Annals of Mathematics, 160 (2004), 617682

On a vanishing conjecture appearing in
the geometric Langlands correspondence

By D. GAITSGORY™

Introduction

0.1.  This paper should be regarded as a sequel to [7]. There it was
shown that the geometric Langlands conjecture for GL,, follows from a certain
vanishing conjecture. The goal of the present paper is to prove this vanishing
conjecture.

Let X be a smooth projective curve over a ground field k. Let F be an
m-~dimensional local system on X, and let Bun,, be the moduli stack of rank
m vector bundles on X.

The geometric Langlands conjecture says that to E we can associate a
perverse sheaf Fp on Bun,,, which is a Hecke eigensheaf with respect to E.

The vanishing conjecture of [7] says that for all integers n < m, a cer-
tain functor Av%7 depending on E and a parameter d € Z", which maps the
category D(Bun,,) to itself, vanishes identically, when d is large enough.

The fact that the vanishing conjecture implies the geometric Langlands
conjecture may be regarded as a geometric version of the converse theorem.
Moreover, as will be explained in the sequel, the vanishing of the functor AV%
is analogous to the condition that the Rankin-Selberg convolution of E, viewed
as an m-dimensional Galois representation, and an automorphic form on GL,
with n < m is well-behaved.

Both the geometric Langlands conjecture and the vanishing conjecture
can be formulated in any of the sheaf-theoretic situations, e.g., Q-adic sheaves
(when char(k) # ¢), D-modules (when char(k) = 0), and sheaves with coeffi-
cients in a finite field F, (again, when char(k) # ¢).

When the ground field is the finite field F, and we are working with /-adic
coefficients, it was shown in [7] that the vanishing conjecture can be deduced
from Lafforgue’s theorem that establishes the full Langlands correspondence
for global fields of positive characteristic; cf. [9].

*The author is a prize fellow at the Clay Mathematics Institute.
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The proof to be given in this paper treats the cases of various ground
fields and coefficients uniformly, and in particular, it will be independent of
Lafforgue’s results.

However, we will be able to treat only the case of characteristic 0 coeffi-
cients, or, more generally, the case of Fy-coefficients when ¢ is > d, where d is
the parameter appearing in the formulation of the vanishing conjecture.

0.2. Let us briefly indicate the main steps of the proof. First, we show
that instead of proving that the functor AV% vanishes, it is sufficient to prove
that it is exact, i.e., that it maps perverse sheaves to perverse sheaves. The
{ exactness } — { vanishing } implication is achieved by an argument involv-
ing the comparison of Euler-Poincaré characteristics of complexes obtained by
applying the functor AvdE for various local systems E of the same rank.

Secondly, we show that the functor Av% can be expressed in terms of the
“elementary” functor AV}_;; using the action of the symmetric group 4. (It is
this step that does not allow one to treat the case of Fy-coefficients if ¢ < d.)

Thirdly, we define a certain quotient triangulated category ]5(Bunn) of
D(Bun,,) by “killing” objects that one can call degenerate. (This notion of
degeneracy is spelled out using what we call Whittaker functors.)

The main properties of the quotient D(Bun,,) are as follows: (0) D(Bun,,)
inherits the perverse ¢t-structure from D(Bun,,), (1) the Hecke functors defined
on D(Bun,) descend to D(Bun,) and are exact, and (2) the subcategory of
objects of D(Bun,) that map to 0 in D(Bun,,) is orthogonal to cuspidal com-
plexes.

Next we show that properties (0) and (1) above and the irreducibility
assumption on E formally imply that the elementary functor Avk is exact on
the quotient category. From that, we deduce that the functor AvdE is also exact
modulo the subcategory of degenerate sheaves.

Finally, by induction on n we show that Av% maps D(Bun,) to the sub-
category of cuspidal sheaves, and, using property (2) above, we deduce that
once Av, is exact modulo degenerate sheaves, it must be exact.

0.3. Let us now explain how the the paper is organized. In Section 1
we recall the formulation of the vanishing conjecture. In addition, we discuss
some properties of the Hecke functors.

In Section 2 we outline the proof of the vanishing conjecture, parallel to
what we did above. We reduce the proof to two statements: one is Theo-
rem 2.14 which says that the functor AVlE is exact on the quotient category,
and the other is the existence of the quotient category ﬁ(Bunn) with the de-
sired properties.

In Section 3 we prove Theorem 2.14. Sections 4-8 are devoted to the con-
struction of the quotient category and verification of the required properties.
Let us describe the main ideas involved in the construction.
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We start with some motivation from the theory of automorphic functions,
following [12] and [13].

Let K be a global field, and A the ring of adeles. Let P be the mirabolic
subgroup of GL,,. It is well-known that there is an isomorphism between the
space of cuspidal functions on P(X)\GL,,(A) and the space of Whittaker func-
tions on N(X)\GL,,(A), where N C GL,, is the maximal unipotent subgroup.
Moreover, this isomorphism can be written as a series of n — 1 Fourier trans-
forms along the topological group K\A.

In Sections 4 and 5 we develop the corresponding notions in the geomet-
ric context. For us, the space of functions on P(X)\GL,(A) is replaced by
the category D(Bun/,), and the space of Whittaker functions is replaced by a
certain subcategory in D(Q) (cf. Section 4, where the notation is introduced).

The main result of these two sections is that there exists an exact “Whit-
taker” functor W : D(Bun),) — D"(Q). The exactness is guaranteed by an
interpretation of W as a series of Fourier-Deligne transform functors.

In Section 6 we show that the kernel ker(W) C D(Bun!,) is orthogonal to
the subcategory Deysp(Bun),) of cuspidal sheaves.

In Section 7 we define the action of the Hecke functors on D(Bun/,) and
D" (Q), and show that the Whittaker functor W commutes with the Hecke
functors. The key result of this section is Theorem 7.8, which says that the
Hecke functor acting on DV (Q) is right-exact. This fact ultimately leads to
the desired property (1) above, that the Hecke functor is exact on the quotient
category.

Finally, in Section 8 we define our quotient category D(Bun,).

0.4 Conventions. In the main body of the paper we will be working over a
ground field k of positive characteristic p (which can be assumed algebraically
closed) and with f-adic sheaves. All the results carry over automatically to the
D-module context for schemes over a ground field of characteristic 0, where
instead of the Artin-Schreier sheaf we use the corresponding D-module “e*”
on the affine line. This paper allows us to treat the case of Fy coefficients,
when ¢ > d (cf. below) in exactly the same manner.

We follow the conventions of [7] in everything related to stacks and derived
categories on them. In particular, for a stack Y of finite type, we will denote
by D(Y) the corresponding bounded derived category of sheaves on Y. If Y is
of infinite type, but has the form Y = UY;, where Y; is an increasing family

7

of open substacks of finite type (the basic example being Bun,), D(Y) is by
definition the inverse limit of D(Y;).

Throughout the paper we will be working with the perverse t-structure on
D(Y), and will denote by P(Y) C D(Y) the abelian category of perverse sheaves.
For F € D(Y), we will denote by hi(F) its perverse cohomology sheaves.

For a map Y; — Y2 and F € D(Y2) we will sometimes write F|y, for the
x pull-back of F on Y.
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For a group X acting on Y we will denote by D*(Y) the corresponding
equivariant derived category. In most applications, the group X will be finite,
which from now on we will assume.

If the action of 3 on Y is trivial, we have the natural functor of invari-
ants F — (F)¥ : D*(Y) — D(Y). This functor is ezact when we work with
coefficients of characteristic zero, or when the order of ¥ is co-prime with the
characteristic.

The exactness of this functor is crucial for this paper, and it is the reason
why we have to assume that ¢ > d, since the finite groups in question will be
the symmetric groups X4, d’ < d.

0.5. Acknowledgments. 1 would like to express my deep gratitude to
V. Drinfeld for his attention and many helpful discussions. His ideas are present
in numerous places in this paper. In particular, the definition of Whittaker
functors, which is one of the main technical tools, follows a suggestion of his.

I would also like to thank D. Arinkin, A. Beilinson, A. Braverman,
E. Frenkel, D. Kazhdan, I. Mirkovié, V. Ostrik, K. Vilonen and
V. Vologodsky for moral support and stimulating discussions, and especially
my thesis adviser J. Bernstein, who has long ago indicated the ideas that are
used in the argument proving Theorem 2.14.

1. The conjecture

1.1. We will first recall the formulation of the Vanishing Conjecture, as
it was stated in [7]. Let Bun, be the moduli stack of rank n vector bundles
on our curve X. Let Modz denote the stack classifying the data of (M, M, 3),
where M, M’ € Bun,,, and 3 is an embedding M < M’ as coherent sheaves,
and the quotient M’'/M (which is automatically a torsion sheaf) has length d.

We have the two natural projections

— —

h d h
Bun,, «— Mod; — Bun,,

which remember the data of M and M/, respectively.

Let X(@ denote the d-th symmetric power of X. We have a natural map
s Modg — X@_ which sends a triple (M, M, 3) to the divisor of the map
A"(M) — A"(M’). In addition, we have a smooth map s : Mod? — Cohd,
where Cohg is the stack classifying torsion coherent sheaves of length d. The
map s sends a triple as above to M’ /M.

Recall that to a local system E on X, Laumon associated a perverse sheaf
L4, € P(Cohg). The pull-back s*(£%) (which is perverse up to a cohomological
shift) can be described as follows:
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[¢] [e]
Let X¢ denote the complement to the diagonal divisor in X (@, Let Mod?
[¢] [¢] o
denote the preimage of X¢ under s, and let S Modz — X4 be the corre-
sponding map. Unlike s, the map 5 is smooth. Finally, let ;7 denote the open

embedding of Mod? into Mod?.
Consider the symmetric power of E as a sheaf E(@ ¢ D(X (d)), and let

[¢] o o
E@ denote its restriction to X¢. Tt is easy to see that E(@ is lisse.

We have:

1) (1) = g (3(B™)).

1.2.  We introduce the averaging functor Av% : D(Bun,) — D(Bun,,) as
follows:

F € D(Buny,) — h <E*(3'“) ® 5*(LdE)> nd.

Let us note immediately, that this functor is essentially Verdier self-dual,
in the sense that

D(Av§(F)) = Av. (D(F)),

where E* is the dual local system. This follows from the fact that the map
sX h: Modﬁ — Cohg x Bun,, is smooth of relative dimension nd, and the map

h is proper.
The following conjecture was proposed in [7]:

CONJECTURE 1.3. Assume that E is irreducible, of rank > n. Then ford,
which is greater than (2g — 2) - n - tk(E), the functor Av% is identically equal
to zero.

1.4. Let us discuss some rather tautological reformulations of Conjec-
ture 1.3. Consider the map h X h Mod — Bun,, x Bun,,; it is representable,
but not proper, and set K% := (h X h) (s*(L4)) € D(Bun, x Buny,).

Let M € Bun,, be a geometric point (corresponding to a morphism denoted
it ¢ Spec(k) — Buny,), and let dy € D(Buny,) be (10)1(Q;). Note that since
the stack Bun, is not separated, ty; need not be a closed embedding; therefore,
dn is a priori a complex of sheaves.

LEMMA 1.5. The vanishing of the functor AV% is equivalent to each of
the following statements:

(1) For every M € Bun,,, the object Avk(dy¢) € D(Bun,,) vanishes.
(2) The object X%, € D(Bun,, x Bun,) vanishes.
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Proof. First, statements (1) and (2) above are equivalent: For M, the stalk
of Av,(dp) at M’ € Bun, is isomorphic to the stalk of K% at (M x M) €
Bun,, x Bun,,.

Obviously, Conjecture 1.3 implies statement (1). Conversely, assume that
statement (1) above holds. Let AvE‘f be the (both left and right) adjoint
functor of AvdE; explicitly,

Awﬁwj:;;<z%?y®fuﬂ*0[mﬂ

It is enough to show that Avg‘f identically vanishes. However, by adjoint-
ness, for an object F € D(Buny,), the co-stalk of Avp?(F) at M € Bun,, is
isomorphic to RHomD(Bunn)(AvdE(éM), F). O

1.6. The assertion of the above conjecture is a geometric analog of the
statement that the Rankin-Selberg convolution L(m, o), where 7 is an auto-
morphic representation of GL, and ¢ is an irreducible m-dimensional Galois
representation with m > n, has an analytic continuation and satisfies a func-
tional equation.

More precisely, let X be a curve over a finite field, and X the corresponding
global field. Then it is known that the double quotient

GL (K)\GLr(A)/GLA(O)

can be identified with the set (of isomorphism classes) of points of the stack
Bun,,.

By passing to the traces of the Frobenius, we have a function-theoretic
version of the averaging functor; let us denote it by Funct(AvdE), which is now
an operator from the space of functions on GL, (X)\GL,(A)/GL,(0) to itself.

Now, let f: be a spherical vector in some unramified automorphic repre-
sentation 7 of GL,(A). One can show that

(2) dgo Funct(AvY)(fx) = L(m, E) - fr,

where the L-function L(7, F) is regarded as a formal series in d.

The assertion of Conjecture 1.3 implies that the above series is a polyno-
mial of degree < m -n - (29 —2). And this is the same estimate as the one
following from the functional equation, which L(m, E) is supposed to satisfy.

1.7.  In the rest of this section we will make several preparatory steps
towards the proof of Conjecture 1.3.

Recall that the Hecke functor H : D(Bun,) — D(X x Bun,) is defined
using the stack 3 = Mod}, as

—

F o (s % B )(h*(F))[n].
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In the sequel it will be important to introduce parameters in all our con-
structions. Thus, for a scheme S, we have a similarly defined functor

Hg : D(S x Bun,) — D(S x X x Buny,).

For an integer d let us consider the d-fold iteration Hgy xa—10--- 0o Hgx x
oHg, denoted

HE? : D(S x Bun,) — D(S x X% x Buny,).

PROPOSITION 1.8. The functor HS® maps D(S x Bun,) to the equivariant
derived category D4 (S x X% x Bun,,), where L4 is the symmetric group acting
naturally on X®.

Proof. In the proof we will suppress S to simplify the notation. Let
ItMod? denote the stack of iterated modifications; i.e., it classifies the data of
a pair of vector bundles M, M’ € Bun,, together with a flag

M:M()CMlC-"CMd:M,,

where each M;/M;_1 is a torsion sheaf of length 1.

Let t denote the natural map ItMod? — Mod?, and let h and h be the

n
two maps from ItModi to Bun,, equal to h ot and h o t, respectively. We
will denote by 5 the map ItModi — X? which remembers the supports of the
successive quotients M;/M;_1.

It is easy to see that the functor F — H®(F) can be rewritten as

—

(3) F o (3 x h)(h*(F))[nd)

We will now introduce a stack intermediate between Mod? and ItMod<.
Consider the Cartesian product

IntMod? := Mod? x Xx¢.
X (d)

Note that IntMod?L carries a natural action of the symmetric group >4 via its

action on X 4. Let h,h be the corresponding projections from IntModZ to
Bun,,, and s the map IntMode — X< All these maps are ¥ 4-invariant.
We have a natural map vy : ItModle — IntMod,‘i.

LEMMA 1.9. The map vyt is a small resolution of singularities.

The proof of this lemma follows from the fact that IntMod‘,iL is squeezed
between ItMod? and Mod?, and the fact that the map t : ItMod? — Mod? is
known to be small from the Springer theory, cf. [2].
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Hence, the direct image of the constant sheaf on ItModg under tyy is iso-
morphic to the intersection cohomology sheaf ICy, \1,q¢, Up to a cohomological
shift. !

Therefore, by the projection formula, the expression in (3) can be rewrit-
ten as

(4) (x h) (E*m ® IcmModi> [~ dim(Bun,)].

=
However, since the map h is ¥4-invariant, and ICy;poq¢ i a X 4-equivariant

object of D(IntMod?), we obtain that h*(F) @ ICMoqe 1s naturally an object

of D¥¢(IntMod?). Similarly, since the map h is Yg-invariant, the expression
in (4) is naturally an object of D¥¢(Bun,). O

1.10. Let A(X) C X? be the main diagonal. Obviously, the symmetric
group ¥; acting on X' stabilizes A(X). Hence, for an object F € D¥ (S x
X% x Buny,), it makes sense to consider

Homg, (0, F|sxA(x)xBun,) € D(S X X x Buny,)

for various representations p of ¥;. In particular, let us consider the following
functor D(S x Bun,,) — D(S x X x Bun,) that sends F to

Homzi (Signv ng (37) ‘SXA(X) ><Bunn)7

where sign is the sign representation of ¥3;.
The following has been established in [7]:

ProrosiTIiON 1.11. The functor
¥ — Homg, (sign, HEi(gﬂSXA(X)XBunn)
s zero if © > n and for i = n it is canonically isomorphic to
F — (idg xm)*(F)[n],
where m : X x Bun,, — Bun,, is the multiplication map, i.e., m(x, M) = M(z).
Proof. Again, to simplify the notation we will suppress the scheme S.
Let Mod%? denote the preimage of A(X) C X’ inside IntMod?,. Note

that the symmetric group ¥; acts trivially on Modf@’A7 and the x-restriction
Modi-a 18 a Di-equivariant object of D(Mod%2).

ICIntModfl :
Note also that for i = n, Modf";A contains X x Bun,, as a closed subset via

(2, M) = (M, M(z),z") € Mod?, x X"
X

()
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The following is also a part of the Springer correspondence; cf. [2, §3]:

LEMMA 1.12. The object

Homy, (sign, ICIntModiL Modﬁ;A)

is zero if i > n, and for i = n it is isomorphic to the constant sheaf on
X x Bun,, C Mod%® cohomologically shifted by [dim(Bun,,) + n).

This lemma and the projection formula imply the proposition. O

1.13. We will now perform manipulations analogous to the ones of
Proposition 1.8 and Proposition 1.11 with the averaging functor AV%.

Let us observe that for d = 1, the averaging functor can be described as
follows:

Avp(F) = p(H(TF) ® ¢*(B)),

where p and ¢ are the projections X x Bun,, — Bun, and X x Bun,, — X,
respectively.

We introduce the functor ItAv% : D(Bun,) — D(Bun,) as a d-fold itera-
tion of Avk.

PROPOSITION 1.14. The functor ItAvy, maps D(Bun,) to the equivariant
derived category D> (Bun,,).

Proof. First, it is easy to see that ItAv%(F) can be rewritten as
p(H*(F) @ ¢* (X)),
where p, g are the two projections from X% x Bun,, to Bun, and X9, respec-
tively.

Hence, the assertion that ItAv%(F) naturally lifts to an object of the
equivariant derived category D*¢(Bun,,) follows from Proposition 1.8. O

The next assertion allows us to express the functor AvY via Av. This
is the only essential place in the paper where we use characteristic zero coeffi-
cients.

ProproSITION 1.15. There is a canonical isomorphism of functors

AvL(F) ~ (TtAVE (F)) 5.

Proof. The following lemma was proved in the original paper of Laumon
(cf. [10]):

LEMMA 1.16. The direct image Spréd := v, (3*(E®?)) € D(Mod?) is natu-
rally ¥q4-equivariant. Moreover,

s' (L) = (8prip) ™.
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Using the projection formula and the lemma, we can rewrite ItAv% (F) as

— —

h(h*(F) @ Spr)[nd).

(It is easy to see that the X4-equivariant structure on ItAv%(F), which arises
from the last expression is the same as the one constructed before.)
Using Lemma 1.16 we conclude the proof. O

2. Strategy of the proof

In this section we will reduce the assertion of Conjecture 1.3 to a series of
theorems, which will be proved in the subsequent sections.

2.1. By induction we will assume that Conjecture 1.3 holds for all n’
with n’ < n. We will deduce Conjecture 1.3 for n from the following weaker
statement:

THEOREM 2.2. Let E, n and d be as in Conjecture 1.3. Then the functor
Av4 : D(Bun,) — D(Buny,) is exact in the sense of the perverse t-structure.

First we will prove that Theorem 2.2 implies Conjecture 1.3. In fact, we
will give two proofs: the one discussed below is somewhat simpler, but at
some point it resorts to some nontrivial results from the classical theory of
automorphic functions. The second proof, which is due to A. Braverman, will
be given in the appendix.

Thus, let us assume that Theorem 2.2 holds. Using Lemma 1.5(1), to
prove Conjecture 1.3, it suffices to show that Av%L(F) = 0, whenever F is a
perverse sheaf, which appears as a constituent in some dy¢ for M € Bun,,. Set
F' = Av4(F). By Theorem 2.2, we know that F” is perverse.

LEMMA 2.3. To show that a perverse sheaf ' on a stack Y vanishes, it is
sufficient to show that the Fuler-Poincaré characteristics of its stalks ff; at all
y €Y are zero.

Proof. If 3 # 0, there exists a locally closed substack Y C Y, such that
F|yo is a lisse sheaf, up to a cohomological shift. But then the Euler-Poincaré
characteristics of 3 on Y° are obviously nonzero. O

Now we have the following assertion, which states that the Euler-Poincaré
characteristics of Av%(F) do not depend on the local system.

LEMMA 2.4. Let E' be any other local system on X (irreducible or not)
with tk(E') = rk(E). Then the pointwise Euler-Poincaré characteristics of

AVL(F) and AvL, (F) are the same for any F € D(Bun,).
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Proof. We will deduce the lemma from the following theorem of Deligne,
cf. [8]:

Let f : Y1 — Yo be a proper map of schemes, and let 8§ and 8 be two
objects of D(Y1), which are étale-locally isomorphic. Then the Euler-Poincaré
characteristics of f1(8) and fi(8') at all points of Yo coincide.

We apply this theorem in the following situation:
Yo = Bun,, Y1 = Mod?, 8 := h*(F) ®@s* (L), 8’ := h*(F) @5*(L%,), and

f=h.
The assertion of the lemma follows from the fact that s*(L%) and s*(L£%,)
are étale-locally isomorphic, because E and E’ are. O

Thus, it suffices to show that for our F € P(Bun,) and some local system
E’ of rank equal to that of E, the Euler-Poincaré characteristics of the stalks
of Av%,(F) vanish.

When we are working in the ¢-adic situation over a finite field, the required
fact was established in [7] where we exhibited a local system E’, for which the
functor Av%, was zero.!

In particular, we obtain that in the f-adic situation over a finite field
the vanishing of the Euler-Poincaré characteristics takes place when E’ is the
trivial local system.

Using the fact that our initial perverse sheaf F was of geometric origin,
the standard reduction argument (cf. [1, §6.1.7]) implies the vanishing of the
Euler-Poincaré characteristics for the trivial local system in the setting of
f-adic sheaves over any ground field, and, when the field equals C, also for
constructible sheaves with complex coefficients.

By the Riemann-Hilbert correspondence, this translates to the required
vanishing statement in the setting of D-modules over C, and, hence, over any
field of characteristic zero.

2.5. Thus, from now on, our goal will be to prove Theorem 2.2. In view
of Proposition 1.15, a natural idea would be to show that the “elementary”
functor AVIE is exact. The latter, however, is false.

Recall that Avy; is a composition of H : D(Bun,,) — D(X x Bun,,) followed
by the functor F — pi(¢*(E) ® F) : D(X x Bun,) — D(Bun,,).

As it turns out, the source of the nonexactness of Avk is the fact that
the Hecke functor H is not exact, except when n = 1. Therefore, we will first
consider the latter case, which would be the prototype of the argument in
general.

!This part of the argument will be replaced by a different one in the appendix.
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2.6. The case n = 1. Of course, the assertion of Conjecture 1.3 in this
case is known, cf. [5]. However, the proof we give below is completely different.

First, let us note that it is indeed sufficient to show that the functor Avl
is exact:

The exactness of Avk implies that the functor ItAv% is exact for any
d. Since the coefficients of our sheaves are of characteristic 0, from Proposi-
tion 1.15 we obtain that AV% is a direct summand of ItAV%, and, therefore, is
exact as well.

To prove that AVlE is exact, it is enough to show that for an irreducible
perverse sheaf F, Avk(F) has no cohomologies above 0 (because Avk, is essen-
tially Verdier self-dual).

For n = 1, Bun,, is the Picard stack Pic, and the Hecke functor can be
identified with the pull-back F — m*(F)[1], where m : X x Pic — Pic is the
multiplication map. We have:

AV (F) = pi(m* (H)[1] @ ¢*(B)),

where p and ¢ are the two projections X x Pic to Pic and X, respectively.

Since the map m is smooth, the sheaf m*(F)[1] is also perverse and
irreducible,? and m*(F)[1] ® ¢*(E) is perverse. Since p is a projection with
1-dimensional fibers, it is enough to show that

ht (py (m*(9)[1] ® ¢*(E))) = 0.
We will argue by contradiction. If F* = hl (p, (m*(8)[1] ® ¢*(E))) # 0, by
adjunction we have a surjective map
() m*(F)[1) @ ¢"(E) — p*(T)[1],
which gives rise to a map
(6) m*(F)[1] — EX[1] ¥ .

Since E was assumed irreducible, sub-objects of the right-hand side of
(6) are in bijection with sub-objects of F!. Therefore, since the map of (5) is
surjective, so is the map in (6). By the irreducibility of &, it must, therefore,
be an isomorphism.

We claim that this cannot happen if the rank of E is greater than 1.

Indeed, let us consider the pull-back

(id xm)* (m*(%)) [2] € P(X x X x Pic).

On the one hand, we know that it is isomorphic to E*[1]Km*(F*)[1]. On
the other hand, it is equivariant with respect to the permutation group s
acting on X x X.

2The fact that we can control irreducibility under the Hecke functors is another simplifi-
cation of the n = 1 case.
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LEMMA 2.7. Let S be an irreducible perverse sheaf on a variety of the form
X x X xY, which, on the one hand, is ¥o-equivariant, and on the other hand,
has a form E[1]X8’, where E is an irreducible local system, and 8' € P(X xY).
Then 8 must be of the form 8 ~ E[1]K E[1] X 8"; moreover the ¥o-equivariant
structure on 8 is the standard one on E[1]K E[1] times some Ya-action on 8".

Proof. Let g and p be the projections from X xY to X and Y, respectively.
It is enough to show that

B (n(8' @ q* (1)) #0.

For i = 1,2 let ¢; be the projection X x X xY — X on the i-th factor, and let
p; be the complementary projection on X x Y. We have

ERp (8 ® ¢ (E)) ~ pa(S @ q5(EY)),

which, due to the X9-equivariance assumption, is isomorphic to p11(8®q; (E™)).
The latter has nontrivial cohomology in dimension 1. O

Thus, from the lemma, we obtain that (id xm)* (m*(F)) has the form
E*X E* X JF”. Let us restrict (id xm)* (m*(F)) to the diagonal (A x id) :
X x Pic € X x X x Pic, and take Yo anti-invariants.

On the one hand, from Proposition 1.11 (which is especially easy in the
n =1 case) we know that for any F € D(Pic),

HOH]E2 (Sign, (id Xm)* (m* (97)) ‘X><Pic> =0.

But on the other hand, (id xm)* (m*(F)) | x xpic =~ (E*)®?KJF”, and taking
Y9 anti-invariants we obtain

<Sym2(E*) X Homy, (sign, 5”)) - <A2(E*) X (5”)22)

Now, since rk(E) > 1, neither A?(E*) nor Sym?(E*) is 0; therefore, the entire
expression cannot vanish.

2.8. The key fact used in the above argument was that the Hecke functor,
which in this case acts as F — m*(F)[1], is exact.

For n > 1, our approach will consist of making the Hecke functors exact
by passing to a quotient triangulated category.

Recall that if € is a triangulated category, and €' C C is a full triangulated
subcategory, one can form a quotient C/C’. This quotient is a triangulated
category endowed with a projection functor

e—e/e,

which is universal with respect to the property that it makes any arrow 8; — 8o
in €, whose cone belongs to €', into an isomorphism.
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Note that the inclusion of € into ker(€ — €/C’) is not necessarily an
equivalence. Rather, ker(€ — €) is the full subcategory, consisting of objects,
which appear as direct summands of objects of €.

Suppose now that € is endowed with a ¢-structure. Let P(C) be the cor-
responding abelian subcategory, and let €' C € be as above.

Definition 2.9. We say that € is compatible with the t-structure if
(1) P(€") :=P(C)N € is a Serre subcategory of P(€).3

(2) If an object 8 € € belongs to €', then so do its cohomological truncations
7=0(8) and 7>9(8).

A typical way of producing categories € satisfying this definition is given
by the following lemma:

LEMMA 2.10. Let Cq, and Cq be two triangulated categories endowed with
t-structures. Let F' : €1 — Cqo be a functor, which is t-exact. Then €] :=
ker(F') C Cy is compatible with the t-structure.

The following proposition is in some sense a converse to the above lemma:

PROPOSITION 2.11. Let C be as above, and €' C @ be compatible with
the t-structure. Then the quotient category C := C/C" carries a canonical
t-structure, such that

(1) The projection functor € — C is ezact.

(2) The abelian category P(C) identifies with the Serre quotient P(C)/P(C).

Proof. Let 8 be an object of €, viewed as an object of the quotient category
C/€. We say that it belongs to €0 (resp., C>0) if 7>9(8) (resp., 7<0(8))
belongs to €.

If 8§ — 85 is a morphism, whose cone belongs to €', it is easy to see that
81 belongs to €=<0 (resp., é>0) if and only if 83 does.

We have to check now that if $; € C=Y, and 85 € >, then Homé(sl, S2)=0.

Indeed, with no restriction of generality, by applying the cohomological
truncation functor, we can assume that §; is represented by an object of C,
which lies in C=9, and 8, is represented by an object, which belongs to €Y.

Each element of the Hom group can be represented by a diagram

81« 83 — 8o,

3Recall that a Serre subcategory of an abelian category is a full subcategory stable under
taking sub-objects and extensions.
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where the cone of 83 — 81 belongs to €. Hence, this diagram can be replaced
by an equivalent one

8 «— 7= (83) — 8o,

where 7 is the cohomological truncation.

But now, any map 7' 0(83) — 83 is zero already in C, since 85 € C>0.

The projection € — € is exact by construction. By the universal property
of the Serre quotient, we have a functor P(€)/P(€) — P(€). Again, by
construction, this functor is surjective on objects, and to prove that it is fully-
faithful it is sufficient to show that for 81,8, € P(C) a map 81 — 82 is an
isomorphism in P(€) if and only if its kernel and cokernel belong to P(€).

Let 8 denote the cone of this map, regarded as an object of €. By as-
sumption, it belongs to €’; therefore h%(8) and h'(8) both belong to €, by
Definition 2.9. But the above h%(8) and h!(8), both of which are objects of
¢’ NP(C) = P(), are the kernel and cokernel, respectively, of §; — 8s. O

2.12. Thus, our strategy will be to find an appropriate quotient category
of D(Bung). More precisely, we will construct for every base S a category
15(5 x Bun,, ), which is the quotient of D(S x Bumn,,) by a triangulated subcat-
egory Dgegen (S x Buny,), such that Dgegen(S x Bun,) is compatible with the
perverse t-structure, and such that the following properties will hold:

Property 0. The categories D(S x Bun,,) inherit the standard four func-
tors. In other words, for a map of schemes f : S; — S the four direct and
inverse image functors D(S; x Bun,,) 2 D(S2 x Buny,) preserve the correspond-
ing subcategories, and thus define the functors D(S; x Bun,,) = D(S; x Buny,).
Moreover, the same is true for the Verdier duality functor on D(S x Bun,,),
and for the functor D(S) x D(S x Bun,) — D(S x Bun,), given by the tensor
product along S.

Property 1. The Hecke functor Hg : D(S x Bun,) — D(S x X x Bun,,)
preserves the corresponding triangulated subcategories, and the resulting func-
tor

D(S x Bun,) — D(S x X x Bun,,)

is exact.

Property 2. There exists an integer dy large enough such that the follow-
ing holds: if ¥ € D(Bun,,) is supported on the connected component Bun?
with d > dy (cf. §7.8) for our conventions regarding the connected components
of the stack Bun,, and is cuspidal (cf. [7] or §6 for the notion of cuspidality),
and J € Dgegen(Buny,), then the Hom group Hompgyy,)(F1,F2) vanishes.
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2.13. Assuming the existence of such a family of quotient categories, we
will now derive Theorem 2.2.
First, let us observe that the functor Av, : D(Bun,) — D(Bun,,) descends
—~1 ~ ~
to a functor Avy : D(Bun,) — D(Buny,).
Indeed, according to Section 1.13, the functor AVIE is the composition of

H : D(Bun,) — D(X x Buny,),

well-defined according to Property 1 above, followed by a functor ]S(X X
Bun,) — D(Bun,) that sends § € D(X x Bun,) to pi(¢*(E) ® 8), which
is well-defined due to Property 0 (the maps p and ¢ here are as in §1.13).

The first step in the proof of Theorem 2.2 is the following theorem, which
is the key result of this paper. The proof will be given in the next section, and
it mimics the argument for the n = 1 case, discussed above.

—1 ~ ~
THEOREM 2.14. The functor Avy : D(Bun,) — D(Bun,) is ezact.

To state a corollary of Theorem 2.14, which we will actually use in the
proof of Theorem 2.2, we need to make some preparations.

Let S be a base and ¥ a finite group acting on S. (Here it becomes
important that the characteristic of the coefficients of our sheaves is either 0

~%
or coprime with |¥|.) We define the category D (S x Bun,,) as the quotient of
the equivariant derived category D™ (S xBuny,) by the triangulated subcategory
Dgegen(S x Bun,,) equal to the preimage of Dgegen (S X Bun,,) under the forgetful
functor

D*(S x Bun,,) — D(S x Bun,).

The quotient acquires a t-structure, according to Lemma 2.10 and Proposi-
tion 2.11. .
Let P (S x Bun,) be the corresponding abelian subcategory in

f)Z(S x Bun,). By construction, this is the quotient of P*(S x Bun,) by
a Serre subcategory consisting of objects, whose image in f’(S x Buny,) is zero.
In the applications we will take S = X% and ¥ to be the symmetric
group 4.
Assume now that the action of ¥ on S is actually trivial. Then we have the
functor of invariants denoted F +— (F)* from D*(SxBun,,) to D(SxBun,,). We

claim that it descends to a well-defined functor f)E(S x Bun,,) — D(S x Buny,).
Indeed, for an object F € D*(S x Bun,,), its image under the forgetful functor
D*(S x Bun,) — D(S x Bun,,) contains (F)* as a direct summand. (In fact,

~
in the case of a trivial action, every object of D™ (S x Bun,,) can be canonically
written as @ §, ® p, where p runs over the set of irreducible representations of
P

¥, and §, is an object of D(S x Buny,).)
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That said, first, from Proposition 1.8 we obtain that the functor
HE? : D(S x Bun,) — D (S x X% x Bun,)

~Kd ~ ~
gives rise to a functor Hsd :D(S x Bun,,) — D (S x X% x Buny,).
Secondly, from Proposition 1.11 we obtain that the functor
(idg xm)* : D(S x Bun,) — D(S x X x Buny,)

descends to a well-defined functor D(S x Bun,) — D(S x X x Bun,), which
is isomorphic to

. ~Xi
) § + Homy, (mgn, i <s>|sXA(X>XBunn) (—nl;

for i = n, and for ¢ > n the latter functor is zero.
Thirdly, from Proposition 1.15, we obtain that the functor

ItAv% : D(Bun,) — D¢ (Bun,)
——d  ~ ~%
gives rise to a functor ItAvy : D(Bun,) — D™ (Bun,).
And finally, we obtain that the functor Av% : D(Bun,,) — D(Bun,) gives
—~d ~ ~
rise to a well-defined functor Avy : D(Bun,,) — D(Bun,,) with

—~d ——d
(8) Avp(8) ~ (ItAvp(8S))™.
Now Theorem 2.14 implies the following:

—d  ~ ~
COROLLARY 2.15. The functor Avy : D(Bun,) — D(Buny,) is ezact.

Proof. Theorem 2.14 readily implies that the functor I/tjA/VdE is exact.

Since the functor F + (F)>¢ : D¥¢(Bun,) — D(Bun,) is exact (which
follows from our assumption on the characteristic of the coefficients), we obtain
that the same is true for the corresponding functor D (Bun,,) — D(Buny,).

Hence, the assertion follows from (8). O

2.16. We proceed with the proof of Theorem 2.2 modulo the existence of
the categories f)(S x Bun,) and Theorem 2.14, and the induction hypothesis
that Conjecture 1.3 holds for all n’ < n. The following assertion is essentially
borrowed from [7]:

LEMMA 2.17. For any F € D(Bun,), the object Av&(F) is cuspidal, pro-
vided that d > (29 — 2) - n - rk(E).

Proof. We have to show that the constant term functors CTy; . (AvL(F))
all vanish.

However, it was shown in [7], Lemma 9.8, that CT} (AvL(F)) is an
extension of objects of the form

(Avi RAVE)(CT}, ., (F)),
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for all possible dy,ds > 0, di + ds = d, where AvalE1 X AVCfE2 denotes the corre-
sponding functor D(Bun,, x Bun,,) — D(Bun,, x Bun,,).

However, for every pair di,ds as above, at least one of the parameters
satisfies d; > (29 — 2) - n; - rk(E). Hence, the corresponding functor AvdE" :
D(Bun,,) — D(Bun,,) vanishes by the induction hypothesis. O

Now we are ready to finish the proof of Theorem 2.2. Since Av, is essen-
tially Verdier self-dual, it is enough to show that AV% is right-exact.

We can assume that we start with a perverse sheaf I supported on Bunfll,
with d’ > d 4 dp, and we have to show that AvL(F) € P(Bund ~9) has no
cohomologies in degrees > 0.

Suppose not, and let

AV (F) — 77 (AVE(T))

be the truncation map. This map cannot be zero, unless 7>%(Av%(F)) vanishes.

By Lemma 2.17, we know that Av%(F) is cuspidal. On the other hand, by
Corollary 2.15, we know that 77°(Av%(JF)) projects to zero in D(Bun,). This
is a contradiction in view of Property 2 of D(Buny,).

3. The symmetric group argument

The goal of this section is to prove Theorem 2.14, assuming the existence
of the quotient categories D(S x Bun,) which satisfy Properties 0 and 1 of
Section 2.12.

3.1. Since the situation is essentially Verdier self-dual, it would be suffi-

—~1 ~ ~
cient to prove that the functor Avy : D(Bun,) — D(Bun,) is right-exact.
Let us suppose that it is not in order to arrive at a contradiction.

By definition, the functor KI}E is a composition of an exact functor
H : D(Bun,) — D(X x Bun,)
followed by the functor
S pi(¢"(E) ®8) : D(X x Bun,) — D(Bun,)

of cohomological amplitude [—1,1]. Thus, 8 hl(ANV%E(S)) is a right-exact
functor P(Bun,,) — P(Bun,).

Similarly, the amplitude of I/t\A/v; : D(Bun,,) — D(Bun,) is at most [, ],
and § — hZ(I?\A:/;(S)) is a right-exact functor P(Bun,) — f’zi(Bunn).

PROPOSITION-CONSTRUCTION 3.2. For § € P(Bun,), there is a natural
~3, .
map in P (X" x Buny,):

A (8) = (B*)%i[i] B b (ItAv(S)).

When E is irreducible, the above map is surjective.
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Proof. The adjointness of the functors p',py : D(X? x Bun,,) = D(Bun,,)
gives rise to a pair of mutually adjoint functors P(X? x Bun,) = P(Bun,)
given by

F' = hi(p(F7)) and T — p*(F)[d],

(the former being the left adjoint of the latter). Since X° is smooth and
connected, for ¥ € P(Bun,), every sub-quotient of p*(F)[—i] is of the form
p*('F)[—i], where 'F is a sub-quotient of F. This implies that for any F €
P(X" x Buny,), the adjunction morphism ¥ — p* (h'(pi(F))) [i] is surjective.

We have another pair of mutually adjoint functors between the same cat-
egories:

F s b (pg (q*(E&) ® 3"’)) and F — (E)¥ [ K7,

and, when F is irreducible, the adjunction map

is also surjective which follows from the next lemma:

LEMMA 3.3. If for ' € P(X' x Bun,) and F”’ € P(Bun,) there is a
surjective map ¢*(E¥)@(F') — p*(F")[i], and E is irreducible, then the adjoint
map

SF/ _ (E*)&Z[Z] ‘XI gj//
s also surjective.

Moreover, the same assertions remain true for the corresponding functors
that act on the level of equivariant categories: P> (X? x Bun,) = P* (Bun,,).

~3; ; .
By passing to the quotient D " (X" x Bun,,), and using Property 0 of the

~3, .
quotient categories, for every 8’ € D™ (X" x Bun,,) we obtain a functorial map
8 — (B R (p (¢ (BT 28))),

which is surjective if F is irreducible.

By now setting 8’ = H z(S) we arrive to the assertion of the proposition.
O

3.4. The case i =n+ 1. Note that for § € P(Bun,) we have
B (IAV(S)) = h'(Avy) o --- 0 h' (Avy)(S),
as functors P(Bun,,) — P(Bun,). ‘ ‘
Therefore, if for some § € P(Bun,), h*(ItAvy(8)) # 0, then hi (ItAv(S))
# 0 for all j <.

Our first step will be to show that for all 8§ € P(Buny,), hl(ﬁf%(S)) =0
for ¢ = n 4+ 1, which would imply that the same is true for all i > n + 1.
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Consider the restriction of the surjection of Proposition-Construction 3.2
to the diagonal X x Bun, XA xi Bun,,. That is, there exists the following

~,
map in D (X x Buny,):

(9)
(A x id)* (ﬁ

X

(8)) [1— 1] — (& x ia) (Bl @ p* (m;<s>)) -1

A key technical result, that we will need, states that both sides of (9)

~%; . . . L.
belong in fact to P (X x Bun,) and that the map in (9) is still surjective. In
fact, we will prove the following:

PROPOSITION 3.5. Let X € P(X? x Bun,) be a perverse sheaf, which
appears as a sub-quotient of some hF(H®(8)) for some object $ € D(Bun,).
Then for any smooth sub-variety X' C X', the *-restriction X|x: xBun, lives in
the cohomological dimension — codim(X', X?).

This proposition will be proved in Section 3.6. Let us now explain how it
implies what we need about (9).

Indeed, ITI&(S) can be represented by a sub-quotient K of hO(H¥(F))
for some F € P(Bun,). Hence, the left-hand side of (9) can be represented by
(A xid)*(X)[1—1], which belongs to P(X x Bun,,) according to Proposition 3.5.

The fact that the right-hand side of (9) belongs to P(X x Bun,,) is obvious.
In fact, it is isomorphic to (E*)®[1] K hi(TtAvy(8)).

Finally, the map of Proposition-Construction 3.2 can be represented by a
surjective map of perverse sheaves X — K’, where X is as above. By the long
exact sequence, the cokernel of (9) injects into

Kl ((A x id)* (ker(K — K[ — z']),

which vanishes according to Proposition 3.5.

Now we are ready to prove that hZ(I/tTA/VlE(S)) =0fori=n+1.

Since the functor of taking ¥, y;-invariants is exact, the map in (9) will
continue to be surjective when we pass to the sign-isotypic components on both
sides; i.e., we have:

Homs,, (sign, (A x id)* (ﬁg"“(S)) [n]>
— Homy;, _, <sign, (E%)E" 1] ® h"+1(m’;“(8))>.

Now, by (7), the left-hand side in the above formula is zero. By surjec-
tivity, the right-hand side must also be zero. But we claim that this can only

happen if h"+1(m7;+1(8)) =0.



ON A VANISHING CONJECTURE 637

Indeed, let p be an irreducible X, i-representation, which has a non-

——n+l
trivial isotypic component in h”"’l(ItAvZ (8)). However, since rk(E) >
n + 1, by the Schur-Weyl theory, p* ® sign appears with a nonzero mul-
tiplicity in (E*)®"*!. Hence, sign appears with a nonzero multiplicity in

(E9)@ 11 & h+ L (TtAvy, | (S)).

3.6. Proof of Proposition 3.5. Recall the notion of universal local acyclic-
ity in the situation when we have an object ¥ € D(Z) on a scheme (or stack)
Z over a smooth base Y (cf. [4] or [3]). In our case Z = X' x Bun,, Y = X".

The first observation is:

LEMMA 3.7. For any F € D(Buny,), the object ' = H(F) is ULA with
respect to the projection q : X' x Bun, — X'.

Proof. The lemma is proved by induction. Supposing the validity for an
integer i = j, let us deduce the corresponding assertion for ¢ = j + 1. In other
words, it suffices to show that if ¥ € D(X* x Bun,) is ULA with respect to
X% x Bun,, — X', then Hx:(F") € D(X**! x Bun,,) is ULA with respect to
X! x Bun,, — X"+,

Consider the diagram

id x4 xsx h 1 idxi Xsxh :

X"x X xBun,, <= " X'x Mod} =" X' x X x Bun, .

By deﬁnition, HX%(?”) = (ldX'L X8 X h)l o (ldX'L X h)*(?”)[’t . TL]

The ULA property is stable under direct images under proper morphisms.
Since the map idx: X sx h is proper, it is enough to show that (idx: x h)*(F") €
D(X?® x Mod}) is ULA with respect to X* x Mod}, X xitL, However, this

«—

follows from the assumption on F”, since the map idx: xs x h : X* x Mod!. —
X% x X x Bun,, is smooth. O

The proposition will now follow from the next general observation:

Let F € D(Z) be a complex, which is ULA with respect to a projection
Z — Y, where Y is smooth. Let X be a sub-quotient of A*(F) for some k, and
let Y C Y be a smooth sub-variety. Denote by Z’ the preimage of Y’ in Z. In
the above circumstances we have:

LEMMA 3.8. The *-restriction K
—d, where d := codim(Y', Y).

7z lives in the cohomological dimension

Proof. Note that the assertion of the lemma implies that K|z [—d] is a
sub-quotient of h*~4(F|z).
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Therefore, to prove the lemma, we can assume by induction that d = 1,
and that, moreover, Y’ is cut by the equation of a function with a nonvanishing
differential.

Let ¥, ® be the corresponding near-by and vanishing cycles functors:
D(Z) — D(Z'). By assumption, we have ®(F) = 0. The exactness of ®
implies that ®(X) = 0 as well. Therefore, K|z ~ ¥(X)[1], which is what we
had to prove. O

3.9. Now let ¢ be the maximal integer, for which the functor § —
h’(m; (8)) : D(Bun,) — D(Bun,) is non-identically zero. We know already
that ¢ <n. We are assuming that ¢ > 1 and we want to arrive at a contradic-

tion.
~ . L~ ~¥,
For 8§ € P(Bun,,), we denote by 8" the object hZ(ItAle(S)) € P '(Buny,)
and consider the canonical surjection of Proposition-Construction 3.2
~ i . .
H'(8) — ()Y RS

~Fn o~ . ~
We now apply the functor Hn : P(X" x Bun,) — P(X*“™™ x Bun,) to both

sides. This functor maps P (X% x Bun,) to pr (X" x Bun,,), and obtain
a morphism

~Xi+n . ~NKn .
(10) H(S) - (B R A (8,

~KX
which is still surjective, by the right exactness of H Xn

~Yitn ;
Note that the left-hand side of (10) is in fact an object of P~ (X*+" x
Bun,). We have a natural induction functor

Indy; 3y, + PP (X" x Buny) — PP (X7 x Buny),

which is the left (and right) adjoint to the forgetful functor. By passing to the
""El En .
quotient we obtain the corresponding induction functor from P 8 (XU x
Bun,) to P~ (X" x Bun,).
~Yitn ;
Thus, we obtain a map in P~ (X**" x Bun,):
~Xs ) A ~X .
A (8) — IndSy, ((E*)z | K H n(S’)) .

The assumption that ¢ was maximal will yield the following:

ProrosiTiON 3.10. The above map

18 surjective.
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We conclude the proof of Theorem 2.14 using this proposition. Let A; :
X - XL A, X - X" Ay: X - XxX,and Aj, : X — X" be
the corresponding diagonal embeddings. According to Proposition 3.5, in the
formula
. ~Xi+n .
(A x )" (H(8)) [1 =i = n

= (At x i) (a2, (B[] ﬁ&"(si))) [1—i—n]

both sides belong to prn (X xBun,,), and the map is surjective. Therefore, the
above map will still be surjective when we pass to the sign-isotypic component
on both sides with respect to ;4.

By (7), the left-hand side, i.e.,

Homy, <sign, (Ajpn xid)* (HgH"(S)) 1—i— n])

vanishes. Therefore, so must the right-hand side.
Since the induction functors commute with the restriction functor
(Ajyn x id)*, by adjunction we obtain that

Homs,,, <sign, (Aipn X id)* (mdg;;nzn ((E*)&‘ [ = ﬁxn(si))) n—i— n])
~ Homgixgn<Res§i;”En (sign), (Aipn x id)* ((E*)i RS —i— n]))

We have: Resgz:;"zn(sign) ~ sign X sign, and A4, = Ago (A; X Ay). Let
us, therefore, rewrite the last expression as

(11)

(Ag x id)*<H0m2i<sign, (E*)® K Homs,, (sign, (A, x id)* (T (8))[1 - m)))

Recall the multiplication map m : X X Bun,, — Bun,, and recall also from
(7), that for § € D(Buny,)

~KXn
Homy,, (sign, (Ap, xid)*(H  (8))[1 — n]) ~ m*(8)[1].
Therefore, (11) can be rewritten as

(Ag x id)* (Homzi (sign, (E*)®" ®m* (SZ)[l])>

~ Homs;, <sign, ¢ (B"®) ® m*(S’)[l]).
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As in Section 3.4, since ¢ < rk(F), we see that the vanishing of the latter
expression implies that m*(8?) = 0. Therefore, the functor

8 — m* (' (I/tjA:/ZE(S)»
vanishes identically.

We claim that this implies that the functor § — A’ (I?‘\A:/;(S)) vanishes.

Indeed, for any fixed x € X, consider the pull-back map m? : D(Bun,) —
D(Bun,,), which is the composition of m* and the restriction to z x Bun,, C
X X Bun,,.

Obviously,

m’: o h' (ILAVY(8)) ~ ' (ItAvi(mi(8))) .
Hence, the corresponding functors on the level of ﬁ(Bunn) are also isomorphic.
Thus, we obtain that the functor § — h’ (I/t\A/VjE(S)) “kills” the image of
m* : P(Bun,) — P(Buny,).

However, since mj : D(Bun,) — D(Bun,) is essentially surjective (i.e.,
surjective on objects), the same is true for m? : P(Bun,,) — P(Bun,,); in other

words, k' (Iﬁ?} (8)) vanishes on the entire P(Bun,,).

3.11. Proof of Proposition 3.10. Observe that as an object of f’(X”” X
. . ~Rn .
Bun,,), Indgz*;"g”((E*)& [i] X H n(Sl)) can be written as
. ~K .
(12) © o (B [RH " (8),
0EXitn

where the sum is taken over the coset representatives of ¥, /3; X X,.
The proof of the proposition is based on the following observation:

LEMMA 3.12. Let X — @X; be a map of objects of an Artinian abelian

(2
category, such that each of the maps X — X; is surjective. Assume that for
i # J, Ki and X; have no isomorphic quotients. Then the map X — @X; is
(2

surjective as well.

~ X . ~X ;
We know that the map H Hn(S) — (E")¥[; X H n(SZ) is surjective. By
the X, ,-equivariance of H s (8), we obtain that each
~Xi . )
() = o ()™ mE(s)))
is surjective as well.
To apply this lemma we need to verify that for o1,09 € ¥;4,, which

belong to different cosets, the objects o} ((E*)& [i] X Hxn(Si)> and
o ((E*)&i [i] X H&”(Si)) of P(X% x X" x Bun, ) have no isomorphic quotients.
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Again, by ;1 ,-equivariance, we can assume that oq is the unit element,
and o = oy is such that the permutation that it defines on the set {1,... ,i+n}
satisfies o(1) =i + 1.

For any j € {1,... ,k}, let i ; denote the projection on the j-th factor
X* x Bun, — X, and Pk,; the complementary projection on X*=1 x Bun,.

Let 8’ be a quotient common to

(BB R (8%) and o* ((E*)&[ IR (si)).

Since E is irreducible, every (sub)-quotient of (E*)¥[{] K H (8') is of the

~Rn, .
form (E*)¥[{]X 8", where 8 € P(X" x Bun,) is a (sub)-quotient of H  (8%).
Therefore,

(13) hl (pi+n,1!(qz<+n,l(E) ® 8/)) 7& 0.
As in Proposition 3.2, this implies:

! <pz-+n,u (enaBra o (B0 ﬁx”(&')))) #0,

which is equivalent to
* w\Xir. ~Mn o
' (pm,m (qm,m(E) ® (B RE (S )))) 0,

and hence h! <pn,1! (q;ku(E) ® ﬁgn(si)>> 7 0.
A simple diagram chase shows:
LEMMA 3.13. For any F € D(Bun,,),
prat (a1 (B) @ B () ) = B (Avh(9)).

The lemma implies that we also have an isomorphism

~ Nk &k 1
pr (i, (B @ B (8)) = B (Avg(8))
as functors D(Bun,) — D(X*~! x Bun,).
Therefore, the fact that h! <pn,1[ (qul(E) ®H n(81)>> is nonzero as an

~ ~Xn
object of P(X"~! x Bun,) implies that hl( (AVE( ))> # 0. The

~Kn—
exactness of H = : P(Bun,) — P(X"! x Bun,) forces h'! (Av (82)>

. ——1i+1
K+t (ItAvy, (8)) # 0.
However, this contradicts the assumption that ¢ was the maximal integer
for which hi(TtAvy(8)) # 0.
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4. Whittaker categories

From this moment on we will be occupied with construction of the quotient
categories D(S x Bun,). This will be done using the formalism of Whittaker
categories and functors between them. The first step, i.e., the definition of the
appropriate categories, is the goal of the present section, which we carry out
in a way similar to the definition of Whittaker categories in Section 6 of [6].

4.1. Drinfeld’s compactifications. Let Bun], be the stack classifying pairs
(M, k1), where k1 is a nonzero map Q2" ! — M. Let 7 denote the natural
projection Bun/, — Bun,,.

Recall also the stack Q introduced in [7]. We will now introduce a series
of stacks Qy,...,Q, with Q; = Bun,, 9, = Q
two.

Namely, Q;, classifies the data of a rank n bundle M and a collection of
nonzero maps

Q, which interpolate between the

gyt QUL AV OMY), i =1, Lk,

which satisfy the Pliicker relations in the sense of [7].

Let, in addition, gkm, be the stack classifying the same data (M, K1, ... , Kg)
as above, but where we allow the last map, i.e., K, to vanish. In particular,
Qy, is an open substack in gk,ex.

We have the natural forgetful maps mp41 % : Q1 — Qp, and Thtlexk
Qk—l—l,ez — Q.

We will introduce certain triangulated categories DW(ﬁk) (resp.,
DW Qi ex)) of sheaves on Qy, (resp., DV (Qg ), that we will call the Whittaker
categories.

Each DY (Q;) will be a full triangulated subcategory of D(Qy) defined
by the condition that F € DW(Qk) if its perverse cohomologies belong to a
certain Serre subcategory Pw(gk) C P(Qy), singled out by some equivariance
condition; and similarly for Dw(ghex).

By definition, for k = 1, DV (Qy,) is the entire D(Q;) = D(Bun),), i.e., the
equivariance condition in this case is vacuous.

4.2. For a fixed point y € X, let gz be an open substack that corresponds
to the condition that neither of the maps k1, ...,k has a zero at .
If (M, k1,...,k) is a point of §Z7 on the formal disk D, around y we
obtain a flag
0=MoCM; C--- CMy CM|p,

with Mj/Mj_l ~ Qi D, -
Let Ni p, be the group-scheme (of infinite type) over Q7 defined as follows:

its fiber over a point (M, K1,... , k) as above consists of all automorphisms of
M|p,, which are strictly upper-triangular with respect to the flag of the M;’s.
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In addition, we have a group-indscheme Nk,D;a which contains N p, as
a group-subscheme, and whose fiber over (M, k1, ... , k) consists of all auto-
morphisms, strictly upper-triangular with respect to the given flag, of M over
the formal punctured disk Dj.

As in [6], one can show that Ny p. is in fact an ind-groupscheme. More
precisely, Nk,@; can be represented as a union of group-schemes N, ,2793;, 1 €N

with le:,D; D Ni,p, and Nli,@; /N,p, finite-dimensional.

The quotient fHng = Nk,@;/Nk:,Dy is an ind-scheme over the stack QZ
and is a version of the Hecke stack for the corresponding unipotent group. We
have: Hyy = iéJNﬂ-fﬁvg, where ﬂ-fﬁvg = ,;@;/Nk,@y; the latter is isomorphic to

a tower of fibrations into affine spaces over Q.

We let pr;, (resp., pry) denote the natural projection Hyy — gz (resp.,
Hiyy — ay).

4.3. The groupoids. We claim that Hyv carries a natural structure of a
groupoid over QZ. This is the standard procedure that makes the Hecke stack
a groupoid over the moduli space of bundles; cf. [6].

Namely, we define the second projection acty : Hyv — gz as follows:

Given a point (M, K1,... ,Kkk) € GZ and an automorphism g : M|D; —
M|®Z’ the new bundle M’ is defined to be equal to M on X — g, and a mero-
morphic section m’ € I'(X — y, M') is regular if g(m’), viewed as an element of
[(Dj, M), belongs to I'(D,, M).

The condition that g is strictly upper-triangular means that M'|p, is still
endowed with a filtration

0=MygCM;C---CM, CM;, :=M|p,

with M, /M, = Qg .

Again, from the construction, the “old” maps x; : Q1 +n=0 _ A{(M),
which are a priori meromorphic as maps Q"1 *+7= . AYM’), are in fact
regular, and thus define the data ] for M'.

Let §z+1,ex = gz 5>< §k+1’ex be the preimage of @Z in §k+176x. (Note that
k

gz 11 denotes a completely different stack; we have inclusions GZ 41 C Qe C

el v
QkJrl,e:p D) Qk+1,e:p')
Consider the pull-back H v x QZ +1,ex @8 an ind-scheme over gz 41,z The
g

k
next assertion follows from the construction:

LEMMA 4.4. The fiber product Hys X Q%HH has a natural structure of
o}

a groupoid over Q%H@E, i.e., there exists a naturally defined map acty e, :
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Hny X 5%4-1 o — gz_ﬂ oxs Which makes the following diagram Cartesian
=y b b

k

acty, cx

nY nY
Qk—l—l,ew }CN,Z _><y Qk—l—l,ea:

k

7rk+1,em,kl id X7Tk+17ﬁx7kl

= act
Q) g0y,

We will denote by act}‘“ . the restriction of acty ., to the sub-groupoid
.’J—C?ngygzﬂm, and by pry, ., (resp., pr};’ex) the natural projection from Hyv x

nYy
k k
[o)¢ ( from K¢, x Q) ..) to O
k+1,ex resp., Irom NY 2, k+1,ex Y k+1,ex-

k
4.5. The characters. One more observation we need to make before
introducing the categories of interest is the following:
We claim that there exists a natural morphism

) Y 1
Xk + Ho x Qetl,ec = A

k

Indeed, a point of Hy» x gzﬂ o is the data of
Qy ’

(M, K1,y k) € Qp, Rppr 2 QU 7R L S ARV, g € Aut(M|p:).

The endomorphism (g —1Id) defines for every i = 1,... .k a map (M/M;)|p, —
(M;) D, which we compose with

Q" e — (M/M)|p: and (Mi)p: — (Mi/Mi—1)ps ~ Q" |p..

As a result, for every i = 1,... , k we obtain a map Q71 ’DZ — Q”*ilgz, well-
defined up to a map regular on D,, due to the corresponding ambiguity in g.
By taking residues at y we obtain k points of Al i.e., we obtain well-defined
maps “yy, : Hyy X §z+1,ex — Al fori=1,... k.

Qy

k
The map ¥y is defined as a composition

= i sum
Hy X Oy en — (AL AL
=y ’ 7
k

We will denote by X}; the restriction of y; to J-CZ]'V;;, Exy QZJFLEZ C Hyy x gzﬂ,ex.

k k

In what follows A-Sch will denote the Artin-Schreier sheaf on Al.

4.6. Everything said above can be generalized in a straightforward way
when one point y is replaced by a finite collection of pairwise distinct points

g::yla"' s Ym-
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Namely, we have the open substack
QZ = r;@% C O,
and the groupoid H N7 over it. In fact,

g7 X e X H pom
*g¥  of k
k k

7.
Qe

In other words, the groupoids Fv; j=1,...,m, acting on 52 pair-
k

|57
Q,’
wise commute in the natural sense, hence we can form the product groupoid,
which can be identified with fHNg.

4.7. The categories on QZHM. We define the category Pw(gzﬂyex) -
P(Q; 41,ez) to consist of all perverse sheaves J € P(Q} +1,.ez), for which the
following holds:

For each ¢ € N, there exists an isomorphism between the following two
sheaves on Hévk X QZ tlex

(14) act}, ., *(F) and pri ., *(F) @ x}.* (A-Sch)

such that the restriction of this isomorphism to the unit section gz tlex C
'ka X QZHM is the identity map.
}:
Note that both sides of (14) are objects of D(HY}, x QZHH), which
9
become perverse after the cohomological shift by dim. rel.(f]-CéVk , gz), since both
maps p1r§f op and actfg o are smooth of that relative dimension.
Since A-Sch is a 1-dimensional lisse sheaf and the fibers of plrfc oy ATE
connected, if an isomorphism of (14) exists, it is unique. Moreover a family of
such isomorphisms for ¢ € N is necessarily compatible. All this follows from

the next general lemma:

LEMMA 4.8. Letp:Y1 — Yo be a smooth surjective map between schemes
(or stacks) of relative dimension d, which has connected fibers. Then

(1) F— p*(F)[d] is a full embedding of P(Y2) into P(Y1); its image is stable
under sub-quotients.

(2) If, moreover, the fibers of p are contractible, then the same is true when
P(Y;) is replaced by D(Y;), i.e., D(Y2) is a full triangulated subcategory
of D(Y1). In particular, P(Y2) C P(Y1) is stable under extensions, and
is therefore a Serre subcategory.
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Since pri . : J{f\,k X QZH ez — §Z+1 .z 15 @ tower of affine fibrations, from
3y —y ) )
k
Lemma 4.8 above, we obtain that PW(QZ +1,ez) 18 indeed a Serre subcategory

av
of P(Qk+1,ex)' . N

We define DW(Qsz) as the full triangulated subcategory of D(Qz+1,ex)7
consisting of objects whose perverse cohomologies belong to PW(QZ lex)-

From Lemma 4.8 it follows that for any ¥ € DV (QY 41,¢) there exists a
unique isomorphism

aCt}.ﬂ,ez *(St) = pr;c,e:r *(?) ® X?c*(A'SCh)a

compatible with the restrictions of both sides to the unit section.
In the same way, for a collection of pairwise distinct points ¥ = y1,... , Ym,
one defines the categories PV (QJ +1,ez) and DV (9} +1,ex)> the former being a

Serre subcategory of P(G{ +1.ez)> and the latter a full triangulated subcategory
_g
of D(Qk+1,e:1:)'

4.9. To proceed, we need to recall a natural stratification defined on the
stacks Q. B

For a string of nonnegative integers d = (dy,...,d;) let X(@ be the
corresponding partially symmetrized power of the curve X:

x@_— 11 x),
J=1 K

Let Egk be the stack that classifies the data of (M, k1, ... , kg, D1,... , Dg),
where M is as before, D; € X(4) and each k; is an injective bundle map

anlJr---Jrnfi(Di)_)Ai(jv[)7

such that {k1, ..., Kk} satisfies the Pliicker relations.

We have a natural map 9Q; — Q. It was shown in [3] that each ?Q;
becomes a locally closed substack of Qj, and that, moreover, these substacks
for various d define a locally finite decomposition of Qj into locally closed
pieces. B

Observe that each 9Q; can be alternatively viewed as a stack classifying
the data of a vector bundle M endowed with a filtration

0=MoyCM;C---CMpCM,
and identifications M; /M;_1 ~ Q"~%(D; — D;_1) for (D1,...,D}) € X@,

~ 4.10. For a string of integers d as above, let EQ_,Z denote the intersection
dﬁkmgz_ Let dﬁ% tlex C d§k+1,ex be the preimages of C@Z and 9Qy,, respectively,
in gk-{—l,ex'
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Note that E@ZHm is the stack that classifies the data of (Dy,...,Dy) €
(X — )@, a vector bundle M, a filtration

O=MocCcM;C---CM,CM

with M; /M;_1 ~ Q" (D; — D;_1) and, finally, a map 41 : Q" *"1(=Dy) —
M/ M. B

Note that each d@z +1,er 18 stable under the action of the groupoid

§Vk x gz 41,ez- Therefore, in the same way as above, we can introduce the

7

k
category PW(C@ZH’&T) (resp., DW(C@ZHM)), which is a Serre subcategory
(resp., a full triangulated subcategory) of P(dQZHM) (resp., D(dgzﬂﬂ)).
From Lemma 4.8 we obtain:

LEMMA 4.11. (1) The * and! restrictions D(ng’em) — D(Egzﬂ,ex) map
the category DW@%HW) into DW(dng,w)-

(2) The x and ! direct image functors map DW(EQZHW) to DW(§z+17em) C
v
D(QkJrl,ex)‘

(3) An object F € D(QZ_,_L%) belongs to Dw(gz+17ex)_if and only if its
x-restrictions (or, equivalently, -restrictions) to d§Z+Le$ belong to
DW(C@ZH@:) for all d.

Of course, the same assertion holds when we replace one point y by a finite
collection of points 7.

Proof. The fact that each E@z 41, 15 stable under the action of ?C?Vk x

k
Qy +1,¢; means that we have a commutative diagram

doY i oy oy
Qk—l—l,eac 9{3\7,\ _Xy Qk+1,eac Qk—l—l,ez

k

l ! !

~Y aCt;‘c,ew 1 "Y przef ~Y
Qk—i—l,em A ‘{}Cﬁ\fk _Xy Qk—l—l,er - Qk—i—l,ex?
k
in which both squares are Cartesian. As remarked above, an object F €
D(QZHM) belongs to DW(QZHM) if and only if we have a compatible sys-
tem of isomorphisms acty, ., *(F) ~ pr};’em *(F) ® xi*(A-Sch), and similarly for
aqy +1,ex- This implies assertions (1) and (2) of the lemma.
Assertion (3) follows from (1) and (2), since the decomposition of Q} flex

into the strata E@z 41,ez 18 locally finite. O
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4.12.  We will now analyze how objects of D" (Qj +1.e) can look like
when restricted to 4QJ, Hex

For d as above, let E§k+1’em, C E@;ﬁqﬂ denote the closed substack that
corresponds to the condition that for i = 1,... ,k, each D} := D; — D;_; is an
effective divisor (by definition, D] = D;) and that moreover fori = 1,... /k—1
each Dj , — D; is effective, and Kpy1 : QrF=1(—Dy) — M/M; factors as
QR (= Dy) — QP EY(Dy) T VMG N

Note that we have a natural map dX;g : koJrLem’ — Al defined in a way

similar to how the map i was defined. Namely, we have to sum up the classes
of the successive extensions

0 — Q"(D)) = Mig1/Mi—1 — Q" (D) — 0
in

Ext' (Q""1(D},,), Q" (D)) ~ H'(X,Q(D} — D},,)) — H'(X,Q) ~ A
for i =1,...,k— 1 and the class of the induced extension of Q"~*~1(D}) by
Q”_k(D;ﬁ) by means of %;Hl'

Let 9P, denote the stack classifying the data of (Dy,...,Dy) € X @ such
that each D} := D; — D;_1 and D}, — Dj is effective, a vector bundle M’ of
rank n — k with a map Q"*~1(D}) — M.

Note that we have a natural projection ¢y, : EngrLex’ — E[Pk, with M :=
M/Mj, in the above notation. The map ¢y is smooth and has contractible
fibers. B

Let d[PZ C %P, be the open substack that corresponds to the condition
that the divisors D; avoid y. Let E@ZHM’ = Egk_i_l’ex/ N §Z+1761"

The following proposition is a version of Lemma 6.2.8 of [6].

PROPOSITION 4.13. (1) Every object of DW(EQzH,eI) is supported on
DY (“Qg 41 ea’)-

(2) The functor F — ¢*(F) @ x},* (A-Sch) defines an equivalence of cate-
gories D(TPY) — DV (7L, , ).

A similar assertion holds when a single point y is replaced by a finite
collection 7.

COROLLARY 4.14. Let y = y1,...,Ym be a collection of points with y
being one of them. Then the restriction functor D(§z+1,e:c) — D(EZJFL&,E)

maps the category DW(ngm) to DW(QZH&).

Proof. Let & be an object of DW(§z+Lez). According to Lemma 4.11, it

suffices to check that the #-restrictions | all belong to DW(E_z lex)

07
Qk+1,er
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We know that F |@z can be described as a pull-back from E?% as in
c+1,ex
Proposition 4.13, tensored by the pull-back of the Artin-Schreier sheaf, and

this description obviously survives the further restriction to E@Z e O

4.15. Finally, we define the category pW (§k+1’em) to consist of all perverse
sheaves F € P(Qy 1 ¢x) for which F lg7 belongs to P (Q}, 41,ez) for all finite

k+1,ex
collections .

According to Lemma 4.8, PV (Q;1 1 ) is a Serre subcategory of P(Qp11 ¢x)-
We let DW(QkH,em) be the full triangulated subcategory of D(gkﬂm) gener-
ated by PW(Q;HL&I). In other words, F € Dw(gk+17e$) if and only if all of its
perverse cohomologies belong to PW(§k+176x).

According to Corollary 4.14, in order to check that F € D(gk“’w) belongs
to DV (Qgy1.ex), it is sufficient to check that ?‘QZH € DW(QZHM) for all
points y € X i.e., it is enough to consider 1-element sets.

Consider now Q41 C §k+17e$. Since this open substack is stable under the
action of the groupoids used in the definition of PW(QkJrl,ew), the categories
PV (Qry1) C P(Qpq1) and DV (Qp41) € D(Qpyq) are well-defined.

By Lemma 4.8, the direct and inverse image functors D(Q41) = D(Qk11.ex)
map the subcategories PV (Q;, 1) and Dw(gzﬂ’ex) to one another.

We emphasize that by definition, for & = 0, D" (Qz11) = D(Q41).

4.16. Now let S be an arbitrary “base” scheme. All the constructions of
this section go through when we replace Q; by the product S x Q. In other
words, we have well-defined categories PV (S x Qi 1ex)s DY (S x Qi 1ex)s
PW(S x Qp), and DW(S x 91). Moreover, for a morphism S; — So, the two
pairs of direct and inverse image functors D(S; x Q) 2 D(S2 x Q) map the
categories D (S; x Q) and DY (S, x Q) to one another; and similarly for
the “ex”-version.

5. Whittaker functors

The goal of this section is to prove the following theorem:

THEOREM 5.1. For each k = 1,... ,n — 1 there is an equivalence of
categories Wi i1 ez : DW(Qk) — DW(@HL@I), which maps PW(Qk) to
PW(§k+1,6x). The quasi-inverse functor is given by F — T 41 ex ot (F'), which
in this case is isomorphic to Tg41 ex kx(F').

5.2.  As a first step, we will describe the functor W, ;41 ¢, on the strata
dng,m ford =di, ... ,d;. Namely, let DW(koH,m) (resp., DW(dgk)) be the

corresponding subcategory of D(EQIHLW) (resp., D(9Qy)), and let us describe
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the functor 3 B 3
Wikiter : DV (9Q;) — DY (9Qp 11 c0)-

Recall the substack E§k+17€x’ C Egk“,ez, cf. Section 4.12, and define the
corresponding substack Egk/ C Egk as the intersection Egkw’ N Q.
Let DW(EngFLem’) (resp., DY(9Q,/)) be the corresponding subcategory of
D(Qp11,e2') (resp., D(YQ)))).

As in Proposition 4.13(1), every object of D(a§k+1’ex) is supported on
the closed substack Egkﬂm’ , and similarly for Egk/ . Therefore, the required
functor EWk,kH,ew amounts to a functor DW(Egk’) — DW(gngm’).

As in Proposition 4.13(2), the category DW(gng,ex’) is equivalent to the
category D(Eka) by means of

F = o™ (F) @ x}.*(A-Sch).

We will now give a similar explicit description of DV (4Q).

For d = dy,...,d; let EfP;C_l denote the stack classifying the data of
(D1,...,Dy) € X@ with D, = D; — D;_; effective for i = 1,...,k, and
Dj,, — Dj effective for i = 1,... |k — 1, a vector bundle M" of rank n — k +1
with an injective bundle map Fy, : Q" %(D}) — M.

We have a natural projection ¢j_, : aqQ,’ — E‘Pz_l that sends a point
((Dl, - ,Dk)EX(E); 0=MoCM;C---CM;C M; Mi/Mi,1 Zﬂn_l(D;)> < ko/

to M := M/Mj_1 and
Qv R(DL) ~ My /My — M/My_y =M".

_ Again, as in Proposition 4.13, the category DW(EQ;C’ ) is equivalent to
D(4P; ), by means of F — ¢, ,*(F) @ x},_,*(A-Sch). B
Note that the last two pieces of data in the definition of de,_l, ie.,
(M”,Rg), can be rewritten as a short exact sequence

0— Q" FD;) - M - M —0,

where M’ is a vector bundle of rank n — k. From this it is easy to see
that the stacks dﬂ’;_l and 9P;, form a pair of mutually dual vector bundles
over the base classifying (M’, Dy, ..., D), which is isomorphic to the product

Bun, < _IT kX<di:—défl>, where d = dy, ... ,dy, and d, = d; — d;_;.

We define the functor EWk;,k;-s—l,em : DW(Egk’) — DW(EQ;CH,&T’) as a com-
position

DY (19)) = D("P ;) == D("9y) = DV (Qpi o),



ON A VANISHING CONJECTURE 651

where Four’ is the Fourier transform functor D(4P; ) — D(?Py,) followed by
the cohomological shift by dim. rel.(dgkﬂ,ex’, 4Pp.) — dim. rel.(?Q;, dfP;C_l).
The functor deka’ez is an equivalence of categories mapping perverse
sheaves to perverse sheaves, because the same it true for the Fourier transform
functor. B -
Let dﬂkH,em’k : d§k+1,ew — 90, be the restriction of Tk41,ex,k tO the cor-
responding stratum.

LEMMA 5.3. The functor ¥ — Eﬂk+17ex7k!(§/) maps DW(EQICHM) to
DW(C@k) and induces a functor quasi-inverse to de,ka. Moreover, in
the above formula the !-direct image coincides with the x one.

Proof. We have the following Cartesian diagram:

d, —
do 7/ Tk4+1,ex,k dn /
Qk ¢ Qk+1,eac
LqJ{ ¢kJ/
dpr e APt x ap,.
Bun, . x Il X740

Therefore, the assertion of the lemma can be translated to the following general
situation:

Let ¢ : & — Y be a vector bundle, and ¢ : & — Y its dual. Consider the
functor We : D(€) — D(& >1§ &) given by

F— (p x id)*(Four(¥F)) @ ev*(A-Sch)[dim. rel.(€,Y)],

where ¢ x id is the natural projection &€ x & — &, and ev : & x & — Al is the
Y Y

evaluation map. Then for id x@ : € x €& — & we have:
Y

(id x@) (We(F)) = (id x @)« (We(F)) = 5,

and this follows from the standard properties of the Fourier transform functor.
O

_ 5.4. We are now going to extend the above stratum-by-stratum definition
of de,k+1,ex to a globally defined functor Wy, j41 ex : DY (Q;) — DW(QkJFLex).
We will first construct the functor W/, . . DY(Q)) — D" (Q11.ca)-
(The same definition works for y replaced by a finite collection of points 7.)
For that we will single out two sub-groupoids in the groupoid Hys over
QY. denoted ’ Hpyv and "Hyv, respectively. Both these groupoids correspond
to certain group sub-schemes ‘N p ," N p, of Nip, (resp., ’Nk,@;/,”Nk’@Z C
N, s ).
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Recall that N, p, (resp., Nk,ﬂ);) consists of automorphisms of M|p, (resp.,
M|p: ), which are strictly upper-triangular with respect to the filtration 0 =
Mo C My C--- C My C M|p,, defined by our point of Qy.

The group ‘N p, (resp.,’ Nk,@;) consists of those automorphisms, which
induce the identity map on My. The group "Ny p, (resp., ”Nk,D;) consists of
those automorphisms, which induce the identity map on M/Mj_.

Note that the fiber of "Hyv over a point (M, k1,...,Kg) € QZ is the
vector space Hommp. (M/My, My)/ Homa, (M/My, My). Without restricting
the generality we can assume that the filtration Hy» = igNﬂffv: induces on

'Nyj,p, the standard filtration:
"Hlyy = Homp, (M/My, My(i - y)) / Homop, (M/My, M) .

Let ' pr;, and ’acty (resp., ’pri, 'acti) be the restrictions to "Hpyy (resp.,
! J{Z}\,g) of the maps pry,acty : Hy» — QY respectively. We will denote ’ j{évg
also by €! and think of it as a vector bundle over QZ- Let é}c denote the dual
vector bundle, and ’ p&"}'C its projection to GZ.

By Serre’s duality, the fiber of é}c over (M, K1,... ,Kg) € gz can be iden-
tified with the vector space

Homs, (M. ((V/M0)/O/36)(i5) ©.2).

v . M

For i’ > i we have a natural map pr; ; : &}, — &t

PROPOSITION 5.5. There exists a natural map f; Q%H’ex — 82; for any .
Moreover,

pry ;

(1) For i > the composition QZHM Lt € L EL equals f;.

(2) For each open substack U C gz of finite type, there exists an integer i(U)
large enough such that over U, the map f; : QZ+1,61 — & is a closed
embedding for every i > i(U).

Proof. Let é};’ C éz be a vector sub-bundle, whose fiber over a point
(M, K1,... Kg) € QZ is the vector space

(15) o, (2, ((0/M)/ /M) (i) .2

which maps to Homp, (Mk, ((V/M) /(M M) (—iy)) & Q> by means of the

projection My — Q" F|qp,.
Note that given a filtration

0O=MyCcMyC---CMp,CM
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with M, /M,_1 ~ Q"7 specifying a map Q"% — ((M/My)/(M/My)(—iy)) @
€ is the same as specifying a map Q=1 +n=k=1 _ ARHLOV) /AR (M) (—iy),
which satisfies the Pliicker relations with all the maps ; : Q" 1 +n=7 —
ANM),j=1,...,k.

The map gzﬂ,ew — &' is defined now as follows: having (M, k1, ... , k)
€ O}, to the data of kpyq : Q1T k=1 _ AR+HL(M) we attach the corre-
sponding map Q1 Fn=k=l  ARFLOV) JARHL(M) (—iy) over D,,. According
to the above discussion, this defines a point of é};’ , and hence of é}c

Thus, the map f; has been constructed. Point (1) of the proposition is
straightforward from the construction.

For an open substack U of finite type, let i(U) be such that the vector
space Hom(Qn 1+ +n=k=1 AR+ (€M) (—iy)) is zero for (M, k1,... , k) € U.

Let é};” be the vector bundle over QZ, whose fiber over a point as above is
the vector space Hom (Qn =1 Fn=k=1 ARFL(\) /AML (M) (—iy)). Fori > U(i)
the natural map Qj ez €" is a closed embedding over U.

Then for i > i(U), we have a sequence of maps

oY o1l o1
Qk+1,e:c — & — &

We know that the second arrow is a closed embedding, being the set of those
sections that satisfy the Pliicker relations. We also know that the composed
map is a closed embedding. Hence, so is the first map. O

5.6.  Consider now the action map ’act} : ’J-Cﬁvg — QY. Since the
projection ' pri : 'H%, — Q7 is a smooth map and ’ H'i, is a groupoid, the
map ’act}, is smooth as well; let dim(i, k) denote its relative dimension.

We define the functor W, DY (Q]) — D(EL) as

F + Four ("act, *(F)[dim(i, k)])

where Four : D(€}) — D(&}) is the Fourier transform functor. Evidently, this
functor is exact. For i’ > ¢ we have:
pri/ai !(Wg,7;+1,er<?)) = Wlil,}z+1,em(?)'

PROPOSITION 5.7. For an open substack U C gz of finite type and any
integer i which is large enough (and in particular i > i(U) of Proposition 5.5),
over the preimage of U, any object of the form W, ., (F) for I € DV(Q})
is supported on Q%H,em - E’}C

Proof. Recall that to a string of nonnegative integers d=dy,...,d; we
attached a locally closed substack 9Q; Q. Let |d| be ¥ d;.
7
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It is easy to see that for every open substack U C Qj of finite type there
exists an integer d such that

(16) U C u Egk.
d|<d

Thus, for a given U there exists an integer i'(U) such that for any d and
M € U N 49} we have: Hom (My, M/M; ® Q(—iy)) = 0, for i > i'(U) where

O=MocCcMyC---CM,CM

is the filtration with M;/M;_1 ~ Q" (D)), (D1,... ,Dy) € (X —y)@.

Let now F be an object of DV (?Q}) with |d| < d. Then Wli/,7li+1,e$(gj)

yields an object of D ((’ pvr};)_l(EQZ)), where ('pr? )_1@5%) is the preimage of

gV iy £
Q. in &;.

LEMMA 5.8. For i > i'(U),i(U), over the preimage of U, the object

ng’]i_i_l,ex(ﬂ’) is supported on d@zﬂ’ew and is isomorphic to EWk,k-H,e;c(?) of
Section 5.2.

Proof. Recall the stacks Eka and E‘P;_l, which form a pair of mutually dual

(generalized) vector bundles over the base Bun,_j x 1H kX (di=di1)  where
i=1,...,

the latter classifies the data of a rank n — k vector bundle M’ and a collection
of divisors Dy, ..., Dy with D, = D; — D;_; effective and D} — D}_, effective
as well. To simplify the notation, let us temporarily denote this base by Y,
4P\ by € and 4P, | by &; let ¢ and ¢ denote the projections of € and &,
respectively, on Y.

Consider the fiber product & x €, and let ev be the natural evaluation

map from it to A'. The assertion of the lemma amounts to a description of
the functor D(€) — D(& x &) given by
Y

(17) F— (p x id)*(Four(¥F)) ® ev*(A-Sch)[dim. rel.(€, Y)]

in terms of an action of a certain groupoid on €.

Namely, for an integer ¢ consider another vector bundle over Y, denoted
€!, whose fiber over (M, D1, ..., Dy) € Y is the vector space Hom(M’, Q"% (i -
y)/Q" ). Let & be the dual vector bundle, whose fiber, by Serre’s duality
can be identified with Hom(Q" %=1 M'/M/(—i - y)). We have a natural map
& — €. When working over an open substack of finite type in Bun,,_j, for a
large enough integer 7, the dual map & — & is a closed embedding.

Using the group-scheme structure, we can think of £ as a groupoid acting
on €. Let a and p denote the corresponding maps &; ; & — &. Thus, we can



ON A VANISHING CONJECTURE 655

consider the functor D(€) — D(&; x &) given by

3
(18) F s Four (a*(F)) [dim. rel.(€, Y)],

where Four is the relative Fourier transform functor D(&; x &) — D(&; x &).

The assertion of the lemma follows from the fact that the functor in (18)
is isomorphic to the composition of the functor of (17), followed by the direct

image under the closed embedding € x & — & x . O
Y Y

This lemma implies the proposition. Indeed for a given F € DW(QZ) to

show that, over the preimage of U, W (¥) is supported on §z+1,ez, it

k,k+1,ex v
is enough to do so over the preimage of each stratum dQZ C Q,‘Z. The latter
support property is insured by Lemma 5.8. O

5.9. Since pr; ; '(nglzﬂ or(J)) W,f’,iﬂ oz (J), the above proposition im-
plies that we obtain a well-defined functor W/, . . DV (Q}) — D(@ZJFMI).‘1
Moreover, by combining Lemma 5.8 and Lemma 4.11(3) we obtain that the

) Y . WY
image of W/, ., lies in D™ (Qpyy cp)-

PROPOSITION 5.10. The direct image functor F +— i1 ez r(F) maps
DW(QZH’m) to DV(QY) and is a quasi-inverse to W} ii1.ea- Moreover, for

Fe Dw(gzﬂm), Tt e k! (F) = Tt ez o+ (F) is an isomorphism.

Proof. First, let us show that for ¥ € D(Q}), Tt 1,ea k! (W it ea(F))
~ JF. Indeed, by working over a fixed stack U of finite type and a large enough
integer i, we are reduced to showing that

'pri <F0ur (" act}, *(F)[dim(4, k)])) ~ 7,

where 'pr}, is the projection é}c — QZ

However, by the general properties of the Fourier transform functor we
obtain that the left-hand side of the above expression is isomorphic to the
restriction of " act} *(F) to the unit section of &} ~ '3, 5 e, to T itself.

Now let us show that 71 eq 1 indeed maps DW(QzH’eI) to DV(QY).
However, this follows immediately from the definitions:

By unfolding the definition of DW(QZ), we see that it is defined by means
of an equivariance property with respect to the groupoid ”H NY (cf. Section 5.4).
However, "f}ng acts on Qzﬂjex, being a part of Hpy; Le., we have a Cartesian

4This definition of WY, 41,6 Was inspired by a certain construction of V. Drinfeld in the
n = 2 case, one incarnation of which is explained in Section 5.16.
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diagram
=Y aCtk,ez 1 =Y
Qk—i—l,ez g{N,f _><y Qk—l—l,em
k
7Tk+1,ez,kl id ><7Tk+1,em,kl
= act
Q) A "Hy.
Finally,
Xk—1

—y —

”g'(Ni{_><ka+1,cz Xk
°Q

k k

Now, let us show that for ¥ € DW(§Z+17%), the object

W it ce(Thttea k1 (37))

is canonically isomorphic to F.

" nY .
:HN}CJ_X Qti1,en
)4

Note that as in Lemma 4.4, the groupoid ’fJ—C?ij “lifts” to é};; i.e., we have

a Cartesian diagram
. aCts;’g . .
1 1 (2
& — &L X &
k

'pri id x’ﬁril

"acti .
Qy —* g

Thus we may assume that we start with F' € D(éi;), which satisfies

(19) acty, (F) = ('pri x id)*(5") ® ev* (A-Sch),

k

& AL
However by looking at another Cartesian square:
y g q
’ 7 3
& pri xid i 5i
€k €k X €},
k
/p'r};l id Wp’riJ{
’ i
—y pri )
Q — o>

we obtain (19) which implies
Four™ ' (F) ~"act}, * ('prj(F))

which is what we had to show.

where ’pr}'c X id is the map 8}; X 82 — éz and ev is the evaluation map 82 X

o}

The last assertion that g (F) — 7. (F') also follows from the above

diagram by the fact that the !— and *— Fourier transforms coincide.

O
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5.11. Finally, we are ready to construct the functor
Wk,kJrl,ex : Dw<gk) - Dw(gk+1,ez)-

The construction of the corresponding functor on the level of abelian cate-
gories, i.e., Wi i1 er : PW(Qk) — PW(QkH,em), follows immediately from
Proposition 5.10, because an object F € PW(Qk+17€m) can be glued from its

restrictions Flgs .
k41,ex

Moreover, Proposition 5.10 implies that 741 ez maps DW(Q;@HM) to
D" (Q;) and the induced functor P (Qy 1 cr) — PW(Qy) is an equivalence
inverse to Wi, k41,ex-

Thus, it remains to show that 741 ez ! Dw(gkﬂ,ex) — DW(Qy) is an
equivalence.

First, let us notice that for any substack U C Q of finite type, as in
Proposition 5.7, one can find an integer ¢”(U) such that for ¢ > i"(U) the
image of each U N QZ under the action of the entire groupoid Hyw equals that
of J—Cg\fz. Hence, any substack U of finite type can be replaced by a bigger one,
which is also of finite type, such that each U N 5% is Hyw-stable. Let Ugi1ex
denote its preimage in nga.

Then the categories D (U) and DY (Ugy1e,) make sense, and we have
the functor Ty 41 eq k! : DW(Uka) — DW(U), and it suffices to show that it
is an equivalence.

We claim that this functor is fully-faithful. Since U intersects only finitely
many strata 9Qy, it suffices to check that for two objects F1, Fo € DW(UkH,w)

Hompag, | (F1,F2) — Hompag ) (Tet1,ea k! (F1)s Tott ea ket (F2))

is an isomorphism. But we know that from Lemma 5.3.

To finish the proof, we must show that 71 eq k! : DW(U;CH’%) —DV(U)
is surjective on objects. However, this we know, because every object of
DW(UHL%) is obtained by gluing finitely many perverse sheaves, and we
know already that mp41 ez k! : PW(QHL&B) — P"(Q,) is an equivalence.

5.12. Thus, Theorem 5.1 is proved.

We define the functor Wy xy1 : DV(Qx) — DV (Qx41) as the composi-
tion of Wy, j41 ¢, followed by the restriction DW(ng’m) — DW(Q41). By
construction, Wy, 41 is exact.

For two integers 1 < k < k' < n we define W, : D(Q;) — DV (Qp)
as the composition Wjr_q 4 o -+ 0 Wy p+1. Finally, we set W : DW(Bunil) —
DW(Q) to be Wi,,. All these functors are exact.

5.13. Recall that in Section 4.16 we said that the categories DV (S x Qy),
DW(S X Qp ez) can be introduced for an arbitrary base scheme S. Similarly,
one has the functors Wi, j11.es : DY (S x Q) — DW(S x Qk11,ex), which are
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equivalences of categories, and the corresponding functors
Wi : DV(S x Q1) — DW(S x Q).

All these functors map perverse sheaves to perverse sheaves, and commute
with the Verdier duality.

Moreover, for a morphism of schemes f : 57 — S, the !- and *- direct and
inverse image functors D (Sy x Q1) = DW (S x Q;) and DV (S1 x Qpy1.e0) 2
DY (S, x Qk11,er) commute in the natural sense with Wy . This is evident
for the *-inverse image and the !-direct image via the description of the quasi-
inverse functor as m1 ez k1, and for the l-inverse image and the *-direct image
aS Tk+1,ex,kx- .

To conclude, we note that the group G,, acts on all the stacks Qi by
simultaneously scaling the maps x;. Thus, it makes sense to talk about the
equivariant derived categories D¢ (Qy).

We introduce the equivariant version of the Whittaker category D& (Qy)
as the full triangulated subcategory of D&m (Qg) consisting of objects whose per-
verse cohomologies belong to D' (Q;). Thus, we have an equivariant version
of Theorem 5.1, and, in particular, the equivalences Wy, 41 ¢x : DGW’W(gk) —
DG”“W(QkH’ew), and the Whittaker functors Wy, 5 : DG"“W(Qk) — DG'"“W(QM).

5.14.  The rest of this section will not be used in the sequel. We would
like to compare the Whittaker functor W : D(Bun/,) — D" (Q) defined above
with another functor of related nature introduced by G. Laumon in [11].

For an integer k, let Cohj denote the stack of coherent sheaves of generic
rank k; let Cohj, denote the stack of pairs: (M, ), where M € Cohy, and «
is an injective map of sheaves Q*~1 — M. Let, in addition, Cohy, ., O Cohy,
denote the stack of pairs (M, k) as before, but where we omit the condition
that x be injective.

We have a functor W,S;;El : D(Coh},) — D(Cohj,_,). Namely, note that
Cohy, and Cohj,_, ., form a pair of mutually dual vector bundles over Cohy,_;.
We set W | to be the composition of the Fourier transform functor D(Coh},)
— D(Cobj_; ) followed by the restriction D(Cohy_; ,,) — D(Cohj_;).

By composing, for any n we obtain a functor W,$°" : D(Coh/,) — D(Coh}).

Recall now the stack Q of [7]. We have a natural smooth projection pCob .

Q— D(Coh}), and a map ev: Q — Al N
We define the functor W,°P : D(Coh/,) — D(Q) by

F — gCoh (Wfoh(ff)) [d] ® ev* (A-Sch),

where [d] is the shift by dim. rel.(Q, Col}).

Recall also that we have a map v : Q — Q = Q,,. Finally note that Coh/,
contains Bun), = Q; as an open substack.
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PROPOSITION 5.15. Let F be an object of D(Bun),), and let ' be its any
extension to an object of D(Coh})). Then

" (Wgoh(gf)) ~ v, (Wfoh(sﬂ)) ~ W ().

Instead of giving the proof of this statement, we will sketch the argument
when n = 2. The proof in the general case follows the same lines.

5.16.  Consider the following set-up: Let Y be a base, and €1, €5 be
two vector bundles viewed as group-schemes over Y, and p : £; — €3 a map.
Suppose that both £ and €5 act on a scheme X over Y, i.e., we have the action
maps

actz-:Sixf)C—ﬁC,
Y

with act; = actg op.
Consider the functors F; : D(X) — D(&;

bundle, given by

x X), where &; is the dual vector
Y
F — Four (act; (F)[di]) ,
where d; = dim.rel.(€;,Y). Then for ¥ € D(X), we have:
F1(F) ~ (b x id)i(F2(9)),

where p x id is the natural map &y x X — &; x X.

Y
We apply the above observation in the following circumstances: We set
Y = Cohy, X := Cohj. The vector bundle & is isomorphic to X := Coh} itself;
i.e., its fiber at L € Coh; is the stack of extensions

0-Q—-M-—-L—0.
The vector bundle &; has its fiber over £ as above the stack of extensions
0—Q—M—det(L) — 0,

where det(L) is the determinant of L. The map p : £; — €9 comes from the
canonical map of sheaves L — det(L).
Note that the action of €; preserves the open substack Bun), C Coh), and

€1 x Bun) ~ Q. Moreover, the functor
Coh,

Fi |Bun, : D(Bun)) — &, CC>)<h Bunl,
1

identifies with W : D(Bunj) — D" (Q).
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To prove the assertion of the proposition, it suffices to notice that we have
a Cartesian square:

€y x Cohl «—— & x Bunj) —— Q
Coh;, Coh;

pxidl pxidJ{

g
€ x Cohy «—— & x Bunj —— Q.
COh1 COhl

6. Cuspidality

6.1. Let us first recall the notion of cuspidality on Bun,,. For n = ny + ns,

let F1; ,,, denote the stack of extensions

n
0—->M -M— M2 -0,

where M € Bun,, .

We have the natural projection pp, 5, : FIj; ,,, — Buny,, which remembers
the middle term of the above short exact sequence, and the projection gy, », :
FI .. — Bun,, x Bun,,, which remembers (M*, M?).

The projection g, », is in general non-representable, but is a generalized
vector bundle with the fiber over (M!,M?) € Bun,,, x Bun,, being the stack
of extensions of M? by means of M!. Therefore, the direct image functors
Gnin.! : D(FIR, ) — D(Buny,) are well-defined.

The constant term functors CTy, . : D(Bun,) — D(Bun,, x Buny,,) are

defined by
F— Uny,no! (p:Ll,nz (EF)) :

Recall that an object 3 € D(Bun,) is called cuspidal if CT7 , (F) =0
for all 1 < nqy,ne <n.

Since the projection q is not proper, the functor CTy, .
with the Verdier duality. Therefore, if F is cuspidal, it will not in general be

true that D(F) is cuspidal.

does not commute

6.2.  We will now introduce the notion of cuspidality on the stacks Q.
For n; as above and k£ < nq, let gnl,k denote the stack classifying the data of
M! € Buny,, and a collection of nonzero maps ky, ; : Q"1 +n= — AT(ML)
for 1 <i <k, satisfying_ the Pliicker relations.

For k < ni, let F12*  be the stack classifying the data of a short exact

ny,n2
sequence

0->M -M—-M> =0,

as in the definition of FI)! | . and a collection of nonzero maps r; : Q"1+ +n

— AY(M?) for 1 < i < k, which satisfy the Pliicker relations.
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We have a natural map qu, n, : F12

nen, — 9y k X Bung,, which makes

the following square Cartesian:

0 Any,no.k =
FI,, —2% Q, 5 x Buny,

| l

Fln Inq,no

T ms Bun,, x Bun,, .

.- . 1%
In addition, we have a map pp, n,  : F1;*,,,

For k < n; we define the constant term functors

— Q.

CT2:

ny,n2

: Dw(gk) — D(gnl,k x Buny,)

by F 1= it (85, (F)).

We call an object F € D"(Q;) cuspidal if CT5, (F) = 0 for all
k<ny <n.

In principle, one can introduce the constant term functors also for k > nq,
and properly speaking, a complex F € D(Qy) should be called cuspidal if all
the constant term functors vanish when applied to it, including those with
k > ni. However, for objects of the Whittaker category these other functors
vanish automatically, so the two notions coincide.

Let m denote the natural projection Q; ~ Bun/, — Bun,,. It is easy to see
that for § € D(Bun,,),

CTQ1

ni,N2

(m*(F)) = (mp, x id)* (CTp ., (F)),

n1,Mn2

where m,, X id denotes the natural map in,l x Bun,, — Bun,, x Bun,,.
Therefore, if an object F € D(Bun,,) is cuspidal, then so is 7*(F).

6.3. The main result of this section is the following theorem:

THEOREM 6.4. Let F1 € D(Bun),) be cuspidal and Fo € D(Bun),) be any
object. Then the map Homp(pun,)(F1, F2) — Hompw ) (W (F1), W(F2)) is an
isomorphism.

Of course, along with Theorem 6.4 as it is stated, we have its G,,-equivariant
version, and a version involving a base .S; cf. Section 5.13.
Theorem 6.4 follows by induction from the following assertion:

PROPOSITION 6.5. (1) The functor Wi 11 : DV (Qy) — DV (Qp11) maps
cuspidal objects to cuspidal.

(2) If T € DV(Qy) is cuspidal, then the *-restriction of Wi j11.ex(F) to
Qpy1 — Qs 1,60 18 2€70.
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Indeed, to prove Theorem 6.4, it suffices to show that if we have two
objects F1,Fo € DY (Q;,) with F; cuspidal, then
Hompw g, (F1,F2) — Hompw g, (W k41(F1), W k1 (F2))

is an isomorphism. However, by Theorem 5.1, we know that

) Wit tee(F1), Wi k+1,e2(F2))

is an isomorphism. And now, the condition that

Wk,kJrl,e:E (371)

HOmDW(Qk)(Stla 972) - HomDW(§k+1,ez

=0

’Qk+1*9k+1,ex

means that

Hompwg, ) (W kt1,e2(F1), Wkt 1,62(F2))
= HomD@HLw) (Wi get1,e2(F1)s Wi kt1,e2(F2))
~ HomD@kH)(Wk,kH(fﬂ), Wi k+1(F2))
=: HomDW(Q (W k41(F1), W k41(F2)).

k1)

6.6. Proof of Proposition 6.5(1). Let n; > k+ 1. Note that in addition
to the stack gnl,k, one can introduces its “ex” version gnl’kH_Lex. Moreover,
proceeding just as in Sections 4 and 5, we introduce the categories Dw(gnhk),
Dw(gnthrLex), and the functors Wy, k kt1.ex ° Dw(gnhk) — Dw(gnl’kJrLex)
and Wn17k7k+1 . Dw(gnl,k:) — DW(thk.,_l).

In addition, we can introduce a stack Fl%f}fj”, which fits into the diagram:

2y pnl,712,k+l,em §k+1,ew q711.712,k+1.ez -
QkJrl,eoc ¢ F1n1,n2 ’ in,k+1,ez X Bunn2

7Tlc+1,e:c,kl l ﬂnl,kﬂ,ez,kxidl

~ pn ,no.k 0 qn ,no,k =
Qg —_— FlSiM — Qy, & x Buny,

! ! !

Pryina P Gnyng

Bun,, "1

Bun,, x Bun,, .

In this diagram the right portion consists of Cartesian squares.

Using the stack Flgf}g” we introduce the functor

CTEHI’EI : Dw(ngrl,ex) - D(gnl,kJrl»ew X BunW)'

n1,N2

LEMMA 6.7. The functor CTT?f}{j’ maps DW(@CH,GI) to DW(§n17k+1’exX
Bun,,).

Proof. We will use the description of Dw(gnhk+17em) similar to that of
Proposition 4.13. For a string of integers d = di,... ,d}, let dgnl,k-s-l,ea:/ C
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Egnhk“’ex be the corresponding locally closed substacks of §n17k+17e$. Let also

4P, & be the stack classifying the data of (Dy,..., Dy, MY, QP =F=1 — M),
as in the definition of 4P}, with the difference that now mY is a vector bundle
of rank n; — k. We have a smooth map ¢y,  : dgnhkﬂ,ex’ — d’Pnhk.

To prove the lemma it is sufficient to show that for F € DW(Q;@_FLW), the

Qpot1,e0

restriction of CTy 7, (F) to each E§n17k+176$’ is isomorphic to the pull-back

of a complex on Eﬂ’nl,k, tensored by an appropriate Artin-Schreier sheaf.
Consider the fiber product
Z :=FIk x AP, L

n1—k,ns
777 Bung, &

101 et 1 e . . ST a8 a
Let 4 Fl,; 7. be the preimage in Fl,; 5, of the substack 9Qxy1 cr C Qi1 en
under p,, »,. We have a commutative diagram

do ; Prima g §k+l,ea: nima A /
Qk+1,6$ N Flnl;”z — in,k—i-l,ex X Bunng
¢kJ{ l ¢'rzl,k del
iy ' Z  —— AP« Bun,.

The right portion of this diagram is not Cartesian. However, the map

d Flgf;{;i — 7 X (dgnh;H_Lm' x Buny,)
4P,k XBun,,
is smooth with contractible fibers. Hence, the assertion of the lemma follows
from the projection formula. O

By the lemma above, part (1) of Proposition 6.5 would follow once we are
able to establish an isomorphism of functors:

(20) CTQIHLGI OWk,k—i—l,ez = (Wnl,k’,k’-i-l,ex X 1d) o CTQk

n1,N2 ny,n2?

both of which map from D"V (Q;) to DV (Q,,, k41.ex x Buny,).
Observe that the functor CT*

n1,N2?

will denote by Eis2%* | that maps F € D(Qp, k1 xBuny,) t0 Pr, n, ke (q!nhnz’k(ff)) :

T1,N2?

This functor also maps D" (Q,,, » x Bun,,) to DV (Qy).

has a natural right adjoint, which we

Qrt1,ea

Similarly, we have a right adjoint of CT,; ;

Eig2kttee Dw(gnl,k-&-l,ex x Buny,) — Dw(gk’-i-l,el‘)‘

n1,n2

To prove (20) it suffices to verify the isomorphism on the level of the
corresponding adjoint functors. In other words, we must show that

 Opiree 10 .
Tk+1,ex,k* © Eis kttes ~ Fig -* O(Trnl,k+1,ex,k X ld)*

T1,N2 n1,Nn2

However, the latter isomorphism follows from base change.
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6.8. Proof of Proposition 6.5(2). Note that §k+17ex — Qpy1 C Qs
is naturally isomorphic to Q. We would like to calculate Wk,k+1,ex(97)|§k in

terms of CT2*  for ny = k.

ni,n2 _
Recall that to a string of integers d = dy,... ,d; we associated a locally
closed substack 9Q; C Q. B
Note now that we have a natural map v, : ?Q;, — Q. k X Bun,,_. Namely,

we can think of a point of Egk as a data of
0=MoyCM;C---CMp CM,

and identifications M;/M;_1 ~ Q""4(D; — D;_1) for (D1,... ,Dy) € X (@,
The corresponding point of Qk,k x Bun,,_j is M! = M}, with the data of
Kn, i being given by the old &;’s, and M? := M/Mj.
We claim that up to a cohomological shift, for ¥ € DV (Qy),

(21) Wk,k+1,ez(9)|®k ~ T/’Z(CTI?,Z—k(?))'

This follows immediately from the description of the functor EthH’ex
in Section 5.2. Thus, part (2) of Proposition 6.5 follows, because to show that
Wk7k+176x(§)|§k = 0 for F cuspidal, it is enough to show that for all d as above
Wi kt1,e2(F)lag, = 0, and the latter is given by (21).

Note that in the course of the proof we have shown that Wy, ;11 ¢z (F) ’@ =0
if and only if CT,?’;_k(CT") = 0. This is because the stack Qkyk is also stratified

by means of Egk,k, and for every d the map
¢ : E@k - Eghk X Bunn_k
is surjective.

6.9. Thus, Theorem 6.4 is proved. We will now give another categorical

interpretation of it. Let DZKSP

cuspidal objects in D' (Qy). This is evidently a triangulated subcategory in
DY (Qp).

Now, let Dg‘égen (Qr) € DY (Q4) denote the (full triangulated) subcategory
of those objects F for which W}, () = 0. Let ISW(Q;C) denote the quotient
triangulated category DV (Qy)/ Dg‘égen@k)-

Consider the composition

(Qx) denote the full subcategory consisting of

_ _ ~W —
Ditep(Qk) — DW(Qr) = D (Qu).

_ ~W —
THEOREM 6.10. (1) The above functor Dg‘ulsp(Qk) — D (Qg) is an equiv-
alence of categories.

(2) The functor Dggsp(gk) Wi DY (Q) is an equivalence as well.
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6.11. Proof of Theorem 6.10.  Let W,;,iﬂ : D"(Qry1) — DY (Q)
be defined by sending 7 € DW(Quyq) to Tht1,exk! (F), where F” is the
l-extension from Q1 to §k+1,ex~ Since Wi, 41,z is an equivalence, we have
an isomorphism of functors

-1 _
Wi k41 0 Wk,k+1 - ldDW(Qkﬂ)a

and an adjunction map Wl;liﬂ o Wi k+1 — idDW(gk).
~W — ~W —
By construction, Wy, ;41 induces a functor D (Q;) — D (Qgy1). We
claim this functor is an equivalence for every k.

Indeed, it is easy to see that the functor

-1
Wk,k+1

DY Q1) ' DY(Q;) — D" (Q)

~W —
factors through D (Qx41) and defines a quasi-inverse for Wj ;41. Hence,
~W — ~W — _
Win:D () =D (Q,) = D" (Q) is an equivalence as well.
Thus, it remains to prove the first assertion of the theorem. For that, it is
enough to show that Wj, ;1 induces an equivalence DZKSP(Q;C) — Dggsp(QkH)

for every k. The fact that the image of Dggsp(gk) under Wy, ;41 belongs to

DXSP(Q;C) was proved in Proposition 6.5.
We claim that W ; 4 defines a quasi-inverse. Indeed, for F € Dgﬁsp Q1)

to show that W,;,iﬂ (F)e DZKSP (Qx) we must verify that CT%W2 (VV,;,Lrl (F))=0
for n1 > k.

Suppose first that ny > k + 1. Then, since Wy,  k+1.e2 is an equivalence,
what we need follows immediately from (20). For ny = k, the needed assertion
follows from the last remark of Section 6.8.

The fact that Wy, 41 oW,; ,1 41 =~ 1d we know already. It remains, therefore

to show that for F € Dg‘ulsp (Qr),
Wik W1 (5) = F

is an isomorphism. Let F be the cone of the above map. We know that
F € DY (Q1), and Wy, j11(F') =~ 0. Hence, I’ ~ 0 by Theorem 6.4.

cusp

6.12. As a corollary of Theorem 6.10 we obtain that the category
Dgﬁsp(gk), and hence, in particular Deysp(Buny), possesses a t-structure.
Indeed, it is equivalent to the category DW(Q), for which the t-structure is
manifest. Note that this t-structure does not coincide with the t-structure on
the ambient category DV (Qy).
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7. The Hecke functors

7.1. Recall the Hecke functor H : D(Bun,) — D(X x Bun,), which was
defined using the stack 3 = Mod}. In this section we will introduce Hecke
functors that map from D(Q;) to D(X x Q). First we will consider the case
of Q; = Bun/,.

Set HBum. .= Bun/, x H, where the map h : H — Bun,, is used to define
Bun,,

the fiber product.
We have a commutative diagram

’ - ’ - ’
Bung, X hBunn hBunn

X x Bun/, ¢ FHBun 2" Bun/,

id xwl l Wl
sxh h

X x Bun,, — H ——— Bun,,

in which the left square is Cartesian. Indeed, the map hB""» attaches to a point

(2, M — M,k : Q"1 — M) € Bun/, x H the point (M',x’" : Q"1 — M),
Bun,,

where ' is the composition Q"1 5 M — M.
We define the functor H®™ : D(Bun/,) — D(X x Bun/,) by

F e (SBun’n % ZBun;)! <EBun’n*(3_r)> [n _ 1]

Note that the functors H®"™» and H are compatible in the following way:
for ¥ € D(Bun,,),

(22) (id xm)* (H(F)) ~ HE™ (7%(F)) [1].

Note also that since the map hB"™. is not smooth, the functor HP™n

does not commute with the Verdier duality. In particular, one could define its

Verdier twin by J s (sBumn x ZB“;)* (EB“‘“'"!(H’)> [1—nl.

7.2. For 1 < k < n we introduce the appropriate Hecke functors in a sim-

ilar fashion. Namely, we set HY = Q) x 3, which fits into a commutative
Bun,,

diagram

X x Bun,, «—— H _h, Bun,,,

in which the left square is Cartesian.
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The functor H2 : D(Qx) — D(X x Q) is defined by means of

F s (52 x b ), (Zﬁk*(g)> n—1].

Set 3;HQ’“?to be the preimage of z € X in H2. For a point z € X we will
denote by , H% the functor D(Q;) — D(Qy) obtained as a composition of H%*
followed by the -restriction to z x Q) C X x Q.

In other words, , H? can be defined using the substack ,H% as a corre-
spondence. -

In a similar way we define the stack J{2*+1.<= and the corresponding functor

H§k+1.ew . D(§k+1,e:p> — D(X X §k+1,ew)‘

PropoSsITION 7.3. The functor H%1.00 maps Dw(gk+17ez) to DW(X X
QkJrl,ex)-

Of course, as a corollary of this proposition we obtain that H maps
D" (Q;) to DW(X x Q).

Proof. To simplify the notation we will show that for any = € X, the func-
tor ; H2%+1e2 - D(Qpy1.02) — D(Qps1.02) Preserves the subcategory DV (Qp 1 cr).

Let y € X be a point different from z. It is easy to see that we have a
well-defined functor , H%+1.ex : D(Q; Hlex) — D(Q;, 41,ex)s constructed using
the stack that we will denote by xﬂ{gzﬂ,ew. We will first show that this functor
preserves DW(ngm).

However, this is almost obvious from the definitions:

Recall the groupoid H v §><y QZHW acting on §Z+1,ez' We claim that it

k

lifts to the stack megzﬂ-ew; i.e., we have a groupoid I}C]%é“’” which fits into
two commutative diagrams

oY Qy T oY
xg_CQk+1,em & JZJ_(N/%+1,&$ _pr . xg_(QHl‘ez
zﬁzﬂ,ml gl “al, l
=y acty, e =y Pli e =Y
Qk+1,em Hy Xy QkJrl,e:v Qk+1,e:p7
k
and
QY act 9, . r QY
o H e 22 mj_(:le;rl,ep LN, VS TR
gﬁzﬂ,ezl gl g%ml
acty cx =y Pl e



668 D. GAITSGORY

in both of which both squares are Cartesian. Moreover, the compositions

§Z+1,em ; nY Xk 1
w}cN;;{ —>J‘CN;: _><y Qk—f—l,ea:—)A

k

and

—

D iiew h =Y Xk Al
zj'CN]g ’ j'CN];’ _Xy Qk—i—l,ex = A
k

coincide. Therefore, if an object F € D(gz 41,q) satisfies the equivariance
condition (14), then so does h!gz (hQZ*(ff)) [n—1].

Now let F be an arbitrary object of D"(Qj 11 ¢;). To show that , H2%+1e (F)
also belongs to Dw(gkﬂm), from Lemma 4.8 it follows that it is sufficient to
show that any irreducible sub-quotient of any perverse cohomology sheaf of
" HQ’““”(S") belongs to DW(ng’ez).

Let K be such a sub-quotient. Then there exists y € X, such that the
restriction of XK to gz 41,z 18 nonzero. Hence, again by Lemma 4.8 and Corol-

lary 4.14, it suffices to show that Xg belongs to DW(QZH ). But above
c+1,ex ’

we have shown that the entire , H2+1es (F)|gv belongs to DW(ng ez)s
k+1,ex ’

and hence also X lgiﬂ ~, which is its sub-quotient. O

7.4. Our next goal is to show that the Hecke functors and Whittaker
functors commute with each other.

PropoOSITION 7.5. We have a natural isomorphism of functors

HY% e oW jiq er = (id X Wi gy 1,00) © H2% : DY(Q1) — DW(X X Qi1 en)-

Of course, the proposition implies that the functors H O+ oWj k41 and
(id X Wi g+1) © H% from DY (Q;) to DW(X x Qi) are isomorphic.

Proof. As in the proof of the previous proposition, in order to simplify the
notation, we will consider the functors , H%+1e2 and - H2% instead of H%+1.ex
and H%.

In fact, from the proof of Proposition 7.3 given above one can directly
deduce that for y # =z, L H%1es oY ~ W/

k,k+1,ex k,k+1,ex
definition of WY via the Fourier transform functor as in Section 5.9. We

o4 ng, using the

k,k+1,ex —
will proceed differently. Namely, we will prove that for F € DW(Qk+176x),
(23) Ttteant (o HO () 2 0 B (41 ar ()

which is equivalent to the statement of Proposition 7.5, since 711 ¢, k1 induces
an equivalence of categories.
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For a point z € X, let gk_l,_l’ex’m denote the stack that classifies the data
(M, K1, ..., Kk, Kk+1) as before, with the difference that now the last map xy1 :
Qrtttn=(kt1) o AR+HL(M) is allowed to have a simple pole at z. We have a
natural closed embedding Qi1 ,e0 — Qkti,ez,0-

Let , H%+1e2 denote the Cartesian product

Qivrere . % xQ
I S el & | kZ<Qk+1,ema
Qg

where we have used the map R z 02 Q). to define the product.
We have a commutative diagram:

— 4};Ekﬂ»l,(a.t,an 5 H§k+1,ew,z —
Qk+1,€l‘,$ A — xH Frbess ———— Q]C-FLEJJ

7Tk+1,e:z,k,a;l l 7Tk+1,em,kl

— 9% 5 n9k —
Qp — o H% — Qp,

in which the right square is Cartesian.
By base change, for & € D" (Qj11 ), the right-hand side of (23) equals

(24) (Wk—l—l,ex,k,m)! <h|Qk+1”T <th+1,em,w*(:}')> > .
LEMMA 7.6. For ¥ € DW(@HL@Z), the object
!Qkﬂyez’z <h§k+lexm*(?)> S D(ngrl,e:):,x)

s supported on §k+17em.

Proof. For y 7é_:c let QZJFL“J denote the open substack of Qg1 ¢z, equal
to the preimage of Qz under 741 eq k- 1t would be sufficient to show that for

any such y, the restriction of !Q’““'e“ <h§’“+1v”v1*(9’)> (as in the lemma) to

§Z+1,e:p,m is supported on gzﬂ,ew'
As in Section 4.7 we can introduce the category Dw(gzﬂ,e%m), and, as in

——

Proposition 7.3, we show that the Hecke functor I — h!Q"“’”’” (ZQ’?“”*(?))

w oY W oY
maps D (Qk—l—l,em) to D (Qk—l—l,e;t,:v)‘ .
However, we claim that every object of the category DW(QZ—Fi,ea:,x) is
supported on QZ +1,ez- We show this by introducing a stratification on QZ Hen

analogous to the stratification by Eﬁ% 41,ep OL ﬁz 41, and using an analog of
Proposition 4.13(1). O
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To finish the proof of Proposition 7.5, we observe that there is another
diagram:

— B 9k41,ex 9 h9%k41,en —
Qk+1,ez < T H=rttes ” Qk—i—l,e:ﬂ

a| | l a|

B o%kt1,ea, 5 ho%tlere —
h=kt1,eaw HQk:+1,e:n,ac h=kttexe Q
T ? k+1,exs

gk Tk+1,ex,k

g Tk41,ex,k,x
T
k

Qk+1,em,x

in which the middle square is Cartesian.
Therefore, by Lemma 7.6, the expression in (24) can be rewritten as

(7rk+l,ea:,k)! <h!Qk+1,em <th+1eT*(gj)>> ’

which equals the expression on the left-hand side of (23). O

7.7.  The following theorem is one of the main technical results of this
paper:

THEOREM 7.8. The functor H D(Q,) — D(X x Q) is right-ezact.

The rest of this section is devoted to the proof of this theorem. Let us re-
strict our attention to the connected component of Q,, corresponding to vector
bundles M of a fixed degree. We set d = deg(A™(M)) — deg(Qn—tHn-2++140),
According to the conventions of [7], the corresponding connected component

. o . —=d
of Bun,, is denoted by Bun?, and we keep similar notation for Q.

The data of k, in the definition of Q,, define a map 74 : Q, — X (),

Observe that we have a commutative diagram:

3 R —
G

san x ZGW, \L Td+1 J/
9 (d+1)
XxQ, — X )
where the bottom horizontal arrow is the composition
X x Q8T x o x(@ , x(@+),
From the above diagram we obtain the following:

. . —d . . .
LEMMA 7.9. For a given point (M',K},...  k],) € Qnﬂ, its preimage in

n
§n
U o3,

wesupp(D),)

HL 4s contained in

where D!, € X (@41 s the image of the above point under Td+1-
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The proof of Theorem 7.8 will be obtained from the following general
result: Let )
yl gz Ly

be a diagram of stacks with the morphism f representable. Suppose that Z
can be decomposed into locally closed substacks Z = U Z,, (the decomposition
being locally finite) such that if we denote by m (resp., ml,) the maximum of
the dimensions of fibers of f: Z, — Y (resp., [’ : Z, — Y'), we have:

/
Mo +my, <M

for some integer m.

LEMMA 7.10. Under the above circumstances, the functor D(Y') — D(Y)
given by
T fi (f*(9))

sends objects of D(Y)=0 to D(Y)<™.

The proof of the lemma follows from the definition of the perverse t-
structure. B B .
We apply this lemma for Yy = X xQ,,, Y =Q,, Z = H¥, f = 5% x h%,

= hgn, and m = n — 1. Thus, our task is to find a suitable stratification of
H

7.11.  For two strings of nonnegative integers d = di,... d., =
&2, d2 with @ = d. + 1, and d! < d2 < d! +1, let 94 % denote the
following locally closed substack of H

Recall that H9" classifies the data of

(x € X, M € Bun,, ; : Q" 1= L AYM), M’ € Bun,,, 8: M — M),

where M’ /M is a skyscraper at z. We say that such a point as x belongs to
=1 =2

a0 i
(a) Each map r; : QP 1+ Fn=1 — AY(M) has a zero of order d; at z.

(b) Each composed map «} : Q=1 +7=t — AY(M') has a zero of order d7
at x.

J— —— —1 52 =
As in the case of Q;, = U9Qy, it is easy to show that the substacks d'd g
define a locally finite decomposition of H2" into locally closed substacks.
SRS
We now need to verify the estimate on the dimensions of fibers ¢ @ F{2»
under the maps (52" x h9) and h<.

-1 =2 1 - = —
Let ;l’d H2 denote the intersection <4 H2 N szQ". In view of
Lemma 7.9, it suffices to check that for any fixed x € X, the sum of the
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dimensions of fibers of

—

0, dd 49, _, g 79, 4@ 49, g
ho dd 3% G and K2 44 1 Q,

does not exceedln 5 1.
For fixed d ,d", let k be the first integer for which di = d,lC + 1. We claim

=1 =2 —_ ——
that the dimensions of the fibers of ¢ ' 32 under h 2" are exactly k — 1, and

those for h2 are n — k. ;
Indeed, let first (M, k1, ... ,Ky) be a point of Q, such that each x; has a
zero of order dz-1 at . Then on the formal disk around x we have a filtration

O=MoycCcM;C---CM, =M

with M/ Mi_; = Qn=1-n=i (@l — d_)(z)).

The variety of all possible upper modifications M’ of M at the given z is
the projective space P(M,). Now, the condition that the point that M’ defines
in ;42" belongs to gl’dzf}@" with the above condition on (31,32) means that
the corresponding line ¢ C M, belongs to (My), C M,, and does not belong
to (Mk—l)x-

The dimension of the variety of these lines is exactly & — 1.

Similarly, if we start with a point (M',&],... ,k)) € @ZH with each &}
having a zero of order d? at x, we obtain a flag

o=MycMjc---cM,=M
defined on the formal disk around z, and
MG /MGy = QU (dF = dF ) (2)) -

The variety of all possible lower modifications M of M’ constitutes the
projective space of hyperplanes in M/,. The condition that M defines a point

=51 =2 —
of i 4 39 means that the corresponding hyperplane contains (M) _; )., and
does not contain (M},),, and the variety of these hyperplanes has dimension
n—k.

7.12.  As usual, everything said in this section carries over to the relative
situation; i.e., for a base S we have the Hecke functors H% : DV (S x Q;) —
D" (S x X x Q). Moreover, for k = n this functor is right-exact.

Note, however, that for a map ¢ : S; — Sa, the functors H% commute
only with the !-push forward and the *-pull back.
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8. Construction of quotients

In this section we will complete the construction of the quotient categories.
Recall the category D(Bun),) introduced in Section 6.9. A naive idea would be
to define D(Bun,) as a quotient of D(Bun,,) by the kernel of the composition

D(Buny,) e D(Bun/,) — D(Bun,),

i.e., to “kill” those sheaves F on Bun,, for which 7*(F) € D(Bun/,) is de-
generate. However, this definition does not work, because, since the map
7 : Bun], — Bun, is not smooth, the functor 7* is not exact, and the resulting
kernel would not in general be compatible with the ¢-structure. To remedy
this, we will “kill” even more objects in D(Buny,).

8.1. Let U C Bun, be the open substack corresponding to M € Bun,, for
which Ext!(Q"~!, M) = 0. It is well-known that each UNBun? is of finite type.
Obviously, the map 7 : Bun/, — Bun,, is smooth over U. Set V = Bun,, —U,
U4 = UNBund, and V¢ = Bun? —U%.

Recall (cf. [7, §3.2]) that a vector bundle M is called very unstable if M can
represented as a direct sum M = M! @M2, with M?#0, and Ext! (M, M) =0.

It is well-known (cf. [7, Lemma 6.11]) that if F is a cuspidal object of
D(Bun,,), then its *-stalk at every very unstable point M € Bun,, vanishes.
The following is also well-known (cf. [7, Lemma 3.3]):

LEMMA 8.2. There exists an integer dg, depending only on the genus of
X, such that for d > dy every point of M € V¢ is very unstable.

8.3. Let V' C Bun),, W C Bun/, be the preimages of V and U, respectively,
in Bun/,. We denote by 7: U — Bun,, 7 : W' — Bun/, the corresponding open
embeddings.

The category D(V') is a full triangulated subcategory of D(Bun/). It is
compatible with the ¢-structure on D(Bun),), cf. Section 2.8.

Recall now the subcategory Dgegen(Bun),) C D(Bunj,) of Section 6.9,
which by definition consists of objects annihilated by the functor W : D(Bun/,) —
D" (Q). Since the functor W is exact, Dgegen(Bun,) is also compatible with
the t-structure on D(Bun),); cf. Lemma 2.10.

Let D(V' + degen) C D(Bun/,) be the triangulated category generated by
D(V') and Dgegen(Buny,), i.e., D(V' + degen) is the minimal full triangulated
subcategory of D(Bun/,), which contains both D(V') and Dgegen (Buny,).

We have:

LEMMA 8.4. Let C be a triangulated subcategory endowed with a t-structure
and let C',C" C € be two full triangulated subcategories, both compatible with
the t-structure on C. Let €' + C” C € be the triangulated subcategory generated
by € and C". Then C' + € is also compatible with the t-structure on C.
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Proof. By definition, (€’ 4+ €”) N P(€) is the full abelian subcategory
of P(C), consisting of objects, which admit a finite filtration with successive
quotients being objects of either P(€’) or P(€”). Clearly, (¢’ +€”")NP(C) is a
Serre subcategory of P(C).

Thus, we have to show that if § is an object of €’ + €”, then so is 7<0(8§).
Suppose that 8§ can be obtained by an iterated i-fold procedure of taking cones,
starting from objects of either € or €”. By induction on ¢, we may assume
that § fits into an exact triangle

81— 8 — 89

with 81,82 € €'+ €” and 759(81),7=(83) being also in €' + €”. Let 83 be the
image of hY(82) in h'(81); it belongs to (€’ + €”) N P(€), by the above. Let 84
be the cone of 750(83) — 83. Then 7=9(8) fits into the exact triangle

TSO(Sl) — TSO(S) — 84. O

By applying this lemma to D(V'+degen), we obtain from Proposition 2.11
that the quotient triangulated category

D(Bun/,) := D(Bun/,)/ D(V' + degen)
carries a t-structure. "

For an arbitrary base scheme S, the category D(S x Bun,) is defined
in a similar way, as a quotient of D(S x Bun)) by a subcategory denoted
D(S, V' + degen). This quotient is stable under the standard functors; i.e., for
a map S; — 9o the four functors D(S; x Bun}) 2 D(Ss x Bun/,) give rise to

well-defined functors on the quotients D(S; x Bun/,) = D(S; x Bun/,).
Moreover, the Verdier duality functor on D(S x Bun/,) descends to a well-

defined self-functor on ]5(5 x Bun),). Finally, the “tensor product along S”
functor
D(S) x D(S x Bun),) — D(S x Bun),)

is also well-defined on the quotient.

8.5. We define the functor 7§ : D(S x Bun,) — D(S x Bun,) as follows.
For F € D(S x Bun?) we set 75(F) to be the image of (id x7)*(F)[dim(d)]

under D(S x Bun/,) — D(S x Bun/,), where dim(d) = dim. rel.(W, U4). Note
that dim(d 4+ 1) = dim(d) + 1, by the Riemann-Roch theorem.

ProposITION 8.6. The functor 77_15 is exact. Moreover, it commutes
with the Verdier duality, the tensor product along S, and for a map S1 — S9
it is compatible with the four functors D(S; x Bun,) = D(S2 x Bun,) and

D(S; x Bun/,) = D(S; x Bun,).
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Proof. The functor F + (id x7)*(F)[dim(d)] from D(S x Bun?) to
D(S x Bun/,) is not exact, because the map 7 is not smooth. However, for
a perverse sheaf ¥ € P(S x Bun?) all the nonzero cohomology sheaves of

(id x7)*(F)[dim(d)] are supported on V'. Hence they vanish after the projec-

tion to D(S x Bun/,). This establishes the exactness of s

The other assertions of the proposition follow in a similar way. For exam-
ple, to show that % commutes with the Verdier duality functor, it suffices to
observe that

7 o (id xm)*(F)[dim(d)]) ~ 7* o D o (id x7)*(DF)[dim(d)]) ,
and for any &’ € D(SxBun/,) the map jj07*(F’) — F’ becomes an isomorphism
in D(S x Bun,). O

8.7. Since the functor Tr_g is exact, the subcategory
Dgegen (S % Bun,,) := ker(m%) C D(S x Buny,)

is compatible with the ¢-structure.
We define the category D(S x Bun,,) as the quotient

D(S x Buny,)/ Dgegen (S x Buny,).

By Proposition 2.11, D(S x Bun,) inherits a t-structure from D(S x Bun,).
By Proposition 8.6, the standard six functors that act on D(S x Bun,) are
well-defined on the quotient D(S x Bun,). Thus, it remains to show that
D(S x Bun,) satisfies Properties 1 and 2 of Section 2.12.

8.8. Verification of Property 1. We must show that the Hecke functor
Hg : D(S x Bun,) — D(S x X x Bun,,)

descends to the quotient ]S(S % Buny,), and the corresponding functor Hg is
exact. To prove the fact that Hg is well-defined, we must show that Hg maps
ker(m%) to ker(m%, ). By (22), cf. Section 7.1, this reduces to showing that

’
Bun;, |

the subcategory D(S, V' + degen) C D(S x Bunj,) is preserved by Hg
D(S x Bun}) — D(S x X x Bun/,). For that, it suffices to show that ngn;‘
maps Dgegen (S X Bun/,) t0 Dgegen (S x X xBunj,) and D(Sx V') to D(Sx X xV’).
The former follows immediately from Proposition 7.5. To prove the latter,
it suffices to observe that in the diagram
/ BB, g_{BuniL BB,

/
Bun;, «— — Bun,,,

the subset (ZBunil)_l(V’) is contained in (EBHHZ)_I(V’).

Now we will prove the exactness of Hg on ]S(S x Bun,,). Since the functor
Hg : D(S x Bun,,) — D(S x X x Bun,,) commutes with the Verdier duality, it
suffices to show that Hg is right-exact on D(S x Buny,).
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We have the following general assertion: Let

GIL’GZ

| . |

F/
¢, —— G
be a commutative diagram of functors between triangulated categories endowed

with t-structures. Suppose that the functors F, and F’ are exact, and the
functor Gy is right-exact (resp., left-exact, exact).

LEMMA 8.10. Under the above circumstances, G1 gives rise to a well-
defined functor -
G1 : C1/ker(F) — €} /ker(F"),

and the latter functor is right-exact (resp., left-ezact, exact).

Proof. The fact that the functor Gy : € /ker(F) — €| /ker(F’) is well-
defined is immediate. Let us assume that G4 is right-exact. To prove that
CTl is then also right-exact, we must show that for § € GISO, the projec-
tion to C}/ker(F’") of 72%(G1(8)) vanishes. This amounts to showing that

F' (17°(G1(8))) = 0. Since F is exact,
F' (17°(G1(8))) =770 (F' 0 G1(8)),

which, in turn, is isomorphic to 779 (G o F(8)). Since F is exact, F(8) € €5,
and since Gs is right-exact, Go o F(8) € €5=C, which is what we had to show.
O

We apply this lemma first to €; = D(S x Bun],), €] = D(S x X x Bun)),
Cy=D(SxQ), € =D(Sx X xQ), F,F/ =W, G, = H3™, and G, = HZ.

From Theorem 7.8 we know that Hg is right exact, which by Lemma 8.10
implies that ﬁgun:‘ . D(S x Bun;l) — D(S x X x Bun,) is right exact. Hence,
the corresponding functor I:I];Ulnn : D(S x Bun,) — D(S x X x Bun/,) is also
right-exact.

We apply Lemma 8.10 the second time to~(‘31 = D(S x Bun,), €] =

D(S x X x Bun,), G = D(S x Bun)), € = D(S x X x Bun,), F = 7%,
~Bun/,

F’ :7T?S<‘><X’ G1 ZHs, and G2 = HS’
We conclude that Hg is exact as a functor D(S x Bun,) — D(S x X x
Bun,,).

8.10. Verification of Property 2. We must show that if F; is a cuspidal
object of D(Bun‘i) with d > dy (cf. Lemma 8.2) and F3 € Dgegen(Buny,), then

Homp gy, )(F1,F2) = 0.
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First, from Lemma 8.2, we obtain that F; ~ 5 (y*(F1)). Therefore,

Hompgun, ) (F1, F2) = Homp gy (F1 |, Falu)-

Consider the natural map

(25) HomD(u)(H’ﬂu, Fa|lu) — Hompen w) (m*(F1)

U’aW*(HTQ)

We claim that this map is an injection. Indeed, the quotient stack U'/G,,
is fibration into projective spaces over U, and the required injectivity follows
from the fact the direct image of the constant sheaf from U’'/G,,, to U contains
the constant sheaf on U as a direct summand. Thus, it will be sufficient to
show that the right-hand side of (25) vanishes. Note that since 7*(F1)|y = 0,
we can rewrite (25) as

w)-

Hompe.n (Bun’,) (ﬂ-* (gl)’ W*(§2)) :
We will show that for any F, € D(V' + degen),
) (7 (F1),F3) = 0.

I{OHIDG’"" (Bun/,

By definition of D(V’ 4 degen), we must analyze two cases:

Case 1. F, € D(V'). In this case the above Hom vanishes, because

7*(F1)|v = 0, as was noticed before.

Case 2. FY € Dgegen(Buny,).

We know that F| := 7*(F1) is cuspidal, and from Theorem 6.4 (or rather
from its G,,-equivariant version) we obtain that

Hompe.n (Bunib)( ,la StIQ) = HomDGm (Qn)(W(Sﬂl)a W(Sr'é)) =0,

since it was assumed that W (3F}) = 0.

Appendix

A.1l.  We will present now a different way of deducing Conjecture 1.3
from Theorem 2.2. This argument is due to A. Braverman.

By induction, we assume Conjecture 1.3 for all integers n’ < n. It is
enough to show that Av%(F) vanishes for a perverse sheaf ¥ € D(Bun,),
where d is as in Conjecture 1.3. We know that Av%(F) is a perverse sheaf (by
Theorem 2.2) and that it is cuspidal, by Lemma 2.17.

Recall the functor AvE‘f, which is left and right adjoint to AV‘}E. Since

HomD(Bunn)(AVdE(?)a AVCElJ(St)) = HomD(Bunn)(AVEil(AVdE (?))7 :':F)a

we obtain that it is enough to show that the functor Avg‘f annihilates every
cuspidal perverse sheaf.
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The stack Bun,, admits a natural automorphism, which sends a bundle
to its dual. This automorphism transforms the functor AvE‘f to Av%,.. Since
E* is irreducible if and only if E is, we deduce that it is enough to show that
Av4(F) = 0, where F is both perverse and cuspidal.

By Lemma 2.3 and Theorem 2.2, the above vanishing is equivalent to a
weaker statement. Namely, it is sufficient to show that for a cuspidal perverse
sheaf 7, the Euler-Poincaré characteristic of the stalks of Av%(F) is zero.
Finally, by Lemma 2.4 we conclude that it is enough to show that the Euler-
Poincaré characteristics of the stalks of AvdEO(S~ ) vanish, where Ey is the trivial
local system of rank equal to that of E, and F € D(Bun,) is cuspidal and
perverse.

We will prove a stronger statement. Namely, we will show that the object
Av%, (F) vanishes, where Ey is a trivial local system of rank m, and d >
(29 —2) -n-m for every cuspidal object F € D(Buny,).

A.2. First, we express the functor AVdE0 in terms of the corresponding
averaging functor for the trivial 1-dimensional local system.

PRrROPOSITION A.3. Let a local system E be the direct sum £ = Fy & FEs.
Then, canonically:

AVE(F) = @ AVE o AVE (F),

where the direct sum is taken over all pairs (dyi,ds) with d; > 0, d; + ds = 0.

Proof. For two nonnegative integers dp,ds consider the stack
Modﬁ1 X Modﬁlf, where the fiber product is formed using the maps
Bun,,

h : Mod® — Bun, and h : Mod% — Bun,. In other words, this stack
classifies successive extensions M C M’ C M”, where M’ /M is of length d; and
M” /M is of length dy. There is a natural projection tq, 4, : Mod® x Mod%

Bun,,
— Mod?, where d = dy + do.
We have:
L)~ B te (st (LR RS (LE)).
(di1,d2)
Indeed, the isomorphism is evident over the open substack Modz, and it ex-

tends to the entire Mod?, since the maps tg, .d, are small.
By definition, this implies the required property of the functor AVdE. O

The same proof shows that the functors AvdEl1 and AvdE22 mutually com-
mute.

Let Av?, with the subscript omitted, denote the averaging functor with
respect to the trivial 1-dimensional local system. Note that for the trivial
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1-dimensional local system, Laumon’s sheaf on Cohg is the constant sheaf.
Therefore, the functor Av? is just

(26) F s hio h'(F)[nd).
From Proposition A.3 we obtain that

AVL(F) ~ @ AvP o 0 Avi(F),
d

where the direct sum is taken over the set of m-tuples of nonnegative integers
d=(dy,...,dy) withdy +---+dp, =d. If d > (29 — 2) - m - n, then for every
such d at least one d; satisfies d; > (29 — 2) - n. Hence, we are reduced to
showing the following;:

THEOREM A.4. If F € D(Buny,) is cuspidal, then AvH(F) = 0 for d >
(29 —2) - n.

This theorem is a geometric analog of the classical statement that the L-
function of a cuspidal automorphic representation of GL,, over a function field
is a polynomial. The proof will be a geometrization of the Jacquet-Godement
proof of the above classical fact, in the spirit of how the functional equation is
established for geometric Eisenstein series in [3, §7.3].

A.5. The starting point is the following observation, due to V. Drinfeld
and proved in [3, §7.3]: Let Y be a stack and &1, €y two vector bundles on
it, and p : & — €2 a map between them as coherent sheaves. Let K, be the
kernel of p, considered as a group-scheme over Y and ¢ be its projection onto Y.
Consider the object X, of D(Y) equal to ¢y(Q, ) [dim. rel.(€1,Y)], where Qg
denotes the constant sheaf on K. Let p : & — &, denote the dual map, and
consider also the object Kj := ¢ (@Kﬁ)[dim. rel.(€2,Y)]. We have:

LEMMA A.6. There is a canonical isomorphism X, ~ K.

We will apply this lemma in the following situation. Let F be a cusp-
idal object of D(Bun,) supported on a connected component Bungl. As in
Section 8.1, we can assume that F is the extension by zero from an open sub-
stack of finite type U’ C Bunf;. Let U be a scheme of finite type, which

maps smoothly to Bunfl ~4. moreover, we can assume that U’ was chosen large

enough so that the image of h : U x Mod? — Bun? is contained in U’. We

Bun,,
shall show that Av?(F)|yy vanishes.

We set the base Y to be U x U’. To define &; and €5 we pick an arbitrary
point y € X and let i be a large enough integer so that Ext*(M, M'(i-y)) = 0,
whenever (M, M') € Bun,, X Bun,, is in the image of U x U’. We set &; (resp.,
&2) to be the vector bundle, whose fiber at a point of U x U’ mapping to a
point (M, M) as above is Hom(M, M/ (7 - y)) (resp., Hom(M, M'(i - y)/M)).
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The group-scheme K, has as its fiber over (M,M’) the vector space
Hom(M,M’). By Serre’s duality, the fiber of Kj; is Hom(M',M ® Q). Let

o
K, (resp., K;) be the open subscheme corresponding to the condition that
the map of sheaves M — M’ (resp., M' — M ® Q) is injective. Note that

if d = deg(M') — deg(M) > (29 — 2) - n, then Io(ﬁ is empty. Let JOCP be
gog(@;( )[dim. rel.(€1,Y)] (resp., K = 90!(@;{ )[dim. rel.(E2,Y)]). Finally, let

[} [¢]
X, (resp., K5) denote the cone of the natural arrow X, — X, (resp., K — Kp).
Let us denote by g, ¢’ the projections from U x U’ to U and U’, respectively.

Consider the two functors D(U’) — D~ (U) defined by

F (g () @ K,) and q(¢"(F) @ K,).

Here D™ (U) denotes the derived category of sheaves, bounded from above, on
U, which appears due to the fact that the map ¢ is not representable. Note,
however, that because of (26),

a(q*(F) @ K,) ~ Avi(F)]o.

Taking into account Lemma A.6, we have reduced Theorem A.4 to the
fact that the functors

F o q(q"(9) © %K) and F — q1(q(F) © K)

annihilate cuspidal objects. We will prove it in the case of X7, as the other
assertion is completely analogous.

A.7. Let K, denote the complement to [c;' p in K. By definition, it can
be decomposed into the union of n locally closed substacks, where the k-th
substack, classifies the data of a pair of points (u,u’) € U x U’ and a map
between the corresponding sheaves M — M, which is of generic rank k, with
k running from 0 to n — 1. Each such substack admits a further decomposi-
tion into locally closed substacks according to the length of the torsion of the
quotient M’ /M.

It is enough to show that the correspondence D(U’) — D™ (U) defined
by the constant sheaf on each of these locally closed substacks annihilates
F € D(U’), provided that F is cuspidal.

Let us consider separately the cases when £k = 0 and when £ > 0. In
the former case, the corresponding (closed) substack of K is the zero-section,
i.e., the product U x U’. Thus, we must show that H.(U',F) = 0, when JF is
cuspidal. In other words, we must show that Homp (5, Q) = 0. However,
this follows from Section 8.10: with no restriction of generality we may assume
that d’ > dy, and the object @Bunzl clearly belongs to Dgegen(Buny,).
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Now let us suppose that k£ > 0, and consider the stack

. n Q n
7 = Fln—k,k X MOdk X Flk,n—k?
Buny, Buny,

where we have used the map (h x h) : Mod} — Bung x Buny to define the
fiber product. By definition, a point of Z contains the data of

0—=M,_p > M — M, — 0 Mk‘—>M;€, 0—>M;€—>M/—>M%_k,

where M,,_j, M, _, are vector bundles of rank n—k, My, M}, are vector bundles
of rank k, and the quotient M) /Mj, is of length a.

The stack Z maps to Bun,, x Bun,, when we remember the data of (M, M)
and note that the fiber product yZy, :=U x Z x U’is the required locally

Bun,, Bun,
closed substack of K. By taking the constant sheaf on yZy, we obtain a

functor D(U’) — D~ (U), and we have to show that this functor annihilates
every cuspidal object F € D(U’). However, this follows by base change from
the following diagram:

UZU’ E— Flszk x U —— U
Bun,,
Bun,, Buny
n
U x Fl_jp
Bun,,
U.

Indeed, the functor D(U’) — D~ (Buny) corresponding to the upper-right cor-
ner of the above diagram annihilates cuspidal objects, by the definition of the

constant term functor CT}, _,, because the vertical arrow FI? ,_, x U’ —
’ ’ Bun,

Bunyg, appearing in the diagram, factors as

dk,n—k
Fly g X U "5 Buny, x Bun,,_;, — Buny, .

un,,
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