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The space of embedded minimal surfaces

of fixed genus in a 3-manifold IV;
Locally simply connected

By Tobias H. Colding and William P. Minicozzi II*

0. Introduction

This paper is the fourth in a series where we describe the space of all
embedded minimal surfaces of fixed genus in a fixed (but arbitrary) closed 3-
manifold. The key is to understand the structure of an embedded minimal disk
in a ball in R3. This was undertaken in [CM3], [CM4] and the global version
of it will be completed here; see the discussion around Figure 12 for the local
case and [CM15] for some more details.

Our main results are Theorem 0.1 (the lamination theorem) and Theorem
0.2 (the one-sided curvature estimate). The lamination theorem is stated in
the global case where the lamination is, in fact, a foliation. The first four
papers of this series show that every embedded minimal disk is either a graph
of a function or is a double spiral staircase where each staircase is a multi-
valued graph. This is done by showing that if the curvature is large at some
point (and hence the surface is not a graph), then it is a double spiral staircase
like the helicoid. To prove that such a disk is a double spiral staircase, we
showed in the first three papers of the series that it is built out of N -valued
graphs where N is a fixed number. In this paper we will deal with how the
multi-valued graphs fit together and, in particular, prove regularity of the set
of points of large curvature – the axis of the double spiral staircase.

The first theorem is the global version of the statement that every embed-
ded minimal disk is a double spiral staircase.

Theorem 0.1 (see Figure 1). Let Σi ⊂ BRi
= BRi

(0) ⊂ R3 be a se-
quence of embedded minimal disks with ∂Σi ⊂ ∂BRi

where Ri → ∞. If

sup
B1∩Σi

|A|2 → ∞ ,
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then there exists a subsequence, Σj , and a Lipschitz curve S : R → R3 such
that after a rotation of R3:

(1) x3(S(t)) = t. (That is, S is a graph over the x3-axis.)

(2) Each Σj consists of exactly two multi -valued graphs away from S (which
spiral together).

(3) For each 1 > α > 0, Σj \ S converges in the Cα-topology to the foliation,
F = {x3 = t}t, of R3.

(4) supBr(S(t))∩Σj
|A|2 → ∞ as j → ∞ for all r > 0, t ∈ R. (The curvatures

blow up along S.)

One half of Σ. The other half.
S

Figure 1: Theorem 0.1 — the singular set, S, and the two multi-valued graphs.

In (2) and (3) that Σj \ S are multi-valued graphs and converge to F
means that, for each compact subset K ⊂ R3\S and j sufficiently large, K∩Σj

consists of multi-valued graphs over (part of) {x3 = 0} and K ∩Σj → K ∩ F .
This theorem (like many of the results below) is modeled by the helicoid

and its rescalings. The helicoid is the minimal surface Σ2 in R3 parametrized
by

(s cos t, s sin t,−t) where s, t ∈ R .

We have chosen to normalize so that the helicoid spirals down as we move
counter-clockwise. Take a sequence Σi = ai Σ of rescaled helicoids where
ai → 0. Since the helicoid has cubic volume growth, the density of the rescaled
helicoids is unbounded as i → ∞. The curvature is blowing up along the ver-
tical axis. The sequence converges (away from the vertical axis) to a foliation
by flat parallel planes. The singular set S (the vertical axis) then consists of
removable singularities.

The second main theorem asserts that every embedded minimal disk lying
above a plane, and coming close to the plane near the origin, is a graph.
Precisely this is the following:
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Theorem 0.2 (see Figure 2). There exists ε > 0, so that if

Σ ⊂ B2r0 ∩ {x3 > 0} ⊂ R3

is an embedded minimal disk with ∂Σ ⊂ ∂B2 r0 , then for all components Σ′ of
Br0 ∩ Σ which intersect Bεr0 ,

sup
Σ′

|AΣ|2 ≤ r−2
0 .(0.3)

By the minimal surface equation and the fact that Σ′ has points close to a
plane, it is not hard to see that, for ε > 0 sufficiently small, (0.3) is equivalent
to the statement that Σ′ is a graph over the plane {x3 = 0}.

An embedded minimal surface Σ which is as in Theorem 0.2 is said to
satisfy the (ε, r0)-effective one-sided Reifenberg condition; cf. Appendix A. We
will often refer to Theorem 0.2 as the one-sided curvature estimate since it
gives a curvature estimate for disks on one side of a plane.

Σ

Bεr0

Br0

B2r0

x3 = 0

Figure 2: Theorem 0.2 — the one-sided curvature estimate for an embedded
minimal disk Σ in a half-space with ∂Σ ⊂ ∂B2r0 : The components of Br0 ∩ Σ
intersecting Bεr0 are graphs.

x3

x1

x2

Figure 3: The catenoid given by re-
volving x1 = cosh x3 around the x3-
axis.

Rescaled catenoid

x3 = 0

Figure 4: Rescaling the catenoid
shows that simply connectedness is
needed in the one-sided curvature
estimate.
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Note that the assumption in Theorem 0.2 that Σ is simply connected is
crucial as can be seen from the example of a rescaled catenoid. The catenoid
(see Figure 3) is the minimal surface in R3 parametrized by

(cosh s cos t, cosh s sin t, s) where s, t ∈ R .

Under rescalings the catenoid converges (with multiplicity two) to the flat
plane; see Figure 4. Likewise, by considering the universal cover of the
catenoid, one sees that being embedded, and not just immersed, is needed in
Theorem 0.2. The following corollary is an almost immediate consequence of
Theorem 0.2:

Corollary 0.4 (see Figure 5). There exist c > 1, ε > 0 so that the
following holds:

Let Σ1 and Σ2 ⊂ Bcr0 ⊂ R3 be disjoint embedded minimal surfaces with
∂Σi ⊂ ∂Bcr0 and Bε r0 ∩Σi �= ∅. If Σ1 is a disk, then for all components Σ′

1 of
Br0 ∩ Σ1 which intersect Bε r0

sup
Σ′

1

|A|2 ≤ r−2
0 .(0.5)

graph

graph

Figure 5: Corollary 0.4: Two sufficiently close components of an embedded
minimal disk must each be a graph.

To explain how these theorems are proved by the results of [CM3]–[CM5]
and [CM7], we will need some notation for multi-valued graphs. Let Dr be
the disk in the plane centered at the origin and of radius r and let P be the
universal cover of the punctured plane C \ {0} with global polar coordinates
(ρ, θ) so ρ > 0 and θ ∈ R. Given 0 ≤ r ≤ s and θ1 ≤ θ2, define the “rectangle”
Sθ1,θ2

r,s ⊂ P by

Sθ1,θ2
r,s = {(ρ, θ) | r ≤ ρ ≤ s , θ1 ≤ θ ≤ θ2} .

An N -valued graph of a function u on the annulus Ds \ Dr is a single-valued
graph over

S−Nπ,Nπ
r,s = {(ρ, θ) | r ≤ ρ ≤ s , |θ| ≤ N π} .
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(Σθ1,θ2
r,s will denote the subgraph of Σ over the rectangle Sθ1,θ2

r,s ). The multi-
valued graphs to be considered will never close up; in fact they will all be
embedded. Note that embedded means that the separation never vanishes.
Here the separation (see Figure 6) is the function given by

w(ρ, θ) = u(ρ, θ + 2π) − u(ρ, θ) .

If Σ is the helicoid (see Figure 7), then

Σ \ x3 − axis = Σ1 ∪ Σ2 ,

where Σ1, Σ2 are ∞-valued graphs and Σ1 is the graph of the function u1(ρ, θ)
= −θ and Σ2 is the graph of the function u2(ρ, θ) = −θ +π. In either case the
separation w = −2 π. A multi-valued minimal graph is a multi-valued graph
of a function u satisfying the minimal surface equation.

x3-axis

u(ρ, θ)

w

u(ρ, θ + 2π)

Figure 6: The separation of a multi-valued graph. (Here the multi-valued
graph is shown with negative separation.)

x3-axis

One half rotation

Figure 7: The helicoid is obtained by gluing together two ∞-valued graphs
along a line. The two multi-valued graphs are given in polar coordinates by
u1(ρ, θ) = −θ and u2(ρ, θ) = −θ + π. In either case w(ρ, θ) = −2 π.
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In this paper, as in [CM7], we have normalized so that the embedded multi-
valued graphs have negative separation. We can achieve this after possibly
reflecting in a plane.

The proof of Theorem 0.1 has the following three main steps; see Figure 8:

A. Fix an integer N (the “large curvature” in what follows will depend on
N). If an embedded minimal disk Σ is not a graph (or equivalently if the
curvature is large at some point), then it contains an N -valued minimal
graph which initially is shown to exist on the scale of 1/ max |A|. That is,
the N -valued graph is initially shown to be defined on an annulus with
both inner and outer radii inversely proportional to max |A|.

B. Such a potentially small N -valued graph sitting inside Σ can then be
seen to extend as an N -valued graph inside Σ almost all the way to the
boundary. That is, the small N -valued graph can be extended to an N -
valued graph defined on an annulus where the outer radius of the annulus
is proportional to R. Here R is the radius of the ball in R3 containing
the boundary of Σ.

C. The N -valued graph not only extends horizontally (i.e., tangent to the
initial sheets) but also vertically (i.e., transversally to the sheets). That
is, once there are N sheets there are many more and, in fact, the disk Σ
consists of two multi-valued graphs glued together along an axis.

A was proved in [CM4], B was proved in [CM3], and C will be proved in
this paper together with the regularity of the set of points with large curvature
— the axis of the double spiral staircase.

Using [CM3], we showed in [CM4] that an embedded minimal disk in a
ball in R3 with large curvature at a point contains an almost flat multi-valued
graph nearby. Namely, we showed:

Theorem 0.6 (Theorem 0.2 of [CM4]. See A and B in Figure 8). Given
N ∈ Z+ and ε > 0, there exist C1 and C2 > 0 so that the following holds:

Let 0 ∈ Σ2 ⊂ BR ⊂ R3 be an embedded minimal disk with ∂Σ ⊂ ∂BR. If
for some R > r0 > 0,

max
Br0∩Σ

|A|2 ≥ 4 C2
1 r−2

0 ,

then there exists (after a rotation of R3) an N -valued graph Σg over DR/C2
\

D2r0 with gradient ≤ ε and contained in Σ ∩ {x2
3 ≤ ε2 (x2

1 + x2
2)}.

An important consequence of Theorem 0.6 is (see Theorem 5.8 of [CM4]):
Let Σi ⊂ B2R be a sequence of embedded minimal disks with ∂Σi ⊂ ∂B2R.

Clearly (after possibly going to a subsequence) either (1) or (2) occurs:

(1) supBR∩Σi
|A|2 ≤ C < ∞ for some constant C.

(2) supBR∩Σi
|A|2 → ∞.
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RB

A

C

B

Figure 8: Proving Theorem 0.1. A. Finding a small N -valued graph in Σ.
B. Extending it in Σ to a large N -valued graph. C. Extending the number of
sheets. (A follows from [CM4] and B follows from [CM3].)

In (1) (by a standard argument), Bs(yi) is a graph for all yi ∈ BR ∩ Σi, where
s depends only on C. In (2) (by Theorem 5.8 of [CM4]) if yi ∈ BR ∩ Σi with

|A|2(yi) → ∞ ,

then we can (after passing to a subsequence) assume that yi → y, each Σi

contains a 2-valued graph Σd,i over DR/C2
(y) \ Dεi

(y) with εi → 0, and Σd,i

converges to a graph y ∈ Σ∞ over DR/C2
(y). In either case in the limit there

is a smooth minimal graph through each point in the support.
The multi-valued graphs given by Theorem 0.6 should be thought of as

the basic building blocks for an embedded minimal disk. In fact, using a
standard blow up argument, we showed in [CM4] (Corollary 4.14 combined
with Proposition 4.15 there) that Theorem 0.6 was a consequence of the next
theorem. This next theorem will be used to construct the actual building
blocks starting off on the smallest possible scale:

Theorem 0.7 ([CM4]). Given N ∈ Z+ and ε > 0, there exist C1, C2,

C3 > 0 so that the following holds:
Let 0 ∈ Σ2 ⊂ BR ⊂ R3 be an embedded minimal disk with ∂Σ ⊂ ∂BR. If

for some r0 with R > r0 > 0,

sup
Br0∩Σ

|A|2 ≤ 4 |A|2(0) = 4C2
1 r−2

0 ,

then there exists (after a rotation) an N -valued graph

Σg ⊂ Σ ∩ {x2
3 ≤ ε2 (x2

1 + x2
2)}

over DR/C2
\ Dr0 with gradient ≤ ε and separation ≥ C3 r0 over ∂Dr0.

It will be important for the application of Theorem 0.7 here that the initial
separation of the sheets is proportional to the initial scale that the graph starts
off on.
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Theorems 0.1 and 0.2 deal with how the building blocks fit together. A
consequence of Theorem 0.1 is that if an embedded minimal disk starts to
spiral very tightly, then it can unwind only very slowly. That is, in a whole
extrinsic tubular neighborhood it continues to spiral tightly and fills up almost
the entire space.

Let us also briefly outline the proof of the one-sided curvature estimate,
i.e., Theorem 0.2. Suppose that Σ is an embedded minimal disk in the half-
space {x3 > 0}. We prove the curvature estimate by contradiction; so suppose
that Σ has low points with large curvature. Starting at such a point, we
decompose (see Corollary III.1.3) Σ into disjoint multi-valued graphs using
the existence of nearby points with large curvature (see Proposition I.0.11),
a blow up argument, and [CM3], [CM4]. The key point is then to show (see
Proposition III.2.2 and Figure 9) that we can in fact find such a decomposition
where the “next” multi-valued graph starts off a definite amount below where
the previous multi-valued graph started off. In fact, what we show is that
this definite amount is a fixed fraction of the distance between where the two
graphs started off. Iterating this eventually forces Σ to have points where
x3 < 0, which is the desired contradiction.

Cδ(0)

B Cs

2
0

y

Consecutive
blow up points.

Figure 9: Two consecutive blow up points satisfying (III.2.1).

To prove this key proposition (Proposition III.2.2) about where the next
multi-valued graph starts off, we use two decompositions and two kinds of
blow up points. The first decomposition which is Corollary III.1.3 uses the
more standard blow up points given by (III.1.1). These are pairs (y, s) of a
point y ∈ Σ and a radius s > 0 such that

sup
B8s(y)

|A|2 ≤ 4|A|2(y) = 4C2
1s−2 .

The point about such a pair (y, s) is that by [CM3], [CM4] (and an argument
in Part II which allows us replace extrinsic balls by intrinsic ones), Σ contains
a multi-valued graph near y starting off on the scale s. (This is assuming
that C1 is a sufficiently large constant given by [CM3], [CM4].) The second
kind of blow up points are the ones satisfying (III.2.1). Basically (III.2.1) is
(III.1.1) (except for a technical issue) where 8 is replaced by some really large
constant C. The point will then be that we can find blow up points satisfying
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(III.2.1) so that the distance between them is proportional to the sum of the
scales. Moreover, between consecutive blow up points satisfying (III.2.1), we
can find a bunch of blow up points satisfying (III.1.1); see Figure 10. The
advantage is now that if we look between blow up points satisfying (III.2.1),
then the height of the multi-valued graph given by such a pair grows like a
small power of the distance whereas the separation between the sheets in a
multi-valued graph given by (III.1.1) decays like a small power of the distance;
see Figure 11. Now since the number of blow up points satisfying (III.1.1)
(between two consecutive blow up points satisfying (III.2.1)) grows almost
linearly, even though the height of the graph coming from the blow up point
satisfying (III.2.1) could move up (and thus work against us), the sum of the
separations of the graphs coming from the points satisfying (III.1.1) dominates
the other term. Thus the next blow up point satisfying (III.2.1) (which lies
below all the other graphs) is forced to be a definite amount lower than the
previous blow up point satisfying (III.2.1).

Blow up point satisfying (III.2.1).

Blow up points satisfying (III.1.1).

Blow up point satisfying (III.2.1).

Figure 10: Between two consecutive blow up points satisfying (III.2.1) there
are a bunch of blow up points satisfying (III.1.1).

Blow up point satisfying (III.2.1).
The height of its multi-valued
graph could grow.

heightBlow up point satisfying (III.1.1).
The separation of its multi-valued
graph could decay sublinearly.

Blow up point satisfying (III.2.1).

Figure 11: Measuring height. Blow up points and corresponding multi-valued
graphs.
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Σ+
1

x3-axis

Σ+
2

x3 = 0

Σ−
2 Σ−

1

Figure 12: A schematic picture of the limit in [CM15] which is not smooth and
not proper (the dotted x3-axis is part of the limit). The limit contains four
multi-valued graphs joined at the x3-axis; Σ+

1 , Σ+
2 above the plane x3 = 0 and

Σ−
1 , Σ−

2 below the plane. Each of the four spirals into the plane.

Finally, we discuss the differences between the so-called local and global
cases. The local case is where we have a sequence of embedded minimal disks
in a ball of fixed radius in R3 - the global case (Theorem 0.1) is where the
disks are in a sequence of expanding balls with radii tending to infinity. The
main difference between these cases is that in the local case we can get limits
with singularities. In the global case this does not happen because any limit is
a foliation by flat parallel planes (if the curvatures of the sequence are blowing
up). However, in both the local and global cases, we always get a double spiral
staircase.

Recall that a surface Σ ⊂ R3 is said to be properly embedded if it is
embedded and the intersection of Σ with any compact subset of R3 is compact.
We say that a lamination or foliation is proper if each leaf is proper.

To illustrate the key issue for the failure of properness, suppose that Σi ⊂
BRi

is a sequence of minimal disks with ∂Σi ⊂ ∂BRi
and |A|2(0) → ∞ as

i → ∞. In the global case, where Ri → ∞, Theorem 0.1 gives a subsequence
of the Σi converging off of a Lipschitz curve to a foliation by parallel planes.
In particular, the limit is a (smooth) foliation which is proper. However, we
showed in [CM15] that smoothness and properness of the limit can fail in the
local case; see Figure 12.

In either the local or global case, we get a sequence of 2-valued graphs
which converges to a minimal graph Σ0 through 0 (this graph is a plane in the
global case). Furthermore, by the one-sided curvature estimate (see Corollary
I.1.9), the intersection of Σi with a low cone about Σ0 consists of multi-valued
graphs for i large. There are now two possibilities:

• The multi-valued graphs in this low cone close up in the limit.

• The limits of these multi-valued graphs spiral infinitely into Σ0.
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In the first case, where properness holds, the sequence converges to a foliation
in a neighborhood of 0. In the second case, where properness fails, the sequence
converges to a lamination away from 0 but cannot be extended smoothly to
any neighborhood of 0. The proof of properness in the global case is given in
Lemma I.1.10 below.

Let x1, x2, x3 be the standard coordinates on R3 and Π : R3 → R2 orthog-
onal projection to {x3 = 0}. For y ∈ S ⊂ Σ ⊂ R3 and s > 0, the extrinsic and
intrinsic balls are Bs(y) and Bs(y), respectively, and Σy,s is the component of
Bs(y)∩Σ containing y. Ds denotes the disk Bs(0)∩{x3 = 0}. Also, KΣ is the
sectional curvature of a smooth compact surface Σ and when Σ is immersed
AΣ will be its second fundamental form. When Σ is oriented, nΣ is the unit
normal.

The reader may find it useful also to look at the survey [CM13] and the
expository article [CM14] for an outline of our results, and their proofs, about
embedded minimal disks and how these results fit together. The article [CM14]
is the best to start with.

This paper completes the results announced in [CM11] and [CM12].

Since the announcements of our results, a number of interesting theorems
have been proved using our Theorems 0.1 and 0.2. For instance, in [CM10],
using Theorem 0.2, we gave an alternative proof of the so-called generalized
Nitsche conjecture originally proved by P. Collin by very different arguments;
cf. also [Ro]. In [CM8], using Theorem 0.2 and [CM5], we proved that any
embedded minimal annulus in a ball (with boundary in the boundary of the
ball and) with a small neck can be decomposed by a simple closed geodesic into
two graphical sub–annuli. Moreover, we gave a sharp bound for the length of
this closed geodesic in terms of the separation (or height) between the graphical
sub–annuli. This serves to illustrate our “pair of pants” decomposition from
[CM6] in the special case where the embedded minimal planar domain is an
annulus.

Using Theorems 0.1, 0.2, W. Meeks and H. Rosenberg proved that the
plane and helicoid are the only complete properly embedded simply-connected
minimal surfaces in R3, [MeRo]. Recall that if we take a sequence of rescalings
of the helicoid, then the singular set S for the convergence is the vertical axis
perpendicular to the leaves of the foliation. In [Me1], W. Meeks used this
fact together with the uniqueness of the helicoid to prove that the singular set
S in Theorem 0.1 is always a straight line perpendicular to the foliation, cf.
also [Me2] for finer metric space structure. Very recently, W. Meeks and M.
Weber have constructed a local example (i.e., a sequence of embedded minimal
surfaces in a tubular neighborhood of a circle whose intersections with every
sufficiently small ball are disks) where S is a circle, [MeWe].

Recently, our results here played a key role in our proof of the Calabi-Yau
conjectures for embedded surfaces in [CM17]; cf. [JXa] and [Na]. The main
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result in [CM17] was a chord-arc bound for possibly non-compact embedded
minimal disks, relating the extrinsic and intrinsic distances. This chord-arc
bound implies that a complete embedded minimal disk in R3 is properly em-
bedded. As an immediate consequence, we get intrinsic versions of all of the
results of this paper. See [CM17] for more details and more general results.

In the case where Σ has infinite topology (e.g., when Σ is one of the
Riemann examples), a number of interesting results have been obtained relying
on our results. This is an area of much current research, see [CM6], the work of
Meeks, J. Perez and A. Ros, [MePRs1], [MePRs2], and [MePRs3], the survey
[MeP] and references therein.

Part I. The proof of Theorem 0.1
assuming Theorem 0.2 and short curves

In this part we will show how Theorem 0.1 follows from Theorem 0.2, the
results about existence of multi-valued graphs from [CM3], [CM4] which were
recalled in the introduction, Corollary III.3.5 of [CM5], and the results about
properness of embedded disks from [CM7] (once we see that the conditions in
corollary 0.7 of [CM7] are satisfied). The remaining parts of this paper are
devoted to showing Theorem 0.2 (Part II.2) and that Corollary 0.7 of [CM7]
applies (Part IV; see, in particular, Theorem I.0.10 below).

We will use several times that given α > 0, Proposition II.2.12 of [CM3]
gives a constant Ng so that if u satisfies the minimal surface equation on

S
−Ng,2π+Ng

e−Ng , eNg R

with |∇u| ≤ 1, and w < 0, then

ρ | Hessu| + ρ |∇w|/|w| ≤ α on S0,2π
1,R .

Theorem 3.36 of [CM9] then yields

|∇u −∇u(1, 0)| ≤ Cα .

We can therefore assume (after rotating R3 so that ∇u(1, 0) = 0) that

|∇u| + ρ | Hessu| + 4 ρ |∇w|/|w| + ρ2 | Hessw|/|w| ≤ ε < 1/(2π) .(I.0.8)

The bound on | Hessw| follows from the other bounds and standard elliptic
theory. In what follows, we will assume that w < 0. (This normalizes the
graph of u to spiral downward; this can be achieved after possibly reflecting in
a plane.)

If Σ is an embedded graph of u over S−3π,N+3π
1/2,2R , then E is the region over

DR \ D1 between the top and bottom sheets of the concentric subgraph over
S−2π,N+2π

1,R (recall that, possibly after reflection, we can assume w < 0). That
is, when N is even, E is the set (see Figure 13) of all

{(r cos θ, r sin θ, t) | 1 ≤ r ≤ R and − 2π ≤ θ < 0}
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E is the shaded region.

Σ

Figure 13: The set E in (I.0.9).

σθ ⊂ Σ is a curve connecting
the two halves.

Σ2 = E ∩ Σ \ Σ1

Σ1

Figure 14: Theorem I.0.10 — the ex-
istence of the other half and the short
curves, σθ, connecting the two halves.

which satisfy

u(r, θ + (N + 2)π) < t < u(r, θ) .(I.0.9)

To apply Corollary 0.7 of [CM7] we need the following result (which will
be proved in Part IV) on existence of “the other half” of an embedded minimal
disk and short curves, σθ, connecting the two halves:

Theorem I.0.10 (See Figure 14). There exist C, R0, N0, ε > 0 so that
for N ≥ N0 the following holds:

Let Σ ⊂ B4R be an embedded minimal disk with ∂Σ ⊂ ∂B4R. If R ≥ R0

and Σ1 ⊂ Σ is a (multi -valued) graph of a function u1 with |∇u1| ≤ ε over

S−3π,N+3π
1/2,2R ,

then E ∩ Σ \ Σ1 is a graph of a function u2 over S0,N+2π
1,R with

u1(1, 2π) < u2(1, 0) < u1(1, 0) .

Moreover, for all 0 ≤ θ ≤ N + 2π, a curve

σθ ⊂ {x2
1 + x2

2 ≤ 1} ∩ Σ

with length ≤ C connects the image of u1 over (1, θ) with the image of u2 over
(1, θ).

The main example of the “two halves” of an embedded minimal disk and
short curves connecting them comes from the helicoid. Namely, let Σ be the
helicoid, i.e.,

Σ = {(ρ cos θ, ρ sin θ,−θ) | ρ, θ ∈ R} ,

then Σ \ {ρ = 0} consists of two ∞-valued graphs, Σ1 and Σ2, and the curves
σθ given by

Σ ∩ {x3 = −θ} ∪ {(− cos τ,− sin τ,−τ) | θ ≤ τ ≤ θ + π}
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Point with large
curvature in Σ0.

Σ1
ν

Σ0

Σ2

B4r0

Figure 15: Proposition I.0.11 — existence of nearby points with large curva-
ture.

are the short curves connecting the two halves. Theorem I.0.10 asserts that
this is the general picture.

We will use the following result from [CM5] to get nearby points with
large curvature (here, as before, Σy,s is the component of Bs(y) ∩ Σ
containing y):

Proposition I.0.11 (Corollary III.3.5 of [CM5]. See Figure 15). Given
C1, there exists C2 so that the following holds:

Let 0 ∈ Σ ⊂ B2C2 r0 be an embedded minimal disk. Suppose that

Σ1 and Σ2 ⊂ Σ ∩ {x2
3 ≤ (x2

1 + x2
2)}

are graphs of functions ui satisfying (I.0.8) on S−2π,2π
r0,C2r0

with

u1(r0, 2π) < u2(r0, 0) < u1(r0, 0) ,

and ν ⊂ ∂Σ0,2r0 is a curve from Σ1 to Σ2. Let Σ0 be the component of

Σ0,C2r0 \ (Σ1 ∪ Σ2 ∪ ν)

which does not contain Σ0,r0.
If either :

• ∂Σ ⊂ ∂B2C2 r0 , or

• Σ is stable and Σ0 does not intersect ∂Σ,

then

sup
x∈Σ0\B4r0

|x|2 |A|2(x) ≥ 4 C2
1 .(I.0.12)

Note that by the curvature estimate for stable surfaces, [Sc], [CM2], when
Σ is stable then the conclusion of Proposition I.0.11 is that no such surface
exists for C1, C2 sufficiently large.
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I.1. Regularity of the singular set

If δ > 0 and z ∈ R3, then we denote by Cδ(z) the (convex) cone with
vertex z, cone angle (π/2− arctan δ), and axis parallel to the x3-axis. That is
(see Figure 16),

Cδ(z) = {x ∈ R3 | (x3 − z3)2 ≥ δ2 ((x1 − z1)2 + (x2 − z2)2)} .(I.1.1)

Lemma I.1.2 (see Figure 16). Let 0 ∈ S ⊂ R3 be a closed set such that
for some δ > 0 and each z ∈ S, such an S ⊂ Cδ(z). If for all t ∈ x3(S) and
all ε > 0,

S ∩ {t < x3 < t + ε} �= ∅ ,

S ∩ {t − ε < x3 < t} �= ∅ ,

then S ∩ {x3 = t} consists of exactly one point St for all t ∈ R, and t → St is
a Lipschitz parametrization of S. In fact,

|t2 − t1| ≤ |St2 − St1 | ≤
√

1 + δ−2 |t2 − t1| .(I.1.3)

S Cδ(x)

x

Figure 16: It follows from the one-sided curvature estimate that the singular
set has the cone property and hence is a Lipschitz curve; see Lemma I.1.2.

Proof. First, by the cone property, it follows that S ∩ {x3 = t} consists of
at most one point for each t ∈ R. Assume that S ∩ {x3 = t0} = ∅ for some t0.
Since S ⊂ R3 is a nonempty closed set and

x3 : S ⊂ Cδ(0) → R

is proper, x3(S) ⊂ R is also closed (and nonempty). Let ts ∈ x3(S) be the
closest point in x3(S) to t0. The desired contradiction now easily follows since
either S ∩ {ts < x3 < t0} or S ∩ {t0 < x3 < ts} is nonempty by assumption.

It follows that t → St is a well-defined curve (from R to S). Moreover,
since

St2 ⊂ {x3 = t1 + (t2 − t1)} ∩ Cδ(St1) ⊂ B√
1+δ−2|t2−t1|(St1) ,

(I.1.3) follows.
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We will refer loosely to a set S as in Lemma I.1.2 as having the cone
property. Next we will see, by a very general compactness argument, that for
any sequence of surfaces in R3, after possibly going to a subsequence, then
there is a well defined notion of points where the second fundamental form of
the sequence blows up. The set of such points will be the S in Lemma I.1.2
below; we observe in Corollary I.1.9 below that S has the cone property.

Lemma I.1.4. Let Σi ⊂ BRi
with ∂Σi ⊂ ∂BRi

and Ri → ∞ be a sequence
of (smooth) compact surfaces. After passing to a subsequence, Σj , we may
assume that for each x ∈ R3:

• Either supBr(x)∩Σj
|A|2 → ∞ for all r > 0.

• Or supj supBr(x)∩Σj
|A|2 < ∞ for some r > 0.

Proof. For r > 0 and an integer n, define a sequence of functions on R3

by

Ai,r,n(x) = min{n, sup
Br(x)∩Σi

|A|2} ,(I.1.5)

where supBr(x)∩Σi
|A|2 = 0 if Br(x) ∩ Σi = ∅. Set

Di,r,n = lim
k→∞

2−k
2k−1∑
m=0

Ai,(1+m2−k)r,n ,(I.1.6)

with Di,r,n continuous and Ai,2r,n ≥ Di,r,n ≥ Ai,r,n. Let νi,r,n be the (bounded)
functionals,

νi,r,n(φ) =
∫

Bn

φDi,r,n for φ ∈ L2(R3) .(I.1.7)

By standard compactness for fixed r, n, after passing to a subsequence, we see
that νj,r,n → νr,n weakly. In fact (since the unit ball in L2(R3) has a countable
basis), by an easy diagonal argument after passing to a subsequence we may
assume that for all n, m ≥ 1 fixed

νj,2−m,n → ν2−m,n weakly .

Note that if x ∈ R3 and for all m, n with n ≥ |x| + 1 (identify B2−m(x) with
its characteristic function),

ν2−m,n(B2−m(x)) ≥ n Vol(B2−m) ,(I.1.8)

then for each fixed r > 0, we have

sup
Br(x)∩Σj

|A|2 → ∞ .

On the other hand, if for some n ≥ |x| + 1, m, (I.1.8) fails at x, then

sup
j

sup
Br(x)∩Σj

|A|2 < ∞ for r = 2−m−1 .
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To implement Lemma I.1.2 in the proof of Theorem 0.1, we will need the
following (direct) consequence of Theorem 0.2 with Σd playing the role of the
plane (and the maximum principle as in Appendix C):

Corollary I.1.9 (see Figure 17). There exists δ0 > 0 so that the fol-
lowing holds:

Let Σ ⊂ B2R be an embedded minimal disk with ∂Σ ⊂ ∂B2R. If Σ contains
a 2-valued graph Σd ⊂ {x2

3 ≤ δ2
0 (x2

1 + x2
2)} over DR \ Dr0 with gradient ≤ δ0,

then each component of

BR/2 ∩ Σ \ (Cδ0(0) ∪ B2r0)

is a multi -valued graph with gradient ≤ 1.

Σ′

Bs(y)
B2r0

Σd

Cδ(0)

Figure 17: Corollary I.1.9: With Σd playing the role of x3 = 0, by the one-sided
estimate, Σ consists of multi-valued graphs away from a cone.

Note that since Σ is compact and embedded, the multi-valued graphs given
by Corollary I.1.9 spiral through the cone. That is, if a graph did close up, then
the graph containing Σd would be forced to accumulate into it, contradicting
compactness.

Another result needed to apply Lemma I.1.2 is:

Lemma I.1.10 (see Figure 18). There exists c0 > 0 so that the following
holds:

Let Σi ⊂ BRi
be a sequence of embedded minimal disks with ∂Σi ⊂ ∂BRi

and Ri → ∞. If Σd,i ⊂ Σi is a sequence of 2-valued graphs over DRi/C \ Dεi

with εi → 0 and

Σd,i → {x3 = 0} \ {0} ,

then

sup
B1∩Σi∩{x3>c0}

|A|2 → ∞ .(I.1.11)
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Point with large
curvature in Σi.

x3 = c0

Σd,i

B1

Figure 18: Lemma I.1.10 — point with large curvature in Σi above the plane
x3 = c0 but near the center of the 2-valued graph Σd,i.

Nonproper multi-valued graph
in the limit of the Σi’s.

Limit of Σd,i.

Cδ(0)

Figure 19: If Lemma I.1.10 failed, then by Corollary I.1.9 the limit of the Σi’s
would contain a nonproper multi-valued graph contradicting Corollary 0.7 of
[CM7].

Proof. Suppose not (see Figure 19); assume that for each c0 > 0, there is
a sequence of embedded minimal disks Σi (and C1 depending on both c0 and
the sequence) with

sup
B1∩Σi∩{x3>c0}

|A|2 ≤ C1 < ∞(I.1.12)

and 2-valued graphs Σd,i ⊂ Σi over DRi/C \ Dεi
with εi → 0 and

Σd,i → {x3 = 0} \ {0} .

Increasing εi (yet still εi → 0) and replacing Ri by Si → ∞, we can assume

Σd,i ⊂ {x2
3 ≤ ε2

i (x2
1 + x2

2)}

is a 2-valued graph over D4 eNg Si
\D e−Ng εi/2 with gradient ≤ εi (the constant

Ng is given before (I.0.8)).
By Corollary I.1.9, each component of

B2 eNg Si
∩ Σi \ (Cδ0(0) ∪ B e−Ng εi

)
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is a graph. Hence, by the Harnack inequality, if α > 0 is sufficiently small and

qi ∈ BSi
∩ Σi \ (Cα(0) ∪ B2εi

) ,

then for i large Σi contains an (Ng +1)-valued graph over D eNg |qi|\D e−Ng |qi|/2

with
gradient ≤ ε < 1/(4π)

so that qi is in the image of {|θ| ≤ π} for this graph. Consequently, each
component of

BSi
∩ Σi \ (Cα(0) ∪ B2εi

)

is a multi-valued graph satisfying (I.0.8).
Fix h and � with 0 < h < α �. We get points

zi ∈ {x3 = h, x2
1 + y2

1 = �2} ∩ Σi

and multi-valued graphs Σ1,i with

zi ∈ Σ1,i ⊂ {x3 > 0} ∩ Σi

defined over S−3π,3π+Ni

�/2,Si/2 , with Ni → ∞, so that zi is in the image of S−π,π
�,� , and

so that Σ1,i spirals into {x3 = 0} (note that we have assumed that it spirals
down; we can argue similarly in the other case). In particular, Theorem I.0.10
applies, giving the other multi-valued graphs Σ2,i so that:

• Σ1,i and Σ2,i spiral together, and

• Σ2,i is the only part of Σi between the sheets of Σ1,i.

Moreover, Theorem I.0.10 also gives the short curves σθ,i connecting these. It
now follows from Corollary 0.7 of [CM7] that the separations of the graph Σ1,i

at zi go to 0. Since this holds for all such h and �, it follows that

Σi \ Cα(0) → F ,

where F is a foliation of R3 \ Cα(0) by minimal annuli (all graphs over part
of {x3 = 0}).

Theorem 0.7 gives 0 < C2 < ∞ so that, given r0 > 0, if yi ∈ Σi \ B3r0 , i

is large, and

|yi|2 |A|2(yi) > C2(I.1.13)

then there is a 2-valued graph Σyi

d,i ⊂ Σi \ BC3|yi| starting in

BC4|yi|(yi) ⊂ {x3 > C3 r0}

(by Theorem 0.7, Σyi

d,i starts in BC4|yi|(yi) where C4 = C4(C2) and, by Corollary
I.1.9, yi ∈ Cδ0/2(0)). Let C ′

2 = C ′
2(C2) > 1 be given by Proposition I.0.11 and

set r0 = 1/(4C ′
2).
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Choose hi, �i → 0 with

εi < �i < r0/4 ,

0 < hi < α �i ,

and let zi,Σ1,i,Σ2,i be as above. Since ∂Σi,zi,2r0 is a simple closed curve, it
must pass between the sheets of Σ1,i. Since Σ2,i is the only part of Σi between
the sheets of Σ1,i, we can connect Σ1,i and Σ2,i by curves νi ⊂ ∂Σi,zi,2r0 which
are above Σ1,i. We can now apply Proposition I.0.11 to get the points

yi ∈ B1/2(zi) ∩ Σi \ B2r0(zi) ⊂ B1/2+4�i
\ B3r0

as in (I.1.13).
To get the desired contradiction, observe that if c0 < C3r0, then the 2-

valued graphs Σyi

d,i given by (I.1.13) and Theorem 0.7, have

separation ≥ C5 = C5(C1) > 0

(since BC4|yi|(yi) ⊂ {x3 > C3 r0}). Namely, this separation is on a fixed scale
bounded away from zero even as Σyi

d,i extends out of Cα(0), contradicting
Σi \ Cα(0) → F . The lemma follows.

I.2. Proof of Theorem 0.1

Proof of Theorem 0.1. By Lemma I.1.4, after passing to a subsequence
(also denoted by Σi) we can assume that for each x ∈ R3 either

sup
Br(x)∩Σi

|A|2 → ∞ for all r > 0 ,(I.2.1)

or supi supBr(x)∩Σi
|A|2 < ∞ for some r > 0. Let S ⊂ R3 be the points where

(I.2.1) holds. By assumption B1 ∩ S �= ∅. Thus, after a possible translation
we may assume that 0 ∈ S and it follows easily from the definition that S is
closed. By Theorem 5.8 of [CM4] (and Bernstein’s theorem; see for instance
Theorem 1.16 of [CM1]), there exists a subsequence Σj and 2-valued graphs
Σd,j ⊂ Σj over DRj/C \ Dεj

with εj → 0 such that

Σd,j → {x3 = 0} \ {0}
(after possibly rotating R3). (This fixes the subsequence and the coordinate
system of R3.) Again by theorem 5.8 of [CM4] (and Bernstein’s theorem) for
each St ∈ S there are 2-valued graphs Σt

d,j ⊂ Σj over DRj/C(St)\Dεj
(St) with

εj → 0 such that
Σt

d,j → {x3 = t} \ {St} .

Hence, by Corollary I.1.9, S ⊂ Cδ(St). By Lemma I.1.10 (and scaling), for all
t ∈ x3(S) and all ε > 0, we have

S ∩ {t < x3 < t + ε} �= ∅ ,

S ∩ {t − ε < x3 < t} �= ∅ .
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It follows from Lemma I.1.2 that t → St is a Lipschitz curve and Σj \S → F\S
in the Cα-topology for all α < 1 (and with uniformly bounded curvatures on
compact subsets of R3 \ S; see also Appendix B).

Part II. “The other half”

Theorem I.0.10 will follow by first showing that if an embedded minimal
disk contains a multi-valued graph, then “between the sheets” of the graph
the surface is another multi-valued graph - “the other half”. Second, we show
an intrinsic version of Theorem 0.7 and, third, using this intrinsic version, we
construct in Part IV the short curves connecting the two halves.

II.1. “The other half” of an embedded minimal disk

We show first that any point between the sheets of a multi-valued graph
must connect to it within a fixed extrinsic ball:

Lemma II.1.1. There exist εs > 0 and Cs > 2 so that the following holds:
Let 0 ∈ Σ ⊂ BR be an embedded minimal disk with ∂Σ ⊂ ∂BR. Suppose

that
Σd ⊂ {x2

3 ≤ x2
1 + x2

2} ∩ Σ

is a 2-valued graph over D3r0 \Dr0 with gradient ≤ εs. If E0 is the region over
D2r0 \ Dr0 between the sheets of Σd, then

E0 ∩ Σ ⊂ Σ0,Cs r0 .

Proof. Fix εs > 0 small and Cs large to be chosen. If the lemma fails,
then there are disjoint components Σa and Σb of BCs r0 ∩ Σ with

Σd ⊂ Σa and y ∈ E0 ∩ Σb .

By the maximum principle, Σa and Σb are disks. Let η̃y be the vertical segment
(i.e., parallel to the x3-axis) through y connecting the sheets of Σd. Fix a
component ηy of η̃y \ Σ connecting Σb to Σ \ Σb. Let Ω be the component of
BCs r0 \ Σ containing ηy (so that ∂Σb and ηy are linked in Ω). [MeYa] gives
a stable disk Γ ⊂ Ω with ∂Γ = ∂Σb. By means of the linking, Γ intersects
ηy. The curvature estimates of [Sc], [CM2] (cf. Lemma I.0.9 of [CM3]) give
a constant Cs so that any component Γy of B10r0 ∩ Γ intersecting ηy is a
graph with bounded gradient over some plane; for εs small, this plane must
be almost horizontal. Hence, Γy is forced to “cut the axis” (i.e., intersect
the curve in Σd over ∂Dr0 connecting the top and bottom sheets), giving the
desired contradiction.
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In the next proposition Σ ⊂ B4R with ∂Σ ⊂ ∂B4R is an embedded minimal
surface and

Σ1 ⊂ {x2
3 ≤ x2

1 + x2
2} ∩ Σ

is an (N + 2)-valued graph of u1 over D2R \ Dr1 with |∇u1| ≤ ε and N ≥ 6.
Let E1 be the region over DR \D2 r1 between the top and bottom sheets of the
concentric (N + 1)-valued subgraph in Σ1. To be precise, E1 is the set of all

{(r cos θ, r sin θ, t) | 2r1 ≤ r ≤ R , (N − 1)π ≤ θ < (N + 1)π}
where r and θ satisfy

u1(r, θ) < t < u1(r, θ − 2Nπ) .(II.1.2)

Proposition II.1.3. There exist C0 > Cs and ε0 > 0 so that if Σ is a
disk as above with

R ≥ C0 r1 and ε0 ≥ ε ,

then E1 ∩ Σ \ Σ1 is an (oppositely oriented) N -valued graph Σ2.

Proof. Fix z ∈ Σ1 over ∂Dr1 . Since ∂Σz,2r1 is a simple closed curve, it
must pass between the sheets of Σ1 and hence through some other component
Σ2 of E1 ∩ Σ.

The version of the “estimate between the sheets” given in Theorem III.2.4
of [CM3] gives ε0 > 0 so that E1 ∩ Σ is locally graphical (i.e., if z ∈ E1 ∩ Σ,
then 〈nΣ(z), (0, 0, 1)〉 �= 0). It follows that each component of E1 ∩ Σ is an
N -valued graph.

Fix a component Ω of B4R \ Σ. We show next that Σ2 is the only other
component of E1 ∩ Σ (i.e., E1 ∩ Σ ⊂ Σ1 ∪ Σ2). If not, then there is a third
component Σ3 which is also an N -valued graph. An easy argument (using
orientations) shows that there must then be a fourth component Σ4 of E1 ∩Σ.
By the fact that each Σi is a multi-valued graph, it follows easily that we can
choose two of these four which cannot be connected in Ω ∩ E1; call these Σi1

and Σi2 . The rest of this argument uses these components to find a stable
Γ ⊂ Ω which has points of large curvature by Proposition I.0.11, contradicting
the curvature estimates from stability. First, we construct ∂Γ. Let σj ⊂ Σij

be the images of {θ = 0} from {x2
1 + x2

2 = 4r2
1} to ∂BR and set

yj = {x2
1 + x2

2 = 4r2
1} ∩ ∂σj .

By Lemma II.1.1, we can connect the points y1 and y2 by a curve
σ0 ⊂ BCsr1 ∩ Σ. By the maximum principle, each component of BR ∩ Σ is
a disk. Therefore, we can add a segment in ∂BR ∩ Σ to σ0 ∪ σ1 ∪ σ2 to get a
closed curve σ ⊂ Σ. A result of [MeYa] then gives a stable embedded minimal
disk Γ ⊂ Ω with ∂Γ = σ.

Now that we have Γ, we show that Proposition I.0.11 applies. Namely, let
(the disk) Γ2Cs r1(σ0) be the component of B2Cs r1 ∩ Γ containing σ0, so that
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∂Γ2Cs r1(σ0) contains a curve ν ⊂ ∂B2Cs r1 connecting σ1 to σ2. Since σ1 and σ2

are in the middle sheets of Σi1 and Σi2 (and Γ is stable), we get that Γ contains
two disjoint (N/2 − 1)-valued graphs Γ1 and Γ2 in E1 which spiral together
and ν connects these (note that E1∩Γ may contain many components; at least
two of these, say Γ1,Γ2, spiral together). Let Γ0 be the component of

ΓR/2(σ0) \ (ν ∪ Γ1 ∪ Γ2)

which does not contain Γ2Cs r1(σ0). It is easy to see that Γ0 ∩ ∂Γ = ∅; in fact,
if x ∈ Γ0, then

distΓ(x, ∂Γ) ≥ |x|/2 .

Therefore, for R/r1 sufficiently large, Proposition I.0.11 gives an interior point
of large curvature, contradicting the curvature estimate for stable surfaces. We
conclude that

E1 ∩ Σ ⊂ Σ1 ∪ Σ2 .

Finally, it follows easily that Σ2 is oppositely oriented.

The proof of Proposition II.1.3 can be simplified when Σ is in a slab. In
this case, [Sc], [CM2] and the gradient estimate (cf. Lemma I.0.9 of [CM3])
force Γ to spiral indefinitely if it leaves E1.

II.2. An intrinsic version of Theorem 0.7

We will first show a “chord-arc” type result (relating extrinsic and intrinsic
distances) assuming a curvature bound on an intrinsic ball.

Lemma II.2.1 (cf. Lemma III.1.3 in [CM5]). Given R0, there exists R1

so that the following holds:
If 0 ∈ Σ ⊂ BR1 is an embedded minimal surface with ∂Σ ⊂ ∂BR1 and

sup
BR1

|A|2 ≤ 4 ,

then
Σ0,R0 ⊂ BR1 .

Proof. Let Σ̃ be the universal cover of Σ and Π̃ : Σ̃ → Σ the covering
map. With the definition of δ-stable as in section 2 of [CM4], the argument of
[CM2] (i.e., curvature estimates for 1/2-stable surfaces) gives C > 10 so that
if BCR0/2(z̃) ⊂ Σ̃ is 1/2-stable and Π̃(z̃) = z, then

Π̃ : B5R0(z̃) → B5R0(z)

is one-to-one and B5R0(z) is a graph with

B4R0(z) ∩ ∂B5R0(z) = ∅ .
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Corollary 2.13 in [CM4] gives ε = ε(CR0) > 0 so that if |z1 − z2| < ε and
|A|2 ≤ 4 on (the disjoint balls) BCR0(zi), then each

BCR0/2(z̃i) ⊂ Σ̃

is 1/2-stable where Π̃(z̃i) = zi.
We claim that there exists n so that

Σ0,R0 ⊂ B(2n+1) CR0
.

Suppose not; we get a curve σ ⊂ Σ0,R0 ⊂ BR0 from 0 to ∂B(2n+1) CR0
. For

i = 1, . . . , n, fix points zi ∈ ∂B2i CR0 ∩ σ. It follows that the intrinsic balls
BCR0(zi):

• are disjoint;

• have centers in BR0 ⊂ R3;

• have |A|2 ≤ 4.

In particular, there exist i1 and i2 with

0 < |zi1 − zi2 | < C ′ R0 n−1/3 < ε ,

and, by Corollary 2.13 in [CM4], each BCR0/2(z̃ij
) ⊂ Σ̃ is 1/2-stable where

Π̃(z̃ij
) = zij

. By [CM2], each B5R0(zij
) is a graph with B4R0(zij

)∩∂B5R0(zij
) =

∅. In particular,
BR0 ∩ ∂B5R0(zij

) = ∅ .

This contradicts the fact that σ ⊂ BR0 connects zij
to ∂BCR0(zij

).

An immediate consequence of Lemma II.2.1, is that we can improve The-
orem 0.7 (and hence also, by an intrinsic blow-up argument, Theorem 0.6) by
observing that the multi-valued graph can actually be chosen to be intrinsically
nearby where the curvature is large (as opposed to extrinsically nearby):

Theorem II.2.2. Given N ∈ Z+ and ε > 0, there exist C1, C2, C3 > 0
so that the following holds:

Let 0 ∈ Σ2 ⊂ BR ⊂ R3 be an embedded minimal disk with ∂Σ ⊂ ∂BR. If
for some r0 with 0 < r0 < R,

sup
Br0

|A|2 ≤ 4 |A|2(0) = 4C2
1 r−2

0 ,

then there exists (after a rotation of R3) an N -valued graph

Σg ⊂ Σ ∩ {x2
3 ≤ ε2 (x2

1 + x2
2)}

over DR/C2
\Dr0 with gradient ≤ ε, separation ≥ C3 r0 over ∂Dr0 , and distΣ(0,Σg)

≤ 2 r0.
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Proof. By combining Theorems 0.4 and 0.6 of [CM4], we get C0, C2, C3 so
that if

sup
Σ0,r0

|A|2 ≤ 4 |A|2(0) = 4C2
0 r−2

0 ,

then we get (after a rotation) an N -valued graph Σg over DR/C2
\ Dr0 with

gradient ≤ ε,
Σg ⊂ Σ ∩ {x2

3 ≤ ε2 (x2
1 + x2

2)} ,

separation ≥ C3 r0 over ∂Dr0 , where Σy intersects Σ0,r0 . Namely, Theorem 0.4
of [CM4] gives an initial N -valued graph contained in Σ0,r0 and then Theorem
0.6 of [CM4] extends this out to ∂DR/C2

. Let C1 be the R1 from Lemma II.2.1
with R0 = C0. By rescaling, we can assume that

sup
BC1

|A|2 ≤ 4 |A|2(0) = 4 .

By Lemma II.2.1, we have that

Σ0,C0 ⊂ BC1 ,

and so we conclude that
sup
Σ0,C0

|A|2 ≤ 4 .

Theorems 0.4 and 0.6 of [CM4] now give the desired Σg.

A standard blowup argument gives points as in Theorem II.2.2 (with
C4 = 1 and s = r0):

Lemma II.2.3 (Lemma 5.1 of [CM4]).Given C1 and C4, if BC1C4(0) ⊂ Σ
is an immersed surface and

|A|2(0) ≥ 4 ,

then there exists BC4s(z) ⊂ BC1C4(0) with

sup
BC4s(z)

|A|2 ≤ 4 |A|2(z) = 4C2
1 s−2 .(II.2.4)

Proof. This follows as in Lemma 5.1 of [CM4], except we define F intrin-
sically on BC1C4(0) by

F = d2 |A|2

where d(x) = C1C4 − distΣ(x, 0) (so that F = 0 on ∂BC1C4(0) and F (0) ≥
4(C1C4)2). Let F (z) be the maximum of F and set s = C1/|A|(z). It follows
that

sup
Bd(z)/2(z)

|A|2 ≤ 4 |A|2(z)

and (using F (z) ≥ (C1C4)2) we get 2C4s ≤ d(z), giving (II.2.4).
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Part III. The stacking and the proof of Theorem 0.2

This part deals with how the multi-valued graphs given by [CM4] fit to-
gether. As mentioned in the introduction, a general embedded minimal disk
with large curvature at some point should be thought of as obtained by stacking
such graphs on top of each other.

III.1. Decomposing disks into multi-valued graphs

Fix N > 6 large and 1/10 > ε > 0 small. We will choose εg > 0 small
depending on ε and then let Ng = Ng(εg) be given by Proposition II.2.12 of
[CM3]. Below Σ will be an embedded minimal disk. Theorem II.2.2 gives
C1, C2, C3 (depending on εg, N , and Ng) so that if BR(y) ∩ ∂Σ = ∅ and the
pair (y, s) satisfies

sup
B8s(y)

|A|2 ≤ 4 |A|2(y) = 4C2
1 s−2 ,(III.1.1)

then (after a rotation) we get an (N+Ng+4)-valued graph Σ̃1 over D2 eNg R/C2
(p)\

D e−Ng s/2(p) (where p = (y1, y2, 0)) satisfying:

• gradient ≤ εg;

• separation ≥ C3 s over ∂Ds(p);

• distΣ(y, Σ̃1) ≤ 2s.

In particular, by Proposition II.2.12 of [CM3] and the version of the “estimate
between the sheets” given in Theorem III.2.4 of [CM3], we can choose εg =
εg(ε) > 0 so that

(1) The concentric (N+3)-valued subgraph Σ̂1 over DR/C2
(p)\Ds(p) satisfies

(I.0.8).

(2) Each component of Σ between the sheets of Σ̂1 (as in (II.1.2)) is an
(N + 2)-valued graph also satisfying (I.0.8).

In the remainder of this section, C1, C2, C3 will be fixed.
Let ε0, C0 be from Proposition II.1.3 and suppose that ε < ε0. If s <

R/(8C2C0) for such a pair (y, s), then Proposition II.1.3 applies. Let Ê and
E be the regions between the sheets of the concentric (N + 2)-valued and
(N + 1)-valued, respectively, subgraphs of Σ̂1; these are defined over

DR/C2
(p) \ Ds(p) .

By Proposition II.1.3 (and (2) above), we have that

Ê ∩ Σ \ Σ̂1
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is an (N + 1)-valued graph Σ̂2; similarly, E ∩ Σ \ Σ̂1 is an N -valued graph
Σ2 ⊂ Σ̂2. Let Σ1 ⊂ Σ̂1 be the concentric N -valued subgraph. Since ∂Σy,4s is
a simple closed curve, it must pass through E \ Σ1. Therefore, since Σ2 is the
only other part of Σ in E, we can connect Σ1 and Σ2 by curves ν+ and ν− with

ν± ⊂ ∂B4s(y) ∩ Σ

which are above and below E, respectively. This gives components Σ± of

Σy,R/(2C2) \ (Σ1 ∪ Σ2 ∪ ν±)

which do not contain Σy,s and which are above and below E, respectively
(these will be the Σ0’s for Proposition I.0.11).

Given a pair satisfying (III.1.1), Proposition I.0.11 and Lemma II.2.3 easily
give two nearby pairs (one above and one below):

Lemma III.1.2. There exists C4 > 1 so that the following holds:
Let 0 ∈ Σ ⊂ B3R be an embedded minimal disk with ∂Σ ⊂ ∂B3R. If the

pair (0, s) satisfies (III.1.1) and

s < min{R/(2C4), R/(8C2C0)} ,

then we get a pair (y−, s−) also satisfying (III.1.1) with y− ∈ Σ− and

Σy−,4s− ⊂ Σ0,C4s \ B4s .

Moreover, the N -valued graphs corresponding to (0, s) and (y−, s−) are disjoint.

Proof. Proposition I.0.11 gives C4 = C4(C1) and a point z ∈ Σ0,C4s/2 ∩
Σ− \ B8s with

|z|2 |A|2(z) ≥ 4(8C1)2 .

Since Ê ∩ Σ consists of the multi-valued graphs Σ̂1 and Σ̂2,

|x|2 |A|2(x) ≤ C on Ê ∩ BC4s ∩ Σ− \ B2s

for C small (C can be made arbitrarily small by choosing ε even smaller).
Hence, z /∈ Ê and so

B|z|/2(z) ∩ E = ∅ .

Applying Lemma II.2.3 on B|z|/2(z), we get a pair (y−, s−) satisfying (III.1.1)
with

B8s−(y−) ⊂ B|z|/2(z)

(⊂ Σ− \ E). It follows that

Σy−,4s− ⊂ Σ0,C4s \ B4s

and the corresponding N -valued graphs are disjoint.
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Let C4 be given by Lemma III.1.2. Iterating the construction of Lemma
III.1.2, we can decompose an embedded minimal disk into basic building blocks
ordered by heights (the points pi in Corollary III.1.3 are the projections to
{x3 = 0} of the blowup points yi):

Corollary III.1.3. There exist C5 > 1, C̃3 > 0 so that the following
holds:

Let Σ ⊂ BC5R be an embedded minimal disk with ∂Σ ⊂ ∂BC5R. If the pair
(y0, s0) satisfies (III.1.1) with

BC4(y0) ⊂ BR ,

then there exist pairs {(yi, si)} (for i > 0) satisfying (III.1.1) with yi ∈ Σ− and
corresponding (disjoint) N -valued graphs Σi ⊂ Σ of ui over D2R(0) \ D2si

(pi)
with gradient ≤ 2ε, separation ≥ C̃3 si over ∂D2si

(pi), and satisfying :

If i < j and both ui and uj are defined at p, then uj(p) < ui(p) ;(III.1.4)

Σyi+1,4si+1 ⊂ Σyi,C4si
\ B4si

(yi) and ∪i BC4si
(yi) \ BR �= ∅ .(III.1.5)

Proof. Starting with (y0, s0), we can apply Lemma III.1.2 repeatedly,
until the second part of (III.1.5) holds, to find bottom N -valued graphs giving
(III.1.4) and the first part of (III.1.5). Each N -valued graph is a graph over
some plane with gradient ≤ ε. Since Σ is embedded, we can take these to be
graphs over a fixed plane with gradient ≤ 2ε (after possibly taking C5 > 3C2+1
larger). Now C̃3 > 0 is just a fixed fraction of C3.

In the next lemma and corollary, Σ ⊂ BC5R is an embedded minimal disk
with ∂Σ ⊂ ∂BC5R.

Lemma III.1.6. If (y, s) satisfies (III.1.1) and Bs(y) ⊂ BR/2, then the
corresponding 2-valued graph over DR(0) \ Ds(p) (after a rotation) has

separation ≥ C3 (s/R)ε s/2 over ∂DR(0) .

Proof. By the discussion around (III.1.1), we see that the separation |w|
is ≥ C3 s at ∂Ds(p) and

|∇ log |w|| ≤ ε/ρp on D2R(p) \ Ds(p) .

Since Ds(p) ⊂ DR/2(0), integrating gives

min
∂DR(0)

|w| ≥ min
D2R(p)\DR/2(p)

|w| ≥ C3 (s/(2R))ε s .(III.1.7)

Corollary III.1.8. There exists C6 > 0 so that if the pair (0, s) satisfies
(III.1.1) and for some 4C2

4 s < � < R,

sup
B�(0)∩Σ−

|A|2 ≤ 5C2
1s−2 ,



LOCALLY SIMPLY CONNECTED 601

then there exists a pair (z, r) satisfying (III.1.1) with Σz,r ⊂ Σ0,�/2, so that
the separation at ∂D�(0) between the 2-valued graphs Σ0, Σz, corresponding to
(0, s), (z, r), is ≥ C6 (s/�)ε �, and Σz ⊂ Σ−.

Proof. Set (y0, s0) = (0, s) and let (yi, si), Σi, ui, and pi be given by
Corollary III.1.3. Let i0 be the first i with

BC4si0
(yi0) \ B�/2(0) �= ∅ .

Set (z, r) = (yi0−1, si0−1). It follows for i < i0 that Bsi
(yi) ⊂ B�/2(0) and

si ≥ s/2 since
sup

B�(0)∩Σ−

|A|2 ≤ 5C2
1s−2 .

Hence, by Lemma III.1.6 (as in Corollary III.1.3), we get that Σi has separation

≥ C̃3 (s/�)ε si/4

at ∂D�(0) for i < i0. By (III.1.5),

�/4 ≤
∑
i≤i0

C4si ≤ (1 + C4)
∑
i<i0

C4si .

Since the Σi’s are ordered by height, the separation at ∂D�(0) between Σ0 and
Σz = Σi0−1 is

≥
∑
i<i0

C̃3 (s/�)ε si/4 ≥ C6 (s/�)ε � .

III.2. Stacking multi-valued graphs and Theorem 0.2

If (y, s) satisfies (III.1.1), then Σy is the corresponding 2-valued graph
and Σy,− the portion of Σ below Σy. Given C > 8, we will consider such pairs
which in addition satisfy

sup
BCs(y)∩Σy,−

|A|2 ≤ 4 |A|2(y) = 4C2
1s−2 .(III.2.1)

Using Section III.1, we show next that a pair (0, s) satisfying (III.2.1) has
a nearby pair with a definite height below Σ0. In this section, Σ ⊂ BC5R is an
embedded minimal disk with ∂Σ ⊂ ∂BC5R.

Proposition III.2.2 (see Figure 9).There exist C, C̄ > 10 C2
4 and δ > 0

so that if the pair (0, s) satisfies (III.2.1) with s < R/C̄, Σ0 ⊂ Σ is over DR\Ds

(without a rotation), and

∇u((Rs)1/2, 0) = 0 ,

then there is a pair (y, t) satisfying (III.2.1) with

y ∈ Cδ(0) ∩ Σ− \ BCs/2 .
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Proof. We will choose C large below and then set δ = δ(C) > 0 and
C̄ = C̄(C). Note first that (since ∇u((Rs)1/2, 0) = 0) Corollary 1.14 of [CM7]
gives for s ≤ ρ ≤ (Rs)1/2 that

|∇u(ρ, θ)| ≤ Ca (ρ/s)−5/12 .

Integrating this, we get for s ≤ ρ ≤ (Rs)1/2 that

|u(ρ, θ)| ≤ s + Ca

∫ ρ

s
(τ/s)−5/12 dτ ≤ (1 + 2Ca) (s/ρ)5/12 ρ .(III.2.3)

Proposition I.0.11 gives Cb(C1, C) and a point z0 ∈ BCbs ∩ Σ− \ B4s with

|A|2(z0) ≥ 5 C2 C2
1 |z0|−2 .

Define the set A by

A = {x ∈ BCbs ∩ Σ− | |A|2(x) ≥ 5 C2 C2
1 |x|−2} ,(III.2.4)

(so z0 ∈ A) and let x0 ∈ A satisfy |x0| = infx∈A |x|. Consequently, by (III.2.1),

|A|2 ≤ 5 C2
1 s−2 on B|x0| ∩ Σ− ,

Cs ≤ |x0| ≤ Cb s .

An obvious extrinsic version of Lemma II.2.3 (cf. Theorem A.9) gives a pair
(y, t) satisfying (III.2.1) with BCt(y) ⊂ B|x0|/2(x0). We can assume |p| ≥
4|y|/5.

Since |A|2 ≤ 5 C2
1 s−2 on B|x0|/2∩Σ− and (0, s) satisfies (III.2.1) and hence

(III.1.1), it follows that Corollary III.1.8 (with � = |p|) gives a pair (z, r) also
satisfying (III.1.1) with

Σz ⊂ Σ− and Σz,r ⊂ Σ0, |p|
2

.

Thus the separation between Σ0 and Σz is at least Cc (s/|y|)ε |y| at p. However,
since Σ is embedded, then Σy must be below both Σ0 and Σz. Combining this
with (III.2.3) gives

|x3|(y)
|y| ≥ Cc

(
s

|y|

)ε

− (1 + 2Ca)
(

s

|y|

)5/12

.(III.2.5)

Since C ≤ 2|y|/s ≤ 3Cb, the proposition follows from (III.2.5) by choosing C

sufficiently large and then setting C̄ = C̄(C, C5) and Cb = Cb(C) (where C̄ is
chosen so that Cb s ≤ (Rs)1/2).

We next prove Theorem 0.2. Namely, iterating Proposition III.2.2, we
show that if the curvature of an embedded minimal disk were large at a point,
then it would be forced to grow out of the half-space it was assumed to lie in.
First we need:
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Lemma III.2.6. Given C and δ > 0, there exists ε1 > 0 so that the
following holds:

Let Σ ⊂ B2r0 ∩ {x3 > 0} be an embedded minimal disk with ∂Σ ⊂ ∂B2r0.
If

sup
Σ∩{x3≤δ r0}

|A|2 ≤ C r−2
0 ,

then for any component Σ′ of Br0 ∩ Σ which intersects Bε1r0 ,

sup
Σ′

|A|2 ≤ r−2
0 .

Proof. If y ∈ Br0 ∩ Σ ∩ {x3 ≤ δ r0/4}, then

sup
Σy,δr0/2

|∇x3|2 ≤ C x2
3(y) δ−2 r−2

0

(by the gradient estimate) and hence Σy,δr0/2 is a graph for x3(y)/(δ r0) small;
cf. Lemma A.3. The lemma follows by applying this to a chain of balls as in
the proof of Lemma 2.10 in [CM8] or the theorem in [CM10].

Let C1, . . . , C6 be as above and δ, C, C̄ be from Proposition III.2.2.

Proof of Theorem 0.2. By Lemma III.2.6 (and scaling), it suffices to find
d > 0 and Ĉ > 1 so that if Σ ⊂ B4C5ĈR ∩ {x3 > 0} and ∂Σ ⊂ ∂B4C5ĈR, then

sup
BdR∩Σ

|A|2 ≤ 4 C2 C2
1 (dR)−2 .(III.2.7)

Suppose that (III.2.7) fails; we will get a contradiction. An obvious ex-
trinsic version of Lemma II.2.3 gives a pair (y0, s0) satisfying (III.2.1) with
BCs0(y0) ⊂ B2dR. Let Σ0 be the corresponding N -valued graph of u0 over
DĈR \ Ds0(p0) and Σ− the portion of Σ below Σ0.

To apply Proposition III.2.2, we will need that if (y, s) satisfies (III.2.1)
with y ∈ B2R ∩ Σ− (where Σy is a graph of u over DĈR \ Ds(p)), then

s ≤ R/C̄ and |∇u((ĈRs)1/2, 0)| < δ/4 .(III.2.8)

To see (III.2.8), observe first that the sublinear growth proven in Proposition
II.2.12 of [CM3] applies to the positive function u0 so we get that

sup
D6R

u0 ≤ 2dR(6/d)ε ≤ 12 R d1−ε .

It follows that
B6R ∩ Σ− ⊂ {0 < x3 < 12 R d1−ε} .

This bound on the height implies a bound on the radius s of the blow up pair

s ≤ Ca R d1−ε .
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Likewise, this height bound and the gradient estimate (since the height function
is harmonic on a minimal surface) give

sup
∂D4R

|∇u| ≤ Cb d1−ε .

Lemma 1.8 of [CM7] and the mean value inequality (as in corollary 1.14 of
[CM7]) give

| Hessu| ≤ Cc(ĈR)−5/12 ρ−7/12

for (ĈRs)1/2 ≤ ρ ≤ ĈR. Combining these at ρ = (ĈRs)1/2 and θ = 0, we get
that

|∇u| ≤Cb d1−ε + Cc(ĈR)−5/12

∫ 8R

0
t−7/12 dt(III.2.9)

= Cb d1−ε + C ′
cĈ

−5/12 .

In particular, for d > 0 small and Ĉ large, (III.2.9) gives (III.2.8).
Repeatedly applying Proposition III.2.2 (using (III.2.8)) gives (yi+1, si+1)

satisfying (III.2.1) with

yi+1 ∈ Cδ/2(yi) ∩ Σ− \ BCsi/2(yi) .

After choosing d > 0 even smaller, it follows that the yi’s must leave the
half-space before they leave BR.

Proof of Corollary 0.4. Using Σ1 ∪ Σ2 as a barrier, the existence theory
of [MeYa] and a linking argument (cf. Lemma II.1.1) give a stable surface

Γ ⊂ Bcr0 \ (Σ1 ∪ Σ2)

with ∂Γ ⊂ ∂Bcr0 and Bεr0∩Γ �= ∅. Estimates for stable surfaces give a graphical
component of B2r0 ∩ Γ which intersects Bεr0 . The corollary now follows from
Theorem 0.2.

Part IV. The short connecting curves and Theorem I.0.10

We first combine Lemmas II.1.1 and II.2.1 to see that any curve in Σ
which intersects both above and below a multi-valued graph (with a curvature
bound on an intrinsic ball) connects to it in a fixed intrinsic ball:

Corollary IV.0.10. Given C1, there exists C4 > 1 so that the following
holds:

Let Σ, Σd, E0, and r0 be as in Lemma II.1.1. If a curve η ⊂ B2r0 ∩ Σ
connects points in ∂B2r0 above and below E0 and

sup
BC4r0

|A|2 ≤ 4 C2
1 r−2

0 ,

then η ⊂ BC4r0.
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Proof. Let Σ2r0(η) be the component of B2r0 ∩ Σ containing η. By the
maximum principle, we have that Σ2r0(η) is a disk and hence ∂Σ2r0(η) must
pass through E0 (to connect the points on opposite sides of E0). Hence, by
Lemma II.1.1, we get

Σ2r0(η) ⊂ Σ0,Csr0 .

Finally, Lemma II.2.1 yields Σ0,Csr0 ⊂ BC4r0 , proving the corollary.

Proof of Theorem I.0.10. Fix ε > 0 with

ε < min{ε0, εs}

(ε0 is given by Proposition II.1.3 and εs is from Lemma II.1.1). Choose N0

and R0 large so that Proposition II.1.3 gives “the other half” Σ2. If Σ1 comes
from an intrinsic blow up point, then it follows from Lemma II.1.1, that there
are short curves connecting Σ1 and Σ2. While it is a priori not clear that every
multi-valued graph arises this way, Theorem II.2.2 implies that every multi-
valued graph is intrinsically near one of these. We use this below to produce
the short curves σθ in general.

Suppose that no σθ with length ≤ C exists for some θ; we get points y1

and y2 with

yi ∈ {x2
1 + x2

2 = 1} ∩ Σi ,

C < distΣ(y1, y2) ,

and so that y1 and y2 are in consecutive sheets of Σ (i.e., y1 and y2 can
be connected by a segment parallel to the x3-axis which does not otherwise
intersect Σ). See Figure 20. We will get a contradiction from this for C large.

Since ∂Σy1,4 is a simple closed curve, it must pass through E \ Σ1. See
Figure 21. Therefore, since Σ2 is the only other part of Σ in E, we can connect
Σ1 and Σ2 by a curve in ∂Σy1,4. Connecting the endpoints of this curve to y1

and y2 gives a curve η ⊂ Σy1,4 from y1 to y2. Since B4(yi) is not a graph, we
have

sup
B4(yi)

|A|2 ≥ C0 > 0 .

Let C1 and C2 (depending on ε and some fixed N > 6) be given by Theorem
II.2.2 and C4 = C4(C1) given by Corollary IV.0.10. Lemma II.2.3 gives pairs
(zi, si) satisfying (II.2.4) with

BC4si
(zi) ⊂ BC′(yi)

where C ′ does not depend on C. Let Σ̂1 and Σ̂2 be the multi-valued graphs
given by Theorem II.2.2 and Êi the regions between the sheets. Since

distΣ(zi, Σ̂i) ≤ 2 si ,
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Σ1
x2

1 + x2
2 = 1

Σ2
B4

y1

y2

Figure 20: If Theorem I.0.10 fails,
then there are points y1 ∈ Σ1 and
y2 ∈ Σ2 in consecutive sheets which
are intrinsically far apart.

z1

Σ̂1

η1

y1

y2

z2

Σ̂2
η2

η ⊂ Σy1 ,4

Figure 21: Proof of Theorem I.0.10.
The blowup points z1, z2 and the cor-
responding multi-valued graphs Σ̂1, Σ̂2

and the curves ηi connecting yi with Σ̂i.

we can choose curves ηi from yi to B2si
(zi) ∩ Σ̂i with length ≤ C ′. Combining

Corollary IV.0.10, Length(ηi) ≤ C ′, and distΣ(y1, y2) > C, we see easily that,
for C large, η1 intersects only one side of Ê2 ∪B2s2(z2); similarly, η2 intersects
only one side of Ê1 ∪ B2s1(z1).

We will next find a third pair (z3, s3) satisfying (II.2.4) which is between
Ê1 ∪ B2s1(z1) and Ê2 ∪ B2s2(z2) but which is intrinsically far from η1 and η2;
Corollary IV.0.10 will then give a contradiction. By combination of

• distΣ(η1, η2) > C − 2C ′,

• η1 intersects only one side of Ê2 ∪ B2s2(z2),

• η2 intersects only one side of Ê1 ∪ B2s1(z1), and

• η ⊂ Σy1,4 connects y1, y2,

it is easy to see that there is a point y3 ∈ Σy1,4 with

distΣ(y3, {η1, η2}) > (C − 2C ′)/2

and so that

y3 is between Ê1 ∪ B2s1(z1) and Ê2 ∪ B2s2(z2) .

(This last condition means that there is a curve ηy3 from B2s1(z1) to B2s2(z2)
so that y3 ∈ ηy3 and ηy3 intersects only one side of each of Ê1 ∪ B2s1(z1) and
Ê2 ∪ B2s2(z2).) As above, Lemma II.2.3 gives a pair (z3, s3) satisfying (II.2.4)
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with BC4s3(z3) ⊂ BC′(y3) and then Theorem II.2.2 gives corresponding Σ̂3, Ê3.
Since C ′ does not depend on C, we can assume that

distΣ(z3, {η1, η2}) > C/4 .(IV.0.11)

It follows easily from Corollary IV.0.10 that Ê3 is between Ê1 and Ê2 (since
Σ̂3 is close to y3 and y3 is far from Σ̂1, Σ̂2). Moreover, it is easy to see that
at least one of η1, η2 must intersect both sides of Ê3 ∪B2s3(z3) and, therefore,
Corollary IV.0.10 gives

distΣ(Σ̂3, {η1, η2}) ≤ C ′′(IV.0.12)

(C ′′ independent of C). For C large, (IV.0.11) contradicts (IV.0.12), giving
the theorem.

Appendix A.
One-sided Reifenberg condition and curvature estimates

We will show here curvature estimates for minimal hypersurfaces, Σn−1 ⊂
Mn, which on all sufficiently small scales lie on one side of, but come close
to, a hypersurface with small curvature. Such a minimal hypersurface is said
to satisfy the one-sided Reifenberg condition. Note that no assumption on the
topology is made. Inspired by the classical Reifenberg condition (cf. [ChC] and
references therein) we make the definition:

Definition A.1. A subset, Γ, of Mn satisfies the (δ, r0)-one-sided Reifen-
berg condition at x ∈ Γ if for every 0 < σ ≤ r0 and every y ∈ Br0−σ(x) ∩ Γ,
there is a connected hypersurface, Ln−1

y,σ , with ∂Ly,σ ⊂ ∂Bσ(y),

Bδσ(y) ∩ Ly,σ �= ∅, sup
Bσ(y)∩L

|AL|2 ≤ δ2 σ−2 ,(A.2)

and the component of Bσ(y) ∩ Γ through y lies on one side of Ly,σ.

Lemma A.3. There exist r1(i0, k, n) > 0, 0 < ε0 < 1, and C = C(n) so
that for ε ≤ ε0 and r0 ≤ r1 the following holds:

Let z ∈ Σn−1 ⊂ Br0 = Br0(z) ⊂ Mn be an embedded minimal hypersurface
with ∂Σ ⊂ ∂Br0. If there is a connected hypersurface, Ln−1, with ∂L ⊂ ∂Br0 ,
Bεr0 ∩ L �= ∅,

sup
Br0∩L

|AL|2 ≤ ε2 r−2
0 ,(A.4)

sup
Br0∩Σ

|A|2 ≤ ε2
0 r−2

0 ,(A.5)

and Br0 ∩ Σ lies on one side of L, then

|A(z)|2 ≤ C ε2 r−2
0 .
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Proof. We will prove this for Br0 = Br0(0) ⊂ Rn (z = 0, r1 = ∞); the
general case is similar (cf. [CM1]). Choose ε0 > 0 so that the following holds:

If B2s(y) ⊂ Σ, s supB2s(y) |A| ≤ 4 ε0, and t ≤ 9s/5, then ∈ Σy,t is a
graph over TyΣ with gradient ≤ t/s and

inf
y′∈B2s(y)

|y′ − y|/ distΣ(y, y′) > 9/10 .(A.6)

Using Bεr0 ∩ L �= ∅, let L r0
2

be a component of B r0
2
∩ L containing some

yL ∈ Bεr0 ∩ L. By (A.4) and (A.6), we have

L r0
2
⊂ B 3r0

4
(yL) .

Hence, by (A.4), we can rotate Rn so that L r0
2

is a graph over {xn = 0} with
|∇Lxn| ≤ ε and

|xn(L)| ≤ 4 ε r0 .

Since L ∩ Σ = ∅, the function xn + 4 ε r0 > 0 is harmonic on B r0
4

⊂ Σ. By
(A.5), the Harnack inequality (and 0 ∈ Σ) yields C = C(n) so that

0 < sup
B r0

6

(xn + 4ε r0) ≤ C inf
B r0

6

(xn + 4 ε r0) ≤ 4 C ε r0 .(A.7)

Since B r0
2

is a graph with bounded gradient, elliptic estimates give∫
B r0

8

|A|2 ≤ C ′ r−4
0

∫
B r0

6

|xn|2 ,(A.8)

where C ′ = C ′(n). Combining (A.7) and (A.8), the lemma follows from the
mean value inequality since Simons’ inequality (cf. [CM1]) gives

∆|A|2 ≥ −2 |A|4 .

Theorem A.9 (Curvature estimate).There exist ε1(i0,k,n) and r1(i0,k,n)
> 0 so that the following holds:

If r0 ≤ r1, Σn−1 ⊂ Br0 = Br0(x) ⊂ Mn is an embedded minimal hy-
persurface with ∂Σ ⊂ ∂Br0 , and Σ satisfies the (ε1, r0)-one-sided Reifenberg
condition at x, then for 0 < σ ≤ r0,

sup
Br0−σ∩Σ

|A|2 ≤ σ−2 .

Proof. Take r1 > 0 as in Lemma A.3, and set

F = (r0 − r)2 |A|2 .
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Since F ≥ 0, F |∂Br0 ∩ Σ = 0, and Σ is compact, F achieves its supremum
at y ∈ ∂Br0−σ ∩ Σ with 0 < σ ≤ r0. If F ≤ 1, the theorem follows trivially.
Hence, we may suppose

F (y) = sup
Br0∩Σ

F > 1 .

With ε0 ≤ 1 as in Lemma A.3, define s > 0 by

s2 |A(y)|2 = ε2
0/4 .

Since F (y) = σ2 |A(y)|2 > 1 and ε0 ≤ 1, we have 2s < σ. Since F (y) > 1,

sup
Bs(y)∩Σ

(σ

2

)2
|A|2 ≤ sup

B σ
2
(y)∩Σ

(σ

2

)2
|A|2 ≤ sup

B σ
2
(y)∩Σ

F = σ2 |A(y)|2 .(A.10)

Multiplying (A.10) by 4 s2/σ2 gives supBs(y)∩Σ s2 |A|2 ≤ ε2
0. Hence, we have the

(ε1, r0)-one-sided Reifenberg assumption, Lemma A.3 contradicting the choice
of s if C ε2

1 < ε2
0/4. Therefore, F ≤ 1 for this ε1, and the theorem follows.

Letting r0 → ∞ in Theorem A.9 gives the following Bernstein-type result:

Corollary A.11. There exists ε(n) > 0 so that any connected properly
embedded minimal hypersurface satisfying the (ε,∞)-one-sided Reifenberg con-
dition is a hyperplane.

We close by giving a condition which implies the one-sided Reifenberg
condition. Its proof (left to the reader) relies on a simple barrier argument (as
in the proof of Corollary 0.4).

Lemma A.12. There exist ε0(i0, k), r1(i0, k) > 0, and c(i0, k) ≥ 1 so that
the following holds:

Let Σ ⊂ Br0 = Br0(x) ⊂ M3 be an embedded minimal disk with ∂Σ ⊂
∂Br0. If r0 ≤ r1 and for some ε < ε0, all σ < r0 and all y ∈ Br0−σ ∩ Σ there
is a minimal surface

Σy,σ ⊂ Bσ(y) \ Σ

with ∂Σy,σ ⊂ ∂Bσ(y) and

Σy,σ ∩ Bε σ(y) �= ∅ ,

then Σ satisfies the (c ε,r0)-one-sided Reifenberg condition at x.

Appendix B. Laminations

A codimension one lamination on a 3-manifold M3 is a collection L of
smooth disjoint surfaces (called leaves) such that ∪Λ∈LΛ is closed. Moreover,
for each x ∈ M there exists an open neighborhood U of x and a coordinate
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chart, (U,Φ), with Φ(U) ⊂ R3 so that in these coordinates the leaves in L pass
through Φ(U) in slices of the form

(R × {t}) ∩ Φ(U) .

A foliation is a lamination for which the union of the leaves is all of M and
a minimal lamination is a lamination whose leaves are minimal. Finally, a
sequence of laminations is said to converge if the corresponding coordinate
maps converge. Note that any (compact) embedded surface (connected or
not) is a lamination.

Proposition B.1. Let M3 be a fixed 3-manifold. If Li ⊂B2R(x)⊂M is
a sequence of minimal laminations with uniformly bounded curvatures (where
each leaf has boundary contained in ∂B2R(x)), then a subsequence, Lj , con-
verges in the Cα topology for any α < 1 to a (Lipschitz ) lamination L in
BR(x) with minimal leaves.

Proof. For convenience, we will assume that each lamination Li has only
finitely many leaves where the number of leaves may depend on i. This is all
that is needed in the application of this proposition anyway. Fix x0 ∈ BR(x).
The proposition will follow once we construct uniform coordinate charts Φi on
a ball Br0 = Br0(x0), where 4r0 ≤ R is to be chosen.

By assumption, there exists C so that for each i and every Λ ∈ Li,

sup
B4r0∩Λ

|A|2 ≤ C r−2
0 .

Replacing r0 > 0 with a smaller radius, we may assume that C > 0 and r0

√
k

are as small as we wish and r0 < i0
2 (i0 being the injectivity radius and k a

bound for the curvature of M in B4r0). In fact, if (x1, x2, x3) are exponential
normal coordinates centered at x0 on Br0 , then

∪Λ∈Li
Br0 ∩ Λ

gives a sequence of disconnected small curvature surfaces in these coordinates.
By standard estimates for normal coordinates, the curvature is also small with
respect to the Euclidean metric. Going to a further subsequence (possibly with
r0 even smaller), for each i every sheet of

∪Λ∈Li
B2r0(0) ∩ Λ

is a graph with small gradient over a subset of the R2 × {0} plane containing
a ball of radius r0 centered at the origin.

We claim that, in this ball, the sequence of laminations converges in the
Cα topology to a lamination for any α < 1. The coordinate chart Φ required
by the definition of a lamination will be given by the Arzela-Ascoli theorem as
a limit of a sequence of bi-Lipschitz maps

Φi : (xj)j → R3
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with bi-Lipschitz constants close to one and defined on a slightly smaller con-
centric ball Bsr0 for some s > 0 to be determined. Furthermore, we will show
that for each i fixed

Φ−1
i (Bsr0 ∩ ∪Λ∈Li

Λ)

is the union of planes which are each parallel to R2 × {0} ⊂ R3; cf. [So].
Set the map Φi by letting

Φ−1
i (y1, y2, y3) = (y1, y2, φi(y1, y2, y3)) ,

where φi is defined as follows: Order the sheets of B2r0(0) ∩Λ∈Li
Λ as Λi,k for

k = 1, · · · by increasing values of x3 and let Λi,k be the graph of the function
fi,k over (part of) the R2 × {0} plane. The domain of fi,k contains the ball
of radius r0 around the origin in the R2 × {0} plane. With slight abuse of
notation, we will also denote balls in R2 × {0} with radius t and center 0 by
Bt. Set

wi,k = fi,k+1 − fi,k .

In the next equation, ∆, ∇, and div will be with respect to the Euclidean
metric on R2 × {0}. By a standard computation (cf. [Si, (7) on p. 333] or
Chapter 1 of [CM1]), we have

∆wi,k = div (a∇wi,k) + b∇wi,k + c wi,k ,(B.2)

where

• a is a matrix valued function.

• b is a vector valued function.

• c is a function.

Although a, b, and c depend on i, their scale invariant norms are small when
C and

√
k r0 are. By (B.2), the Schauder estimates and Harnack inequality

(e.g., 6.2 and 8.20 of [GiTr]) applied to the positive function wi,k give

sr0 sup
Bs r0

|∇wi,k| ≤ C sup
B2s r0

wi,k ≤ exp(εa sβ) inf
B2s r0

wi,k ,(B.3)

where εa and β > 0 depend on the scale invariant norms of a, b, and c. Set
Mi,k = fi,k(0). In the region

{(y1, y2, y3) ∈ Br0 × [Mi,k,Mi,k+1]} ,

define the function φi by

φi(y1, y2, y3) = fi,k(y1, y2) +
y3 − Mi,k

Mi,k+1 − Mi,k
wi,k(y1, y2) .(B.4)
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Hence

∇φi = ∇fi,k +
y3 − Mi,k

Mi,k+1 − Mi,k
∇wi,k +

wi,k

Mi,k+1 − Mi,k

∂

∂y3
.(B.5)

It follows easily from (B.3) and (B.5) that for each i the map Φi restricted
to Bsr0(0) ⊂ R3 is bi-Lipschitz with bi-Lipschitz constant close to one if s is
sufficiently small. By the Arzela-Ascoli theorem, a subsequence of Φi converges
in the Cα topology for any α < 1 to a Lipschitz coordinate chart Φ with the
properties that are required. The leaves in Br0 are C1,α limits of minimal
graphs with bounded gradient, and hence minimal by elliptic regularity.

Trivial examples show that the Lipschitz regularity above is optimal.

Appendix C. A standard consequence of the maximum principle

Using the maximum principle and the convexity of small extrinsic balls,
we can bound the topology of the intersection of a minimal surface with a ball:

Lemma C.1. Let Σ2 ⊂ Mn be an immersed minimal surface with ∂Σ ⊂
∂Br0(x). Suppose that KMn ≤ k and the injectivity radius of M ≥ i0. If
r0 < min{ i0

4 , π
4
√

k
}, Bt(y) ⊂ Br0(x), and γ ⊂ Bt(y) ∩ Σ is a closed one-cycle

homologous to zero in Br0(x) ∩ Σ, then γ is homologous to zero in Bt(y) ∩ Σ.

Proof. Apply the maximum principle to the function

f = dist2M (y, ·)

on the 2-current that γ bounds.

By Lemma C.1, if y ∈ Bt(x) ∩ Σ is connected, then

χ(Bs(y) ∩ Σ) ≥ χ(Bt(x) ∩ Σ)

whenever we have

s + distM (x, y) ≤ t < min{ i0
4

,
π

4
√

k
} .

(The Euler characteristic is monotone.)

D. A generalization of Proposition II.1.3

In [CM6], the next proposition is needed when we deal with the analog of
the genus one helicoid (cf. [HoKrWe]) where Σ (as above (II.1.2)) is not a disk.
The genus of a surface Σ ( gen(Σ)) is the genus of the closed surface obtained
by adding a disk to each boundary circle.
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Proposition D.1. There exist C0 and ε0 so that if 0 ∈ Σ, ∂Σ is con-
nected, gen(Σ) = gen(Σ0,r1), R ≥ C0 r1, and

ε0 ≥ ε ,

then E1 ∩ Σ \ Σ1 is an (oppositely oriented) N -valued graph Σ2.

Proof. Note that, by the maximum principle and elementary topology (as
in part I of [CM5]), we have that Σ \ Σ0,t is an annulus for r1 ≤ t < 4R. The
proof now follows that of Proposition II.1.3.

First, (a slight extension of) the “estimate between the sheets” given in
theorem III.2.4 of [CM3] gives ε0 so that E1 ∩ Σ is locally graphical (this
extension uses the fact that Σ \Σ0,r1 is an annulus instead of that Σ is a disk;
the proof of this extension is outlined in appendix A of [CM8]). As before, we
get the second (oppositely oriented) multi-valued graph Σ2 ⊂ Σ.

Second, we argue by contradiction to show that there are no other com-
ponents of E1∩Σ. Fix σ1 and σ2 as before. The proof of Lemma II.1.1 applies
virtually without change (since at least one of Σa and Σb must be a disk), so
σ1 and σ2 connect in Σ0,Csr1 . Hence, a curve

σ0 ⊂ ∂Σ0,Csr1

connects σ1 and σ2. Replace σi with σi \ BCsr1 , so that

σ0 ∪ σ1 ∪ σ2 ⊂ Σ \ Σ0,r1

is a simple curve and
∂(σ0 ∪ σ1 ∪ σ2) ⊂ ∂Σ0,R .

Let Σ̂ be the component of

Σ0,R \ (σ0 ∪ σ1 ∪ σ2)

which does not intersect Σ0,r1 . It follows that Σ̂ has genus zero and connected
boundary; i.e., it is a disk. Solve as above for the stable disk Γ with ∂Γ = ∂Σ̂
so that Γ contains two disjoint (N/2 − 1)-valued graphs in E1 which spiral
together. For R/r1 large, Proposition I.0.11 gives the point of large curvature,
contradicting the curvature estimate for stable surfaces.
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