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Determination of the algebraic relations

among special Γ-values in positive
characteristic

By Greg W. Anderson, W. Dale Brownawell∗, and Matthew A. Papanikolas

Abstract

We devise a new criterion for linear independence over function fields. Us-
ing this tool in the setting of dual t-motives, we find that all algebraic relations
among special values of the geometric Γ-function over Fq[T ] are explained by
the standard functional equations.
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1. Introduction

1.1. Background on special Γ-values.

1.1.1. Notation. Let Fq be a field of q elements, where q is a power of a
prime p. Let A := Fq[T ] and k := Fq(T ), where T is a variable. Let A+ ⊂ A

be the subset of monic polynomials. Let | · |∞ be the unique valuation of k for
which |T |∞ = q. Let k∞ := Fq((1/T )) be the | · |∞-completion of k, let k∞ be
an algebraic closure of k∞, let C∞ be the | · |∞-completion of k∞, and let k̄ be
the algebraic closure of k in C∞.

∗The second author was partially supported by NSF grant DMS-0100500.
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1.1.2. The geometric Γ-function. In [Th], Thakur studied the geometric
Γ-function over Fq[T ],

Γ(z) :=
1
z

∏
n∈A+

(
1 +

z

n

)−1
(z ∈ C∞),

which is a meromorphic function on C∞. Notably, it satisfies several natural
functional equations, which are the analogues of the translation, reflection and
Gauss multiplication identities satisfied by the classical Euler Γ-function, and
to which we refer as the standard functional equations (see §5.3.5).

1.1.3. Special Γ-values and the fundamental period of the Carlitz module.
We define the set of special Γ-values to be

{Γ(z) | z ∈ k \ (−A+ ∪ {0})} ⊂ k×
∞.

Up to factors in k× a special Γ-value Γ(z) depends only on z modulo A. In
connection with special Γ-values it is natural also to consider the number

� := T q−1
√
−T

∞∏
i=1

(
1 − T 1−qi

)−1
∈ k∞

(
q−1
√
−T

)×

where q−1
√
−T is a fixed (q − 1)st root of −T in C∞. The number � is the

fundamental period of the Carlitz module (see §5.1) and hence deserves to be
regarded as the Fq[T ]-analogue of 2πi. The transcendence of � over k was
first shown in [Wa]. (See §3.1.2 for a new proof.) Our goal in this paper to
determine all Laurent polynomial relations with coefficients in k̄ among special
Γ-values and �.

1.1.4. Transcendence of special Γ-values. For all z ∈ A the value Γ(z),
when defined, belongs to k. However, it is known that for all z ∈ k\A the value
Γ(z) is transcendental over k. A short history of this transcendence result is as
follows. Isolated results on the transcendence of special Γ-values were obtained
in [Th]; in particular, it was observed that when q = 2, all values Γ(z) with
z ∈ k \ A are k̄-multiples of the Carlitz period �. The first transcendence
result for a general class of values of the Γ-function was obtained in [Si a].
Namely, Sinha showed that the values Γ( a

f + b) are transcendental over k for
all a, f ∈ A+ and b ∈ A such that deg a < deg f . Sinha’s results were obtained
by representing the Γ-values in question as periods of t-modules defined over
k̄ and then invoking a transcendence criterion of Gelfond-Schneider type from
[Yu a]. Subsequently all the values Γ(z) for z ∈ k \ A were represented in
[BrPa] as periods of t-modules defined over k̄ and thus proved transcendental.

1.1.5. Γ-monomials and the diamond bracket criterion. An element of
the subgroup of C×

∞ generated by � and the special Γ-values will for brevity’s
sake be called a Γ-monomial. By adapting the Deligne-Koblitz-Ogus criterion
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[De] to the function field setting along lines suggested in [Th], we have at our
disposal a diamond bracket criterion (see Corollary 6.1.8) capable of deciding
in a mechanical way whether between a given pair of Γ-monomials there exists
a k̄-linear relation explained by the standard functional equations. We call the
two-term k̄-linear dependencies thus arising diamond bracket relations.

1.1.6.Cautionary example. In order to deduce certain k̄-linear relations
between Γ-monomials from the standard functional equations, root extraction
cannot be avoided. Consider the following example concerning the classical
Γ-function taken from [Da]. The relation

Γ
(

4
15

)
Γ

(
1
5

)
Γ

(
1
3

)
Γ

(
2
15

) =

√√√√√√√√√√√√√√
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=3−
1
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1
12

√
sin π

3 · sin 2π
15

sin 4π
15 · sin π

5

confirms the Deligne-Koblitz-Ogus criterion but decomposes into instances of
the standard functional equations only after the terms are squared. The results
of [Ku b] imply the existence of such peculiar examples in great abundance.
See [Da] for a method by which essentially all such examples can be constructed
explicitly. The analogous phenomena occur in the function field situation. For
a discussion of the latter, see [BaGeKaYi]. For a simple example in the case
q = 3, which was in fact discovered before all the others mentioned in this
paragraph, see [Si b, §4].

1.1.7. Linear independence. It was shown in [BrPa] that the only relations
of k̄-linear dependence among 1, �, and special Γ-values are those following
from the diamond bracket relations. This result was obtained by carefully
analyzing t-submodule structures and then invoking Yu’s powerful theorem of
the t-Submodule [Yu c].

1.2. The main result. We prove:

Theorem 1.2.1 (cf. Theorem 6.2.1). A set of Γ-monomials is k̄-linearly
dependent exactly when some pair of Γ-monomials is. Pairwise k̄-linear
(in)dependence of Γ-monomials is entirely decided by the diamond bracket cri-
terion.

In other words, all k̄-linear relations among Γ-monomials are k̄-linear com-
binations of the diamond bracket relations. The theorem has the following
implication concerning transcendence degrees:
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Corollary 1.2.2 (cf. Corollary 6.2.2). For all f ∈ A+ of positive de-
gree, the extension of k̄ generated by the set

{�} ∪
{

Γ(x)
∣∣∣∣x ∈ 1

f
A \ ({0} ∪ −A+)

}

is of transcendence degree 1 + q−2
q−1 · #(A/f)× over k̄.

In fact the corollary is equivalent to the theorem (see Proposition 6.2.3).

1.3. Methods. We outline the proof of Theorem 1.2.1, emphasizing
the new methods introduced here, and compare our techniques to those used
previously.

1.3.1. A new linear independence criterion. We develop a new method
for detecting k̄-linear independence of sets of numbers in k∞, culminating in a
quite easily stated criterion. Let t be a variable independent of T . Given f =∑∞

i=0 ait
i ∈ C∞[[t]] and n ∈ Z, put f (n) :=

∑∞
i=0 aqn

i ti and extend the operation
f �→ f (n) entrywise to matrices. Let E ⊂ k̄[[t]] be the subring consisting of power
series

∑∞
i=0 ait

i such that [k∞ ({ai}∞i=0) : k∞] < ∞ and limi→∞ i
√
|ai|∞ = 0.

We now state our criterion (Theorem 3.1.1 is the verbatim repetition; see also
Proposition 4.4.3):

Theorem 1.3.2. Fix a matrix Φ = Φ(t) ∈ Mat�×�(k̄[t]) such that det Φ
is a polynomial in t vanishing (if at all) only at t = T . Fix a (column) vector
ψ = ψ(t) ∈ Mat�×1(E) satisfying the functional equation ψ(−1) = Φψ. Evaluate
ψ at t = T , thus obtaining a (column) vector ψ(T ) ∈ Mat�×1

(
k∞

)
. For every

(row) vector ρ ∈ Mat1×�(k̄) such that ρψ(T ) = 0 there exists a (row) vector
P = P (t) ∈ Mat1×�(k̄[t]) such that P (T ) = ρ and Pψ = 0.

In other words, in the situation of this theorem, every k̄-linear relation
among entries of the specialization ψ(T ) is explained by a k̄[t]-linear relation
among entries of ψ itself.

1.3.3. Dual t-motives. The category of dual t-motives (see §4.4) pro-
vides a natural setting in which we can apply Theorem 1.3.2. Like t-motives in
[An a], dual t-motives are modules of a certain sort over a certain skew polyno-
mial ring. From a formal algebraic perspective dual t-motives differ very little
from t-motives, and consequently most t-motive concepts carry over naturally
to the dual t-motive setting. In particular, the concept of rigid analytic triv-
iality carries over (see §4.4). Crucially, to give a rigid analytic trivialization
of a dual t-motive is to give a square matrix with columns usable as input to
Theorem 1.3.2 (see Lemma 4.4.12).
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1.3.4. Position of the new linear independence criterion with respect to
Yu’s Theorem of the t-Submodule. We came upon Theorem 1.3.2 in the pro-
cess of searching for a t-motivic translation of Yu’s Theorem of the t-Submodule
[Yu c]. Our discovery of a direct proof of Theorem 1.3.2 was a happy accident,
but it was one for which we were psychologically prepared by close study of
the proof of Yu’s theorem.

Roughly speaking, the points of view adopted in the two theorems cor-
respond as follows. If H = Hom(Ga, E) is the dual t-motive defined over
k̄ corresponding canonically to a uniformizable abelian t-module E defined
over k̄, and Ψ = Ψ(t) is a matrix describing a rigid analytic trivialization of H

as in Lemma 4.4.12, then it is possible to express the periods of E in a natural
way as k̄-linear combinations of entries of Ψ(T )−1 and vice versa. Thus it be-
comes at least plausible that Theorem 1.3.2 and Yu’s theorem provide similar
information about k̄-linear independence. A detailed comparison of the two
theorems is not going to be presented here; indeed, such has yet to be worked
out. But we are inclined to believe that at the end of the day the theorems
differ insignificantly in terms of ability to detect k̄-linear independence.

In any case, it is clear that both theorems are strong enough to handle the
analysis of k̄-linear relations among Γ-monomials. Ultimately Theorem 1.3.2
is our tool of choice just because it is the easier to apply. Theorem 1.3.2 allows
us to carry out our analysis entirely within the category of dual t-motives,
which means that we can exclude t-modules from the picture altogether at a
considerable savings of labor in comparison to [Si a] and [BrPa].

1.3.5. Linking Γ-monomials to dual t-motives via Coleman functions. In
order to generalize beautiful examples in [Co] and [Th], solitons over Fq[T ] were
defined and studied in [An b]. In turn, in order to obtain various results on
transcendence and algebraicity of special Γ-values, variants of solitons called
Coleman functions were defined and studied in [Si a] and [Si b].

We present in this paper a self-contained elementary approach to Coleman
functions producing new simple explicit formulas for them (see §5, §6.3). From
the Coleman functions we then construct dual t-motives with rigid analytic
trivializations described by matrices with entries specializing at t = T to k̄-
linear combinations of Γ-monomials (see §6.4), thus putting ourselves in a
position where Theorem 1.3.2 is at least potentially applicable.

Our method for attaching dual t-motives to Coleman functions is straight-
forwardly adapted from [Si a]. But our method for obtaining rigid analytic
trivializations is more elementary than that of [Si a] because the explicit for-
mulas for Coleman functions at our disposal obviate sophisticated apparatus
from rigid analysis.

1.3.6. Geometric complex multiplication. The dual t-motives engendered
by Coleman functions are equipped with extra endomorphisms and are exam-
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ples of dual t-motives with geometric complex multiplication, GCM for short
(see §4.6). We extend a technique developed in [BrPa] for analyzing t-modules
with complex multiplication to the setting of dual t-motives with GCM, dub-
bing the generalized technique the Dedekind-Wedderburn trick (see §4.5). We
determine that rigid analytically trivial dual t-motives with GCM are semi-
simple up to isogeny. In fact each such object is isogenous to a power of a
simple dual t-motive.

1.3.7. End of the proof. Combining our general results on the structure
of GCM dual t-motives with our concrete results on the structure of the dual
t-motives engendered by Coleman functions, we can finally apply Theorem 1.3.2
(in the guise of Proposition 4.4.3) to rule out all k̄-linear relations among
Γ-monomials not following from the diamond bracket relations (see §6.5), thus
proving Theorem 1.2.1.

1.4. Comments on the classical case. In the classical situation various
people have formed a clear picture about what algebraic relations should hold
among special Γ-values. Those ideas stimulated our interest and guided our
intuition in the function-field setting. We discuss these ideas in more detail
below.

1.4.1. Temporary notation and terminology. For the duration of §1.4,
let Γ(s) be the classical Γ-function, call {Γ(s) | s ∈ Q \ Z≤0} the set of special
Γ-values, and let a Γ-monomial be any element of the subgroup of C× generated
by the special Γ-values and 2πi.

1.4.2. Rohrlich’s conjecture. Rohrlich in the late 1970’s made a con-
jecture which in rough form can be stated thus: all multiplicative algebraic
relations among special Γ-values and 2πi are explained by the standard func-
tional equations. See [La b, App. to §2, p. 66] for a more precise formulation
of the conjecture in the language of distributions. In language very similar to
that we have used above, Rohrlich’s conjecture can also be formulated as the
assertion that the Deligne-Koblitz-Ogus criterion for a Γ-monomial to belong
to Q× is not only sufficient, but necessary as well.

1.4.3. Lang ’s conjecture. Lang subsequently strengthened Rohrlich’s con-
jecture to a conjecture which in rough form can be stated thus: all polynomial
algebraic relations among special Γ-values and 2πi with coefficients in Q are
explained by the standard functional equations. See [La b, loc. cit.] for a for-
mulation of this conjecture in the language of distributions. In language very
similar to that we have used above, Lang’s conjecture can also be formulated
as the assertion that all Q-linear relations among Γ-monomials follow linearly
from the two-term relations provided by the Deligne-Koblitz-Ogus criterion.
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Yet another formulation of Lang’s conjecture is the assertion that for every
integer n > 2 the transcendence degree of the extension of Q generated by the
set {2πi}∪

{
Γ(x)

∣∣x ∈ 1
nZ \ Z≤0

}
is equal to 1 + φ(n)/2, where φ(n) is Euler’s

totient. In fact, as is underscored by the direct analogy between the numbers

1 + φ(n)/2 = 1 +
(

1 − 1
#Z×

)
· #(Z/n)×

and

1 +
q − 2
q − 1

· #(A/f)× = 1 +
(

1 − 1
#A×

)
· #(A/f)×,

Corollary 1.2.2 is the precise analogue of the last version of Lang’s conjecture
mentioned above.

1.4.4. Evidence in the classical case. There are very few integers
n > 1 such that all Laurent polynomial relations among elements of the set
{2πi}∪

{
Γ

(
1
n

)
, . . . ,Γ

(
n−1

n

)}
with coefficients in Q can be ruled out save those

following from the two-term relations provided by the Deligne-Koblitz-Ogus
[De] criterion, to wit:

• n = 2 (Lindemann 1882, since Γ(1/2) =
√

π).

• n = 3, 4 (Chudnovsky 1974, cf. [Wal]).

The only other evidence known for Lang’s conjecture is indirect, and it is
contained in a result of [WoWü]: all Q-linear relations among the special beta
values

B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

(a, b ∈ Q, a, b, a + b �∈ Z≤0)

and 2πi follow from the two-term relations provided by the Deligne-Koblitz-
Ogus criterion.

1.5. Acknowledgements. The authors thank Dinesh Thakur for helpful
conversations and correspondence. The second and third authors would like
to thank the Erwin Schrödinger Institute for its hospitality during some of the
final editorial work.

2. Notation and terminology

2.1. Table of special symbols.

T, t, z := independent variables
Fq := a field of q elements
k := Fq(T )
| · |∞ := the unique valuation of k such that |T |∞ = q
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k∞ := Fq((1/T )) = the | · |∞-completion of k

k∞ := an algebraic closure of k∞
C∞ := the | · |∞-completion of k∞
k̄ := the algebraic closure of k in C∞
T̃ := a fixed choice in k̄ of a (q − 1)st root of −T

C∞{t} := the subring of the power series ring C∞[[t]] consisting of
power series convergent in the “closed” unit disc |t|∞ ≤ 1

#S := the cardinality of a set S

Matr×s(R) := the set of r by s matrices with entries in a ring or module R

R× := the group of units of a ring R with unit
GLn(R) := Matn×n(R)×, where R is a ring with unit
1n := the n by n identity matrix
A := Fq[T ]
deg := (a �→ degree of a in T ) : A → Z ∪ {−∞}
A+ := the set of elements of A monic in T

DN :=
∏N−1

i=0 (T qN − T qi

) ∈ A+

Res :=
(∑

i aiT
i �→ a−1

)
: k∞ → Fq

2.2. Twisting. Fix n ∈ Z. Given a formal power series f =
∑∞

i=0 ait
i ∈

C∞[[t]] we define the n-fold twist by the rule f (n) :=
∑∞

i=0 aqn

i ti. The n-fold
twisting operation is an automorphism of the power series ring C∞[[t]] stabi-
lizing various subrings, e. g., k̄[[t]], k̄[t], and C∞{t}. More generally, for any
matrix F with entries in C∞[[t]] we define the n-fold twist F (n) by the rule(
F (n)

)
ij

:= (Fij)(n). In particular, for any matrix X with entries in C∞ we

have
(
X(n)

)
ij

= (Xij)qn

. The n-fold twisting operation commutes with matrix
addition and multiplication.

2.3. Norms. For any matrix X with entries in C∞ we put |X|∞ :=
maxij |Xij |∞. Now

∣∣X(n)
∣∣
∞ = |X|qn

∞ for all n ∈ Z and

|U + V |∞ ≤ max(|U |∞, |V |∞), |XY |∞ ≤ |X|∞ · |Y |∞

for all matrices U , V , X, Y with entries in C∞ such that U + V and XY are
defined.

2.4. The ring E . We define E to be the ring consisting of formal power
series

∞∑
n=0

antn ∈ k̄[[t]]

such that

lim
n→∞

n
√

|an|∞ = 0, [k∞(a0, a1, a2, . . . ) : k∞] < ∞.
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The former condition guarantees that such a series has an infinite radius of
convergence with respect to the valuation |·|∞. The latter condition guarantees
that for any t0 ∈ k∞ the value of such a series at t = t0 belongs again to k∞.
Note that the ring E is stable under the n-fold twisting operation f �→ f (n) for
all n ∈ Z.

2.5. The Schwarz-Jensen formula. Fix f ∈ E not vanishing identically.
It is possible to enumerate the zeroes of f in C∞ because there are only finitely
many zeroes in each disc of finite radius. Put

{ωi} := an enumeration (with multiplicity) of the zeroes of f in C∞

and
λ := the leading coefficient of the Maclaurin expansion of f .

The Schwarz-Jensen formula

sup
x∈C∞
|x|≤r

|f(x)|∞ = |λ|∞ · r#{i|ωi=0} ·
∏

i: 0<|ωi|∞<r

r

|ωi|∞
(r ∈ R>0)

relates the growth of the modulus of f to the distribution of the zeroes of f .
This fact is an easily deduced corollary to the Weierstrass Preparation Theorem
over a complete discrete valuation ring.

3. A linear independence criterion

3.1. Formulation and discussion of the criterion.

Theorem 3.1.1. Fix a matrix

Φ = Φ(t) ∈ Mat�×�(k̄[t]),

such that det Φ is a polynomial in t vanishing (if at all) only at t = T . Fix a
(column) vector

ψ = ψ(t) ∈ Mat�×1(E)

satisfying the functional equation

ψ(−1) = Φψ.

Evaluate ψ at t = T , thus obtaining a (column) vector

ψ(T ) ∈ Mat�×1

(
k∞

)
.

For every (row) vector
ρ ∈ Mat1×�(k̄)

such that
ρψ(T ) = 0
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there exists a (row) vector

P = P (t) ∈ Mat1×�(k̄[t])

such that
P (T ) = ρ, Pψ = 0.

The proof commences in §3.3 and takes up the rest of Section 3. We think
of the k̄[t]-linear relation P among the entries of ψ produced by the theorem
as an “explanation” or a “lifting” of the given k̄-linear relation ρ among the
entries of ψ(T ).

3.1.2. The basic application. Consider the power series

Ω = Ω(t) := T̃−q
∞∏
i=1

(
1 − t/T qi

)
∈ k∞(T̃ )[[t]] ⊂ C∞[[t]].

The power series Ω(t) has an infinite radius of convergence and satisfies the
functional equation

Ω(−1) = (t − T ) · Ω.

Consider the Maclaurin expansion

Ω(t) =
∞∑
i=0

ait
i.

The functional equation satisfied by Ω implies the recursion

q
√

ai + Tai =
{

ai−1 if i > 0,
0 if i = 0.

Therefore Ω belongs to k̄[[t]] and hence to E . Suppose now that there exists a
nontrivial k̄-linear relation

n∑
i=0

ρiΩ(T )i = 0 (ρi ∈ k̄, n > 0, ρ0ρn �= 0)

among the powers of the number

Ω(T ) = T̃−q
∞∏
i=1

(1 − T 1−qi

) ∈ k∞(T̃ ).

Theorem 3.1.1 provides a k̄[t]-linear “explanation”
n∑

i=0

PiΩi = 0 (Pi ∈ k̄[t], Pi(T ) = ρi).

But the polynomial P0 must vanish at all the zeroes t = T qi

of the function Ω.
Thus P0 vanishes identically, contrary to our assumption that ρ0 = P0(T ) �= 0.
We conclude that Ω(T ) is transcendental over k.
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See §5.1 below for the interpretation of −1/Ω(T ) as the fundamental pe-
riod of the Carlitz module. The power series Ω(t) plays a key role in this
paper.

Proposition 3.1.3. Suppose

Φ ∈ Mat�×�(k̄[t]), ψ ∈ Mat�×1 (C∞{t})
such that

det Φ(0) �= 0, ψ(−1) = Φψ.

Then
ψ ∈ Mat�×1(E).

The proposition simplifies the task of checking the hypotheses of Theo-
rem 3.1.1.

Proof. Write

Φ =
N∑

i=0

b(i)t
i (b(i) ∈ Mat�×�(k̄), N : positive integer).

By hypothesis b(0) ∈ GL�(k̄). By the theory of Lang isogenies [La a] there
exists U ∈ GL�×�(k̄) such that

U (−1)b(0)U
−1 = 1�

(
equivalently: b

(1)
(0) = U−1U (1)

)
.

After making the replacements

ψ ← Uψ, Φ ← U (−1)ΦU−1,

we may assume without loss of generality that b(0) = 1�. Now write

ψ =
∞∑
i=0

a(i)t
i (a(i) ∈ Mat�×1(C∞)).

We have

a
(−1)
(n) − a(n) =

min(n,N)∑
i=1

b(i)a(n−i),

and hence
a(n) ∈ Mat�×1(k̄)

for all integers n ≥ 0. By hypothesis

lim
n→∞

|a(n)|∞ = 0,

and hence the series

ã(n) :=
∞∑

ν=1

(
N∑

i=1

b(i)a(n−i)

)(ν)
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converges for all n � 0. Moreover,

lim
n→∞

|ã(n)|∞ = 0.

Since (
ã(n) − a(n)

)(−1) =
(
ã(n) − a(n)

)
for n � 0, it follows that ã(n)−a(n) = 0 for n � 0 and hence that the collection
of entries of all the vectors a(n) generates an extension of k∞ of finite degree.
Now fix C > 1 arbitrarily. From the fact that ã(n) = a(n) for n � 0, we have
inequalities

Cn|a(n)|∞ ≤ N
max
i=1

Cn|b(i)|q∞|a(n−i)|q∞

≤
(

N
max
i=1

Ci|b(i)|q∞
)
·
(

N
max
i=1

|a(n−i)|∞
)q−1

·
(

N
max
i=1

Cn−i|a(n−i)|∞
)

≤ n−1
max
i=0

Ci|a(i)|∞

for n � 0, and hence
∞

sup
n=0

Cn|a(n)|∞ < ∞.

Therefore the radius of convergence of each entry of ψ is infinite.

3.1.4. Remark. Theorem 3.1.1 is in essence the (dual) t-motivic translation
of Yu’s Theorem of the t-Submodule [Yu c, Thms. 3.3 and 3.4]. Once the
setting is sufficiently developed, we expect that the class of numbers about
which Theorem 3.1.1 provides k̄-linear independence information is essentially
the same as that handled by Yu’s theorem of the t-Submodule, and the type
of information provided is essentially the same, too. We omit discussion of the
comparison.

3.2. Specialized notation for making estimates.

3.2.1. Degree in t. Given a polynomial f ∈ k̄[t] let degt f denote its
degree in t (as usual deg 0 := −∞) and, more generally, given a matrix F with
entries in k̄[t] put degt F := maxij degt Fij . Now, degt F (n) = degt F for all
n ∈ Z and we have

degt(D + E) ≤ max (degt D,degt E) , degt(FG) ≤ degt F + degt G

for all matrices D, E, F , G with entries in k̄[t] such that D + E and FG are
defined.

3.2.2. Size. Given an algebraic number x ∈ k̄ we set ‖x‖ := maxτ |τx|∞,
where τ ranges over the automorphisms of k̄/k, thereby defining the size of x.
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More generally given a polynomial f =
∑

i ait
i ∈ k̄[t], we define ‖f‖ :=

maxi ‖ai‖. Yet more generally, given a matrix F with entries in k̄[t] we define
‖F‖ := maxij ‖Fij‖. Then we have

∥∥F (n)
∥∥ = ‖F‖qn

for all n ∈ Z. Now,

‖D + E‖ ≤ max(‖D‖, ‖E‖), ‖FG‖ ≤ ‖F‖ · ‖G‖
for all matrices D, E, F , G with entries in k̄[t] such that D + E and FG are
defined.

3.3. The basic estimates.

3.3.1. The setting. Throughout §3.3 we fix fields

k ⊂ K0 ⊂ K ⊂ k̄

and rings
A ⊂ O0 ⊂ O ⊂ K

such that

• K0/k is a finite separable extension,

• K is the closure of K0 in k̄ under the extraction of qth roots,

• O is the integral closure of A in K, and

• O0 = O ∩ K0.

Note that k̄ is the union of all its subfields of the form K.

3.3.2. Lower bound from size. We claim that

‖x‖ ≥ 1, |x|∞ ≥ ‖x‖1−[K0:k]

for all 0 �= x ∈ O. Clearly these estimates hold in the case 0 �= x ∈ O0, because
in that case x has at most [K0 : k] conjugates over k and the product of those
conjugates is a nonzero element of A; but then, since we have

O =
∞⋃

ν=0

Oq−ν

0 ,

the claim holds in general.

Lemma 3.3.3 (Liouville Inequality). Fix a polynomial

f(z) :=
n∑

i=0

aiz
i ∈ O[z]

not vanishing identically. For every nonzero root λ ∈ k̄ of f(z) of order ν,

|λ|ν∞ ≥
(

n
max
i=0

‖ai‖
)−[K0:k]

.
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Proof. We may of course assume that |λ|∞ < 1, for otherwise the claim
is obvious. After factoring out a power of z we may also assume that a0 �= 0.
Write

f(z + λ) =
n∑

i=ν

biz
i (bi ∈ O[λ]),

noting that
|bi|∞ ≤ n

max
j=i

|aj |∞ ≤ n
max
i=0

‖ai‖.

Evaluate the displayed expression for f(z + λ) at z = −λ, thus obtaining an
estimate

|a0|∞ = |f(0)|∞ ≤ n
max
i=ν

|biλ
i|∞ ≤ |λ|ν∞

n
max
i=0

‖ai‖.

Finally, apply the fundamental lower bound of §3.3.2 to a0.

Lemma 3.3.4. For all constants C > 1,

lim
ν→∞

(
#

{
x ∈ Oq−ν

0

∣∣∣ ‖x‖ ≤ C
}) 1

qν ·[K0:k] = C.

The normalization |T |∞ = q was imposed to make this formula hold.

Proof. We may assume without loss of generality that C is of the form

C = qδ

(
δ ∈

∞⋃
ν=0

q−νZ, δ > 0

)
.

The Riemann-Roch theorem yields constants n0 and n1 such that

n > n0 ⇒ #{x ∈ O0|‖x‖ ≤ |T |n∞} = q[K0:k]n+n1

for all n ∈ Z. We then have

#
{

x ∈ Oq−ν

0

∣∣∣ ‖x‖ ≤ |T |δ∞
}

= #
{

x ∈ O0

∣∣∣‖x‖ ≤ |T |qνδ
∞

}
= q[K0:k]qνδ+n1

for all integers ν � 0, whence the result.

Lemma 3.3.5 (Thue-Siegel Analogue). Fix parameters

C > 1, 0 < r < s (C ∈ R, r, s ∈ Z).

For each matrix
M ∈ Matr×s(O)

such that
‖M‖ < C

there exists
x ∈ Mats×1(O)

such that
x �= 0, Mx = 0, ‖x‖ < C

r

s−r .
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Proof. Choose C ′ > 1 and ε > 0 such that

‖M‖ < C ′, (1 + ε)(C ′)
r

s−r < C
r

s−r .

For all ν � 0 the cardinality of the set{
x ∈ Mats×1

(
Oq−ν

0

)∣∣∣ ‖x‖ ≤ (1 + ε)(C ′)
r

s−r

}
exceeds the cardinality of the set{

x ∈ Matr×1

(
Oq−ν

0

)∣∣∣ ‖x‖ ≤ (1 + ε)(C ′)
s

s−r

}
by Lemma 3.3.4. Further, for all ν � 0 multiplication by M maps the former
set to the latter. Therefore the desired vector x exists by the pigeonhole
principle.

Lemma 3.3.6. Again fix parameters

C > 1, 0 < r < s (C ∈ R, r, s ∈ Z).

For each matrix
M ∈ Matr×s(O[t])

such that
‖M‖ < C

there exists
x ∈ Mats×1(O[t])

such that
x �= 0, Mx = 0, ‖x‖ < C

r

s−r .

Proof. Let d and e be nonnegative integers presently to be chosen effica-
ciously large and put

r′ := r(d + e + 1), s′ := s(e + 1).

Choose d large enough so that

degt M ≤ d,

and then choose e large enough so that

r′ < s′, ‖M‖ < C ′ := C
r

s−r
/ r′

s′−r′ .

Consider now the O-linear map

{x ∈ Mats×1(O[t])|degt x ≤ e} → {x ∈ Matr×1(O[t])|degt x ≤ d + e}
induced by multiplication by M . With respect to the evident choice of bases
the map under consideration is represented by a matrix

M ′ ∈ Matr′×s′(O)
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such that ∥∥M ′∥∥ < C ′.

The existence of x ∈ Mats×1(O[t]) such that

x �= 0, Mx = 0, degt x ≤ e, ‖x‖ < (C ′)
r′

s′−r′ = C
r

s−r

now follows by an application of the preceding lemma with the triple of pa-
rameters (C ′, r′, s′) in place of the triple (C, r, s).

3.4. Proof of the criterion.

3.4.1. The case � = 1. Assume for the moment that � = 1. In this case
we may assume without loss of generality that ρ �= 0 and hence that

ψ(T ) = 0,

in which case our task is to show that ψ vanishes identically. For any integer
ν ≥ 0 we have(

ψ
(
T q−ν

))q−1

= ψ(−1)
(
T q−(ν+1)

)
= Φ

(
T q−(ν+1)

)
ψ

(
T q−(ν+1)

)
,

Φ
(
T q−(ν+1)

)
�= 0

and hence,
ψ

(
T q−ν

)
= 0 (ν = 0, 1, 2, . . . ).

Since ψ vanishes infinitely many times in the disc |t|∞ ≤ |T |∞, necessarily ψ

vanishes identically. Thus the case � = 1 of Theorem 3.1.1 is dispatched.

3.4.2. Reductions and further notation. Assume now that � > 1. We
may of course assume that

ρ �= 0.

As in §3.3 let
k ⊂ K0 ⊂ K ⊂ k̄

be fields such that K0/k is a finite separable extension and K is the closure of
K0 under the extraction of qth roots. Since k̄ is the union of fields of the form
K we may assume without loss of generality that

Φ ∈ Mat�×�(K[t]), ρ ∈ Mat1×�(K).

As in §3.3 let O be the integral closure of A in K. After making replacements

Φ ← aq−1Φ, ψ ← a−qψ, ρ ← bρ

for suitably chosen
a, b ∈ A, ab �= 0,
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we may assume without loss of generality that

Φ ∈ Mat�×�(O[t]), ρ ∈ Mat1×�(O).

Fix a matrix
ϑ ∈ Mat�×(�−1)(O)

of maximal rank such that
ρϑ = 0.

Then the K-subspace of Mat1×�(K) annihilated by right multiplication by ϑ

is the K-span of ρ. Let
Θ ∈ Mat�×�(O[t])

be the transpose of the matrix of cofactors of Φ. Then,

ΦΘ = ΘΦ = det Φ · 1� = c(t − T )s · 1�

for some 0 �= c ∈ O and integer s ≥ 0. Let N be a parameter taking values in
the set of positive integers divisible by 2�.

3.4.3. Construction of the auxiliary function E. We claim there exists

h = h(t) ∈ Mat1×�(O[t])

depending on the parameter N such that

• ‖h‖ = O(1) as N → ∞

and with the following properties for each value of N :

• h �= 0.

• degt h <
(
1 − 1

2�

)
N .

• E
(
T q−(N+ν)

)
= 0 for ν = 0, . . . , N − 1, where E := hψ ∈ E .

(We call E the auxiliary function.)

Before proving the claim, we note first that the auxiliary function E figures in
the following identity:

hΘ(−0) · · ·Θ(−(N+ν−1))ψ(−(N+ν))

= hΘ(−0) · · ·Θ(−(N+ν−1))Φ(−(N+ν−1)) · · ·Φ(−0)ψ

= cq−(N+ν−1)+···+q0
(
t − T q−(N+ν−1)

)s
· · ·

(
t − T q−0

)s
E.
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This identity is useful again below and so for convenient reference we dub it
the key identity. By the key identity, the hypothesis

ρψ(T ) = 0
(
equivalently: ρ(−(N+ν))ψ(−(N+ν))

(
T q−(N+ν)

)
= 0

)
,

and the definition of ϑ, the following condition forces the desired vanishing of
E:

• hΘ(0) · · ·Θ(−(N+ν−1))ϑ(−(N+ν))
∣∣
t=T q−(N+ν) = 0 for ν = 0, . . . , N − 1.

Put

r := (� − 1) N, s :=
(

� − 1
2

)
N.

With respect to the evident choices of bases, the homogeneous system of linear
equations that we need to solve is described by a matrix

M ∈ Matr×s(O)

depending on N such that

‖M‖ ≤ |T |q
−N ((1− 1

2�
)N+2N ·degt Θ)

∞ · ‖Θ‖
q

q−1 · ‖ϑ‖ = O(1) as N → ∞,

and the solution we need to find is described by a vector

x ∈ Mats×1(O)

depending on N such that

x �= 0, Mx = 0, ‖x‖ = O(1) as N → ∞.

Lemma 3.3.5 now proves our claim.

3.4.4. A functional equation for E. We claim there exist polynomials

a0, . . . , a� ∈ O[t]

depending on the parameter N such that

• �
max
i=0

‖ai‖ = O(1) as N → ∞

and with the following properties for each value of N :

• Not all the ai vanish identically.

• a0E + a1E
(−1) + · · · + a�E

(−�) = 0.
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Since
E(−ν) = h(−ν)Φ(−(ν−1)) · · ·Φ(−0)ψ

for any integer ν ≥ 0, the functional equation we want E to satisfy is implied
by the following condition:

• a0h
(0) + a1h

(−1)Φ(−0) + · · · + a�h
(−�)Φ(−(�−1)) · · ·Φ(−0) = 0.

The latter system of homogeneous linear equations for a0, . . . , a� is with respect
to the evident choice of bases described by a matrix

M ∈ Mat�×(�+1)(O[t])

depending on N such that

‖M‖ = O(1) as N → ∞,

and the solution we have to find is described by a vector

x ∈ Mat(�+1)×1(O[t])

depending on N such that

x �= 0, Mx = 0, ‖x‖ = O(1) as N → ∞.

Lemma 3.3.6 now proves our claim. After dividing out common factors of t we
may further assume that for each value of N :

• Not all the constant terms ai(0) vanish.

3.4.5. Vanishing of E. We claim that E vanishes identically for some N .
Suppose that this is not the case. Let λ be the leading coefficient of the
Maclaurin expansion of E. We have

a0(0)λq0
+ · · · + a�(0)λq−�

= 0,

and hence
1/|λ|∞ = O(1) as N → ∞

by Lemma 3.3.3. But we also have

|λ|∞ · |T |N− q

q−1
∞ ≤ sup

x∈C∞
|x|∞≤|T |∞

|E(x)|∞ ≤ sup
x∈C∞

|x|∞≤|T |∞

|ψ(x)|∞ · ‖h‖ · |T |N(1− 1
2�)∞ ,

for all N , the inequality on the left by the Schwarz-Jensen formula, and hence

|λ|∞ = O
(
|T |−

N

2�∞
)

as N → ∞.

These bounds for |λ|∞ are contradictory for N � 0. Our claim is proved.
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3.4.6. The case E = 0. Now fix a value of N such that the auxiliary func-
tion E vanishes identically. Since the entries of the vector h are polynomials
in t of degree < N , not all vanishing identically, there exists some 0 ≤ ν < N

such that

h(N+ν)(T ) = h
(
T q−(N+ν)

)qN+ν

�= 0.

Put
P = P (t) := h(N+ν)Θ(N+ν) · · ·Θ(1) ∈ Mat1×�(O[t]).

Since
det

(
Θ(N+ν) · · ·Θ(1)

)∣∣∣
t=T

�= 0,

we have
P (T ) �= 0.

We also have

P (T )ϑ =
(

hΘ(−0) · · ·Θ(−(N+ν−1))ϑ(−(N+ν))
∣∣∣
t=T q−(N+ν)

)qN+ν

= 0,

and hence
P (T ) ∈ (K-span of ρ) ⊂ Mat1×�(K).

Finally, we have

Pψ = cq+···+qN+ν

(t − T q)s · · ·
(
t − T qN+ν

)s
E(N+ν) = 0

by the key identity. Therefore (up to a nonzero correction factor in K) the
vector P is the vector we want, and the proof of Theorem 3.1.1 is complete.

4. Tools from (non)commutative algebra

4.1. The ring k̄[σ].

4.1.1. Definition. Let k̄[σ] be the ring obtained by adjoining a noncom-
mutative variable σ to k̄ subject to the commutation relations

σx = xq−1
σ (x ∈ k̄).

Every element of k̄[σ] has a unique presentation of the form
∞∑
i=0

aiσ
i (ai ∈ k̄, ai = 0 for i � 0),

and in terms of such presentations the multiplication law in k̄[σ] takes the form(∑
i aiσ

i
) (∑

j bjσ
j
)

=
∑

i

∑
j aib

q−i

j σi+j .
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Given

φ =
∞∑
i=0

aiσ
i ∈ k̄[σ] (ai ∈ k̄, ai = 0 for i � 0),

we define
degσ φ := max({−∞} ∪ {i|ai �= 0}).

Clearly we have

degσ φψ = degσ φ + degσ ψ (φ, ψ ∈ k̄[σ]).

The ring k̄[σ] admits interpretation as the opposite of the ring of Fq-linear
endomorphisms of the additive group over k̄. This interpretation is not actually
needed in the sequel but might serve as a guide to the intuition of the reader.

4.1.2. Division algorithms and their uses. The ring k̄[σ] has a left (resp.,
right) division algorithm:

• For all ψ, φ ∈ k̄[σ] such that φ �= 0 there exist unique θ, ρ ∈ k̄[σ] such
that ψ = φθ + ρ (resp., ψ = θφ + ρ) and degσ ρ < degσ φ.

Some especially useful properties of k̄[σ] and of left modules over it readily
deducible from the existence of left and right division algorithms are as follows:

• Every left ideal of k̄[σ] is principal.

• Every finitely generated left k̄[σ]-module is noetherian.

• dimk̄ k̄[σ]/k̄[σ]φ = degσ φ < ∞ for all 0 �= φ ∈ k̄[σ].

• For every matrix φ ∈ Matr×s(k̄[σ]) there exist matrices α ∈ GLr(k̄[σ])
and β ∈ GLs(k̄[σ]) such that the product αφβ vanishes off the main
diagonal.

• A finitely generated free left k̄[σ]-module has a well-defined rank; i.e., all
k̄[σ]-bases have the same cardinality.

• A k̄[σ]-submodule of a free left k̄[σ]-module of rank s < ∞ is free of rank
≤ s.

• Every finitely generated left k̄[σ]-module is isomorphic to a finite direct
sum of cyclic left k̄[σ]-modules.

These facts are quite well known. The proofs run along lines very similar to
the proofs of the analogous statements for, say, the commutative ring k̄[t].
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4.1.3. The functors mod σ and mod (σ − 1). Given a homomorphism

f : H0 → H1

of left k̄[σ]-modules, let

f mod σ :
H0

σH0
→ H1

σH1
, f mod (σ − 1) :

H0

(σ − 1)H0
→ H1

(σ − 1)H1

be the corresponding induced maps.

Lemma 4.1.4. Let
f : H0 → H1

be an injective homomorphism of free left k̄[σ]-modules of finite rank such that

n := dimk̄ coker(f) < ∞.

Now,
# ker(f mod (σ − 1)) ≤ qn

with equality if and only if f mod σ is bijective.

Proof. We may assume without loss of generality that

H0 = Mat1×r(k̄[σ]), H1 = Mat1×s(k̄[σ]), f = (x �→ xφ) (φ ∈ Matr×s(k̄[σ])).

After replacing φ by αφβ for suitably chosen α ∈ GLr(k̄[σ]) and β ∈ GLs(k̄[σ]),
we may assume without loss of generality that φ vanishes off the main diagonal,
in which case clearly φ vanishes nowhere on the main diagonal and r = s. We
might as well assume now also that r = s = 1. Write

φ =
n∑

i=0

aiσ
i (ai ∈ k̄, an �= 0, a0 �= 0 ⇔ f mod σ is bijective).

Now,
k̄[σ] = k̄ ⊕ (σ − 1) · k̄[σ]

and

xφ ≡
n∑

i=0

aqi

i xqi

mod (σ − 1) · k̄[σ]

for all x ∈ k̄, whence the result.

Lemma 4.1.5. For i = 1, 2 let

fi : H0 → Hi

be a homomorphism of free, left k̄[σ]-modules of finite rank. Assume that H0,
H1 and H2 are all of the same rank over k̄[σ]. Assume further that f1 mod σ

is bijective and that

ker(f1 mod (σ − 1)) ⊂ ker(f2 mod (σ − 1)).
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Then f2 factors uniquely through f1; i.e., there exists a unique homomorphism

g : H1 → H2

of left k̄[σ]-modules such that

g ◦ f1 = f2.

Proof. (Cf. [Yu c, Lemma 1.1].) We may assume without loss of generality
that

H0 = H1 = H2 = Mat1×s(k̄[σ]),

f1 = (x �→ xφ), f2 = (x �→ xψ), (φ, ψ ∈ Mats×s(k̄[σ])).

After making replacements

φ ← αφβ, ψ ← αψ

for suitably chosen α, β ∈ GLs(k̄[σ]), we may assume without loss of generality
that φ vanishes off the main diagonal. Since f1 mod σ is bijective, no diagonal
entry of φ vanishes. We might as well assume now also that s = 1. Use the
left division algorithm to find θ, ρ ∈ k̄[σ] such that

ψ = φθ + ρ, degσ ρ < degσ φ.

Put
g := (x �→ xθ), h := (x �→ xρ).

Then
f2 = g ◦ f1 + h.

If h = 0 we are done. Suppose instead that h �= 0. We then have

ker(f1 mod (σ − 1)) ⊂ ker(h mod (σ − 1)), dimk̄ coker(f1) > dimk̄ coker(h).

But the latter relations are contradictory in view of Lemma 4.1.4 and our
hypothesis that f1 mod σ is bijective.

4.2. The ring k̄[[σ]].

4.2.1. Definition. We define k̄[[σ]] to be the completion of k̄[σ] with
respect to the system of two-sided ideals{

σnk̄[σ]
}∞

n=0
.

Every element of k̄[[σ]] has a unique presentation of the form
∞∑
i=0

aiσ
i (ai ∈ k̄).

In terms of such presentations the multiplication law in k̄[[σ]] takes the form(∑
i aiσ

i
) (∑

j bjσ
j
)

=
∑

i

∑
j aib

q−i

j σi+j .
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The ring k̄[[σ]] contains k̄[σ] as a subring. The ring k̄[[σ]] is a domain.

4.2.2. The operation ∂. Given

φ =
∞∑
i=0

a(i)σ
i ∈ Matr×s(k̄[[σ]]) (a(i) ∈ Matr×s(k̄)),

put
∂φ := a(0).

The operation ∂ thus defined is k̄-linear and satisfies

∂(φψ) = (∂φ)(∂ψ)

for all matrices φ and ψ with entries in k̄[[σ]] such that the product φψ is
defined.

Lemma 4.2.3. (i) For all φ ∈ Mats×s(k̄[[σ]]), if ∂φ ∈ GLs(k̄), then φ ∈
GLs(k̄[[σ]]). (ii) Every nonzero left ideal of k̄[[σ]] is generated by a power of σ.

Proof. (i) After replacing φ by αφ for suitably chosen α ∈ GLs(k̄) we may
assume ∂φ = 1s. Now write φ = 1s−X. The series 1s+

∑∞
n=1 Xn converges to

a two-sided inverse to φ. (ii) Let I ⊂ k̄[[σ]] be a nonzero left ideal. Let φ = ασn

be a nonzero element of I where ∂α �= 0 and n is a nonnegative integer taken
as small as possible. Then we have α ∈ k̄[[σ]]× by (i); hence σn ∈ I, and hence
σn generates I.

Lemma 4.2.4. Let

θ ∈ Matr×r(k̄[[σ]]), a ∈ Matr×r(k̄), e ∈ Matr×s(k̄), b ∈ Mats×s(k̄)

be given such that

∂θ = a, (a − T · 1r)r = 0, ae = eb, (b − T · 1s)s = 0.

Then there exists unique
E ∈ Matr×s(k̄[[σ]])

such that
θE = Eb, ∂E = e.

Proof. (Cf. [An a, Prop. 2.1.4].) Write

θ =
∞∑
i=0

a(i)σ
i ∈ Matr×r(k̄[[σ]]) (a(i) ∈ Matr×r(k̄), a(0) = a)

and

E =
∞∑
i=0

e(i)σ
i ∈ Matr×s(k̄[[σ]]) (e(i) ∈ Matr×s(k̄), e(0) = e).
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Then,

θE =
∞∑
i=0

∞∑
j=0

a(i)e
(−i)
(j) σi+j

and hence θE = Eb if and only if the system of coefficients
{
e(n)

}
satisfies the

recursion

e(n)b
(−n) − ae(n) =

∑
0<i≤n

a(i)e
(−i)
(n−i) (n = 1, 2, . . . ).

Now for each n > 0 the k̄-linear map(
z �→ zb(−n) − az

)
: Matr×s(k̄) → Matr×s(k̄)

is invertible because all of its eigenvalues equal T q−n − T ; indeed, for qi ≥
max{r, s} the qi-th iteration sends z to (T q−n − T )qi

z. It follows that the
recursion satisfied by the coefficients e(n) has a unique solution with e(0) = e.

Lemma 4.2.5. Let matrices

θ, φ, ρ ∈ Mats×s(k̄[σ])

be given such that

(∂θ − T · 1s)s = 0, θφ = φρ, (∂ρ − T · 1s)s = 0,

Assume further that the map

(x �→ xφ) : Mat1×s(k̄[σ]) → Mat1×s(k̄[σ])

is injective. Then
det ∂φ �= 0.

Proof. (Cf. [Yu b, Lemma 1.3].) After making replacements

θ ← αθα−1, φ ← αφβ, ρ ← β−1ρβ,

for suitably chosen α, β ∈ GLs(k̄[σ]) we may assume without loss of generality
that φ vanishes off the main diagonal, in which case it is clear that no entry of
φ on the main diagonal vanishes. By Lemma 4.2.4 there exist unique matrices

D, E, F ∈ Mats×s(k̄[[σ]])

such that
θD = D · ∂θ, θE = E · ∂ρ, ρF = F · ∂ρ,

and
∂D = 1r, ∂E = ∂φ, ∂F = 1s.
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By the uniqueness asserted in Lemma 4.2.4 we have

φF = E = D · ∂φ.

Further,

D, F ∈ GLs(k̄[[σ]])

by Lemma 4.2.3 (i). Now consider the quotient M (resp., N) of the free left
k̄[[σ]]-module Mats×1(k̄[[σ]]) by the k̄[[σ]]-submodule generated by the rows of φ

(resp., ∂φ). Since φ is diagonal with no vanishing diagonal entries, we have
dimk̄ M < ∞ by Lemma 4.2.3 (ii). Since D−1φF = ∂φ, the left k̄[[σ]]-modules
M and N are isomorphic and hence we have dimk̄ N < ∞. Under the latter
condition it is impossible for any diagonal entry of ∂φ to vanish.

4.3. The ring k̄[t, σ].

4.3.1. Definition. Let k̄[t, σ] be the ring obtained by adjoining the com-
mutative variable t to k̄[σ]. Every element of k̄[t, σ] has a unique presentation
of the form

∞∑
i=0

αit
i (αi ∈ k̄[σ], αi = 0 for i � 0).

In terms of such presentations the multiplication law in k̄[t, σ] takes the form(∑
i αit

i
) (∑

j βjt
j
)

=
∑

i

∑
j αiβjt

i+j .

Every element of k̄[t, σ] also has a unique presentation of the form

∞∑
i=0

aiσ
i (ai ∈ k̄[t], ai = 0 for i � 0).

In terms of such presentations the multiplication law in k̄[t, σ] takes the form(∑
i aiσ

i
) (∑

j bjσ
j
)

=
∑

i

∑
j aib

(−i)
j σi+j .

The ring k̄[t, σ] contains both the noncommutative ring k̄[σ] and the commu-
tative ring k̄[t] as subrings. The ring Fq[t] is contained in the center of the ring
k̄[t, σ]. The ring k̄[t, σ] is a domain.

Proposition 4.3.2. Let M be a left k̄[t, σ]-module finitely generated over
both k̄[σ] and k̄[t]. Let Mσ (resp., Mt) be the sum of all k̄[σ]- (resp., k̄[t]-)
submodules N ⊂ M such that dimk̄ N < ∞. Then Mσ = Mt, dimk̄ Mσ =
dimk̄ Mt < ∞ and the quotient M/Mσ = M/Mt is free of finite rank over both
k̄[σ] and k̄[t].
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In particular it follows that a left k̄[t, σ]-module finitely generated over
both k̄[σ] and k̄[t] is free over k̄[σ] if and only if free over k̄[t].

Proof (cf. [An a, Lemma 1.4.5, p. 463]) . As a k̄[σ]-module M decomposes
as a finite direct sum of cyclic left k̄[σ]-modules. Therefore dimk̄ Mσ < ∞
and M/Mσ is free of finite rank over k̄[σ]. Similarly dimk̄ Mt < ∞ and M/Mt

is free of finite rank over k̄[t]. Now for any k̄[t]-submodule N ⊂ M of finite
dimension over k̄, again σN is a k̄[t]-submodule of M of finite dimension over
k̄ and hence σMt ⊂ Mt. Similarly we have tMσ ⊂ Mσ. Therefore each of the
modules Mσ and Mt contains the other.

4.3.3. Saturation. Let N ⊂ M be left k̄[t, σ]-modules. Assume that M

is finitely generated over both k̄[σ] and k̄[t]. By Proposition 4.3.2 there exists
a unique k̄[t, σ]-submodule Ñ ⊂ M such that Ñ =

∑
N ′ =

∑
N ′′ where

N ′ ranges over k̄[σ]-submodules such that dimk̄(N
′ + N)/N < ∞ and N ′′

ranges over k̄[t]-submodules such that dimk̄(N
′′ + N)/N < ∞. Clearly we

have Ñ ⊃ N . We call Ñ the saturation of N in M . By Proposition 4.3.2
the quotient M/Ñ is free of finite rank over both k̄[σ] and k̄[t] and moreover
dimk̄ Ñ/N < ∞. If N = Ñ we say that N is saturated in M . A necessary and
sufficient condition for N to be saturated in M is that M/N be torsion-free
over k̄[t] or torsion-free over k̄[σ].

4.4. Dual t-motives.

4.4.1. Definition. A dual t-motive H is a left k̄[t, σ]-module with the
following three properties:

• H is free of finite rank over k̄[t].
• H is free of finite rank over k̄[σ].
• (t − T )nH ⊂ σH for n � 0.

A morphism of dual t-motives is by definition a homomorphism of left k̄[t, σ]-
modules. Thus dual t-motives form a category. For any dual t-motive H there
exist

g ∈ Matr×1(H), h ∈ Mats×1(H), Φ ∈ Matr×r(k̄[t]), θ ∈ Mats×s(k̄[σ])

such that
• the entries of g form a k̄[t]-basis for H and σg = Φg,
• the entries of h form a k̄[σ]-basis for H and th = θh,

in which case
• det Φ = c(t − T )s for some nonzero c ∈ k̄ and
• (∂θ − T · 1s)s = 0.

The latter two assertions both follow from the assumption that the quotient
H/σH is killed by a power of t − T .
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4.4.2. Basic stability properties of the class of dual t-motives. Let

H0 ⊂ H1

be left k̄[t, σ]-modules. The following statements hold:

• If H1 is a dual t-motive and (t − T )nH0 ⊂ σH0 for n � 0, then H0 is
again a dual t-motive.

• If H1 is a dual t-motive and H0 is saturated in H1, then both H0 and
H1/H0 are again dual t-motives.

• If H0 and H1/H0 are both dual t-motives, then H1 is again a dual t-
motive.

Using the background on module theory over k̄[σ] and k̄[t, σ] provided above,
the reader should have no difficulty verifying these statements.

Proposition 4.4.3. Let

Φ ∈ Mat�×�(k̄[t]), ψ ∈ Mat�×1(E)

be as in Theorem 3.1.1. Suppose further that there exist a dual t-motive H and
a vector

g ∈ Mat�×1(H)

with entries forming a k̄[t]-basis of H such that

σg = Φg.

Equip E with left k̄[t, σ]-module structure by the rule

σe := e(−1) (e ∈ E).

Put

H0 := k̄[t]-span in E of the entries of the vector ψ,

V := k̄-span in k∞ of the entries of the vector ψ(T ).

Then the following statements hold :

• H0 is a k̄[t, σ]-submodule of E.

• H0 is a dual t-motive admitting presentation as a quotient of H.

• rkk̄[t] H0 = dimk̄ V .

The proposition positions Theorem 3.1.1 in the setting of dual t-motives.
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Proof. Consider the exact sequence

0 → H1 ⊂ H → H0 → 0

of left k̄[t]-modules, where

H1 := {Pg ∈ H | P ∈ Mat1×�(k̄[t]), Pψ = 0}

and the projection H → H0 is given by the rule

Pg �→ Pψ (P ∈ Mat1×�(k̄[t])).

A straightforward calculation verifies that the exact sequence in question is
in fact an exact sequence of k̄[t, σ]-modules. Therefore H0 is a dual t-motive
admitting presentation as a quotient of H. Since every k̄[t]-basis for H1 can be
completed to a k̄[t]-basis of H, the number of k̄-linearly independent relations
of k̄-linear dependence among the entries of ψ(T ) is at least as great as rkk̄[t] H1

and hence we have
rkk̄[t] H0 ≥ dimk̄ V.

But we also have
rkk̄[t] H0 ≤ dimk̄ V

because by Theorem 3.1.1 every relation of k̄-linear dependence among the
entries of ψ(T ) lifts to a k̄[t]-linear relation among the entries of ψ.

Theorem 4.4.4. For all dual t-motives H0 and H1 the natural map

k̄ ⊗Fq
Homk̄[t,σ](H0, H1) → Homk̄[t](H0, H1)

is injective.

Proof. The proof of [An a, Thm. 2, p. 464] can easily be modified to prove
this result.

4.4.5. Isogenies. An injective morphism f : H0 → H1 of dual t-motives
with cokernel finite-dimensional over k̄ is called an isogeny. We say that dual
t-motives H0 and H1 are isogenous if there exists an isogeny f : H0 → H1.

Lemma 4.4.6. Let f : H0 → H1 be an isogeny of dual t-motives. Then
the induced map f mod σ is bijective.

Proof. Without loss of generality, we think of f as an inclusion. Let s be
the common rank of H0 and H1 over k̄[σ]. For i = 0, 1 select

h(i) ∈ Mats×1(Hi), θ(i) ∈ Mats×s(k̄[σ])

such that the entries of h(i) form a k̄[σ]-basis of Hi and

th(i) = θ(i)h(i).
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Let
φ ∈ Mats×s(k̄[σ])

be the unique solution of the equation

h(0) = φh(1),

with
θ(0)φh(1) = θ(0)h(0) = th(0) = tφh(1) = φth(1) = φθ(1)h(1).

By Lemma 4.2.5 we have det ∂φ �= 0 and hence f mod σ is bijective.

Theorem 4.4.7. Let H0 ⊂ H1 be dual t-motives such that dimk̄ H1/H0

< ∞. Then there exists 0 �= a ∈ Fq[t] such that aH1 ⊂ H0.

It follows that the isogeny relation is not only reflexive and transitive, but
symmetric as well and hence an equivalence relation.

Proof. Let f1 : H0 → H1 be the inclusion. By Lemma 4.4.6 the induced
map f1 mod σ is bijective. By Lemma 4.1.4 the kernel of the induced map
f1 mod (σ − 1) is finite, and, since the latter group naturally has the structure
of a finite Fq[t]-module, there exists 0 �= a ∈ Fq[t] killing it. Let f2 : H0 → H0

be the morphism of dual t-motives induced by multiplication by a. Then

ker(f1 mod (σ − 1)) ⊂ ker(f2 mod (σ − 1)).

By Lemma 4.1.5 there exists a unique k̄[σ]-module homomorphism g : H1 → H0

such that f2 = g ◦ f1. We have

ker(f1 mod (σ − 1)) ⊂ ker(tf2 mod (σ − 1))

and

tg(f1(h)) = tf2(h) = f2(th) = g(f1(th)) = g(tf1(h)) (h ∈ H0).

By the uniqueness asserted in Lemma 4.1.5, it follows that g commutes with t

and hence is a morphism of dual t-motives. Now

ker(f1 mod (σ − 1)) ⊂ ker(f1 ◦ g ◦ f1 mod (σ − 1))

and
f1(g(f1(h))) = f1(f2(h)) = f1(ah) = af1(h) (h ∈ H0).

By the uniqueness asserted in Lemma 4.1.5, it follows that f1◦g coincides with
multiplication by a. Therefore aH1 ⊂ H0.

Corollary 4.4.8. For all dual t-motives H0 and H1 the module

Homk̄[t,σ](H0, H1)

is free over Fq[t] of finite rank and moreover its rank over Fq[t] depends only
on the isogeny classes of H0 and H1.
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Proof. Theorem 4.4.4 already proves that the module in question is free
of finite rank over Fq[t]. Now let r(H0, H1) denote the rank over Fq[t] of the
module in question. For i = 0, 1 let H ′

i be a dual t-motive isogenous to Hi and
without loss of generality assume that H ′

i ⊂ Hi and dimk̄ Hi/H ′
i < ∞. Choose

0 �= a ∈ Fq[t] such that aHi ⊂ H ′
i for i = 0, 1. We have

r(H0, H1) ≤ r(H ′
0, H1) ≤ r(aH0, H1) = r(H0, H1)

and
r(H0, H1) = r(H0, aH1) ≤ r(H0, H

′
1) ≤ r(H0, H1),

where each inequality is justified by the existence of a suitably constructed
injective Fq[t]-linear map.

4.4.9. Simplicity. We say that a dual t-motive H is simple if H �= {0} and
there exist no saturated k̄[t, σ]-submodules of H other than {0} and H.

Proposition 4.4.10. (i) A dual t-motive isogenous to a simple dual
t-motive is again simple. (ii) A nonzero morphism of dual t-motives with simple
source and target is automatically an isogeny. (iii) Let {Hi} be a family of sim-
ple dual t-motives each embedded as a k̄[t, σ]-submodule of a dual t-motive H.
If

dimk̄ H/

(∑
i

Hi

)
< ∞,

then H is isogenous to a finite direct sum of dual t-motives of the family {Hi}.

Proof. (i) Let H0 ⊂ H1 be dual t-motives with dimk̄ H1/H0 < ∞ and
H0 simple. It suffices to show that H1 is simple. Let M ⊂ H1 be a k̄[t, σ]-
submodule saturated in H1 and hence free over k̄[σ] and k̄[t]. Then M ∩H0 is
saturated in H0 and hence M ∩H0 = {0} or M ∩H0 = H0 by the simplicity of
H0. In the former case, M injects into H1/H0, so that dimk̄ M < ∞ and hence
M = 0 since M is a free k̄[σ]-module. In the latter case dimk̄ H1/M < ∞ and
hence M = H1 since M is saturated in H1. Therefore H1 is indeed simple.

(ii) Let f : H0 → H1 be a nonzero morphism of dual t-motives with
simple source and target. The kernel of f is a saturated k̄[t, σ]-submodule of
H0 distinct from H0 and hence equal to {0}. The saturation of the image of
f is a saturated k̄[t, σ]-submodule of H1 distinct from {0}, hence equal to H1,
and hence the cokernel of f is of finite dimension over k̄. Therefore f is indeed
an isogeny.

(iii) Since H is noetherian over k̄[t, σ], there exists a finite set I of indices
such that

dimk̄ H/

(∑
i∈I

Hi

)
< ∞.
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Fix such a set I now with #I minimal. Consider the exact sequence

0 → K →
⊕
i∈I

Hi →
∑
i∈I

Hi → 0

of left k̄[t, σ]-modules. It suffices to show that K = 0; suppose instead that
K �= 0. In any case K is a saturated k̄[t, σ]-submodule of a dual t-motive, and
hence K is a dual t-motive. Let M be a nonzero saturated k̄[t, σ]-submodule
of K of minimal rank over k̄[t]. Then M is a simple dual t-motive. For some
index i0 ∈ I the evident map M → Hi0 is nonzero and hence an isogeny, in
which case

∑
i∈I\{i0} Hi is of finite k̄-codimension in H in contradiction to the

minimality of #I. This contradiction proves that K = 0.

4.4.11. Rigid-analytic triviality. Given a dual t-motive H, put

H̃ := C∞{t} ⊗k̄[t] H,

equip H̃ with an action of σ by the rule

σ(f ⊗ h) := f (−1) ⊗ h,

and put
HBetti := {σ-invariant elements of H̃}.

We say that H is rigid analytically trivial if the natural map

C∞{t} ⊗Fq[t] HBetti → H̃

is bijective, cf. [An a, p. 474].

Lemma 4.4.12. Let H be a dual t-motive. Select

g ∈ Matr×1(H), Φ ∈ Matr×r(k̄[t])

such that the entries of g form a k̄[t]-basis of H and σg = Φg. (i) A necessary
and sufficient condition for H to be rigid analytically trivial is that there exists
a solution

Ψ ∈ GLr(C∞{t})

of the equation
Ψ(−1) = ΦΨ.

(ii) For any such solution Ψ the entries of the column vector Ψ−1g form an
Fq[t]-basis for HBetti.

In particular if H is rigid analytically trivial, then HBetti is free over
Fq[t] of rank equal to the rank of H over k̄[t]. Note that Ψ ∈ Matr×r(E) by
Proposition 3.1.3.
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Proof. Note that by hypothesis and definition the diagrams

Mat1×r(k̄[t])
×g−−→ H

P �→P (−1)Φ ↓ ↓ σ×

Mat1×r(k̄[t])
×g−−→ H

Mat1×r(C∞{t}) ×g−−→ H̃

P �→P (−1)Φ ↓ ↓ σ×

Mat1×r(C∞{t}) ×g−−→ H̃

commute and have bijective horizontal arrows. (i)(⇒) There exists by hypoth-
esis a matrix Θ ∈ Matr×r(C∞{t}) such that the entries of the column vector
Θg are at once a C∞{t}-basis for H̃ and an Fq[t]-basis for HBetti. Such a
matrix Θ necessarily belongs to GLr(C∞{t}) and satisfies the functional equa-
tion Θ(−1)Φ = Θ. The matrix Ψ := Θ−1 has then the desired properties.
(i)(⇐)&(ii) The entries of the column vector Ψ−1g form a C∞{t}-basis for
H̃ and are also an Fq[t]-linearly independent collection of elements of HBetti.
Every element of HBetti is of the form Pg for unique P ∈ Mat1×r(C∞{t}) such
that P = P (−1)Φ, and we have

(PΨ)(−1) = P (−1)ΦΨ = PΨ ∈ Mat1×r(C∞{t} ∩ Fq[[t]]) = Mat1×r(Fq[t]).

Therefore the entries of the column vector Ψ−1g span HBetti over Fq[t] and
hence form an Fq[t]-basis of HBetti.

Lemma 4.4.13. For all 0 �= a ∈ Fq[t], we have Fq[t]∩a ·C∞{t} = a ·Fq[t].

Proof. View C∞{t} as a subring of the Laurent series field C∞((t)). We
have

a−1Fq[t] ∩ C∞{t} ⊂ Fq((t)) ∩ C∞{t} = Fq[t],

whence the result.

Theorem 4.4.14. For all rigid analytically trivial dual t-motives H0 and
H1, the natural map

Homk̄[t,σ](H0, H1) → HomFq[t]

(
HBetti

0 , HBetti
1

)
is injective and its cokernel is without Fq[t]-torsion.

Proof. After replacing both H0 and H1 by H0⊕H1 we may assume without
loss of generality that H0 = H1, in which case we might as well drop subscripts
and simply write H = H0 = H1. Let g, Φ and Ψ be as in Lemma 4.4.12. Fix

e ∈ Endk̄[t](H)

arbitrarily, let
ẽ ∈ EndC∞{t}(H̃)
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be the unique C∞{t}-linear extension of e, and let

E ∈ Matr×r(k̄[t])

be the representation of e with respect to the k̄[t]-basis g, i.e., the unique
solution of the equation

eg = Eg.

In this last and in analogous expressions below, in order to avoid having to
manipulate indices and summations, e (resp., ẽ) is understood to be applied
entrywise to any column vector with entries in H (resp., H̃) that it precedes.
We have

σeg = σEg = E(−1)σg = E(−1)Φg, eσg = eΦg = Φeg = ΦEg,

and hence

e ∈ Endk̄[t,σ](H) ⇔ E(−1)Φ = ΦE

⇔ (Ψ−1EΨ)(−1) = Ψ−1EΨ

⇔ Ψ−1EΨ ∈ Matr×r(Fq[[t]] ∩ C∞{t}) = Matr×r(Fq[t]).

We have

e ∈ Endk̄[t,σ](H)

ẽ(HBetti) = 0

 ⇒ 0 = ẽΨ−1g = Ψ−1eg ⇒ eg = 0 ⇒ e = 0.

Therefore the map in question is injective. Now fix 0 �= a ∈ Fq[t]. We have

ae ∈ Endk̄[t,σ](H) ⇒ aΨ−1EΨ ∈ Matr×r(Fq[t] ∩ a · C∞{t})

⇒ Ψ−1EΨ ∈ Matr×r(Fq[t])

⇒ e ∈ Endk̄[t,σ](H)

where the second implication is justified by Lemma 4.4.13. Thus we rule out
the possibility of Fq[t]-torsion in the cokernel of the map in question.

4.5. The Dedekind-Wedderburn trick.

4.5.1. Dedekind domains. Recall that a ring with unit is called a Dedekind
domain if commutative, noetherian, entire (1 �= 0 and no proper zero-divisors),
one-dimensional (nonzero primes exist and every such is maximal), and inte-
grally closed. Now let a Dedekind domain K be given. The following hold:

• Every finitely generated K-module without K-torsion is projective.
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• Every projective K-module of finite rank is a direct sum of projective
K-modules of rank one.

We take these basic facts for granted.

Lemma 4.5.2. For every Dedekind domain K and projective K-module
M of rank one the map (x �→ (m �→ xm)) : K → EndK(M) is bijective.

Proof. Injectivity is clear. Failure of surjectivity would entail failure of K
to be integrally closed.

Proposition 4.5.3. For i = 0, 1 let Li be a Dedekind domain. Let M be
an abelian group equipped with right L0-module structure and left L1-module
structure in such fashion that (a1m)a0 = a1(ma0) for all a1 ∈ L1, m ∈ M
and a0 ∈ L0. Assume further that M is projective of rank one both as an
L0-module and as an L1-module. Then there exists a unique ring isomorphism
θ : L0 → L1 such that θ(a)m = ma for all a ∈ L0 and m ∈ M.

Proof. This is a trivial (but quite useful) consequence of Lemma 4.5.2.

Lemma 4.5.4. Let K ⊃ F be an integral extension of entire rings. For
every 0 �= b ∈ K there exists 0 �= a ∈ F such that a/b ∈ K.

It follows that in this setting any K-module is without K-torsion if (and
of course only if) without F-torsion.

Proof. Since K is integral over F, there exists a polynomial f(z) ∈ F[z]
monic in z such that f(b) = 0. Moreover, since K is entire, after factoring out
a power of z, we may assume without loss of generality that a := f(0) �= 0.
Now write f(z) = a − zg(z) with g(z) ∈ F[z]. Then a/b = g(b) ∈ K.

Proposition 4.5.5. Let L ⊃ K ⊃ F be a tower of rings where L and
F are Dedekind domains and L is a finitely generated projective F-module.
Then K is a Dedekind domain if and only if the quotient L/K is a projective
F-module.

Proof. (⇒) For all x ∈ L and 0 �= a ∈ F such that ax ∈ K we must have
x ∈ K since L is integral over K and K is integrally closed. Therefore the
quotient L/K is without F-torsion and, since finitely generated over F, must
be projective over F.

(⇐) Clearly K is commutative, noetherian and entire. Let P ⊂ K be a
nonzero prime of K. By Lemma 4.5.4 the prime P ∩F is nonzero and hence a
maximal ideal. Since K is integral over F the prime P has to be maximal, too.
Therefore K is one-dimensional. Since L is integrally closed, every element
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of the integral closure of K belongs to L and hence gives rise to a K-torsion
element of the quotient L/K. But by Lemma 4.5.4 and hypothesis, the quotient
L/K is without K-torsion. Therefore K is integrally closed. Therefore K is a
Dedekind domain.

4.5.6. Wedderburn’s theorem. Let R be a (possibly noncommutative) ring
with unit. Let M be a simple faithful left R-module and put K := EndR(M).
View M as a left K-module. Assume that M is finitely generated over K.
Then according to Wedderburn’s theorem (a special case of the Jacobson density
theorem) every element of EndK(M) is of the form m �→ rm for unique r ∈ R.

Proposition 4.5.7 (“The Dedekind-Wedderburn Trick”). Let L ⊃ F be
an extension of Dedekind domains such that L is a projective F-module of finite
rank. Let M be an L-module finitely generated and projective over F. Assume
that L and M are of the same rank over F. Let R be a subring of EndF(M)
such that

R ⊃ {(m �→ xm) ∈ EndF(M) | x ∈ L}
and the quotient EndF(M)/R is without F-torsion. Put

K := {x ∈ L | (m �→ xm) ∈ EndR(M)}.
Then

R = EndK(M).

The following trivial consequences of the definition of K bear emphasis
since they are crucial in applications:

• K is a Dedekind domain equipped with F-algebra structure.

• K is a projective F-module of finite rank.

• M is a finite direct sum of projective K-modules of rank one.

Proof. By Lemma 4.5.4 and hypothesis the module M is projective over L
of rank one and by Lemma 4.5.2 the evident map L → EndL(M) is bijective.
To simplify notation we now identify L with the subring EndL(M) of EndF(M).
Note that

L = EndL(M) ⊃ EndR(M) = K.

Now put
F := fraction field of F, M := F ⊗F M,

EndF (M) ⊃ R := F ⊗F R ⊃ L := F ⊗F L = fraction field of L,

K := F ⊗F K = fraction field of K = EndR(M) ⊂ EndL(M) = L.

By Wedderburn’s theorem R = EndK(M) and hence

R ⊂ R ∩ EndF(M) = EndK(M) ∩ EndF(M) = EndK(M).
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Finally, we have R = EndK(M) because the quotient EndK(M)/R is a torsion
F-submodule of EndF(M)/R and hence by hypothesis vanishes.

4.6. Geometric complex multiplication (GCM).

4.6.1. GCM Fq[t]-algebras. Let L be an Fq[t]-algebra satisfying the
following conditions:

• L is a free Fq[t]-module of finite rank.

• L is a Dedekind domain.

• k̄ ⊗Fq
L is also a Dedekind domain.

Under these conditions we say that L is a GCM Fq[t]-algebra. (GCM is
short for geometric complex multiplications.) By Proposition 4.5.5 every Fq[t]-
subalgebra K ⊂ L such that K is a Dedekind domain is again a GCM Fq[t]-
algebra.

4.6.2. Constructions functorial in GCM Fq[t]-algebras. For any GCM
Fq[t]-algebra L put

L := k̄ ⊗Fq
L.

For any integer n ∈ Z let (
a �→ a(n)

)
: L → L

be the unique L-linear extension of the automorphism

(x �→ xqn

) : k̄ → k̄.

Let L[σ] be the ring obtained by adjoining a noncommutative variable σ to L
subject to the relations

σa = a(−1)σ (a ∈ L).

Every element of L[σ] has a unique presentation of the form
∞∑
i=0

aiσ
i (ai ∈ L, ai = 0 for i � 0)

and in terms of such presentations the multiplication law in L[σ] takes the
form (∑

i aiσ
i
) (∑

j bjσ
j
)

=
∑

i

∑
j aib

(−i)
j σi+j .

Note that L is contained in the center of L[σ]. If L = Fq[t], then L[σ] = k̄[t, σ].

4.6.3. Geometric complex multiplications. Let L be a GCM Fq[t]-algebra.
Let H be a left L[σ]-module such that the L-module underlying H is projective
of rank one and the k̄[t, σ]-module underlying H is a dual t-motive. We call
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H a dual t-motive with geometric complex multiplications by L (for short:
GCM by L). We call the k̄[t, σ]-module underlying H the bare dual t-motive
underlying H. We define the GCM type of H with respect to L to be the ideal
of L annihilating the quotient H/σH. If the natural map L → Endk̄[t,σ](H)
is bijective, we say that H has tight GCM by L. We say that dual t-motives
H0 and H1 both with GCM by L are L-linearly isogenous if there exists an
injective homomorphism H0 → H1 of L[σ]-modules with cokernel of finite
dimension over k̄. By Theorem 4.4.7 the relation of L-linear isogeneity is an
equivalence relation and by Lemma 4.4.6 the GCM type of a dual t-motive
with GCM by L depends only on its L-linear isogeny class.

Theorem 4.6.4. Let H be a dual t-motive with GCM by L. Let H0 be
any simple dual t-motive embedded in the bare dual t-motive underlying H,
e.g., any nonzero saturated k̄[t, σ]-submodule of minimum possible rank over
k̄[t]. (i) The bare dual t-motive underlying H is isogenous to a finite direct
sum of copies of the dual t-motive H0. (ii) If H has tight GCM by L then the
bare dual t-motive underlying H is simple.

Proof. (i) Consider the family

{aH0}0 �=a∈L

of isomorphic copies of H0 embedded k̄[t, σ]-linearly in H. The sum
∑

a aH0

is a nonzero L[σ]-submodule of H and a fortiori a k̄[t, σ]-submodule of H of
finite codimension over k̄. Therefore the bare dual t-motive underlying H

is isogenous to a direct sum of simple dual t-motives isomorphic to H0 by
Proposition 4.4.10.

(ii) Making use of Proposition 4.4.10 in a more precise way, we obtain a
positive integer n and a1, . . . , an ∈ L such that the map

φ := ((h1, . . . , hn) �→ a1h1 + · · · + anhn) : Hn
0 → H

is an isogeny of (bare) dual t-motives. By Theorem 4.4.4 there exists 0 �= a ∈
Fq[t] such that aH is contained in the image of φ. Put

πi := ((h1, . . . , hn) �→ hi) : Hn
0 → H0

ei :=
(
h �→ aiπi(φ−1(ah))

)
∈ Endk̄[t,σ](H)

 (i = 1, . . . , n).

The endomorphisms of the bare dual t-motive underlying H thus constructed
satisfy the relations

ei �= 0, eiej = aδijei (i, j = 1, . . . , n).

But unless n = 1, such a system of relations is forbidden because the ring
Endk̄[t,σ](H) is isomorphic as an Fq[t]-algebra to the domain L.
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Theorem 4.6.5. For i = 0, 1 let Hi be a dual t-motive with tight GCM
by Li and let Ii ⊂ Li be the GCM type of Hi with respect to Li. Assume that
the bare dual t-motives underlying H0 and H1 are isogenous. (i) Then there
exists a unique Fq[t]-algebra isomorphism

θ : L0
∼−→ L1

such that all the diagrams

H0
φ−→ H1

a× ↓ ↓ θ(a)×

H0
φ−→ H1

(
φ ∈ Homk̄[t,σ](H0, H1), a ∈ L0

)
commute. (ii) Under the unique k̄-linear isomorphism L0 → L1 induced by θ

the ideal I0 maps bijectively to ideal I1.

Proof. (i) Put M := Homk̄[t,σ](H0, H1), where M is a right L0-module
and a left L1-module in the evident fashion. Since H0, H1 have tight GCM by
L0, L1, Corollary 4.4.8 shows that the Fq[t]-modules M, L0 and L1 are free of
the same finite rank over Fq[t]. It follows by Lemma 4.5.4 that M is projective
of rank one both over L0 and over L1. Existence and uniqueness of θ now
follow by Proposition 4.5.3. (ii) For any isogeny φ : H0 → H1 the induced map
φ mod σ is bijective by Lemma 4.4.6, whence the result.

Theorem 4.6.6. Let H be a dual t-motive with GCM by L. Assume that
the bare dual t-motive underlying H is rigid analytically trivial. Put

R := Endk̄[t,σ](H), K := {x ∈ L | (x �→ xh) ∈ EndR(H)}.

Then K is a GCM Fq[t]-subalgebra of L and there exists a K[σ]-submodule

H0 ⊂ H

with the following properties:

• H0 is a dual t-motive with tight GCM by K.

• The bare dual t-motive underlying H0 is simple and rigid analytically
trivial.

• The GCM type of H with respect to L is generated as an ideal of L by
the GCM type of H0 with respect to K.

Proof. We claim that the natural map

R = Endk̄[t,σ](H) → EndK

(
HBetti

)
is bijective. In any case the natural map

Endk̄[t,σ](H) → EndFq[t]

(
HBetti

)
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is injective and has cokernel without Fq[t]-torsion by Theorem 4.4.14. More-
over, we have

rkFq[t] L = rkk̄[t] L = rkk̄[t] H = rkFq[t] H
Betti,

where the first equality is trivial, the second holds by definition of GCM, and
the third holds by Lemma 4.4.12 and hypothesis. Therefore the Dedekind-
Wedderburn trick proves the claim. It follows that K is a GCM Fq[t]-subalgebra
of L.

Let n be the rank of HBetti as a projective K-module and let

HBetti =
n−1⊕
i=0

Mi

be a decomposition of HBetti as a direct sum of projective K-modules of rank
one. Let e0 ∈ R be the idempotent endomorphism of H inducing the projection
of HBetti to the direct summand M0, and put

H0 := e0H.

Then H0 is a rigid analytically trivial dual t-motive since it is a k̄[t, σ]-linear
direct summand of a rigid analytically trivial dual t-motive. The idempotent
element e0 ∈ R is K-linear by definition of K and hence H0 comes naturally
equipped with K[σ]-module structure extending the k̄[t, σ]-module structure.
Moreover, we have

HBetti
0 = M0, rkk̄[t] K = rkFq[t] K = rkFq[t] M0 = rkk̄[t] H0,

the last equality above by Lemma 4.4.12, and hence H0 is projective of rank
one over K. By a repetition of the argument of the first paragraph of the proof
we have a natural bijective map

Endk̄[t,σ](H0) → EndK(M0) = K.

Thus H0 comes naturally equipped with tight GCM by K. It follows by The-
orem 4.6.4 that H0 is simple as a bare dual t-motive. The natural map

(a ⊗ h �→ ah) : L ⊗K H0 → H

is injective with L[σ]-stable image. Call the image H ′. The L-module under-
lying H ′ is projective of rank one and a fortiori of finite codimension over k̄

in H. Clearly the k̄[t]- and k̄[σ]-modules underlying H ′ are free of finite rank.
Since H ′ is generated over L by H0 and L is central in L[σ], we have

(t − T )nH0 ⊂ σH0 ⇒ (t − T )nH ′ ⊂ σH ′

for all integers n ≥ 0 and hence the k̄[t, σ]-module underlying H ′ is a dual
t-motive. The upshot is that H ′ is a dual t-motive with GCM by L and that
H ′ is L-linearly isogenous to H via the inclusion. Necessarily, the GCM types
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of H ′ and H with respect to L are equal. Finally, we have at our disposal an
isomorphism

L ⊗K

H0

σH0
=

H ′

σH ′

of torsion L-modules, whence it follows that the GCM type of H ′ with respect
to L is generated as an ideal of L by the GCM type of H0 with respect to K.

Corollary 4.6.7. Let L be a GCM Fq[t]-algebra. Assume that the frac-
tion field of L is Galois over Fq(t) and let G be the associated Galois group.
Extend the action of G on L to L by k̄-linearity. Let H be a dual t-motive with
GCM by L and with rigid analytically trivial underlying bare dual t-motive.
Let H0 be a simple quotient of the bare dual t-motive underlying H. Let I ⊂ L
be the GCM type of H with respect to L. Let r be the cardinality of the set of
ideals of L that are G-conjugate to I. Then H0 is of rank ≥ r over k̄[t].

Proof. By Theorem 4.6.6 there exist a GCM Fq[t]-subalgebra K ⊂ L and
a K[σ]-submodule H ′

0 ⊂ H with the following properties:

• H ′
0 has tight GCM by K.

• The bare dual t-motive underlying H ′
0 is simple.

• The GCM type I0 ⊂ K of H ′
0 with respect to K generates I ⊂ L.

Further, by Theorem 4.6.4 the given quotient H0 of the bare dual t-motive
underlying H and the bare dual t-motive underlying H ′

0 are isogenous. Finally,
we have

rkk̄[t] H0 = rkk̄[t] H
′
0 = rkFq[t] K ≥ r

because γI = I for every γ ∈ G acting as the identity on K.

Corollary 4.6.8. Let L be a GCM Fq[t]-algebra. Assume that the frac-
tion field of L is Galois over Fq(t) and let G be the associated Galois group.
Extend the action of G on L to L by k̄-linearity. For i = 0, 1 let Hi be a dual
t-motive with GCM by L with rigid analytically trivial underlying bare dual
t-motive, let Ii ⊂ L be the GCM type of Hi with respect to L, and let Hi0 be
a simple quotient of the bare dual t-motive underlying Hi. If H00 and H10 are
isogenous, then the ideals I0 and I1 are G-conjugate.

Proof. For i = 0, 1, there exist by Theorem 4.6.6 a GCM Fq[t]-subalgebra
Ki ⊂ L and a Ki[σ]-submodule H ′

i0 ⊂ Hi with the following properties:

• H ′
i0 has tight GCM by Ki.

• The bare dual t-motive underlying H ′
i0 is simple.

• The GCM type Ii0 ⊂ Ki of H ′
i0 with respect to Ki generates Ii ⊂ L.
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Further, for i = 0, 1 by Theorem 4.6.4 the bare dual t-motive underlying H ′
i0 is

isogenous to Hi0, and hence the bare dual t-motives underlying H ′
00 and H ′

10

are isogenous. Finally, by Theorem 4.6.5 there exists some γ ∈ G such that
γK0 = K1 and γI00 = I10, in which case necessarily γI0 = I1.

4.6.9. Remark. The theory of rigid analytically trivial GCM dual t-motives
worked out above is essentially just the dual t-motivic translation of a method
introduced in [BrPa] for analyzing the t-submodule structure of the geometric
t-modules of [Si a].

5. Special functions

5.1. The Carlitz exponential and its fundamental period. The reference
[Go, Chap. 3] is a good source of background material on this topic.

5.1.1. The Carlitz exponential. Put

expC z :=
∞∑

n=0

zqn

Dn

(
Dn :=

n−1∏
i=0

(
T qn − T qi

))
thereby defining an Fq-linear power series in z with coefficients in k called the
Carlitz exponential. The Carlitz exponential satisfies the functional equation

expC(Tz) = T expC z + (expC z)q

by [Go, Prop. 3.3.1].

5.1.2. The fundamental period. The power series expC z has an infinite
radius of convergence with respect to the valuation | · |∞ and has a Weierstrass
product expansion of the form

expC z = z
∏
a∈A
a �=0

(
1 − z

�a

)

for unique � ∈ k∞(T̃ ) such that

|� − T̃ T |∞ < |T̃ T |∞
by [Go, Cor. 3.2.9 and Rmks. 3.2.10]. It follows that the sequences

0 → � · A ⊂ k∞
expC−−−→ k∞ → 0, 0 → � · A ⊂ C∞

expC−−−→ C∞ → 0

are exact. We call � the fundamental period of the Carlitz exponential. Tran-
scendence of � over k was first proved in [Wa].

The next two results relate the Carlitz exponential and its fundamental
period to the power series Ω(t) and transcendental number Ω(T ) discussed in
§3.1.2.
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Proposition 5.1.3. The equality

1/Ω(−1)(t) =
∞∑
i=0

expC

(
�/T i+1

)
ti

holds.

Proof. Recall that

Ω(t) = T̃−q
∞∏
i=1

(
1 − t

T qi

)
, (t − T ) · Ω = Ω(−1).

Temporarily denote the power series on the right side of the identity to be
proved by Θ(t). Consider the Maclaurin expansion

Ω(−1)(t)Θ(t) =
∞∑
i=0

cit
i (ci ∈ k∞(T̃ )).

The functional equation noted in §5.1.1 implies that

tΘ = TΘ + Θ(1),

and hence

ΩΘ(1) = Ω · (t − T ) · Θ = Ω(−1)Θ =
(
ΩΘ(1)

)(−1)
.

By this last we have ci = q
√

ci and hence ci ∈ Fq for all i ≥ 0. By plugging
into the Weierstrass product expansion of expC z we find that |c0 − 1| < 1 and
hence

c0 = T̃−1 · expC (�/T ) = 1.

Now write

Ω(−1)(t) =
∞∑
i=0

ait
i, Θ(t) =

∞∑
i=0

bit
i (ai, bi ∈ k∞(T̃ )).

We have, so we claim, bounds

|ai|∞ ≤ |T̃ |−1, |bi|∞ ≤ |T̃ |
with strict inequality for i > 0. The bound for |ai|∞ is clear. The bound for
|bi|∞ is verified by plugging into the Weierstrass product expansion of expC z.
Thus the claim is proved. It follows that |ci|∞ < 1 for all i > 0; hence ci = 0
for all i > 0, and hence Ω(−1)Θ = 1.

Corollary 5.1.4. The statement

� = T T̃

∞∏
i=1

(
1 − T 1−qi

)−1
= −1/Ω(T )

holds.
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Proof. (Cf. [AnTh, Cor. 2.5.8].) By Proposition 5.1.3 and a little high
school algebra (summation of geometric series), we have

1
Ω(t) + �

t − T
=

1
Ω(−1)(t)

−
∞∑

n=0

( �

Tn+1

)
tn =

∞∑
n=0

( ∞∑
i=1

1
Di

( �

Tn+1

)qi

)
tn.

The power series on the right is convergent in the disc |t|∞ < |T |q∞ and so is
the power series 1/Ω(t). Therefore we have 1/Ω(T ) + � = 0.

5.2. The functions e and e∗ and their division polynomials.

5.2.1. Definition of e. Put

e := (x �→ expC �x) : k∞ → k∞(T̃ ),

where � is the fundamental period of the Carlitz exponential. The func-
tion e maps the quotient k∞/A isomorphically to a compact additive sub-
group of k∞(T̃ ). The function e is in many respects analogous to the function
(x �→ e2πix) : R → C mapping the quotient R/Z isomorphically to the unit
circle in C.

5.2.2. Division polynomials for e. Given a ∈ A, write

a = Tb + ε (b ∈ A, ε ∈ Fq)

and put

Ca(t, z) :=
{

0 if a = 0,
Cb(t, tz + zq) + εz if a �= 0,

thereby recursively defining a polynomial

Ca(t, z) ∈ Fq[t, z].

For example we have

C1(t, z) = z, CT (t, z) = tz + zq, CT 2(t, z) = t2z + (t + tq)zq + zq2
.

For all f = f(T ) ∈ A+ of positive degree we have

Cf (t, z) = f(t)z +
(

Fq[t]-linear combination of
terms zqi

with 0 < i < deg f

)
+ zqdeg f

as can be verified by an evident induction. From the functional equation noted
in §5.1.1 it follows that

Te(x) + e(x)q = e(Tx)

for all x ∈ k∞ and hence by an evident induction that

Ca (T, e(x)) = e(ax)
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for all a ∈ A and x ∈ k∞. From the latter identity it follows that Ca(t, z)
depends Fq-linearly on a and that the composition law

Ca(t, Cb(t, z)) = Cab(t, z)

holds for all a, b ∈ A. We call Ca(t, z) the division polynomial for e indexed
by a.

5.2.3. Torsion values of e. A number of the form

e(x) (x ∈ k)

will be called a torsion value of e. For every f ∈ A+ we have

Cf (T, z) =
∏
a∈A

deg a<deg f

(z − e(a/f))

and hence every torsion value of e is separably algebraic over k.

5.2.4. Remark. The ring homomorphism

(a �→ (x �→ Ca(T, x))) : A → Endalg. gp./A(Ga)

is called the Carlitz module according to [Go, Def. 3.3.5]. The torsion values of
e admit interpretation as the torsion points of the Carlitz module defined over
k̄. The latter interpretation makes it clear that torsion values of e generate
abelian extensions of k. The Carlitz module plays in explicit class field theory
over k a role analogous to that played by the multiplicative group in explicit
class field theory over Q. See [Ha] for a treatment of explicit class field theory
over k; another good source of information is [Ro]. We consider some of the
more delicate properties of torsion values of e below in §6.3.1.

5.2.5. Definition of e∗. Let

Res : k∞ → Fq

be the unique Fq-linear functional such that

ker Res = Fq[T ] + (1/T 2)Fq[[1/T ]], Res(1/T ) = 1.

Write

Ω(−1)(t) = T̃−1
∞∏
i=0

(
1 − t

T qi

)
=

∞∑
i=0

ait
i (ai ∈ k∞(T̃ )).

For each x ∈ k∞ put

e∗(x) :=
∞∑
i=0

Res(T ix)ai,

e. g.,

e∗(1/Tn+1) =
{

an if n ≥ 0
0 if n < 0
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for any n ∈ Z, thereby defining a function

e∗ : k∞ → k∞(T̃ ).

A number of the form
e∗(x) (x ∈ k)

will be called a torsion value of e∗.

Lemma 5.2.6. For all x ∈ k∞ such that 0 < |x|∞ < 1, e∗(x) �= 0.

Proof. With the coefficients ai ∈ k∞(T̃ ) as defined in §5.2.5,∣∣∣ai − (−T )−(q0+···+qi−1)T̃−1
∣∣∣
∞

= |ai − T̃−qi |∞ < |T̃−qi |∞,

for all integers i ≥ 0 and hence

|e∗(x)|∞ =
∣∣∣T̃−qmin{i| Res(T ix)�=0}

∣∣∣
∞

> 0

for all x ∈ k∞ such that 0 < |x|∞ < 1.

5.2.7. Division polynomials for e∗. Put

C1(t, z) := z.

For each f ∈ A+ of positive degree, write

f = Tg + ε (g ∈ A+, ε ∈ Fq)

and put
Cf (t, z) := Cg(tq, tzq + z) + εzqdeg f

.

In this way we recursively define polynomials

Cf (t, z) ∈ Fq[t, z]

for all f ∈ A+. For example,

C1(T, z) = z, CT (t, z) = tzq + z, CT 2(t, z) = t2qzq2
+ (t + tq)zq + z.

For all f = f(T ) ∈ A+ of positive degree,

Cf (t, z) = z +
(

Fq[t]-linear combination of
terms zqi

with 0 < i < deg f

)
+ f(t)q−1+deg f

zqdeg f

as can be verified by an evident induction. With the coefficients ai ∈ k∞(T̃ )
as defined in §5.2.5 and in view of the functional equation Ω(−1) = (t− T ) ·Ω,

Taq
i + ai =

{
aq

i−1 if i > 0
0 if i = 0

for all nonnegative integers i and hence

Te∗(x)q + e∗(x) = e∗(Tx)q
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for all x ∈ k∞. It follows by an evident induction that

Cf (T, e(x)) = e(fx)qdeg f

for all f ∈ A+ and x ∈ k∞. This last is the end to which the definition of
Cf (T, z) was contrived. We call Cf (t, z) the division polynomial for e∗ indexed
by f .

5.2.8. Key properties of e∗. The function

e∗ : k∞ → k∞(T̃ )

has, so we claim, the following properties:

•
∑∞

i=0 e∗
(
1/T i+1

)
ti = T̃−1

∏∞
i=0

(
1 − t/T qi

)
= Ω(−1)(t).

• e∗ is Fq-linear and | · |∞-continuous.

• ker e∗ = A.

• e∗(x)T̃ ∈ Fq[[1/T ]] for all x ∈ k∞.

• The torsion values of e∗ are separably algebraic over k.

The function e∗ has the first two of the claimed properties by definition.
We have A ⊂ ker e∗ by definition and ker e∗ ⊂ A by Lemma 5.2.6. Therefore
the third property holds. The first three properties imply the fourth. Each
torsion value of e∗ is a solution of an equation of the form Cf (T, z) = 0
for some f ∈ A+ and hence separably algebraic over k. Therefore the fifth
property holds. Thus all claims concerning e∗ are proved. Note that the first
three properties above already determine the function e∗ uniquely.

5.2.9. Remark. Given f ∈ A+, write

Cf (t, z) =
n∑

i=0

fiz
qi

(fi ∈ Fq[t], n = deg f).

It is not hard to show that

Cf (t, z) =
n∑

i=0

f qn−i−1

i zqn−i

.

It follows that the torsion values of the function e∗ admit interpretation as the
qth roots of the torsion points defined over k̄ of the adjoint Carlitz module. For
the definition of the latter, see [Go, §3.7]. For a general discussion of adjoints
of Drinfeld modules and duality à la Elkies and Poonen, see [Go, §4.14].
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5.2.10. Key properties of e. The properties of the function e∗ are strik-
ingly parallel to those of the function

e : k∞ → k∞(T̃ )

as is made plain by the following summary of facts already proved:

•
∑∞

i=0 e
(
1/T i+1

)
ti = T̃

∏∞
i=0

(
1 − t/T qi

)−1
= 1/Ω(−1)(t).

• e is Fq-linear and | · |∞-continuous.

• ker e = A.

• e(x)/T̃ ∈ Fq[[1/T ]] for all x ∈ k∞.

• The torsion values of e are separably algebraic over k.

Note that the first three of the properties listed above determine e uniquely
without any reference to the Carlitz exponential or its fundamental period.

5.2.11. Remark. Here is another way to see that the torsion values of e∗

are algebraic. For each n ∈ Z≥0 let

n =
∑

i

niq
i (0 ≤ ni < q)

be the base q representation of n and put

α(n) :=
{ ∑

i ni if ni ∈ {0, 1} for all i,
−∞ otherwise.

By definition of e∗ we have

T̃e∗(x) =
∞∑

n=0

Res
(
(−T )α(n) x

)
T−n

(
by convention: (−T )−∞ = 0

)
for all x ∈ k∞. Note that the very simple “program”

α(n) =



0 if n = 0, else

α(n/q) if n ≡ 0 mod q, else

α((n − 1)/q) + 1 if n ≡ 1 mod q, else

−∞

computes α(n) recursively. Now fix x ∈ k. Then the sequence

{Res ((−T )n x)}∞n=0
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is eventually periodic; hence the sequence{
Res

(
(−T )α(n)x

)}∞

n=0

of coefficients is computable by a “q-automaton” and hence the number
T̃e∗(x) is algebraic over k by Christol’s algebraicity criterion [Ch] (see also
[ChKaMe-FrRa]).

5.3. The geometric Γ- and Π-functions and their special values.

5.3.1. The Moore determinant identity. Given an Fq-algebra R and
x1, . . . , xN ∈ R, put

Mooreq(x1, . . . , xN ) :=
N

det
i,j=1

xqN−i

j =

∣∣∣∣∣∣∣
xqN−1

1 . . . xqN−1

N
...

...
xq0

1 . . . xq0

N

∣∣∣∣∣∣∣ ∈ R

thereby defining the Moore determinant of x1, . . . , xN . The Moore determinant
identity reads

Mooreq(x1, . . . , xN ) =
∏

c∈FN
q

c:monic

(
N∑

i=1

cixi

)

where ad hoc we say that a vector c = (c1, . . . , cN ) ∈ FN
q is monic if c �= 0 and

the leftmost nonzero entry of c equals 1. See [Go, Chap. 1, §3] for proof and
further discussion of the identity.

5.3.2. Definition of ΨN (z). For each integer N ≥ 0, put

ΨN (z) :=

 ∏
a∈A

deg a<N

(z − a)

 /  ∏
a∈A+

deg a=N

a


thereby defining an Fq-linear polynomial in z with coefficients in k. We have

ΨN (z) =
Mooreq

(
z, TN−1, . . . , 1

)
Mooreq (TN , . . . , 1)

=
zqN

DN
+

(
terms of degree < qN in z

)
by combining the Moore and Vandermonde determinant identities. The def-
inition of ΨN (z) goes back to the paper [Ca]. A contemporary reference for
this material is [Go, §3.5].

5.3.3. Key relations satisfied by ΨN (z). Fix an integer N ≥ 0. We have

1 + ΨN (z) =
∏

a∈A+
deg a=N

(
1 +

z

a

)
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as can be verified by comparing zeroes and constant terms. Clearly we have

deg a < N ⇒ ΨN (z + a) = ΨN (z)

for all a ∈ A. We have

N > 0 ⇒ ΨN (z) =
ΨN−1(z)q − ΨN−1(z)

T qN − T

as can be verified by comparing zeroes and leading terms; for convenient ref-
erence we dub this important fact the fundamental recursion for ΨN (z). For
any f ∈ A+ we have

∏
a∈A

deg a<deg f

1 + ΨN

(
z+a
f

)
1 + ΨN

(
a
f

) = 1 + ΨN+deg f (z)

as can be verified by comparing zeroes and constant terms.

5.3.4. Definitions of Π(z) and Γ(z). Put

Π(z) :=
∏

a∈A+

(
1 +

z

a

)−1
, Γ(z) := z−1Π(z) = z−1

∏
a∈A+

(
1 +

z

a

)−1
,

thereby defining the (one-variable) geometric factorial and geometric Γ-function
attached to A, respectively. The basic references concerning these functions
are [Go, §9.9] and [Th]. Note that Π(z)−1 is the unique entire function of z

taking the value 1 at the origin with no zeroes other than simple zeroes at each
point of the set

−A+ := {−a|a ∈ A+}.
Similarly Γ(z)−1 is the unique entire function of z normalized by the condition

Γ(z)−1 = z + O(z2)

with no zeroes other than simple zeroes at each point of the set

−A+ ∪ {0}.

We obtain identities

Π(z) =
∞∏

N=0

(1 + ΨN (z))−1, Γ(z) = z−1
∞∏

N=0

(1 + ΨN (z))−1

of crucial importance in the sequel by grouping factors in the natural way by
degree.

5.3.5. The standard functional equations. We have a translation identity

Π(z + a0)
Π(z)

=
deg a0∏
i=0

1 + Ψi(z)
1 + Ψi(z + a0)



ALGEBRAIC RELATIONS AMONG Γ-VALUES IN CHARACTERISTIC p 287

for each 0 �= a0 ∈ A. The translation identity follows in evident fashion from
the corresponding translation-invariance property of ΨN (z) noted in §5.3.3.
We have a reflection identity∏

ε∈F×
q

Π(εz) =
�z

expC �z

which is essentially [Th, Th. 6.1.1]. To prove the reflection identity in the form
stated here you have only to compare the Weierstrass product expansion of
the reciprocal of the left side to that of the Carlitz exponential expC z. For
each f ∈ A+ we have a Gauss multiplication identity∏

a∈A
deg a<deg f

Π
(

z + a

f

)
= Π(z) ·

∏
0≤i<deg f

(1 + Ψi(z)) ·
∏

a∈A+
deg a<deg f

∏
ε∈F×

q

Π
(

ε
a

f

)

which is essentially [Th, Th. 6.2.1]. The Gauss multiplication identity in the
form stated here can easily be recovered from the analogous identity satisfied
by ΨN (z) noted at the end of §5.3.3. We refer to the identities above as the
standard functional equations satisfied by Π(z). Of course we have analogous
standard functional equations for Γ(z). The latter we do not write out, refer-
ring the interested reader to [Th].

5.3.6. Special Γ- and Π-values. Numbers of the form

Π(x) (x ∈ k \ −A+)

will be called special Π-values. Numbers of the form

Γ(x) (x ∈ k \ (−A+ ∪ {0}))

will be called special Γ-values. The goal of the paper is to determine all Lau-
rent polynomial relations among � and special Γ-values with coefficients in k̄.
From the point of view of transcendence theory over k it is clearly all the same
whether we study special Γ-values or special Π-values. But the standard func-
tional equations satisfied by Π(z) take a slightly simpler form than do those
satisfied by Γ(z) and it is convenient also that Π(0) = 1. Accordingly, for the
sake of convenience and for no deeper reason, we stress Π(z) over Γ(z) and
special Π-values over special Γ-values in the sequel. Now in view of the trans-
lation identity of §5.3.5, a special Π-value Π(x) up to factors in k× depends
only on x mod A. Accordingly, without any loss of generality, we stress special
Π-values of the form Π(x) with |x|∞ < 1 in the sequel.

5.3.7. Remark. All k̄-linear relations among 1, � and the special
Π-values were determined in [BrPa], building on the work of [Si a]. In par-
ticular, it is known that Π(z) is transcendental for all z ∈ k \ A.
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5.4. Interpolation formulas.

Lemma 5.4.1. For all integers N the identity

Ω(N)/Ω(−1) =



−
∞∑

n=0

ΨN

(
1/Tn+1

)
tn if N ≥ 0

|N |−1∏
i=1

(
t − T q−i

)
if N < 0

holds in the power series ring k̄[[t]].

Proof. From the functional equation Ω(−1) = Ω · (t − T ) it follows that

Ω(N)/Ω(−1) =



N∏
i=0

(
t − T qi

)−1
if N ≥ 0,

|N |−1∏
i=1

(
t − T q−i

)
if N < 0.

Accordingly, we may assume without loss of generality for the rest of the proof
that N ≥ 0. The identity

(t − T )−1 = −
∞∑

n=0

tn/Tn+1 = −
∞∑

n=0

Ψ0

(
1/Tn+1

)
tn

dispatches the case N = 0. Assume now that N > 0. The recursion(
N−1∏
i=0

(
t − T qi

)−1
)(1)

−
N−1∏
i=0

(
t − T qi

)−1
= (T qN − T )

N∏
i=0

(
t − T qi

)−1

matches the fundamental recursion

ΨN−1(z)q − ΨN−1(z) =
(
T qN − T

)
ΨN (z)

noted in §5.3.3. We are done by induction on N .

Lemma 5.4.2. For all x ∈ k∞ and integers N such that

|x|∞ ≤ |T |min(−1,N)
∞ ,

∞∑
i=0

e∗(T−i−1)qN+1
e(T ix) =


−ΨN (x) if N ≥ 0,

Res
(
T−N−1x

)
if N < 0.
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Proof. Both sides of the identity to be proved depend Fq-linearly and |·|∞-
continuously on x. We may therefore assume without loss of generality that
x = T−n−1 for some integer n such that −n − 1 ≤ min(−1, N) (equivalently:
n ≥ max(0,−N − 1)). Then all we have to prove is the identity

∞∑
i=0

e∗(T−i−1)qN+1
e(T i−n−1) =


−ΨN (T−n−1) if N ≥ 0,

δ|N |−1,n if N < 0.

By Lemma 5.4.1, the formal properties of e∗ noted in §5.2.8, and the formal
properties of e noted in §5.2.10, both sides of the identity above admit inter-
pretation as the coefficient with which tn appears in the Maclaurin expansion
of Ω(N)/Ω(−1) in powers of t.

5.4.3. f -dual families. Fix f ∈ A+ of positive degree. We say that
families

{ai}deg f
i=1 , {bj}deg f

j=1 (ai, bj ∈ A)

are f-dual if
Res(aibj/f) = δij (i, j = 1, . . . ,deg f).

Since the square matrix{
Res(T i+deg f−j−1/f)

}deg f−1

i,j=0

is lower triangular with 1’s along the diagonal, the pairing

((a mod f, b mod f) �→ Res(ab/f)) : A/f × A/f → Fq

is perfect and hence f -dual families exist.

Theorem 5.4.4. Fix f ∈ A+ of positive degree and f -dual families

{ai}deg f
i=1 , {bj}deg f

j=1 (ai, bj ∈ A).

Fix a ∈ A such that
deg a < deg f.

(i) Now,
deg f∑
i=1

e∗(ai/f)qN+1
e(bia/f) = −ΨN (a/f)

for all integers N ≥ 0.
(ii) Moreover, if a ∈ A+, then

deg f∑
i=1

e∗(ai/f)e(bia/f)qdeg f−deg a−1
= 1.
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Proof (Cf. [An b, Thm. 2, p. 58]). For every N ∈ Z we have

deg f∑
i=1

e∗(ai/f)qN+1
e(bia/f)

=
deg f∑
i=1

∞∑
n=0

e∗(1/Tn+1)qN+1
Res(Tnai/f)e(bia/f)

=
∞∑

n=0

e∗(1/Tn+1)qN+1
e(Tna/f)

=
{

−ΨN (a/f) if N ≥ 0
1 if a ∈ A+ and N = deg a − deg f

by definition of the special function e∗ and Lemma 5.4.2.

5.4.5. Remark. Theorem 5.4.4 “interpolates” ΨN (a/f) by an algebraic
expression in which N figures as the power to which a Frobenius endomorphism
is raised. We learned this seemingly strange but in fact fundamental notion of
interpolation from examples in [Th, §9.3]; see [An b, §2] for an appreciation of
Thakur’s work. The possibility of such an interpolation was proved in [An b,
Thm. 2, p. 58] without the interpolating expression being made explicit.

5.5. Diamond brackets and L-functions.

5.5.1. Definitions. For all x ∈ k∞ and integers N ≥ 0, put

〈x〉N :=


1 if inf

a∈Fq[T ]

∣∣x − a − T−N−1
∣∣
∞ < |T |−N−1

∞ ,

0 otherwise,

and also set

〈x〉 :=
∞∑

N=0

〈x〉N .

The sum on the right makes sense because at most one of its terms is nonzero.
We call the functions

〈·〉, 〈·〉N : k∞ → {0, 1}

thus defined the diamond bracket and the generalized diamond bracket, respec-
tively. By definition these functions factor through the quotient k∞/A. And
further, if |x|∞ < 1, then 〈x〉N equals 1 or 0 according to whether the lead-
ing term of the Laurent expansion of x in powers of 1/T is or is not equal to
1/TN+1, and consequently 〈x〉 equals 1 or 0 according to whether the leading
coefficient of the Laurent expansion of x in powers of 1/T is or is not equal
to 1.
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5.5.2. Remark. The value assigned to the expression 〈x〉 here coincides
with that assigned in [Si b], but with that assigned to 〈−x〉 in [Th, Def. 7.6.1].
The choice of sign is just a normalization not affecting the utility of the defi-
nition.

5.5.3. Evaluation of L-functions. Fix f ∈ A+ of positive degree and a
character χ : (A/f)× → C× primitive in the sense of not factoring through
(A/g)× for any divisor g ∈ A+ of f , distinct from f . Note that under these
hypotheses χ is not identically equal to 1. Put

L(s, χ) =
∑

a∈A+

(a,f)=1

χ(a mod f)q−s deg a

=
∑

a∈A+

(a,f)=1
deg a<deg f

χ(a mod f)q−s deg a

=
∑
a∈A

deg a<deg f
(a,f)=1

χ(a mod f)

( ∞∑
N=0

〈
a

f

〉
N

q(N+1−deg f)s

)
,

noting in particular that

L(0, χ) =
∑
a∈A

deg a<deg f
(a,f)=1

χ(a mod f)
〈

a

f

〉
.

The L-function L(s, χ) is the Fq[T ]-analogue of a Dirichlet L-function. As
is well known, since χ is primitive and not identically equal to 1, we have
L(0, χ) = 0 if and only if χ(ε mod f) = 1 for all ε ∈ F×

q .

5.5.4. Remark. The connection between L-functions and diamond brack-
ets recalled above is the chief motivation for the definition of diamond brackets.

5.5.5. Diamond bracket relations. We make the following claims:

• 〈x + a〉 = 〈x〉 for all x ∈ k∞ and a ∈ A.

•
∑
ε∈F×

q

〈εx〉 =
{

1 if x �∈ A

0 if x ∈ A
for all x ∈ k∞.

•
∑
a∈A

deg a<deg f

(〈
x + a

f

〉
−

〈
a

f

〉)
= 〈x〉 for all x ∈ k∞ and f ∈ A+.

Clearly the first and second claims hold. To prove the third claim we may
assume without loss of generality that |x|∞ < 1. Then the only summand on
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the left possibly differing from 0 is the one indexed by a = 0, and we have
〈x/f〉 = 〈x〉. Therefore the third claim holds.

6. Analysis of the algebraic relations among special Π-values

Throughout Section 6 we fix f ∈ A+ of positive degree.

6.1. The diamond bracket criterion.

6.1.1. The free abelian group Af . Let Af be the free abelian group on
symbols of the form

[x]
(
x ∈ f−1A

)
,

where symbols [x] and [x′] are identified if x ≡ x′ mod A. The group Af is free
abelian of rank qdeg f . More precisely, every a ∈ Af has a unique expression
of the form

a =
∑
a∈A

deg a<deg f

ma

[
a

f

]
(ma ∈ Z).

If in the situation above all the coefficients ma are nonnegative, we say that a
is effective. Let

wt : Af → Z
[

1
q − 1

]
be the unique homomorphism such that

wt[x] =
{ 1

q−1 if x �∈ A

0 otherwise

for all x ∈ f−1A. Let Df be the subgroup of Af generated by all elements of
the form

[x] −
∑
a∈A

deg a<deg g

[
x + a

g

] (
g ∈ A+ dividing f, x ∈ g

f
· A

)
.

The quotient Af/Df is the analogue over Fq[T ] of the universal ordinary dis-
tribution at a finite level, cf. [Ku a] or [La b, §2]. Let Rf be the subgroup of
Af generated by Df along with all elements of the form∑

ε∈F×
q

[εx]
(
x ∈ f−1A

)
.

Let R̃f be the subgroup of Af consisting of a such that wta = 0 and Na ∈ Rf

for some positive integer N .

6.1.2. The star action. For each a ∈ A prime to f there exists a unique
automorphism

(a �→ a � a) : Af → Af
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of free abelian groups such that

a � [x] = [ax]

for all x ∈ f−1A and that this automorphism stabilizes Df , Rf and R̃f and
that

a � (b � a) = (ab) � a

for all a, b ∈ A prime to f and a ∈ Af . Thus, via the star operation, Af is
equipped with an action of (A/f)× passing to the quotients Af/Df , Af/Rf

and Af/R̃f .

Theorem 6.1.3. The rational vector space

Q ⊗ (Af/Df )

is (A/f)×-equivariantly isomorphic to the rational group ring

Q
[
(A/f)×

]
.

Proof. The classical model for the theorem is proved in [Ku a]; alterna-
tively, see[La b, §2]. The methods of Kubert carry over to our function field
situation without any difficulty. We omit the details.

Corollary 6.1.4. Fix a character χ : (A/f)× → C×. The dimension
over C of the χ-isotypical component of C ⊗ (Af/R̃f ) is ≤ 1, with strict in-
equality if and only if χ is not identically equal to 1 but χ (ε mod f) = 1 for
all ε ∈ F×

q .

It follows that the free abelian group Af/R̃f is of rank 1+ q−2
q−1 ·#(A/f)×.

Proof. We have

Af/Rf = module of F×
q -coinvariants in Af/Df .

The sequence of (A/f)×-modules

0 → C ·

 ∑
0 �=a∈A

deg a<deg f

[
a

f

]
mod R̃f

 → C ⊗ (Af/R̃f ) → C ⊗ (Af/Rf ) → 0

is exact. The result follows.

6.1.5. Extension of the definition of diamond brackets. For all integers
N ≥ 0 let

(a �→ 〈a〉N ) : Af → Z

be the unique homomorphism such that

〈[x]〉N = 〈x〉N
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for all x ∈ f−1A and put

〈a〉 =
∞∑

N=0

〈a〉N

for all a ∈ Af . The sum on the right makes sense because only finitely many
of its terms are nonzero. For all a,b ∈ Af we write a ∼f b if and only if
〈a � a〉 = 〈a � b〉 for all a ∈ A such that (a, f) = 1 and deg a < deg f , thereby
defining an equivalence relation ∼f in Af . When ∼f fails to hold between a
and b we write a �∼f b.

Theorem 6.1.6. For all a,b ∈ Af , a ≡ b mod R̃f if and only if a ∼f b.

Proof. (⇒) Since R̃f is stable under the action of (A/f)× it is enough to
prove

a ∈ R̃f ⇒ 〈a〉 = 0.

In turn it is enough to prove that

a ∈ Rf ⇒ 〈a〉 = wta.

In order to prove the latter implication we may assume without loss of general-
ity that a is one of the generators of Rf exhibited in §6.1.1. Then the diamond
bracket relations of §5.5.5 do the job.

(⇐) This is proved by an evident modification of the proof of the Deligne-
Koblitz-Ogus criterion [De]. The connection between diamond brackets and
values of L-functions at s = 0 noted in §5.5.3 is the essential point of the proof.
We omit the details.

6.1.7. Π-monomials and their relationship with Γ-monomials. Let

(a �→ Π(a)) : Af → C×
∞

be the unique homomorphism such that

Π([x]) = Π(x)

for all x ∈ f−1A such that |x|∞ < 1. Numbers in the image of the homo-
morphism Af

Π−→ C×
∞ we call Π-monomials of level f . The reflection identity

satisfied by the Π-function and the hypothesis deg f > 0 imply that up to a
factor in k̄×, the number � is a Π-monomial of level f . Taking the translation
identity satisfied by the Π-function also into account, as well as the simple
relationship between Γ- and Π-functions, it is clear that up to a factor in k̄×

every Γ-monomial belonging to the group of such generated by the set

{�} ∪
{

Γ(x)
∣∣∣∣x ∈ 1

f
A \ ({0} ∪ −A+)

}
is a Π-monomial of level f .
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The following result is the direct analogue in our setting of the Deligne-
Koblitz-Ogus criterion [De]. It allows us to decide in more or less mechanical
fashion whether between a given pair of Γ-monomials there exists a relation of
k̄-linear dependence explained by the standard functional equations.

Corollary 6.1.8 (Diamond bracket criterion). For all a,b ∈ Af ,

a ∼f b ⇒ Π(a)/Π(b) ∈ k̄×.

Proof. It is enough to prove that

a ∈ Rf ⇒ �−wta Π(a) ∈ k̄×.

In order to do so we may assume without loss of generality that a is one of the
generators of Rf specified in §6.1.1. Then the standard functional equations
stated in §5.3.5 do the job.

6.1.9. Remark. Deligne’s reciprocity law [DeMiOgSh, Thm. 7.15, p. 91]
refines the Deligne-Koblitz-Ogus criterion by giving delicate information con-
cerning the field to which an algebraic Γ-monomial belongs. An analogous
refinement of Corollary 6.1.8 was proved in [Si b].

6.1.10. Remark. The converse to Corollary 6.1.8 is the Fq[T ]-analogue
“at level f” of the conjecture of Rohrlich discussed in §1.4.2.

6.2. Formulation and discussion of the main result. The following the-
orem is the main result of this paper. It is the Fq[T ]-analogue “at level f”
of the conjecture of Lang discussed in §1.4.3 above. It restates Theorem 1.2.1
in a precise way and allows us to determine all k̄-linear relations among Γ-
monomials.

Theorem 6.2.1. Let

a1, . . . ,aN ∈ Af

be given. A necessary and sufficient condition for the corresponding Π-monomials

Π(a1), . . . ,Π(aN )

of level f to be k̄-linearly independent is that

ai �∼f aj

for all 1 ≤ i < j ≤ N .

The proof of the theorem takes up almost all of the rest of the paper,
concluding in §6.5.
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Corollary 6.2.2. Put

νf := 1 +
q − 2
q − 1

· #(A/f)×.

Let Ef be the subfield of C∞ generated over k̄ by the set

{Π(a/f) |a ∈ A, deg a < deg f } .

The transcendence degree of Ef over k̄ equals νf .

The following proposition establishes equivalence of theorem and corollary.

Proposition 6.2.3. The transcendence degree of Ef/k̄ is bounded above
by νf . Moreover, a necessary and sufficient condition for νf strictly to exceed
the transcendence degree of Ef/k̄ is that for some integer N ≥ 2 there exist
a1, . . . ,aN ∈ Af and nonzero c1, . . . , cN ∈ k̄ such that ai �∼f aj for all 1 ≤ i <

j ≤ N and c1Π(a1) + · · · + cNΠ(aN ) = 0.

Proof. Let k̄[Af/R̃f ] be the group ring with coefficients in k̄ of the finitely
generated free abelian group Af/R̃f . Let

λ : Af → k̄×

be any group homomorphism agreeing with Π on R̃f and let

k̄[Af/R̃f ] Λ−→ Ef

be the unique k̄-algebra homomorphism such that

Λ(a mod R̃f ) =
Π(a)
λ(a)

for all a ∈ Af . Put

If := ker
(
k̄[Af/R̃f ] Λ−→ Ef

)
.

By Corollary 6.1.4 the free abelian group Af/R̃f is of rank νf and hence
the ring k̄[Af/R̃f ] is isomorphic to the ring of Laurent polynomials in νf

independent variables with coefficients in k̄. By construction the ideal If is
prime. Clearly the field Ef is isomorphic as a k̄-algebra to the field of fractions
of the ring k̄[Af/R̃f ]/If . Therefore νf bounds the transcendence degree of Ef

over k̄. Moreover, a necessary and sufficient condition for νf strictly to exceed
the transcendence degree of Ef/k̄ is that If �= 0. Note that every nonzero
element of If has to be a formal k̄-linear combination of at least two elements
of Af/R̃f since Π(a) is nonzero for all a ∈ Af . In view of Theorem 6.1.6 and
Corollary 6.1.8, it is clear that from any nonzero element of If we can produce
a relation of k̄-linear dependence among Π-monomials of the indicated form.
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6.3. Coleman functions.

6.3.1. A closer look at torsion values of e. In the course of our discussion
of the special function e the following facts were verified:

• k(e(1/f)) is separable over k.

• k(e(1/f)) is a splitting field over k for Cf (T, z).

• e(a/f)/T̃ ∈ Fq[[1/T ]] for all a ∈ A.

The following more delicate facts are well known:

• There exists for each γ ∈ Gal(k(e(1/f))/k) unique a ∈ A such that
(a, f) = 1, deg a < deg f and γe(b/f) = e(ab/f) = Ca(T, e(b/f)) for all
b ∈ A.

• The construction γ �→ a induces an isomorphism Gal(k(e(1/f))/k) ∼−→
(A/f)×.

• Gal(k(e(1/f))/k) is generated by its inertia subgroups.

• The integral closure of A in k(e(1/f)) is A[e(1/f)].

See [Ha] or [Ro] for a treatment of the latter material.

6.3.2. Definition of C�
f (t, z). There exists a unique factor

C�
f (t, z) ∈ Fq[t, z]

of the division polynomial Cf (t, z) such that

C�
f (T, z) =

∏
a∈A

deg a<deg f
(a,f)=1

(z − e(a/f)).

The polynomial C�
f (t, z) is the Carlitz analogue of a cyclotomic polynomial

and has, so we claim, the following properties:

• The discriminant of C�
f (t, z) with respect to z does not vanish identically.

• For all a ∈ A, C�
f (t, z) divides Ca(t, z) if and only if f divides a.

• C�
f (t, z) is irreducible in Fq[t, z] and remains so in k̄[t, z].

• C�
f , ∂C�

f/∂t and ∂C�
f/∂z generate the unit ideal of Fq[t, z].
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The first two properties are clear, as is irreducibility over Fq. Irreducibility over
any finite algebraic extension of Fq follows from the fact that Gal(k(e(1/f))/k)
is generated by inertia. Were C�

f (t, z) to be reducible over k̄, then C�
f (t, z)

would be reducible over some field L finite algebraic over k and hence reducible
over the finite residue field of some discrete valuation of L, a contradiction.
Therefore C�

f (t, z) has the third property. Failure of the fourth property would
imply failure of the ring Fq[t, z]/(C�

f (t, z)) to be integrally closed: but the
isomorphic ring A[e(1/f)] is known to be integrally closed. Therefore C�

f (t, z)
has the fourth property. Thus our claim is proved.

6.3.3. The nonsingular projective curve X/Fq. Let U/Fq be the irre-
ducible nonsingular plane algebraic curve in the affine (t, z)-plane/Fq defined
by the equation C�

f (t, z) = 0 and let X/Fq be the nonsingular projective model
of U/Fq. We regard t and z as regular functions on U and meromorphic func-
tions on X. We regard X/Fq as a covering of the projective t-line/Fq. We say
that the closed points of X in the complement of U are at infinity. For all
a ∈ A prime to f put

ξa := (T, e(a/f)) ,

thereby defining a k̄-valued point of U . A trivial but important remark to
make here is that the set {ξa} is the collection of k̄-valued points of U above
the k̄-valued point t = T of the affine t-line.

We make the following claims:

• X is a Galois covering of the t-line of degree #(A/f)×.

• For each automorphism γ of X over the t-line there exists unique a ∈ A

such that (a, f) = 1, deg a < deg f and γ∗Cb(t, z) = Cab(t, z) for all
b ∈ A.

• Moreover, with γ and a as above, we have γξb = ξab for all b ∈ A prime
to f .

• Further, the construction γ �→ a induces an isomorphism from the group
of automorphisms of X over the t-line to (A/f)×.

• Each closed point of X at infinity has residue field Fq and is ramified of
order q − 1 over the point at infinity on the t-line.

• There are #(A/f)×/(q − 1) closed points at infinity, and these are per-
muted transitively by the group of automorphisms of X over the t-line.

• For all a ∈ A the function Ca(t, z) has at each of the points of X at
infinity no singularity worse than a simple pole.
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These claims are verified by making a routine translation from arithmetical
language to geometrical language. We can safely omit the details.

6.3.4. The base-change X/k̄, deck transformations and n-fold twisting.
Put

U := k̄ ⊗Fq
U, X := k̄ ⊗Fq

X,

thereby defining nonsingular irreducible curves over k̄, the former being the
curve in the affine (t, z)-plane/k̄ defined by the equation C�

f (t, z) = 0, and the
latter being the nonsingular projective model of the former. Closed points of
X in the complement of U as before are said to be at infinity. No new closed
points at infinity appear in the base-change X because all the closed points in
X at infinity are already Fq-rational.

By construction X/k̄ is a Galois covering of the projective t-line/k̄. Just
so as to have a convenient short turn of phrase at our disposal, we call an
automorphism of X/k̄ over the projective t-line/k̄ a deck transformation. By
construction every deck transformation is the base-change of a unique auto-
morphism of X/Fq over the projective t-line/Fq, and hence the group of deck
transformations is canonically isomorphic to (A/f)×.

We define the n-fold twisting operation on the function field of X to be
the unique automorphism extending the (qn)th power automorphism of k̄ and
fixing every element of the function field of X. We denote the result of applying
the n-fold twisting operation to a function h by h(n). The n-fold twisting
automorphism of the function field of X commutes with all pull-backs via
deck transformations. For each x ∈ X(k̄) we define the n-fold twist x(n) ∈
X(k̄) to be the point obtained by applying the (qn)th power automorphism
of k̄ to the coordinates of x. Since each k̄-rational point of X at infinity
is already defined over Fq, each such point is fixed by the n-fold twisting
operation. Identifying closed points of X with k̄-valued points of X in evident
fashion, we extend the n-fold twisting operation to the group of divisors of
X by Z-linearity. The n-fold twisting operation on divisors commutes with
the action of deck transformations. The operation of forming the divisor of a
nonzero meromorphic function on X commutes with n-fold twisting; i.e., we
have (h(n)) = (h)(n) for all nonzero meromorphic functions h on X.

6.3.5. Definition of Coleman functions. Fix

x ∈ f−1A \ A.

Fix f -dual families
{ai}deg f

i=1 , {bj}deg f
j=1 (ai, bj ∈ A)

and write
x = a0/f (a0 ∈ A, a0 not divisible by f).
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Put

gx := 1 −
deg f∑
i=1

e∗(ai/f)Ca0bi
(t, z),

thereby defining a meromorphic function on X regular on U with singularities
at infinity no worse than simple poles. Now for a ranging over A, both the
function Ca(t, z) and the number e∗(a/f) depend Fq-linearly on a and moreover
depend only on a mod f . Therefore the function gx depends only on x, not on
the intervening choice of f -dual families {ai} and {bj}. Moreover it is clear
that gx depends only on x mod A. We call gx a Coleman function.

6.3.6. The divisors of Coleman functions. Let ∞X be the formal sum
of the k̄-valued points of X at infinity, multiplied by (q − 1) and viewed as a
divisor of X. Now,

deg∞X = #(A/f)×, (∞X)(1) = ∞X .

For every x ∈ f−1A \ A we have, so we claim, an equality

(gx) = − 1
q − 1

· ∞X +
∑
a∈A

(a,f)=1
deg a<deg f

∞∑
N=0

〈ax〉N · ξ(N)
a

of divisors of X. To see this, call the divisor on the right D. There appear only
finitely many nonzero terms in the sum defining D and hence D is well-defined.
Moreover we have

deg D = −#(A/f)×

q − 1
+

∑
a∈A

(a,f)=1
deg a<deg f

〈ax〉 = 0.

Now let {ai}, {bj} and a0 be as in §6.3.5, and fix a ∈ A prime to f such that

〈ax〉 =
∞∑

N=0

〈ax〉N = 1.

Let b be the unique element of A+ such that

aa0 ≡ b mod f, deg b < deg f,

and put
N := deg f − deg b − 1,

noting that
〈b/f〉N = 1.
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We have

gx

(
ξ(N)
a

)
= 1 −

deg f∑
i=1

e∗(ai/f)Ca0bi

(
T qN

, e(ax)qN
)

= 1 −
deg f∑
i=1

e∗(ai/f)e(bib/f)qN

= 0,

the last equality by part (ii) of Theorem 5.4.4. Therefore gx has at least as
many zeroes in U as we claim for it. In any case gx has no singularities at
infinity worse than simple poles. Therefore the divisor (gx)−D is effective and
of degree 0, so it vanishes identically. Thus our claim is proved.

6.3.7. Interpolation properties of Coleman functions. Fix

x ∈ f−1A \ A, a ∈ A, N ∈ Z, y ∈ k,

such that
(a, f) = 1, N ≥ 0, ax ≡ y mod A, |y|∞ < 1.

We claim that
g(N+1)
x (ξa) = 1 + ΨN (y).

Let {ai}, {bj} and a0 be as in §6.3.5. Now,

g(N+1)
x (ξa) = 1 −

deg f∑
i=1

e∗(ai/f)qN+1
Ca0bi

(T, e(a/f))

= 1 −
deg f∑
i=1

e∗(ai/f)qN+1
e(biy)

= 1 + ΨN (y),

the last equality by part (i) of Theorem 5.4.4. The claim is proved.

Remark 6.3.8. The notion of Coleman function was introduced in [Si a],
building on the foundation of [An b]. The notion of Coleman function was in
large part inspired by beautiful examples of [Co]; see [An b, §2] for an appre-
ciation of Coleman’s work. The approach to the theory of Coleman functions
presented here is quite a bit simpler than previous approaches and was devel-
oped in an attempt more closely to approximate Coleman’s own simple and
very attractive point of view.

6.3.9. Generalized Coleman functions. Given effective a ∈ Af such that
wta > 0, write

a =
∑
a∈A

deg a<deg f

ma

[
a

f

]
(ma ∈ Z, ma ≥ 0)
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and put
ga :=

∏
0 �=a∈A

deg a<deg f

gma
a

f

,

thereby defining a meromorphic function on X regular on U . We call ga a
generalized Coleman function. We define effective divisors of X by the formulas

ξa :=
∑
a∈A

(a,f)=1
deg a<deg f

〈a � a〉 · ξa, Wa :=
∑
a∈A

(a,f)=1
deg a<deg f

∞∑
N=1

〈a � a〉N ·
(

N−1∑
i=0

ξ(i)
a

)
.

The definition of Wa makes sense because only finitely many nonzero terms
appear on the right side. By the divisor calculation of §6.3.6 we have

(ga) =−(wta) · ∞X +
∑
a∈A

deg a<deg f
(a,f)=1

∞∑
N=0

〈a � a〉Nξ(N)
a

=−(wta) · ∞X + ξa + W
(1)
a − Wa.

By the interpolation formula of §6.3.7 we have

Π(a � a)−1 =
∞∏

N=1

g
(N)
a (ξa)

for all a ∈ A prime to f .

Proposition 6.3.10. Fix effective a,b ∈ Af such that wta,wtb > 0.
For any deck transformation γ and a ∈ A prime to f corresponding canonically
one to the other in the sense that γ∗z = Ca(t, z),

γ−1ξa = ξb ⇔ a � a ∼f b.

Proof. Clearly ξa = ξb ⇔ a ∼f b and further

γ−1ξa =
∑
b∈A

(b,f)=1
deg b<deg f

〈b � a〉 · ξcb =
∑
b∈A

(b,f)=1
deg b<deg f

〈ab � a〉 · ξb = ξa�a

where c ∈ A satisfies the congruence ac ≡ 1 mod f , whence the result.

6.4. A construction of rigid analytically trivial GCM dual t-motives. For
convenience we again put � := #(A/f)× and also fix effective a ∈ Af such that
wta > 0. Put

L := Fq[t, z]/(C�
f (t, z)), L := k̄[t, z]/(C�

f (t, z)).

The rings L and L are the coordinate rings of the nonsingular irreducible affine
curves U/Fq and U/k̄, respectively. Clearly L qualifies as a GCM Fq[t]-algebra.
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We are going to use the generalized Coleman function ga ∈ L to create a nice
dual t-motive H(a) with GCM by L. To do so we translate to the dual t-
motivic setting a basic construction that in the t-motivic setting was originally
given in [Si a].

Lemma 6.4.1. Let H̃(a) be the left L[σ]-module obtained by equipping L
with an action of σ by the rule

σh := gah
(−1).

Then the k̄[σ]-module underlying H̃(a) is free, of finite rank.

Proof. By Proposition 4.3.2, because the k̄[t]-module underlying H̃(a) is
free, of finite rank, we have only to prove that the k̄[σ]-module underlying
H̃(a) is finitely generated. Temporarily put

D := wta · ∞X .

Since the multiplicity of D at each point of X at infinity is the order of the pole
of the generalized Coleman function ga at that point according to the divisor
formula of §6.3.9, the induced maps

OX (nD)
OX ((n − 1)D)

ga×−−→ OX ((n + 1)D)
OX (nD)

of skyscraper sheaves are bijective for all n ∈ Z. By the Riemann-Roch theorem
there exists an integer n0 such that the natural maps

H0
(
X,OX (nD)

)
H0

(
X,OX ((n − 1)D)

) → H0

(
X,

OX (nD)
OX ((n − 1)D)

)
are bijective for all n ≥ n0. Clearly we have

H0
(
X,OX (nD)

)(−1) = H0
(
X,OX

(
nD(−1)

))
= H0

(
X,OX (nD)

)
for all n ∈ Z. Therefore

H0
(
X,OX (nD)

)
+ ga · H0

(
X,OX (nD)

)(−1) = H0
(
X,OX ((n + 1)D)

)
for all n ≥ n0 and hence the vector space

H0
(
X,OX (n0D)

)
is finite-dimensional over k̄ and generates

H̃(a) = H0(U,OX) =
⋃
n

H0
(
X,OX (nD)

)
over k̄[σ].
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6.4.2. Construction of the dual t-motive H(a). Recall now the divisor
formula

(ga) = −(wta) · ∞X + ξa + W
(1)
a − Wa

of §6.3.9 and recall also that the divisors ξa and Wa figuring in this formula
are effective. Put

H(a) := H0
(
U,OX

(
−W

(1)
a

))
⊂ H0

(
U,OX

)
= H̃(a)

thereby defining an L-submodule of H̃(a). It is easy to verify that H(a) is σ-
stable and hence an L[σ]-submodule of H̃(a). It is clear that H(a) is projective
over L of rank one and free, of finite rank over k̄[t]. Moreover H(a) is a k̄[σ]-
submodule of a k̄[σ]-module free, of finite rank by Lemma 6.4.1 and hence a
free k̄[σ]-module of finite rank. Since we have

H(a)
σH(a)

=
H0(U,OX(−W

(1)
a ))

ga · H0(U,OX(−W
(1)
a ))(−1)

=
H0(U,OX(−W

(1)
a ))

H0(U,OX(−ξa − Wa))
,

and all the points in the support of the divisor ξa lie above the point t = T

on the t-line, it follows that H(a)/σH(a) is annihilated by a sufficiently high
power of t− T . Therefore H(a) is a dual t-motive with GCM by L. Note that
the ideal

Ia := H0
(
U,OX(−ξa)

)
⊂ L

is the GCM type of H(a) with respect to L.

Lemma 6.4.3. (i) Let

Φa ∈ Mat�×�(k̄[t])

be the unique solution of the congruence

ga


1
z
...

z�−1

 ≡ Φa


1
z
...

z�−1

 mod C�
f (t, z).

Then with respect to the Banach norm on C∞{t} given by the rule∥∥∥∥∥
∞∑
i=0

ait
i

∥∥∥∥∥
∞

:=
∞

sup
i=0

|ai|∞

and extended to Mat�×�(C∞{t}) by the rule

‖X‖∞ =
�

max
i,j=1

‖Xij‖∞,

the infinite product

Ψa :=
∞∏

N=1

Φ(N)
a
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converges to an element of

GL�(C∞{t}) ∩ Mat�×�(E)

satisfying the functional equation

Ψ(−1)
a = ΦaΨa.

(ii) Consider now the matrix

Ψa(T ) ∈ Mat�×�(k∞)

obtained by evaluating Ψa at t = T . The sets

{Ψa(T )ij | i, j = 1, . . . , �}, {Π(a � a)−1 | a ∈ A, (a, f) = 1}

span the same k̄-subspace of k∞.

Proof. (i) From the construction of the generalized Coleman function ga

it is clear that
ga ≡ 1 +

∑
i

∑
j

cijt
izj mod C�

f (t, z)

for some constants cij ∈ k̄, all but finitely many of which vanish and all of
which satisfy the bound

|cij |∞ ≤ sup
x∈k∞

|e∗(x)|∞ = |1/T̃ |∞ < 1.

Now let
Z = Z(t) ∈ Mat�×�(Fq[t])

be the unique solution of the congruence

z


1
z
...

z�−1

 ≡ Z


1
z
...

z�−1

 mod C�
f (t, z).

Clearly,
Φ(N)

a = 1� +
∑

i

∑
j

cqN

ij tiZj

for all integers N . It follows that the infinite product defining Ψa converges
to an element of GL�(C∞{t}) satisfying the desired functional equation. It
follows also that det Φa(0) �= 0 and hence by Proposition 3.1.3 that the matrix
Ψa has entries in E .

(ii) Note that by construction the roots of the equation C�
f (T, z) = 0 give

the � eigenvalues of the matrix

Z(T ) ∈ GL�(k̄).
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Now choose any matrix
M ∈ GL�(k̄)

such that

MZ(T )M−1 =

 e(a1/f)
. . .

e(a�/f)


where

{a1, . . . , a�} = {a ∈ A | deg a < deg f, (a, f) = 1}.
Then (

MΦ(N)
a (T )M−1

)
ij

= g(N)(ξai
) · δij ,

and hence
(MΨa(T )M−1)ij = Π(ai � a)−1 · δij ,

which proves the result.

Proposition 6.4.4. Let

g ∈ Mat�×1(H(a)), Φ ∈ Mat�×�(k̄[t])

be given such that the entries of g form a k̄[t]-basis of H(a) and

σg = Φg.

There exists
Ψ ∈ GL�(C∞{t}) ∩ Mat�×�(E)

satisfying the functional equation

Ψ(−1) = ΦΨ

and with the further property that the sets

{Ψ(T )ij | i, j = 1, . . . , �}, {Π(a � a)−1 | a ∈ A, (a, f) = 1}

span the same k̄-subspace of k∞.

In particular H(a) is rigid analytically trivial by Lemma 4.4.12.

Proof. Let
Q ∈ Mat�×�(k̄[t])

be the unique solution of the congruence

g ≡ Q


1
z
...

z�−1

 mod C�
f (t, z).
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Now since the effective divisor W
(1)
a is supported in the set of k̄-valued points

of X lying above the points

t = T q, T q2
, . . .

on the t-line, the module

H̃(a)
H(a)

=
H0(U,OX)

H0(U,OX(−W
(1)
a ))

is annihilated by
N∏

i=1

(t − T qi

)N

for N � 0. Hence,

Q ∈ GL�(C∞{t}), det Q(T ) �= 0.

With notation as in Lemma 6.4.3,

ΦQ


1
z
...

z�−1

 ≡ σg ≡ Q(−1)Φa


1
z
...

z�−1

 mod C�
f (t, z);

hence
Q(−1)Φa = ΦQ,

and the matrix
Ψ := QΨa ∈ GL�(C∞{t}) ∩ Mat�×�(E)

has all the desired properties.

Proposition 6.4.5. Let r be the cardinality of the orbit of the coset
a mod R̃f under the action of (A/f)×. Then any simple quotient of the bare
dual t-motive underlying H(a) is of rank ≥ r over k̄[t].

Proof. We temporarily denote the group of deck transformations by G.
We have

#{a � a mod R̃f | a ∈ A, (a, f) = 1} = #{γξa | γ ∈ G} = #{γ∗Ia | γ ∈ G},

where the first equality holds by Proposition 6.3.10 and the second equality
is trivial. The quantity on the right by Corollary 4.6.7 is a lower bound for
the rank over k̄[t] of any simple quotient of the bare dual t-motive underlying
H(a).
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Proposition 6.4.6. For all b ∈ Af such that wtb > 0, if the bare dual
t-motives underlying H(a) and H(b) have isogenous simple quotients, then
a � a ∼f b for some a ∈ A prime to f .

Proof. Once again let G denote the group of deck transformations. Con-
sider the following sets:

{γ∗Ia = Ib | γ ∈ G},
{γξa = ξb | γ ∈ G},

{a � a≡b mod R̃f | a ∈ A, (a, f) = 1}.
The first set is nonempty by Corollary 4.6.8. Nonemptiness of the first set
trivially implies that of the second. Nonemptiness of the second set implies
that of the third by Proposition 6.3.10.

6.5. Proof of Theorem 6.2.1 and Corollary 6.2.2. We need only prove the
sufficiency asserted in the theorem because the diamond bracket criterion takes
care of necessity and Proposition 6.2.3 takes care of the corollary.

6.5.1. Easy reductions. By hypothesis:

• The cosets a1 mod R̃f , . . . ,aN mod R̃f are distinct.

After enlarging the set {a1, . . . ,aN} suitably we may assume that:

• The finite set {ai mod R̃f | i = 1, . . . , N} ⊂ Af/R̃f is (A/f)×-stable.

After relabeling the ai we may assume that for some integer 1 ≤ n ≤ N :

• The set {ai mod R̃f | i = 1, . . . , n} forms a set of representatives for the
(A/f)×-orbits in {ai mod R̃f | i = 1, . . . , N}.

For i = 1, . . . , n put

ri := #{a � ai mod R̃f | a ∈ A, (a, f) = 1},
Vi :=

(
k̄-span of {Π(a � ai)−1 | a ∈ A, (a, f) = 1}

)
⊂ k∞.

We have N =
∑

i ri. Moreover the k̄-span of {Π(−ai) | i = 1, . . . , N} equals∑
i Vi by the diamond bracket criterion. It therefore suffices to show that

n∑
i=1

ri ≤ dimk̄

n∑
i=1

Vi.

After adding a fixed positive integral multiple of∑
a∈A

deg a<deg f

[
a

f

]
∈ Af

to ai for all i, we may further assume that

• ai is effective and wt ai > 0 for i = 1, . . . , n.
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6.5.2. Further reductions. For i = 1, . . . , n we make the following con-
structions. Put

Hi := H(ai).

Choose

g(i) ∈ Mat�×1(Hi), Φ(i) ∈ Mat�×�(k̄[t]) (� := #(A/f)×)

such that the entries of g(i) form a k̄[t]-basis of Hi and

σg(i) = Φ(i)g(i).

By Proposition 6.4.4 there exists

Ψ(i) ∈ GL�(C∞{t}) ∩ Mat�×�(E)

such that the functional equation

Ψ(−1)
(i) = Φ(i)Ψ(i)

holds. Let ψ(i) be the first column of Ψ(i). Put

Hi0 := k̄[t]-span in E of the entries of ψ(i),

Vi0 := k̄-span in k∞ of the entries of ψ(i)(T ).

By Proposition 6.4.4,

• Vi0 ⊂ Vi for i = 1, . . . , n.

By Proposition 4.4.3,

• rkk̄[t]

n∑
i=1

Hi0 = dimk̄

n∑
i=1

Vi0.

It therefore suffices to prove that
n∑

i=1

ri ≤ rkk̄[t]

n∑
i=1

Hi0.

6.5.3. Endgame. In a sense made precise by Proposition 4.4.3:

• Hi0 is a nonzero dual t-motive admitting presentation as a quotient of
the bare dual t-motive underlying Hi for i = 1, . . . , n.

We have

• ri ≤ rkk̄[t] Hi0 = dimk̄ Vi0 ≤ dimk̄ Vi ≤ ri, for i = 1, . . . , n,
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by Proposition 6.4.5 (inequality at the extreme left), Proposition 4.4.3 (equal-
ity at second juncture) and the diamond bracket criterion (inequality at the
extreme right). It follows that

• Hi0 is simple and of rank ri over k̄[t] for i = 1, . . . , n.

The simple dual t-motives Hi0 belong to distinct isogeny classes by Proposi-
tion 6.4.6 and hence:

• The natural map
n⊕

i=1

Hi0 →
n∑

i=1

Hi0 is bijective.

Therefore we have
n∑

i=1

ri =
n∑

i=1

rkk̄[t] Hi0 = rkk̄[t]

n∑
i=1

Hi0

and the proof of sufficiency in Theorem 6.2.1 is finished. As noted above,
with sufficiency proved, the proofs of Theorem 6.2.1 and Corollary 6.2.2 are
complete.

6.6. Remarks concerning transcendence bases. Giving an explicit tran-
scendence basis for the field Ef over k̄ is in general not as straightforward as
one might suspect from the statements of Theorem 6.2.1 and Corollary 6.2.2.
In principle transcendence bases and systems of relations could be constructed
explicitly by a translation to our context of the methods of [Ku], but we do not
attempt such a construction here. We just work out the special case in which
f is a power of an irreducible polynomial and then give a cautionary example.

Proposition 6.6.1. Let f1 ∈ A+ be irreducible, and suppose f = fs
1 for

some s. Let

Bf = {Π(a/f) | a ∈ A \ A+,deg a < deg f, (a, f) = 1} ∪ {�}.

Then Ef = k̄(Bf ), and the numbers in Bf are algebraically independent over k̄.

Proof. Consider κfe
1/f , where (κ, f1) = 1 and deg κ < (s − e) deg f1. As

an element of Df ,[
κfe

1

f

]
−

∑
deg a<e deg f1

[
κfe

1/f + a

fe
1

]
=

[
κfe

1

f

]
−

∑
deg a<e deg f1

[
κfe

1 + af

fe
1f

]

=
[
κfe

1

f

]
−

∑
deg a<e deg f1

[
κ + afs−e

1

f

]
.
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Notice now that the terms on the right have numerators congruent to κ modulo
a power of f1. Thus the numerators are relatively prime to f . According to
the diamond bracket criterion we can therefore express every special Π-value
Π(b/f) as a k̄-multiple of a product of Π(a/f), with a relatively prime to f ,
divided by a power of �. Finally, for every a ∈ A+, the reflection identity
dictates that

�−1
∏

c∈F×
q

Π(ca/f) ∈ k̄×,

and so we conclude that Ef = k̄(Bf ) as claimed. Since #Bf = νf is the
transcendence degree of Ef over k̄, the rest follows.

6.6.2. Cautionary example. In light of Proposition 6.6.1, it would not be
far-fetched to imagine that

Bf = {Π(a/f) | a ∈ A \ A+,deg a < deg f, (a, f) = 1} ∪ {�}.

would provide a trancendence basis for Ef over k̄ for all f ∈ A+. That however
is not always the case.

Consider the example of q = 3 and f = T 2 − T . By Corollary 6.2.2 the
transcendence degree of Ef over k̄ is 3. In §4.2 of [Si b] it is shown that

Π
(

1
T 2 − T

) /
Π

(
1
T

)
∈ k̄×,

and

Π
(

T + 1
T 2 − T

) /
Π

(
1
T

)
∈ k̄×,

by applying the diamond bracket criterion. Consequently, in view of the re-
flection identity satisfied by the Π-function, k̄(Bf ) has transcendence degree
at most 2 over k̄. But by Corollary 6.2.2 and the diamond bracket criterion,
we know that Ef is the rational function field

Ef = k̄

(
�,Π

(
1
T

)
,Π

(
1

T − 1

))
.

6.6.3. Remark. Continuing in the case q = 3 considered in the preced-
ing paragraph, we can show that the Π-monomial Π

(
1

T 2−T

)
/Π

(
1
T

)
and its

companion are examples of the sort considered above in §1.1.6.
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