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Grothendieck’s problems

concerning profinite completions
and representations of groups

By Martin R. Bridson and Fritz J. Grunewald

Abstract

In 1970 Alexander Grothendieck [6] posed the following problem: let Γ1

and Γ2 be finitely presented, residually finite groups, and let u : Γ1 → Γ2 be a
homomorphism such that the induced map of profinite completions û : Γ̂1 → Γ̂2

is an isomorphism; does it follow that u is an isomorphism?
In this paper we settle this problem by exhibiting pairs of groups

u : P ↪→ Γ such that Γ is a direct product of two residually finite, hyper-
bolic groups, P is a finitely presented subgroup of infinite index, P is not
abstractly isomorphic to Γ, but û : P̂ → Γ̂ is an isomorphism.

The same construction allows us to settle a second problem of
Grothendieck by exhibiting finitely presented, residually finite groups P that
have infinite index in their Tannaka duality groups clA(P ) for every commu-
tative ring A �= 0.

1. Introduction

The profinite completion of a group Γ is the inverse limit of the di-
rected system of finite quotients of Γ; it is denoted by Γ̂. If Γ is residually
finite then the natural map Γ → Γ̂ is injective. In [6] Grothendieck discov-
ered a remarkably close connection between the representation theory of a
finitely generated group and its profinite completion: if A �= 0 is a commu-
tative ring and u : Γ1 → Γ2 is a homomorphism of finitely generated groups,
then û : Γ̂1 → Γ̂2 is an isomorphism if and only if the restriction functor
u∗

A : RepA(Γ2) → RepA(Γ1) is an equivalence of categories, where RepA(Γ) is
the category of finitely presented A-modules with a Γ-action.

Grothendieck investigated under what circumstances û : Γ̂1 → Γ̂2 being
an isomorphism implies that u is an isomorphism of the original groups. This
led him to pose the celebrated problem:

Grothendieck’s First Problem. Let Γ1 and Γ2 be finitely presented,
residually finite groups and let u : Γ1 → Γ2 be a homomorphism such that
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û : Γ̂1 → Γ̂2 is an isomorphism of profinite groups. Does it follow that u is an
isomorphism from Γ1 onto Γ2?

A negative solution to the corresponding problem for finitely generated
groups was given by Platonov and Tavgen [11] (also [12]). The methods used
in [11] subsequently inspired Bass and Lubotzky’s construction of finitely gen-
erated linear groups that are super-rigid but are not of arithmetic type [1].
In the course of their investigations, Bass and Lubotzky discovered a host of
other finitely generated, residually finite groups such that û : Γ̂1 → Γ̂2 is an
isomorphism but u : Γ1 → Γ2 is not. All of these examples are based on a fibre
product construction and it seems that none are finitely presentable. Indeed,
as the authors of [1] note, “a result of Grunewald ([7, Prop. B]) suggests that
[such fibre products are] rarely finitely presented.”

In [13] L. Pyber constructed continuously many pairs of 4-generator groups
u : Γ1 → Γ2 such that û : Γ̂1 → Γ̂2 is an isomorphism but Γ1 �∼= Γ2. Once
again, these groups are not finitely presented.

The emphasis on finite presentability in Grothendieck’s problem is a conse-
quence of his original motivation for studying profinite completions: he wanted
to understand the extent to which the topological fundamental group of a com-
plex projective variety determines the algebraic fundamental group, and vice
versa. Let X be a connected, smooth projective scheme over C with base point
x and let Xan be the associated complex variety. Grothendieck points out that
the profinite completion of the topological fundamental group π1(Xan, x) (al-
though defined by transcendental means) admits a purely algebraic description
as the étale fundamental group of X. Since Xan is compact and locally simply-
connected, its fundamental group π1(Xan, x) is finitely presented.

In this article we settle Grothendieck’s problem in the negative. In order
to do so, we too exploit a fibre product construction; but it is a more subtle
one that makes use of the techniques developed in [2] to construct unexpected
finitely presented subgroups of direct products of hyperbolic groups. The key
idea in this construction is to gain extra finiteness in the fibre product by
presenting arbitrary finitely presented groups Q as quotients of 2-dimensional
hyperbolic groups H rather than as quotients of free groups. One gains finite-
ness by ensuring that the kernel of H → Q is finitely generated; to do so
one exploits ideas of Rips [14]. In the current setting we also need to ensure
that the groups we consider are residually finite. To this end, we employ a
refinement of the Rips construction due to Wise [15]. The first step in our
construction involves the manufacture of groups that have aspherical balanced
presentations and no proper subgroups of finite index (see Section 4).

In the following statement “hyperbolic” is in the sense of Gromov [5], and
“dimension” is geometric dimension (thus H has a compact, 2-dimensional,
classifying space K(H, 1)).
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Theorem 1.1. There exist residually finite, 2-dimensional, hyperbolic
groups H and finitely presented subgroups P ↪→ Γ := H × H of infinite in-
dex, such that P is not abstractly isomorphic to Γ, but the inclusion u : P ↪→ Γ
induces an isomorphism û : P̂ → Γ̂.

Explicit examples of such pairs P ↪→ Γ are described in Section 7. In
Section 8 we describe an abundance of further examples by assigning such
a pair P ↪→ Γ to every group that has a classifying space with a compact
3-skeleton.

In Section 3.1 of [6] Grothendieck considers the category C ′ of those groups
K which have the property that, given any homomorphism u : G1 → G2 of
finitely presented groups, if û : Ĝ1 → Ĝ2 is an isomorphism then the induced
map f �→ f ◦ u gives a bijection Hom(G2, K) → Hom(G1, K). He notes that
his results give many examples of groups in C ′ and asks whether there exist
finitely presented, residually finite groups that are not in C ′. The groups Γ
that we construct in Theorem 1.1 give concrete examples of such groups.

In Section 3.3 of [6] Grothendieck described an idea for reconstructing a
residually finite group from the tensor product structure of its representation
category RepA(Γ). He encoded this tensor product structure into a Tannaka
duality group clA(Γ) (as explained in Section 10) and posed the following
problem.

Grothendieck’s Second Problem. Let Γ be a finitely presented, resid-
ually finite group. Is the natural monomorphism from Γ to clA(Γ) an isomor-
phism for every nonzero commutative ring A, or at least some suitable com-
mutative ring A �= 0?

From our examples in Theorem 1.1 and the functoriality properties of the
Tannaka duality group, it is obvious that there cannot be a commutative ring
A so that the natural map Γ → clA(Γ) is an isomorphism for all residually
finite groups Γ. In Section 10 we prove the following stronger result.

Theorem 1.2. If P is one of the (finitely presented, residually finite)
groups constructed in Theorem 1.1, then P is of infinite index in clA(P ) for
every commutative ring A �= 0.

In 1980 Lubotzky [9] exhibited finitely presented, residually finite groups
Γ such that Γ → clZ(Γ) is not surjective, thus providing a negative solution of
Grothendieck’s Second Problem for the fixed ring A = Z.

2. Fibre products and the 1-2-3 theorem

Associated to any short exact sequence of groups

1 → N → H
π→ Q → 1
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one has the fibre product P ⊂ H × H,

P := {(h1, h2) | π(h1) = π(h2)}.
Let N1 = N × {1} and N2 = {1} × N . It is clear that P ∩ (H × {1})

= N1, that P ∩ ({1} × H) = N2, and that P contains the diagonal ∆ =
{(h, h) | h ∈ H} ∼= H. Indeed P = N1 ·∆ = N2 ·∆ ∼= N � H, where the action
in the semi-direct product is simply conjugation.

Lemma 2.1. If H is finitely generated and Q is finitely presented, P is
finitely generated.

Proof. Since Q is finitely presented, N ⊂ H is finitely generated as a
normal subgroup. To obtain a finite generating set for P , one chooses a finite
normal generating set for N1 and then appends a generating set for ∆ ∼= H.

The question of when P is finitely presented is much more subtle. If N

is not finitely generated as an abstract group, then in general one expects to
have to include infinitely many relations in order to force the generators of N1

to commute with the generators of N2. Even when N is finitely generated,
one may still encounter problems. These problems are analysed in detail in
Sections 1 and 2 of [2], where the following “1-2-3 Theorem” is established.

Recall that a discrete group Γ is said to be of type Fn if there exists an
Eilenberg-Maclane space K(Γ, 1) with only finitely many cells in the n-skeleton.

Theorem 2.2. Let 1 → N → H
π→ Q → 1 be an exact sequence of

groups. Suppose that N is finitely generated, H is finitely presented, and Q is
of type F3. Then the fibre product

P := {(h1, h2) | π(h1) = π(h2)} ⊆ H × H

is finitely presented.

We shall apply this theorem first in the case where the group Q has an
aspherical presentation. In this setting, the process of writing down a pre-
sentation of P in terms of π and Q is much easier than in the general case
— see Theorem 2.2 of [2]. The process becomes easier again if the aspherical
presentation of Q is obtained from a presentation of H by simple deletion of
all occurrences of a set of generators of N . The effective nature of the process
in this case will be exemplified in Section 7.

3. A residually finite version of the Rips construction

In [14], E. Rips described an algorithm that, given a finite group presen-
tation, will construct a short exact sequence of groups 1 → N → H → Q → 1,
where Q is the group with the given presentation, H is a small-cancellation
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group (a certain type of hyperbolic group with an aspherical presentation), and
N is a 2-generator group. There have since been a number of refinements of
Rips’s original construction, engineered so as to ensure that the group H has
additional desirable properties; the price that one must pay for such desirable
properties is an increase in the number of generators of N . The variant that we
require is due to Wise [15], who refined the Rips construction so as to ensure
that the small-cancellation group obtained is residually finite.

Theorem 3.1. There is an algorithm that associates to every finite group
presentation P a short exact sequence of groups

1 → N → H → Q → 1,

where Q is the group presented by P, the group N is generated by three el-
ements, and the group H is a torsion-free, residually-finite, hyperbolic group
(satisfying the small cancellation condition C ′(1

6)).

The explicit nature of the Rips-Wise construction will be demonstrated
in Section 7.

4. Some seed groups

In this section we describe the group presentations used as our initial input
to the constructions in the preceding sections. We remind the reader that
associated to any finite group-presentation one has the compact combinatorial
2-complex that has one vertex, one directed edge e(a) corresponding to each
generator a of the presentation, and one 2-cell corresponding to each relator;
the boundary of the 2-cell corresponding to the relator r = a1 . . . al is attached
to the 1-skeleton by the loop e(a1) . . . e(al). The presentation is said to be
aspherical if this presentation complex has a contractible universal covering.
A presentation is said to be balanced if it has the same number of generators
as relators.

Proposition 4.1. There exist infinite groups Q, given by finite, aspher-
ical, balanced presentations, such that Q has no nontrivial finite quotients.

Explicit examples will be given in Sections 4.1 and 4.2. The balanced
nature of the presentations we construct will be used in the following way.

Lemma 4.2. If Q has a finite, balanced presentation and H1(Q, Z) = 0,
then H2(Q, Z) = 0.

Proof. Writing F for the free group on the given generators of Q, and R

for the normal closure of the given relations, we have a short exact sequence
1 → R → F → Q → 1. From this we obtain an exact sequence of abelian
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groups:

0 → R ∩ [F, F ]
[R, F ]

→ R

[R, F ]
→ F

[F, F ]
→ F

R [F, F ]
→ 0.

Hopf’s formula identifies the first group in this sequence as H2(Q, Z). We
have assumed that H1(Q, Z) = 0, and F/[F, F ] is free abelian, of rank n say.
Thus, splitting the middle arrow, we get R/[R, F ] ∼= H2(Q, Z) ⊕ Zn.

The abelian group R/[R, F ] is generated by the images of the given rela-
tions of Q, of which there are only n. Thus H2(Q, Z) must be trivial.

There are many groups of the type described in the above proposition. We
shall describe one family of famous examples and one family that is more novel.
In both cases one sees that the presentations are aspherical by noting that they
are built-up from infinite cyclic groups by repeatedly forming amalgamated free
products and HNN extensions along free subgroups. The natural presentations
of such groups are aspherical.1 Explicitly:

Lemma 4.3. Suppose that for i = 1, 2 the presentation Gi = 〈Ai | Ri〉 is
aspherical, and suppose that the words ui,1, . . . , ui,n generate a free subgroup of
rank n in Gi. Then

〈A1, A2 | R1, R2, u1,1u
−1
2,1, . . . , u1,nu−1

2,n〉

is an aspherical presentation of the corresponding amalgamated free product
G1 ∗Fn

G2.
Similarly, if v1,1, . . . , v1,n generate a free subgroup of rank n in G1, then

〈A1, t | R1, t−1u1,1tv
−1
1,1, . . . , t

−1u1,ntv−1
1,n〉

is an aspherical presentation of the corresponding HNN extension G1∗Fn
.

4.1. The Higman groups. Graham Higman [8] constructed the following
group and showed that it has no proper subgroups of finite index.

J4 = 〈a1, a2, a3, a4 | a−1
2 a1a2a

−2
1 , a−1

3 a2a3a
−2
2 , a−1

4 a3a4a
−2
3 , a−1

1 a4a1a
−2
4 〉.

One can build this group as follows. First note that B = 〈x, y | y−1xyx−2〉
is aspherical, by Lemma 4.3. Take two pairs of copies of B and amalgamate
each pair by identifying the letter x in one copy with the letter y in the other
copy. In each of the resulting amalgams, G1 and G2, the unidentified copies

1For example, suppose X is an aspherical presentation complex for A and Y is an aspher-
ical presentation complex for B, and injections i : F → A and j : F → B are given, where
F is a finitely generated free group. One can realise i and j by cellular maps I : Z → X
and J : Z → Y where Z is a compact graph with one vertex v. An aspherical presentation
complex for A ∗F B is then obtained as X ∪ (Z × [0, 1]) ∪ Y modulo the equivalence relation
generated by (z, 0) ∼ I(z), (z, 1) ∼ J(z) and (v, t) ∼ (v, 1) for all z ∈ Z and t ∈ [0, 1].
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of x and y generate a free group (by Britton’s Lemma). The group J4 is
obtained from G1 and G2 by amalgamating these free subgroups. Lemma
4.3 assures us that the resulting presentation (i.e. the one displayed above)
is aspherical. The group is clearly infinite since we have constructed it as a
nontrivial amalgamated free product.

Entirely similar arguments apply to the group

Jn = 〈a1 . . . , an | a−1
i ai−1aia

−2
i−1 (i = 2, . . . , n); a−1

1 ana1a
−2
n 〉

for each integer n ≥ 4.
Higman [8] provides an elementary proof that these groups have no non-

trivial finite quotients. In particular, H1(Jn, Z) = 0; hence H2(Jn, Z) = 0, by
Lemma 4.2.

4.2. Amalgamating non-Hopfian groups. Fix p ≥ 2 and consider

G = 〈a1, a2 | a−1
1 ap

2a1 = ap+1
2 〉.

This group admits the noninjective epimorphism φ(a1) = a1, φ(a2) = ap
2. The

nontrivial element c = [a2, a
−1
1 a2a1] lies in the kernel of φ. Britton’s Lemma

tells us that a1 and c generate a free subgroup of rank 2.
Observe that if π : G → R is a homomorphism to a finite group, then

π(c) = 1. Indeed, if π(c) �= 1 then we would have infinitely many distinct
maps G → R, namely π ◦φn, contradicting the fact that there are only finitely
many homomorphisms from any finitely generated group to any finite group.

We amalgamate two copies G′ and G′′ of G by setting c′ = a′′1 and a′1 = c′′.
Lemma 4.3 tells us that the natural presentation of the resulting amalgam is
aspherical. Under any homomorphism from this amalgam G′ ∗F2 G′′ to a finite
group, c′(= a′′1) and c′′(= a′1) must map trivially, which forces the whole group
to have trivial image.

Thus for each p ≥ 2 we obtain the following aspherical presentation of a
group with no nontrivial finite quotients.

Bp = 〈a1, a2, b1, b2 | a−1
1 ap

2a1a
−p−1
2 , b−1

1 bp
2b1b

−p−1
2 , a−1

1 [b2, b
−1
1 b2b1], b−1

1 [a2, a
−1
1 a2a1]〉.

5. The Platonov-Tavgen criterion

As noted in [1], one can abstract the following criterion from the arguments
in [11].

Theorem 5.1. Let 1 → N → H → Q → 1 be a short exact sequence
of groups and let P ⊂ H × H be the associated fibre product. If H is finitely
generated, Q has no finite quotients, and H2(Q, Z) = 0, then the inclusion
u : P ↪→ H × H induces an isomorphism û : P̂ → Ĥ × Ĥ.

For the sake of completeness, we include a proof of this criterion, distilled
from [11].
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Proof. Let Γ = H×H. The surjectivity of û is equivalent to the statement
that there is no proper subgroup of finite index G ⊂ Γ that contains P . If there
were such a subgroup, then we would have N × N ⊂ P ⊂ G, and G/(N × N)
would be a proper subgroup of finite index in (H/N) × (H/N), of which we
have supposed there are none.

In order to show that û is injective, it is enough to prove that given any
normal subgroup of finite index R ⊂ P , there exists a subgroup of finite index
S ⊂ Γ such that S ∩ P ⊆ R. Note that L1 := R ∩ (N × {1}), which is normal
in P and of finite index in N1 = (N × {1}), is also normal in H1 = H × {1},
because the action of (h, 1) ∈ H1 by conjugation on L1 is the same as the
action of (h, h) ∈ P . Similar considerations apply to N2 = ({1} × N) and
L2 = R ∩ N2.

Lemma 5.2. Let H be a finitely generated group, and let L ⊂ N be normal
subgroups of H. Assume N/L is finite, Q = H/N has no finite quotients and
H2(Q, Z) = 0. Then there exists a subgroup S1 ⊂ H of finite index such that
S1 ∩ N = L.

Proof. Let M be the kernel of the action H → Aut(N/L) by conjugation.
Since M has finite index in H, it maps onto Q. Thus we have a central
extension

1 → (N/L) ∩ (M/L) → M/L → Q → 1.

Because Q perfect, it has a universal central extension. Because H2(Q, Z)
= 0, this extension is trivial. Thus every central extension of Q splits. In
particular M/L retracts onto (N/L) ∩ (M/L). We define S1 to be the kernel
of the resulting homomorphism M → (N/L) ∩ (M/L).

Returning to the proof of Theorem 5.1, we now have subgroups of finite
index S1 ⊂ H × {1} and S2 ⊂ {1} × H such that Si ∩ Ni = Li for i = 1, 2.
Thus S := S1S2 intersects N1N2 in L1L2 ⊆ R ∩ N1N2.

Consider p ∈ P � R. Since P and R∩S have the same image in Q×Q =
Γ/N1N2 (namely the diagonal) there exists r ∈ R ∩S such that pr ∈ N1N2�R.
Since N1N2 ∩ S ⊆ N1N2 ∩ R, we conclude p /∈ S. Hence P ∩ S ⊆ R.

6. Proof of the Main Theorem

We begin with a finite aspherical presentation for one of the seed groups
Jn or Bp constructed in Section 4; let Q be such a group. By applying the
Rips-Wise construction from Section 3 we obtain a short exact sequence

1 → N → H → Q → 1

with H a residually finite (2-dimensional) hyperbolic group and N a finitely
generated subgroup. The 1-2-3 Theorem (Section 2) tells us that the fibre
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product P ⊂ H×H associated to this sequence is finitely presented. Since Q is
infinite, P is a subgroup of infinite index. The sequence 1 → N → H → Q → 1
satisfies the Platonov-Tavgen criterion (Section 5), and hence the inclusion
u : P ↪→ H × H induces an isomorphism û : P̂ → Ĥ × Ĥ.

To see that P is not abstractly isomorphic to Γ = H×H, we appeal to the
fact that centralizers of nontrivial elements in torsion-free hyperbolic groups
are cyclic [5]. Indeed this observation allows us to characterize H × {1} and
{1} × H as the only non-abelian subgroups of Γ that are the centralizers of
noncyclic subgroups of Γ � {1}. The subgroups {1} × N and N × {1} of P

are characterized in the same way. Thus if P were abstractly isomorphic to Γ,
then H would be isomorphic to N . But H is finitely presented whereas N is
not [3].

7. An explicit example

In this section we give explicit presentations for a pair of groups P ↪→
H ×H satisfying the conclusion of Theorem 1.1. The fact that we are able to
do so illustrates the constructive nature of the proof of the 1-2-3 Theorem (in
the aspherical case) and the Rips-Wise construction.

Although they are explicit, our presentations are not small: the presenta-
tion of P has ten generators and seventy seven relations, and the sum of the
lengths of the relations is approximately eighty thousand.

As seed group we take

J4 = 〈a1, a2, a3, a4 | a−1
2 a1a2a

−2
1 , a−1

3 a2a3a
−2
2 , a−1

4 a3a4a
−2
3 , a−1

1 a4a1a
−2
4 〉.

In general, given a presentation of a group that has r generators and m

relations, the hyperbolic group produced by the Rips-Wise construction will
have r + 3 generators and m + 6r relations.

7.1. A Presentation of H. There are seven generators,

a1, a2, a3, a4, x1, x2, x3,

subject to the relations

aε
ixja

−ε
i = Vijε(x) for i ∈ {1, 2, 3, 4}, j ∈ {1, 2, 3}, ε = ±1,(S1)

and
a−1

2 a1a2a
−2
1 = U1(x), a−1

3 a2a3a
−2
2 = U2(x),

a−1
4 a3a4a

−2
3 = U3(x), a−1

1 a4a1a
−2
4 = U4(x),

(S2)

where Vijε(x) = vijεx3v
′
ijεx

−1
3 for j = 1, 2, and Vi3ε(x) = vi3εx3v

′
i3ε, and

Ui(x) = uix3u
′
ix

−1
3 , with the 56 words ui, u

′
i, vijε, v

′
ijε being (in any order)

{x1x
5n
2 x1x

5n+1
2 x1x

5n+2
2 x1x

5n+3
2 x1x

5n+4
2 | n = 1, . . . , 56}.
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The point about this last set of words is that it satisfies the c(5) small can-
cellation condition; any other such set of words would serve the same purpose
(see [15]).

The relations (S1) ensure that the subgroup N := 〈x1, x2, x3〉 is normal
in H, and the relations (S2) ensure that H/N is isomorphic to J4 via the map
ai �→ ai implicit in the notation. �

In order to present the fibre product P ⊂ H × H associated to the short
exact sequence 1 → N → H → J4 → 1, we need the following notation.

For each j ∈ {1, 2, 3} we introduce generators xL
j to represent (xj , 1) and

xR
j to represent (1, xj). Given a word W (x) in the letters x = {x1, x2, x3},

we write W (xL) for the word obtained by making the formal substitutions
xj �→ xL

j ; and likewise for W (xR). We introduce generators Ai to represent
(ai, ai) ∈ H.

The following presentation is a special case of Theorem 2.2 of [2]. Our
notation (S1) and (S2) agrees with that of [2]; the additional sets of relations
(S3) and Zσ of [2] are empty in the current setting.

7.2. A Presentation of P . There are ten generators,

A1, A2, A3, A4, x
L
1 , xL

2 , xL
3 , xR

1 , xR
2 , xR

3 ,

subject to the relations

A−1
i+1AiAi+1A

−2
i = Ui(xL)Ui(xR) (for i = 1, 2, 3) and

A−1
1 A4A1A

−2
4 = U4(xL)U4(xR),

and
[xL

j , xR
k ] = 1 for all j, k ∈ {1, 2, 3},

and

Aε
ix

L
j A−ε

i = Vijε(xL) and

Aε
ix

R
j A−ε

i = Vijε(xR) for i ∈ {1, 2, 3, 4}, j ∈ {1, 2, 3}, ε = ±1,

where the words Ui and Vijε are as above.

8. An abundance of examples

In this section we describe a construction that associates to every group
of type F3 a pair of groups P ↪→ Γ satisfying the conclusion of Theorem 1.1.

The following lemma is a special case of the general phenomenon that
if a class of groups G is closed under the formation of HNN extensions and
amalgamated free products along finitely generated free groups, then one can
embed groups G ∈ G into groups G ∈ G that have no finite quotients, preserving
desirable geometric properties of G; see [4].
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Let F3 denote the class of groups of type F3. The mapping cylinder
construction sketched in Section 4 shows that F3 is closed under the formation
of HNN extensions and amalgamated free products along finitely generated
free groups.

Lemma 8.1. Every G ∈ F3 can be embedded in a group G ∈ F3 that has
no proper subgroups of finite index.

Proof. We may assume that G is generated by elements {a1, . . . , an} of
infinite order, for if necessary we can replace G by G ∗ Z and {a1, . . . , an} by
{a1t, . . . , ant, t}, where Z = 〈t〉.

Let Q be an aspherical group with no nontrivial finite quotients, as de-
scribed in Section 4. We fix a nontrivial element q ∈ Q and modify G by re-
peatedly forming amalgamated free products with copies of Q as follows. Let
G1 = G ∗Z Q, where a1 ∈ G is identified with q ∈ Q. Then, for i = 2, . . . , n, let
Gi = Gi−1 ∗Z Q, where ai ∈ G ⊂ Gi−1 is identified with q ∈ Q. Let G = Gn.

Since Q has no nontrivial finite quotients, any homomorphism from G to
a finite group must kill each copy of Q and hence each of the generators ai.

The group G produced by the above construction is perfect and hence has
a universal central extension (see Chapter 5 of [10], for example):

1 → H2(G, Z) → G̃ → G → 1,

where G̃ is superperfect, i.e. H1(G̃, Z) = H2(G̃, Z) = 0. Since G and H2(G, Z)
lie in F3, so does G̃. Moreover, since G has no nontrivial finite quotients,
neither does G̃: since G̃ is perfect, such a quotient could not be abelian, so
factoring out the image of H2(G, Z) would yield a nontrivial finite quotient
of G.

We now proceed as in Section 6: Wise’s modification of the Rips construc-
tion yields a short exact sequence 1 → N → H → G̃ → 1 with H a residually
finite hyperbolic group; the 1-2-3 Theorem assures us that the associated fibre
product P is finitely presented (this time with a less obvious presentation);
and the Platonov-Tavgen criterion tells us that the inclusion P ↪→ Γ := H ×H

induces an isomorphism P̂ → Γ̂.

9. Varying the subgroup

Let Γ be a residually finite group. We record two remarks concerning the
number of subgroups uP : P ↪→ Γ for which ûP is an isomorphism.

We fix an infinite group G̃ as in the previous section and let H and N be
constructed accordingly.
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Proposition 9.1. The direct sum H2n of 2n copies of H contains at least
n nonisomorphic, finitely presented subgroups P such that P ↪→ H2n induces
an isomorphism P̂ → Ĥ2n.

Proof. We have a short exact sequence 1 → N → H
π→ G̃ → 1. For each

integer r = 1, . . . , n we consider the epimorphism πr : Hn → G̃r that maps the
first r factors by π and maps the remaining n − r factors trivially. The kernel
of this map is N r ×Hn−r, which is finitely generated. G̃r ∈ F3 is superperfect
and has no nontrivial finite quotients. Thus, as in Section 6, we conclude that
the fibre product associated to πr is a finitely presented group whose inclusion
Pr ↪→ H2n induces an isomorphism on profinite completions.

As in Section 6, one can see that Pr is not isomorphic to Ps when r �= s

by considering the structure of centralizers in Pr.

Proposition 9.2. If F is a free group of rank at least three, then there
exist infinitely many nonisomorphic finitely generated subgroups P of infinite
index such that uP : P ↪→ F × F induces an isomorphism ûP : P̂ → F̂ × F̂ .

Proof. In Section 4 we constructed infinitely many nonisomorphic finitely
presented groups Br, each of which can be generated by three elements; these
groups have no finite quotients and H2(Br, Z) = 0.

Lemma 2.1 shows that the fibre product Pr ⊂ F × F associated to each
short exact sequence 1 → N → F → Br → 1 is finitely generated, and the
Platonov-Tavgen criterion applies to the inclusion Pr ↪→ F ×F . As in previous
arguments, one sees that the subgroup N ×N ⊂ Pr is uniquely determined by
the structure of centralizers in Pr. And since Pr/(N ×N) ∼= Br, it follows that
Pq is not isomorphic to Pr if q �= r.

It is an open problem to establish an analogous result for finitely presented
groups. For this it would be enough to construct a finitely presented group
Γ with the following property: there exist infinitely many nonisomorphic su-
perperfect groups Q ∈ F3, each with no nontrivial finite quotients, and short
exact sequences 1 → NQ → Γ → Q → 1 with NQ finitely generated.

10. Grothendieck’s Tannaka duality groups

In this section we explain our negative solution to Grothendieck’s Second
Problem.

We began this paper by recalling the principal result of Grothendieck’s
paper [6]: a homomorphism u : Γ1 → Γ2 between residually finite groups
induces an isomorphism û : Γ̂1 → Γ̂2 if and only if the restriction functor
u∗

A : RepA(Γ2) → RepA(Γ1) is an equivalence of categories for every (or even
one) nonzero commutative ring A.
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After proving this theorem and posing the first of the problems we stated in
our introduction, Grothendieck outlined an idea for answering that question in
the affirmative. His idea is that one should try to reconstruct a residually finite
group Γ from its representation category RepA(Γ) using the tensor product
structure, as we shall now explain.

Let Mod(A) denote the category of all finitely generated A-modules and
consider the forgetful functor

F : RepA(Γ) → Mod(A).

In resonance with his ideas on Tannaka duality, Grothendieck defined clA(Γ)
to be the group of natural self-transformations of the functor F that are com-
patible with the tensor product ⊗A. Thus an element α ∈ clA(Γ) is a col-
lection (αM ) of A-linear isomorphisms αM : F(M) → F(M), one for each
M ∈ Ob(RepA(Γ)), satisfying the following two conditions:

(1) For all M, N ∈ Ob(RepA(Γ)) and all Γ-equivariant, A-linear maps ϕ :
M → N , the diagram

F(M)
F(ϕ)−→ F(N)�αM

�αN

F(M)
F(ϕ)−→ F(N)

is commutative.

(2) For all M, N ∈ Ob(RepA(Γ)) we have αM⊗AN = αM ⊗A αN .

There is an obvious group homomorphism tΓA : Γ → clA(Γ) defined by
tΓA(γ)M := (γ|M ) for all γ ∈ Γ and M ∈ Ob(RepA(Γ)). If Γ is residually finite
and A �= 0, this homomorphism is injective.

The assignment Γ �→ clA(Γ) extends to a covariant functor clA on the
category of groups: clA assigns to a group homomorphism u : Γ1 → Γ2, the
homomorphism ũA : clA(Γ1) → clA(Γ2) that sends α = (αM ) ∈ clA(Γ1) to
ũA(α) ∈ clA(Γ2) according to the rule

ũA(α)N := αu∗
A(N) (N ∈ Ob(RepA(Γ2))).

Note that ũA(tΓ1
A (Γ1)) = tΓ2

A (Γ2).
If we restrict our attention to residually finite groups, then we may conflate

Γ with tΓA(Γ). Grothendieck’s Second Problem can now be stated as:

Grothendieck’s Second Problem. If Γ is finitely presented and resid-
ually finite, then is Γ = clA(Γ) for every commutative ring A �= 0, or at least
for a suitable ring A?
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This problem is closely related to Grothendieck’s First Problem, as we
shall explain now.

Let u : Γ1 → Γ2 be a monomorphism of residually finite groups and
suppose that û : Γ̂1 → Γ̂2 is an isomorphism. Grothendieck deduces from the
main result of his paper [6] that if there is a commutative ring A �= 0 such that
Γ1 = clA(Γ1) and Γ2 = clA(Γ2), then u : Γ1 → Γ2 is an isomorphism.

Grothendieck identifies suitable rings A in startling generality. For ex-
ample, he proves that Γ = clZ(Γ) for all arithmetic groups Γ that have the
congruence subgroup property.

In contrast, we prove:

Theorem 10.1. If P is one of the (finitely presented, residually finite)
groups constructed in Theorem 1.1, then P is of infinite index in clA(P ) for
every commutative ring A �= 0.

Proof. Let A �= 0 be a commutative ring. The inclusion u : P → Γ
constructed in Theorem 1.1 induces an isomorphism û : P̂ → Γ̂ and hence (by
Grothendieck’s result) an equivalence of categories u∗

A : RepA(Γ) → RepA(P ).
Since u∗

A is an equivalence, ũA : clA(P ) → clA(Γ) is an isomorphism.

P
u−→ Γ�tPA

�tΓA

clA(P ) ũA−→ clA(Γ)

The index of P in Γ is infinite, and so consideration of the above commu-
tative diagram shows that the index of P in clA(P ) is infinite.

The only previous progress on Grothendieck’s Second Problem was achieved
by Alex Lubotzky in [9]. The following is a somewhat rough description of his
results (see [9] for details). Note that in these examples, in contrast to our
Theorem 10.1, the rings A are chosen in relation to the groups Γ.

Lubotzky first extended the result of Grothendieck mentioned above by
proving that if Γ is an arithmetic group having the weak congruence sub-
group property (i.e. the congruence kernel CΓ ⊂ Γ is finite and abelian), then
clZ(Γ) ∼= CΓ × Γ. Thus clZ(Γ) can be a nontrivial finite extension of Γ.

Lubotzky also proved that if Γ is an S-arithmetic group where the finite
set of primes S enters nontrivially into the definition of Γ, then clZ(Γ) = Γ̂.
Thus he discovered examples in which clZ(Γ) is an uncountable extension of Γ.
Moreover, such examples show that the index of Γ in clA(Γ) can depend on
the ring A, because in certain cases there exists a ring of S-arithmetic integers
A such that clA(Γ) = Γ.
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