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Removability of point singularities
of Willmore surfaces

By Ernst Kuwert and Reiner Schätzle*

Abstract

We investigate point singularities of Willmore surfaces, which for example
appear as blowups of the Willmore flow near singularities, and prove that
closed Willmore surfaces with one unit density point singularity are smooth in
codimension one. As applications we get in codimension one that the Willmore
flow of spheres with energy less than 8π exists for all time and converges to a
round sphere and further that the set of Willmore tori with energy less than
8π − δ is compact up to Möbius transformations.

1. Introduction

For an immersed closed surface f : Σ → Rn the Willmore functional is
defined by

W(f) =
1
4

∫
Σ

|H|2 dµg,

where H denotes the mean curvature vector of f , g = f∗geuc the pull-back
metric and µg the induced area measure on Σ. The Gauss equations and the
Gauss-Bonnet Theorem give rise to equivalent expressions

W(f) =
1
4

∫
Σ

|A|2 dµg + πχ(Σ) =
1
2

∫
Σ

|A◦|2 dµg + 2πχ(Σ),

where A denotes the second fundamental form, A◦ = A− 1
2g⊗H its trace-free

part and χ the Euler characteristic. The Willmore functional is scale invariant
and moreover invariant under the full Möbius group of Rn. Critical points of
W are called Willmore surfaces or more precisely Willmore immersions.

We always have W(f) ≥ 4π with equality only for round spheres; see
[Wil] in codimension one, that is n = 3. On the other hand, if W(f) < 8π
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then f is an embedding by an inequality of Li and Yau in [LY]; for the reader’s
convenience see also (A.17) in our appendix. Bryant classified in [Bry] all
Willmore spheres in codimension one.

In [KuSch 2], we studied the L2 gradient flow of the Willmore functional
up to a factor, the Willmore flow for short, which is the fourth order, quasilinear
geometric evolution equation

∂tf + ∆gH + Q(A0)H = 0

where the Laplacian of the normal bundle along f is used and Q(A0) acts
linearly on normal vectors along f by

Q(A0)φ := gikgjlA0
ij〈A0

kl, φ〉.

There we estimated the existence time of the Willmore flow in terms of the
concentration of local integrals of the squared second fundamental form. These
estimates enable us to perform a blowup procedure near singularities, see
[KuSch 1], which yields a compact or noncompact Willmore surface as blowup.
In contrast to mean curvature flow, the blowup is stationary as the Willmore
functional is scale invariant. In case the blowup is noncompact, its inversion is
again a smooth Willmore surface, but with a possible point singularity at the
origin.

The purpose of this article is to study unit density point singularities of
general Willmore surfaces in codimension one. Our first main result, Lemma
3.1, states that the Willmore surface extends C1,α for all α < 1 into the point
singularity. This cannot be improved to C1,1 as one sheet of an inverted
catenoid shows. For the proof, we establish that the integral of the squared
mean curvature over an exterior ball around the point singularity decays in a
power of the radius; that is,∫

[|f |<�]

|H|2 dµg ≤ C�β for some β > 0.(1.1)

(1.1) implies the regular extension of the Willmore surface by standard technics
in geometric measure theory, when we take into account our assumption of unit
density. In codimension one, we can choose a smooth normal ν and define the
scalar mean curvature Hsc := Hν up to a sign. Observing for the normal
Laplacian that ∆gH = (∆gHsc)ν, the Euler-Lagrange equation satisfied on
the Willmore surface simplifies in codimension one to

∆gHsc + |A0|2Hsc = 0.(1.2)

The decisive point in order to make (1.2) applicable, more precisely to control
the metric near the point singularity, is to introduce conformal coordinates by
the work [MuSv] of Müller and Sverak, again using our assumption of unit
density. Considering (1.2) as a scalar second order linear elliptic equation
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in Hsc, conformal changes result in multiplying the Laplacian with a factor,
and the equation transforms to a linear elliptic equation in a punctered disc
involving the euclidean Laplacian. Using interior L∞ − L2−estimates for the
second fundamental form of Willmore surfaces, as proved in [KuSch 1], we
obtain

∆Hsc + qHsc = 0 in B2
1(0)− {0},

|y|2q(y)→ 0 for x→ 0,∫
sup
|y|=�

|q(y)|� d� <∞.

In Section 2, we investigate this equation by introducing polar coordinates
(r, ϕ) combined with an exponential change of variable r = e−t. As the result-
ing function is periodic in ϕ, we derive ordinary differential equations for its
Fourier modes from which we are able to conclude decay for the higher Fourier
modes for t→∞. This yields (1.1).

Knowing C1,α−regularity, we can expand the mean curvature

H(x) = H0 log |x|+ C0,α
loc

around the point singularity where H0 are normal vectors at 0 which we call
the residue. The point singularity can be removed completely to obtain an
analytic surface if and only if the residue vanishes. Inspired by the Noether
principle for minimal surfaces, we get a closed 1-form by calculating the first
variation of the Willmore functional with respect to a constant Killing field
and observe that the residue can be computed as the limit of the line integral
around the point singularity of this 1-form. From this we conclude in Lemma
4.2 that the residues of a closed Willmore surface with finitely many point
singularities of unit density add up to zero. As inverted blowups have at most
one singularity at zero, inverted blowups are smooth provided this singularity
has unit density.

The final section is devoted for applications of our general removability
results. Here, we will always verify the unit density condition for the possible
point singularities by considering surfaces with Willmore energy < 8π via the
Li-Yau inequality; see (A.17). The main importance of the argument in our
applications is that we are able to exclude topological spheres as blowups.
Indeed, by our removability results we know that the inversions of blowups
are smooth and by Bryant’s classification of Willmore spheres in codimension
one in [Bry], the only Willmore spheres with energy less than 16π are the
round spheres. Now round spheres are excluded as inversions of blowups, since
blowups are nontrivial in the sense that they are not planes.
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As application we mention

Theorem 5.2. Let f0 : S2 → R3 be a smooth immersion of a sphere with
Willmore energy

W(f0) ≤ 8π.

Then the Willmore flow with initial data f0 exists smoothly for all times and
converges to a round sphere.

Actually this improves the smallness assumption of Theorem 5.1 in
[KuSch 1] to ε0 = 8π. This constant is optimal, as a numerical example of
a singularity recently obtained in [MaSi] indicates.

Further we mention the following compactness result for Willmore tori.

Theorem 5.3. The set

M1,δ := {Σ ⊆ R3 Willmore | genus(Σ) = 1,W(Σ) ≤ 8π − δ }

is compact up to Möbius transformations under smooth convergence of com-
pactly contained surfaces in R3.

2. Power-decay

We consider Ω := B2
1(0) − {0} ⊆ R2, v ∈ C∞(Ω), A measurable on Ω

which satisfy

|∆v| ≤ |A|2 |v| in Ω,(2.1)

|v| ≤C|A| in Ω,(2.2)

‖ A ‖L∞(B�)≤C�−1 ‖ A ‖L2(B2�) for B2� ⊆ Ω,(2.3) ∫
Ω

|A|2 <∞.(2.4)

Lemma 2.1 (Power-decay-lemma). Under the assumptions (2.1)–(2.4),
∀ ε > 0, ∃ Cε <∞, ∀ 0 < � ≤ 1,∫

B�(0)

|v|2 ≤ Cε�
2−ε.(2.5)

Remark. From (2.1)–(2.4), we can conclude

∆v + qv = 0 in B2
1(0)− {0},(2.6)

|y|2q(y)→ 0 for y → 0.
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In [Sim 3] equations with this asymptotics were investigated, and Lemma 1.4
in [Sim 3] yields

�−1 ‖ v ‖L2(B�(0)−B�/2(0))= O(�k+ε) =⇒ �−1 ‖ v ‖L2(B�(0)−B�/2(0))= O(�k+1−ε)

for all k ∈ Z, ε > 0. From (2.2) we only get v(y) = o(|y|−1) which does not
suffice to obtain the conclusion (2.5) from (2.6) as the example

v(y) = v(r(cos ϕ, sin ϕ)) :=
1

r log(2/r)
cos ϕ

shows. For the proof of the power-decay-lemma it is decisive to observe that

1/2∫
0

sup
|y|=�

|q(y)|� d� <∞

by (2.3) and (2.4), which yields integrability in Proposition 2.2 and (2.14)
below.

We reformulate the problem by putting, for 0 < t <∞,

u(t, ϕ) := v(e−t+iϕ),

ω(t, ϕ) := e−2t |A(e−t+iϕ)|2.

Introducing polar coordinates and r = e−t, that is,

ṽ(r, ϕ) = v(reiϕ),

u(t, ϕ) = ṽ(e−t, ϕ),

we calculate ∂t = −r∂r and

∆v =
1
r
∂r(r∂rṽ) +

1
r2

∂2
ϕṽ =

1
r2

(∂2
t u + ∂2

ϕu) = e2t∆u;

hence by (2.1)

|∆u| = e−2t|∆v| ≤ e−2t|A|2|v| = |ωu| in R+ × R.(2.7)

From (2.2)–(2.4), we see for � = e−t that

sup
ϕ
|ω(t, ϕ)| ≤ �2 ‖ A ‖2L∞(∂B�)(2.8)

≤C ‖ A ‖2L2(B2�)→ 0 for �→ 0, that is t→∞.

Then (2.2) yields

sup
ϕ
|e−tu(t, ϕ)| ≤ C� ‖ A ‖L∞(∂B�)→ 0 for �→ 0, that is t→∞.(2.9)

The next proposition gives an integral bound on the supremum in (2.8).
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Proposition 2.2.
∞∫

t0

sup
ϕ
|ω(t, ϕ)| dt <∞ ∀t0 > 0.(2.10)

Proof. We calculate, using (2.2) and (2.3), that

∞∫
log 2

sup
ϕ
|ω(t, ϕ)| dt =

1/2∫
0

sup
ϕ
|ω(log

1
�
, ϕ)|�−1 d� ≤

1/2∫
0

� ‖ A ‖2L∞(∂B�) d�

≤
1/2∫
0

C�−1 ‖ A ‖2L2(B2�−B�/2)
d� = C

1/2∫
0

2�∫
�/2

∫
∂B1

|A(rω)|2r�−1 dH1(ω) dr d�

≤ C

1∫
0

∫
∂B1

2r∫
r/2

|A(rω)|2 d� dH1(ω) dr

≤ C

1∫
0

∫
∂B1

|A(rω)|2r dH1(ω) dr = C

∫
B1

|A|2 <∞

by (2.4).

The power-decay-lemma is an easy consequence of the following PDE-
lemma and (2.7) to (2.10).

Lemma 2.3 (PDE-lemma). Let u ∈ C∞(R+ × R) be periodic,

u(t, ϕ + 2π) = u(t, ϕ),

and ω ≥ 0 measurable on R+satisfying

|∆u| ≤ ω|u| in R+ × R,(2.11)

sup
ϕ
|e−tu(t, ϕ)| → 0 for t→∞,(2.12)

ω(t)→ 0 for t→∞,(2.13)

∞∫
0

ω(t) dt <∞.(2.14)

Then for any ε > 0

lim
t→∞

e−εt ‖ u(t, .) ‖L2(0,2π)= 0.(2.15)
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Proof that the (PDE-lemma ⇒ power -decay-lemma). From (2.7) to
(2.10), we see that u(. + t0, .), supϕ |ω(. + t0, ϕ)| satisfy (2.11) to (2.14). Then
(2.15) yields

∫
B�

|v|2 =

�∫
0

2π∫
0

|v(reiϕ)|2r dϕ dr =

∞∫
log(1/�)

2π∫
0

|u(t, ϕ)|2e−2t dϕ dt

≤Cε

∞∫
log(1/�)

e−(2−ε)t dt ≤
[
Cε(2− ε)−1 e−(2−ε)t

]∞
log(1/�)

= Cε�
2−ε

which is (2.5).

To prove the PDE-lemma, we carry out a Fourier-transform. We put, for
k ∈ Z,

uk(t) :=
1
2π

2π∫
0

u(t, ϕ)e−ikϕ dϕ.

Clearly

uk ∈ C∞([0,∞[),

u(t, ϕ) =
∑
k∈Z

uk(t)eikϕ,

1
2π
‖ u(t, .) ‖2L2(0,2π) =

∑
k∈Z
|uk(t)|2.

Further,
∆u =

∑
k∈Z

(u′′
k − k2uk)eik.,

and (2.11) implies∑
k∈Z
|u′′

k − k2uk|2 ≤
1
2π
‖ ωu ‖2L2(0,2π)= ω2

∑
k∈Z
|uk|2.(2.16)

For m ∈ N0, 0 < δ ≤ 1, we put

Jm :=
∑
|k|≥m

|uk|2,

Im :=
∑
|k|≤m

|uk|2,

aδ
m :=

∑
|k|≤m

(
δ2|uk|2 + |u′

k|2
)
.



322 ERNST KUWERT AND REINER SCHÄTZLE

Denoting the real part by Re, we calculate

J ′
m =

∑
|k|≥m

(ukū
′
k + ūku

′
k) = Re

∑
|k|≥m

2ukū
′
k,

J ′′
m =

∑
|k|≥m

(
2|u′

k|2 + Re(2ukū
′′
k)

)
.

Then (2.16) yields

(2.17)

J ′′
m≥Re

∑
|k|≥m

2uk

(
k2ūk + (ū′′

k − k2ūk)
)
≥ 2m2Jm − 2ωJ1/2

m J
1/2
0

= 2m2Jm − 2ωJ1/2
m (Im−1 + Jm)1/2 ≥ 2m2Jm − 2ωJ1/2

m I
1/2
m−1 − 2ωJm

≥ 2(m2 − ω)Jm − 2ωJ1/2
m I

1/2
m−1.

Next,

(2.18)∣∣(aδ
m)′

∣∣ =
∣∣∣Re

∑
|k|≤m

2(δ2uk + u′′
k)ū

′
k

∣∣∣
=

∣∣∣Re 2
∑
|k|≤m

[
(k2 + δ2)uk + (u′′

k − k2uk)
]
ū′

k

∣∣∣
≤ 2

( ∑
|k|≤m

|u′
k|2

)1/2[
(m2 + δ2)

( ∑
|k|≤m

|uk|2
)1/2

+ ωJ
1/2
0

]

≤ 2(m2 + δ2 + ω)
( ∑

|k|≤m

|uk|2
)1/2( ∑

|k|≤m

|u′
k|2

)1/2

+2
( ∑

|k|≤m

|u′
k|2

)1/2

ωJ
1/2
m+1

≤ (m2 + δ2 + ω)
(
δ

∑
|k|≤m

|uk|2 + δ−1
∑
|k|≤m

|u′
k|2

)
+ 2ω(aδ

m)1/2J
1/2
m+1

≤ (m2 + δ2 + ω)δ−1aδ
m + 2ω(aδ

m)1/2J
1/2
m+1.

For m = 0,

|(aδ
0)

′| ≤ (δ + δ−1ω)aδ
0 + 2ω(aδ

0)
1/2J

1/2
1 .(2.19)

For m = 1 and a1 = a1
1,

|a′1| ≤ (2 + ω)a1 + 2ω(a1)1/2J
1/2
2 .(2.20)

To proceed we need the following ODE-lemma.
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Lemma 2.4 (ODE-lemma). Let J, a ∈ C∞([0,∞[), ω ∈ L1(0,∞),
J, a, ω ≥ 0, J + a �≡ 0 on [t,∞[ for some large t and 0 < q < p satisfy

J ′′ ≥ (p2 − ω)J − ωJ1/2a1/2,(2.21)

|a′| ≤ (q + ω)a + ωJ1/2a1/2,

ω(t)→ 0 for t→∞.

Then

either lim
t→∞

e−p0tJ(t) =∞,∀ p0 < p,(2.22)

lim
t→∞

a(t)
J(t) = 0 and

or lim
t→∞

ep0tJ(t) = 0,∀ p0 < p,(2.23)

or

lim
t→∞

a(t)
J(t)

=∞ and lim sup
t→∞

e−qta(t) <∞.(2.24)

Proof. First, we fix q < p0 < p and consider µ ∈ ]0,∞[ satisfying

∃tj ↑ ∞ : µ2J(tj) > a(tj), J ′(tj) ≥ −p0J(tj),(2.25)

and define
µ0 := inf{µ ∈ ]0,∞[ satisfying (2.25)}

where we set inf ∅ := +∞.

Let µ0 < µ < ∞ and choose p0 < p̃ < p and 1 < Γ = Γ(p0, p̃) large be-
low. We fix j large and put

T := inf{t ∈ [tj ,∞[ | Γ2µ2J(t) ≤ a(t) } ∈ ]tj ,∞],

where we observe Γ2µ2J(tj) ≥ µ2J(tj) > a(tj) since J ≥ 0, Γ ≥ 1. Then

Γ2µ2J > a on [tj , T [;(2.26)

hence by (2.21)
J ′′ ≥ (p2 − ω(1 + Γµ))J on [tj , T [.

For tj large enough depending on µ, p0, p̃, p and ω, we see

J ′′ ≥ p̃2J on [tj , T [.(2.27)

We calculate
(ep0tJ)′ = ep0t(J ′ + p0J)

and by (2.27)

(ep0tJ)′′ = ep0t(J ′′ + 2p0J
′ + p2

0J) ≥ 2p0e
p0t(J ′ + p0J) = 2p0(ep0tJ)′ on [tj , T [.
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By (2.25), we know
(ep0tJ)′t=tj

≥ 0;

hence

J ′ ≥ −p0J on [tj , T [.(2.28)

Now, (2.27), (2.28) yield for t′ < t′′ ∈ [tj , T [ that

J(t′′)≥ J(t′) cosh p̃(t′′ − t′) +
J ′(t′)

p̃
sinh p̃(t′′ − t′)(2.29)

≥ J(t′)
[
cosh p̃(t′′ − t′)− p0

p̃
sinh p̃(t′′ − t′)

]
≥ J(t′)(1− p0

p̃
) cosh p̃(t′′ − t′) ≥ p̃− p0

2p̃
J(t′)ep̃(t′′−t′).

We claim

T =∞.(2.30)

Indeed if T <∞, we see from (2.29) that

J(T ) > 0,

since µ2J(tj) > a(tj) ≥ 0, and

µ2J(T ) < Γ2µ2J(T ) = a(T ).(2.31)

We put
t′ := sup{t ∈ [tj , T [ | µ2J(t) ≥ a(t) } ∈ [tj , T [.

Next,

µ2J(t′) = a(t′).(2.32)

By (2.26),
µ2J ≤ a ≤ Γ2µ2J on [t′, T [.

From (2.21), we calculate

a′ ≤ (q + ω(1 + µ−1))a on [t′, T [.

Hence by (2.29), (2.31), (2.32),

0 < Γ2µ2J(T ) = a(T ) ≤ a(t′) exp
( ∞∫

tj

ω(1 + µ−1)
)

eq(T−t′)

= µ2J(t′) exp
(
(1 + µ−1)

∞∫
tj

ω
)

eq(T−t′)

≤ 2p̃

p̃− p0
exp

(
(1 + µ−1)

∞∫
tj

ω
)

exp
(
(q − p̃)(T − t′)

)
µ2J(T ).
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Since,

Γ = Γ(p0, p̃) >

√
2p̃

p̃− p0
≥
√

2 > 1,

this is impossible for tj large as J(T ) > 0 and

lim
t→∞

∫ ∞

t
ω = 0.

This proves (2.30).
Therefore by (2.26)

a < Γ2µ2J on [tj ,∞[;

hence
lim sup

t→∞

a

J
≤ Γ2µ2

and by (2.29)
lim
t→∞

e−p0tJ(t) =∞.

By definition of µ0, this yields

lim sup
t→∞

a

J
≤ Γ2µ2

0(2.33)

and

lim
t→∞

e−p0tJ(t) =∞ if µ0 <∞.(2.34)

Now we consider
0 < µ < µ0.

By definition of µ0,

µ2J(t) > a(t)⇒ J ′(t) ≤ −p0J(t) for large t.(2.35)

Therefore by (2.21)

max(µ2J, a)′ ≤ a′χ[µ2J≤a] ≤ (q + ω(1 + µ−1)) max(µ2J, a) for large t

and
max(µ2J, a) > 0 for large t,

since J + a �≡ 0 for large t by assumption. If 0 < log µ2J
a < ∞ , we conclude

from (2.21) and (2.35) for large t that(
log

µ2J

a

)′
=

J ′

J
− a′

a
≤ −p0 + q + ω + ω

(
J

a

)1/2

.

We infer for Λ > 0 that min((log µ2J
a )+, Λ) is locally lipschitz and by (2.21)

that

min
((

log
µ2J

a

)
+

, Λ
)′
≤ 0 for large t.
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If

lim inf
t→∞

J

a
<∞,(2.36)

we choose

log
(

lim inf
t→∞

µ2J

a

)
+

< Λ <∞

and see that (
log

µ2J

a

)
+

≤ Λ for large t;

hence (
log

µ2J

a

)′
≤ −ε

for some ε > 0, for large t, if log µ2J
a > 0. This implies

µ2J ≤ a for large t.(2.37)

Again from (2.21), we get

a′ ≤ (q + ω(1 + µ−1))a for large t;

hence

a(t) ≤ Ceqt,(2.38)

since
∞∫
0

ω <∞. From (2.36), (2.37),(2.38), we see that if

lim sup
t→∞

a

J
> 0(2.39)

then

lim inf
t→∞

a

J
≥ µ2

0,(2.40)

and if further µ0 > 0 then

lim sup
t→∞

e−qta(t) <∞.(2.41)

If µ0 = 0, then (2.22) is satisfied for the fixed p0 by (2.33), (2.34).
If 0 < µ0 <∞, then by (2.34)

lim
t→∞

e−p0tJ(t) =∞.

We claim that
lim
t→∞

a

J
= 0

and hence (2.22) is satisfied for p0.
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Indeed if lim sup
t→∞

a
J > 0, then we get from (2.41)

lim sup
t→∞

e−qta(t) <∞;

hence

lim sup
t→∞

a

J
≤ lim sup

t→∞
e−qta(t) lim sup

t→∞

1
e−p0tJ(t)

lim sup
t→∞

e(q−p0)t = 0.

If µ0 = ∞ and lim supt→∞
a
J > 0, then (2.24) is satisfied by (2.40) and

(2.41).
If µ0 =∞ and limt→∞ a

J = 0, then

J(t) > a(t) for large t.

As µ0 =∞, (2.25) is not satisfied for µ = 1; hence

J ′(t) ≤ −p0J(t) for large t

which yields
lim
t→∞

e(p0−ε)tJ(t) = 0 ∀ε > 0.

Now for any q < p0 < p, exactly one of the three statements (2.22), (2.23),
(2.24) is satisfied. This implies (2.22)–(2.24) for any q < p̃ < p0; hence exactly
one of the statements (2.22)–(2.24) is satisfied for all q < p0 < p.

Now we are ready to prove the PDE-lemma.

Proof of the PDE-lemma. We apply the ODE-lemma to J = J1, a = aδ
0,

p =
√

2, q = δ ≤ 1, by (2.13), (2.14), (2.17), (2.19). If J1 + aδ
0 ≡ 0 for large t,

or (2.23) or (2.24) of the ODE-lemma is satisfied then we put a0 = a1
0,

J0 ≤ a0 + J1 ≤ δ−2aδ
0 + J1 ≤ Cδe

δt,

which implies (2.15) as J0(t) = 1
2π ‖ u(t, .) ‖2L2(0,2π). Therefore it suffices to

consider that (2.22) of the ODE-lemma is satisfied; that is,

lim
t→∞

a0(t)
J1(t)

= 0.(2.42)

Next, we apply the ODE-lemma to J = J2, a = a1, p = 2
√

2 > 2 = q by (2.13),
(2.14), (2.17), (2.20). From (2.12) we see that

J2(t) ≤
1
2π
‖ u(t, .) ‖2L2(0,2π)≤ Ce2t.

Therefore (2.22) of the ODE-lemma is not satisfied. If J2 + a1 ≡ 0 for large t

or (2.23) of the ODE-lemma is satisfied, then

J0(t) ≤ a1(t) + J2(t) ≤ C

which implies (2.15).
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Therefore it remains to consider that (2.24) of the ODE-lemma is satisfied;
hence

lim
t→∞

a1(t)
J2(t)

=∞.(2.43)

We put
b :=

∑
|k|=1

(|uk|2 + |u′
k|2).

Clearly
a1 = b + a0 and J1 ≤ b + J2.

From (2.42), (2.43), we see that

a0

b + J2
≤ a0

J1
→ 0,

a0 + b

J2
→∞.

Therefore

a0

a0 + b
=

a0

b + J2

b + J2

a0 + b
≤ a0

b + J2

(
1 +

J2

a0 + b

)
→ 0;

hence
b

a0
=

a0 + b

a0
− 1→∞.(2.44)

Further
a0 + b

b
= 1 +

a0

b
→ 1;

hence
b

J2
=

a0 + b

J2

b

a0 + b
→∞.(2.45)

This implies

lim inf
t→∞

b

J0
≥ lim

t→∞
b

a0 + b + J2
= 1.(2.46)

From (2.16) and (2.46), we conclude for |k| = 1 that

|u′′
k − uk| ≤

1
2π
‖ ω ‖L2(0,2π)‖ u ‖L2(0,2π)≤ Cωb1/2(2.47)

and

b′ = Re
∑
|k|=1

2(uk + u′′
k)ū

′
k = Re

∑
|k|=1

4ukū
′
k + Re

∑
|k|=1

2(u′′
k − uk)ū′

k.

Therefore

|b′ − Re 4ukū
′
k| ≤ Cωb(2.48)
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and

b(t)≤ b(0) exp
( ∞∫

0

Cω
)

exp
( t∫

0

Re
4ukū

′
k

b

)
(2.49)

≤C exp
( t∫

0

Re
4ukū

′
k

b

)
.

Now,
c = Re

∑
|k|=1

2ukū
′
k

and we see that

|c| ≤ b.(2.50)

We calculate

c′ = 2|u′
k|2 + Re 2ukū

′′
k = 2(|u′

k|2 + |uk|2) + Re 2uk(ū′′
k − ūk);

hence by (2.47)

|c′ − 2b| ≤ Cωb(2.51)

and (2.48) is rewritten

|b′ − 2c| ≤ Cωb.(2.52)

Now, (2.49) shows

b(t) ≤ C exp(2

t∫
0

c

b
).(2.53)

Next, using (2.48), (2.50) and (2.51), we get(c

b

)′
=

c′b− cb′

b2
=

2b2 + (c′ − 2b)b− c(b′ − 2c)− 2c2

b2

≥ 2− Cω − Cω|c
b
| − 2|c

b
|
2
≥ −Cω.

This yields

inf
t∈[t0,∞[

c

b
(t)≥ c

b
(t0)−

∞∫
t0

Cω

and
lim inf
t→∞

c

b
(t)≥ lim sup

t→∞

c

b
(t),

since ∞∫
0

ω <∞.
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This means that
α := lim

t→∞
c

b
(t) ∈ [−1, 1]

exists. We claim

α ≤ 0.(2.54)

Indeed if α > 0 then
c ≥ α

2
b > 0 for large t.

We put
γ := b + c ≥ b > 0 for large t

and see by (2.51) and (2.52) that

γ′ = b′ + c′ = (b′ − 2c) + (c′ − 2b) + 2(c + b) ≥ 2γ − Cωb ≥ (2− Cω)γ.

Hence

2b(t) ≥ γ(t) ≥ γ(0) exp
(
− C

∞∫
0

ω
)
e2t ≥ c0e

2t.(2.55)

From (2.12), we know

lim sup
t→∞

e−2t
∑
|k|=1

|uk(t)|2 ≤ lim sup
t→∞

e−2tJ0(t) = 0;

hence by (2.55)

lim inf
t→∞

∑
|k|=1

|u′
k(t)|2e−2t = lim inf

t→∞
b(t)e−2t > 0x

and

lim
t→∞

∑
|k|=1

|uk|2∑
|k|=1

|u′
k|2

= 0.

Then

0 < α = lim
t→∞

c

b
(t) = lim

t→∞

Re
∑

|k|=1

2ukū
′
k(t)∑

|k|=1

(|uk(t)|2 + |u′
k(t)|2)

≤ lim
t→∞

∑
|k|=1

(ε−1|uk|2 + ε|u′
k|2)∑

|k|=1

(|uk|2 + |u′
k|2)

≤ ε,

which is a contradiction and (2.54) is proved.
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From (2.54), we conclude for any ε > 0 that

lim
t→∞

( t∫
0

2
c

b
− εt

)
= −∞;

hence by (2.53)

lim sup
t→∞

e−εtb(t) ≤ lim sup
t→∞

C exp
( t∫

0

2
c

b
− εt

)
= 0.

From (2.46), we get

lim sup
t→∞

e−εt ‖ u(t, ) ‖2L2(0,2π)= 2π lim sup
t→∞

e−εtJ0(t) = 0

which implies (2.15).

3. C1,α-regularity for point singularities

Let Σ be an open surface and f : Σ → R3 be a smooth immersion with
pull-back metric g = f∗geuc and induced area-measure µg. Its image as varifold
is given by

µ := f(µg) = (x �→ H0(f−1(x))) H2�f(Σ)

which is an integral 2-varifold in R3; see [Sim 1, §15], if µ is locally finite, for
example, when Σ is closed.

Lemma 3.1. Let Σ be an open surface and f : Σ → R3 be a smooth
Willmore immersion that satisfies

0 ∈ spt µ,(3.1)

θ2
∗(µ, 0) < 2,(3.2)

where µ has square integrable weak mean
curvature in Bδ(0)− {0} for some δ > 0,

(3.3)

∫
Σ

|A|2 dµg <∞.(3.4)

Then µ is a C1,α-embedded, unit density surface at 0 for all 0 < α < 1, and
the second fundamental form A satisfies the estimate

|A(x)| ≤ Cε|x|−ε ∀ε > 0.(3.5)



332 ERNST KUWERT AND REINER SCHÄTZLE

Proof. By (3.2), (3.3), (A.1) and (A.2), we see that

µ has square integrable weak mean curvature in Bδ(0).(3.6)

From (3.1), (3.2), (A.7) and (A.10), we get

1 ≤ θ2(µ, 0) < 2.(3.7)

Hence by (3.6), we see from [Sim 1, §42] that tangent cones exist; that is,

µ�m
:= ζ�m,#µ→ µC ,

where ζ�(x) := �−1x, converge for subsequences �m ↓ 0 weakly as varifolds to
stationary, integral cones C, depending on the subsequence, with

µC(B3
�(x))

ω2�2
≤ θ2(µC , 0) = θ2(µ, 0) < 2 for all x ∈ R3.(3.8)

Invoking [KuSch 1, Th. 2.10], as f is a Willmore immersion and by (3.4), we
obtain that also the convergence µ�m

→ µC is smooth in compact subsets of
R3 − {0} and AC = 0 in R3 − {0}. Hence C is a union of integral planes and,
by (3.8), C is a single density plane through 0 and θ2(µ, 0) = 1.

Further spt µ is a smooth graph over some plane in B3
�(0) − B3

�/2(0) for
small �, and hence it is a smooth embedded, unit-density Willmore surface in
B3

δ (0)− {0} for δ small enough which is diffeomorphic to an annulus

spt µ ∩ (B3
δ (0)− {0}) ∼= B2

1(0)− {0}.

Since the conclusion of the lemma is local near 0, we can identify Σ with its
image and modify Σ and f outside B3

δ (0) so that Σ is a smooth, embedded
surface in R3−{0} which is Willmore in B3

δ (0)−{0} and can be parametrised
by

f : R2 → Σ ⊆ R3 − {0}
such that f(y)→ 0 for y →∞.

We consider the inversion I(x) := |x|−2 x, which is a conformal diffeo-
morphism with conform factor λ(x)2 := |∂iI(x)|2 = |x|−4 on R3 − {0}, put
f̄ := I ◦ f, Σ̄ = I(Σ), µ̄ := H2�Σ̄ and consider the pull-back metric

ḡ := f̄∗geuc = (λ2 ◦ f)f∗geuc = (λ2 ◦ f)g.

Σ̄ is a smooth, complete surface in R3.
Now we use the conformal invariance of the Willmore functional; more

precisely this means that |A0|2µg, where A0 denotes the trace-free second fun-
damental, remains invariant under conformal changes of the ambient metric;
see [Ch]. This yields, by (3.4),∫

Σ̄

|A0
Σ̄|

2 dµ̄ ≤
∫
Σ

|AΣ|2 dµ <∞.(3.9)
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Next we abbreviate Σ̄R := Σ̄∩BR(0) for large R and see from Gauss-Bonnet’s
theorem that ∫

Σ̄R

KΣ̄ dµ̄ +
∫

∂Σ̄R

κ∂Σ̄R
dH1 = 2πχ(Σ̄R) = 2π,

where KΣ̄ and κ∂Σ̄R
denote the Gaussian- and geodesic curvature on Σ̄ and ∂Σ̄R.

By smooth convergence for subsequences around R−1∂Σ̄R to flat annuli, we
see

lim
R→∞

∫
∂Σ̄R

κ∂Σ̄R
dH1 = 2π

and obtain
lim

R→∞

∫
Σ̄R

KΣ̄ dµ̄ = 0.

As
|A0|2 =

1
2
|H|2 − 2K = |A|2 − 1

2
|H|2,

we see, using (3.9) first, that HΣ̄ ∈ L2(µ̄); then∫
Σ̄

|AΣ̄|2 dµ̄ <∞,(3.10)

K ∈ L1(µ̄), and ∫
Σ̄

KΣ̄ dµ̄ = 0.(3.11)

Now Σ̄ is a simply connected, complete, noncompact, oriented surface embed-
ded in R3 with square integrable second fundamental form. By a theorem of
Huber, see [Hu], it is conformally equivalent to C = R2, say

f̂ : R2 ∼=−→ Σ̄ ⊆ R3

with conformal factor |∂if̂ |2 = e2û. Taking (3.11) into account, more precise
information is given in [MuSv, Th. 4.2.1 and Cor 4.2.5] which yield that Σ̄ has
a single end with multiplicity one, that is,

û ∈ L∞(R2),(3.12)

lim
y→∞

|f̂(y)|
|y| ∈]0,∞[.(3.13)

Composing f̂ with I−1 and an inversion at 0 in R2, we get a conformal diffeo-
morphism f̃ : (R2 ∪ {∞})− {0}

∼=−→ Σ defined by

f̃(y) = (I−1 ◦ f̂)
(

y

|y|2
)

.
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We calculate the conformal factor via the pull-back metric

g̃(y) = (f̃∗geuc)(y) = |y|−4(f̂∗|z|−4geuc)
(

y

|y|2
)

= |y|−4f̂

(
y

|y|2
)−4

e
2û

(
y

|y|2

)
geuc =: e2ũ(y)geuc

and see by (3.12) and (3.13) that it remains bounded as y → 0. That is,

ũ ∈ L∞
loc(R2).(3.14)

Further, by (3.13),

lim
y→0

|f̃(y)|
|y| = lim

y→0

(
|y| |f̂

(
y

|y|2
)
|
)−1

∈]0,∞[;(3.15)

in particular, there is C <∞ such that

Σ ∩B3
�(0) ⊆ f̃(B2

C�(0)) for � > 0 small.(3.16)

Abbreviating, we delete the tildes and consider f̃ as our original embedding f .
As f is a Willmore immersion near 0, say on Ω := B2

1(0)− {0}, it satisfies the
Euler-Lagrange equation

W(f) := ∆gHsc + |A0|2Hsc = 0 in Ω,

where Hsc denotes the scalar mean curvature and A0 is again the trace-free
second fundamental form, see [KuSch 1, (1.2)]. This is a linear, second order
elliptic equation in the mean curvature Hsc. Since f is conformal, we can write
this using the euclidean Laplace-operator in Ω:

∆Hsc + e2u|A0|2Hsc = 0 in Ω.(3.17)

We want to apply the power-decay-Lemma 2.1 to v = Hsc. Clearly

|v|, eu|A0| ≤ C|A| in Ω,

and
A ∈ L2(B2

1(0)).

This verifies (2.1), (2.2) and (2.4). To verify (2.3), we use [KuSch 1, Th. 2.10,
Rem. 2.11] after reparametrising so that

∫
Ω |A|2 dµg < ε0(3). Since the eu-

clidean distance in Ω and the intrinsic distance in f(Ω) compare by a bounded
factor with (3.14) and W(f) = 0, as f is a Willmore immersion, this yields

‖ A ‖L∞(B2
�) ≤ C�−1 ‖ A ‖L2(B2

2�) for any B2
2� ⊆ Ω.(3.18)

This verifies (2.3), and the power-decay-Lemma 2.1 implies∫
B2

�(0)

|Hsc|2 dµg ≤ Cε�
2−ε ∀0 < � ≤ 1 : ∀ε > 0.
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Using (3.16), we see∫
B3

�(0)

|Hµ|2 dµ ≤
∫

B2
C�(0)

|Hsc|2 dµg ≤ Cε�
2−ε ∀ε > 0.(3.19)

Next we apply [Bra, Th. 5.6] in the version of the remark following its proof,
recalling that µ has at least one tangent cone in 0 which is a single density
plane, and obtain from (3.19) that for each 0 < � < δ there exists an unoriented
2-plane T� ∈ G(3, 2) such that

height exµ(0, �, T�) := �−4

∫
B3

�(0)

dist(ξ, T�)2 dµ(ξ) ≤ Cε�
2−ε ∀ε > 0.(3.20)

Using [Bra, Th. 5.5] or likewise [Sim 1, Lemma 22.2], we obtain again from
(3.19) that

tilt exµ(0, �, T�) := �−2

∫
B3

�(0)

‖ Tξµ− T� ‖2 dµ(ξ) ≤ Cε�
2−ε ∀ε > 0.(3.21)

First we obtain from the densitiy bound (3.7) that

‖ T� − T�/2 ‖≤ Cε�
1−ε ∀ε > 0;

hence T� → T0 and

‖ T� − T0 ‖ ≤ Cε�
1−ε ∀ε > 0.(3.22)

By (3.18), we see for y′, y′′ ∈ B2
2�(0)−B2

�(0) ⊆ Ω that

‖ Tf(y′)µ− Tf(y′′)µ ‖ ≤ C|y′ − y′′| ‖ A ‖L∞(B2
2�(0)−B2

�(0)) ≤ C ‖ A ‖L2(B2
3�(0)) .

Together with (3.22) this implies

sup
ξ∈B3

�(0)∩Σ
‖ Tξµ− T0 ‖→ 0 for �→ 0;(3.23)

hence for small enough �0 > 0, we see that µ, respectively Σ, can be written
as a graph of a smooth function ϕ on B2

�0
(0) − {0} over the plane T0. We

infer from (3.13) and (3.23) that ϕ extends to a C1−function on B2
�0

(0) with
ϕ(0) = 0, Dϕ(0) = 0 and by (3.20), (3.21) and (3.22)

‖ ϕ ‖L2(B2
�(0))≤Cε�

3−ε ∀ε > 0,(3.24)

‖ Dϕ ‖L2(B2
�(0))≤Cε�

2−ε ∀ε > 0.

Since Dϕ is bounded, we get

|Aµ(., ϕ)| ≤ |D2ϕ| ≤ C|Aµ(., ϕ)| in B2
�0

(0)− {0},(3.25)



336 ERNST KUWERT AND REINER SCHÄTZLE

where Aµ denotes the second fundamental form on Σ. Therefore∫
B2

�0
(0)

|D2ϕ|2 <∞(3.26)

and choosing a suitable cut-off function, we get by (3.24) that

ϕ ∈W 2,2(B�0(0)).

For the pull-pack metric ḡ := (., ϕ)∗geuc, we see that

∂i(ḡij√ḡ ∂jϕ) =
√

ḡ H3,µ(., ϕ) =: h weakly in B2
�0

(0)− {0}

with

‖ h ‖L2(B2
�(0))≤ Cε�

1−ε ∀ε > 0(3.27)

by (3.19). Putting aij(Dϕ) := ḡij√ḡ with ḡij = ḡij(Dϕ) = δij + ∂iϕ∂jϕ, we
calculate

aij(Dϕ)∂ijϕ = h− ∂∂rϕaij(Dϕ)∂jϕ∂irϕ in B2
�0

(0);

hence

|aij(Dϕ)∂ijϕ| ≤ |h|+ C|Dϕ| |D2ϕ| in B2
�0

(0)(3.28)

as Dϕ(y) is bounded. Since Dϕ is continuous and Dϕ(0) = 0, we obtain by
Calderon-Zygmund estimates, (3.24), (3.26) and (3.27) that

‖ D2ϕ ‖L2(B2
�(0))

≤ C
(
‖ h ‖L2(B2

2�(0)) + ‖ Dϕ ‖L∞(B2
2�(0)) ‖ D2ϕ ‖L2(B2

2�(0)) +�−2 ‖ ϕ ‖L2(B2
2�(0))

)
≤ τ ‖ D2ϕ ‖L2(B2

2�(0)) +Cε�
1−ε

for any τ, ε > 0 and 0 < � < �τ small enough. Iterating, we get

‖ D2ϕ ‖L2(B2
�(0))≤ Cε�

1−ε ∀ε > 0.

Using (3.18) with extrinsic balls, see [KuSch 1, Th. 2.10], we get for any
x �= 0 with � := |x|/2 small,

‖ Aµ ‖L∞(B3
�(x))≤C�−1 ‖ Aµ ‖L2(B3

2�(x))

≤C�−1 ‖ D2ϕ ‖L2(B2
3�(0))≤ Cε�

−ε ∀ε > 0,

which yields (3.5). This implies Aµ(., ϕ) ∈ Lp(B�0(0)) for all 1 ≤ p <∞; hence
ϕ ∈W 2,p(B�0(0)) by (3.25) and finally ϕ ∈ C1,α(B�0(0)) for all 0 < α < 1.
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Remark. 1. The above lemma cannot be improved to get C1,1-regularity.
Indeed, the inverted catenoid is a Willmore surface as it is an inversion of a
minimal surface. Like the catenoid, it has square integrable second fundamen-
tal form. It admits the parametrisation

f(t, θ) =
cosh t

cosh(t)2 + t2
(cos θ, sin θ, 0)± t

cosh(t)2 + t2
e3

and consists of two graphs near 0 which correspond to ±t > 0. Therefore
each of these graphs satisfies the assumptions of the lemma near 0. Writing
r =

√
x2 + y2 = cosh t

cosh(t)2+t2 , we see

ϕ(r) =
±t

cosh(t)2 + t2
≈ ±r2 log

1
r
;

hence these graphs are not C1,1 near 0.

2. If Σ ⊆ R3 is a smooth, embedded surface with

(Σ− Σ) ∩Bδ(0) = {0}
then (3.3) is immediately implied by (3.4).

3. If Σ is a closed surface, p0 ∈ Σ and f : Σ − {p0} → R3 is a smooth
immersion which can continuously be extended on Σ and satisfies W(Σ) =
W(f) < 8π and θ1

∗(µ, f(p0)) = 0, then by (A.2), we get Hµ ∈ L2(µ),W(µ) =
W(f) < 8π and obtain from the Li-Yau inequality (A.17)

θ2(µ, f(p0)) ≤
1
4π
W(µ) < 2.

4. Higher regularity for point singularities

Let Σ be an open surface and ft : Σ→ Rn be a smooth family of immer-
sions with

∂tft|t=0 = V =: N + Df.ξ

where N ∈ NΣ is normal and ξ ∈ TΣ is tangential. In [KuSch 2, §2], the first
variation of the Willmore integrand with a different factor was calculated for
normal variations V = N to be

∂t

(1
4
|H|2 dµ

)
=

1
2
〈∆gV + Q(A0)V, H〉 dµ(4.1)

=
1
2
〈∆gH + Q(A0)H, N〉 dµ

+
1
2
∇ei

(
〈∇ei

N, H〉 − 〈N,∇ei
H〉

)
dµ,

where the Laplacian of the normal bundle along f is used, ei is an orthonormal
basis of TΣ satisfying ∇ei = 0 in the point considered and

Q(A0)H = A0(ei, ej)〈A0(ei, ej), H〉 = gikgjlA0
ij〈A0

kl, H〉.(4.2)
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For tangential variations V = Df.ξ, we consider the flow Φt of ξ, that is,
Φ0 = idΣ, ∂tΦt = ξ ◦ Φt, and calculate for t = 0,

∂t

(1
4
|Hft
|2 dµft

)
(4.3)

= ∂t

(1
4
|Hf◦Φt

|2 dµf◦Φt

)
= ∂t

(1
4
|H ◦ Φt|2 Φ∗

t (dµ)
)

=
1
4
g(gradg|H|2, ξ) dµ +

1
4
|H|2divg(ξ) dµ = divg(

1
4
|H|2ξ) dµ,

where gradg|H|2 = g.j∂j |H|2 and divg(ξ) :=
√

g−1∂i(
√

gξi). Putting (4.1) and
(4.4) together, we get

∂t

(1
4
|H|2 dµ

)
=

1
2
〈∆gH + Q(A0)H, N〉 dµ + dωV(4.4)

where ωV is the 1-form on Σ whose hodge with respect to g is given by

(∗ωV )(X) :=
1
2
〈∇XN, H〉 − 1

2
〈N,∇XH〉+ 1

4
|H|2g(ξ, X).(4.5)

Considering V ≡ const ∈ Rn and a Willmore immersion f : Σ→ Rn, we obtain
for any open Ω ⊆ Σ

0 =
d
dt
WΩ(f + tV ) =

∫
Ω

dωV ;

hence ωV is closed on Σ.
After these preliminary remarks, we turn to the following lemma.

Lemma 4.1. Let Σ = graph ϕ be a C1,α-graph, ϕ ∈ C1,α(B2
1(0)), 0 < α

< 1, ϕ(0) = 0, in R3 with
∫
|A|2 dµg <∞,

|A(x)| ≤ Cε|x|−ε ∀ε > 0(4.6)

and Σ− {0} is a smooth Willmore surface.
Then there is the expansion

H(x) = H0 log |x|+ C0,α
loc , ∇H(x) =

H0x
T

|x|2 + O(|x|α−1),(4.7)

for some H0, h0 ∈ N0Σ ⊆ R3, is called the residue

ResΣ(0) := H0

of Σ at 0.
The residue can be calculated with the use of the closed 1-form ωV on

Σ− {0} for any V ∈ R3 by∫
∂Σ�

ωV → −π〈V, ResΣ(0)〉 for �→ 0,(4.8)

where Σ� := B3
�(0) ∩ Σ.

If ResΣ(0) = 0 then Σ is a smooth Willmore surface.
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Proof. Since the induced metric of the chart (y �→ (y, ϕ(y))) is C0,α,
we get a conformal C1,α−parametrisation f : B2

2�(0) ∼= Σ ∩ U(0) of Σ in
a neighbourhood U(0) of 0 with conformal factor |∂if |2 =: e2u by standard
elliptic theory. Without loss of generality, we may assume Df(0) = i : R2

↪→ R3.
Further let ν ∈ C0,α(B2

2�(0)) be the normal, defined up to a sign. From
the Weingarten equations 〈∂iν, ∂jf〉 = −〈ν, Aij〉 and (4.6), we see

|∇ν(y)| ≤ Cε|y|−ε ∀ε > 0.(4.9)

Since Σ− {0} is Willmore, we get the Euler-Lagrange equation (1.2)

∆gHsc + |A0|2Hsc = 0 in B2
2�(0)− {0}.

In the above conformal coordinates, this reads, by (4.2) and (4.6),

∆Hsc = −e2u|A0|2Hsc ∈ Lp(B2
�(0)) ∀p <∞,

where ∆ denotes the euclidean Laplacian. Hence the solution of the Dirichlet
problem

∆w = −e2uQ(A0)H in B2
�(0), w = 0 on ∂B2

�(0)(4.10)

lies in w ∈W 2,p(B2
�(0)) ↪→ C1,α(B2

�(0)).
We see that Hsc−w is harmonic in B2

�(0)−{0}, and as |Hsc(y)−w(y)| ≤
Cε|y|−ε, the only singular contribution can be a logarithm; hence

Hsc(y) = a log |y|+ C1,α
loc

for some a ∈ R. As H = Hscν, ν ∈ C0,α and by (4.9), we get the expansion

H(y) = H0 log |y|+ C0,α
loc , ∇H(y) =

H0y
T

|y|2 + O(|y|α−1)

where clearly H0 = aν(0) ∈ N0Σ. Recall that f ∈ C1,α and Df(0) = i : R2

↪→ R3. Now x = f(y) = y + O(|y|1+α), and we arrive at (4.7).
When the residue H0 vanishes, we see that H − w is harmonic in B2

�(0);
hence H ∈ C1,α

loc (B2
�(0)). In general, we see from the equation

∆f = e2uH weakly in B2
2�(0)

and the facts that f ∈ C1,α(B2
2�(0)) and e2u = |∂if |2 that H ∈ Ck,α

loc , k ≥ 0
implies f ∈ Ck+2,α

loc and A = ∇2f ∈ Ck,α
loc . This in turn yields w ∈ Ck+2,α

loc and
H ∈ Ck+2,α

loc . Then the bootstrap proceeds proving that f and Σ are smooth.
Finally, we calculate the residue with the help of ωV . For 0 < �� 1 small,

we see that Σ� := B3
�(0) ∩ Σ is a disk whose boundary ∂Σ� = ∂B3

�(0) ∩ Σ is a
smooth curve converging when rescaled to a planar circle as Σ ∈ C1,α. More
precisely, we get for the unit outward normal at ∂Σ� in Σ

n�(x) =
x

|x| + O(|x|α).(4.11)
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As ∗n� is the positive oriented tangent of ∂Σ�,∫
∂Σ�

ωV =
∫

∂Σ�

ωV (∗n�) dH1 =
∫

∂Σ�

(∗ωV )(n�) dH1.

Decomposing V =: N + ξ, N ∈ NΣ, ξ ∈ TΣ, in normal and tangential compo-
nents, we calculate the terms in the definition (4.5) using (4.6),∣∣∣ ∫

∂Σ�

1
4
|H|2g(ξ, n�) dH1

∣∣∣ ≤ C�Cε�
−ε → 0,

and
|〈∇n�

N, H〉| = |〈∇n�
(V − ξ), H〉| = |〈A(ξ, n�), H〉| ≤ Cε�

−ε.

Hence ∣∣∣ ∫
∂Σ�

1
2
〈∇n�

N, H〉 dH1
∣∣∣→ 0.

From (4.6), (4.7) and (4.11), we obtain

〈N,∇n�
H〉= 〈N,

(
H0

xT

|x|2 + O(|x|α−1)
)( x

|x| + O(|x|α)
)
〉|

= 〈N, H0〉
1
|x| + O(|x|α−1).

Hence ∫
∂Σ�

1
2
〈N,∇n�

H〉 dH1 → π〈V, H0〉,

and (4.8) follows.

Lemma 4.2. Let Σ be an open surface and f : Σ → R3 be a smooth
Willmore immersion with pull -back metric g = f∗geuc, induced area-measure
µg and µ = f(µg). Assume for distinct points p1, . . . , pN ∈ R3 that

spt µ = f(Σ) ∪ {p1, . . . , pN} is compact,

θ2
∗(µ, pk) < 2,

µ has square integrable weak mean curvature in R3 − {p1, . . . , pN},∫
Σ

|A|2 dµg <∞.

Then Σ, more precisly spt µ is C1,α-embedded with unit-density near pk and
N∑

k=1

ResΣ(pk) = 0,(4.12)

where the residue ResΣ is as defined in the development of Lemma 4.1.
In particular, if N = 1 then Σ is a smooth, immersed Willmore surface.
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Proof. By Lemma 3.1 spt µ is a C1,α-embedded, unit-density surface
satisfying (4.6) near pk, and the residue of Σ at pk is well defined. Putting

Ω� := f−1(R3 − ∪N
k=1B

3
�(pk)) ⊂⊂ Σ

and Σ�(pk) := B3
�(pk) ∩ Σ for small � > 0, we obtain for any V ∈ R3 and the

associated closed 1-form ωV on Σ in (4.5) that

0 =
∫
Ω�

dωV = −
N∑

k=1

∫
∂Σ�(pk)

ωV → π〈V,
N∑

k=1

ResΣ(pk)〉;

hence
N∑

k=1

ResΣ(pk) = 0,

as V is arbitrary.
When N = 1, this means ResΣ(p1) = 0, and Σ is a smooth Willmore

surface according to Lemma 4.1.

Remark. Lemma 4.2 applies in particular to smooth, embedded surfaces
Σ ⊂⊂ R3 with

Σ− Σ = {p1, . . . , pN}

by Remark 2 following Lemma 3.1.

The following lemma removes point singularities at infinity.

Lemma 4.3. Let Σ be a smooth, noncompact Willmore surface satisfying

lim inf
R→∞

µΣ(BR(0))
ω2R2

< 2,(4.13) ∫
Σ

|AΣ|2 dµΣ <∞.(4.14)

Then for any x0 �∈ Σ and the inversion I(x) := |x − x0|−2 (x − x0), there is
Σ̄ := I(Σ) ∪ {0}, a smooth Willmore surface,

W(Σ̄) =W(Σ) + 4π.(4.15)

Proof. As Σ is noncompact, we obtain from (4.13) and (A.22)

1 ≤ lim
R→∞

µΣ(BR(0))
ω2R2

< 2.(4.16)

Further we can perform a blowdown; that is,

R−1
m Σ→ T weakly as varifolds
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for subsequences Rm →∞ where T depends on the subsequence. We get, for
almost all � > 0,

�−2µT (B�(0)) = lim
m→∞

�−2µR−1
m Σ(B�(0)) = lim

m→∞
(Rm�)−2µ(BRm�(0));

hence by (4.16),

1 ≤ µ(B�(0))
ω2�2

< 2 ∀� > 0,(4.17)

in particular

0 ∈ spt µT(4.18)

and µT �= 0.
From (4.14) and since Σ is Willmore, we see by [KuSch 1, Th. 2.10] that

the convergence to T is smooth in compact subsets of R3−{0} and AT = 0 in
R3 − {0}. Hence T is a union of integral planes, and, by (4.17), (4.18), it is a
single density plane through 0.

Now, we consider any x0 �∈ Σ and the inversion I(x) := |x−x0|−2 (x−x0).
Σ̄ := I(Σ)∪{0} is a smooth Willmore surface outside 0. Since R−1

m Σ converges
for subsequences weakly as varifolds to single density planes T through 0, we
conclude that

�−1
m Σ̄ = I(x0 + �m(Σ− x0))→ I(x0 + T ) = T for �m := R−1

m → 0,

and therefore

θ2(µΣ̄, 0) = 1.(4.19)

Moreover, as the convergence x0 + �m(Σ−x0)→ x0 +T is smooth in compact
subsets of R3 − {x0}, we see that �−1

m Σ̄ → T smoothly in compact subsets of
R3 − {0}. Therefore ∂B�(0) intersects Σ̄ in a single closed, smooth curve for
small � = R−1 > 0, and

(Σ−BR(x0)) ∪ {∞} ∼= Σ̄ ∩B�(0) ∼= B1(0) under homeomorphy.(4.20)

We see that Σ ∪ {∞} ∼= Σ̄ are topological manifolds and, putting ΣR :=
Σ ∩BR(x0), Σ̄� := Σ̄−B�(0), we get

χ(Σ) = χ(ΣR) = χ(Σ̄�) = χ(Σ̄)− 1.

Gauss-Bonnet’s Theorem yields∫
ΣR

KΣ dµΣ +
∫

∂ΣR

κ∂ΣR
dH1 = 2πχ(ΣR) = 2πχ(Σ),

∫
Σ̄�

KΣ̄ dµΣ̄ +
∫

∂Σ̄�

κ∂Σ̄�
dH1 = 2πχ(Σ̄�) = 2πχ(Σ̄)− 2π.
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By smooth convergence for subsequences around R−1∂ΣR and �−1∂Σ̄� to flat
annuli, we see

lim
R↑∞

∫
∂ΣR

κ∂ΣR
dH1 = 2π = − lim

�↓0

∫
∂Σ̄�

κ∂Σ̄�
dH1

and obtain∫
Σ

KΣ dµΣ = 2πχ(Σ)− 2π = 2πχ(Σ̄)− 4π = lim
�↓0

∫
Σ̄�

KΣ̄ dµΣ̄ − 4π.

From (4.14) and the conformal invariance of |A0|2µΣ, see [Ch], we get∫
Σ̄

|A0
Σ̄|

2 dµΣ̄ =
∫
Σ

|A0
Σ|2 dµΣ <∞,

and, since |A0|2 = 1
2 |H|2 − 2K = |A|2 − 1

2 |H|2, we conclude

W(Σ̄) = lim
�↓0

1
4

∫
Σ̄�

|HΣ̄|2 dµΣ̄ =
1
2

∫
Σ̄

|A0
Σ̄|

2 dµΣ̄ + lim
�↓0

∫
Σ̄�

KΣ̄ dµΣ̄

=
1
2

∫
Σ

|A0
Σ|2 dµΣ +

∫
Σ

KΣ dµΣ + 4π =W(Σ) + 4π <∞,

which establishes (4.15), and HΣ̄, AΣ̄ ∈ L2(µΣ̄).
In particular, Σ̄ has square integrable weak mean curvature in R3 − {0}

and by (4.19), (4.20), we finally obtain from Lemma 4.2 with N = 1 that Σ̄ is
a smooth embedded Willmore surface, concluding the proof.

5. Convergence and compactness results

In this section, we derive several applications of the removability of point
singularities for Willmore surface. We start with a convergence result for
bounded surfaces.

Theorem 5.1. Let Σj ⊆ R3 be a sequence of smooth, closed Willmore
surfaces satisfying

H2(Σj) = 1,

∫
Σj

|AΣj
|2 dµΣj

≤ C,

W(Σj)≤ 8π − δ, Σj → Σ �= 0 weakly as varifolds.

Then Σ is a smooth, closed Willmore surface.
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Proof. Any connected component C of Σj satisfiesW(C) ≥ 4π by (A.18).
Therefore Σj are connected and by [Sim 2, Lemma 1.1], the diameter of Σj is
uniformly bounded; hence Σ is compact and has square integrable weak mean
curvature with

W(Σ) =W(µΣ) ≤ 8π − δ.

From (A.17), we get

θ2(µ) ≤ 1
4π
W(Σ) ≤ 8π − δ

4π
< 2 in R3.(5.1)

Since
∫
Σj
|AΣj
|2 dµΣj

is uniformly bounded, we see from [KuSch 1, Th. 2.10]
that the convergence is smooth outside finitely many distincts points p1, . . . , pN

∈ Σ. Moreover ∫
Σ

|AΣ|2 dµΣ <∞.

From Lemma 3.1 and (5.1), we see that Σ is an embedded C1,α-surface in R3

satisfying (3.5), respectively (4.6), near pi.
We calculate the residues of Σ in pi as defined in Lemma 4.1. For � small

enough, ∂B�(pi) intersects Σ and Σj for j large enough depending on � in a
single, closed, smooth curve. By smooth convergence,∫

∂B�(pi)∩Σ

ωΣ ←
∫

∂B�(pi)∩Σj

ωΣj
= −

∫
Σj−B�(pi)

dωΣj
= 0

as ωΣj
is closed and Σj is smooth. Therefore by Lemma 4.1,

ResΣ(pi) = lim
�↓0

∫
∂B�(pi)∩Σ

ωΣ = 0,

and Σ is a smooth, closed Willmore surface.

Remark. The assumption Σ �= 0 is equivalent to the assumption that

spt Σj �→ ∞.

Clearly, if spt Σj →∞ then Σ = 0.
On the other hand, if there exists xj ∈ spt Σj with lim supj→∞ |xj | <∞,

then spt Σj ⊆ BR(0) for some large R, as the diameter of Σj is uniformly
bounded by [Sim 2, Lemma 1.1]. Then

µΣ(BR(0)) ≥ lim sup
j→∞

µΣj
(BR(0)) = lim sup

j→∞
H2(Σj) = 1,

and Σ �= 0.

In the following, we will perform several blowup procedures. The next
lemma gives the necessary convergence properties.
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Lemma 5.1. Let Σj be a sequence of closed surfaces satisfying

W(Σj) ≤ 8π − δ,(5.2) ∫
Σj

|AΣj
|2 dµΣj

≤ C,(5.3)

Σj→Σ smoothly in compact subsets of R3,(5.4)

where Σ is a smooth, noncompact Willmore surface.
Then for any x0 �∈ Σ and the inversion I(x) := |x− x0|−2 (x− x0)

Σ̄ := I(Σ) ∪ {0} is a smooth Willmore surface,

W(Σ) + 4π = W(Σ̄) ≤ lim inf
j→∞

W(Σj),(5.5)

g(Σ̄) ≤ lim inf
j→∞

g(Σj).(5.6)

If there are rj ↓ 0, xj → 0 such that for Σ̄j := I(Σj) and a subsequence

Σ′
j := r−1

j (Σ̄j − xj)→ Σ′ smoothly in compact subsets of R3(5.7)

and Σ′ is a noncompact Willmore surface then for any x′
0 �∈ Σ and the inversion

I ′(x) := |x− x′
0|−2 (x− x′

0),

Σ̄′ := I ′(Σ′) ∪ {0} is a smooth Willmore surface,

W(Σ̄) +W(Σ̄′)≤ lim inf
j→∞

W(Σj) + 4π,(5.8)

g(Σ̄) + g(Σ̄′)≤ lim inf
j→∞

g(Σj).(5.9)

Proof. Since the Σj are compact, we get from (5.2) and (A.23)

lim
R→∞

µ(BR(0))
ω2R2

+
1
4π
W(Σ) ≤ lim inf

j→∞
1
4π
W(Σj) ≤

8π − δ

4π
< 2.

Clearly, from (5.3), ∫
Σ

|AΣ|2 dµΣ <∞.

This verifies (4.13) and (4.14), and Lemma 4.3 implies that Σ̄ is a smooth
Willmore surface. From the convergence in (5.4), we see that dist(x0, Σj) →
dist(x0, Σ) > 0; hence x0 �∈ Σ̄j for large j, and by conformal invariance, we
see that Σ′

j satisfies (5.2) and (5.3); hence Σ̄′ is a smooth Willmore surface by
what we have just proved.

Further

Σ̄j := I(Σj)→ Σ̄ smoothly in compact subsets of R3 − {0}.(5.10)
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First this implies with (4.15) that

W(Σ) + 4π =W(Σ̄) ≤ lim inf
j→∞

W(Σ̄j) = lim inf
j→∞

W(Σj),

which is (5.5).
Secondly, as Σ̄ is smooth near 0, (5.10) yields for � > 0 small enough and

j large enough depending on � that ∂B�(0) intersects Σ̄j in a single closed,
smooth curve. We put

Σ̄� := Σ̄−B�(0),

Σ̄j,�,+ := Σ̄j −B�(0).

Considering homology or appropriate triangulations, we see

χ(Σj) = χ(Σ̄j,�,+) + χ(Σ̄j ∩B�(0)) ≤ χ(Σ̄j,�,+) + 1,(5.11)

as χ(Σ̄j ∩B�(0)) ≤ 1. By smooth convergence Σ̄j,�,+ → Σ̄�, we get

χ(Σ̄) = χ(Σ̄�) + 1 = lim
j→∞

χ(Σ̄j,�,+) + 1 ≥ lim
j→∞

χ(Σj),(5.12)

or likewise
g(Σ̄) ≤ lim inf

j→∞
g(Σj),

which is (5.6).
Next, we extend Σ̄j∩B�(0) outside B�(0) to a smooth surface in R3 which

is a plane near infinity and whose Willmore energy exceeds that of Σ̄j ∩B�(0)
only by ω(�) → 0 for � → 0. Then replacing the plane by a large, slightly
deformed sphere, we get a smooth, closed surface Σ̄j,�,− ⊂⊂ R3 satisfying

lim inf
j→∞

W(Σ̄j,�,−)≤ lim inf
j→∞

1
4

∫
Σ̄j∩B�(0)

|HΣ̄j
|2 dµΣ̄j

+ 4π + ω(�),(5.13)

χ(Σ̄j,�,−) = χ(Σ̄j ∩B�(0)) + 1,(5.14)

Σ̄j,�,− ∩B�(0) = Σ̄j ∩B�(0).(5.15)

As rj ↓ 0, xj → 0, we see from (5.7) that

r−1
j (Σ̄j,�,− − xj)→ Σ′ smoothly in compact subsets of R3.

As we already know that Σ̄′ is smooth near 0, we get as in (5.12) that

χ(Σ̄′) ≥ lim sup
j→∞

χ(Σ̄j,�,−) ≥ lim sup
j→∞

χ(Σ̄j ∩B�(0)) + 1(5.16)

when recalling (5.14).
Combining (5.11), (5.12) and (5.16), we see

χ(Σ̄) + χ(Σ̄′) ≥ lim
j→∞

χ(Σ̄j,�,+) + lim sup
j→∞

χ(Σ̄j ∩B�(0)) + 2 = lim sup
j→∞

χ(Σj) + 2,
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or likewise

g(Σ̄) + g(Σ̄′) ≤ lim inf
j→∞

g(Σj),

which is (5.9).
Next we see

W(Σ̄) ≤ lim
�↓0

lim inf
j→∞

1
4

∫
Σ̄j−B�(0)

|HΣ̄j
|2 dµΣ̄j

,

W(Σ̄′) ≤ lim inf
j→∞

W(Σ̄j,�,−),

which yields (5.8) by (5.13).

In the following applications, we will strongly use Bryant’s result in [Bry]
that Willmore spheres M2 ⊆ R3, not round spheres, satisfy

W(M2) ≥ 16π.(5.17)

A more elementary proof of [Bry, Th. E] can be found in [Es, §6, Prop.]. When
combined with a theorem of Osserman [Os, Th. 9.2], one obtains the estimate
slightly weaker than (5.17) that Willmore spheres M2 ⊆ R3 which are not
round spheres satisfy

W(M2) ≥ 8π.

Actually, this estimate suffices for all applications in this section, except that
we have to assume the strict inequalities

W(f0) < 8π and
∫
Σ

|A0|2 dµg < 8π

in (5.18) and (5.19) below, respectively.
We continue our applications with a long-time existence theorem for im-

mersed spheres.

Theorem 5.2. Let f0 : S2 → R3 be a smooth immersion of a sphere with
Willmore energy

W(f0) ≤ 8π.(5.18)

Then the Willmore flow with initial data f0 exists smoothly for all times and
converges to a round sphere.

Remark. Using Gauss-Bonnet’s theorem we can reformulate the above
theorem:
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Corollary. Let Σ be a closed surface and f0 : Σ→ R3 a smooth immer-
sion satisfying ∫

Σ

|A0|2 dµg ≤ 8π.(5.19)

Then the Willmore flow with initial data f0 exists smoothly for all times and
converges to a round sphere.

A numerical example of a singularity which was recently obtained in [MaSi]
indicates that one cannot improve 8π in the above statement. This determines
ε0(3) = 8π as the optimal constant in the smallness assumption of Theorem
5.1 in [KuSch 1].

Proof. In case W(f0) = 8π, we see from (5.17) that f0 is not a Willmore
immersion. Since the statement of the theorem concerns only the asymptotic
behaviour of the Willmore flow f : S2× [0, T [→ R3 with initial data f(0) = f0,
we may assume W(f0) < 8π. Therefore

W(ft) ≤ W(f0) < 8π ∀t ∈ [0, T [,(5.20)

and all ft are embeddings by (A.17). We put Σt := ft(S2) and assume that
[0, T [, 0 < T ≤ ∞ is the maximal existence interval of f .

As in [KuSch 1, §4], we define

κ(r, t) := sup
x∈R3

∫
Σt∩Br(x)

|AΣt
|2 dµΣt

.

Clearly for fixed t,

lim
r↑�

κ(r, t) = κ(�, t) ≤ lim inf
r↓�

κ(r, t)

and with a simple covering argument

lim sup
r↓�

κ(r, t) ≤ Cκ(�, t)(5.21)

for some C <∞. Hence for ε > 0 small enough, we can choose rt > 0 with

ε < κ(rt, t) ≤ Cε.

As in [KuSch 1] any sequence t ↑ T has a subsequence tj ↑ T and xj ∈ R3 such
that

Σ̂j := r−1
tj

(Σtj+c0r4
tj
− xj)→ Σ̂ smoothly in compact subsets of R3.

As all the Σt are not only immersed, but embedded, this convergence procedure
is much simpler than the general situation of [KuSch 1, Th. 4.2].

The limit Σ̂ is a smooth, complete Willmore surface that satisfies

W(Σ̂) ≤ W(f0) < 8π.(5.22)
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Actually, we want to select tj , xj in such a way that

ε ≤
∫
Σ̂

|AΣ̂|
2 dµΣ̂ <∞.(5.23)

This is certainly possible, if

lim inf
t↑T

rt+c0r4
t

rt
<∞.(5.24)

Indeed for lim inft↑T rt+c0r4
t
/rt > Γ > 0, we can choose t0 < T such that rt+c0r4

t
≥

Γrt ∀t0 ≤ t < T . Putting tj+1 := tj + c0r
4
tj

, we see

rtj
≥ rt0Γ

j > 0 ∀j ∈ N0.

Clearly for ε small and by [Sim 2, Lemma 1.1],

rt ≤ diam(Σt) ≤ CH2(Σt)1/2.

The first variation formula for the areas yields

d

dt
H2(Σt) = −

∫
〈HΣt

, ∂tf〉 dµΣt
≤ C

( ∫
|∂tf |2 dµΣt

)1/2
,

and as f evolves as gradient flow of the Willmore functional up to a factor,

H2(Σt) ≤ H2(Σ0) + Ct1/2
( ∫ T

0

∫
|∂tf |2 dµΣt

dt
)1/2

≤ C(1 + t1/2).

Hence
r4
t ≤ C(1 + t),

1 + tj+1 = 1 + tj + c0r
4
tj
≤ (1 + Cc0)(1 + tj),

and
0 < r4

t0Γ
4j ≤ r4

tj
≤ C(1 + tj) ≤ C(1 + Cc0)j(1 + t0),

which yields Γ ≤ (1 + Cc0) for j →∞. This establishes (5.24), hence (5.23).
Now if

Σ̂ is compact,(5.25)

then the conclusion of the theorem easily follows. Indeed, in this case the
convergence Σ̂j → Σ̂ is smooth, and Σ̂ is a smooth Willmore sphere. By
(5.22), it follows from (5.17) that Σ̂ is a round sphere. This yields

lim
j→∞

∫
Σtj

|A0
Σtj
|2 dµtj

= lim
j→∞

∫
Σ̂j

|A0
Σ̂j
|2 dµΣ̂j

=
∫
Σ̂

|A0
Σ̂
|2 dµΣ̂ = 0,

and the theorem follows immediately from [KuSch 1, Th. 5.1].
Therefore it remains to prove (5.25). If Σ̂ is not compact, we get from

Lemma 5.1 that for any x0 �∈ Σ̂ and the inversion I(x) := |x− x0|−2 (x− x0),

Σ̄ := I(Σ̂) ∪ {0} is a smooth Willmore surface.
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Moreover from (5.5) and (5.20), we get

W(Σ̄) < 8π,

and from (5.6), we see that Σ̄ is a Willmore sphere which by (5.17) is a round
sphere containing 0. Then Σ̂ = I−1(Σ̄) is a plane, hence AΣ̂ = 0, contradicting
(5.23), and (5.25) is proved.

For tori we obtain the following compactness result.

Theorem 5.3. The set

M1,δ := {Σ ⊆ R3 Willmore | g(Σ) = 1,W(Σ) ≤ 8π − δ }
is compact up to Möbius transformations under smooth convergence of com-
pactly contained surfaces in R3.

Proof. We consider Σj ∈ M1,δ. To prove the compactness only up to
Möbius transformations, we may assume

H2(Σj) = 1, 0 ∈ Σj .

From the bounds on the Willmore energy and the fixed genus of Σj , we conclude
with Gauss-Bonnet’s theorem,∫

Σ̂j

|AΣj
|2 dµΣj

≤ 32π,

as |A|2 = |H|2 − 2K. A subsequence converges

Σj → Σ weakly as varifolds.(5.26)

From Theorem 5.1 and its remark, we see that Σ �= 0 and Σ is a smooth
Willmore surface. Clearly,

W(Σ) ≤ 8π − δ.(5.27)

Now, define

κj(r) := sup
x∈R3

∫
Σj∩Br(x)

|AΣj
|2 dµΣj

,

and choose rj > 0 recalling (5.21) with

ε < κj(rj) ≤ Cε

for ε > 0 small enough. If

lim inf
j→∞

rj > 0,(5.28)

we see from [KuSch 1, Th. 2.10] that the convergence Σj → Σ is smooth and
Σ is a torus; hence Σ ∈ M1,δ by (5.27), and the conclusion of the theorem
follows.
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Otherwise, rj → 0 for a subsequence and we choose xj ∈ R3 so that∫
Σj∩Brj

(xj)

|AΣj
|2 dµΣj

≥ ε.

Again by [KuSch 1, Th. 2.10], we see that

Σ̂j := r−1
j (Σj − xj)→ Σ̂ smoothly in compact subsets of R3(5.29)

and ∫
Σ̂

|AΣ̂|
2 dµΣ̂ ≥ ε.(5.30)

As Σ̂j
∼= T 2 is connected and rj → 0, we see that Σ̂ is not compact.

Then Lemma 5.1 yields for any x0 �∈ Σ̂ and the inversion

I(x) := |x− x0|−2 (x− x0)

that
Σ̄ := I(Σ̂) ∪ {0} is a smooth Willmore surface.

Moreover, by (5.5),
W(Σ̄) ≤ 8π − δ,

and by (5.6) g(Σ̄) ≤ 1. If g(Σ̄) = 0, that is, Σ̄ is a Willmore sphere, we get
from (5.17) that Σ̄ is a round sphere containing 0. Then Σ̂ = I−1(Σ̄) is a plane;
hence AΣ̂ = 0 contradicting (5.30). Therefore Σ̄ is a torus; hence Σ̄ ∈ M1,δ

and

g(Σ̄) = 1.(5.31)

Clearly

Σ̄j := I(Σ̂j)→ Σ̄ smoothly in compact subsets of R3 − {0}.(5.32)

Proceeding from (5.26) with Σj replaced by Σ̄j , we claim that (5.28) holds true
for Σ̄j . Hence the convergence in (5.32) is smooth and the conclusion of the
theorem follows.

Indeed, otherwise, as in (5.29), there are r̄j ↓ 0, x̄j ∈ R3 and x̄j → 0 by
(5.32) such that

Σ′
j := (r̄j)−1(Σ̄j − x̄j)→ Σ′ smoothly in compact subsets of R3,

and, since Σ̄′ := I ′(Σ′) ∪ {0} for an appropriate inversion I ′,

g(Σ̄′) = 1

as (5.31). On the other hand by (5.9)

g(Σ̄) + g(Σ̄′) ≤ lim inf
j→∞

g(Σj) = 1,

which is a contradiction by (5.31).
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Remark. If β3
g ≥ 6π for g = 1, . . . , g0 − 1, the proof above shows by (5.8)

that the sets

Mg0,δ := {Σ ⊆ R3 Willmore | g(Σ) = g0,W(Σ) ≤ 8π − δ }
are compact up to Möbius transformations.

Clearly the Willmore conjecture, see [Schm], implies β3
1 = 2π2 ≥ 6π, hence

compactness of M2,δ up to Möbius transformations.

Appendix

In this appendix, we collect for the reader’s convenience some results which
are consequences or adaptions of results already known in literature.

A. Monotonicity formula

In this section, we review the arguments in [Sim 2] proving a monotonicity
formula for surfaces with square integrable mean curvature and show that all
arguments generalize to integral 2-varifolds, µ �= 0, in an open set U ⊆ Rn

with square integrable weak mean curvature Hµ ∈ L2(µ).
We extend our definition of the Willmore functional and put

W(µ) =
1
4

∫
U

|Hµ|2 dµ.

Actually to treat point singularities y0 ∈ U , we only assume that µ�(U −{y0})
has square integrable weak mean curvature when considered as varifold in
U − {y0}, and we add the assumption

θ1
∗(µ, y0) = 0,(A.1)

which is certainly satisfied if θ2
∗(µ, y0) < ∞. We consider a cut-off function

ξδ ∈ C1
0 (Rn−{y0}) with ξδ ≡ 1 on Rn−Bδ(y0), 0 ≤ ξδ ≤ 1, |∇ξδ| ≤ Cδ−1χBδ(y0)

and obtain for any η ∈ C1
0 (U), observing ηξδ ∈ C1

0 (U − {y0}), that

−
∫

Hµη dµ← −
∫

Hµηξδ dµ=
∫

divµ(ηξδ) dµ

=
∫

ξδ divµη dµ +
∫

η ∇µξδ dµ→
∫

divµη dµ,

as by (A.1)∣∣∣∣ ∫
η ∇µξδ dµ

∣∣∣∣ ≤ C(η)δ−1µ(Bδ(y0))→ 0 for a subsequence δj → 0.

Therefore µ has square integrable weak mean curvature

Hµ ∈ L2(µ),(A.2)

when considered as a varifold in U .
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Approximating the lipschitz test function which leads to [Sim 2, (1.2)], we
obtain for any B�0(x0) ⊂⊂ U the following monotonicity formula:

(A.3)

σ−2µ(Bσ(x0)) +
∫

B�(x0)−Bσ(x0)

|1
4
Hµ +

(x− x0)⊥

r2
|2 dµ

= �−2µ(B�(x0)) +
1
16

∫
B�(x0)−Bσ(x0)

|Hµ|2 dµ

+
1
2

∫
B�(x0)

�−2(x− x0) Hµ(x) dµ(x)− 1
2

∫
Bσ(x0)

σ−2(x− x0) Hµ(x) dµ(x)

where r(x) := |x − x0| and .⊥ denotes the orthogonal projection onto the
normal space (Tµ)⊥. First we get (A.3) for almost all 0 < σ ≤ � ≤ �0, then
for all after approximation.

When
Rx0,� :=

1
2

∫
B�(x0)

�−2(x− x0) Hµ(x) dµ(x)

and

γ(�) := �−2µ(B�(x0)) +
1
16

∫
B�(x0)

|Hµ|2 dµ + Rx0,�,(A.4)

then γ is monotonically nondecreasing. We estimate

|Rx0,�| ≤
1
2

(
�−2µ(B�(x0))

)1/2
‖ Hµ ‖L2(B�(x0))(A.5)

and get for any δ > 0

σ−2µ(Bσ(x0))

≤ �−2µ(B�(x0)) +
1
16

∫
B�(x0)

|Hµ|2 dµ +
1
2

(
�−2µ(B�(x0))

)1/2
‖ Hµ ‖L2(B�(x0))

+
1
2

(
σ−2µ(Bσ(x0))

)1/2
‖ Hµ ‖L2(Bσ(x0))

≤ (1 + δ)�−2µ(B�(x0)) + (
1
16

+ Cδ−1)
∫

B�(x0)

|Hµ|2 dµ + δσ−2µ(Bσ(x0)).

In particular, for 0 < � ≤ �0,

�−2µ(B�(x0)) ≤ (1 + δ)�−2
0 µ(B�0(x0)) + C(1 + δ−1)W(µ) <∞.(A.6)

Then we get from (A.5) that

lim
�↓0

Rx0,� = 0;
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hence the density

θ2(µ, x0) exists(A.7)

and

ω2θ
2(µ, x0) ≤ �−2µ(B�(x0)) +

1
16

∫
B�(x0)

|Hµ|2 dµ + Rx0,�.(A.8)

For xj → x0, 0 < � < �0/2, we get

�−2µ(B�(x0))≥ lim sup
j→∞

�−2µ(B�(xj))

≥ lim sup
j→∞

(
ω2θ

2(µ, xj)−
1
16

∫
B�(xj)

|Hµ|2 dµ−Rxj ,�

)
≥ lim sup

j→∞
ω2θ

2(µ, xj)

−C
(
�−2
0 µ(B�0(x0)) +W(µ)

)1/2
‖ Hµ ‖L2(B2�(x0)) .

When � ↓ 0 this yields

θ2(µ, x0) ≥ lim sup
j→∞

θ2(µ, xj),(A.9)

and θ2(µ) is upper semicontinuous. In particular,

θ2(µ) ≥ 1 on spt µ.(A.10)

Now we consider U = Rn. If lim sup�→∞ �−2µ(B�(0)) =∞ then by (A.6)

lim
�→∞

�−2µ(B�(0)) =∞(A.11)

and by (A.5)

lim
�→∞

γ(�) =∞.(A.12)

If lim sup�→∞ �−2µ(B�(0)) <∞, we estimate, for 0 < σ < � <∞,

|R0,�| ≤
1
2�

∫
B�(0)

|Hµ| dµ ≤ 1
2�

∫
Bσ(0)

|Hµ| dµ

+
1
2

(
�−2µ(B�(0))

)1/2
‖ Hµ ‖L2(Rn−Bσ(0));

hence

lim sup
�→∞

|R0,�| ≤
1
2

(
lim sup

�→∞
�−2µ(B�(0))

)1/2
‖ Hµ ‖L2(Rn−Bσ(0))

and as σ →∞,

lim
�→∞

Rx0,� = 0.(A.13)
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As γ is monotonically nondecreasing, we see in any case by (A.11), (A.12) and
(A.13) that

lim
�→∞

γ(�) = lim
�→∞

�−2µ(B�(0)) +
1
4
W(µ) ∈ [0,∞] exists.(A.14)

If

lim
�→∞

�−2µ(B�(0)) = 0,(A.15)

which is certainly true when spt µ is compact, we get from (A.6)

�−2µ(B�(x0)) ≤ CW(µ).(A.16)

Letting � → ∞ in (A.8) and recalling (A.13) and ω2 = π, we arrive at the
Li-Yau inequality, see [LY],

θ2(µ, x0) ≤
1
4π
W(µ).(A.17)

Together with (A.10) and µ �= 0, this implies

W(µ) ≥ 4π(A.18)

and hence

inf
Σ smooth

W(Σ) = 4π = inf
µ �=0
W(µ).(A.19)

If

W(µ) < 8π(A.20)

then (A.17) and the integrality of µ yield

θ2(µ) = 1, µ-almost everywhere.(A.21)

Actually, the assumption (A.15) is equivalent to the compactness of the support
of µ. More precisely, we show that

lim
�→∞

�−2µ(B�(0)) ≥ π ⇐⇒ spt µ is not compact.(A.22)

By (A.14) the limit on the left always exists in [0,∞]. The inclusion from left
to the right is obvious.

Now we assume that spt µ is not compact. For any compact compo-
nent C of spt µ, we see from (A.18) that W(µ�C) ≥ 4π. Therefore spt µ has
only finitely many compact components, and as spt µ is assumed to be non-
compact, it has at least one unbounded component. Therefore we can select
x� ∈ spt µ with 2� := |x�| for any large � . From (A.6) and (A.10), we get for
any δ > 0

π≤ (1 + δ)�−2µ(B�(x�)) + Cδ

∫
B�(x�)

|Hµ|2 dµ

≤ 9(1 + δ)(3�)−2µ(B3�(0)) + Cδ

∫
Rn−B�(0)

|Hµ|2 dµ.
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Letting first �→∞ and then δ ↓ 0, we get (A.22) with π replaced by π/9.
To prove the full strength of (A.22), we may assume that

lim
�→∞

�−2µ(B�(0)) <∞.

Then the limit
ζ�j ,#µ→ ν exists weakly as varifolds

for some sequence �j →∞. We see for any � > 0 that

ν(B�(0))
ω2�2

≥ lim inf
j→∞

µ(B�j�(0))
ω2(�j�)2

≥ 1/9

and 0 ∈ spt ν. Further, ν is a stationary integral varifold. Hence Hν = 0 and
by (A.8) and (A.10)

π ≤ ν(B1(0)) ≤ lim inf
j→∞

�−2
j µ(B�j

(0)),

which establishes (A.22).
Finally, we consider µj with W(µj) <∞ and µj → µ weakly as varifolds.

For γj defined in (A.4) by µj , we see

γ(�) ≤ lim inf
j→∞

γj(�) for almost all � > 0,

hence by (A.14) and monotonicity of γj

lim
�→∞

�−2µ(B�(0)) +
1
4
W(µ) ≤ lim inf

j→∞

(
lim

�→∞
�−2µj(B�(0)) +

1
4
W(µj)

)
.

In particular, if the spt µj are compact,

lim
�→∞

�−2µ(B�(0)) +
1
4
W(µ) ≤ lim inf

j→∞
1
4
W(µj).(A.23)
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