifi-
cation of the n = 1 case.
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Lemma 2.7. Let S be an irreducible perverse sheaf on a variety of the form
X ×X × Y, which, on the one hand, is Σ2-equivariant, and on the other hand,
has a form E[1]�S′, where E is an irreducible local system, and S′ ∈ P(X×Y).
Then S must be of the form S 	 E[1] � E[1] � S′′; moreover the Σ2-equivariant
structure on S is the standard one on E[1]�E[1] times some Σ2-action on S′′.

Proof. Let q and p be the projections from X×Y to X and Y, respectively.
It is enough to show that

h1
(
p!(S′ ⊗ q∗(E∗))

)
�= 0.

For i = 1, 2 let qi be the projection X ×X ×Y → X on the i-th factor, and let
pi be the complementary projection on X × Y. We have

E � p!(S′ ⊗ q∗(E∗)) 	 p2!(S ⊗ q∗2(E
∗)),

which, due to the Σ2-equivariance assumption, is isomorphic to p1!(S⊗q∗1(E
∗)).

The latter has nontrivial cohomology in dimension 1.

Thus, from the lemma, we obtain that (id×m)∗ (m∗(F)) has the form
E∗ � E∗ � F′′. Let us restrict (id×m)∗ (m∗(F)) to the diagonal (∆ × id) :
X × Pic ⊂ X × X × Pic, and take Σ2 anti-invariants.

On the one hand, from Proposition 1.11 (which is especially easy in the
n = 1 case) we know that for any F ∈ D(Pic),

HomΣ2

(
sign, (id×m)∗ (m∗(F)) |X×Pic

)
= 0.

But on the other hand, (id×m)∗ (m∗(F)) |X×Pic 	 (E∗)⊗2�F′′, and taking
Σ2 anti-invariants we obtain(

Sym2(E∗) � HomΣ2

(
sign, F′′)) ⊕

(
Λ2(E∗) � (F′′)Σ2

)
.

Now, since rk(E) > 1, neither Λ2(E∗) nor Sym2(E∗) is 0; therefore, the entire
expression cannot vanish.

2.8. The key fact used in the above argument was that the Hecke functor,
which in this case acts as F �→ m∗(F)[1], is exact.

For n ≥ 1, our approach will consist of making the Hecke functors exact
by passing to a quotient triangulated category.

Recall that if C is a triangulated category, and C′ ⊂ C is a full triangulated
subcategory, one can form a quotient C/C′. This quotient is a triangulated
category endowed with a projection functor

C → C/C′,

which is universal with respect to the property that it makes any arrow S1 → S2

in C, whose cone belongs to C′, into an isomorphism.
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Note that the inclusion of C′ into ker(C → C/C′) is not necessarily an
equivalence. Rather, ker(C → C′) is the full subcategory, consisting of objects,
which appear as direct summands of objects of C′.

Suppose now that C is endowed with a t-structure. Let P(C) be the cor-
responding abelian subcategory, and let C′ ⊂ C be as above.

Definition 2.9. We say that C′ is compatible with the t-structure if

(1) P(C′) := P(C) ∩ C′ is a Serre subcategory of P(C).3

(2) If an object S ∈ C belongs to C′, then so do its cohomological truncations
τ≤0(S) and τ>0(S).

A typical way of producing categories C′ satisfying this definition is given
by the following lemma:

Lemma 2.10. Let C1, and C2 be two triangulated categories endowed with
t-structures. Let F : C1 → C2 be a functor, which is t-exact. Then C′

1 :=
ker(F ) ⊂ C1 is compatible with the t-structure.

The following proposition is in some sense a converse to the above lemma:

Proposition 2.11. Let C be as above, and C′ ⊂ C be compatible with
the t-structure. Then the quotient category C̃ := C/C′ carries a canonical
t-structure, such that

(1) The projection functor C → C̃ is exact.

(2) The abelian category P(C̃) identifies with the Serre quotient P(C)/ P(C′).

Proof. Let S be an object of C, viewed as an object of the quotient category
C/C′. We say that it belongs to C̃≤0 (resp., C̃>0) if τ>0(S) (resp., τ≤0(S))
belongs to C′.

If S1 → S2 is a morphism, whose cone belongs to C′, it is easy to see that
S1 belongs to C̃≤0 (resp., C̃>0) if and only if S2 does.

We have to check now that if S1∈ C̃≤0, and S2∈ C̃>0, then Hom
C̃
(S1, S2)=0.

Indeed, with no restriction of generality, by applying the cohomological
truncation functor, we can assume that S1 is represented by an object of C,
which lies in C≤0, and S2 is represented by an object, which belongs to C>0.

Each element of the Hom group can be represented by a diagram

S1 ← S3 → S2,

3Recall that a Serre subcategory of an abelian category is a full subcategory stable under
taking sub-objects and extensions.
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where the cone of S3 → S1 belongs to C′. Hence, this diagram can be replaced
by an equivalent one

S1 ← τ≤0(S3) → S2,

where τ is the cohomological truncation.
But now, any map τ≤0(S3) → S2 is zero already in C, since S2 ∈ C>0.
The projection C → C̃ is exact by construction. By the universal property

of the Serre quotient, we have a functor P(C)/ P(C′) → P(C̃). Again, by
construction, this functor is surjective on objects, and to prove that it is fully-
faithful it is sufficient to show that for S1, S2 ∈ P(C) a map S1 → S2 is an
isomorphism in P(C̃) if and only if its kernel and cokernel belong to P(C′).

Let S denote the cone of this map, regarded as an object of C. By as-
sumption, it belongs to C′; therefore h0(S) and h1(S) both belong to C′, by
Definition 2.9. But the above h0(S) and h1(S), both of which are objects of
C′ ∩ P(C) = P(C′), are the kernel and cokernel, respectively, of S1 → S2.

2.12. Thus, our strategy will be to find an appropriate quotient category
of D(Bund). More precisely, we will construct for every base S a category
D̃(S ×Bunn), which is the quotient of D(S ×Bunn) by a triangulated subcat-
egory Ddegen(S × Bunn), such that Ddegen(S × Bunn) is compatible with the
perverse t-structure, and such that the following properties will hold:

Property 0. The categories D(S × Bunn) inherit the standard four func-
tors. In other words, for a map of schemes f : S1 → S2 the four direct and
inverse image functors D(S1×Bunn) � D(S2×Bunn) preserve the correspond-
ing subcategories, and thus define the functors D̃(S1×Bunn) � D̃(S2×Bunn).
Moreover, the same is true for the Verdier duality functor on D(S × Bunn),
and for the functor D(S)×D(S ×Bunn) → D(S ×Bunn), given by the tensor
product along S.

Property 1. The Hecke functor HS : D(S × Bunn) → D(S × X × Bunn)
preserves the corresponding triangulated subcategories, and the resulting func-
tor

H̃S : D̃(S × Bunn) → D̃(S × X × Bunn)

is exact.

Property 2. There exists an integer d0 large enough such that the follow-
ing holds: if F1 ∈ D(Bunn) is supported on the connected component Bund

n

with d ≥ d0 (cf. §7.8) for our conventions regarding the connected components
of the stack Bunn, and is cuspidal (cf. [7] or §6 for the notion of cuspidality),
and F2 ∈ Ddegen(Bunn), then the Hom group HomD(Bunn)(F1, F2) vanishes.
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2.13. Assuming the existence of such a family of quotient categories, we
will now derive Theorem 2.2.

First, let us observe that the functor Av1
E : D(Bunn) → D(Bunn) descends

to a functor Ãv
1

E : D̃(Bunn) → D̃(Bunn).
Indeed, according to Section 1.13, the functor Av1

E is the composition of

H̃ : D̃(Bunn) → D̃(X × Bunn),

well-defined according to Property 1 above, followed by a functor D̃(X ×
Bunn) → D̃(Bunn) that sends S ∈ D(X × Bunn) to p!(q∗(E) ⊗ S), which
is well-defined due to Property 0 (the maps p and q here are as in §1.13).

The first step in the proof of Theorem 2.2 is the following theorem, which
is the key result of this paper. The proof will be given in the next section, and
it mimics the argument for the n = 1 case, discussed above.

Theorem 2.14. The functor Ãv
1

E : D̃(Bunn) → D̃(Bunn) is exact.

To state a corollary of Theorem 2.14, which we will actually use in the
proof of Theorem 2.2, we need to make some preparations.

Let S be a base and Σ a finite group acting on S. (Here it becomes
important that the characteristic of the coefficients of our sheaves is either 0
or coprime with |Σ|.) We define the category D̃

Σ
(S ×Bunn) as the quotient of

the equivariant derived category DΣ(S×Bunn) by the triangulated subcategory
DΣ

degen(S×Bunn) equal to the preimage of Ddegen(S×Bunn) under the forgetful
functor

DΣ(S × Bunn) → D(S × Bunn).

The quotient acquires a t-structure, according to Lemma 2.10 and Proposi-
tion 2.11.

Let P̃
Σ
(S × Bunn) be the corresponding abelian subcategory in

D̃
Σ
(S × Bunn). By construction, this is the quotient of PΣ(S × Bunn) by

a Serre subcategory consisting of objects, whose image in P̃(S×Bunn) is zero.
In the applications we will take S = Xd and Σ to be the symmetric

group Σd.
Assume now that the action of Σ on S is actually trivial. Then we have the

functor of invariants denoted F �→ (F)Σ from DΣ(S×Bunn) to D(S×Bunn). We

claim that it descends to a well-defined functor D̃
Σ
(S×Bunn) → D̃(S×Bunn).

Indeed, for an object F ∈ DΣ(S ×Bunn), its image under the forgetful functor
DΣ(S ×Bunn) → D(S ×Bunn) contains (F)Σ as a direct summand. (In fact,

in the case of a trivial action, every object of D̃
Σ
(S×Bunn) can be canonically

written as ⊕
ρ

Sρ ⊗ ρ, where ρ runs over the set of irreducible representations of

Σ, and Sρ is an object of D̃(S × Bunn).)
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That said, first, from Proposition 1.8 we obtain that the functor

H�d
S : D(S × Bunn) → DΣd(S × Xd × Bunn)

gives rise to a functor H̃
�d

S : D̃(S × Bunn) → D̃
Σd(S × Xd × Bunn).

Secondly, from Proposition 1.11 we obtain that the functor

(idS ×m)∗ : D(S × Bunn) → D(S × X × Bunn)

descends to a well-defined functor D̃(S × Bunn) → D̃(S × X × Bunn), which
is isomorphic to

S �→ HomΣi

(
sign, H̃

�i

S (S)|S×∆(X)×Bunn

)
[−n];(7)

for i = n, and for i > n the latter functor is zero.
Thirdly, from Proposition 1.15, we obtain that the functor

ItAvd
E : D(Bunn) → DΣd(Bunn)

gives rise to a functor ĨtAv
d

E : D̃(Bunn) → D̃
Σd(Bunn).

And finally, we obtain that the functor Avd
E : D(Bunn) → D(Bunn) gives

rise to a well-defined functor Ãv
d

E : D̃(Bunn) → D̃(Bunn) with

Ãv
d

E(S) 	 (ĨtAv
d

E(S))Σd .(8)

Now Theorem 2.14 implies the following:

Corollary 2.15. The functor Ãv
d

E : D̃(Bunn) → D̃(Bunn) is exact.

Proof. Theorem 2.14 readily implies that the functor ĨtAv
d

E is exact.
Since the functor F �→ (F)Σd : DΣd(Bunn) → D(Bunn) is exact (which

follows from our assumption on the characteristic of the coefficients), we obtain

that the same is true for the corresponding functor D̃
Σd(Bunn) → D̃(Bunn).

Hence, the assertion follows from (8).

2.16. We proceed with the proof of Theorem 2.2 modulo the existence of
the categories D̃(S × Bunn) and Theorem 2.14, and the induction hypothesis
that Conjecture 1.3 holds for all n′ < n. The following assertion is essentially
borrowed from [7]:

Lemma 2.17. For any F ∈ D(Bunn), the object Avd
E(F) is cuspidal, pro-

vided that d > (2g − 2) · n · rk(E).

Proof. We have to show that the constant term functors CTn
n1,n2

(Avd
E(F))

all vanish.
However, it was shown in [7], Lemma 9.8, that CTn

n1,n2
(Avd

E(F)) is an
extension of objects of the form

(Avd1
E �Avd2

E )(CTn
n1,n2

(F)),
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for all possible d1, d2 ≥ 0, d1 + d2 = d, where Avd1
E �Avd2

E denotes the corre-
sponding functor D(Bunn1 ×Bunn2) → D(Bunn1 ×Bunn2).

However, for every pair d1, d2 as above, at least one of the parameters
satisfies di > (2g − 2) · ni · rk(E). Hence, the corresponding functor Avdi

E :
D(Bunni

) → D(Bunni
) vanishes by the induction hypothesis.

Now we are ready to finish the proof of Theorem 2.2. Since Avd
E is essen-

tially Verdier self-dual, it is enough to show that Avd
E is right-exact.

We can assume that we start with a perverse sheaf F supported on Bund′

n

with d′ ≥ d + d0, and we have to show that Avd
E(F) ∈ P(Bund′−d

n ) has no
cohomologies in degrees > 0.

Suppose not, and let

Avd
E(F) → τ>0(Avd

E(F))

be the truncation map. This map cannot be zero, unless τ>0(Avd
E(F)) vanishes.

By Lemma 2.17, we know that Avd
E(F) is cuspidal. On the other hand, by

Corollary 2.15, we know that τ>0(Avd
E(F)) projects to zero in D̃(Bunn). This

is a contradiction in view of Property 2 of D̃(Bunn).

3. The symmetric group argument

The goal of this section is to prove Theorem 2.14, assuming the existence
of the quotient categories D̃(S × Bunn) which satisfy Properties 0 and 1 of
Section 2.12.

3.1. Since the situation is essentially Verdier self-dual, it would be suffi-
cient to prove that the functor Ãv

1

E : D̃(Bunn) → D̃(Bunn) is right-exact.
Let us suppose that it is not in order to arrive at a contradiction.
By definition, the functor Ãv

1

E is a composition of an exact functor

H̃ : D̃(Bunn) → D̃(X × Bunn)

followed by the functor

S �→ p!(q∗(E) ⊗ S) : D̃(X × Bunn) → D̃(Bunn)

of cohomological amplitude [−1, 1]. Thus, S �→ h1(Ãv
1

E(S)) is a right-exact
functor P̃(Bunn) → P̃(Bunn).

Similarly, the amplitude of ĨtAv
i

E : D̃(Bunn) → D̃(Bunn) is at most [−i, i],

and S �→ hi(ĨtAv
i

E(S)) is a right-exact functor P̃(Bunn) → P̃
Σi(Bunn).

Proposition-Construction 3.2. For S ∈ P̃(Bunn), there is a natural

map in P̃
Σi(Xi × Bunn):

H̃
�i

(S) → (E∗)�i[i] � hi(ĨtAv
i

E(S)).

When E is irreducible, the above map is surjective.
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Proof. The adjointness of the functors p!, p! : D(Xi × Bunn) � D(Bunn)
gives rise to a pair of mutually adjoint functors P(Xi × Bunn) � P(Bunn)
given by

F′ �→ hi(p!(F′)) and F �→ p∗(F)[i],

(the former being the left adjoint of the latter). Since Xi is smooth and
connected, for F ∈ P(Bunn), every sub-quotient of p∗(F)[−i] is of the form
p∗(′F)[−i], where ′F is a sub-quotient of F. This implies that for any F′ ∈
P(Xi × Bunn), the adjunction morphism F′ → p∗

(
hi(p!(F′))

)
[i] is surjective.

We have another pair of mutually adjoint functors between the same cat-
egories:

F′ �→ hi
(
p!

(
q∗(E�i) ⊗ F′

))
and F �→ (E∗)�i[i] � F,

and, when E is irreducible, the adjunction map

F′ �→ (E∗)�i[i] � hi
(
p!

(
q∗(E�i) ⊗ F′

))
is also surjective which follows from the next lemma:

Lemma 3.3. If for F′ ∈ P(Xi × Bunn) and F′′ ∈ P(Bunn) there is a
surjective map q∗(E�i)⊗(F′) → p∗(F′′)[i], and E is irreducible, then the adjoint
map

F′ → (E∗)�i[i] � F′′

is also surjective.

Moreover, the same assertions remain true for the corresponding functors
that act on the level of equivariant categories: PΣi(Xi ×Bunn) � PΣi(Bunn).

By passing to the quotient D̃
Σi(Xi × Bunn), and using Property 0 of the

quotient categories, for every S′ ∈ D̃
Σi(Xi ×Bunn) we obtain a functorial map

S′ → (E∗)�i[i] � hi
(
p!

(
q∗(E�i) ⊗ S′

)
)
)

,

which is surjective if E is irreducible.
By now setting S′ = H̃

�i
(S) we arrive to the assertion of the proposition.

3.4. The case i = n + 1. Note that for S ∈ P̃(Bunn) we have

hi(ĨtAv
i

E(S)) 	 h1(Ãv
1

E) ◦ · · · ◦ h1(Ãv
1

E)(S),

as functors P̃(Bunn) → P̃(Bunn).

Therefore, if for some S ∈ P̃(Bunn), hi(ĨtAv
i

E(S)) �= 0, then hj(ĨtAv
j

E(S))
�= 0 for all j ≤ i.

Our first step will be to show that for all S ∈ P̃(Bunn), hi(ĨtAv
i

E(S)) = 0
for i = n + 1, which would imply that the same is true for all i ≥ n + 1.
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Consider the restriction of the surjection of Proposition-Construction 3.2
to the diagonal X × Bunn

∆×id−→ Xi × Bunn. That is, there exists the following
map in D̃

Σi(X × Bunn):

(∆ × id)∗
(
H̃

�i
(S)

)
[1 − i] → (∆ × id)∗

(
(E∗)�i[i] � hi

(
ĨtAv

i

E(S)
))

[1 − i].

(9)

A key technical result, that we will need, states that both sides of (9)

belong in fact to P̃
Σi(X ×Bunn) and that the map in (9) is still surjective. In

fact, we will prove the following:

Proposition 3.5. Let K ∈ P(Xi × Bunn) be a perverse sheaf, which
appears as a sub-quotient of some hk(H�i(S)) for some object S ∈ D(Bunn).
Then for any smooth sub-variety X ′ ⊂ Xi, the ∗-restriction K|X′×Bunn

lives in
the cohomological dimension − codim(X ′, Xi).

This proposition will be proved in Section 3.6. Let us now explain how it
implies what we need about (9).

Indeed, H̃
�i

(S) can be represented by a sub-quotient K of h0(H�i(F))
for some F ∈ P(Bunn). Hence, the left-hand side of (9) can be represented by
(∆×id)∗(K)[1−i], which belongs to P(X×Bunn) according to Proposition 3.5.

The fact that the right-hand side of (9) belongs to P̃(X×Bunn) is obvious.

In fact, it is isomorphic to (E∗)⊗i[1] � hi(ĨtAv
i

E(S)).
Finally, the map of Proposition-Construction 3.2 can be represented by a

surjective map of perverse sheaves K → K′, where K is as above. By the long
exact sequence, the cokernel of (9) injects into

h1
(
(∆ × id)∗(ker(K → K′))[1 − i]

)
,

which vanishes according to Proposition 3.5.

Now we are ready to prove that hi(ĨtAv
i

E(S)) = 0 for i = n + 1.
Since the functor of taking Σn+1-invariants is exact, the map in (9) will

continue to be surjective when we pass to the sign-isotypic components on both
sides; i.e., we have:

HomΣn+1

(
sign, (∆ × id)∗

(
H̃

�n+1
(S)

)
[−n]

)
� HomΣn+1

(
sign, (E∗)⊗n+1[1] � hn+1(ĨtAv

n+1

E (S))
)

.

Now, by (7), the left-hand side in the above formula is zero. By surjec-
tivity, the right-hand side must also be zero. But we claim that this can only
happen if hn+1(ĨtAv

n+1

E (S)) = 0.
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Indeed, let ρ be an irreducible Σn+1-representation, which has a non-

trivial isotypic component in hn+1(ĨtAv
n+1

E (S)). However, since rk(E) ≥
n + 1, by the Schur-Weyl theory, ρ∗ ⊗ sign appears with a nonzero mul-
tiplicity in (E∗)⊗n+1. Hence, sign appears with a nonzero multiplicity in

(E∗)⊗n+1[1] � hn+1(ĨtAv
n+1

E (S)).

3.6. Proof of Proposition 3.5. Recall the notion of universal local acyclic-
ity in the situation when we have an object F ∈ D(Z) on a scheme (or stack)
Z over a smooth base Y (cf. [4] or [3]). In our case Z = Xi × Bunn, Y = Xi.

The first observation is:

Lemma 3.7. For any F ∈ D(Bunn), the object F′ = H�i(F) is ULA with
respect to the projection q : Xi × Bunn → Xi.

Proof. The lemma is proved by induction. Supposing the validity for an
integer i = j, let us deduce the corresponding assertion for i = j + 1. In other
words, it suffices to show that if F′′ ∈ D(Xi × Bunn) is ULA with respect to
Xi × Bunn → Xi, then HXi(F′′) ∈ D(Xi+1 × Bunn) is ULA with respect to
Xi+1 × Bunn → Xi+1.

Consider the diagram

Xi × X × Bunn
idXi ×s×

←
h←− Xi × Mod1

n
idXi ×s×

→
h−→ Xi × X × Bunn .

By definition, HXi(F′′) = (idXi ×s ×
←
h)! ◦ (idXi ×

→
h)∗(F′′)[i · n].

The ULA property is stable under direct images under proper morphisms.

Since the map idXi ×s×
←
h is proper, it is enough to show that (idXi ×

→
h)∗(F′′) ∈

D(Xi × Mod1
n) is ULA with respect to Xi × Mod1

n
id×s→ Xi+1. However, this

follows from the assumption on F′′, since the map idXi ×s×
←
h : Xi ×Mod1

n →
Xi × X × Bunn is smooth.

The proposition will now follow from the next general observation:
Let F ∈ D(Z) be a complex, which is ULA with respect to a projection

Z → Y, where Y is smooth. Let K be a sub-quotient of hk(F) for some k, and
let Y′ ⊂ Y be a smooth sub-variety. Denote by Z ′ the preimage of Y′ in Z. In
the above circumstances we have:

Lemma 3.8. The ∗-restriction K|Z′ lives in the cohomological dimension
−d, where d := codim(Y′, Y).

Proof. Note that the assertion of the lemma implies that K|Z′ [−d] is a
sub-quotient of hk−d(F|Z′).
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Therefore, to prove the lemma, we can assume by induction that d = 1,
and that, moreover, Y′ is cut by the equation of a function with a nonvanishing
differential.

Let Ψ, Φ be the corresponding near-by and vanishing cycles functors:
D(Z) → D(Z ′). By assumption, we have Φ(F) = 0. The exactness of Φ
implies that Φ(K) = 0 as well. Therefore, K|Z′ 	 Ψ(K)[1], which is what we
had to prove.

3.9. Now let i be the maximal integer, for which the functor S �→
hi(ĨtAv

i

E(S)) : D̃(Bunn) → D̃(Bunn) is non-identically zero. We know already
that i ≤ n. We are assuming that i ≥ 1 and we want to arrive at a contradic-
tion.

For S ∈ P̃(Bunn), we denote by Si the object hi(ĨtAv
i

E(S)) ∈ P̃
Σi(Bunn)

and consider the canonical surjection of Proposition-Construction 3.2

H̃
�i

(S) → (E∗)�i[i] � Si.

We now apply the functor H̃
�n

Xi : P̃(Xi × Bunn) → P̃(Xi+n × Bunn) to both

sides. This functor maps P̃
Σi(Xi×Bunn) to P̃

Σi×Σn(Xi+n×Bunn), and obtain
a morphism

H̃
�i+n

(S) → (E∗)�i[i] � H̃
�n

(Si),(10)

which is still surjective, by the right exactness of H̃
�n

Xi .
Note that the left-hand side of (10) is in fact an object of P̃

Σi+n(Xi+n ×
Bunn). We have a natural induction functor

IndΣi+n

Σi×Σn
: PΣi×Σn(Xi+n × Bunn) → PΣi+n(Xi+n × Bunn),

which is the left (and right) adjoint to the forgetful functor. By passing to the

quotient we obtain the corresponding induction functor from P̃
Σi×Σn(Xi+n ×

Bunn) to P̃
Σi+n(Xi+n × Bunn).

Thus, we obtain a map in P̃
Σi+n(Xi+n × Bunn):

H̃
�i+n

(S) → IndΣi+n

Σi×Σn

(
(E∗)�i[i] � H̃

�n
(Si)

)
.

The assumption that i was maximal will yield the following:

Proposition 3.10. The above map

H̃
�i+n

(S) → IndΣi+n

Σi×Σn

(
(E∗)�i[i] � H̃

�n
(Si)

)
is surjective.



ON A VANISHING CONJECTURE 639

We conclude the proof of Theorem 2.14 using this proposition. Let ∆i :
X → Xi, ∆n : X → Xn, ∆2 : X → X × X, and ∆i+n : X → Xi+n be
the corresponding diagonal embeddings. According to Proposition 3.5, in the
formula

(∆i+n × id)∗
(
H̃

�i+n
(S)

)
[1 − i − n]

→ (∆i+n × id)∗
(
IndΣi+n

Σi×Σn

(
(E∗)�i[i] � H̃

�n
(Si)

))
[1 − i − n]

both sides belong to P̃
Σi+n(X×Bunn), and the map is surjective. Therefore, the

above map will still be surjective when we pass to the sign-isotypic component
on both sides with respect to Σi+n.

By (7), the left-hand side, i.e.,

HomΣi+n

(
sign, (∆i+n × id)∗

(
H�i+n(S)

)
[1 − i − n]

)
vanishes. Therefore, so must the right-hand side.

Since the induction functors commute with the restriction functor
(∆i+n × id)∗, by adjunction we obtain that

HomΣi+n

(
sign, (∆i+n × id)∗

(
IndΣi+n

Σi×Σn

(
(E∗)�i[i] � H̃

�n
(Si)

))
[1 − i − n]

)
	 HomΣi×Σn

(
ResΣi+n

Σi×Σn
(sign), (∆i+n × id)∗

(
(E∗)�i[i] � H̃

�n
(Si))[1 − i − n]

))
.

We have: ResΣi+n

Σi×Σn
(sign) 	 sign × sign, and ∆i+n = ∆2 ◦ (∆i × ∆n). Let

us, therefore, rewrite the last expression as

(∆2 × id)∗
(
HomΣi

(
sign, (E∗)⊗i � HomΣn

(
sign, (∆n × id)∗(H̃

�n
(Si))[1 − n]

)))
.

(11)

Recall the multiplication map m : X×Bunn → Bunn, and recall also from
(7), that for S ∈ D̃(Bunn)

HomΣn

(
sign, (∆n × id)∗(H̃

�n
(S))[1 − n]

)
	 m∗(S)[1].

Therefore, (11) can be rewritten as

(∆2 × id)∗
(

HomΣi

(
sign, (E∗)⊗i � m∗(Si)[1]

))
	 HomΣi

(
sign, q∗

(
(E∗)⊗i

)
⊗ m∗(Si)[1]

)
.
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As in Section 3.4, since i ≤ rk(E), we see that the vanishing of the latter
expression implies that m∗(Si) = 0. Therefore, the functor

S �→ m∗(hi
(
ĨtAv

i

E(S)
))

vanishes identically.

We claim that this implies that the functor S → hi
(
ĨtAv

i

E(S)
)

vanishes.
Indeed, for any fixed x ∈ X, consider the pull-back map m∗

x : D(Bunn) →
D(Bunn), which is the composition of m∗ and the restriction to x × Bunn ⊂
X × Bunn.

Obviously,

m∗
x ◦ hi

(
ItAvi

E(S)
)
	 hi

(
ItAvi

E(m∗
x(S))

)
.

Hence, the corresponding functors on the level of D̃(Bunn) are also isomorphic.

Thus, we obtain that the functor S �→ hi
(
ĨtAv

i

E(S)
)

“kills” the image of

m∗
x : P̃(Bunn) → P̃(Bunn).

However, since m∗
x : D(Bunn) → D(Bunn) is essentially surjective (i.e.,

surjective on objects), the same is true for m∗
x : P̃(Bunn) → P̃(Bunn); in other

words, hi
(
ĨtAv

i

E(S)
)

vanishes on the entire P̃(Bunn).

3.11. Proof of Proposition 3.10. Observe that as an object of P̃(Xi+n ×
Bunn), IndΣi+n

Σi×Σn
((E∗)�i[i] � H̃

�n
(Si)) can be written as

⊕
σ∈Σi+n

σ∗((E∗)�i[i] � H̃
�n

(Si)),(12)

where the sum is taken over the coset representatives of Σi+n/Σi × Σn.
The proof of the proposition is based on the following observation:

Lemma 3.12. Let K → ⊕
i
Ki be a map of objects of an Artinian abelian

category, such that each of the maps K → Ki is surjective. Assume that for
i �= j, Ki and Kj have no isomorphic quotients. Then the map K → ⊕

i
Ki is

surjective as well.

We know that the map H̃
�i+n

(S) → (E∗)�i[i] � H̃
�n

(Si) is surjective. By

the Σi+n-equivariance of H̃
�i+n

(S), we obtain that each

H̃
�i+n

(S) → σ∗
(
(E∗)�i[i] � H�n(Si)

)
is surjective as well.

To apply this lemma we need to verify that for σ1, σ2 ∈ Σi+n, which
belong to different cosets, the objects σ∗

1

(
(E∗)�i[i] � H�n(Si)

)
and

σ∗
2

(
(E∗)�i[i] � H�n(Si)

)
of P̃(Xi×Xn×Bunn) have no isomorphic quotients.
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Again, by Σi+n-equivariance, we can assume that σ1 is the unit element,
and σ = σ2 is such that the permutation that it defines on the set {1, . . . , i+n}
satisfies σ(1) = i + 1.

For any j ∈ {1, . . . , k}, let qk,j denote the projection on the j-th factor
Xk × Bunn → X, and pk,j the complementary projection on Xk−1 × Bunn.

Let S′ be a quotient common to

(E∗)�i[i] � H̃
�n

(Si) and σ∗
(
(E∗)�i[i] � H̃

�n
(Si)

)
.

Since E is irreducible, every (sub)-quotient of (E∗)�i[i] � H̃
�n

(Si) is of the

form (E∗)�i[i] � S′′, where S′′ ∈ P̃(Xn ×Bunn) is a (sub)-quotient of H̃
�n

(Si).
Therefore,

h1
(
pi+n,1!(q∗i+n,1(E) ⊗ S′)

)
�= 0.(13)

As in Proposition 3.2, this implies:

h1

(
pi+n,1!

(
q∗i+n,1(E) ⊗ σ∗

(
(E∗)�i[i] � H̃

�n
(Si)

)))
�= 0,

which is equivalent to

h1

(
pi+n,i+1!

(
q∗i+n,i+1(E) ⊗

(
(E∗)�i[i] � H̃

�n
(Si)

)))
�= 0,

and hence h1

(
pn,1!

(
q∗n,1(E) ⊗ H̃

�n
(Si)

))
�= 0.

A simple diagram chase shows:

Lemma 3.13. For any F ∈ D(Bunn),

pk,1!

(
q∗k,1(E) ⊗ H�k(F)

)
	 H�k−1(Av1

E(F)).

The lemma implies that we also have an isomorphism

pk,1!

(
q∗k,1(E) ⊗ H̃

�k
(S)

)
	 H̃

�k−1
(
Ãv

1

E(S)
)

as functors D̃(Bunn) → D̃(Xk−1 × Bunn).

Therefore, the fact that h1

(
pn,1!

(
q∗n,1(E) ⊗ H̃

�n
(Si)

))
is nonzero as an

object of P̃(Xn−1 × Bunn) implies that h1

(
H̃

�n−1
(
Ãv

1

E(Si)
) )

�= 0. The

exactness of H̃
�n−1

: P̃(Bunn) → P̃(Xn−1 × Bunn) forces h1
(
Ãv

1

E(Si)
)

	

hi+1(ĨtAv
i+1

E (S)) �= 0.
However, this contradicts the assumption that i was the maximal integer

for which hi(ĨtAv
i

E(S)) �= 0.
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4. Whittaker categories

From this moment on we will be occupied with construction of the quotient
categories D̃(S × Bunn). This will be done using the formalism of Whittaker
categories and functors between them. The first step, i.e., the definition of the
appropriate categories, is the goal of the present section, which we carry out
in a way similar to the definition of Whittaker categories in Section 6 of [6].

4.1. Drinfeld ’s compactifications. Let Bun′
n be the stack classifying pairs

(M, κ1), where κ1 is a nonzero map Ωn−1 → M. Let π denote the natural
projection Bun′

n → Bunn.
Recall also the stack Q introduced in [7]. We will now introduce a series

of stacks Q1, . . . ,Qn with Q1 = Bun′
n, Qn = Q, which interpolate between the

two.
Namely, Qk classifies the data of a rank n bundle M and a collection of

nonzero maps
κi : Ωn−1+···+n−i → Λi(M), i = 1, . . . , k,

which satisfy the Plücker relations in the sense of [7].
Let, in addition, Qk,ex be the stack classifying the same data (M, κ1, . . . , κk)

as above, but where we allow the last map, i.e., κk, to vanish. In particular,
Qk is an open substack in Qk,ex.

We have the natural forgetful maps πk+1,k : Qk+1 → Qk, and πk+1,ex,k :
Qk+1,ex → Qk.

We will introduce certain triangulated categories DW (Qk) (resp.,
DW (Qk,ex)) of sheaves on Qk (resp., DW (Qk,ex)), that we will call the Whittaker
categories.

Each DW (Qk) will be a full triangulated subcategory of D(Qk) defined
by the condition that F ∈ DW (Qk) if its perverse cohomologies belong to a
certain Serre subcategory PW (Qk) ⊂ P(Qk), singled out by some equivariance
condition; and similarly for DW (Qk,ex).

By definition, for k = 1, DW (Qk) is the entire D(Q1) = D(Bun′
n), i.e., the

equivariance condition in this case is vacuous.

4.2. For a fixed point y ∈ X, let Q
y
k be an open substack that corresponds

to the condition that neither of the maps κ1, . . . , κk has a zero at y.
If (M, κ1, . . . , κk) is a point of Q

y
k, on the formal disk Dy around y we

obtain a flag
0 = M0 ⊂ M1 ⊂ · · · ⊂ Mk ⊂ M|Dy

with Mj/Mj−1 	 Ωn−j |Dy
.

Let Nk,Dy
be the group-scheme (of infinite type) over Q

y
k defined as follows:

its fiber over a point (M, κ1, . . . , κk) as above consists of all automorphisms of
M|Dy

, which are strictly upper-triangular with respect to the flag of the Mi’s.
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In addition, we have a group-indscheme Nk,D∗
y
, which contains Nk,Dy

as
a group-subscheme, and whose fiber over (M, κ1, . . . , κk) consists of all auto-
morphisms, strictly upper-triangular with respect to the given flag, of M over
the formal punctured disk D∗

y.
As in [6], one can show that Nk,D∗

y
is in fact an ind-groupscheme. More

precisely, Nk,D∗
y

can be represented as a union of group-schemes N i
k,D∗

y
, i ∈ N

with N i
k,D∗

y
⊃ Nk,Dy

and N i
k,D∗

y
/Nk,Dy

finite-dimensional.

The quotient HNy
k

:= Nk,D∗
y
/Nk,Dy

is an ind-scheme over the stack Q
y
k

and is a version of the Hecke stack for the corresponding unipotent group. We
have: HNy

k
= ∪

i∈N
Hi

Ny
k
, where Hi

Ny
k

:= N i
k,D∗

y
/Nk,Dy

; the latter is isomorphic to

a tower of fibrations into affine spaces over Q
y
k.

We let prk (resp., pri
k) denote the natural projection HNy

k
→ Q

y
k (resp.,

Hi
Ny

k
→ Q

y
k).

4.3. The groupoids. We claim that HNy
k

carries a natural structure of a
groupoid over Q

y
k. This is the standard procedure that makes the Hecke stack

a groupoid over the moduli space of bundles; cf. [6].
Namely, we define the second projection actk : HNy

k
→ Q

y
k as follows:

Given a point (M, κ1, . . . , κk) ∈ Q
y
k and an automorphism g : M|D∗

y
→

M|D∗
y
, the new bundle M′ is defined to be equal to M on X − y, and a mero-

morphic section m′ ∈ Γ(X − y, M′) is regular if g(m′), viewed as an element of
Γ(D∗

y, M), belongs to Γ(Dy, M).
The condition that g is strictly upper-triangular means that M′|Dy

is still
endowed with a filtration

0 = M′
0 ⊂ M′

1 ⊂ · · · ⊂ M′
k ⊂ M′

n := M′|Dy

with M′
j/M′

j−1 	 Ωn−j |Dy
.

Again, from the construction, the “old” maps κi : Ωn−1+···+n−i → Λi(M),
which are a priori meromorphic as maps Ωn−1+···+n−i → Λi(M′), are in fact
regular, and thus define the data κ′

i for M′.
Let Q

y
k+1,ex := Q

y
k ×

Qk

Qk+1,ex be the preimage of Q
y
k in Qk+1,ex. (Note that

Q
y
k+1 denotes a completely different stack; we have inclusions Q

y
k+1 ⊂ Qk+1 ⊂

Qk+1,ex ⊃ Q
y
k+1,ex.)

Consider the pull-back HNy
k
×
Q

y

k

Q
y
k+1,ex as an ind-scheme over Q

y
k+1,ex. The

next assertion follows from the construction:

Lemma 4.4. The fiber product HNy
k
×
Q

y

k

Q
y
k+1,ex has a natural structure of

a groupoid over Q
y
k+1,ex, i.e., there exists a naturally defined map actk,ex :
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HNy
k
×
Q

y

k

Q
y
k+1,ex → Q

y
k+1,ex, which makes the following diagram Cartesian

Q
y
k+1,ex

actk,ex←−−−− HNy
k
×
Q

y

k

Q
y
k+1,ex

πk+1,ex,k


 id×πk+1,ex,k



Q

y
k

actk←−−− HNy
k
.

We will denote by acti
k,ex the restriction of actk,ex to the sub-groupoid

Hi
Ny

k
×
Q

y

k

Q
y
k+1,ex, and by prk,ex (resp., pri

k,ex) the natural projection from HNy
k
×
Q

y

k

Q
y
k+1,ex (resp., from Hi

Ny
k
×
Q

y

k

Q
y
k+1,ex) to Q

y
k+1,ex.

4.5. The characters. One more observation we need to make before
introducing the categories of interest is the following:

We claim that there exists a natural morphism

χk : HNy
k
×
Q

y

k

Q
y
k+1,ex → A1.

Indeed, a point of HNy
k
×
Q

y

k

Q
y
k+1,ex is the data of

(M, κ1, . . . , κk) ∈ Q
y
k, κk+1 : Ωn−1+···+n−k−1 → Λk+1(M), g ∈ Aut(M|D∗

y
).

The endomorphism (g−Id) defines for every i = 1, . . . , k a map (M/Mi)|D∗
y
→

(Mi)D∗
y
, which we compose with

Ωn−i−1|D∗
y
→ (M/Mi)|D∗

y
and (Mi)D∗

y
→ (Mi/Mi−1)D∗

y
	 Ωn−i|D∗

y
.

As a result, for every i = 1, . . . , k we obtain a map Ωn−i−1|D∗
y
→ Ωn−i|D∗

y
, well-

defined up to a map regular on Dy, due to the corresponding ambiguity in g.
By taking residues at y we obtain k points of A1, i.e., we obtain well-defined
maps iχk : HNy

k
×
Q

y

k

Q
y
k+1,ex → A1 for i = 1, . . . , k.

The map χk is defined as a composition

HNy
k
×
Q

y

k

Q
y
k+1,ex

iχk→ Π
i
(A1) sum→ A1.

We will denote by χi
k the restriction of χk to Hi

Ny
k
×
Q

y

k

Q
y
k+1,ex ⊂ HNy

k
×
Q

y

k

Q
y
k+1,ex.

In what follows A-Sch will denote the Artin-Schreier sheaf on A1.

4.6. Everything said above can be generalized in a straightforward way
when one point y is replaced by a finite collection of pairwise distinct points
y := y1, . . . , ym.
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Namely, we have the open substack

Q
y
k := ∩

j
Q

yj

k ⊂ Qk,

and the groupoid HNy
k

over it. In fact,

HNy
k
	 HN

y1
k
|
Q

y

k

×
Q

y

k

... ×
Q

y

k

HNym
k

|
Q

y

k

.

In other words, the groupoids HN
yj
k
|
Q

y

k

, j = 1, . . . , m, acting on Q
y
k pair-

wise commute in the natural sense, hence we can form the product groupoid,
which can be identified with HNy

k
.

4.7. The categories on Q
y
k+1,ex. We define the category PW (Q

y
k+1,ex) ⊂

P(Q
y
k+1,ex) to consist of all perverse sheaves F ∈ P(Q

y
k+1,ex), for which the

following holds:
For each i ∈ N, there exists an isomorphism between the following two

sheaves on Hi
Nk

×
Q

y

k

Q
y
k+1,ex:

acti
k,ex

∗(F) and pri
k,ex

∗(F) ⊗ χi
k
∗(A-Sch)(14)

such that the restriction of this isomorphism to the unit section Q
y
k+1,ex ⊂

Hi
Nk

×
Q

y

k

Q
y
k+1,ex is the identity map.

Note that both sides of (14) are objects of D(Hi
Nk

×
Q

y

k

Q
y
k+1,ex), which

become perverse after the cohomological shift by dim. rel.(Hi
Nk

, Q
y
k), since both

maps pri
k,ex and acti

k,ex are smooth of that relative dimension.
Since A-Sch is a 1-dimensional lisse sheaf and the fibers of pri

k,ex are
connected, if an isomorphism of (14) exists, it is unique. Moreover a family of
such isomorphisms for i ∈ N is necessarily compatible. All this follows from
the next general lemma:

Lemma 4.8. Let p : Y1 → Y2 be a smooth surjective map between schemes
(or stacks) of relative dimension d, which has connected fibers. Then

(1) F �→ p∗(F)[d] is a full embedding of P(Y2) into P(Y1); its image is stable
under sub-quotients.

(2) If, moreover, the fibers of p are contractible, then the same is true when
P(Yi) is replaced by D(Yi), i.e., D(Y2) is a full triangulated subcategory
of D(Y1). In particular, P(Y2) ⊂ P(Y1) is stable under extensions, and
is therefore a Serre subcategory.



646 D. GAITSGORY

Since pri
k,ex : Hi

Nk
×
Q

y

k

Q
y
k+1,ex → Q

y
k+1,ex is a tower of affine fibrations, from

Lemma 4.8 above, we obtain that PW (Q
y
k+1,ex) is indeed a Serre subcategory

of P(Q
y
k+1,ex).

We define DW (Q
y
k+1,ex) as the full triangulated subcategory of D(Q

y
k+1,ex),

consisting of objects whose perverse cohomologies belong to PW (Q
y
k+1,ex).

From Lemma 4.8 it follows that for any F ∈ DW (Q
y
k+1,ex) there exists a

unique isomorphism

acti
k,ex

∗(F) 	 pri
k,ex

∗(F) ⊗ χi
k
∗(A-Sch),

compatible with the restrictions of both sides to the unit section.
In the same way, for a collection of pairwise distinct points y = y1, . . . , ym,

one defines the categories PW (Q
y
k+1,ex) and DW (Q

y
k+1,ex), the former being a

Serre subcategory of P(Q
y
k+1,ex), and the latter a full triangulated subcategory

of D(Q
y
k+1,ex).

4.9. To proceed, we need to recall a natural stratification defined on the
stacks Qk.

For a string of nonnegative integers d := (d1, . . . , dk) let X(d) be the
corresponding partially symmetrized power of the curve X:

X(d) = Π
j=1,... ,k

X(dj).

Let dQk be the stack that classifies the data of (M, κ1, . . . , κk, D1, . . . , Dk),
where M is as before, Di ∈ X(dj), and each κi is an injective bundle map

Ωn−1+···+n−i(Di) → Λi(M),

such that {κ1, . . . , κk} satisfies the Plücker relations.
We have a natural map dQk → Qk. It was shown in [3] that each dQk

becomes a locally closed substack of Qk, and that, moreover, these substacks
for various d define a locally finite decomposition of Qk into locally closed
pieces.

Observe that each dQk can be alternatively viewed as a stack classifying
the data of a vector bundle M endowed with a filtration

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mk ⊂ M,

and identifications Mi/Mi−1 	 Ωn−i(Di − Di−1) for (D1, . . . , Dk) ∈ X(d).

4.10. For a string of integers d as above, let dQ
y
k denote the intersection

dQk∩Q
y
k. Let dQ

y
k+1,ex ⊂ dQk+1,ex be the preimages of dQ

y
k and dQk, respectively,

in Qk+1,ex.
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Note that dQ
y
k+1,ex is the stack that classifies the data of (D1, . . . , Dk) ∈

(X − y)(d), a vector bundle M, a filtration

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mk ⊂ M

with Mi/Mi−1 	 Ωn−i(Di −Di−1) and, finally, a map κ̃k+1 : Ωn−k−1(−Dk) →
M/Mk.

Note that each dQ
y
k+1,ex is stable under the action of the groupoid

Hi
Nk

×
Q

y

k

Q
y
k+1,ex. Therefore, in the same way as above, we can introduce the

category PW (dQ
y
k+1,ex) (resp., DW (dQ

y
k+1,ex)), which is a Serre subcategory

(resp., a full triangulated subcategory) of P(dQ
y
k+1,ex) (resp., D(dQ

y
k+1,ex)).

From Lemma 4.8 we obtain:

Lemma 4.11. (1) The ∗ and ! restrictions D(Q
y
k+1,ex) → D(dQ

y
k+1,ex) map

the category DW (Q
y
k+1,ex) into DW (dQ

y
k+1,ex).

(2) The ∗ and ! direct image functors map DW (dQ
y
k+1,ex) to DW (Q

y
k+1,ex) ⊂

D(Q
y
k+1,ex).

(3) An object F ∈ D(Q
y
k+1,ex) belongs to DW (Q

y
k+1,ex) if and only if its

∗-restrictions (or , equivalently, !-restrictions) to dQ
y
k+1,ex belong to

DW (dQ
y
k+1,ex) for all d.

Of course, the same assertion holds when we replace one point y by a finite
collection of points y.

Proof. The fact that each dQ
y
k+1,ex is stable under the action of Hi

Nk
×
Q

y

k

Q
y
k+1,ex means that we have a commutative diagram

dQ
y
k+1,ex ←−−− Hi

Nk
×
Q

y

k

dQ
y
k+1,ex −−−→ dQ

y
k+1,ex
 
 


Q
y
k+1,ex

acti
k,ex←−−−− Hi

Nk
×
Q

y

k

Q
y
k+1,ex

pri
k,ex−−−→ Q

y
k+1,ex,

in which both squares are Cartesian. As remarked above, an object F ∈
D(Q

y
k+1,ex) belongs to DW (Q

y
k+1,ex) if and only if we have a compatible sys-

tem of isomorphisms acti
k,ex

∗(F) 	 pri
k,ex

∗(F)⊗ χi
k
∗(A-Sch), and similarly for

dQ
y
k+1,ex. This implies assertions (1) and (2) of the lemma.

Assertion (3) follows from (1) and (2), since the decomposition of Q
y
k+1,ex

into the strata dQ
y
k+1,ex is locally finite.
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4.12. We will now analyze how objects of DW (Q
y
k+1,ex) can look like

when restricted to dQ
y
k+1,ex.

For d as above, let dQk+1,ex
′ ⊂ dQk+1,ex denote the closed substack that

corresponds to the condition that for i = 1, . . . , k, each D′
i := Di −Di−1 is an

effective divisor (by definition, D′
1 = D1) and that moreover for i = 1, . . . , k−1

each D′
i+1 − D′

i is effective, and κ̃k+1 : Ωn−k−1(−Dk) → M/Mk factors as

Ωn−k−1(−Dk) → Ωn−k−1(D′
k)

κ̃′
k+1→ M/Mk.

Note that we have a natural map dχ′
k : dQk+1,ex

′ → A1, defined in a way
similar to how the map χk was defined. Namely, we have to sum up the classes
of the successive extensions

0 → Ωn−i(D′
i) → Mi+1/Mi−1 → Ωn−i−1(D′

i+1) → 0

in

Ext1
(
Ωn−i−1(D′

i+1), Ω
n−i(D′

i)
)
	 H1(X, Ω(D′

i − D′
i+1)) → H1(X, Ω) 	 A1

for i = 1, . . . , k − 1 and the class of the induced extension of Ωn−k−1(D′
k) by

Ωn−k(D′
k) by means of κ̃′

k+1.
Let dPk denote the stack classifying the data of (D1, . . . , Dk) ∈ X(d) such

that each D′
i := Di − Di−1 and D′

i+1 − D′
i is effective, a vector bundle M′ of

rank n − k with a map Ωn−k−1(D′
k) → M′.

Note that we have a natural projection φk : dQk+1,ex
′ → dPk, with M′ :=

M/Mk in the above notation. The map φk is smooth and has contractible
fibers.

Let dP
y
k ⊂ dPk be the open substack that corresponds to the condition

that the divisors Di avoid y. Let dQ
y
k+1,ex

′ := dQk+1,ex
′ ∩ Q

y
k+1,ex.

The following proposition is a version of Lemma 6.2.8 of [6].

Proposition 4.13. (1) Every object of DW (dQ
y
k+1,ex) is supported on

DW (dQ
y
k+1,ex

′).

(2) The functor F �→ φk
∗(F) ⊗ χ′

k
∗(A-Sch) defines an equivalence of cate-

gories D(dP
y
k) → DW (dQ

y
k+1,ex).

A similar assertion holds when a single point y is replaced by a finite
collection y.

Corollary 4.14. Let y = y1, . . . , ym be a collection of points with y

being one of them. Then the restriction functor D(Q
y
k+1,ex) → D(Q

y
k+1,ex)

maps the category DW (Q
y
k+1,ex) to DW (Q

y
k+1,ex).

Proof. Let F be an object of DW (Q
y
k+1,ex). According to Lemma 4.11, it

suffices to check that the ∗-restrictions F|dQ
y

k+1,ex

all belong to DW (dQ
y
k+1,ex).
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We know that F|dQ
y

k+1,ex
can be described as a pull-back from dP

y
k as in

Proposition 4.13, tensored by the pull-back of the Artin-Schreier sheaf, and
this description obviously survives the further restriction to dQ

y
k+1,ex.

4.15. Finally, we define the category PW (Qk+1,ex) to consist of all perverse
sheaves F ∈ P(Qk+1,ex) for which F|

Q
y

k+1,ex

belongs to PW (Q
y
k+1,ex) for all finite

collections y.
According to Lemma 4.8, PW (Qk+1,ex) is a Serre subcategory of P(Qk+1,ex).

We let DW (Qk+1,ex) be the full triangulated subcategory of D(Qk+1,ex) gener-
ated by PW (Qk+1,ex). In other words, F ∈ DW (Qk+1,ex) if and only if all of its
perverse cohomologies belong to PW (Qk+1,ex).

According to Corollary 4.14, in order to check that F ∈ D(Qk+1,ex) belongs
to DW (Qk+1,ex), it is sufficient to check that F|Qy

k+1,ex
∈ DW (Q

y
k+1,ex) for all

points y ∈ X; i.e., it is enough to consider 1-element sets.
Consider now Qk+1 ⊂ Qk+1,ex. Since this open substack is stable under the

action of the groupoids used in the definition of PW (Qk+1,ex), the categories
PW (Qk+1) ⊂ P(Qk+1) and DW (Qk+1) ⊂ D(Qk+1) are well-defined.

By Lemma 4.8, the direct and inverse image functors D(Qk+1) � D(Qk+1,ex)
map the subcategories PW (Qk+1) and DW (Q

y
k+1,ex) to one another.

We emphasize that by definition, for k = 0, DW (Qk+1) = D(Qk+1).

4.16. Now let S be an arbitrary “base” scheme. All the constructions of
this section go through when we replace Qk by the product S × Qk. In other
words, we have well-defined categories PW (S × Qk+1,ex), DW (S × Qk+1,ex),
PW (S × Qk), and DW (S × Qk). Moreover, for a morphism S1 → S2, the two
pairs of direct and inverse image functors D(S1 × Qk) � D(S2 × Qk) map the
categories DW (S1 × Qk) and DW (S2 × Qk) to one another; and similarly for
the “ex”-version.

5. Whittaker functors

The goal of this section is to prove the following theorem:

Theorem 5.1. For each k = 1, . . . , n − 1 there is an equivalence of
categories Wk,k+1,ex : DW (Qk) → DW (Qk+1,ex), which maps PW (Qk) to
PW (Qk+1,ex). The quasi -inverse functor is given by F′ �→ πk+1,ex,k !(F′), which
in this case is isomorphic to πk+1,ex,k∗(F′).

5.2. As a first step, we will describe the functor Wk,k+1,ex on the strata
dQk+1,ex for d = d1, . . . , dk. Namely, let DW (dQk+1,ex) (resp., DW (dQk)) be the
corresponding subcategory of D(dQk+1,ex) (resp., D(dQk)), and let us describe
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the functor
dWk,k+1,ex : DW (dQk) → DW (dQk+1,ex).

Recall the substack dQk+1,ex
′ ⊂ dQk+1,ex, cf. Section 4.12, and define the

corresponding substack dQk
′ ⊂ dQk as the intersection dQk,ex

′ ∩ Qk.
Let DW (dQk+1,ex

′) (resp., DW (dQk
′)) be the corresponding subcategory of

D(dQk+1,ex
′) (resp., D(dQk

′)).
As in Proposition 4.13(1), every object of D(dQk+1,ex) is supported on

the closed substack dQk+1,ex
′, and similarly for dQk

′. Therefore, the required
functor dWk,k+1,ex amounts to a functor DW (dQk

′) → DW (dQk+1,ex
′).

As in Proposition 4.13(2), the category DW (dQk+1,ex
′) is equivalent to the

category D(dPk) by means of

F �→ φk
∗(F) ⊗ χ′

k
∗(A-Sch).

We will now give a similar explicit description of DW (dQk
′).

For d = d1, . . . , dk let dP′
k−1 denote the stack classifying the data of

(D1, . . . , Dk) ∈ X(d) with D′
i = Di − Di−1 effective for i = 1, . . . , k, and

D′
i+1 − D′

i effective for i = 1, . . . , k − 1, a vector bundle M′′ of rank n − k + 1
with an injective bundle map κ̃k : Ωn−k(D′

k) → M′′.
We have a natural projection φ′

k−1 : dQk
′ → dP′

k−1 that sends a point(
(D1, . . . , Dk)∈X(d); 0=M0 ⊂ M1 ⊂ · · · ⊂ Mk ⊂ M; Mi/Mi−1	Ωn−i(D′

i)
)

∈ dQk
′

to M′′ := M/Mk−1 and

Ωn−k(D′
k) 	 Mk/Mk−1 ↪→ M/Mk−1 = M′′.

Again, as in Proposition 4.13, the category DW (dQk
′) is equivalent to

D(dP′
k−1), by means of F �→ φ′

k−1
∗(F) ⊗ χ′

k−1
∗(A-Sch).

Note that the last two pieces of data in the definition of dP′
k−1, i.e.,

(M′′, κ̃k), can be rewritten as a short exact sequence

0 → Ωn−k(D′
k) → M′′ → M′ → 0,

where M′ is a vector bundle of rank n − k. From this it is easy to see
that the stacks dP′

k−1 and dPk form a pair of mutually dual vector bundles
over the base classifying (M′, D1, . . . , Dk), which is isomorphic to the product
Bunn−k × Π

i=1,... ,k
X(d′

i−d′
i−1), where d = d1, . . . , dk and d′i = di − di−1.

We define the functor dWk,k+1,ex : DW (dQk
′) → DW (dQk+1,ex

′) as a com-
position

DW (dQk
′) 	 D(dP′

k−1)
Four′−→ D(dPk) 	 DW (dQk+1,ex

′),



ON A VANISHING CONJECTURE 651

where Four′ is the Fourier transform functor D(dP′
k−1) → D(dPk) followed by

the cohomological shift by dim. rel.(dQk+1,ex
′, dPk) − dim. rel.(dQk

′, dP′
k−1).

The functor dWk,k+1,ex is an equivalence of categories mapping perverse
sheaves to perverse sheaves, because the same it true for the Fourier transform
functor.

Let dπk+1,ex,k : dQk+1,ex → dQk be the restriction of πk+1,ex,k to the cor-
responding stratum.

Lemma 5.3. The functor F′ �→ dπk+1,ex,k !(F′) maps DW (dQk+1,ex) to
DW (dQk) and induces a functor quasi -inverse to dWk,k+1,ex. Moreover, in
the above formula the !-direct image coincides with the ∗ one.

Proof. We have the following Cartesian diagram:

dQk
′

dπk+1,ex,k←−−−−−− dQk+1,ex
′

φ′
k−1


 φk



dP′

k−1 ←−−− dP′
k−1 ×

Bunn−k × Π
i=1,... ,k

X
(d′

i
−d′

i−1)

dPk.

Therefore, the assertion of the lemma can be translated to the following general
situation:

Let ϕ : E → Y be a vector bundle, and ϕ̌ : Ě → Y its dual. Consider the
functor WE : D(E) → D(E ×

Y
Ě) given by

F �→ (ϕ × id)∗(Four(F)) ⊗ ev∗(A-Sch)[dim. rel.(E, Y)],

where ϕ × id is the natural projection E ×
Y

Ě → Ě, and ev : E ×
Y

Ě → A1 is the

evaluation map. Then for id×ϕ̌ : E ×
Y

Ě → E we have:

(id×ϕ̌)!(WE(F)) 	 (id×ϕ̌)∗(WE(F)) 	 F,

and this follows from the standard properties of the Fourier transform functor.

5.4. We are now going to extend the above stratum-by-stratum definition
of dWk,k+1,ex to a globally defined functor Wk,k+1,ex : DW (Qk) → DW (Qk+1,ex).

We will first construct the functor W y
k,k+1,ex : DW (Q

y
k) → DW (Q

y
k+1,ex).

(The same definition works for y replaced by a finite collection of points y.)
For that we will single out two sub-groupoids in the groupoid HNy

k
over

Q
y
k, denoted ′HNy

k
and ′′HNy

k
, respectively. Both these groupoids correspond

to certain group sub-schemes ′Nk,Dy
, ′′Nk,Dy

of Nk,Dy
(resp., ′Nk,D∗

y
, ′′Nk,D∗

y
⊂

Nk,D∗
y
).
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Recall that Nk,Dy
(resp., Nk,D∗

y
) consists of automorphisms of M|Dy

(resp.,
M|D∗

y
), which are strictly upper-triangular with respect to the filtration 0 =

M0 ⊂ M1 ⊂ · · · ⊂ Mk ⊂ M|Dy
, defined by our point of Q

y
k.

The group ′Nk,Dy
(resp., ′Nk,D∗

y
) consists of those automorphisms, which

induce the identity map on Mk. The group ′′Nk,Dy
(resp., ′′Nk,D∗

y
) consists of

those automorphisms, which induce the identity map on M/Mk−1.
Note that the fiber of ′HNy

k
over a point (M, κ1, . . . , κk) ∈ Q

y
k is the

vector space HomD∗
y
(M/Mk, Mk)/ HomDy

(M/Mk, Mk). Without restricting
the generality we can assume that the filtration HNy

k
= ∪

i∈N
Hi

Ny
k

induces on
′Nk,Dy

the standard filtration:
′Hi

Ny
k

= HomDy
(M/Mk, Mk(i · y)) / HomDy

(M/Mk, Mk) .

Let ′ prk and ′ actk (resp., ′ pri
k,

′ acti
k) be the restrictions to ′HNy

k
(resp.,

′Hi
Ny

k
) of the maps prk, actk : HNy

k
→ Q

y
k, respectively. We will denote ′Hi

Ny
k

also by Ei
k and think of it as a vector bundle over Q

y
k. Let Ěi

k denote the dual
vector bundle, and ′p̌ri

k its projection to Q
y
k.

By Serre’s duality, the fiber of Ěi
k over (M, κ1, . . . , κk) ∈ Q

y
k can be iden-

tified with the vector space

HomDy

(
Mk, ((M/Mk)/(M/Mk)(−iy)) ⊗ Ω

)
.

For i′ ≥ i we have a natural map pri′,i : Ěi′

k → Ěi
k.

Proposition 5.5. There exists a natural map fi : Q
y
k+1,ex → Ěi

k for any i.
Moreover,

(1) For i′ ≥ i the composition Q
y
k+1,ex

fi′→ Ěi′

k

pri′,i→ Ěi
k equals fi.

(2) For each open substack U ⊂ Q
y
k of finite type, there exists an integer i(U)

large enough such that over U , the map fi : Q
y
k+1,ex → Ěi

k is a closed
embedding for every i ≥ i(U).

Proof. Let Ěi
k
′ ⊂ Ěi

k be a vector sub-bundle, whose fiber over a point
(M, κ1, . . . , κk) ∈ Q

y
k is the vector space

HomDy

(
Ωn−k, ((M/Mk)/(M/Mk)(−iy)) ⊗ Ω

)
,(15)

which maps to HomDy

(
Mk, ((M/Mk)/(M/Mk)(−iy)) ⊗ Ω

)
by means of the

projection Mk → Ωn−k|Dy .
Note that given a filtration

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mk ⊂ M
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with Mj/Mj−1 	 Ωn−j , specifying a map Ωn−k → ((M/Mk)/(M/Mk)(−iy))⊗
Ω is the same as specifying a map Ωn−1+···+n−k−1 → Λk+1(M)/Λk+1(M)(−iy),
which satisfies the Plücker relations with all the maps κj : Ωn−1+···+n−j →
Λj(M), j = 1, . . . , k.

The map Q
y
k+1,ex → Ěi is defined now as follows: having (M, κ1, . . . , κk)

∈ Q
y
k, to the data of κk+1 : Ωn−1+···+n−k−1 → Λk+1(M) we attach the corre-

sponding map Ωn−1+···+n−k−1 → Λk+1(M)/Λk+1(M)(−iy) over Dy. According
to the above discussion, this defines a point of Ěi

k
′, and hence of Ěi

k.
Thus, the map fi has been constructed. Point (1) of the proposition is

straightforward from the construction.
For an open substack U of finite type, let i(U) be such that the vector

space Hom(Ωn−1+···+n−k−1, Λk+1(M)(−iy)) is zero for (M, κ1, . . . , κk) ∈ U .
Let Ěi

k
′′ be the vector bundle over Q

y
k, whose fiber over a point as above is

the vector space Hom
(
Ωn−1+···+n−k−1, Λk+1(M)/Λk+1(M)(−iy)

)
. For i ≥ U(i)

the natural map Q
y
k+1,ex → Ěi

k
′′ is a closed embedding over U .

Then for i ≥ i(U), we have a sequence of maps

Q
y
k+1,ex → Ěi

k
′ → Ěi

k
′′.

We know that the second arrow is a closed embedding, being the set of those
sections that satisfy the Plücker relations. We also know that the composed
map is a closed embedding. Hence, so is the first map.

5.6. Consider now the action map ′ acti
k : ′Hi

Ny
k

→ Q
y
k. Since the

projection ′ pri
k : ′Hi

Ny
k
→ Q

y
k is a smooth map and ′Hi

Ny
k

is a groupoid, the
map ′ acti

k is smooth as well; let dim(i, k) denote its relative dimension.
We define the functor W y,i

k,k+1,ex : DW (Q
y
k) → D(Ěi

k) as

F �→ Four
(′ acti

k
∗(F)[dim(i, k)]

)
,

where Four : D(Ei
k) → D(Ěi

k) is the Fourier transform functor. Evidently, this
functor is exact. For i′ ≥ i we have:

pri′,i !(W
y,i′

k,k+1,ex(F)) 	 W y,i
k,k+1,ex(F).

Proposition 5.7. For an open substack U ⊂ Q
y
k of finite type and any

integer i which is large enough (and in particular i ≥ i(U) of Proposition 5.5),
over the preimage of U , any object of the form W y,i

k,k+1,ex(F) for F ∈ DW (Q
y
k)

is supported on Q
y
k+1,ex ⊂ Ěi

k.

Proof. Recall that to a string of nonnegative integers d = d1, . . . , dk we
attached a locally closed substack dQ

y
k ⊂ Q

y
k. Let |d| be Σ

i
di.



654 D. GAITSGORY

It is easy to see that for every open substack U ⊂ Qk of finite type there
exists an integer d such that

U ⊂ ∪
|d|≤d

dQk.(16)

Thus, for a given U there exists an integer i′(U) such that for any d and
M ∈ U ∩ dQ

y
k we have: Hom (Mk, M/Mk ⊗ Ω(−iy)) = 0, for i ≥ i′(U) where

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mk ⊂ M

is the filtration with Mi/Mi−1 	 Ωn−i(D′
i), (D1, . . . , Dk) ∈ (X − y)(d).

Let now F be an object of DW (dQ
y
k) with |d| ≤ d. Then W y,i

k,k+1,ex(F)

yields an object of D
(
(′p̌ri

k)
−1(dQ

y
k)

)
, where (′p̌ri

k)
−1(dQ

y
k) is the preimage of

dQ
y
k in Ěi

k.

Lemma 5.8. For i ≥ i′(U), i(U), over the preimage of U , the object

W y,i
k,k+1,ex(F) is supported on dQ

y
k+1,ex and is isomorphic to dWk,k+1,ex(F) of

Section 5.2.

Proof. Recall the stacks dPk and dP′
k−1, which form a pair of mutually dual

(generalized) vector bundles over the base Bunn−k × Π
i=1,... ,k

X(d′
i−d′

i−1), where

the latter classifies the data of a rank n− k vector bundle M′ and a collection
of divisors D1, . . . , Dk with D′

i = Di − Di−1 effective and D′
i − D′

i−1 effective
as well. To simplify the notation, let us temporarily denote this base by Y,
dP′

k−1 by E and dP′
k−1 by Ě; let ϕ and ϕ̌ denote the projections of E and Ě,

respectively, on Y.
Consider the fiber product E ×

Y
Ě, and let ev be the natural evaluation

map from it to A1. The assertion of the lemma amounts to a description of
the functor D(E) → D(E ×

Y
Ě) given by

F �→ (ϕ × id)∗(Four(F)) ⊗ ev∗(A-Sch)[dim. rel.(E, Y)](17)

in terms of an action of a certain groupoid on E.
Namely, for an integer i consider another vector bundle over Y, denoted

Ei, whose fiber over (M′, D1, . . . , Dk) ∈ Y is the vector space Hom(M′, Ωn−k(i ·
y)/Ωn−k). Let Ěi be the dual vector bundle, whose fiber, by Serre’s duality
can be identified with Hom(Ωn−k−1, M′/M′(−i · y)). We have a natural map
Ei → E. When working over an open substack of finite type in Bunn−k, for a
large enough integer i, the dual map Ě → Ěi is a closed embedding.

Using the group-scheme structure, we can think of Ei as a groupoid acting
on E. Let a and p denote the corresponding maps Ei ×

Y
E → E. Thus, we can
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consider the functor D(E) → D(Ěi ×
Y

E) given by

F �→ Four (a∗(F)) [dim. rel.(Ei, Y)],(18)

where Four is the relative Fourier transform functor D(Ei ×
Y

E) → D(Ěi ×
Y

E).

The assertion of the lemma follows from the fact that the functor in (18)
is isomorphic to the composition of the functor of (17), followed by the direct
image under the closed embedding E ×

Y
Ě → E ×

Y
Ěi.

This lemma implies the proposition. Indeed for a given F ∈ DW (Q
y
k) to

show that, over the preimage of U , W y,i
k,k+1,ex(F) is supported on Q

y
k+1,ex, it

is enough to do so over the preimage of each stratum dQ
y
k ⊂ Q

y
k. The latter

support property is insured by Lemma 5.8.

5.9. Since pri′,i !(W
y,i′

k,k+1,ex(F)) 	 W y,i
k,k+1,ex(F), the above proposition im-

plies that we obtain a well-defined functor W y
k,k+1,ex : DW (Q

y
k) → D(Q

y
k+1,ex).4

Moreover, by combining Lemma 5.8 and Lemma 4.11(3) we obtain that the
image of W y

k,k+1,ex lies in DW (Q
y
k+1,ex).

Proposition 5.10. The direct image functor F �→ πk+1,ex,k !(F) maps
DW (Q

y
k+1,ex) to DW (Q

y
k) and is a quasi -inverse to W y

k,k+1,ex. Moreover, for
F ∈ DW (Q

y
k+1,ex), πk+1,ex,k !(F) → πk+1,ex,k∗(F) is an isomorphism.

Proof. First, let us show that for F ∈ DW (Q
y
k), πk+1,ex,k !(W

y
k,k+1,ex(F))

	 F. Indeed, by working over a fixed stack U of finite type and a large enough
integer i, we are reduced to showing that

′p̌ri
k !

(
Four

(′ acti
k
∗(F)[dim(i, k)]

))
	 F,

where ′p̌ri
k is the projection Ěi

k → Q
y
k.

However, by the general properties of the Fourier transform functor we
obtain that the left-hand side of the above expression is isomorphic to the
restriction of ′ acti

k
∗(F) to the unit section of Ei

k 	 ′Hy
Nk

, i.e., to F itself.
Now let us show that πk+1,ex,k ! indeed maps DW (Q

y
k+1,ex) to DW (Q

y
k).

However, this follows immediately from the definitions:
By unfolding the definition of DW (Q

y
k), we see that it is defined by means

of an equivariance property with respect to the groupoid ′′HNy
k

(cf. Section 5.4).
However, ′′HNy

k
acts on Q

y
k+1,ex, being a part of HNy

k
; i.e., we have a Cartesian

4This definition of W y
k,k+1,ex was inspired by a certain construction of V. Drinfeld in the

n = 2 case, one incarnation of which is explained in Section 5.16.
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diagram

Q
y
k+1,ex

actk,ex←−−−− ′′HNy
k
×
Q

y

k

Q
y
k+1,ex

πk+1,ex,k


 id×πk+1,ex,k



Q

y
k

actk←−−− ′′HNy
k
.

Finally,
χk−1|′′HN

y
k
×
Q

y
k

Q
y

k+1,ex
= χk|′′HN

y
k
×
Q

y
k

Q
y

k+1,ex
.

Now, let us show that for F′ ∈ DW (Q
y
k+1,ex), the object

W y
k,k+1,ex(πk+1,ex,k !(F′))

is canonically isomorphic to F′.
Note that as in Lemma 4.4, the groupoid ′Hy

Nk
“lifts” to Ěi

k; i.e., we have
a Cartesian diagram

Ěi
k

actEi
k←−−− Ei

k ×
Q

y

k

Ěi
k

′p̌ri
k


 id×′p̌ri
k



Q

y
k

′ acti
k←−−− Ei

k.

Thus we may assume that we start with F′ ∈ D(Ěi
k), which satisfies

act∗Ei
k
(F′) 	 (′pri

k × id)∗(F′) ⊗ ev∗(A-Sch),(19)

where ′ pri
k × id is the map Ei

k ×
Q

y

k

Ěi
k → Ěi

k and ev is the evaluation map Ei
k ×

Q
y

k

Ěi
k → Ǎ1.

However by looking at another Cartesian square:

Ěi
k

′ pri
k × id←−−−−− Ei

k ×
Q

y

k

Ěi
k

′p̌ri
k


 id×′p̌ri
k



Q

y
k

′ pri
k←−−− Ei

k,

we obtain (19) which implies

Four−1(F′) 	 ′ acti
k
∗ (′p̌ri

k !(F′)
)
,

which is what we had to show.
The last assertion that πk !(F′) → πk∗(F′) also follows from the above

diagram by the fact that the !− and ∗− Fourier transforms coincide.
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5.11. Finally, we are ready to construct the functor

Wk,k+1,ex : DW (Qk) → DW (Qk+1,ex).

The construction of the corresponding functor on the level of abelian cate-
gories, i.e., Wk,k+1,ex : PW (Qk) → PW (Qk+1,ex), follows immediately from
Proposition 5.10, because an object F ∈ PW (Qk+1,ex) can be glued from its
restrictions F|Qy

k+1,ex
.

Moreover, Proposition 5.10 implies that πk+1,ex,k ! maps DW (Qk+1,ex) to
DW (Qk) and the induced functor PW (Qk+1,ex) → PW (Qk) is an equivalence
inverse to Wk,k+1,ex.

Thus, it remains to show that πk+1,ex,k ! : DW (Qk+1,ex) → DW (Qk) is an
equivalence.

First, let us notice that for any substack U ⊂ Qk of finite type, as in
Proposition 5.7, one can find an integer i′′(U) such that for i ≥ i′′(U) the
image of each U ∩Q

y
k under the action of the entire groupoid HNy

k
equals that

of Hi
Ny

k
. Hence, any substack U of finite type can be replaced by a bigger one,

which is also of finite type, such that each U ∩ Q
y
k is HNy

k
-stable. Let Uk+1,ex

denote its preimage in Qk+1,ex.
Then the categories DW (U) and DW (Uk+1,ex) make sense, and we have

the functor πk+1,ex,k ! : DW (Uk+1,ex) → DW (U), and it suffices to show that it
is an equivalence.

We claim that this functor is fully-faithful. Since U intersects only finitely
many strata dQk, it suffices to check that for two objects F1, F2 ∈ DW (Uk+1,ex)

HomD(dQk+1,ex)(F1, F2) → HomD(dQk) (πk+1,ex,k !(F1), πk+1,ex,k !(F2))

is an isomorphism. But we know that from Lemma 5.3.
To finish the proof, we must show that πk+1,ex,k ! : DW (Uk+1,ex) → DW (U)

is surjective on objects. However, this we know, because every object of
DW (Uk+1,ex) is obtained by gluing finitely many perverse sheaves, and we
know already that πk+1,ex,k ! : PW (Qk+1,ex) → PW (Qk) is an equivalence.

5.12. Thus, Theorem 5.1 is proved.
We define the functor Wk,k+1 : DW (Qk) → DW (Qk+1) as the composi-

tion of Wk,k+1,ex followed by the restriction DW (Qk+1,ex) → DW (Qk+1). By
construction, Wk,k+1 is exact.

For two integers 1 ≤ k < k′ ≤ n we define Wk,k′ : DW (Qk) → DW (Qk′)
as the composition Wk′−1,k′ ◦ · · · ◦ Wk,k+1. Finally, we set W : DW (Bun′

n) →
DW (Q) to be W1,n. All these functors are exact.

5.13. Recall that in Section 4.16 we said that the categories DW (S×Qk),
DW (S × Qk,ex) can be introduced for an arbitrary base scheme S. Similarly,
one has the functors Wk,k+1,ex : DW (S × Qk) → DW (S × Qk+1,ex), which are
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equivalences of categories, and the corresponding functors

Wk,k′ : DW (S × Qk) → DW (S × Qk′).

All these functors map perverse sheaves to perverse sheaves, and commute
with the Verdier duality.

Moreover, for a morphism of schemes f : S1 → S2, the !- and ∗- direct and
inverse image functors DW (S1×Qk) � DW (S2×Qk) and DW (S1×Qk+1,ex) �
DW (S2 × Qk+1,ex) commute in the natural sense with Wk,k′ . This is evident
for the ∗-inverse image and the !-direct image via the description of the quasi-
inverse functor as πk+1,ex,k !, and for the !-inverse image and the ∗-direct image
as πk+1,ex,k∗.

To conclude, we note that the group Gm acts on all the stacks Qk by
simultaneously scaling the maps κi. Thus, it makes sense to talk about the
equivariant derived categories DGm(Qk).

We introduce the equivariant version of the Whittaker category DGm,W (Qk)
as the full triangulated subcategory of DGm(Qk) consisting of objects whose per-
verse cohomologies belong to DW (Qk). Thus, we have an equivariant version
of Theorem 5.1, and, in particular, the equivalences Wk,k+1,ex : DGm,W (Qk) →
DGm,W (Qk+1,ex), and the Whittaker functors Wk,k′ : DGm,W (Qk) → DGm,W (Qk′).

5.14. The rest of this section will not be used in the sequel. We would
like to compare the Whittaker functor W : D(Bun′

n) → DW (Q) defined above
with another functor of related nature introduced by G. Laumon in [11].

For an integer k, let Cohk denote the stack of coherent sheaves of generic
rank k; let Coh′

k denote the stack of pairs: (M, κ), where M ∈ Cohk, and κ

is an injective map of sheaves Ωk−1 → M. Let, in addition, Coh′
k,ex ⊃ Coh′

k

denote the stack of pairs (M, κ) as before, but where we omit the condition
that κ be injective.

We have a functor WCoh
k,k−1 : D(Coh′

k) → D(Coh′
k−1). Namely, note that

Coh′
k and Coh′

k−1,ex form a pair of mutually dual vector bundles over Cohk−1.
We set WCoh

k,k−1 to be the composition of the Fourier transform functor D(Coh′
k)

→ D(Coh′
k−1,ex) followed by the restriction D(Coh′

k−1,ex) → D(Coh′
k−1).

By composing, for any n we obtain a functor WCoh
n : D(Coh′

n) → D(Coh′
1).

Recall now the stack Q̃ of [7]. We have a natural smooth projection φCoh :
Q̃ → D(Coh′

1), and a map ev : Q̃ → A1.
We define the functor W̃Coh

n : D(Coh′
n) → D(Q̃) by

F �→ φCoh∗
(
WCoh

n (F)
)

[d] ⊗ ev∗(A-Sch),

where [d] is the shift by dim. rel.(Q̃, Coh′
1).

Recall also that we have a map ν : Q̃ → Q = Qn. Finally note that Coh′
n

contains Bun′
n = Q1 as an open substack.
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Proposition 5.15. Let F be an object of D(Bun′
n), and let F′ be its any

extension to an object of D(Coh′
n). Then

ν!

(
W̃Coh

n (F′)
)
	 ν∗

(
W̃Coh

n (F′)
)
	 W (F).

Instead of giving the proof of this statement, we will sketch the argument
when n = 2. The proof in the general case follows the same lines.

5.16. Consider the following set-up: Let Y be a base, and E1, E2 be
two vector bundles viewed as group-schemes over Y, and p : E1 → E2 a map.
Suppose that both E1 and E2 act on a scheme X over Y, i.e., we have the action
maps

acti : Ei ×
Y

X → X,

with act1 = act2 ◦p.
Consider the functors Fi : D(X) → D(Ěi ×

Y
X), where Ěi is the dual vector

bundle, given by

F �→ Four (act∗i (F)[di]) ,

where di = dim. rel.(Ei, Y). Then for F ∈ D(X), we have:

F1(F) 	 (p̌ × id)!(F2(F)),

where p̌ × id is the natural map Ě2 ×
Y

X → Ě1 ×
Y

X.

We apply the above observation in the following circumstances: We set
Y = Coh1, X := Coh′

2. The vector bundle E2 is isomorphic to X := Coh′
2 itself;

i.e., its fiber at L ∈ Coh1 is the stack of extensions

0 → Ω → M → L → 0.

The vector bundle E1 has its fiber over L as above the stack of extensions

0 → Ω → M → det(L) → 0,

where det(L) is the determinant of L. The map p : E1 → E2 comes from the
canonical map of sheaves L → det(L).

Note that the action of E1 preserves the open substack Bun′
2 ⊂ Coh′

2, and
Ě1 ×

Coh1

Bun′
2 	 Q. Moreover, the functor

F1 |Bun′
2

: D(Bun′
2) → Ě1 ×

Coh1

Bun′
2

identifies with W : D(Bun′
2) → DW (Q).
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To prove the assertion of the proposition, it suffices to notice that we have
a Cartesian square:

Ě2 ×
Coh1

Coh′
2 ←−−− Ě2 ×

Coh1

Bun′
2

∼−−−→ Q̃

p̌×id


 p̌×id


 ν



Ě1 ×

Coh1

Coh′
2 ←−−− Ě1 ×

Coh1

Bun′
2

∼−−−→ Q.

6. Cuspidality

6.1. Let us first recall the notion of cuspidality on Bunn. For n = n1 +n2,
let Flnn1,n2

denote the stack of extensions

0 → M1 → M → M2 → 0,

where Mi ∈ Bunni
.

We have the natural projection pn1,n2 : Flnn1,n2
→ Bunn, which remembers

the middle term of the above short exact sequence, and the projection qn1,n2 :
Flnn1,n2

→ Bunn1 ×Bunn2 , which remembers (M1, M2).
The projection qn1,n2 is in general non-representable, but is a generalized

vector bundle with the fiber over (M1, M2) ∈ Bunn1 ×Bunn2 being the stack
of extensions of M2 by means of M1. Therefore, the direct image functors
qn1,n2 ! : D(Flnn1,n2

) → D(Bunn) are well-defined.
The constant term functors CTn

n1,n2
: D(Bunn) → D(Bunn1 ×Bunn2) are

defined by
F �→ qn1,n2 !

(
p∗n1,n2

(F)
)
.

Recall that an object F ∈ D(Bunn) is called cuspidal if CTn
n1,n2

(F) = 0
for all 1 ≤ n1, n2 < n.

Since the projection q is not proper, the functor CTn
n1,n2

does not commute
with the Verdier duality. Therefore, if F is cuspidal, it will not in general be
true that D(F) is cuspidal.

6.2. We will now introduce the notion of cuspidality on the stacks Qk.
For n1 as above and k ≤ n1, let Qn1,k denote the stack classifying the data of
M1 ∈ Bunn1 , and a collection of nonzero maps κn1,i : Ωn−1+···+n−i → Λi(M1)
for 1 ≤ i ≤ k, satisfying the Plücker relations.

For k ≤ n1, let FlQk
n1,n2

be the stack classifying the data of a short exact
sequence

0 → M1 → M → M2 → 0,

as in the definition of Flnn1,n2
, and a collection of nonzero maps κi : Ωn−1+···+n−i

→ Λi(M1) for 1 ≤ i ≤ k, which satisfy the Plücker relations.
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We have a natural map qn1,n2,k : FlQk
n1,n2

→ Qn1,k × Bunn2 , which makes
the following square Cartesian:

FlQk
n1,n2

qn1,n2,k−−−−−→ Qn1,k × Bunn2
 

Flnn1,n2

qn1,n2−−−−→ Bunn1 ×Bunn2 .

In addition, we have a map pn1,n2,k : FlQk
n1,n2

→ Qk.
For k ≤ n1 we define the constant term functors

CTQk
n1,n2

: DW (Qk) → D(Qn1,k × Bunn2)

by F �→ qn1,n2,k !

(
p∗n1,n2,k

(F)
)
.

We call an object F ∈ DW (Qk) cuspidal if CTQk
n1,n2

(F) = 0 for all
k ≤ n1 < n.

In principle, one can introduce the constant term functors also for k > n1,
and properly speaking, a complex F ∈ D(Qk) should be called cuspidal if all
the constant term functors vanish when applied to it, including those with
k > n1. However, for objects of the Whittaker category these other functors
vanish automatically, so the two notions coincide.

Let π denote the natural projection Q1 	 Bun′
n → Bunn. It is easy to see

that for F ∈ D(Bunn),

CTQ1
n1,n2

(π∗(F)) 	 (πn1 × id)∗
(
CTn

n1,n2
(F)

)
,

where πn1 × id denotes the natural map Qn1,1 × Bunn2 → Bunn1 ×Bunn2 .
Therefore, if an object F ∈ D(Bunn) is cuspidal, then so is π∗(F).

6.3. The main result of this section is the following theorem:

Theorem 6.4. Let F1 ∈ D(Bun′
n) be cuspidal and F2 ∈ D(Bun′

n) be any
object. Then the map HomD(Bun′

n)(F1, F2) → HomDW (Q)(W (F1), W (F2)) is an
isomorphism.

Of course, along with Theorem 6.4 as it is stated, we have its Gm-equivariant
version, and a version involving a base S; cf. Section 5.13.

Theorem 6.4 follows by induction from the following assertion:

Proposition 6.5. (1) The functor Wk,k+1 : DW (Qk) → DW (Qk+1) maps
cuspidal objects to cuspidal.

(2) If F ∈ DW (Qk) is cuspidal, then the ∗-restriction of Wk,k+1,ex(F) to
Qk+1 − Qk+1,ex is zero.
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Indeed, to prove Theorem 6.4, it suffices to show that if we have two
objects F1, F2 ∈ DW (Qk) with F1 cuspidal, then

HomDW (Qk)(F1, F2) → HomDW (Qk+1)
(Wk,k+1(F1), Wk,k+1(F2))

is an isomorphism. However, by Theorem 5.1, we know that

HomDW (Qk)(F1, F2) → HomDW (Qk+1,ex)(Wk,k+1,ex(F1), Wk,k+1,ex(F2))

is an isomorphism. And now, the condition that

Wk,k+1,ex(F1)|Qk+1−Qk+1,ex
= 0

means that

HomDW (Qk+1,ex)(Wk,k+1,ex(F1), Wk,k+1,ex(F2))

:= HomD(Qk+1,ex)(Wk,k+1,ex(F1), Wk,k+1,ex(F2))

	 HomD(Qk+1)
(Wk,k+1(F1), Wk,k+1(F2))

=: HomDW (Qk+1)
(Wk,k+1(F1), Wk,k+1(F2)).

6.6. Proof of Proposition 6.5(1). Let n1 ≥ k + 1. Note that in addition
to the stack Qn1,k, one can introduces its “ex” version Qn1,k+1,ex. Moreover,
proceeding just as in Sections 4 and 5, we introduce the categories DW (Qn1,k),
DW (Qn1,k+1,ex), and the functors Wn1,k,k+1,ex : DW (Qn1,k) → DW (Qn1,k+1,ex)
and Wn1,k,k+1 : DW (Qn1,k) → DW (Qn1,k+1).

In addition, we can introduce a stack FlQk+1,ex
n1,n2 , which fits into the diagram:

Qk+1,ex
pn1,n2,k+1,ex←−−−−−−−− FlQk+1,ex

n1,n2

qn1,n2,k+1,ex−−−−−−−−→ Qn1,k+1,ex × Bunn2

πk+1,ex,k


 
 πn1,k+1,ex,k×id



Qk

pn1,n2,k←−−−−− FlQk
n1,n2

qn1,n2,k−−−−−→ Qn1,k × Bunn2
 
 

Bunn

pn1,n2←−−−− Flnn1,n2

qn1,n2−−−−→ Bunn1 ×Bunn2 .

In this diagram the right portion consists of Cartesian squares.
Using the stack FlQk+1,ex

n1,n2 we introduce the functor

CTQk+1,ex
n1,n2

: DW (Qk+1,ex) → D(Qn1,k+1,ex × Bunn2).

Lemma 6.7. The functor CTQk+1,ex
n1,n2 maps DW (Qk+1,ex) to DW (Qn1,k+1,ex×

Bunn2).

Proof. We will use the description of DW (Qn1,k+1,ex) similar to that of
Proposition 4.13. For a string of integers d = d1, . . . , dk, let dQn1,k+1,ex

′ ⊂
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dQn1,k+1,ex be the corresponding locally closed substacks of Qn1,k+1,ex. Let also
dPn1,k be the stack classifying the data of (D1, . . . , Dk, M

1′, Ωn−k−1 → M1′),
as in the definition of dPk, with the difference that now M1′ is a vector bundle
of rank n1 − k. We have a smooth map φn1,k : dQn1,k+1,ex

′ → dPn1,k.
To prove the lemma it is sufficient to show that for F ∈ DW (Qk+1,ex), the

restriction of CTQk+1,ex
n1,n2 (F) to each dQn1,k+1,ex

′ is isomorphic to the pull-back
of a complex on dPn1,k, tensored by an appropriate Artin-Schreier sheaf.

Consider the fiber product

Z := Fln−k
n1−k,n2

×
Bunn1−k

dPn1,k.

Let d FlQk+1,ex
n1,n2 be the preimage in FlQk+1,ex

n1,n2 of the substack dQk+1,ex ⊂ Qk+1,ex

under pn1,n2 . We have a commutative diagram

dQk+1,ex
′ pn1,n2←−−−− d FlQk+1,ex

n1,n2

qn1,n2−−−−→ dQn1,k+1,ex
′ × Bunn2

φk


 
 φn1,k×id



dPk ←−−− Z −−−→ dPn1,k × Bunn2 .

The right portion of this diagram is not Cartesian. However, the map

d FlQk+1,ex
n1,n2

→ Z ×
dPn1,k×Bunn2

(dQn1,k+1,ex
′ × Bunn2)

is smooth with contractible fibers. Hence, the assertion of the lemma follows
from the projection formula.

By the lemma above, part (1) of Proposition 6.5 would follow once we are
able to establish an isomorphism of functors:

CTQk+1,ex
n1,n2

◦Wk,k+1,ex 	 (Wn1,k,k+1,ex × id) ◦ CTQk
n1,n2

,(20)

both of which map from DW (Qk) to DW (Qn1,k+1,ex × Bunn2).
Observe that the functor CTQk

n1,n2
, has a natural right adjoint, which we

will denote by EisQk
n1,n2

, that maps F∈D(Qn1,k+1×Bunn2) to pn1,n2,k∗
(
q!

n1,n2,k
(F)

)
.

This functor also maps DW (Qn1,k × Bunn2) to DW (Qk).

Similarly, we have a right adjoint of CTQk+1,ex
n1,n2

EisQk+1,ex
n1,n2

: DW (Qn1,k+1,ex × Bunn2) → DW (Qk+1,ex).

To prove (20) it suffices to verify the isomorphism on the level of the
corresponding adjoint functors. In other words, we must show that

πk+1,ex,k∗ ◦ EisQk+1,ex
n1,n2

	 EisQk
n1,n2

◦(πn1,k+1,ex,k × id)∗.

However, the latter isomorphism follows from base change.
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6.8. Proof of Proposition 6.5(2). Note that Qk+1,ex − Qk+1 ⊂ Qk+1

is naturally isomorphic to Qk. We would like to calculate Wk,k+1,ex(F)|Qk
in

terms of CTQk
n1,n2

for n1 = k.
Recall that to a string of integers d = d1, . . . , dk we associated a locally

closed substack dQk ⊂ Qk.
Note now that we have a natural map ψk : dQk → Qk,k×Bunn−k. Namely,

we can think of a point of dQk as a data of

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mk ⊂ M,

and identifications Mi/Mi−1 	 Ωn−i(Di − Di−1) for (D1, . . . , Dk) ∈ X(d).
The corresponding point of Qk,k × Bunn−k is M1 = Mk, with the data of

κn1,i being given by the old κi’s, and M2 := M/Mk.
We claim that up to a cohomological shift, for F ∈ DW (Qk),

Wk,k+1,ex(F)|dQk
	 ψ∗

k(CTQk

k,n−k(F)).(21)

This follows immediately from the description of the functor dWk,k+1,ex

in Section 5.2. Thus, part (2) of Proposition 6.5 follows, because to show that
Wk,k+1,ex(F)|Qk

= 0 for F cuspidal, it is enough to show that for all d as above
Wk,k+1,ex(F)|dQk

= 0, and the latter is given by (21).

Note that in the course of the proof we have shown that Wk,k+1,ex(F)|Qk
=0

if and only if CTQk

k,n−k(F) = 0. This is because the stack Qk,k is also stratified

by means of dQk,k, and for every d the map

ψ : dQk → dQk,k × Bunn−k

is surjective.

6.9. Thus, Theorem 6.4 is proved. We will now give another categorical
interpretation of it. Let DW

cusp(Qk) denote the full subcategory consisting of
cuspidal objects in DW (Qk). This is evidently a triangulated subcategory in
DW (Qk).

Now, let DW
degen(Qk) ⊂ DW (Qk) denote the (full triangulated) subcategory

of those objects F for which Wk,n(F) = 0. Let D̃
W

(Qk) denote the quotient
triangulated category DW (Qk)/ DW

degen(Qk).
Consider the composition

DW
cusp(Qk) → DW (Qk) → D̃

W
(Qk).

Theorem 6.10. (1) The above functor DW
cusp(Qk) → D̃

W
(Qk) is an equiv-

alence of categories.

(2) The functor DW
cusp(Qk)

Wk,n−→ DW (Q) is an equivalence as well.
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6.11. Proof of Theorem 6.10. Let W−1
k,k+1 : DW (Qk+1) → DW (Qk)

be defined by sending F′ ∈ DW (Qk+1) to πk+1,ex,k !(F′′), where F′′ is the
!-extension from Qk+1 to Qk+1,ex. Since Wk,k+1,ex is an equivalence, we have
an isomorphism of functors

Wk,k+1 ◦ W−1
k,k+1 	 idDW (Qk+1)

,

and an adjunction map W−1
k,k+1 ◦ Wk,k+1 → idDW (Qk).

By construction, Wk,k+1 induces a functor D̃
W

(Qk) → D̃
W

(Qk+1). We
claim this functor is an equivalence for every k.

Indeed, it is easy to see that the functor

DW (Qk+1)
W−1

k,k+1−→ DW (Qk) → D̃
W

(Qk)

factors through D̃
W

(Qk+1) and defines a quasi-inverse for Wk,k+1. Hence,

Wk,n : D̃
W

(Qk) → D̃
W

(Qn) = DW (Q) is an equivalence as well.
Thus, it remains to prove the first assertion of the theorem. For that, it is

enough to show that Wk,k+1 induces an equivalence DW
cusp(Qk) → DW

cusp(Qk+1)
for every k. The fact that the image of DW

cusp(Qk) under Wk,k+1 belongs to
DW

cusp(Qk) was proved in Proposition 6.5.
We claim that W−1

k,k+1 defines a quasi-inverse. Indeed, for F ∈ DW
cusp(Qk+1)

to show that W−1
k,k+1(F)∈DW

cusp(Qk) we must verify that CTQk
n1,n2

(W−1
k,k+1(F))=0

for n1 ≥ k.
Suppose first that n1 ≥ k + 1. Then, since Wn1,k,k+1,ex is an equivalence,

what we need follows immediately from (20). For n1 = k, the needed assertion
follows from the last remark of Section 6.8.

The fact that Wk,k+1 ◦W−1
k,k+1 	 id we know already. It remains, therefore

to show that for F ∈ DW
cusp(Qk),

W−1
k,k+1(Wk,k+1(F)) → F

is an isomorphism. Let F′ be the cone of the above map. We know that
F′ ∈ DW

cusp(Qk), and Wk,k+1(F′) 	 0. Hence, F′ 	 0 by Theorem 6.4.

6.12. As a corollary of Theorem 6.10 we obtain that the category
DW

cusp(Qk), and hence, in particular Dcusp(Bun1), possesses a t-structure.
Indeed, it is equivalent to the category DW (Q), for which the t-structure is
manifest. Note that this t-structure does not coincide with the t-structure on
the ambient category DW (Qk).
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7. The Hecke functors

7.1. Recall the Hecke functor H : D(Bunn) → D(X × Bunn), which was
defined using the stack H = Mod1

n. In this section we will introduce Hecke
functors that map from D(Qk) to D(X × Qk). First we will consider the case
of Q1 = Bun′

n.

Set HBun′
n := Bun′

n ×
Bunn

H, where the map
←
h : H → Bunn is used to define

the fiber product.
We have a commutative diagram

X × Bun′
n

sBun′
n×

←
hBun′

n←−−−−−−−− HBun′
n

→
hBun′

n−−−−→ Bun′
n

id×π


 
 π



X × Bunn

s×
←
h←−−− H

→
h−−−→ Bunn,

in which the left square is Cartesian. Indeed, the map
→
hBun′

n attaches to a point
(x,M ↪→ M′, κ : Ωn−1 → M) ∈ Bun′

n ×
Bunn

H the point (M′, κ′ : Ωn−1 → M′),

where κ′ is the composition Ωn−1 κ→ M → M′.
We define the functor HBun′

n : D(Bun′
n) → D(X × Bun′

n) by

F �→ (sBun′
n ×

←
hBun′

n)!

(→
hBun′

n∗(F)
)

[n − 1].

Note that the functors HBun′
n and H are compatible in the following way:

for F ∈ D(Bunn),

(id×π)∗ (H(F)) 	 HBun′
n (π∗(F)) [1].(22)

Note also that since the map
→
hBun′

n is not smooth, the functor HBun′
n

does not commute with the Verdier duality. In particular, one could define its

Verdier twin by F �→ (sBun′
n ×

←
hBun′

n)∗

(→
hBun′

n !(F)
)

[1 − n].

7.2. For 1 ≤ k ≤ n we introduce the appropriate Hecke functors in a sim-
ilar fashion. Namely, we set HQk := Qk ×

Bunn

H, which fits into a commutative

diagram

X × Qk
sQk×

←
hQk←−−−−−− HQk

→
hQk−−−→ Bun′

n

id×π


 
 π



X × Bunn

s×
←
h←−−− H

→
h−−−→ Bunn,

in which the left square is Cartesian.
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The functor HQk : D(Qk) → D(X × Qk) is defined by means of

F �→ (sQk ×
←
hQk)!

(→
hQk∗(F)

)
[n − 1].

Set xHQk to be the preimage of x ∈ X in HQk . For a point x ∈ X we will
denote by x HQk the functor D(Qk) → D(Qk) obtained as a composition of HQk

followed by the ∗-restriction to x × Qk ⊂ X × Qk.
In other words, x HQk can be defined using the substack xHQk as a corre-

spondence.
In a similar way we define the stack HQk+1,ex and the corresponding functor

HQk+1,ex : D(Qk+1,ex) → D(X × Qk+1,ex).

Proposition 7.3. The functor HQk+1,ex maps DW (Qk+1,ex) to DW (X ×
Qk+1,ex).

Of course, as a corollary of this proposition we obtain that HQk maps
DW (Qk) to DW (X × Qk).

Proof. To simplify the notation we will show that for any x ∈ X, the func-
tor x HQk+1,ex : D(Qk+1,ex)→D(Qk+1,ex) preserves the subcategory DW (Qk+1,ex).

Let y ∈ X be a point different from x. It is easy to see that we have a
well-defined functor x HQ

y

k+1,ex : D(Q
y
k+1,ex) → D(Q

y
k+1,ex), constructed using

the stack that we will denote by xHQ
y

k+1,ex . We will first show that this functor
preserves DW (Q

y
k+1,ex).

However, this is almost obvious from the definitions:
Recall the groupoid HNy

k
×
Q

y

k

Q
y
k+1,ex acting on Q

y
k+1,ex. We claim that it

lifts to the stack xHQ
y

k+1,ex ; i.e., we have a groupoid xH
Q

y

k+1,ex

Ny
k

which fits into
two commutative diagrams

xHQ
y

k+1,ex
act←−−− xH

Q
y

k+1,ex

Ny
k

pr−−−→ xHQ
y

k+1,ex

←
h

Q
y
k+1,ex


 ←
h


 ←
h

Q
y
k+1,ex



Q

y
k+1,ex

actk,ex←−−−− HNy
k
×
Q

y

k

Q
y
k+1,ex

prk,ex−−−→ Q
y
k+1,ex,

and

xHQ
y

k+1,ex
act←−−− xH

Q
y

k+1,ex

Ny
k

pr−−−→ xHQ
y

k+1,ex

→
h

Q
y
k+1,ex


 →
h


 →
h

Q
y
k+1,ex



Q

y
k+1,ex

actk,ex←−−−− HNy
k
×
Q

y

k

Q
y
k+1,ex

prk,ex−−−→ Q
y
k+1,ex,
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in both of which both squares are Cartesian. Moreover, the compositions

xH
Q

y

k+1,ex

Ny
k

←
h−→ HNy

k
×
Q

y

k

Q
y
k+1,ex

χk→ A1

and

xH
Q

y

k+1,ex

Ny
k

→
h−→ HNy

k
×
Q

y

k

Q
y
k+1,ex

χk→ A1

coincide. Therefore, if an object F ∈ D(Q
y
k+1,ex) satisfies the equivariance

condition (14), then so does
←
h

Q
y

k

!

(→
hQ

y

k∗(F)
)

[n − 1].

Now let F be an arbitrary object of DW(Qk+1,ex). To show that x HQk+1,ex(F)
also belongs to DW (Qk+1,ex), from Lemma 4.8 it follows that it is sufficient to
show that any irreducible sub-quotient of any perverse cohomology sheaf of
x HQk+1,ex(F) belongs to DW (Qk+1,ex).

Let K be such a sub-quotient. Then there exists y ∈ X, such that the
restriction of K to Q

y
k+1,ex is nonzero. Hence, again by Lemma 4.8 and Corol-

lary 4.14, it suffices to show that K|Qy

k+1,ex
belongs to DW (Q

y
k+1,ex). But above

we have shown that the entire x HQk+1,ex(F)|Qy

k+1,ex
belongs to DW (Q

y
k+1,ex),

and hence also K|Qy

k+1,ex
, which is its sub-quotient.

7.4. Our next goal is to show that the Hecke functors and Whittaker
functors commute with each other.

Proposition 7.5. We have a natural isomorphism of functors

HQk+1,ex ◦Wk,k+1,ex 	 (id×Wk,k+1,ex) ◦ HQk : DW (Qk) → DW (X × Qk+1,ex).

Of course, the proposition implies that the functors HQk+1 ◦Wk,k+1 and
(id×Wk,k+1) ◦ HQk from DW (Qk) to DW (X × Qk+1) are isomorphic.

Proof. As in the proof of the previous proposition, in order to simplify the
notation, we will consider the functors x HQk+1,ex and x HQk instead of HQk+1,ex

and HQk .
In fact, from the proof of Proposition 7.3 given above one can directly

deduce that for y �= x, x HQ
y

k+1,ex ◦W y
k,k+1,ex 	 W y

k,k+1,ex ◦ x HQ
y

k , using the
definition of W y

k,k+1,ex via the Fourier transform functor as in Section 5.9. We
will proceed differently. Namely, we will prove that for F ∈ DW (Qk+1,ex),

πk+1,ex,k !

(
x HQk+1,ex(F)

)
	 x HQk (πk+1,ex,k !(F)) ,(23)

which is equivalent to the statement of Proposition 7.5, since πk+1,ex,k ! induces
an equivalence of categories.
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For a point x ∈ X, let Qk+1,ex,x denote the stack that classifies the data
(M, κ1, . . . , κk, κk+1) as before, with the difference that now the last map κk+1 :

Ωn−1+···+n−(k+1) → Λk+1(M) is allowed to have a simple pole at x. We have a
natural closed embedding Qk+1,ex ↪→ Qk+1,ex,x.

Let x HQk+1,ex,x denote the Cartesian product

x HQk+1,ex,x := x HQk ×
Qk

Qk+1,ex,

where we have used the map
→
hQk : x HQk → Qk to define the product.

We have a commutative diagram:

Qk+1,ex,x

←
hQk+1,ex,x←−−−−−− x HQk+1,ex,x

→
hQk+1,ex,x−−−−−−→ Qk+1,ex

πk+1,ex,k,x


 
 πk+1,ex,k



Qk

←
hQk←−−− x HQk

→
hQk−−−→ Qk,

in which the right square is Cartesian.
By base change, for F ∈ DW (Qk+1,ex), the right-hand side of (23) equals

(πk+1,ex,k,x)!

(←
h

Qk+1,ex,x

!

(→
hQk+1,ex,x∗(F)

))
.(24)

Lemma 7.6. For F ∈ DW (Qk+1,ex), the object

←
h

Qk+1,ex,x

!

(→
hQk+1,ex,x∗(F)

)
∈ D(Qk+1,ex,x)

is supported on Qk+1,ex.

Proof. For y �= x let Q
y
k+1,ex,x denote the open substack of Qk+1,ex,x equal

to the preimage of Q
y
k under πk+1,ex,k,x. It would be sufficient to show that for

any such y, the restriction of
←
h

Qk+1,ex,x

!

(→
hQk+1,ex,x∗(F)

)
(as in the lemma) to

Q
y
k+1,ex,x is supported on Q

y
k+1,ex.

As in Section 4.7 we can introduce the category DW (Q
y
k+1,ex,x), and, as in

Proposition 7.3, we show that the Hecke functor F �→
←
h

Qk+1,ex,x

!

(→
hQk+1,ex,x∗(F)

)
maps DW (Q

y
k+1,ex) to DW (Q

y
k+1,ex,x).

However, we claim that every object of the category DW (Q
y
k+1,ex,x) is

supported on Q
y
k+1,ex. We show this by introducing a stratification on Q

y
k+1,ex,x

analogous to the stratification by dQ
y
k+1,ex on Q

y
k+1,ex and using an analog of

Proposition 4.13(1).
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To finish the proof of Proposition 7.5, we observe that there is another
diagram:

Qk
πk+1,ex,k←−−−−− Qk+1,ex

←
hQk+1,ex←−−−−− x HQk+1,ex

→
hQk+1,ex−−−−−→ Qk+1,ex

id


 
 
 id



Qk

πk+1,ex,k,x←−−−−−− Qk+1,ex,x

←
hQk+1,ex,x←−−−−−− x HQk+1,ex,x

→
hQk+1,ex,x−−−−−−→ Qk+1,ex,

in which the middle square is Cartesian.
Therefore, by Lemma 7.6, the expression in (24) can be rewritten as

(πk+1,ex,k)!

(←
h

Qk+1,ex

!

(→
hQk+1,ex∗(F)

))
,

which equals the expression on the left-hand side of (23).

7.7. The following theorem is one of the main technical results of this
paper:

Theorem 7.8. The functor HQn : D(Qn) → D(X × Qn) is right-exact.

The rest of this section is devoted to the proof of this theorem. Let us re-
strict our attention to the connected component of Qn corresponding to vector
bundles M of a fixed degree. We set d = deg(Λn(M))−deg(Ωn−1+n−2+···+1+0).
According to the conventions of [7], the corresponding connected component
of Bunn is denoted by Bund

n, and we keep similar notation for Q
d
n.

The data of κn in the definition of Qn define a map τd : Q
d
n → X(d).

Observe that we have a commutative diagram:

HQn

→
hQn−−−→ Q

d+1
n

sQn×
←
hQn


 τd+1



X × Q

d
n −−−→ X(d+1),

where the bottom horizontal arrow is the composition

X × Q
d
n

id×τd−→ X × X(d) → X(d+1).

From the above diagram we obtain the following:

Lemma 7.9. For a given point (M′, κ′
1, . . . , κ′

n) ∈ Q
d+1
n , its preimage in

HQn is contained in ⋃
x∈supp(D′

n)

xHQn ,

where D′
n ∈ X(d+1) is the image of the above point under τd+1.
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The proof of Theorem 7.8 will be obtained from the following general
result: Let

Y
f← Z

f ′

→ Y′

be a diagram of stacks with the morphism f representable. Suppose that Z

can be decomposed into locally closed substacks Z = ∪Zα (the decomposition
being locally finite) such that if we denote by mα (resp., m′

α) the maximum of
the dimensions of fibers of f : Zα → Y (resp., f ′ : Zα → Y′), we have:

mα + m′
α ≤ m

for some integer m.

Lemma 7.10. Under the above circumstances, the functor D(Y′) → D(Y)
given by

F �→ f!

(
f ′∗(F)

)
sends objects of D(Y′)≤0 to D(Y)≤m.

The proof of the lemma follows from the definition of the perverse t-
structure.

We apply this lemma for Y = X ×Qn, Y′ = Qn, Z = HQn , f = sQn ×
←
hQn ,

f ′ =
→
hQn , and m = n − 1. Thus, our task is to find a suitable stratification of

HQn .

7.11. For two strings of nonnegative integers d
1 = d1

1, . . . , d1
n, d

2 =
d2

1, . . . , d2
n with d2

n = d1
n + 1, and d1

i ≤ d2
i ≤ d1

i + 1, let d
1
,d

2

HQn denote the
following locally closed substack of HQn :

Recall that HQn classifies the data of

(x ∈ X, M ∈ Bunn, κi : Ωn−1+···+n−i → Λi(M), M′ ∈ Bunn, β : M ↪→ M′),

where M′/M is a skyscraper at x. We say that such a point as x belongs to
d
1
,d

2

HQn if

(a) Each map κi : Ωn−1+···+n−i → Λi(M) has a zero of order d1
i at x.

(b) Each composed map κ′
i : Ωn−1+···+n−i → Λi(M′) has a zero of order d2

i

at x.

As in the case of Qk = ∪ dQk, it is easy to show that the substacks d
1
,d

2

HQn

define a locally finite decomposition of HQn into locally closed substacks.
We now need to verify the estimate on the dimensions of fibers d

1
,d

2

HQn

under the maps (sQn ×
←
hQn) and

→
hQn .

Let d
1
,d

2

x HQn denote the intersection d
1
,d

2

HQn ∩ xHQn . In view of
Lemma 7.9, it suffices to check that for any fixed x ∈ X, the sum of the
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dimensions of fibers of

←
hQn :d

1
,d

2

x HQn → Qn and
→
hQn :d

1
,d

2

x HQn → Qn

does not exceed n − 1.
For fixed d

1
, d

2, let k be the first integer for which d2
k = d1

k + 1. We claim

that the dimensions of the fibers of d
1
,d

2

x HQn under
←
hQn are exactly k − 1, and

those for
→
hQn are n − k.

Indeed, let first (M, κ1, . . . , κn) be a point of Q
d
n such that each κi has a

zero of order d1
i at x. Then on the formal disk around x we have a filtration

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M

with Mi/Mi−1 	 Ωn−1+...n−i
(
(d1

i − d1
i−1)(x)

)
.

The variety of all possible upper modifications M′ of M at the given x is
the projective space P(Mx). Now, the condition that the point that M′ defines

in xHQn belongs to d
1
,d

2

x HQn with the above condition on (d1
, d

2) means that
the corresponding line � ⊂ Mx belongs to (Mk)x ⊂ Mx, and does not belong
to (Mk−1)x.

The dimension of the variety of these lines is exactly k − 1.
Similarly, if we start with a point (M′, κ′

1, . . . , κ′
n) ∈ Q

d+1
n with each κ′

i

having a zero of order d2
i at x, we obtain a flag

0 = M′
0 ⊂ M′

1 ⊂ · · · ⊂ M′
n = M′

defined on the formal disk around x, and

M′
i/M′

i−1 	 Ωn−1+...n−i
(
(d2

i − d2
i−1)(x)

)
.

The variety of all possible lower modifications M of M′ constitutes the
projective space of hyperplanes in M′

x. The condition that M defines a point

of d
1
,d

2

x HQn means that the corresponding hyperplane contains (M′
k−1)x, and

does not contain (M′
k)x, and the variety of these hyperplanes has dimension

n − k.

7.12. As usual, everything said in this section carries over to the relative
situation; i.e., for a base S we have the Hecke functors HQk : DW (S × Qk) →
DW (S × X × Qk). Moreover, for k = n this functor is right-exact.

Note, however, that for a map g : S1 → S2, the functors HQk commute
only with the !-push forward and the ∗-pull back.
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8. Construction of quotients

In this section we will complete the construction of the quotient categories.
Recall the category D̃(Bun′

n) introduced in Section 6.9. A naive idea would be
to define D̃(Bunn) as a quotient of D(Bunn) by the kernel of the composition

D(Bunn) π∗
→ D(Bun′

n) → D̃(Bunn),

i.e., to “kill” those sheaves F on Bunn, for which π∗(F) ∈ D(Bun′
n) is de-

generate. However, this definition does not work, because, since the map
π : Bun′

n → Bunn is not smooth, the functor π∗ is not exact, and the resulting
kernel would not in general be compatible with the t-structure. To remedy
this, we will “kill” even more objects in D(Bunn).

8.1. Let U ⊂ Bunn be the open substack corresponding to M ∈ Bunn for
which Ext1(Ωn−1, M) = 0. It is well-known that each U∩Bund

n is of finite type.
Obviously, the map π : Bun′

n → Bunn is smooth over U. Set V = Bunn −U,
Ud = U ∩ Bund

n, and Vd = Bund
n −Ud.

Recall (cf. [7, §3.2]) that a vector bundle M is called very unstable if M can
represented as a direct sum M = M1⊕M2, with Mi �=0, and Ext1(M1, M2)=0.

It is well-known (cf. [7, Lemma 6.11]) that if F is a cuspidal object of
D(Bunn), then its ∗-stalk at every very unstable point M ∈ Bunn vanishes.
The following is also well-known (cf. [7, Lemma 3.3]):

Lemma 8.2. There exists an integer d0, depending only on the genus of
X, such that for d ≥ d0 every point of M ∈ Vd is very unstable.

8.3. Let V′ ⊂ Bun′
n, U′ ⊂ Bun′

n be the preimages of V and U, respectively,
in Bun′

n. We denote by  : U → Bunn, ′ : U′ → Bun′
n the corresponding open

embeddings.
The category D(V′) is a full triangulated subcategory of D(Bun′

n). It is
compatible with the t-structure on D(Bun′

n), cf. Section 2.8.
Recall now the subcategory Ddegen(Bun′

n) ⊂ D(Bun′
n) of Section 6.9,

which by definition consists of objects annihilated by the functor W : D(Bun′
n) →

DW (Q). Since the functor W is exact, Ddegen(Bun′
n) is also compatible with

the t-structure on D(Bun′
n); cf. Lemma 2.10.

Let D(V′ + degen) ⊂ D(Bun′
n) be the triangulated category generated by

D(V′) and Ddegen(Bun′
n), i.e., D(V′ + degen) is the minimal full triangulated

subcategory of D(Bun′
n), which contains both D(V′) and Ddegen(Bun′

n).
We have:

Lemma 8.4. Let C be a triangulated subcategory endowed with a t-structure
and let C′, C′′ ⊂ C be two full triangulated subcategories, both compatible with
the t-structure on C. Let C′ + C′′ ⊂ C be the triangulated subcategory generated
by C′ and C′′. Then C′ + C′′ is also compatible with the t-structure on C.
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Proof. By definition, (C′ + C′′) ∩ P(C) is the full abelian subcategory
of P(C), consisting of objects, which admit a finite filtration with successive
quotients being objects of either P(C′) or P(C′′). Clearly, (C′ + C′′) ∩P(C) is a
Serre subcategory of P(C).

Thus, we have to show that if S is an object of C′ + C′′, then so is τ≤0(S).
Suppose that S can be obtained by an iterated i-fold procedure of taking cones,
starting from objects of either C′ or C′′. By induction on i, we may assume
that S fits into an exact triangle

S1 → S → S2

with S1, S2 ∈ C′ + C′′ and τ≤0(S1), τ≤0(S2) being also in C′ + C′′. Let S3 be the
image of h0(S2) in h1(S1); it belongs to (C′ + C′′)∩P(C), by the above. Let S4

be the cone of τ≤0(S2) → S3. Then τ≤0(S) fits into the exact triangle

τ≤0(S1) → τ≤0(S) → S4.

By applying this lemma to D(V′+degen), we obtain from Proposition 2.11
that the quotient triangulated category˜̃D(Bun′

n) := D(Bun′
n)/ D(V′ + degen)

carries a t-structure.
For an arbitrary base scheme S, the category ˜̃D(S × Bun′

n) is defined
in a similar way, as a quotient of D(S × Bun′

n) by a subcategory denoted
D(S, V′ + degen). This quotient is stable under the standard functors; i.e., for
a map S1 → S2 the four functors D(S1 × Bun′

n) � D(S2 × Bun′
n) give rise to

well-defined functors on the quotients ˜̃D(S1 × Bun′
n) � ˜̃D(S2 × Bun′

n).
Moreover, the Verdier duality functor on D(S×Bun′

n) descends to a well-

defined self-functor on ˜̃D(S × Bun′
n). Finally, the “tensor product along S”

functor
D(S) × D(S × Bun′

n) → D(S × Bun′
n)

is also well-defined on the quotient.

8.5. We define the functor π∗
S : D(S ×Bunn) → ˜̃D(S ×Bun′

n) as follows.
For F ∈ D(S × Bund

n) we set π∗
S(F) to be the image of (id×π)∗(F)[dim(d)]

under D(S × Bun′
n) → ˜̃D(S × Bun′

n), where dim(d) = dim. rel.(U′, Ud). Note
that dim(d + 1) = dim(d) + 1, by the Riemann-Roch theorem.

Proposition 8.6. The functor π∗
S is exact. Moreover, it commutes

with the Verdier duality, the tensor product along S, and for a map S1 → S2

it is compatible with the four functors D(S1 × Bunn) � D(S2 × Bunn) and˜̃D(S1 × Bun′
n) � ˜̃D(S2 × Bun′

n).



ON A VANISHING CONJECTURE 675

Proof. The functor F �→ (id×π)∗(F)[dim(d)] from D(S × Bund
n) to

D(S × Bun′
n) is not exact, because the map π is not smooth. However, for

a perverse sheaf F ∈ P(S × Bund
n) all the nonzero cohomology sheaves of

(id×π)∗(F)[dim(d)] are supported on V′. Hence they vanish after the projec-

tion to ˜̃D(S × Bun′
n). This establishes the exactness of π∗

S .
The other assertions of the proposition follow in a similar way. For exam-

ple, to show that π∗
S commutes with the Verdier duality functor, it suffices to

observe that

′∗ ◦ (id×π)∗(F)[dim(d)]) 	 ′∗ ◦ D ◦ (id×π)∗(DF)[dim(d)]) ,

and for any F′ ∈ D(S×Bun′
n) the map ′!◦′∗(F′) → F′ becomes an isomorphism

in ˜̃D(S × Bun′
n).

8.7. Since the functor π∗
S is exact, the subcategory

Ddegen(S × Bunn) := ker(π∗
S) ⊂ D(S × Bunn)

is compatible with the t-structure.
We define the category D̃(S × Bunn) as the quotient

D(S × Bunn)/ Ddegen(S × Bunn).

By Proposition 2.11, D̃(S × Bunn) inherits a t-structure from D(S × Bunn).
By Proposition 8.6, the standard six functors that act on D(S × Bunn) are
well-defined on the quotient D̃(S × Bunn). Thus, it remains to show that
D̃(S × Bunn) satisfies Properties 1 and 2 of Section 2.12.

8.8. Verification of Property 1. We must show that the Hecke functor

HS : D(S × Bunn) → D(S × X × Bunn)

descends to the quotient D̃(S × Bunn), and the corresponding functor H̃S is
exact. To prove the fact that H̃S is well-defined, we must show that HS maps
ker(π∗

S) to ker(π∗
S×X). By (22), cf. Section 7.1, this reduces to showing that

the subcategory D(S, V′ + degen) ⊂ D(S × Bun′
n) is preserved by HBun′

n

S :
D(S × Bun′

n) → D(S × X × Bun′
n). For that, it suffices to show that HBun′

n

S

maps Ddegen(S×Bun′
n) to Ddegen(S×X×Bun′

n) and D(S×V′) to D(S×X×V′).
The former follows immediately from Proposition 7.5. To prove the latter,

it suffices to observe that in the diagram

Bun′
n

←
hBun′

n←− HBun′
n

→
hBun′

n−→ Bun′
n,

the subset (
→
hBun′

n)−1(V′) is contained in (
←
hBun′

n)−1(V′).
Now we will prove the exactness of H̃S on D̃(S×Bunn). Since the functor

HS : D(S ×Bunn) → D(S ×X ×Bunn) commutes with the Verdier duality, it
suffices to show that H̃S is right-exact on D̃(S × Bunn).
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We have the following general assertion: Let

C1
F−−−→ C2

G1


 G2



C′

1
F ′

−−−→ C′
2

be a commutative diagram of functors between triangulated categories endowed
with t-structures. Suppose that the functors F , and F ′ are exact, and the
functor G2 is right-exact (resp., left-exact, exact).

Lemma 8.10. Under the above circumstances, G1 gives rise to a well -
defined functor

G̃1 : C1/ker(F ) → C′
1/ker(F ′),

and the latter functor is right-exact (resp., left-exact, exact).

Proof. The fact that the functor G̃1 : C1/ker(F ) → C′
1/ker(F ′) is well-

defined is immediate. Let us assume that G2 is right-exact. To prove that
G̃1 is then also right-exact, we must show that for S ∈ C

≤0
1 , the projec-

tion to C′
1/ker(F ′) of τ>0(G1(S)) vanishes. This amounts to showing that

F ′ (τ>0(G1(S))
)

= 0. Since F is exact,

F ′ (τ>0(G1(S))
)
	 τ>0

(
F ′ ◦ G1(S)

)
,

which, in turn, is isomorphic to τ>0 (G2 ◦ F (S)). Since F is exact, F (S) ∈ C
≤0
2 ,

and since G2 is right-exact, G2 ◦ F (S) ∈ C′
2
≤0, which is what we had to show.

We apply this lemma first to C1 = D(S ×Bun′
n), C′

1 = D(S ×X ×Bun′
n),

C2 = D(S × Q), C′
2 = D(S × X × Q), F, F ′ = W , G1 = HBun′

n

S , and G2 = HQ
S .

From Theorem 7.8 we know that HQ
S is right exact, which by Lemma 8.10

implies that H̃
Bun′

n

S : D̃(S × Bun′
n) → D̃(S × X × Bun′

n) is right exact. Hence,

the corresponding functor ˜̃HBun′
n

S : ˜̃D(S × Bun′
n) → ˜̃D(S × X × Bun′

n) is also
right-exact.

We apply Lemma 8.10 the second time to C1 = D(S × Bunn), C′
1 =

D(S × X × Bunn), C2 = ˜̃D(S × Bun′
n), C′

2 = ˜̃D(S × X × Bun′
n), F = π∗

S ,

F ′ = π∗
S×X , G1 = HS , and G2 = ˜̃HBun′

n

S .
We conclude that H̃S is exact as a functor D̃(S × Bunn) → D̃(S × X ×

Bunn).

8.10. Verification of Property 2. We must show that if F1 is a cuspidal
object of D(Bund

n) with d ≥ d0 (cf. Lemma 8.2) and F2 ∈ Ddegen(Bunn), then

HomD(Bunn)(F1, F2) = 0.
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First, from Lemma 8.2, we obtain that F1 	 !(∗(F1)). Therefore,

HomD(Bunn)(F1, F2) 	 HomD(U)(F1|U, F2|U).

Consider the natural map

HomD(U)(F1|U, F2|U) → HomDGm (U′) (π∗(F1)|U′ , π∗(F2)|U′) .(25)

We claim that this map is an injection. Indeed, the quotient stack U′/Gm

is fibration into projective spaces over U, and the required injectivity follows
from the fact the direct image of the constant sheaf from U′/Gm to U contains
the constant sheaf on U as a direct summand. Thus, it will be sufficient to
show that the right-hand side of (25) vanishes. Note that since π∗(F1)|V′ = 0,
we can rewrite (25) as

HomDGm (Bun′
n) (π∗(F1), π∗(F2)) .

We will show that for any F′
2 ∈ D(V′ + degen),

HomDGm (Bun′
n)(π

∗(F1), F′
2) = 0.

By definition of D(V′ + degen), we must analyze two cases:

Case 1. F′
2 ∈ D(V′). In this case the above Hom vanishes, because

π∗(F1)|V′ = 0, as was noticed before.

Case 2. F′
2 ∈ Ddegen(Bun′

n).

We know that F′
1 := π∗(F1) is cuspidal, and from Theorem 6.4 (or rather

from its Gm-equivariant version) we obtain that

HomDGm (Bun′
n)(F

′
1, F

′
2) 	 HomDGm (Qn)(W (F′

1), W (F′
2)) = 0,

since it was assumed that W (F′
2) = 0.

Appendix

A.1. We will present now a different way of deducing Conjecture 1.3
from Theorem 2.2. This argument is due to A. Braverman.

By induction, we assume Conjecture 1.3 for all integers n′ < n. It is
enough to show that Avd

E(F) vanishes for a perverse sheaf F ∈ D(Bunn),
where d is as in Conjecture 1.3. We know that Avd

E(F) is a perverse sheaf (by
Theorem 2.2) and that it is cuspidal, by Lemma 2.17.

Recall the functor Av−d
E∗ , which is left and right adjoint to Avd

E . Since

HomD(Bunn)(Avd
E(F), Avd

E(F)) 	 HomD(Bunn)(Av−d
E∗(Avd

E(F)), F),

we obtain that it is enough to show that the functor Av−d
E∗ annihilates every

cuspidal perverse sheaf.
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The stack Bunn admits a natural automorphism, which sends a bundle
to its dual. This automorphism transforms the functor Av−d

E∗ to Avd
E∗ . Since

E∗ is irreducible if and only if E is, we deduce that it is enough to show that
Avd

E(F) = 0, where F is both perverse and cuspidal.
By Lemma 2.3 and Theorem 2.2, the above vanishing is equivalent to a

weaker statement. Namely, it is sufficient to show that for a cuspidal perverse
sheaf F, the Euler-Poincaré characteristic of the stalks of Avd

E(F) is zero.
Finally, by Lemma 2.4 we conclude that it is enough to show that the Euler-
Poincaré characteristics of the stalks of Avd

E0
(F) vanish, where E0 is the trivial

local system of rank equal to that of E, and F ∈ D(Bunn) is cuspidal and
perverse.

We will prove a stronger statement. Namely, we will show that the object
Avd

E0
(F) vanishes, where E0 is a trivial local system of rank m, and d >

(2g − 2) · n · m for every cuspidal object F ∈ D(Bunn).

A.2. First, we express the functor Avd
E0

in terms of the corresponding
averaging functor for the trivial 1-dimensional local system.

Proposition A.3. Let a local system E be the direct sum E = E1 ⊕ E2.
Then, canonically :

Avd
E(F) 	 ⊕ Avd1

E1
◦Avd2

E2
(F),

where the direct sum is taken over all pairs (d1, d2) with di ≥ 0, d1 + d2 = 0.

Proof. For two nonnegative integers d1, d2 consider the stack
Modd1

n ×
Bunn

Modd2
n , where the fiber product is formed using the maps

→
h : Modd1

n → Bunn and
←
h : Modd2

n → Bunn. In other words, this stack
classifies successive extensions M ⊂ M′ ⊂ M′′, where M′/M is of length d1 and
M′′/M′ is of length d2. There is a natural projection rd1,d2 : Modd1

n ×
Bunn

Modd2
n

→ Modd
n, where d = d1 + d2.

We have:

s∗(Ld
E) 	 ⊕

(d1,d2)
rd1,d2 !(s∗(Ld1

E1
) � s∗(Ld2

E2
)).

Indeed, the isomorphism is evident over the open substack
◦

Modd
n, and it ex-

tends to the entire Modd
n, since the maps rd1,d2 are small.

By definition, this implies the required property of the functor Avd
E .

The same proof shows that the functors Avd1
E1

and Avd2
E2

mutually com-
mute.

Let Avd, with the subscript omitted, denote the averaging functor with
respect to the trivial 1-dimensional local system. Note that for the trivial



ON A VANISHING CONJECTURE 679

1-dimensional local system, Laumon’s sheaf on Cohd
0 is the constant sheaf.

Therefore, the functor Avd is just

F �→
←
h ! ◦

→
h !(F)[nd].(26)

From Proposition A.3 we obtain that

Avd
E(F) 	 ⊕

d

Avd1 ◦ · · · ◦ Avdm(F),

where the direct sum is taken over the set of m-tuples of nonnegative integers
d = (d1, . . . , dm) with d1 + · · ·+ dm = d. If d > (2g − 2) ·m · n, then for every
such d at least one di satisfies di > (2g − 2) · n. Hence, we are reduced to
showing the following:

Theorem A.4. If F ∈ D(Bunn) is cuspidal, then Avd(F) = 0 for d >

(2g − 2) · n.

This theorem is a geometric analog of the classical statement that the L-
function of a cuspidal automorphic representation of GLn over a function field
is a polynomial. The proof will be a geometrization of the Jacquet-Godement
proof of the above classical fact, in the spirit of how the functional equation is
established for geometric Eisenstein series in [3, §7.3].

A.5. The starting point is the following observation, due to V. Drinfeld
and proved in [3, §7.3]: Let Y be a stack and E1, E2 two vector bundles on
it, and p : E1 → E2 a map between them as coherent sheaves. Let Kp be the
kernel of p, considered as a group-scheme over Y and ϕ be its projection onto Y.
Consider the object Kp of D(Y) equal to ϕ!(Q�Kp

)[dim. rel.(E1, Y)], where Q�Kp

denotes the constant sheaf on Kp. Let p̌ : Ě1 → Ě2 denote the dual map, and
consider also the object Kp̌ := ϕ̌!(Q�Kp̌

)[dim. rel.(Ě2, Y)]. We have:

Lemma A.6. There is a canonical isomorphism Kp 	 Kp̌.

We will apply this lemma in the following situation. Let F be a cusp-
idal object of D(Bunn) supported on a connected component Bund′

n . As in
Section 8.1, we can assume that F is the extension by zero from an open sub-
stack of finite type U ′ ⊂ Bund′

n . Let U be a scheme of finite type, which
maps smoothly to Bund′−d

n ; moreover, we can assume that U ′ was chosen large

enough so that the image of
→
h : U ×

Bunn

Modd
n → Bund′

n is contained in U ′. We

shall show that Avd(F)|U vanishes.
We set the base Y to be U ×U ′. To define E1 and E2 we pick an arbitrary

point y ∈ X and let i be a large enough integer so that Ext1(M, M′(i · y)) = 0,
whenever (M, M′) ∈ Bunn ×Bunn is in the image of U ×U ′. We set E1 (resp.,
E2) to be the vector bundle, whose fiber at a point of U × U ′ mapping to a
point (M, M′) as above is Hom(M, M′(i · y)) (resp., Hom(M, M′(i · y)/M′)).
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The group-scheme Kp has as its fiber over (M, M′) the vector space
Hom(M, M′). By Serre’s duality, the fiber of Kp̌ is Hom(M′, M ⊗ Ω). Let
◦
Kp (resp.,

◦
K p̌) be the open subscheme corresponding to the condition that

the map of sheaves M → M′ (resp., M′ → M ⊗ Ω) is injective. Note that

if d = deg(M′) − deg(M) > (2g − 2) · n, then
◦
K p̌ is empty. Let

◦
Kp be

ϕ!(Q� ◦
Kp

)[dim. rel.(E1, Y)] (resp.,
◦
Kp̌ = ϕ!(Q� ◦

K p̌

)[dim. rel.(Ě2, Y)]). Finally, let

Kc
p (resp., Kc

p̌) denote the cone of the natural arrow
◦
Kp → Kp (resp.,

◦
Kp̌ → Kp̌).

Let us denote by q, q′ the projections from U×U ′ to U and U ′, respectively.
Consider the two functors D(U ′) → D−(U) defined by

F �→ q!(q′∗(F) ⊗ Kp) and q!(q′∗(F) ⊗
◦
Kp).

Here D−(U) denotes the derived category of sheaves, bounded from above, on
U , which appears due to the fact that the map q is not representable. Note,
however, that because of (26),

q!(q′∗(F) ⊗
◦
Kp) 	 Avd(F)|U .

Taking into account Lemma A.6, we have reduced Theorem A.4 to the
fact that the functors

F �→ q!(q′∗(F) ⊗ Kc
p) and F �→ q!(q′∗(F) ⊗ Kc

p̌)

annihilate cuspidal objects. We will prove it in the case of Kc
p, as the other

assertion is completely analogous.

A.7. Let Kc
p denote the complement to

◦
Kp in Kp. By definition, it can

be decomposed into the union of n locally closed substacks, where the k-th
substack, classifies the data of a pair of points (u, u′) ∈ U × U ′ and a map
between the corresponding sheaves M → M′, which is of generic rank k, with
k running from 0 to n − 1. Each such substack admits a further decomposi-
tion into locally closed substacks according to the length of the torsion of the
quotient M′/M.

It is enough to show that the correspondence D(U ′) → D−(U) defined
by the constant sheaf on each of these locally closed substacks annihilates
F ∈ D(U ′), provided that F is cuspidal.

Let us consider separately the cases when k = 0 and when k > 0. In
the former case, the corresponding (closed) substack of Kc

p is the zero-section,
i.e., the product U × U ′. Thus, we must show that Hc(U ′, F) = 0, when F is
cuspidal. In other words, we must show that HomD(U)(F, Q�U ) = 0. However,
this follows from Section 8.10: with no restriction of generality we may assume
that d′ ≥ d0, and the object Q�Bund′

n
clearly belongs to Ddegen(Bunn).
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Now let us suppose that k > 0, and consider the stack

Z := Flnn−k,k ×
Bunk

Moda
k ×

Bunk

Flnk,n−k,

where we have used the map (
←
h ×

→
h) : Moda

k → Bunk ×Bunk to define the
fiber product. By definition, a point of Z contains the data of

0 → Mn−k → M → Mk → 0; Mk ↪→ M′
k; 0 → M′

k → M′ → M′
n−k,

where Mn−k, M
′
n−k are vector bundles of rank n−k, Mk, M

′
k are vector bundles

of rank k, and the quotient M′
k/Mk is of length a.

The stack Z maps to Bunn ×Bunn when we remember the data of (M, M′)
and note that the fiber product UZU ′ := U ×

Bunn

Z ×
Bunn

U ′ is the required locally

closed substack of Kc
p. By taking the constant sheaf on UZU ′ we obtain a

functor D(U ′) → D−(U), and we have to show that this functor annihilates
every cuspidal object F ∈ D(U ′). However, this follows by base change from
the following diagram:

UZU ′ −−−→ Flnk,n−k ×
Bunn

U ′ −−−→ U ′
 

U ×

Bunn

Flnn−k,k ×
Bunk

Moda
k −−−→ Bunk


U ×
Bunn

Flnn−k,k

U.

Indeed, the functor D(U ′) → D−(Bunk) corresponding to the upper-right cor-
ner of the above diagram annihilates cuspidal objects, by the definition of the
constant term functor CTn

k,n−k, because the vertical arrow Flnk,n−k ×
Bunn

U ′ →
Bunk, appearing in the diagram, factors as

Flnk,n−k ×
Bunn

U ′ qk,n−k−→ Bunk ×Bunn−k → Bunk .
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