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The space of embedded minimal surfaces

of fixed genus in a 3-manifold III;
Planar domains

By Tobias H. Colding and William P. Minicozzi II*

0. Introduction

This paper is the third in a series where we describe the space of all
embedded minimal surfaces of fixed genus in a fixed (but arbitrary) closed
3-manifold. In [CM3]–[CM5] we describe the case where the surfaces are topo-
logically disks on any fixed small scale. Although the focus of this paper,
general planar domains, is more in line with [CM6], we will prove a result here
(namely, Corollary III.3.5 below) which is needed in [CM5] even for the case of
disks. Roughly speaking, there are two main themes in this paper. The first
is that stability leads to improved curvature estimates. This allows us to find
large graphical regions. These graphical regions lead to two possibilities:

• Either they “close up” to form a graph,

• Or a multi-valued graph forms.

The second theme is that in certain important cases we can rule out the for-
mation of multi-valued graphs, i.e., we can show that only the first possibility
can arise. The techniques that we develop here apply both to general planar
domains and to certain topological annuli in an embedded minimal disk; the
latter is used in [CM5]. The current paper is third in the series since the
techniques here are needed for our main results on disks.

The above hopefully gives a rough idea of the present paper. To de-
scribe these results more precisely and explain in more detail why and how
they are needed for our results on disks, we will need to briefly outline those
arguments. There are two local models for embedded minimal disks (by an em-
bedded disk, we mean a smooth injective map from the closed unit ball in R2

*The first author was partially supported by NSF Grant DMS 9803253 and an Alfred
P. Sloan Research Fellowship and the second author by NSF Grant DMS 9803144 and an
Alfred P. Sloan Research Fellowship.
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into R3). One model is the plane (or, more generally, a minimal graph), the
other is a piece of a helicoid. In the first four papers of this series, we will
show that every embedded minimal disk is either a graph of a function or is a
double spiral staircase where each staircase is a multi-valued graph. This will
be done by showing that if the curvature is large at some point (and hence the
surface is not a graph), then it is a double spiral staircase. To prove that such
a disk is a double spiral staircase, we will first prove that it can be decom-
posed into N -valued graphs where N is a fixed number. This was initiated in
[CM3] and a version of it was completed in [CM4]. To get the version needed
in [CM5], we need one result that will be proved here, namely Corollary III.3.5.
This result asserts that in an embedded minimal disk, then above and below
any given multi-valued graph, there are points of large curvature and thus, by
the results of [CM3], [CM4], there are other multi-valued graphs both above
and below the given one. Iterating this gives the decomposition of such a disk
into multi-valued graphs. The fourth paper of this series will deal with how
the multi-valued graphs fit together and, in particular, prove regularity of the
set of points of large curvature – the axis of the double spiral staircase.

To describe general planar domains (in [CM6]) we need in addition to the
results of [CM3]–[CM5] a key estimate for embedded stable annuli which is the
main result of this paper (see Theorem 0.3 below). This estimate asserts that
such an annulus is a graph away from its boundary if it has only one interior
boundary component and if this component lies in a small (extrinsic) ball.

Planar domains arise when one studies convergence of embedded minimal
surfaces of a fixed genus in a fixed 3-manifold. This is due to the next theorem
which loosely speaking asserts that any sequence of embedded minimal surfaces
of fixed genus has a subsequence which consists of uniformly planar domains
away from finitely many points. (In fact, this describes only “(1)” and “(2)” of
Theorem 0.1. Case “(3)” is self explanatory and “(4)” very roughly corresponds
to whether the surface locally “looks like” the genus one helicoid; cf. [HoKrWe],
or has “more than one end.”)

Before stating the next theorem about embedded minimal surfaces of a
given fixed genus, it may be in order to recall what the genus is for a surface
with boundary. Given a surface Σ with boundary ∂Σ, the genus of Σ (gen(Σ)) is
the genus of the closed surface Σ̂ obtained by adding a disk to each boundary
circle. The genus of a union of disjoint surfaces is the sum of the genuses.
Therefore, a surface with boundary has nonnegative genus; the genus is zero
if and only if it is a planar domain. For example, the disk and the annulus are
both genus zero; on the other hand, a closed surface of genus g with k disks
removed has genus g.

In the next theorem, M3 will be a closed 3-manifold and Σ2
i a sequence

of closed embedded oriented minimal surfaces in M with fixed genus g.
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Points where genus
concentrates. Planar domain.

Figure 1: (1) and (2) of Theorem 0.1: Any sequence of genus g surfaces has a
subsequence for which the genus concentrates at at most g points. Away from
these points, the surfaces are locally planar domains.

Theorem 0.1 (see Figure 1). There exist x1, . . . , xm ∈ M with m ≤ g

and a subsequence Σj so that the following hold :

(1) For x ∈ M \ {x1, . . . , xm}, there are jx, rx > 0 so that for j > jx,

gen(Brx
(x) ∩ Σj) = 0 .

(2) For each xk, there are �k, rk > 0, rk > rk,j → 0 so that for all j there are
components {Σ�

k,j}�≤�k
of Brk

(xk) ∩ Σj with

gen(Brk
(xk) ∩ Σj) =

∑
�≤�k

gen(Σ�
k,j) ≤ g ,

gen(Brk,j
(xk) ∩ Σ�

k,j) = gen(Σ�
k,j) for � ≤ �k .

(3) For every k, �, j, there is only one component Σ̃�
k,j of Brk,j

(xk)∩Σ�
k,j with

genus > 0.

(4) For each k, �, either ∂Σ�
k,j is connected or a component of ∂Σ̃�

k,j separates
two components of ∂Σ�

k,j.

To explain why the next two theorems are crucial for what we call “the
pairs of pants decomposition” of embedded minimal planar domains, recall
the following prime examples of such domains: Minimal graphs (over disks),
a helicoid, a catenoid or one of the Riemann examples. (Note that the first
two are topologically disks and the others are disks with one or more subdisks
removed.) Let us describe the nonsimply connected examples in a little more
detail. The catenoid (see Figure 2) is the (topological) annulus

(cosh s cos t, cosh s sin t, s)(0.2)

where s, t ∈ R. To describe the Riemann examples, think of a catenoid as
roughly being obtained by connecting two parallel planes by a neck. Loosely
speaking (see Figure 3), the Riemann examples are given by connecting (in-
finitely many) parallel planes by necks; each adjacent pair of planes is con-
nected by exactly one neck. In addition, all of the necks are lined up along an
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x1

x3

x2

Figure 2: The catenoid given by revolving x1 = cosh x3 around the x3-axis.

Necks connecting parallel planes.

Figure 3: The Riemann examples: Parallel planes connected by necks.

axis and the separation between each pair of adjacent ends is constant (in fact
the surfaces are periodic). Locally, one can imagine connecting � − 1 planes
by �− 2 necks and add half of a catenoid to each of the two outermost planes,
possibly with some restriction on how the necks line up and on the separation
of the planes; see [FrMe], [Ka], [LoRo].

To illustrate how Theorem 0.3 below will be used in [CM6] where we give
the actual “pair of pants decomposition” observe that the catenoid can be de-
composed into two minimal annuli each with one exterior convex boundary and
one interior boundary which is a short simple closed geodesic. (See also [CM9]
for the “pair of pants decomposition” in the special case of annuli.) In the case
of the Riemann examples (see Figure 4), there will be a number of “pairs of
pants”, that is, topological disks with two subdisks removed. Metrically these
“pairs of pants” have one convex outer boundary and two interior boundaries
each of which is a simple closed geodesic. Note also that this decomposition
can be made by putting in minimal graphical annuli in the complement of the
domains (in R3) which separate each of the pieces; cf. Corollary 0.4 below.
Moreover, after the decomposition is made then every intersection of one of
the “pairs of pants” with an extrinsic ball away from the interior boundaries
is simply connected and hence the results of [CM3]–[CM5] apply there.

The next theorem is a kind of effective removable singularity theorem
for embedded stable minimal surfaces with small interior boundaries. It as-
serts that embedded stable minimal surfaces with small interior boundaries are
graphical away from the boundary. Here small means contained in a small ball
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A “pair of pants” (in bold).

Graphical annuli (dotted) separate
the “pairs of pants”.

Figure 4: Decomposing the Riemann examples into “pair of pants” by cutting
along small curves; these curves bound minimal graphical annuli separating
the ends.

Stable Γ with ∂Γ ⊂ Br0/4 ∪ ∂BR.

Components of Γ in BR/C1
\ BC1r0 are graphs.

C1r0 R

r0

4
R

C1

Figure 5: Theorem 0.3: Embedded stable annuli with small interior boundary
are graphical away from their boundary.

in R3 (and not that the interior boundary has small length). This distinction
is important; in particular if one had a bound for the area of a tubular neigh-
borhood of the interior boundary, then Theorem 0.3 would follow easily; see
Corollary II.1.34 and cf. [Fi].

Theorem 0.3 (see Figure 5). Given τ > 0, there exists C1 > 1, so that
if Γ ⊂ BR ⊂ R3 is an embedded stable minimal annulus with ∂Γ ⊂ ∂BR∪Br0/4

(for C2
1 r0 < R) and Br0 ∩ ∂Γ is connected, then each component of BR/C1

∩
Γ \ BC1 r0 is a graph with gradient ≤ τ .

Many of the results of this paper will involve either graphs or multi-valued
graphs. Graphs will always be assumed to be single-valued over a domain in
the plane (as is the case in Theorem 0.3).

Combining Theorem 0.3 with the solution of a Plateau problem of Meeks-
Yau (proven initially for convex domains in Theorem 5 of [MeYa1] and extended
to mean convex domains in [MeYa2]), we get (the result of Meeks-Yau gives
the existence of Γ below):

Corollary 0.4 (see Figure 6). Given τ > 0, there exists C1 > 1, so
that the following holds:
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Let Σ ⊂ BR ⊂ R3 with ∂Σ ⊂ ∂BR be an embedded minimal surface with
gen(Σ) = gen(Br1 ∩ Σ) and let Ω be a component of BR \ Σ.

If γ ⊂ Br0 ∩ Σ \ Br1 is noncontractible and homologous in Σ \ Br1 to a
component of ∂Σ and r0 > r1, then a component Σ̂ of Σ \ γ is an annulus and
there is a stable embedded minimal annulus Γ ⊂ Ω with ∂Γ = ∂Σ̂.

Moreover, each component of (BR/C1
\BC1 r0)∩Γ is a graph with gradient

≤ τ .

γ ⊂ Σ not contractible in Σ.

Br0

Stable annulus Γ.

Component Ω of BR \ Σ
where γ is not contractible.

Figure 6: Corollary 0.4: Solving a Plateau problem gives a stable graphical
annulus separating the boundary components of an embedded minimal annu-
lus.

Stability of Γ in Theorem 0.3 is used in two ways: To get a pointwise
curvature bound on Γ and to show that certain sectors have small curvature.
In Section 2 of [CM4], we showed that a pointwise curvature bound allows us
to decompose an embedded minimal surface into a set of bounded area and a
collection of (almost stable) sectors with small curvature. Using this, we see
that the proof of Theorem 0.3 will also give (if 0 ∈ Σ, then Σ0,t denotes the
component of Bt ∩ Σ containing 0):

Theorem 0.5. Given C, there exist C2, C3 > 1, so that the following
holds:

Let 0 ∈ Σ ⊂ BR ⊂ R3 be an embedded minimal surface with connected
∂Σ ⊂ ∂BR. If gen(Σ0,r0) = gen(Σ), r0 ≤ R/C2, and

sup
Σ\Br0

|x|2 |A|2(x) ≤ C ,(0.6)

then
Area(Σ0,r0) ≤ C3 r2

0 .

The examples constructed in [CM13] show that the quadratic curvature
bound (0.6) is necessary to get the area bound in Theorem 0.5.

In [CM5] a strengthening of Theorem 0.5 (this strengthening is Theorem
III.3.1 below) will be used to show that, for limits of a degenerating sequence of
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embedded minimal disks, points where the curvatures blow up are not isolated.
This will eventually give (Theorem 0.1 of [CM5]) that for a subsequence such
points form a Lipschitz curve which is infinite in two directions and transversal
to the limit leaves; compare with the example given by a sequence of rescaled
helicoids where the singular set is a single vertical line perpendicular to the
horizontal limit foliation.

To describe a neighborhood of each of the finitely many points, coming
from Theorem 0.1, where the genus concentrates (specifically to describe when
there is one component Σ̃�

k,j of genus > 0 in “(3)” of Theorem 0.1), we will
need in [CM6]:

Corollary 0.7. Given C, g, there exist C4, C5 so that the following holds:
Let 0 ∈ Σ ⊂ BR ⊂ R3 be an embedded minimal surface with connected

∂Σ ⊂ ∂BR, r0 < R/C4, and gen(Σ0,r0) = gen(Σ) ≤ g. If

sup
Σ\Br0

|x|2 |A|2(x) ≤ C ,(0.8)

then

Σ is a disk and Σ0,R/C5
is a graph with gradient ≤ 1.

This corollary follows directly by combining Theorem 0.5 and theorem
1.22 of [CM4]. That is, we note first that for r0 ≤ s ≤ R, it follows from the
maximum principle (since Σ is minimal) and Corollary I.0.11 that ∂Σ0,s is con-
nected and Σ \Σ0,s is an annulus. Second, theorem 0.5 bounds Area(Σ0,R/C2

)
and Theorem 1.22 of [CM4] then gives the corollary.

Theorems 0.3, 0.5 and Corollary 0.7 are local and are for simplicity stated
and proved only in R3 although they can with only very minor changes easily
be seen to hold for minimal planar domains in a sufficiently small ball in any
given fixed Riemannian 3-manifold.

Throughout Σ, Γ ⊂ M3 will denote complete minimal surfaces possibly
with boundary, sectional curvatures KΣ, KΓ, and second fundamental forms
AΣ, AΓ. Also, Γ will be assumed to be stable and have trivial normal bundle.
Given x ∈ M , Bs(x) will be the usual ball in R3 with radius s and center x.
Likewise, if x ∈ Σ, then Bs(x) is the intrinsic ball in Σ. Given S ⊂ Σ and
t > 0, let Tt(S, Σ) ⊂ Σ be the intrinsic tubular neighborhood of S in Σ with
radius t and set

Ts,t(S, Σ) = Tt(S, Σ) \ Ts(S, Σ) .

Unless explicitly stated otherwise, all geodesics will be parametrized by ar-
clength.

We will often consider the intersections of various curves and surfaces with
extrinsic balls. We will always assume that these intersections are transverse
since this can be achieved by an arbitrarily small perturbation of the radius.
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I. Topological decomposition of surfaces

In this part we will first collect some simple facts and results about planar
domains and domains that are planar outside a small ball. These results will
then be used to show Theorem 0.1. First we recall an elementary lemma:

Lemma I.0.9 (see Figure 7). Let Σ be a closed oriented surface (i.e.,
∂Σ = ∅) with genus g. There are transverse simple closed curves η1, . . . , η2g ⊂
Σ so that for i < j

#{p | p ∈ ηi ∩ ηj} = δi+g,j .(I.0.10)

Furthermore, for any such {ηi}, if η ⊂ Σ \ ∪iηi is a closed curve, then η

divides Σ.

η1
η2

η3

η4

Figure 7: Lemma I.0.9: A basis for homology on a surface of genus g.

Recall that if ∂Σ �= ∅, then Σ̂ is the surface obtained by replacing each
circle in ∂Σ with a disk. Note that a closed curve η ⊂ Σ divides Σ if and only
if η is homologically trivial in Σ̂.

Corollary I.0.11. If Σ1 ⊂ Σ and gen(Σ1) = gen(Σ), then each simple
closed curve η ⊂ Σ \ Σ1 divides Σ.

Proof. Since Σ1 has genus g = gen(Σ), Lemma I.0.9 gives transverse
simple closed curves η1, . . . , η2g ⊂ Σ1 satisfying (I.0.10). However, since η does
not intersect any of the ηi’s, Lemma I.0.9 implies that η divides Σ.

Corollary I.0.12. If Σ has a decomposition Σ = ∪�
β=1Σβ where the

union is taken over the boundaries and each Σβ is a surface with boundary
consisting of a number of disjoint circles, then

�∑
β=1

gen(Σβ) ≤ gen(Σ) .(I.0.13)

Proof. Set gβ = gen(Σβ). Lemma I.0.9, gives transverse simple closed
curves

ηβ
1 , . . . , ηβ

2gβ
⊂ Σβ
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satisfying (I.0.10). Since Σβ1 ∩Σβ2 = ∅ for β1 �= β2, this implies that the rank
of the intersection form on the first homology (mod 2) of Σ̂ is ≥ 2

∑�
β=1 gβ. In

particular, we get (I.0.13).

In the next lemma, M3 will be a closed 3-manifold and Σ2
i a sequence of

closed embedded oriented minimal surfaces in M with fixed genus g.

Lemma I.0.14. There exist x1, . . . , xm ∈ M with m ≤ g and a subse-
quence Σj so that the following hold :

• For x ∈ M\{x1, . . . , xm}, there exist jx, rx > 0 so that gen(Brx
(x)∩Σj) =

0 for j > jx.

• For each xk, there exist Rk, gk > 0, Rk > Rk,j → 0 so that
∑m

k=1 gk ≤ g

and for all j,

gen(BRk
(xk) ∩ Σj) = gk = gen(BRk,j

(xk) ∩ Σj) .

Proof. Suppose that for some x1 ∈ M and any R1 > 0 we have infinitely
many i’s where

gen(BR1(x1) ∩ Σi) = g1,i > 0 .

By Corollary I.0.12, we have g1,i ≤ g and hence there is a subsequence Σj and
a sequence R1,j → 0 so that for all j

gen(BR1,j
(x1) ∩ Σj) = g1 > 0 .(I.0.15)

By repeating this construction, we can suppose that there are disjoint points
x1, . . . , xm ∈ M and Rk,j > 0 so that for any k we have Rk,j → 0 and

gen(BRk,j
(xk) ∩ Σj) = gk > 0 .

However, Corollary I.0.12 implies that for j sufficiently large

0 ≤ gen(Σj \ ∪kBRk,j
(xk)) ≤ gen(Σj) −

m∑
k=1

gen(BRk,j
(xk) ∩ Σj) ≤ g −

m∑
k=1

gk .

(I.0.16)

In particular,
∑m

k=1 gk ≤ g and we can therefore assume that
∑m

k=1 gk is max-
imal. This has two consequences:

• First, given x ∈ M \ {x1, . . . , xm}, there exist rx > 0 and jx so that
gen(Brx

(x) ∩ Σj) = 0 for j > jx.

• Second, for each xk, there exist Rk > 0 and jk so that gen(BRk
(xk) ∩

Σj) = gk for j > jk.

The lemma now follows easily.
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By Corollary I.0.12, each Rk, Rk,j from Lemma I.0.14 can (after going
to a further subsequence) be replaced by any R′

k, R
′
k,j with R′

k ≤ Rk and
R′

k,j ≥ Rk,j . Similarly, each rx can be replaced by any r′x ≤ rx. This will be
used freely in the proof of Theorem 0.1 below.

Proof of Theorem 0.1. Let xk, gk, Rk, Rk,j and rx be from Lemma I.0.14.
We can assume that each Rk > 0 is sufficiently small so that BRk

(xk) is es-
sentially Euclidean (e.g., Rk < min{i0/4, π/(4k1/2)}). Part (1) follows directly
from Lemma I.0.14.

For each xk, we can assume that there are �k and n�,k so that:

• BRk
(xk) ∩ Σj has components {Σ�

k,j}1≤�≤�k
with genus > 0.

• BRk,j
(xk) ∩ Σ�

k,j has n�,k components with genus > 0.

We will use repeatedly that, by (1) and Corollary I.0.12, n�,k is nonincreasing
if either Rk,j increases or Rk decreases. For each �, k with n�,k > 1, set

ρ�
k,j = inf{ρ > Rk,j |#{components of Bρ(xk) ∩ Σ�

k,j} < n�,k} .(I.0.17)

There are two cases. If lim infj→∞ ρ�
k,j = 0, then choose a subsequence Σj with

ρ�
k,j → 0; n�,k decreases if we replace Rk,j with any R′

k,j > ρ�
k,j . Otherwise,

set 2 ρ�
k = lim infj→∞ ρ�

k,j > 0 and choose a subsequence Σj so that ρ�
k,j < ρ�

k;
�k increases if we replace Rk with any R′

k ≤ ρ�
k. In either case,

∑
�,k(n�,k − 1)

decreases. Since
∑

�,k n�,k ≤ g (by Corollary I.0.12), repeating this ≤ g times
gives

0 < R′
k ≤ Rk and Rk,j ≤ R′

k,j → 0 (as j → ∞)

as well as a subsequence so that only one component Σ̃�
k,j of BR′

k,j
(xk) ∩ Σ�

k,j

has genus > 0 (i.e., each new n�,k = 1). By Corollary I.0.12 (and (1)) and the
remarks before the proof, Parts (1), (2), and (3) now hold for any rk ≤ R′

k and
R′

k,j ≤ rk,j → 0.
Suppose that for some k, � there exists jk,� so that ∂Σ�

k,j has at least two
components for all j > jk,�. For R′

k,j ≤ t ≤ R′
k, let Σ�

k,j(t) be the component
of Bt(xk) ∩ Σ containing Σ̃�

k,j . Set

r�
k,j = inf{t > Rk,j |#{components of ∂Σ�

k,j(t)} > 1} .(I.0.18)

There are two cases:

• If lim infj→∞ r�
k,j = 0, then choose a subsequence Σj with r�

k,j → 0.
By the maximum principle (since Σ is minimal) and Corollary I.0.11, a
component of (the new) ∂Σ̃�

k,j separates two components of ∂Σ�
k,j for any

rk,j → 0 with rk,j > r�
k,j .

• On the other hand, if lim infj→∞ r�
k,j = 2r�

k > 0, then choose a subse-
quence so that (the new) ∂Σ�

k,j is connected for any rk ≤ r�
k.
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After repeating this ≤ g times (each time either increasing R′
k,j or decreasing

R′
k), Part (4) also holds.

In [CM6] we will need the following (here, and elsewhere, if 0 ∈ Σ ⊂ R3,
then Σ0,t denotes the component of Bt ∩ Σ containing 0):

Proposition I.0.19. Let 0 ∈ Σi ⊂ BSi
⊂ R3 with ∂Σi ⊂ ∂BSi

be a
sequence of embedded minimal surfaces with genus ≤ g < ∞ and Si → ∞.
After going to a subsequence, Σj , and possibly replacing Sj by Rj and Σj by
Σ0,j,Rj

where R0 ≤ Rj ≤ Sj and Rj → ∞, then

gen(Σj,0,R0) = gen(Σj) ≤ g

and either (a) or (b) holds:

(a) ∂Σj,0,t is connected for all R0 ≤ t ≤ Rj.

(b) ∂Σj,0,R0 is disconnected.

Proof. We will first show that there exists R0 > 0, a subsequence Σj ,
and a sequence Rj → ∞ with R ≤ Rj ≤ Sj , such that (after replacing Σj by
Σj,0,Rj

)
gen(Σj,0,R0) = gen(Σj) ≤ g .

Suppose not; it follows easily from the monotonicity of the genus (i.e., Corollary
I.0.12) that there exists a subsequence Σj and a sequence Gk → ∞ such that
for all k there exists a jk so that for j ≥ jk

g ≥ gen(Σj,0,Gk+1) > gen(Σj,0,Gk
) ,(I.0.20)

which is a contradiction.
For each j, let R0,j be the infimum of R with R0 ≤ R ≤ Rj where ∂Σj,0,R

is disconnected; set R0,j = Rj if no such exists. There are now two cases:

• If lim inf R0,j < ∞, then, after going to a subsequence and replacing R0

by lim inf R0,j+1, we are in (b) by the maximum principle.

• If lim inf R0,j = ∞, then we are in (a) after replacing Rj by R0,j .

II. Estimates for stable minimal surfaces
with small interior boundaries

In this part we prove Theorem 0.3. That is, we will show that all embedded
stable minimal surfaces with small interior boundaries are graphical away from
the boundary. Here small means contained in a small ball in R3 (and not that
the interior boundary has small length).
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II.1. Long stable sectors contain multi-valued graphs

In [CM3], [CM4] we proved estimates for the total curvature and area of
stable sectors. A stable sector in the sense of [CM3], [CM4] is a stable subset
of a minimal surface given as half of a normal tubular neighborhood (in the
surface) of a strictly convex curve. For instance, a curve lying in the boundary
of an intrinsic ball is strictly convex. In this section we give similar estimates for
half of normal tubular neighborhoods of curves lying in the intersection of the
surface and the boundary of an extrinsic ball. These domains arise naturally
in our main result and are unfortunately somewhat more complicated to deal
with due to the lack of convexity of the curves.

In this section, the surfaces Σ and Γ will be planar domains and, hence,
simple closed curves will divide the surface into two planar (sub)domains.

We will need some notation for multi-valued graphs. Let P be the univer-
sal cover of the punctured plane C \ {0} with global (polar) coordinates (ρ, θ)
and set

Sθ1,θ2
r,s = {r ≤ ρ ≤ s , θ1 ≤ θ ≤ θ2} .

An N -valued graph Σ of a function u over the annulus Ds \Dr (see Figure 8) is
a (single-valued) graph (of u) over S−N π,N π

r,s (Σθ1,θ2
r,s will denote the subgraph

of Σ over Sθ1,θ2
r,s ). The separation w(ρ, θ) between consecutive sheets is (see

Figure 8)

w(ρ, θ) = u(ρ, θ + 2π) − u(ρ, θ) .(II.1.1)

x3-axis

u(ρ, θ + 2π)

w

u(ρ, θ)

Figure 8: The separation w for a multi-valued graph in (II.1.1).
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The main result of the next two sections is the following theorem (Γ1(∂)
is the component of B1 ∩ Γ containing B1 ∩ ∂Γ):

Theorem II.1.2 (see Figure 9). Given N, τ > 0, there exist ω > 1, d0

so that the following holds:
Let Γ be a stable embedded minimal annulus with ∂Γ ⊂ B1/4∪∂BR, B1/4∩

∂Γ connected, and R > ω2. Given a point z1 ∈ ∂B1 ∩ ∂Γ1(∂), then (after a
rotation of R3) either (1) or (2) below holds:

(1) Each component of BR/ω ∩ Γ \ Bω is a graph with gradient ≤ τ .

(2) Γ contains a graph Γ−Nπ,Nπ
ω,R/ω with gradient ≤ τ and distΓ\Γ1(∂)(z1,Γ

0,0
ω,ω)

< d0.

B1

z1

Bω BR/ω

Interior boundary B1/4 ∩ ∂Γ.

Γ contains a large “flat region” between
Bω and BR/ω. Since Γ is embedded,
this either (1) closes up to give a graphical
annulus or (2) spirals to give an N -valued graph.

Figure 9: Theorem II.1.2: Embedded stable annuli with small interior bound-
ary contain either: (1) a graphical annulus, or (2) an N -valued graph away
from its boundary.

Note that if Γ is as in Theorem II.1.2 and one component of BR/ω ∩Γ\Bω

contains a graph over DR/(2ω) \D2ω with gradient ≤ 1, then every component
of

BR/(Cω) ∩ Γ \ BCω

is a graph for some C > 1. Namely, embeddedness and the gradient estimate
(which applies because of stability) would force any nongraphical component
to spiral indefinitely, contradicting that Γ is compact. Thus it is enough to
find one component that is a graph. This will be used below.

We will eventually show in Section II.3 that (2) in Theorem II.1.2 does
not happen; thus every component is a (single-valued) graph. This will easily
give Theorem 0.3.
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γ1(0) γ1

σ1

n Σ0

γ2(0)

Geodesics.

γ2

∂Σ0 \ (σ1 ∪ γ1 ∪ γ2)

Figure 10: The subdomain Σ0 ⊂ Σ in Lemma II.1.3 and below.

See Figure 10. Throughout this section (except in Corollary II.1.34):

• Σ ⊂ R3 will be an embedded minimal planar domain (if the domain is
stable, then we use Γ instead of Σ).

• Σ0 ⊂ Σ will be a subdomain.

• γ1, γ2, σ1 ⊂ ∂Σ0 will be curves (γ1, γ2 geodesics) so that γ1 ∪ γ2 ∪ σ1 is
a simple curve and γi(0) ∈ σ1.

(By a geodesic we will mean a curve with zero geodesic curvature. This def-
inition of geodesic is needed when the curve intersects the boundary of the
surface.) Below we will sometimes require one or more of the following prop-
erties:

(A) distΣ(γi(t), σ1) ≥ t − C0 for 0 ≤ t ≤ Length(γi).

(B) ∂n|x| ≥ 0 along σ1 (where n is the inward normal to ∂Σ0).

(C) γ1 ⊥ σ1, γ2 ⊥ σ1 (i.e., angle π/2).

(D) distΣ0(σ1, ∂Σ0 \ (σ1 ∪ γ1 ∪ γ2)) ≥ � (thus � ≤ Length(γi)).

Note that if σ1 ⊂ ∂B1 (and Σ0 is leaving B1 along σ1), then (B) is auto-
matically satisfied.

The main component of the proof of Theorem II.1.2 is Proposition II.1.20
below which shows that certain stable sectors have subsectors with small total
curvature. To show this, we will use an argument in the spirit of [CM2], [CM4]
to get good curvature estimates for our nonstandard stable domains. As in
[CM2], [CM4], to estimate the total curvature we show first an area bound.
That is, we being with the following lemma (here kg is the geodesic curvature
of σ1):

Lemma II.1.3. Let Γ0 = Γ ⊂ R3 be stable and satisfy (A) for C0 = 0,
(C), (D). If 0 ≤ χ ≤ 1 is a function on Γ0 which vanishes on each γi, then for
1 < R < �
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Area(TR(σ1,Γ0))≤C R2

∫
σ1

|kg| + C R Length(σ1)(II.1.4)

+C R2

(∫
T1(σ1,Γ0)

(1 + |A|2) +
∫
TR(σ1,Γ0)

|∇χ|2

+
∫
TR(σ1,Γ0)∩{χ<1}

|A|2
)

.

Proof. Set Ts,t = Ts,t(σ1,Γ0) and r = distΓ(σ1, ·). Define a (radial) cut-off
function φ by

φ =


r on T1 ,

(R − r)/(R − 1) on T1,R ,

0 otherwise .

(II.1.5)

By the stability inequality applied to φ χ and the inequality, 2ab ≤ a2 + b2,∫
T1,R

|A|2 [(R − r)/(R − 1)]2(II.1.6)

≤
∫

|A|2 φ2 ≤ 2
∫

|∇φ|2 + 2
∫
TR

|∇χ|2 +
∫
TR∩{χ<1}

|A|2

≤ 2Area (T1) + 2(R − 1)−2 Area (T1,R)

+2
∫
TR

|∇χ|2 +
∫
TR∩{χ<1}

|A|2 .

Set K(s) =
∫
T1,s

|A|2. By the co-area formula and integrating (II.1.6) by parts
twice, we get

2 (R − 1)−2

∫ R

1

∫ t

1
K(s)ds dt≤ 2/(R − 1)

∫ R

1
K(s)(R − s)/(R − 1)ds(II.1.7)

≤
∫ R

1
K ′(s) ((R − s)/(R − 1))2ds

≤ 2Area (T1) + 2(R − 1)−2 Area (T1,R)

+2
∫
TR

|∇χ|2 +
∫
{χ<1}

|A|2 .

Given y ∈ σ1, let γy : [0, ry] → Γ be the (inward from ∂Γ) normal geodesic
up to the cut-locus of σ1 (so distΓ(σ1, γy(ry)) = ry) and Jy the corresponding
Jacobi field with Jy(0) = 1 and J ′

y(0) = kg(y). Set Ry = min{ry, R}. By the
Jacobi equation,∫ Ry

0
Jy(s) ds = R2

y kg(y)/2(II.1.8)

+Ry −
∫ Ry

0

∫ t

0

∫ s

0
KΓ(γy(τ))Jy(τ) dτ ds dt .



538 TOBIAS H. COLDING AND WILLIAM P. MINICOZZI II

If Ry < R, then we extend Jy(τ), Ky(τ) = KΓ(γy(τ)) to functions J̃y, K̃y on
[0, R] by setting

J̃y and K̃y =

{
Jy and K̃y on [0, Ry] ,
0 otherwise .

(Obviously, if Ry = R, then J̃y = Jy and K̃y = Ky.) Since KΓ = −|A|2/2 (in
particular, is ≤ 0), by (II.1.8)∫ Ry

0
Jy(s) ds ≤ R2 |kg(y)|/2 + R −

∫ R

0

∫ t

0

∫ s

0
K̃y(τ) J̃y(τ) dτ ds dt .(II.1.9)

Since K(s) = −2
∫
σ1

∫ s
1 K̃y(τ) J̃y(τ) dτ dy (this uses (C)), integrating (II.1.9)

over σ1 gives

Area (TR)≤ R2

2

∫
σ1

|kg| + R Length(σ1)(II.1.10)

+
∫ R

1

∫ t

1

K(s)
2

ds dt +
R2

2

∫
T1

|A|2 .

(Here we also used
∫ R
0

∫ t
0 f(s) ds dt ≤

∫ R
1

∫ t
1 [f(s)−f(1)] ds dt+R2 f(1) for the

nondecreasing function f(t) =
∫
Tt
|A|2 ≥ 0.) Combining (II.1.7) and (II.1.10)

gives (II.1.4).

To apply Lemma II.1.3, we will need to replace a given curve, in a minimal
disk, by a curve lying within a fixed tubular neighborhood of it and with
length and total geodesic curvature bounded in terms of the area of the tubular
neighborhood as in the following lemma:

Lemma II.1.11 (see Figure 11). If Σ ⊂ R3 is an immersed minimal
disk, ∂Σ = γ1 ∪ γ2 ∪ σ1 ∪ σ2, the γi’s are geodesics with

2 ≤ Length(γi) = distΣ(σ2 ∩ γi, σ1) and 1 ≤ distΣ(σ1, σ2) ,

then there exists a simple curve σ̌1 ⊂ T1/64,1/4(σ1) connecting γ1 to γ2 and with

Length(σ̌1) +
∫

σ̌1

|kg| ≤ C1 (1 + Area (T1/4(σ1))) .(II.1.12)

Moreover, σ̌1 can be chosen to intersect γi orthogonally so that Length(γ̌i) =
distΣ(σ2∩γi, σ̌1), where γ̌i denotes the component of γi\σ̌1 which intersects σ2.

Proof. We will do this in three steps. First, we use the co-area formula to
find a level set of the distance function with bounded length. Local replacement
then gives a broken geodesic with the same length bound and a bound on the
number of breaks. Third, we find a simple subcurve and use the Gauss-Bonnet
theorem to control the number of breaks.
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γ1

σ1
σ̌1

γ2

σ2

Each γi is minimizing from γi ∩ σ2 to σ1.

Figure 11: Lemma II.1.11: Connecting γ1 and γ2 by a curve σ̌1 with length
and total curvature bounded.

Set r(·) = distΣ(σ1, ·). By the co-area formula applied to (a regularization
of) r, there exists d0 between 1/16 and 3/32 with

Length({r = d0}) ≤ 32 Area(T1/8(σ1))

and so that {r = d0} is transverse. Since the level set {r = d0} separates σ1

and σ2, a component σ̃ of {r = d0} goes from γ1 to γ2.
Parametrize σ̃ by arclength and let

0 = t0 < · · · < tn = Length(σ̃)

be a subdivision with ti+1−ti ≤ 1/32 and n ≤ 32 Length(σ̃)+1. Since B1/32(y)
is a disk for all y ∈ σ̃, it follows that we can replace σ̃ with a broken geodesic
σ̃1 (with breaks at σ̃(ti) = σ̃1(ti)) which is homotopic to σ̃ in T1/32(σ̃). We can
assume that σ̃1 intersects the γi’s only at its endpoints.

Let [a, b] be a maximal interval so that σ̃1|[a,b] is simple. We are done if
σ̃1|[a,b] = σ̃1. Otherwise, σ̃1|[a,b] bounds a disk in Σ and the Gauss-Bonnet the-
orem implies that σ̃1|(a,b) contains a break. Hence, replacing σ̃1 by σ̃1 \ σ̃1|(a,b)

gives a subcurve from γ1 to γ2 but does not increase the number of breaks.
Repeating this eventually gives a simple subcurve with the same bounds for
the length and the number of breaks. Smoothing this at the breaks gives the
desired σ̌1.

Finally, since γi minimizes distance from γi ∩ σ2 to σ1, it follows easily by
adding segments in γ1, γ2 to σ̌1 and then perturbing infinitesimally near γ1, γ2

that we can choose σ̌1 to intersect γi orthogonally and so each γ̌i minimizes
distance back to σ̌1; this gives at most a bounded contribution to the length
and total curvature.

We will also need a version of Lemma II.1.11 where σ is a noncontractible
curve (cf. Lemma 1.21 in [CM4]). This version is the following lemma:

Lemma II.1.13. Let Σ ⊂ R3 be an immersed minimal planar domain and
σ = B1 ∩ ∂Σ a simple closed curve with

distΣ(σ, ∂Σ \ σ) > 1 .
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Then there exists a simple noncontractible curve σ̌ ⊂ T1/32,1/4(σ) with

Length(σ̌) +
∫

σ̌
|kg| ≤ C1 (1 + Area (T1/4(σ))) .(II.1.14)

Proof. Following the first two steps of the proof of Lemma II.1.11 (with
the obvious modifications), we get a simple closed broken geodesic σ̃1 which is
noncontractible with length and the number of breaks ≤ C Area (T1/4(σ)).

As in the third step of the proof of Lemma II.1.11, let σ̃1|[a,b] be a maximal
simple subcurve. It follows that σ̃1|[a,b] is closed (and has at most one more
break than σ̃1). If σ̃1|[a,b] is noncontractible, then we are done. Otherwise, if
σ̃1|[a,b] bounds a disk, then we apply the Gauss-Bonnet theorem to see that
σ̃1|(a,b) contains a break and proceed as in the proof of Lemma II.1.11.

In Proposition II.1.20 below, we will also need a lower bound for the
area growth of tubular neighborhoods of a curve. To get such a bound, it is
necessary that the curve not be completely “crumpled up.” This will follow
when

(t + C0) (t + 1) ≤ δ Area(T1(σ1)) .

The lower bound for the area growth of tubular neighborhoods needed in
Proposition II.1.20 is the following:

Lemma II.1.15. Let Σ0 = Σ satisfy (A), (B) and (D). If σ1 ⊂ B1, 1 ≤
s < t ≤ � and

(t + C0) (t + 1) ≤ δ Area(T1(σ1)) ,

then

(t + 1)2δ−2 Area(Tt(σ1)) ≥ (s + 1)2δ−2 Area (Ts(σ1)) .(II.1.16)

Proof. Set Tt = Tt(σ1) and define the “length function” L(s) by

L(s) =
∫

∂Ts\∂Σ
1 .

By minimality, Stokes’ theorem, (A), (B) and distΣ(σ1, x) + 1 ≥ |x|, we get
that

4 Area (Ts) =
∫
Ts

∆ |x|2 ≤ 2 (s + 1)L(s) + 4 (s + C0) (s + 1) .(II.1.17)

By the co-area formula, (Area (Ts))′ = L(s) for almost every s. Hence, for
almost every s with distΣ(σ1, σ2) ≥ s ≥ 1,

(log Area (Ts))′ ≥
2

s + 1
− 2 (s + C0)

Area(Ts)
≥ 2 (1 − δ)

s + 1
.(II.1.18)

Since Area(Ts) is a monotonic function of s, a standard argument then gives
(II.1.16).
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Remark II.1.19. In the special case of Lemma II.1.15 where Σ is an an-
nulus with ∂Σ = σ1 ∪ σ2, i.e., where γi = ∅ and σ1, σ2 are closed, the proof
simplifies in an obvious way and δ can be chosen to be zero.

We are now ready to apply Lemma II.1.3 and to use the logarithmic cut-
off trick to show that certain stable sectors have small curvature. This is the
following proposition:

Proposition II.1.20. Let Γ0 ⊂ Γ ⊂ R3 satisfy (A) (with C0 = 0), (B),
(D), and

distΓ(Γ0, ∂Γ) > 1/4 .

Suppose that Γ is stable, ω > 2, � > R0 > ω2, and σ1 ⊂ B1. If Γ0 is a disk and

4 R2
0 (R0 + 1) ≤ Area(T1(σ1,Γ0)) ,

then for ω2 ≤ t ≤ R0,

Area (T2(σ1,Γ0)) t2/C ≤ Area(Tω,t(σ1,Γ0)) ≤ C Area (T2(σ1,Γ0)) t2 ,

(II.1.21)

∫
Tω,R0/ω(σ1,Γ0)

|A|2 ≤ C R0 +
C

log ω
Area (T2(σ1,Γ0)) .(II.1.22)

Proof. Define a function χ on Γ0 by

χ =

{
2 distΓ(γ1 ∪ γ2, ·) on T1/2(γ1 ∪ γ2) ,

1 otherwise .
(II.1.23)

We will use χ to cut-off on the sides γ1, γ2. Using the estimates for stable
surfaces of [Sc], [CM2], and distΓ(Γ0, ∂Γ) > 1/4, we get∫

T2(σ1,Γ0)
(1 + |A|2) ≤ C1 Area(T2(σ1,Γ0)) ,(II.1.24)

2
∫
TR0 (σ1,Γ0)

|∇χ|2 +
∫
TR0 (σ1,Γ0)∩{χ<1}

|A|2 ≤ C1 R0(II.1.25)

≤ C1 Area(T1(σ1,Γ0)) .

Since σ1 ⊂ ∂Γ0 satisfies (A) with C0 = 0 and (D), Lemma II.1.11 gives a simple
curve σ̌1 (and γ̌1, γ̌2) satisfying (A) with C0 = 0, (C), (D), and (II.1.12); let
Γ̌0 ⊂ Γ0 be the component of Γ0 \ σ̌1 containing σ2. By the triangle inequality,
we have

Tt(σ̌1,Γ0) ⊂ Tt+1/4(σ1,Γ0) ⊂ Tt+1/4(σ̌1, Γ̌0) ∪ (Γ0 \ Γ̌0) .(II.1.26)
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Note that Γ0 \ Γ̌0 is a disk with boundary

σ1 ∪ σ̌1 ∪ (γ1 \ γ̌1) ∪ (γ2 \ γ̌2) .

Hence, by minimality, Stokes’ theorem, (B), |x| ≤ 5/4 on ∂(Γ0 \ Γ̌0), and
(II.1.12), we get

4 Area(Γ0 \ Γ̌0) =
∫

Γ0\Γ̌0

∆|x|2 ≤ 2
∫

σ̌1∪(γ1\γ̌1)∪(γ2\γ̌2)
|x|(II.1.27)

≤ C ′
1 Area(T1(σ1,Γ0)) .

Inserting (II.1.24), (II.1.25) into Lemma II.1.3 applied to σ̌1 and using (II.1.12),
(II.1.26), (II.1.27), for 2 ≤ t ≤ R0, we get

Area(Tt(σ1,Γ0)) ≤ C2 Area (T2(σ1,Γ0)) t2 ,(II.1.28)

which gives the second inequality in (II.1.21). Set Tt = Tt(σ1,Γ0) (define Ts,t

similarly) and set L(t) =
∫
∂Tt\∂Γ0

1. By (II.1.28), the co-area formula, and
integration by parts, we get∫ R0

R0/ω
L(t) t−2dt =

[
Area(TR0/ω,t) t−2

]R0

R0/ω
(II.1.29)

+ 2
∫ R0

R0/ω
Area(TR0/ω,t) t−3 dt

≤C2 (1 + 2 log ω) Area (T2) ≤ C3 log ω Area (T2) ,∫ ω

1
L(t) t−2dt ≤Area(T1,ω) ω−2 + 2

∫ ω

1
Area(T1,t) t−3 dt(II.1.30)

≤C3 log ω Area (T2) .

Define a (radial) cut-off function η by

η =


log distΓ0(σ1, ·)/ log ω on T1,ω ,

1 on Tω,R0/ω ,

[log R0 − log distΓ0(σ1, ·)] / log ω on TR0/ω,R0
.

(II.1.31)

Using the bounds (II.1.29) and (II.1.30), we get∫
|∇η|2 =

∫
T1,ω

|∇η|2 +
∫
TR0/ω,R0

|∇η|2(II.1.32)

≤ 1
(log ω)2

∫ ω

1

L(t)
t2

dt +
1

(log ω)2

∫ R0

R0/ω

L(t)
t2

dt

≤ C3 Area (T2)
log ω

.
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Substituting η χ into the stability inequality, we get using (II.1.25) and (II.1.32)
that ∫

Tω,R0/ω

|A|2 ≤
∫
TR0∩{χ<1}

|A|2 + 2
∫
TR0

|∇χ|2 + 2
∫

|∇η|2(II.1.33)

≤ C1 R0 +
2 C3 Area (T2)

log ω
.

Finally, Lemma II.1.15 (and (II.1.28) for t = ω) gives the first inequality in
(II.1.21).

We will prove Theorem II.1.2 by considering two separate cases depending
on the area of T1(σ):

• When Area(T1(σ)) is small, the next corollary will show that (1) of The-
orem II.1.2 holds.

• When Area(T1(σ)) is large, we will show in the next section, using Corol-
lary II.1.45 below, that (2) of Theorem II.1.2 holds.

Corollary II.1.34. Given Ca, there exists Ωa > 4 so that the following
holds:

Let Γ ⊂ R3 be a stable embedded minimal planar domain, σ = B1 ∩ ∂Γ
connected, and distΓ(σ, ∂Γ \ σ) > R. If R > Ω2

a and

Area(T1(σ)) ≤ Ca ,

then Γ contains a graph Γg (after a rotation) over DR/Ωa
\ DΩa

with gradient
≤ 1 and distΓ(σ, Γg) ≤ 2 Ωa.

Proof. Lemma II.1.13 gives a simple closed noncontractible curve σ̌ ⊂
T1/32,1/4(σ) with

Length(σ̌) +
∫

σ̌
|kg| ≤ C1 [Area (T1(σ)) + 1] .

Since Γ is a planar domain, σ̌ separates in Γ; let Γ̌ be the component of Γ \ σ̌

which does not contain σ. By Lemma II.1.3 (which applies with χ ≡ 1 since
γ1 = γ2 = ∅), we get for 1 ≤ t ≤ R

Area(Tt(σ̌, Γ̌)) ≤ C (Ca + 1) t2 .(II.1.35)

Given Ω > 4, by (II.1.35) and the logarithmic cut-off trick in the stability
inequality (cf. (II.1.33)), we get that∫

TΩ/2,2R/Ω(σ̌,Γ̌)
|A|2 ≤ C2 (Ca + 1)/ log Ω .
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Combining this with (II.1.35) and the Cauchy-Schwarz inequality give for
Ω/2 ≤ t ≤ R/Ω∫

Tt,2t(σ̌,Γ̌)
|A| ≤

(
Area(T2t(σ̌, Γ̌))

∫
TΩ/2,2R/Ω(σ̌,Γ̌)

|A|2
)1/2

(II.1.36)

≤ C3 (Ca + 1) t

(log Ω)1/2
.

Applying the co-area formula on Tt,2t for t = Ω/2, R/Ω, we see that (II.1.36)
gives a (possibly disconnected) planar domain

Γ0 ⊂ TΩ/2,2R/Ω(σ̌, Γ̌)

with TΩ,R/Ω(σ̌, Γ̌) ⊂ Γ0, ∂Γ0 = ∪n
i=1σi, and

n∑
i=1

∫
σi

|A| ≤ C3 (Ca + 1)
(log Ω)1/2

.(II.1.37)

We now fix a large constant Ω = Ω(Ca) > 4 so that

C2 (Ca + 1)/ log Ω < π ,

C3 (Ca + 1) (log Ω)−1/2 < 1/4 .

Since the Gauss map is conformal, the L2 curvature bound on Γ0 and the
L1 bound on ∂Γ0 imply that the unit normal nΓ is almost constant on each
component of Γ0. To be precise, proposition 1.12 of [CM7] implies that on
each component Γk

0 of Γ0 we get

nΓ(Γk
0) ⊂ B1/2(ak) ,

where each ak is a point in the unit sphere. In particular, the unit normal to
each component of Γ0 is almost constant and, hence, Γ0 is a either a graph or
a multi-valued graph. Since Γ is embedded, the corollary now follows easily
(cf. lemma 1.10 in [CM4]).

We construct next from curves σ1, γ1, γ2 in a stable surface the desired
multi-valued graph. (The existence of the curves σ1, γ1, γ2 will be established
in the next section.) First we need two lemmas. The first of these is the
following:

Lemma II.1.38. Given C1, ε0 > 0, there exists ε1 > 0 so that if B1 ⊂ Σ
is minimal with

sup
B1/2

|A|2 ≤ ε1 and sup
B1

|A|2 ≤ C1 ,

then
sup
B3/4

|A|2 ≤ ε0 .
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Proof. Suppose not; it follows that there is a sequence Σj of minimal
surfaces with

sup
B1/2

|A|2 ≤ 1/j ,

sup
B1

|A|2 ≤ C1 ,

sup
B3/4

|A|2 > ε0 > 0 .

The uniform bound supB1
|A|2 ≤ C1 (and standard elliptic estimates) gives

a subsequence which converges in C2,α to a limit Σ∞. It follows that Σ∞ is
minimal, |A|2 = 0 on B1/2, and

sup
B3/4

|A|2 ≥ ε0 > 0 .

By unique continuation, Σ∞ is flat contradicting that supB3/4
|A|2 ≥ ε0 > 0.

The next lemma will be applied both when Γ is an annulus and when Γ
has boundary on the sides. When Γ is an annulus, the condition (II.1.40) will
be trivially satisfied and it will be possible for Γ to contain a graph instead of
a multi-valued graph.

Lemma II.1.39. Given N, S0 > 4, ε > 0, there exist Cb > 1, δ > 0 so
that the following holds:

Let Γ ⊂ R3 be a stable embedded minimal surface and σ = B1 ∩ ∂Γ. If
γ : [0, S0] → Γ is a geodesic so that for 0 ≤ t ≤ S0 we have

distΓ(γ(t), σ) = t ,(II.1.40)

sup
BS0/16(γ(S0))

|A|2 ≤ δ S−2
0 ,

distΓ\Tt/8(σ)(γ(t), ∂Γ) ≥ Cb t ,

then (after a rotation of R3) Γ contains either

• An N -valued graph Γ−Nπ,Nπ
2,S0/2 with γ(4) ∈ Γ−π,π

2,5 or

• A graph Γ2,S0/2 with γ(4) ∈ Γ2,5.

In either case, the graph has gradient ≤ ε and |A| ≤ ε/r.

Proof. Combining estimates for stable surfaces of [Sc], [CM2] and (II.1.40),
gives for 0 ≤ t ≤ S0

sup
Bt/2(γ(t))

|A| ≤ C0 t−1 .(II.1.41)
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Bs0/16(γ(s0)) is “very flat.”

σ
γ

First apply Lemma II.1.38 along
a chain of balls centered on γ

to bound |A|2 near γ.

Figure 12: The proof of Lemma II.1.39: Repeatedly applying Lemma II.1.38
along chains of balls builds out a “flat” region in Γ.

Fix δ0 > 0 to be chosen small depending on S0. Using (II.1.41) and repeatedly
applying Lemma II.1.38 along a chain of balls with centers in γ, see Figure 12,
there exists

δ1 = δ1(S0, δ0, C0) > 0

so that if δ ≤ δ1, then for 1 ≤ t ≤ S0

sup
Bt/32(γ(t))

|A| ≤ δ0 t−1 .(II.1.42)

Since γ is a geodesic in Γ, (II.1.42) gives the bound

kR3

g (t) ≤ δ0 t−1

for the geodesic curvature of γ in R3. It follows that for 1 ≤ t ≤ S0

|nΓ(γ(t)) − nΓ(γ(1))| + |γ′(t) − γ′(1)| ≤ 2δ0

∫ S0

1

ds

s
≤ 2δ0 log S0 ;(II.1.43)

i.e., γ is C1-close to a straight line segment in R3 and nΓ is almost constant on
γ. Rotate so that γ′(1) = (1, 0, 0) (i.e., so that γ′(1) points in the x1-direction).
For δ0 > 0 small, (II.1.43) (and γ(0) ∈ B1) implies that for 1 ≤ t ≤ S0

3t/4 − 2 ≤ x1(γ(t)) ≤ 1 + t .(II.1.44)

We will now argue as in (II.1.41) and (II.1.42) to extend the region where
Γ is graphical, this time using balls centered on cylinders (i.e., building out the
multi-valued graph in the θ direction). Suppose now that 4 ≤ s ≤ S0/2 and

y0,s = {x2
1 + x2

2 = s2} ∩ γ .

Using (II.1.42), we see that BC2s(y0,s) is a graph with gradient ≤ C ′
2 δ0 over

nΓ(y0,s). In particular, also using (II.1.43), ∂BC2s(y0,s) contains a point

y1,s ∈ {x2
1 + x2

2 = s2} .

Using Lemma II.1.38, we can therefore repeat this to find y2,s, etc. It follows
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from (II.1.40) that we can continue this until Γ either closes up (giving a graph)
or we have the desired N -valued graph Γ−Nπ,Nπ

2,S0/2 , with gradient ≤ ε, |A| ≤ ε/r,
which contains γ(4).

In the next corollary Γ ⊂ B2R ⊂ R3 will be a stable embedded minimal
annulus with

∂Γ ⊂ B1/4 ∪ ∂B2R

where B1 ∩ ∂Γ is connected and suppose Γ0 ⊂ Γ is a disk satisfying (A) for
C0 = 0, (B), (D). Let σ = B1 ∩ ∂Γ so that σ1 ⊂ σ and σ is a simple closed
curve. Assume also that the following strengthening of (A) holds:

(A′) distΓ(γi(t), σ) = t for 0 ≤ t ≤ Length(γi).

Corollary II.1.45 (see Figure 13). Given N, ε > 0, there exist ω0,
R0 > 1 so that if Γ and Γ0 are as above, and

Area(T1(σ1)) ≥ 4 R2
0 (R0 + 1) ,

then (after a rotation of R3) Γ contains an N -valued graph Γ−Nπ,Nπ
ω0,R/ω0

with
gradient ≤ ε, |A| ≤ ε/r, and

distΓ(z1,Γ0,0
ω0,ω0

) < 2 ω0 + C1 Area(T1(σ1,Γ)) .(II.1.46)

Stable Γ

Long curve σ1

The sector over σ1 contains
an N -valued graph.

.

Figure 13: Corollary II.1.45: A stable tubular neighborhood of a long curve σ1

contains an N -valued graph Γ−Nπ,Nπ
ω0,R/ω0

.

Proof. Proposition II.1.20 gives C so that for ω ≤ t ≤ R0/ω (where ω > 4
and R2

0 > 2ω2)

Area (T2(σ1,Γ0)) t2/C ≤ Area(Tω,t(σ1,Γ0)) ,(II.1.47) ∫
Tω,R0/ω(σ1,Γ0)

|A|2 ≤ C

log ω
Area (T2(σ1,Γ0)) .(II.1.48)
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(Here we also used Area(T1(σ1)) ≥ 4 R2
0 (R0 + 1) in (II.1.48).) Set S = ω.

Choose a maximal disjoint collection of balls BS/4(y1), . . . ,BS/4(yn) with cen-
ters in TS,2S(σ1,Γ0). Since Γ is an annulus without boundary on the sides and
R0 > 5S/2, it follows from (A′) that

BS/2(yj) ∩ ∂Γ = ∅ .

We will use this twice below. First, since TS,2S(σ1,Γ0) is contained in the union
of the double balls and, by stability (see [CM2]),

π(S/4)2 ≤ Area(BS/4(yj)) ≤ Area(BS/2(yj)) ≤ Cπ S2 ,

we have n ≥ C S−2 Area (TS,2S(σ1,Γ0)). Second, again by stability, [CM2], we
have ∫

TS/4(γ1∪γ2)∩TS/2,3S(σ1)
|A|2 ≤ C .

Combining this with (II.1.47) and (II.1.48), we can find j so that∫
BS/4(yj)

|A|2 < C/ log ω .

Therefore, by the mean value inequality, we have

sup
BS/8(yj)

|A|2 < C S−2/ log ω .

Let γ : [0, �] → Γ be a minimal geodesic from yj to σ1; note that S ≤ �

≤ 2S. Since the sides γ1, γ2 are minimizing (i.e., (A′)), it follows that γ ⊂ Γ0.
Furthermore, since Γ is an annulus, (A′) implies that

distΓ\T1(σ)(γ(�), ∂Γ) ≥ R/2 .(II.1.49)

In particular, given ω1, N1 > 1 and and ε1 > 0, there exists ω (and hence R0)
large so that we can apply Lemma II.1.39 to get either a graph ΓS/ω1,S/2 or an
initial multi-valued graph Γ−N1π,N1π

S/ω1,S/2 with gradient ≤ ε1, |A| ≤ ε1/r, and

γ(4S/ω1) ∈ Γ−π,π
2S/ω1,5S/ω1

.

However, since
Area(T1(σ1)) ≥ 4 R2

0 (R0 + 1) ,

Γ cannot contain a graph ΓS/ω1,S/2.
Using Theorem II.0.21 of [CM3], we will next extend Γ−N1π,N1π

S/ω1,S/2 to the

desired N -valued graph Γ−Nπ,Nπ
ω0,R/ω0

. Namely, let P be the vertical plane

P = {x1 = 2S/ω1} .

We claim first that

each component of P ∩ Γ goes off to ∂B2R .
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To see this, note that by the maximum principle, any closed curve in P ∩ Γ
would be homologous to the interior boundary of Γ and together these two
curves would span an annulus in Γ violating the convex hull property (using
the multi-valued graph in Γ to connect this annulus to {x1 = −S/ω1}). It
follows that two of these nodal curves connect the multi-valued graph out to
∂B2R, giving a curve η in Γ with both endpoints in ∂B2R. One component of
Γ \ η is a stable disk which is forced to spiral initially. Therefore, by theorem
II.0.21 of [CM3], this extends to the desired multi-valued graph.

II.2. The minimizing geodesics and the proof of Theorem II.1.2

In Proposition II.2.9 and Corollary II.2.10 below, we will construct the
minimizing geodesics γ1 and γ2 needed for Corollary II.1.45. To do this we will
first need the following lemmas and corollaries (here Tt is the closed tubular
neighborhood and T ◦

t is the open):
The first lemma finds the disk Σ4 and the curve σ4 in Figure 15.

Lemma II.2.1 (see Figures 14 and 15). Let Σ be an annulus with ∂Σ =
σ1 ∪ σ2, where distΣ(σ1, σ2) > � + ε for �, ε > 0 and let E be the connected
component of Σ \ T�(σ1) containing σ2. Let γ1 and γ2 be geodesics with

γi : [0, �] → Σ ,(II.2.2)

distΣ(γi(t), σ1) = t for 0 ≤ t ≤ � ,

γi(�) ∈ E .

If σ3 ⊂ σ1 is a segment connecting γ1(0) and γ2(0), then there exists a curve

σ4 ⊂ T ◦
ε (E) ∩ T ◦

ε (Σ \ E)

connecting γ1(�) and γ2(�) and so σ3∪σ4∪γ1∪γ2 bounds a disk Σ4. Moreover,
σ4 ⊂ T�+ε(σ1) \ T�−ε(σ1).

Proof. First, note that γ1(�), γ2(�) ∈ E∩Σ \ E and by definition E, hence
T ◦

ε (E), is connected. Moreover, if x ∈ Σ \ E and γ : [0, �γ ] → Σ is a geodesic
with γ(�γ) = x and distΣ(γ(t), σ1) = t for 0 ≤ t ≤ �γ , then γ ∩ E = ∅. Hence,
also Σ\E and T ◦

ε (Σ\E) are connected. Since σ1 ⊂ T ◦
ε (Σ\E) and σ2 ⊂ T ◦

ε (E),
applying van Kampen’s theorem to

Σ = T ◦
ε (Σ \ E) ∪ T ◦

ε (E)

gives that T ◦
ε (E)∩T ◦

ε (Σ \E) is path-connected and has fundamental group Z
which injects into π1(Σ). In particular, we get simple curves

σ4,1, σ4,2 ⊂ T ◦
ε (E) ∩ T ◦

ε (Σ \ E)
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T�(σ1) σ2

E

σ1

Σ \ T�(σ1) can have
several components.

Figure 14: The set E in Lemma
II.2.1.

E

σ1

γ1

σ3

σ4

γ2(�)

Disk Σ4.

σ2

γ2

T�(σ1)

Figure 15: In an annulus Σ with ∂Σ =
σ1 ∪ σ2, given geodesics γ1, γ2 and a
curve σ3 ⊂ σ1 connecting γ1(0) and
γ2(0), Lemma II.2.1 finds a disk Σ4

with ∂Σ4 = σ3∪σ4∪γ1∪γ2 where each
point in σ4 is almost distance � from σ1.

connecting γ1(�) to γ2(�) so that σ4,1 ∪ σ4,2 is homologous to σ1. Fix Σ0 ⊂ Σ
with

∂Σ0 = σ1 ∪ (σ4,1 ∪ σ4,2) .

The curve σ3 ∪ γ1 ∪ γ2 divides Σ0 into two components, one of which is a disk
with σ3, γ1, γ2, and either σ4,1 or σ4,2 in its boundary.

Finally, since σ4 ⊂ T ◦
ε (E) it follows that σ4 ⊂ Σ \ T�−ε(σ1). Likewise it

follows from the fact that

σ4 ⊂ T ◦
ε (E) ∩ T ◦

ε (Σ \ E)

and the triangle inequality that σ4 ⊂ T�+ε(σ1).

The next corollary finds the geodesic γ3 between γ1 and γ2 in Figure 16.

Corollary II.2.3 (see Figure 16). Let Σ, E, σ1, σ2, σ3, γ1, γ2 be as in
Lemma II.2.1.

If γ1(�) �= γ2(�), then there exists a geodesic γ3 different from γ1, γ2,
intersecting σ3, and satisfying (II.2.2).

Proof. Let η ⊂ Σ \ (γ1 ∪ γ2) be a simple curve from σ3 to σ2 so that
η ∩ σ1 ⊂ η ∩ σ3 is one point. Fix µ > 0 with 3µ < distΣ(γ1 ∪ γ2, η). For ε > 0
small (in particular, ε < distΣ(σ1, σ2) − �), let σε,4, Σε,4 be given by Lemma
II.2.1. Let ηε be the component of η ∩ Σε,4 intersecting σ3 and let

γε,3 : [0, �ε] → Σ
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E γ1 γ3 γ2(�)
σ3

γ2σ1

T�(σ1)

σ2

Geodesic minimizing back to σ1.

Figure 16: Corollary II.2.3: Finding a geodesic γ3 satisfying (II.2.2) between
two other geodesics γ1, γ2.

be a geodesic with γε,3(�ε) = ∂ηε \ σ1 and distΣ(γε,3(t), σ1) = t for 0 ≤ t ≤ �ε.
Since σε,4 ⊂ T�+ε(σ1) \ T�−ε(σ1), we see that

� − ε < �ε ≤ � + ε .

Moreover, by the triangle inequality, if ε < µ, then Bµ(γk(�)) ∩ γε,3 = ∅ for
k = 1, 2, hence

Bµ(γk(�)) ∩ (η ∪ γε,3) = ∅ for k = 1, 2 and ε < µ .

We claim that

ηε ∪ γε,3 ⊂ Tδ(Σ \ E) where δ → 0 as ε → 0 .(II.2.4)

Suppose that (II.2.4) fails; it follows that there exists a sequence εi → 0 and
xi ∈ ηεi

with xi → x, where

xi, x ∈ Σ \ T ◦
δ (Σ \ E) ⊂ E

for some δ > 0. Since E is open and connected, there exists a curve ν ⊂ E from
x to σ2 and so ν ⊂ E \ Tδ0(Σ \ E) for some δ0 = δ0(x) > 0. For i sufficiently
large, we can extend ν to a curve

νi ⊂ E \ Tδ0/2(Σ \ E)

from xi to σ2. However, the curve

γ1 ∪ γ2 ∪ σεi,4 ⊂ Tεi
(Σ \ E)

separates xi from σ2 which is a contradiction for i sufficiently large. Hence,
(II.2.4) holds.

Pick a sequence εi > 0 with εi → 0. After passing to a subsequence, we
can assume that γεj ,3 → γ3. It is clear that γ3 : [0, �] → Σ is a geodesic with
γ3(0) ∈ σ1 \ {γ1(0), γ2(0)}, distΣ(γ3(t), σ1) = t for 0 ≤ t ≤ �, and γ3(�) ∈ E. It
remains to show that γ3(0) ∈ σ3.
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If γ3(0) /∈ σ3, then distΣ(γ3(0), σ3) > 0 (since γ3(0) ∈ σ1 \ {γ1(0), γ2(0)})
and therefore for j large we have

distΣ(γεj ,3(0), σ3) > 0 .

It follows that ηεj
∪ γεj ,3 divides Σ into two components Σεj ,1, Σεj ,2 with

γ1(�) ∈ Σεj ,1 and γ2(�) ∈ Σεj ,2 .

(That γ1(�), γ2(�) are in different components follows from γε,3 ∩ γ1 = ∅ =
γε,3 ∩ γ2 by the triangle inequality.) After possibly switching γ1 and γ2 (and
going to a subsequence), we can assume that σ2 ⊂ Σεj ,2. Note that

Bµ(γ1(�)) ⊂ Σεj ,1

since we showed above that Bµ(γ1(�)) ∩ (η ∪ γε,3) = ∅. We will use this to
contradict that γ1(�) ∈ E. Namely, choose

x ∈ Bµ/2(γ1(�)) ∩ E

(note that such an x exists since γ1(�) ∈ E). Since E is open and connected,
there exists a curve

ν ⊂ E \ Tδ0(Σ \ E)

for some sufficiently small δ0 = δ0(x) > 0 which connect x and σ2. This contra-
dicts (II.2.4) for j sufficiently large since ηεj

∪ γεj ,3 separate Σεj ,1

and σ2.

The next lemma bounds the area of a minimal surface with two sides and
an interior boundary in a small ball in terms of the length of the sides, provided
that the surface “initially leaves” the small ball.

Lemma II.2.5. If Σ ⊂ R3 is an immersed minimal surface with ∂Σ =
γ1 ∪ γ2 ∪ σ where σ ⊂ B1, ∂n|x| ≥ 0 on σ (n is the inward normal to ∂Σ), and
γ1, γ2 have length ≤ �, then

Area(T1(σ)) ≤ 4 � (� + 1) .(II.2.6)

Proof. By minimality, Stokes’ theorem, ∂n|x| ≥ 0 on σ, and |x| ≤ � + 1
on γi,

4 Area(Σ) =
∫

Σ
∆|x|2 ≤ 2

∫
γ1∪γ2

|x| |∂n|x|| ≤ 4 (� + 1) � .(II.2.7)

In what follows, if σ ⊂ ∂Σ is a simple curve, n is the inward normal to σ,
σ̃ is a segment of σ, then (see Figure 17)

Ts(σ̃,n) = {expσ̃(t)(τ n(t)) |distΣ(expσ̃(t)(τ n(t)), σ) = τ ≤ s} .(II.2.8)

In the next proposition and Corollary II.2.10, we will construct the mini-
mizing geodesics γ1, γ2 needed for Corollary II.1.45.
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Σ
Ts(σ̃,n)

n

σ̃σ

Geodesic of length s.

Figure 17: The region Ts(σ̃,n)
in (II.2.8).

E
γ(�)

γ(0)

σ̃

σ

Σ

Figure 18: Proposition II.2.9: Finding
a geodesic γ ⊂ Σ which minimizes back
to the curve σ.

Proposition II.2.9 (see Figure 18). Let Σ ⊂ R3 be an immersed min-
imal annulus, σ ⊂ B1 ∩ ∂Σ a simple closed curve with distΣ(σ, ∂Σ \ σ) > �,
∂n|x| ≥ 0 on σ, and let E be as in Lemma II.2.1. If σ̃ is a segment of σ and

Area(T1(σ̃,n)) > 4 � (� + 1) ,

then there exists a geodesic γ : [0, �] → Σ with distΣ(γ(t), σ) = t for 0 ≤ t ≤ �

and γ(0) ∈ σ̃, γ(�) ∈ E.

Proof. Suppose that there is no such geodesic γ. Let B be the set of
geodesics satisfying (II.2.2) for σ1 = σ. It follows easily that

A = {γ0(0) | γ0 ∈ B}
is a closed subset of σ \ σ̃ containing more than two points. Let σ̂ be the
connected component of σ \ A containing σ̃ (note that σ̂ is open) and let
∂σ̂ = {γ1(0), γ2(0)} where γ1, γ2 are the corresponding minimizing geodesics
of lengths �.

By Corollary II.2.3, γ1(�) = γ2(�). In fact, there exists a subset Σ̂ of Σ
with ∂Σ̂ = γ1 ∪ γ2 ∪ σ̂. Since

Area(T1(σ̂, Σ̃)) ≥ Area(T1(σ̃, Σ̃)) = Area(T1(σ̃,n)) > 4 � (� + 1) ,

it follows from Lemma II.2.5 that A∩ σ̃ �= ∅ which is the desired contradiction;
the proposition follows.

Corollary II.2.10. Let Σ ⊂ R3 be an immersed minimal annulus, σ ⊂
B1 ∩ ∂Σ be a simple closed curve with distΣ(σ, ∂Σ \ σ) > � ≥ 1, ∂n|x| ≥ 0 on
σ, and

Area(T1(σ, Σ)) > 12 �2 (� + 1) .

For each z1 ∈ σ there is a segment σ1 ⊂ σ with z1 ∈ σ1 and geodesics γ1,
γ2 : [0, �] → Σ with {γ1(0), γ2(0)} = ∂σ1,

distΣ(γi(t), σ) = t for 0 ≤ t ≤ � .(II.2.11)
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Moreover, for all ε > 0 a disk Σ0 ⊂ Σ has σ1, γi ⊂ ∂Σ0, distΣ0(∂Σ0 \σ1 ∪ γ1 ∪
γ2) > � − ε,

15 �2 (� + 1) > Area(T1(σ1,Σ0)) > 4 �2 (� + 1) .(II.2.12)

Proof. Let σ1
z1

, σ2
z1

, σ3
z1

be three consecutive (disjoint) subsegments of σ

with z1 ∈ σ2
z1

being the “middle one” so that for each i

5 �2 (� + 1) > Area(T1(σi
z1

,n)) > 4 �2 (� + 1) .(II.2.13)

By Proposition II.2.9 applied to both σ1
z1

and σ3
z1

, we get geodesics γ1, γ2 :
[0, �] → Σ satisfying (II.2.11) and with

γ1(0) ∈ σ1
z1

, γ2(0) ∈ σ3
z1

, and γi(�) ∈ E

(where E is the connected component of Σ \ T�(σ) containing σ2). Let σ1 be
the segment of σ between γ1(0) and γ2(0) containing σ2

z1
. By Lemma II.2.1

there is a disk Σ0 ⊂ Σ with σ1, γ1, γ2 ⊂ ∂Σ0, and

distΣ0(∂Σ0 \ σ1 ∪ γ1 ∪ γ2) > � − ε .

We need to show (II.2.12). Since σ2
z1

⊂ σ1, the lower bound in (II.2.12) follows
easily from (II.2.13). To see the upper bound, observe that if x ∈ T1(σ1,Σ0),
then clearly

distΣ(x, σ) = distΣ0(x, σ1)

and hence

T1(σ1,Σ0) ⊂ ∪i=1,2,3T1(σi
z1

,n) .(II.2.14)

From (II.2.13) and (II.2.14), the upper bound in (II.2.12) follows.

Proof of Theorem II.1.2. Given N , ε, let ω0, R0 be given by Corollary
II.1.45. Set

σ = ∂B1 ∩ ∂Γ1(∂)

and note that ∂n|x| ≥ 0 and B1 ∩ ∂Γ is connected since Γ is an annulus.
Suppose that distΣ(σ, ∂Γ \ σ) > R0. By Corollary II.1.34, (1) holds if

Area(T1(σ)) ≤ 12 R2
0 (R0 + 1) .

(Recall that if one component of BR/ω ∩Γ\Bω contains a graph over DR/(2ω) \
D2ω with gradient ≤ 1, then every component of BR/(Cω) ∩Γ \BCω is a graph
for some C > 1.)

On the other hand if

Area(T1(σ)) > 12 R2
0 (R0 + 1) ,

then it follows from Corollary II.1.45 together with Corollary II.2.10 that (2)
holds.
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Using the fact that the curvature of a 2-valued embedded minimal graph
decays faster than quadratically (this was shown in [CM8]), we show next
(this will be needed in the next section) that such 2-valued graphs contain
minimal geodesics close to the radial curve θ = 0. (In particular, there is
such a geodesic which does not spiral.) In this corollary, Γλω(∂) denotes the
component of Bλω ∩ Γ containing Bλω ∩ ∂Γ.

Corollary II.2.15. There exists λ > 1 so that the following holds:
If Γ is as in Theorem II.1.2, Γ−3π,3π

ω,R/ω is as in (2) of that theorem (with

N ≥ 3, τ ≤ 1), and R > λω2, then there exists a geodesic γ : [0, �] → Γ−π,π
ω,R1/2

with γ(0) ∈ ∂Bλω, � ≥ R1/2/4, and

distΓ(γ(t),Γλω(∂)) = t .

Proof. Fix λ > 1 large to be chosen. Set

r = distΓ−2π,2π

ω,R1/2
(Γ−2π,2π

ω,ω , ·)

and let Γ−3π,3π
ω,R/ω be the graph of u. By Corollary 1.14 of [CM8], on S−2π,2π

ω,R1/2 we
have

ρ |Hessu| ≤ C ′ (ρ/ω)−5/12 .

Hence, on Γ−2π,2π
ω,R1/2 we have

r |A| ≤ C ω5/12 r−5/12 .(II.2.16)

Let γ : [0, �] → Γ be a minimizing geodesic in Γ from (the point) Γ0,0
R1/2/3,R1/2/3

to Γλω(∂), so that for 0 ≤ t ≤ � we get

distΓ(γ(t),Γλω(∂)) = t .

In particular, γ(0) ∈ ∂Γλω(∂) and γ(�) = Γ0,0
R1/2/3,R1/2/3

. Using the radial curve

Γ0,0
ω,R1/2/3

as a comparison (and τ ≤ 1), we see that

Length(γ) = � ≤ R1/2/2 .

Let γ̃ be the maximal segment of γ in Γ−π,π
ω,R1/2 containing γ(�). Since γ̃ is a

geodesic in Γ, (II.2.16) gives the bound

kR3

g (t) ≤ C ω5/12 t−1−5/12

for the geodesic curvature of γ̃ in R3. It follows that for λω ≤ t ≤ �

|γ̃′(t) − γ′(�)| ≤ C ω5/12

∫ ∞

λω
s−17/12 ds ≤ 12 C λ−5/12/5 ;(II.2.17)

i.e., γ̃ is C1-close to a straight line segment in R3. For λ large, (II.2.17) implies
that either

γ̃ ⊂ Γ−3π/4,3π/4
ω,R1/2/2

or γ leaves BR1/2 .
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The latter is impossible since Length(γ) ≤ R1/2/2. We conclude that γ̃ ⊂
Γ−3π/4,3π/4

ω,R1/2/2
. In particular, γ̃ = γ and the corollary follows.

II.3. Area growth of stable sectors and the proof of Theorem 0.3

In this section, we show that case (2) in Theorem II.1.2 does not happen
and thus Theorem 0.3 follows easily. To do that, we first prove upper and lower
bounds for the area of a stable sector over a curve σ1 if the sides γ1, γ2 of the
sector are contained in multi-valued graphs Σ1,Σ2. By [CM8], the number of
sheets of each Σi grows at least like log2 ρ, giving the lower area bound

Area ≥ ρ2 log2 ρ

when the Σi’s are disjoint. We use this growing number of sheets to construct
a function χ, with small energy, which vanishes on the sides γ1, γ2. Inserting
χ in Lemma II.1.3 gives the upper area bound

Area ≤ ρ2(C + log log ρ)

(where C = C(σ1)). If ρ is large depending on C, then these bounds are
contradictory and hence the Σi’s cannot be disjoint.

We will use several times the fact that, given α > 0, Proposition II.2.12
of [CM3] gives Ng > 0 so that if u satisfies the minimal surface equation on

S
−Ng,2π+Ng

e−Ng ,eNg R

with |∇u| ≤ 1, and w < 0 (where w is the separation), then on S0,2π
1,R ,

ρ |Hessu| + ρ |∇w|/|w| ≤ α .

Theorem 3.36 of [CM7] then yields

|∇u −∇u(1, 0)| ≤ Cα .

We can therefore assume (after rotating so that ∇u(1, 0) = 0) that

|∇u| + ρ |Hessu| + 4 ρ |∇w|/|w| + ρ2 |Hessw|/|w| ≤ ε < 1/(2π) .(II.3.1)

The bound on |Hessw| follows from the other bounds and standard elliptic
theory.

The next lemma shows that an embedded multi-valued minimal graph in
a concave cone (intersected with cylindrical shells; see Figure 19)

CΛ,R(h) = {x | (x3 − h)2 ≤ Λ2 (x2
1 + x2

2) , 1/4 ≤ x2
1 + x2

2 ≤ R2}(II.3.2)

has at least log2 ρ many sheets. Note that the axis of the cone CΛ,R(h) is the
x3-axis and the vertex is (0, 0, h). We will only need log ρ sheets for most of
what follows, except for the lower bound for the area given in Corollary II.3.16
below.
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(x3 − h)2 = Λ2(x2
1 + x2

2)

x3 = h

1/2

CΛ,R(h)
R

Figure 19: The truncated cone
CΛ,R(h).

Multi-valued graph Σ.

C8πε,R(0)

To get to ∂Σ from the middle
sheet over ∂Dρ, Σ must
rotate at least log2 ρ times.≈

Figure 20: Lemma II.3.3: It takes at
least ≈ log2 ρ rotations for a multi-
valued graph to spiral out of the cone
C8 π ε,R(0).

Lemma II.3.3 (see Figure 20). Given ε > 0, there exist 0 < C1 < 1 and
C2 so that the following holds:

Let Σ ⊂ C8 π ε,R(0) with ∂Σ ⊂ ∂C8 π ε,R(0) be a minimal multi-valued graph
of u with w < 0 and u(1, 0) = 0. If the domain of u contains S−2π,2π

1/2,R and u

satisfies (II.3.1), then Σ contains a (multi -valued) graph over

{(ρ, θ) | |θ| ≤ C1 log2 ρ + π, 1 ≤ ρ ≤ R3/4/2}(II.3.4)

with

ρ2 |A|2 ≤ C2 ρ−5/18 .(II.3.5)

Proof. Corollary 1.14 of [CM8] gives on S−π,π
1,R3/4 that

ρ2 |Hessu(ρ, θ)|2 ≤ C ρ−5/18 ,(II.3.6)

directly giving (II.3.5) for |θ| ≤ π. By Corollary 5.7 of [CM8], Σ contains a
(multi-valued) graph over

{(ρ, θ) | c2 |θ| ≤ log2 ρ, 1 ≤ ρ ≤ R3/4}

so that if n ∈ Z satisfies 2 π c2 |n| ≤ log2 ρ, then

|u(ρ, 2πn) − u(ρ, 0)| ≤ ρε .

Applying the Harnack inequality and elliptic estimates to the function

wn(ρ, θ) = u(ρ, 2πn + θ) − u(ρ, θ)
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(cf. (1.17) of [CM8]), we get

ρ |∇u(ρ, 2πn) −∇u(ρ, 0)| + ρ2 |Hessu(ρ, 2πn) − Hessu(ρ, 0)| ≤ C ′ ρε .(II.3.7)

Combining (II.3.6) and (II.3.7) then easily gives (II.3.5) in general.

We first define a function 0 ≤ χ ≤ 1 on P (the universal cover of C \ {0})
which is

• 0 on S−π,π
3/4,∞,

• 1 on {ρ < R3/4/2} \ (S−2π,2π
1/2,R ∪ (II.3.4)), and

• so that |∇Pχ|2 is of the order (ρ log ρ)−2 for ρ large.

Namely, set

χ(ρ, θ) =



3 − 4ρ for 1/2 ≤ ρ < 3/4, |θ| ≤ π ,

1 − (C1 − |θ| + π)(4ρ − 2)/C1 for 1/2 ≤ ρ < 3/4, π ≤ |θ| ≤ C1 + π ,

0 for |θ| ≤ π, 3/4 ≤ ρ ,

(|θ| − π)/C1 for 3/4 ≤ ρ < e, π ≤ |θ| ≤ C1 + π ,

(|θ| − π)/(C1 log ρ) for e ≤ ρ, π ≤ |θ| ≤ C1 log ρ + π ,

1 otherwise .

(II.3.8)

Using (II.3.8), define χ on a (multi-valued) graph over a domain containing

S−2π,2π
1/2,R ∪ (II.3.4)

in the obvious way. Note that if Σ is as in Lemma II.3.3, then 1 − χ is one
on the central sheet Σ−π,π

3/4,R and vanishes before Σ leaves the cone on the top,
bottom, or inside.

Corollary II.3.9. Given ε > 0, there exists C3 so that if Σ and u are
as in Lemma II.3.3, then

• χ = 0 over S−π,π
3/4,R,

• χ = 1 on {x2
1 + x2

2 ≤ R3/2/4} ∩ ∂Σ,

and for e < t ≤ R3/4/2,∫
{χ<1, x2

1+x2
2≤t2}

|A|2 +
∫
{x2

1+x2
2≤t2}∩Σ

|∇χ|2 ≤ C3 (1 + log log t) .(II.3.10)

Proof. Clearly, χ = 0 over S−π,π
3/4,R. By Lemma II.3.3, χ = 1 on {x2

1 + x2
2 ≤

R3/2/4} ∩ ∂Σ. To get (II.3.10), first consider χ as a function downstairs on P.
On {ρ ≤ e},

|∇Pχ| ≤ C0 and {|∇Pχ| �= 0} ⊂ {|θ| ≤ C1 + π, 1/2 ≤ ρ} .
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∂Γ0 = σ1 ∪ σ2 ∪ γ1 ∪ γ2.

σ2

γ2 Σ2

σ1 ⊂ Γ1(∂)
γ1

Σ1

Disjoint
multi-valued
graphs.

Figure 21: A stable Γ satisfying i)–iii): Γ0 ⊂ Γ is a disk with geodesics γ1, γ2 ⊂
∂Γ0 which are in the middle sheets of multi-valued graphs Σ1, Σ2.

Similarly, on {e ≤ ρ},

|∂θ χ|/ρ ≤ 1/(C1 ρ log ρ) and |∂ρ χ| ≤ 1/(ρ log ρ) ,

so that

|∇Pχ|2 ≤ 2 (C1 ρ log ρ)−2 and {|∇Pχ| �= 0} ⊂ {π ≤ |θ| ≤ C1 log ρ + π} .

Therefore, since Σ is a graph with gradient ≤ 1, it follows easily that∫
{x2

1+x2
2≤t2}∩Σ

|∇χ|2 ≤ C ′
0 +

12
C1

∫ t

e

ds

s log s
= C ′

0 +
12 log log t

C1
.(II.3.11)

Similarly, using (II.3.5) gives∫
{χ<1, x2

1+x2
2≤t2}

|A|2 ≤ C + 4C2

∫ ∞

e
(π + C1 log s)s−23/18 ds ≤ C ′ .(II.3.12)

Finally, combining (II.3.11) and (II.3.12) gives (II.3.10).

The next corollary gives upper and lower bounds for the areas of tubular
neighborhoods in a Γ which satisfies i)–iii) below; see Figure 21. (Γt(∂) is the
component of Bt ∩ Γ containing Bt ∩ ∂Γ.)

i) Γ ⊂ B2R is a stable embedded minimal surface, ∂Γ ⊂ B1/4 ∪ ∂B2R,
B1/4 ∩ ∂Γ is connected, and Γ0 ⊂ Γ is a disk with

∂Γ0 = γ1 ∪ γ2 ∪ σ1 ∪ σ2 ,

where γi : [0, �i] → Σ is a geodesic, γi(0) ∈ σ1 ⊂ Γ1(∂), and γi ⊥ σ1.
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Any point in Bt/Cd
∩ Γ0 connects (in Γ0)

to σ1 by a curve of length ≤ t.

σ1

B1

γ1

γ2

σ2

BR/Cd

Figure 22: Lemma II.3.13: A chord-arc property for a stable Γ satisfying i)–iii).

ii) Σ1,Σ2 ⊂ Γ are disjoint (multi-valued) graphs over domains containing
S−2π,2π

1/2,R of functions u1, u2 satisfying (II.3.1), wi < 0,

Σi ⊂ C8 π ε,R(ui(1, 0)) ,

∂Σi ⊂ ∂C8 π ε,R(ui(1, 0)) ,

γi ⊂ (Σi)
−π,π
3/4,R .

iii) distΓ(γi(t),Γ1(∂)) = t for 0 ≤ t ≤ �i, �i ≥ R − 1, and distΓ(σ2,Γ1(∂)) ≥
R − 1.

We first show that intrinsic and extrinsic distances to σ1 are roughly equivalent
(see Figure 22) in the following lemma:

Lemma II.3.13. There exists Cd > 1 so that if i)–iii) hold and R > Cd,
then BR/Cd

∩ σ2 = ∅ and Bt/Cd
∩ Γ0 ⊂ Tt(σ1,Γ0) for Cd < t < R.

Proof. Both of these assertions follow easily from stability together with
the assumption that Γ contains multi-valued graphs. That is, suppose that
either one failed. It follows easily that there exists a point in Γ which is
extrinsically much closer to the origin than its intrinsic distance to the inner
boundary of Γ. This easily implies by stability that Γ contains a large almost
flat graph over a disk centered at the origin which easily contradicts that Γ
contains multi-valued graphs since these would be forced to spiral into the
almost flat graph. We will now make this argument precise.

Fix Cd > 1 to be chosen. We show first for 1 < t < R/Cd that

Bt ∩ Γ ⊂ TCdt(B1/4 ∩ ∂Γ) .
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Suppose that y ∈ BR/Cd
∩ Γ. Fix C > 2 and δ > 0 to be chosen. Since Γ is

stable, the estimates of [Sc] and [CM2] give a constant C ′
d = C ′

d(C, δ) so that:

If distΓ(y, ∂Γ) > C ′
d (1 + |y|), then BC′

d (1+|y|)(y) contains a graph
Γy with gradient ≤ δ over a disk BC (1+|y|)(y)∩Py, where Py ⊂ R3

is the plane tangent to Γ at y.

Since Γ is embedded (and since Γ contains a multi-valued graph Σ1 around γ1

with γ1(0) ∈ B1), we can choose C, δ so that Γ would then be forced to spiral
into Γy. This is impossible since Γ is compact. Since ∂Γ ⊂ Γ1(∂) ∪ ∂B2R, it
follows that

Bt ∩ Γ ⊂ T2C′
dt(B1/4 ∩ ∂Γ)

for 1 < t < R/Cd. Combining this and iii) gives B(R−1)/(2C′
d) ∩ σ2 = ∅.

Suppose that y ∈ BR/Cd
∩ Γ0 so that (by the first part) y′ ∈ ∂Γ0 with

distΓ0(y, y′) + distΓ(y′, B1/4 ∩ ∂Γ) ≤ C ′
d (1 + |y|) < R .(II.3.14)

In particular, y′ ∈ σ1 ∪ γ1 ∪ γ2. Since distΓ(γi(t),Γ1(∂)) = t,

distσ1∪γi
(y′, σ1) ≤ C ′

d (1 + |y|) ,(II.3.15)

so that distΓ0(y, σ1) ≤ 2 C ′
d (1 + |y|). The lemma follows.

The next corollary gives upper and lower bounds for the areas of tubular
neighborhoods in a Γ which satisfies i)–iii).

Corollary II.3.16. Given ε, CI > 0, there exists C4 > 0 so that if i)–iii)
hold and R3/4 > 12Cd, then for e < t ≤ R3/4/4 − 1,

C4 log2 t ≤ t−2Area(Tt(σ1,Γ0))

≤ 1
C4

(
1 +

∫
TCI

(σ1,Γ0)
(1 + |A|2) +

∫
σ1

(1 + |kg|) + log log t

)
.(II.3.17)

Proof. Since σ1 ⊂ Γ1(∂), i) and iii) imply (A) with C0 = 0, (C), and
(D) with � = R − 1. Using Corollary II.3.9 on Σ1,Σ2, we can define χ on
{x2

1 + x2
2 ≤ R3/2/4} ∩ Γ which

• vanishes on γ1, γ2,

• is one on {x2
1 + x2

2 ≤ R3/2/4} ∩ Γ \ (Σ1 ∪ Σ2), and

• satisfies (II.3.10) (with double the constant).

Since Tt(σ1,Γ0) ⊂ {x2
1 + x2

2 ≤ R3/2/4}, inserting (II.3.10) into Lemma II.1.3
(and scaling so CI → 1) gives the second inequality in (II.3.17).
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By Lemma II.3.3, we have that Σ1 and Σ2 each contain a (multi-valued)
graph over (II.3.4). Suppose now that

e < t < R3/4/(4Cd) .

By Lemma II.3.13, we have

{1 < x2
1 + x2

2 ≤ t2} ∩ Γ ⊂ B2t ∩ Γ ⊂ T2Cdt(σ1,Γ)

and B2t ∩ σ2 = ∅ (by iii)). Since σ1 ⊂ B1, γi ⊂ (Σi)
−π,π
3/4,R, and Σ1 ∩ Σ2 = ∅, it

then follows easily that T2Cdt(σ1,Γ0) contains one component of

{1 < x2
1 + x2

2 ≤ t2} ∩ Σ1 \ (Σ1)
−π,π
1,t .

The first inequality in (II.3.17) follows immediately (after possibly decreasing
C4 > 0).

We are now finally ready to prove Theorem 0.3. That is, we will show
that all embedded stable minimal surfaces with small interior boundaries are
graphical away from the boundary.

Proof of Theorem 0.3. Rescale so that r0 = 1. Set Γ̂ = Γ\Γ1(∂) so (since
Γ is topologically an annulus) ∂Γ̂ = σ ∪ σ̂ where σ ⊂ ∂B1, σ̂ ⊂ ∂BR are the
two connected components of ∂Γ̂, and ∂n|x| ≥ 0 on σ (where n is the inward
normal to ∂Γ̂).

By Theorem II.1.2 we need only prove that (2) does not happen for Γ̂.
Suppose it does; we will obtain a contradiction. The key point will be to find
two oppositely oriented multi-valued graphs in Γ which have fixed bounded
distance between them and then apply Corollary II.3.16 for t sufficiently large
to get a contradiction.

Fix (ordered) points z1, . . . , zm ∈ σ so that σ\{z1, . . . , zm} has components
{σz1 , . . . , σzm

} where ∂σzi
= {zi, zi+1} (set zm+1 = z1) and Length(σzi

) ≤ 1.
By Theorem II.1.2 (and the discussion surrounding (II.3.1)), we have that Γ
contains 3-valued graphs Σzi

of uzi
satisfying (II.3.1) over DR/ω \ Dω (after a

rotation of R3; a priori this rotation may depend on zi) and with

distΓ̂(zi, (Σzi
)0,0
ω,ω) < d0 .

Combining this with Corollary II.2.15, we get 3-valued graphs {Σzi
}, geodesics

γzi
: [0, �zi

] → (Σzi
)−π,π
ω,R1/2

with γzi
(0) ∈ ∂Bλω, distΓ(γzi

(t),Γλω(∂)) = t for 0 ≤ t ≤ �zi
, and γi(�zi

) ⊂
Γ \ BR1/2/3. After possibly increasing λ, we can assume that λω > 2d0 + 2.
Hence, the curves in Γ̂ from zi to (Σzi

)0,0
ω,ω given by Theorem II.1.2 are contained

in Bλω/2. Therefore, since (Σzi
)−3π,3π
ω,λω is a graph, we can choose curves ηzi

⊂
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Γλω(∂) from γzi
(0) to zi with length ≤ 2λω + 4πω and so ηzi

\Bλω/2 is simple
with ∫

ηzi
\Bλω/2

|kg| ≤ C .

It follows immediately from embeddedness that the Σzi
’s are graphs over

a common plane. From the gradient estimate (which applies because of esti-
mates for stable surfaces of [Sc], [CM2]), each component of Γ intersected with
a concave cone is also a multi-valued graph. Since ∂Bλω ∩ ∂Γλω(∂) is a closed
curve, it must pass between the sheets of each Σzi

. It is now easy to see that
each Σzi

contains an oppositely oriented multi-valued graph Σ̂zi
between its

sheets (i.e., nΓ points in almost opposite directions on Σzi
and Σ̂zi

). Further-
more, since Lemma II.3.13 bounds the distance in Γ̂ from Σ̂zi

to σ, we can
assume that two of the Σzi

’s are oppositely oriented. We can therefore choose
two consecutive 3-valued graphs, Σzj

, Σzj+1 , which are oppositely oriented;
rename these Σ1, Σ2 (and similarly the corresponding γ1, γ2, �1, �2).

By replacing Bλω/2 ∩ (σzj
∪ ηzj

∪ ηzj+1) with a broken geodesic and finding
a simple subcurve as in Lemma II.1.11, we get a simple curve

σ1 ⊂ Γλω(∂) \ Γ7/8(∂)

from γ1(0) to γ2(0) with ∫
σ1

(1 + |kg|) ≤ Ca .(II.3.18)

Furthermore, since σ1 ⊂ Γλω(∂)), we get for 0 ≤ t ≤ �i that

distΓ(γi(t), σ1) = t .

Let Γ0 be the component of

ΓR1/2/3(∂) \ (σ1 ∪ γ1 ∪ γ2)

which does not contain Γ7/8(∂); set

σ2 = ∂Γ0 \ (σ1 ∪ γ1 ∪ γ2) .

It follows that Γ0 is a disk and distΓ(Γ0, ∂Γ) ≥ 5/8. Since (Σzi
)−3π,3π
ω,λω is a

graph, we can perturb σ1 near γ1(0), γ2(0) to arrange that σ1 ⊥ γ1 and σ1 ⊥ γ2

and so σ1 still satisfies (II.3.18) with a slightly larger constant Ca. Combining
(II.3.18) and estimates for stable surfaces of [Sc], [CM2], we get∫

T1/8(σ1,Γ0)
(1 + |A|2) +

∫
σ1

(1 + |kg|) ≤ Cb .(II.3.19)

Hence (after rescaling), Γ0,Γ,Σ1,Σ2, γ1, γ2, σ1 satisfy i) and iii). To get ii),
we use [Sc], [CM2] and the gradient estimate to extend Σ1,Σ2 as multi-valued
graphs inside the cones

C8 π ε,R1/2/4(ui(1, 0)) ;
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the opposite orientation guarantees that Σ1 ∩ Σ2 = ∅. Corollary II.3.16 and
(II.3.19) give for C5 < t < R3/8/C5

C4 log2 t ≤ t−2Area(Tt(σ1,Γ0)) ≤ (1 + Cb + log log t) /C4 .(II.3.20)

This gives the desired contradiction for R large, completing the proof.

III. Nearby points with large curvature

In this part, we extend Theorem 0.3 (proven for stable surfaces) to surfaces
with extrinsic quadratic curvature decay

|A|2 ≤ C |x|−2 .

As mentioned in the introduction, this extension is needed in both [CM5] and
[CM6]. In [CM5] it is used for disks to get points of large curvature nearby
and on each side of a given point with large curvature (in particular it is used
to show that such points are not extrinsically isolated).

Stability was used in the proof of Theorem 0.3 for two purposes:

(a) To show intrinsic quadratic curvature decay.

(b) To bound the total curvature using the stability inequality.

To get the extension to the extrinsic quadratic curvature decay case, we will
deal with (a) and (b) separately in the next two sections. To get (a), we relate
extrinsic and intrinsic distances (i.e., we show a “chord-arc” property). For (b),
we follow Section 2 of [CM4] to decompose a surface with quadatric curvature
decay into disjoint almost stable subdomains and a “remainder” with quadratic
area growth.

For applications of the results of this part in [CM5], Σ will be a disk and
hence ∂Σ0,t is connected for all t (here, and elsewhere, if 0 ∈ Σ, then Σ0,t

denotes the component of Bt ∩ Σ containing 0). However, in [CM6], when we
apply the results here to deal with the first possibility in (4) of Theorem 0.1
(i.e., the analog of the genus one helicoid), Σ is no longer a disk but ∂Σ is still
connected (which is assumed in many of the results below).

III.1. Relating intrinsic and extrinsic distances

In this section, 0 ∈ Σ ⊂ BR is an embedded minimal surface with ∂Σ ⊂
∂BR satisfying:

• |A|2 ≤ C2
1 |x|−2 on Σ \ B1.

• ∂Σ0,t is connected for 1 ≤ t ≤ R.
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The next lemma shows that only one component of BCb
∩Σ intersects B2.

The second lemma bounds the radius of the intrinsic tubular neighborhood of
B2 ∩Σ containing this component. Combining these iteratively (on decreasing
scales) in Corollary III.1.5 gives the “chord-arc” property needed to establish
(a).

Lemma III.1.1. Given C1, there exists Cb so that if Σ0,1 is not a graph,
then

B2 ∩ Σ ⊂ Σ0,Cb
.

Proof. Suppose that Σ1,Σ2 are disjoint components of BCb
∩ Σ with

B2 ∩Σi �= ∅. It follows that there is a component Ω of BCb
\Σ and a segment

η ⊂ B2 \ Σ so that ∂Σ0,Cb
is linked with η in Ω (cf. Lemma 2.1 in [CM9]).

Since Ω is mean convex, we can solve the Plateau problem as in [MeYa2] to
get a stable minimal surface Γ ⊂ Ω with ∂Γ = ∂Σ0,Cb

. The linking implies
that B2 ∩ Γ �= ∅. The curvature estimates of [Sc], [CM2] then give a graph
Γ0 ⊂ Γ of a function u0 over DCb/C (after a rotation) with

|u0(z)| ≤ |z| .

By Corollary 1.14 of [CM8] (applied with w = 0), we can assume that on
DC

1/2
b /C

|∇u0|(z) ≤ C ′ |z|−5/12 .(III.1.2)

In particular, Γ0 is close to a horizontal plane. The lemma now follows from an
argument used in [CM9] (see also [CM10]) which we now outline: Σ intersects
a narrow cone about Γ0, then contains a long chain of graphical balls (by
the gradient estimate), and must then either spiral indefinitely or close up as
a graph. Namely, for t < C

1/2
b /C, the surface Σ0,t sits on one side of Γ0.

However, by Lemma 2.4 of [CM9] (for t > C ′), we have that ∂Σ0,t contains a
“low point,” i.e., a point y0 with

|x3(y0)| ≤ δ t

with δ > 0 small. The gradient estimate (since |A|2 ≤ C2
1 |x|−2 on Σ\B1) gives

a long chain of balls Bc t(yi) with

yi ∈ ∂Σ0,t ∩ {|x3| ≤ C ′ δ t}

which is a (possibly multi-valued) graph. Since ∂Σ0,t cannot spiral forever, this
graph closes up. By Rado’s theorem (note that no assumption on the topology
is needed for this application of Rado’s theorem; cf. the proof of theorem 1.22
in [CM4]), Σ0,t is itself a graph, giving the lemma.

The next lemma bounds the radius of the intrinsic tubular neighborhood
of B2 ∩ Σ containing the only component of BCb

∩ Σ intersecting B2.
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Lemma III.1.3. Given C1, Cb, there exists Cc so that if R > Cc, then for
all y ∈ Σ0,Cb

distΣ(y, B1 ∩ Σ) ≤ Cc .(III.1.4)

Proof. Let Σ̃ be the universal cover of Σ and Π̃ : Σ̃ → Σ the covering
map. With the definition of δ-stable as in Section 2 of [CM4], the argument of
[CM2] (i.e., curvature estimates for 1/2-stable surfaces) gives C > 10 so that
if BCCb/2(z̃) ⊂ Σ̃ is 1/2-stable and Π̃(z̃) = z, then

Π̃ : B5Cb
(z̃) → B5Cb

(z)

is one-to-one and B5Cb
(z) is a graph with B4Cb

(z) ∩ ∂B5Cb
(z) = ∅. Corollary

2.13 in [CM4] gives ε = ε(C, C1, Cb) > 0 so that if |z1 − z2| < ε and |A|2 ≤ C2
1

on (the disjoint balls) BCCb
(zi), then each BCCb/2(z̃i) ⊂ Σ̃ is 1/2-stable where

Π̃(z̃i) = zi.
We claim that there exists n so that

B1 ∩ B(2n+1) CCb
(y) �= ∅ .

Suppose not; we get a curve

σ ⊂ Σ0,Cb
\ TCCb

(B1 ∩ Σ)

from y to ∂B2n CCb
(y). For i = 1, . . . , n, fix points zi ∈ ∂B2i CCb

(y) ∩ σ. The
intrinsic balls BCCb

(zi) ⊂ Σ \ B1 are disjoint, have centers in BCb
⊂ R3, and

sup
BCCb

(zi)
|A|2 ≤ C2

1 .

Hence, there exist i1 and i2 with

0 < |zi1 − zi2 | < C ′ Cb n−1/3 < ε ,

and, by Corollary 2.13 in [CM4], each BCCb/2(z̃ij
) ⊂ Σ̃ is 1/2-stable where

Π̃(z̃ij
) = zij

. By [CM2], each B5Cb
(zij

) is a graph with B4Cb
(zij

)∩∂B5Cb
(zij

) =
∅. In particular,

BCb
∩ ∂B5Cb

(zij
) = ∅ .

This contradicts the fact that σ ⊂ BCb
connects zij

to ∂BCCb
(zij

).

The next corollary combines the two previous lemmas to get the “chord-
arc” property needed to establish (a).

Corollary III.1.5. Given C1, there exists Cc so that if Σ0,1 is not a
graph and y ∈ BR/Cc

∩ Σ, then

distΣ(y, B1 ∩ Σ) ≤ 2 Cc |y| .(III.1.6)



PLANAR DOMAINS 567

Proof. Suppose y ∈ B2n \B2n−1 . By Lemma III.1.1, we have y ∈ Σ0,Cb2n−1

where Cb = Cb(C1). Set yn = y. Lemma III.1.3 gives yn−1 ∈ B2n−1 ∩ Σ with

distΣ(yn, yn−1) ≤ Cc 2n−1 .

We can now repeat the argument. Namely, by Lemma III.1.1, we have
yn−1 ∈ Σ0,Cb2n−2 and then Lemma III.1.3 gives yn−2 ∈ B2n−2 ∩ Σ with

distΣ(yn−1, yn−2) ≤ Cc 2n−2 .

After n steps, we get y0 ∈ B1 ∩ Σ with

distΣ(y, y0) ≤
n∑

i=1

distΣ(yi, yi−1) ≤
n∑

i=1

Cc 2i−1 ≤ 2 Cc |y| .(III.1.7)

III.2. A decomposition from [CM4]

In Lemma 2.15 of [CM4], we decomposed an embedded minimal surface
in a ball with bounded curvature into disjoint, almost stable subdomains and a
remainder with bounded area. The same argument gives the following lemma:

Lemma III.2.1. Given C1, there exists Cd so that the following holds:
If Σ ⊂ B2R is an embedded minimal surface with ∂Σ ⊂ ∂B2R ∪ B1/2, and

|A|2 ≤ C2
1 |x|−2 ,

then there exist disjoint 1/2-stable subdomains Ωj ⊂ Σ and a function 0 ≤ ψ

≤ 1 on Σ which vanishes on (BR \ B1) ∩ Σ \ (∪jΩj) so that

Area({x ∈ (BR \ B1) ∩ Σ |ψ(x) < 1}) ≤ Cd R2 ,(III.2.2) ∫
BR∩Σ

|∇ψ|2 ≤ Cd log R .(III.2.3)

In the proof of Theorem 0.5 in the next section, Lemma III.2.1 will be used
to extend the area bounds for stable surfaces proved in Sections II.1 and II.3
(specifically those in Lemma II.1.3, Proposition II.1.20, and Corollary II.3.16)
to minimal surfaces with |A|2 ≤ C2

1 |x|−2. This is very similar to how Lemma
2.15 of [CM4] was used in Lemma 3.1 of [CM4].

By Lemma III.2.1, we have that∫
BR∩Σ

|∇ψ|2 +
∫

BR∩{ψ<1}
|A|2

grows (in R) at most like log R. We use this below in the 1/2-stability inequal-
ity to get the total curvature bound needed for (b). This is used in the proof
of Theorem III.3.1.
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III.3. Theorem 0.5 and a generalization

As already mentioned, stability was used in the proof of Theorem 0.3 to
establish (a) and (b) in the introduction to Part III; these were extended in
the two previous sections to surfaces with a quadratic curvature bound. In
[CM5] we will need the contrapositive of Theorem 0.5, i.e., we will need to find
points where the quadratic bound fails. In fact, what we will really need is to
find points on “each side” of a multi-valued graph where this fails; this is the
following theorem:

(Here u1(r0, 2π) < u2(r0, 0) < u1(r0, 0) just says that the two graphs

Theorem III.3.1 (see Figure 23). Given C1, there exists C2 so that the
following holds:

Let 0 ∈ Σ ⊂ B2C2 r0 be an embedded minimal surface with connected ∂Σ ⊂
∂B2C2 r0 and gen(Σ0,r0) = gen(Σ). Suppose that

Σ1 and Σ2 ⊂ Σ ∩ {x2
3 ≤ (x2

1 + x2
2)}

are (multi -valued) graphs of functions ui satisfying (II.3.1) on S−2π,2π
r0,C2r0

with

u1(r0, 2π) < u2(r0, 0) < u1(r0, 0) ,

and ν ⊂ ∂Σ0,2r0 is a curve from Σ1 to Σ2. If Σ0 is the component of

Σ0,C2r0 \ (Σ1 ∪ Σ2 ∪ ν)

which does not contain Σ0,r0 , then

sup
x∈Σ0\B4r0

|x|2 |A|2(x) ≥ 4 C2
1 .(III.3.2)

Point with large
curvature in Σ0.

Σ1
ν

Σ0

Σ2

B4r0

Figure 23: Theorem III.3.1 and Corollary III.3.5 — existence of nearby points
with large curvature.

Proof. Suppose that (III.3.2) fails for some C1; as in the proof of The-
orem 0.3, we will show contradictory upper and lower bounds for the area
growth for C2 sufficiently large.
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Note that for r0 ≤ s ≤ 2C2r0, it follows from the maximum principle
(since Σ is minimal) and Corollary I.0.11 that ∂Σ0,s is connected and Σ \Σ0,s

is an annulus.
Note also that the gradient estimate (which applies because of the curva-

ture bound) allows us to extend each Σi (inside Σ0) as a graph of ui over ∂Dρ

as long as
|ui(ρ, θ) − ui(ρ, [θ])| ≤ Cg ρ ,

where θ − [θ] ∈ 2πZ and 0 ≤ [θ] ≤ 2π. By Corollary 1.14 of [CM8], the curva-
ture of Σi decays faster than quadratically. Combining these (and increasing
the inner radius), we can assume that each Σi extends (inside Σ0) as a graph
until it leaves a cone {x2

3 ≤ Λ2(x2
1 + x2

2)} for some small Λ > 0. Moreover,
these extended multi-valued graphs must stay disjoint since

u1(r0, 2π) < u2(r0, 0) < u1(r0, 0) .

We next choose the inner boundary curve where we argue as in Theo-
rem 0.3. By Lemma III.1.1, we have

B4r0 ∩ Σ ⊂ Σ0,2Cbr0 .

In particular, ∂Σ0,2Cbr0 separates B4r0 ∩ Σ from ∂Σ. We can therefore replace
ν with a segment of ∂Σ0,2Cbr0 from Σ1 to Σ2 so (for the new Σ0)

sup
x∈Σ0

|x|2 |A|2(x) ≤ 4 C̄2
1 .(III.3.3)

By Corollary III.1.5 (the “chord-arc” property), intrinsic and extrinsic dis-
tances to B4r0 ∩ Σ are compatible. Hence, we get

sup
x∈Σ0

dist2Σ(x, B4r0 ∩ Σ) |A|2(x) ≤ C3 .(III.3.4)

The proof of Theorem 0.3 now applies with two changes (and the minor
modifications which result):

(a′) The curvature estimates for stable surfaces of [Sc], [CM2] are replaced
with (III.3.4).

(b′) The total curvature bound from the stability inequality in (II.1.6) is
replaced with the bound using Lemma III.2.1 and the 1/2-stability in-
equality (cf. Lemma 3.1 of [CM4]).

Namely, using (a′) and (b′), the proof of Theorem II.1.2 extends from
stable surfaces to surfaces satisfying (III.3.4) (with (b′) being used in Lemma
II.1.3 and Proposition II.1.20 exactly as in [CM4]). It follows that each z in (the
new) ν is a fixed bounded distance from a multi-valued graph (either Σ1,Σ2 or a
new multi-valued graph in between). Hence, as in the proof of Theorem 0.3, we
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can choose two consecutive multi-valued graphs which are oppositely oriented;
let σ1 be the curve connecting these. Next, (b′) contributes a new

C4 t2 log t

term to the upper bound for the area of a sector Tt(σ1) in the upper bound
for the area in Corollary II.3.16 where C4 does not depend on σ1 (see the last
paragraph of Section III.2). However, since the lower bound for the area is on
the order of

t2 log2 t ,

we get the desired contradiction as before.

In [CM5], we will use the special case of Theorem III.3.1 where Σ is a
disk:

Corollary III.3.5 (see Figure 23). Given C1, there exists C2 so that
the following holds:

Let 0 ∈ Σ ⊂ B2C2 r0 be an embedded minimal disk. Suppose that

Σ1andΣ2 ⊂ Σ ∩ {x2
3 ≤ (x2

1 + x2
2)}

are graphs of functions ui satisfying (II.3.1) on S−2π,2π
r0,C2r0

with

u1(r0, 2π) < u2(r0, 0) < u1(r0, 0) ,

and ν ⊂ ∂Σ0,2r0 is a curve from Σ1 to Σ2. Let Σ0 be the component of

Σ0,C2r0 \ (Σ1 ∪ Σ2 ∪ ν)

which does not contain Σ0,r0.
If either :

• ∂Σ ⊂ ∂B2C2 r0 , or

• Σ is stable and Σ0 does not intersect ∂Σ,

then

sup
x∈Σ0\B4r0

|x|2 |A|2(x) ≥ 4 C2
1 .(III.3.6)

Proof. Since Σ is a disk, ∂Σ is connected and

gen(Σ0,r0) = gen(Σ) = 0 .

Hence, Theorem III.3.1 gives the corollary when ∂Σ ⊂ ∂B2C2 r0 .
When Σ is stable and Σ0 does not intersect ∂Σ, then Σ1,Σ2 each extend

inside cones in at least one direction as multi-valued graphs. This gives essen-
tially half of the multi-valued graphs Σ1,Σ2 used in Section II.3 which is all
that is needed in the proof of Theorem 0.3. The corollary now follows easily
from the proof of Theorem 0.3 (with Σ1,Σ2 causing the same modifications as
in Theorem III.3.1).
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Note that if C1 is large, then (III.3.6) would contradict the curvature
estimate for stable surfaces of [Sc], [CM2]. In [CM5], we will apply Corollary
III.3.5 in this way, showing that such a stable Σ does not exist.

In [CM5], we will also use the other case of Corollary III.3.5, where Σ
is not assumed to be stable, to get points of large curvature “metrically” on
each side of the multi-valued graph Σ1. Namely, note first that the curve
∂Σ0,2r0 \ ν in Corollary III.3.5 has the same properties as ν. In [CM5], ν (and
hence also Σ0) will be on one side of Σ1,Σ2 while ∂Σ0,2r0 \ ν is on the other.
Applying Corollary III.3.5 to each of these will give points of large curvature
“topologically ” on each side of Σ1,Σ2.

In fact, we will see in [CM5] that if an embedded minimal disk Σ contains
one multi-valued graph Σ1, then it will contain a second multi-valued graph
Σ2 which spirals together with Σ1 (“the other half”). We will also see there
that

∂Σ0,Cr0 \ (Σ1 ∪ Σ2)

has exactly two components ν±; it follows easily that we can assume ν+ is
above and ν− is below Σ1. Applying Corollary III.3.5 to both ν± will give
points of large curvature “metrically” on each side of Σ1.

Proof of Theorem 0.5. It suffices to show that if Area(Σ0,r0) > C3 r2
0,

then (0.6) fails.
Note that for r0 ≤ s ≤ R, it follows from the maximum principle (since

Σ is minimal) and Corollary I.0.11 that ∂Σ0,s is connected and Σ \ Σ0,s is an
annulus.

The proof is now virtually identical to the proof of Theorem III.3.1 except
that it simplifies since we no longer keep track of the two sides and (1) in (an
analog of) Theorem II.1.2 becomes Area(Σ0,r0) ≤ C ′

3 r2
0.
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