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The space of embedded minimal surfaces

of fixed genus in a 3-manifold I;
Estimates off the axis for disks

By ToBias H. CoLDING and WiLLiaM P. MiNicozz1 IT*

0. Introduction

This paper is the first in a series where we describe the space of all
embedded minimal surfaces of fixed genus in a fixed (but arbitrary) closed
Riemannian 3-manifold. The key for understanding such surfaces is to un-
derstand the local structure in a ball and in particular the structure of an
embedded minimal disk in a ball in R3 (with the flat metric). This study is
undertaken here and completed in [CM6]. These local results are then applied
in [CM7] where we describe the general structure of fixed genus surfaces in
3-manifolds.

There are two local models for embedded minimal disks (by an embedded
disk, we mean a smooth injective map from the closed unit ball in R? into
R?). One model is the plane (or, more generally, a minimal graph), the other
is a piece of a helicoid. In the first four papers of this series, we will show that
every embedded minimal disk is either a graph of a function or is a double
spiral staircase where each staircase is a multi-valued graph. This will be done
by showing that if the curvature is large at some point (and hence the surface
is not a graph), then it is a double spiral staircase. To prove that such a disk
is a double spiral staircase, we will first prove that it is built out of N-valued
graphs where N is a fixed number. This is initiated here and will be completed
in the second paper. The third and fourth papers of this series will deal with
how the multi-valued graphs fit together and, in particular, prove regularity of
the set of points of large curvature — the axis of the double spiral staircase.

The reader may find it useful to also look at the survey [CMS8] and the
expository article [CM9] for an outline of our results, and their proofs, and
how these results fit together. The article [CM9] is the best to start with.

*The first author was partially supported by NSF Grant DMS 9803253 and an Alfred
P. Sloan Research Fellowship and the second author by NSF Grant DMS 9803144 and an
Alfred P. Sloan Research Fellowship.
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T3-axis

Figure 1: The separation of a multi-valued graph.

Our main theorem about embedded minimal disks is that every such disk
can either be modelled by a minimal graph or by a piece of the helicoid de-
pending on whether the curvature is small or not; see Theorem 0.2 below. This
will be proven in [CM6] with the first steps taken here. The helicoid is the
minimal surface in R? parametrized by (s cos(t), ssin(t),t) where s,t € R.

To be able to discuss the helicoid some more and in particular give a
precise meaning to the fact that it is like a double spiral staircase, we will need
the notion of a multi-valued graph; see Figure 1. Let D, be the disk in the
plane centered at the origin and of radius r and let P be the universal cover of
the punctured plane C\ {0} with global polar coordinates (p, #) so that p > 0
and 0 € R. An N-valued graph of a function v on the annulus D, \ D, is a
single valued graph over

(0.1) {(p0)|r<p<s.|0]<Nr).
The middle sheet ¥ (an annulus with a slit as in [CM3]) is the portion over
{(p,0) eP|r<p<sand0<0<27}.

The multi-valued graphs that we will consider will never close up; in fact they
will all be embedded. Note that embedded means that the separation never
vanishes. Here the separation (see Figure 1) is the function given by

w(p,0) =u(p, 0+ 2m) —u(p,0).

If ¥ is the helicoid (see Figure 2), then X\ x3 — axis = 31 U 3o, where X1, ¥
are oo-valued graphs. Also, ¥ is the graph of the function ui(p,0) = 6 and
Y9 is the graph of the function ua(p, ) = 6 + 7. In either case the separation
w = 27. A multi-valued minimal graph is a multi-valued graph of a function
u satisfying the minimal surface equation.
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Figure 2: The helicoid is obtained by gluing together two oco-valued graphs
along a line. The two multi-valued graphs are given in polar coordinates by
ui(p,0) =0 and us(p,0) = 0 + 7. In either case w(p,d) = 2.

Here, we have normalized so that our embedded multi-valued graphs have
positive separation. This can be achieved after possibly reflecting in a plane.

Let now X; C Bog be a sequence of embedded minimal disks with 9%; C
0Byp. Clearly (after possibly going to a subsequence) either (1) or (2) occur:

(1) supg,nx, |A|* < C < oo for some constant C.
(2) supg,as, [P — oo.

In (1) (by a standard argument) the intrinsic ball Bs(y;) is a graph for all
yi € Br N 3Y;, where s depends only on C. Thus the main case is (2) which is
the subject of the next theorem.

Using the notion of multi-valued graphs, we can now state our main the-
orem:

THEOREM 0.2 (Theorem 0.1 in [CM6] (see Figure 3)). Let ¥; C Bg, =
Bpg,(0) C R? be a sequence of embedded minimal disks with 0%; C OBg, where
R; — o0. If

sup |A[* — oo,

BiN%;
then there exist a subsequence, Xj, and a Lipschitz curve S : R — R? such
that after a rotation of R3:

(1) z3(S(t)) =t. (That is, S is a graph over the x3-axis.)

(2) Each £; consists of exactly two multi-valued graphs away from S (which
spiral together).

(3) Foreach 1> a>0,3;\S converges in the C*-topology to the foliation,
F ={z3=1t}, of R%.
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(4) supp, (s)ns, |A|? — oo for allT > 0, t € R. (The curvatures blow up
along S.)

In (2), (3) that ¥; \ S are multi-valued graphs and converge to F means
that for each compact subset K C R?\ S and j sufficiently large, K N 2
consists of multi-valued graphs over (part of) {3 =0} and KN¥; - KNF
in the sense of graphs.

One half of X. The other half.

Vs )

Figure 3: Theorem 0.2 — the singular set, S, and the two multi-valued graphs.

Theorem 0.2 (like many of the other results discussed below) is modelled
by the helicoid and its rescalings. Take a sequence ¥; = a; X of rescaled
helicoids where a; — 0. The curvatures of this sequence are blowing up along
the vertical axis. The sequence converges (away from the vertical axis) to a
foliation by flat parallel planes. The singular set S (the axis) then consists of
removable singularities.

Before we proceed, let us briefly describe the strategy of the proof of
Theorem 0.2.

The proof has the following three main steps; see Figure 4:

A. Fix an integer N (the “large” of the curvature in what follows will
depend on N). If an embedded minimal disk ¥ is not a graph (or equivalently
if the curvature is large at some point), then it contains an N-valued minimal
graph which initially is shown to exist on the scale of 1/ max|A|. That is, the
N-valued graph is initially shown to be defined on an annulus with both inner
and outer radii inversely proportional to max |A].

B. Such a potentially small N-valued graph sitting inside X can then be
seen to extend as an N-valued graph inside Y almost all the way to the bound-
ary. That is, the small N-valued graph can be extended to an N-valued graph
defined on an annulus where the outer radius of the annulus is proportional
to R. Here R is the radius of the ball in R? in which the boundary of ¥ is
contained.

C. The N-valued graph not only extends horizontally (i.e., tangent to the
initial sheets) but also vertically (i.e., transversally to the sheets). That is,
once there are N sheets there are many more and, in fact, the disk > consists
of two multi-valued graphs glued together along an axis.
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Br

Figure 4: Proving Theorem 0.2.
A. Finding a small N-valued graph in 3. B. Extending it in X to a large
N-valued graph. C. Extending the number of sheets.

A will be proved in [CM4], B will be proved in this paper, and C will be
proved in [CM5] and [CM6], where we also will establish the regularity of the
“axis.”

We will now return to the results proved in this paper, i.e., the proof of
B above. We show here that if such an embedded minimal disk in R? starts
off as an almost flat multi-valued graph, then it will remain so indefinitely.

THEOREM 0.3 (see Figure 5). Given 7 > 0, there exist N,Q,e > 0 so
that the following hold:

Let X C Br, C R? be an embedded minimal disk with 0% C OBgr,. If
Qrog <1< Ry/Q and ¥ contains an N-valued graph ¥4 over Dy \ Dy, with
gradient < e and

5, (< 2@+ D),

then X contains a 2-valued graph ¥q over Dy /o \ D,, with gradient < T and
(Z)M C 4.
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Figure 5: Theorem 0.3 — extending a small multi-valued graph in a disk.
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Small multi-valued graph near 0.

Figure 6: Theorem 0.4— finding a small multi-valued graph in a disk near a
point of large curvature.

Theorem 0.3 is particularly useful when combined with a result from [CM4]
asserting that an embedded minimal disk with large curvature at a point con-
tains a small, almost flat, multi-valued graph nearby. Namely, we prove in
[CM4] the following theorem:

THEOREM 0.4 ([CM4] (see Figure 6)). Given N,w > 1, and € > 0, there
exists C = C(N,w,e) > 0 so that the following holds:

Let 0 € ¥2 € Br C R3 be an embedded minimal disk with 0¥ C OBg. If
for some 0 < ry < R,

sup |A]? <4|AP2(0) =4C? 1“52,
B,,NE

then there exist R < ro/w and (after a rotation of R3®) an N-valued graph
¥y C X over Dyg \ D with gradient < e, and distx(0,%,) <4 R.

Combining Theorem 0.3 and Theorem 0.4 with a standard blow-up argu-
ment gives the following theorem:

THEOREM 0.5 ([CM4]). Given N € Z, ¢ > 0, there exist C, C2 > 0 so
that the following holds:

Let 0 € ¥? € B C R? be an embedded minimal disk with 0¥ C OBgr. If
for some R > rg > 0,

)

max |A]* > 4C%ry?
B,,A%
then there exists (after a rotation of R3) an N-valued graph 3, over Dpg/c, \
Doy, with gradient < e and contained in ¥ N {z3 < &2 (22 + 23)}.

The multi-valued graphs given by Theorem 0.5 should be thought of (see
[CM6]) as the basic building blocks of an embedded minimal disk. In fact, one
should think of such a disk as being built out of such graphs by stacking them
on top of each other. It will follow from Proposition I1.2.12 that the separation
between the sheets in such a graph grows sublinearly.
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Figure 7: The estimate between the sheets: Theorem 1.0.8.

An important component of the proof of Theorem 0.3 is a version of it for
stable minimal annuli with slits that start off as multi-valued graphs. Another
component is a curvature estimate “between the sheets” for embedded minimal
disks in R3; see Figure 7. We will think of an axis for such a disk X as a point
or curve away from which the surface locally (in an extrinsic ball) has more
than one component. With this weak notion of an axis, our estimate is that if
one component of X is sandwiched between two others that connect to an axis,
then the one that is sandwiched has curvature estimates; see Theorem 1.0.8.
The example to keep in mind is a helicoid and the components are “consecutive
sheets” away from the axis. These separate sheets can be connected along the
axis of the helicoid and every component between them must then be graphical
and hence have bounded curvature.

Theorems 0.3, 0.4, 0.5 are local and are for simplicity stated and proved
only in R? although they can with only very minor changes easily be seen to
hold for minimal disks in a sufficiently small ball in any given fixed Riemannian
3-manifold.

The paper is divided into 4 parts. In Part I, we show the curvature
estimate “between the sheets” when the disk is in a thin slab. In Part II, we
show that certain stable disks with interior boundaries starting off as multi-
valued graphs remain very flat (cf. Theorem 0.3). This result will be needed,
together with Part I, in Part III to generalize the results of Part I to when the
disk is not anymore assumed to lie in a slab. Part II will also be used together
with Part III, in Part IV to show Theorem 0.3.

Let x1, 2,3 be the standard coordinates on R? and II : R3® — R? or-
thogonal projection to {3 =0}. Fory € S € ¥ C R? and s > 0, the extrinsic
and intrinsic balls and tubes are

(0.6)
Bs(y) ={z e R®||z —y| < s}, Ts(S) = {x € R?®|distrs(z,S) < s},
(0.7) Bs(y) ={z € ¥|disty(z,y) < s}, 75(S) = {x € ¥|distx(z,S) < s}.

Dy denotes the disk Bs(0) N {z3 = 0}. Ky the sectional curvature of a smooth
compact surface ¥ and when X is immersed Ay, will be its second fundamental
form. When ¥ is oriented, ny is the unit normal. We will often consider



34 TOBIAS H. COLDING AND WILLIAM P. MINICOZZI 1I

the intersection of curves and surfaces with extrinsic balls. We assume that
these intersect transversely since this can be achieved by an arbitrarily small
perturbation of the radius.

Part I: Minimal disks in a slab

Let 7,4 denote the line segment from p to ¢ and p,q the ray from p
through ¢. A curve 7 is h-almost monotone if given y € v, then By (y) Ny has
only one component which intersects Bap(y). Our curvature estimate “between
the sheets” is (see Figure 8):

THEOREM 1.0.8. There exist ¢1 > 4 and 2co < ¢4 < c3 < 1 so that the
following holds:

Let 2 C Be,y, be an embedded minimal disk with 0% C OB, ,, and
y € OBay,. Suppose that 31, Xa, and X3 are distinct components of By, (y) MY
and

Y C (BTU U TC2 ro(’YO,y)) N b3

is a curve with 0y = {y1,y2} where y; € Be,r,(y) NX; and each component of
¥ \ B, is co ro-almost monotone.

If ¥ is a component of Be,r,(y) N X3 with y1,y2 in distinct components
of Be,ro(y) \ 25, then X% is a graph.

Figure 8: y1, y2, X1, X2, X%, and 7 in Theorem 1.0.8.

The idea for the proof of Theorem 1.0.8 is to show that if this were not
the case, then we could find an embedded stable disk that would be almost flat
and would lie in the complement of the original disk. In fact, we can choose
the stable disk to be sandwiched between the two components as well. The
flatness would force the stable disk to eventually cross the axis in the original
disk, contradicting that they were disjoint.
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In this part, we prove Theorem 1.0.8 when the surface is in a slab, illus-
trating the key points (the full theorem, using the results of this part, will be
proved later). Two simple facts about minimal surfaces in a slab will be used:

e Stable surfaces in a slab must be graphical away from their boundary
(see Lemma 1.0.9 below).

e The maximum principle, and catenoid foliations in particular, force these
surfaces to intersect a narrow cylinder about every vertical line (see the
appendix).

LEMMA 1.0.9. LetT' C {|zs| < Bh} be a stable embedded minimal surface.
There exist Cy, Bs > 0 so that if B < Bs and E is a component of

R?\ T;,(IL(dT)) ,
then each component of II"1(E) NT is a graph over E of a function u with
|Vreu| < Cy 5.
Proof. If By, (y) C T', then the curvature estimate of [Sc] gives
sup |A|? < Cyh72.

Bhy2(y)
Since Arzs = 0, the gradient estimate of [ChY] yields
(1.0.10) sup |Vras| <Cyh™! sup |x3| < C, 3,
Bh/a(y) Br/2(y)

where C; = Cy(Cs). Since
Vreul? = [Vras|? / (1 - [Vrasl),
(1.0.10) gives the lemma. O

The next lemma shows that if an embedded minimal disk ¥ in the in-
tersection of a ball with a thin slab is not graphical near the center, then it
contains a curve v coming close to the center and connecting two boundary
points which are close in R3 but not in ¥. The constant 34 is defined in (A.6).

LEMMA 1.0.11. Let %2 C Bgop N {|z3| < Bah} be an embedded minimal
disk with 0¥ C OBggp, and let z, € OBson. If a component X' of By N is
not a graph, then there are:

e Distinct components S1, S2 of Bgp(z) N 2.
e Points z1 and z9 with z; € Bh/4(zb) n.s;.

o A curve vy C (Bson UTh(7g,2)) N with Oy = {z1, 22} and yNX" # 0.
Here q € Bsop(2p) N OBsop.-
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Vertical plane tangent

‘/toEatz.

Figure 9: Proof of Lemma 1.0.11: Vertical plane tangent to ¥ at z. Since
>} is minimal, we get locally near z on one side of the plane two different
components. Next place a catenoid foliation centered at y and tangent to X
at z.

Proof. See Figure 9. Since Y’ is not graphical, we can find z € ¥’ with X
vertical at z, i.e.,

|Vsxs|(z) =1.

Fix a point y € 0By4(2) so that 7, . is normal to ¥ at z. Then f,(2) = 4h
(see (A.5)). Let v/ be given such that y' € 0Bjop(y) and z € 7. The first
step is to use the catenoid foliation f, to build the desired curve on the scale
of h; see Figure 10. The second and third steps will bring the endpoints of this
curve out near zy.

y1 and yo are in different
components of 3 in the ball
Bun(y).

Figure 10: Proof of Lemma 1.0.11: Step 1: Using the catenoid foliation, we
build out the curve to scale h.

Any simple closed curve ¢ C ¥\ {f, > 4h} bounds a disk ¥, C .
By Lemma A.8, f, has no maxima on 3, N {f, > 4h} so that we conclude
Y,N{fy > 4h} = 0. On the other hand, by Lemma A.7, we get a neighborhood
U. C ¥ of z where U,N{ fy, = 4 h}\{z} is the union of 2n > 4 disjoint embedded
arcs meeting at z. Moreover, U, \ {f, > 4h} has n components Uy, ..., U,
with
U;NU; ={z} fori#j.
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If a simple curve 6, C ¥\ {f, > 4h} connects U; to Us, then connecting 05,
by a curve in U, gives a simple closed curve o, C £\ {f, > 4h} with 6, C o,
and o, N{fy, > 4h} = {z}. Hence, o, bounds a disk ¥, C ¥\ {f, > 4h}. By
construction, we have

UZQZUZ\UiE#@.

This is a contradiction, so we conclude that Uy, U, are contained in components
i, #32, of S\ {f, >4h} with z € ¥i,N%2,. Fori=1,2, Lemma A.8 and
(A.6) give yi € By 4(y) N ¥Y,. Corollary A.10 gives v; C Ty(7y,) N with

Ovi = {y¢,y?} where y? € By,/4(y'). There are now two cases:

e If 3% and 35 do not connect in By (y') N'Y, then take vo C Bsy(y) N'E
from y{ to y§ and set v, =1 Uy Urp and y; = yf.

e Otherwise, if %9 C Byx(y') N'Y connects y} and 33, set v, = 11 U U 1o
and y; = y3.

In either case, after possibly switching y and ¥/, we get a curve

Ya C (Th(’)/y,y’) U B5h(y,)) N

with 9vs = {y1,92} C Byp(y) and y; € Si for components S{ # S5 of
By (y) N 3. This completes the first step.

H
If y; and y2 can be connected by a curve

n,2 C H N3, then v, Un 2 bounds

|
|
|
|
{ a disk X1 2 C ¥ and so

[
‘\: a curve in dBg,(y') N 12 would
~ connect the two components of ¥ »

: in Byp(y) — this is impossible.

Figure 11: Proof of Lemma [.0.11: Step 2: y; and yo cannot connect in the
half-space H since this would give a point in ¥; 5 far from 0% 2, contradicting

Corollary A.10.

Second, we use the maximum principle to restrict the possible curves from
11 to yo; see Figure 11. Set
(1.0.12) H={z|{y—v,z—y)>0}.

If m2 C Th(H)N X connects y; and y2, then 1y 2 Uy, bounds a disk ¥ 9 C X.
Since m1,2 C Tp(H), we get that 0Bgp(y') N 90X 2 consists of an odd number
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of points in each S¢ and hence 9Bgp,(y') N X1 2 contains a curve from S§ to
S¢. However, S{ and S§ are distinct components of By (y) N X, so that we
conclude this curve contains a point

(1.0.13) Y12 € 3B4h(y) N ath(y’) N 2172 .

By construction, II(y; 2) is in an unbounded component of R*\ T}, /4 (I1(0%1 2)),
contradicting Corollary A.11. This contradiction shows that y; and ys cannot
be connected in Tp,(H) N X.

Third, we extend ~,. There are two cases:

(A) If z, € H, Corollary A.10 gives

(1.0.14) 1,0 C Th(Vy,z) NE CTH(H)NE
from y1,y2 to 21,22 € By, a(2p), respectively.

(B) If 2, ¢ H, then fix z. € OBagx(y) NTI(OH) on the same side of II(y, /)
as II(zp) and fix z4 € 0B1on(zc) \ H with v,_ ., orthogonal to 0H (so the
four points I1(y'), (y), z¢, 24 form a 10k by 20 h rectangle). Corollary
A.10 gives curves

(I.O.l5> v, 9 C Th(')’y,zc Uvzza U ’}’Zd’zb) nX
from y1,y2 to 21,29 € Bh/4(zb), respectively.

In either case, set v = 71 Uy, Un. Set ¢ = 0Bson(y) Ny, (in (A)) or
q = 0B30n(y) N2, (in (B)). By Corollary A.11 as above, z1, 22 are in distinct
components of Bgp(z) N X. O

The next result illustrates the main ideas for Theorem 1.0.8 in the simpler
case where Y is in a slab. Set

Ps = min{B4, Bs, tanbo/(2 Cy) };
Cy, B are defined in Lemma 1.0.9, 6y in (A.3), and (4 in (A.6).

PROPOSITION 1.0.16. Let ¥ C Bay, N{|z3| < B3 h} be an embedded min-
imal disk with 0¥ C 0By,, and let y € 0Ba,,. Suppose that ¥1,%9,33 are
distinct components of By (y) N X and

¥ C (Br, UTh(v0y)) N2

is a curve with Oy = {y1,y2} where y; € Bp(y) N X; and each component of
v\ By, is h-almost monotone.

If 3% is a component of By,—son(y) N Xy for which yi,y2 are in distinct
components of Bsp(y) \ X5, then X is a graph.
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Proof. We will suppose that X% is not a graph and deduce a contradiction.
Fix a vertical point 2z € 4. Define zo, yo, yp on the ray 0,y by
20 = 0B3y,—21n N0y,
Yo = 0B3r,—10n N0, y,
yb = 8B4 To m W *

Set zp, = 0B504(%) N Yz,2,- Define the half-space
(1.0.17) H = {z|(z — 20,20) > 0}.
The first step is to find a simple curve

73 C (Bro—20n(y) U Th(y,y)) N E

which can be connected to X% in B, _90n(y) N X, with dy3 C 0%, such that
0By, —101(y) N3 consists of an odd number of points in each of two distinct
components of H N'YX. To do that, we begin by applying Lemma 1.0.11 to
get ¢ € Bson(zp) N OBsgn(2), distinct components S1,Se of Bgp(z) NE with
2 € Bya(2p) N S;, and a curve

(1.0.18) 75 C (Bson(2) UTh(Vg,2)) N, 0% ={z1,22}, A N5 #0.

Corollary A.10 gives h-almost monotone curves

Vl 71/2 C Th(7zb,zo U 7207?117) m E

from z1, 22, respectively, to 0X. Then v3 = 11 U3 U g extends 73 to 0X. Fix
points

2t € Bu(yo) N1,
2~ € Bp(yo) Nva.

We will show that 2%, 2z~ do not connect in HNY. If n; C HNY connects 2T
and z~, then 7 together with the portion of 3 from z* to 2~ bounds a disk
¥, C X. Using the almost monotonicity of each v;, we get that 0Bsop,(2)N0X
consists of an odd number of points in each ;. Consequently, a curve o, C
OBsop(2)NYE ] connects St to Sp and so 0\ By (%) # 0. This would contradict
Corollary A.11 and we conclude that there are distinct components Z}} and
Yy of HNY with 2t e Effl. Finally, removing any loops in 73 (so it is simple)
gives the desired curve.
The second step is to find disjoint stable disks

I',T2 C Byy—2n(y) \ Z

with OT'; C 0B,,_21(y) and graphical components I'; of B, _4p(y) NT; so that
% is between I}, T, and y1, y2, X% are each in its own component of

Bry—an(y) \ (T UTY).
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To achieve this, we will solve two Plateau problems using X as a barrier and
then use the fact that Xf separates yi,ys> near y to get that these are in
different components. Let 3, X5 be the components of B, _25(y) N X with
y1 € X}, y2 € X5. By the maximum principle, each of these is a disk. Let X,
be the component of B3 (y1) N Y with yo € 3,,. Since y; ¢ ¥,,, Lemma A.8
gives yh € Xy, \ Ny, (y1) with 6y > 0 from (A.3). Hence, the vector y; — y4 is
nearly orthogonal to the slab, i.e.,

(1.0.19) T(yy — y1)| < |y — y1] cosby.

Since X3 separates y1, y2 in Bsp,(y), we get y3 € vy, 4N 5. Fix a component €
of By,—2n(y) \ ¥ containing a component of v, ,, \ ¥ with exactly one endpoint
in ¥}. By [MeYa], we get a stable embedded disk I'y C ©; with oI'; = 9%].
Similarly, let Q9 be a component of B,,_2x(y)\ (XUI'1) containing a component
of Yy, 1 \ (B UT) with exactly one endpoint in . Again by [MeYal, we get
a stable embedded disk 'y C Q9 with Oy = 9%, Since OI'y, dT'2 are linked
in Q1,Qy with (segments of) 7y, ., Yy, Tespectively, we get components I
of Byy_an(y) NIy with 21 € T} Ny, 4, and 2 € Th Ny, . By Lemma
1.0.9, each I" is a graph of a function u; with |Vu;| < Cj, 3. Hence, since
1+ Cg B3 < 1/ cos? 6y, we have

(10.20) T4\ {21} € Noy(2D).

By (1.0.19), we have vy, ,» N Ng, (2] ) = 0, so that (1.0.20) implies T'; N7y, 44 =
{2F'}. In particular, yi,y2, y3 are in distinct components of

Br074h \ (Fll U FIQ) .

This completes the second step.

Set § = 0By,+10n N Y0,y- Let 4 be the component of B, 10, Ny With
By, N4 # 0. Then 0% = {1, 92} with §; € Bp(9) N %

The third step is to solve the Plateau problem with 3 together with part
of 0¥ C 0By, as the boundary to get a stable disk I's C By,, \ ¥ passing
between 41, 9y2. To do this, note that the curve 3 divides the disk ¥ into two
sub-disks E;, 35 . Let @1, Q7 be the components of By, \ (XUT'; UTy) with
v3 C QT NON~. Note that QF, Q™ are mean convex in the sense of [MeYa]
since 0I'y UOI'y C ¥ and 0¥ C O0B4,,. Using the first step, we can label
Q7. Q" so that the z*, 27 do not connect in H N Q*. By [MeYa], we get a
stable embedded disk I's C Q7 with 'y = 82;{. By the almost monotonicity,
0By —10n(y) N OI's consists of an odd number of points in each of EE, Xy
Hence, there is a curve

Y+ COBr—10n(y) N3

from ¥}; to 7. By construction, v \ Bsn(yo) # 0. Hence, since

0B, —10n(y) NTr(9T'3) C B3x(yo),
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Lemma 1.0.9 gives 2 € By(§1) N ~v,. By the second step, I'3 is between I'}
and T,

Let '3 be the component of B, 419, N3 with 2 € fg. By Lemma 1.0.9,
I'sisa graph. Finally, since 4 C B, 4105 and I's passes between 0%, this forces
I's to intersect 4. This contradiction completes the proof. O

Part II. Estimates for stable annuli with slits

In this part, we will show that certain stable disks starting off as multi-
valued graphs remain the same (see Theorem I1.0.21 below). This is needed
in Part IIT when we generalize the results of Part I to when the surface is not
anymore in a slab and in Part IV when we show Theorem 0.3.

THEOREM I1.0.21. Given 7 > 0, there exist Ni,Q1,€ > 0 so that the
following holds:

Let ¥ C Bp, be a stable embedded minimal disk with 0¥ C B,, U 0Bpg, U
{z1 =0} where 0¥\ 0Bg, is connected. If Q1 rog <1< Ry/Q and ¥ contains
an Ny-valued graph ¥, over Dy \ D,, with gradient < ¢,

I YD,)NEM c {|as| <erg},
and a curve n connects ¥4 to 0¥ \ 0BRr, where
nc I Y(D,,)NX\ Bg,,

then ¥ contains a 2-valued graph YXq over Dy, o, \ Dy, with gradient < 7.

Two analytical results go into the proof of this extension theorem. First,
we show that if an almost flat multi-valued graph sits inside a stable disk, then
the outward defined intrinsic sector from a curve which is a multi-valued graph
over a circle has a subsector which is almost flat (see Corollary I1.1.23 below).
As the initial multi-valued graph becomes flatter and the number of sheets in
it go up, the subsector becomes flatter. The second analytical result that we
will need is that in a multi-valued minimal graph the distance between the
sheets grows sublinearly (Proposition 11.2.12).

After establishing these two facts, the first application (Corollary I1.3.1)
is to extend the middle sheet as a multi-valued graph. This is done by dividing
the initial multi-valued graph (or curve in the graph that is itself a multi-valued
graph over the circle) into three parts where the middle sheet is the second
part. The idea is then that the first and third parts have subsectors which
are almost flat multi-valued graphs and the middle part (which has curvature
estimates since it is stable) is sandwiched between the two others. Hence its
sector is also almost flat.

The proof of the extension theorem is somewhat more complicated than
suggested in the above sketch since we must initially assume a bound for the
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// \ Z
Geodesic vz — 5 . ) /{\\l
z J
/ J Sr, (7))
v — g
SR1 (ﬁ/) " \\
\ ! 9] 7
S’ v 0%
Figure 12: An intrinsic sector over Figure 13: The curve 49 containing
a curve 7y defined in (I1.0.22). goes to 9. (72 \ v is dotted.)

ratio between the size of the initial multi-valued graph and how far out it
extends. This is because the flatness of the subsector comes from a total
curvature estimate which is in terms of this ratio (see (II.1.2)) and can only be
made small by looking at a fixed large number of rotations for the graph. This
forces us to successively extend the multi-valued graph. The issue is then to
make sure that as we move out in the sector and repeat the argument we have
essentially not lost sheets. This is taken care of by using the sublinear growth
of the separation between the sheets together with the Harnack inequality
(Lemma II.3.8) and the maximum principle (Corollary I1.3.1). (The maximum
principle is used to make sure, as we try to recover sheets after we have moved
out that we do not hit the boundary of the disk before we have recovered
essentially all of the sheets that we started with.) The last statement is a
result from [CM3] to guarantee as we patch together these multi-valued graphs
coming from different scales that the surface obtained is still a multi-valued
graph over a fixed plane.

Unless otherwise stated in this part, > will be a stable embedded disk.
Let v C X be a simple curve with unit normal n, and geodesic curvature k,
(with respect to n,). We will always assume that 4" does not vanish. Given
R;1 > 0, we define the intrinsic sector (see Figure 12),

(11.0.22) Sk, (V) = UzerVa

where 7, is the (intrinsic) geodesic starting at x € -+, of length R;, and initial
direction n,(x). For 0 < r < Ry, set

Spm (V) = SR,(V)\ S ()
p(z) = diStSRl () (z,7)-

For example, if v = dD,, C R? and n,(z) = z/|z|, then S, g, is the annulus

DR1+T1 \ D7"2+7"1 .
Note that if k, > 0, Sg,(7) N 9% = 0, and there is a simple curve v C ¥
with v € 42, 979 € 9%, and v, N~? = {2} for any ~, as above (see Figure 13),
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then the normal exponential map from + (in direction n.) gives a diffeomor-
phism to Sg, (7). Namely, by the Gauss-Bonnet theorem, an n-gon in ¥ with
concave sides and n interior angles a; > 0 has

(1I1.0.23) (n—Q)TFZZai—/ngZCM~
i=1 i=1

In particular, n > 2 always and if ), o; > 7, then n > 3. Fix z,y € v and
geodesics vz, as above. If v, had a self-intersection, then it would contain a
simple geodesic loop, contradicting (I1.0.23). Similarly, if -, were to intersect
7y, then we would get a concave triangle with oy = ap = 7/2 (since 75,7, do
not cross 7?9), contradicting (11.0.23).

Note also that Sy, r,(7) = Sr,—r, (Sr.m (7)) for 0 <r; < Ry.

I1.1. Almost flat subsectors

We will next show that certain stable sectors contain almost flat subsec-
tors.

LEMMA I1.1.1. Lety C ¥ be a curve with Length(y) < 3mmry, geodesic
curvature kg satisfying 0 < kg < 2/r1, and

diStE(SRl ('y), 62) > T1/2 ,

where Ry > 2r1. If there is a simple curve 49 C ¥ with v C 7?2, 972 C 9%,
and so
ve N AP = {z} for each x € ~,

then for any Q@ > 2 and t satisfying 2 <t < 3R;/4,

(11.1.2) / ‘A|2 <y Rl/T1+02m/10gQ,
Sery. /()
(I1.1.3) ¢ / ky < Length({p = £}) < Cs (m + Ry /r) ¢
v

Proof. The boundary of Sg, = Sg,(7) has four pieces:
v, {p = R1}, and the sides vq, Vs -
Define the functions ¢(t) and K (t) by
(I1.1.4) £(t) = Length ({p = t}),
(IL.1.5) K(t) = /S A2,

Since the exponential map is an embedding, an easy calculation gives

(I1.1.6) (1) :/ kg > 0.
{p=t}
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Let du be 1-dimensional Hausdorff measure on the level sets of p. The Jacobi
equation gives

d
dt(
Define K (t) to be the integral of K (t), i.e., set

/K

Integrating (II.1.7) twice, we see that (II.1.6) yields

0(t) = £(0) + /0 < /7 kg+K(s)/2> ds

(I1.1.8) = Length(y) + ¢ / kg + K(t)/2.

(I1.1.7) kydu) = |A]*/2du .

This gives the first inequality in (II.1.3). Again by the co-area formula, (II.1.8)
gives
Ry R,
R;? Area(Sg,) = Ry > ; ((t) < Ry Length(y) + / ky/2 4+ R;? K(t)/2
R ! ’
(I1.1.9) <6mm+ R;? K(t)/2,
0

where the last inequality used k; < 2/r; on v, Length(y) < 3wmmr, and
Ry >2r.
Define a function ¢ on Sg, by
v =1v(p)=1-p/R

and set dg = disty(+, 74 Up). Define functions y1, x2 on Sg, by

d if 0 <dg <ry,
(IL.1.10) T
1 otherwise,
r ifo<p<ry,
(I1.1.11) x2 =x2(p) = {p/ ' S =
1 otherwise .

Set x = x1x2. Using the curvature estimate |[A|2 < Cr;? (by [Sc]) and
standard comparison theorems to bound the area of a tubular neighborhood
of the boundary, we get

(I1.1.12) Area(Sr, N{x <1}) < C(Ryr1 +mr}),

(I1.1.13) E(x1) +/ |A? < CRy/r1,
Sle{X1<1}

(11.1.14) E(x) +/ AP < G (Ry/ri +m).
Sr,N{x<1}
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Substitution of x% into the stability inequality, the Cauchy-Schwarz in-
equality and (I1.1.14) give

/ AR < / IV () ? / CEIVOP + 20 (V. V) + 92 Vxf?)
(I1.1.15) /X V2 + 28(Ry /11 +m)

Using (I1.1.14) and the co-area formula, we have

R, ~
(IL1.16) G2 K/ (1) = / APy? < / AP+ C (R fry +m).

0

Integration by parts twice in (I1.1.16), (I1.1.15) gives

Rl Rl Rl

om2 [ R = [ Rm@ = [ K@
0 0 0
Rl - Rl
(I1.1.17) = Y K'(t) <3C (Ry/r1 +m) + 2R > ot).
0 0
Note that all integrals in (II.1.17) are in one variable and there is a slight abuse
of notation with regard to 1 as a function on both [0, R1] and Sg,. Substitution

of (IL.1.9), (I.1.17) gives
Rl - Rl
(11.1.18) 43;2/ ((t) <247m+3C (Ry/r1 +m) +2R1_2/ ot).
0 0

In particular, (I1.1.18) gives
(I1.1.19) Ry%Area(Sgp,) < Cy(Ry/r1 +m).

Since /(t) is monotone increasing (by (II.1.6)), (I1.1.19) gives the second in-
equality in (II.1.3) for ¢ = 3 R;/4. Since the above argument applies with R;
replaced by ¢t where 271 < t < Ry, we get (I1.1.3) for 2r; <t <3 R;/4.

To complete the proof, we will use the stability inequality together with
the logarithmic cutoff trick to take advantage of the quadratic area growth.
Define a cutoff function 1, by

log(p/r1)/logQ on Sy, ar

1 on Sq, R,/
—log(p/R1)/1logQ  on Sg /o R,
0 otherwise .

Using (I1.1.3) and (I1.1.19), we get

(IL1.21) E(1) < C(m + Ry /r1)/ log Q.
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As in (I1.1.15), we apply the stability inequality to x1t1 to get
(11.1.22)
/ |AIPx3y? < 2B(¢1) 4+ 2E(x1) < 2C(m + Ry /r1)/logQ + 2C Ry /1y .

Combination of (II.1.13) and (II.1.22) completes the proof. O

The next corollary uses Lemma II.1.1 to show that large stable sectors
have almost flat subsectors:

COROLLARY I1.1.23. Given w > 8,1 > & > 0, there exist my,$1 so that
the following holds:

Suppose v C Bayp, NY is a curve with 1/(27r1) < kg < 2/r1, Length(y) =
32mmyry, dists(Sazwy, (7),08) > r1/2. If there is a simple curve 7 c %
with v € 42, 949 C 0%, and

ve N2 = {x} for each x € ~,

then (after a rotation of R3) S0z, (7) contains a 2-valued graph X4 over
D2wa,r \Dq, r, j2 with gradient < /2, |A] <¢/(27), and distg , ()(7,Za) <
201 7r1. '

Proof. We will choose 1 > 12 and then set m; = w Q2 log Q. By Lemma
I1.1.1 (with Q = Q;/6, Ry = Q2wry, and m = 32m1/3),

(11.1.24) / JAP? < C(2w+my/logQy) =2Cmy/log Q.
Snl 71/6,6 Q2 wry (’Y

Fix my disjoint curves 71, ...,Ym, C v with Length(~;) = 327 r;. By (I1.1.24)
and since the Sqz,,, (7;) are pairwise disjoint, there exists v; with

(11.1.25) / |A]> <2C/logQ; .
801 r1/6,69; wry (Vi)

To deduce the corollary from (II.1.25) we need a few standard facts. First,
define a map

® : [0, Qfwr1] X p/2r,)11 [0, Length(y)] —
by ®(p,x) = 7.(p). By the Riccati comparison argument (using Ky < 0 and
kg >1/(271) on 7),
1
pt2r’

Second, let v;/2 C 7; be the subcurve of length 16 w r with dist. (v;/2, 0v;)
=87 ry. Since k; > 1/(271) on v, we have f%/Q kg > 8m. By (IL.1.7),

(I1.1.26) ® is distance nondecreasing and kg, >

J :
So2 o (vi/2)0{p=t}
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is a monotone nondecreasing function of ¢. In particular, we can choose a curve
4 C 7i/2 with

(11.1.27) ky=87.

/Sn% wry IN{p=171/3}

Set S =50, r,/330,wr (7) and = SN {p = Q171/3}.
Third, by the Gauss-Bonnet theorem, (II.1.25), and (II.1.27) (for O
large),

(I1.1.28) 87r§/ k:g§87r+/|A|2/2§87r—|—C/log(21 <9r.
Sn{p=t} S

Note also that, by (I1.1.26) and (II1.1.28),
Length(SN{p=1}) <9 (t+2r) < 14mt.

Finally, observe that, by stability, (II.1.25), and by (I1.1.26), the mean
value theorem gives for y € S

(I1.1.29) sup |A]2 < Crp2(y)/logQy .
By /s ()

Integrating (I1.1.29) along rays and level sets of p, we get

(I1.1.30) max distgz(n(z),n(y)) < Ca (logw + 1)/4/log 2 .
Y

We can now combine these facts to prove the corollary. Choose €21 so that

Cy (logw +1)/4/logQ; < Cs¢e.

For C3 small, after rotating R3, S is locally a graph over {z3 = 0} with gradient
< e/2. Since 4 C By, and Q1 > 12,

’3/ C B2T‘1+Ql7‘1/3 C BQ1T1/2 N

Choosing €1 even larger and combining (I1.1.26), (I1.1.28), (I1.1.29), and
(I1.1.30), we see that (the orthogonal projection) II(%) is a convex planar curve
with total curvature at least 7, so that its Gauss map covers S! three times.
Given x € 4, set 7, = S N~,. By (I1.1.29), 4, has total (extrinsic geodesic)
curvature at most

Cy logw/+/logQ; < Cse

and hence 7, lies in a narrow cone centered on its tangent ray at £ = 7, N 4.
For C5 small, this implies that 4, does not rotate and

(IL131) (&) — (3 A {p = £})] = 9 (t — Q1 r1/3)/10.

Hence, I1(909: \ {%}) ¢ D2waq, r, which gives ¥; and also distg_, (,)(7,24) <
2 Ql r1. ' [l



48 TOBIAS H. COLDING AND WILLIAM P. MINICOZZI 1I

REMARK I1.1.32. For convenience, we assumed that ky < 2/ in Corol-
lary 11.1.23. This was used only to apply Lemma II.1.1 and it was used there
only to bound fﬂ/ kg in (IL.1.9).

Recall that a domain  is 1/2-stable if and only if, for all ¢ € Cg’l(Q),
there exists the 1/2-stability inequality:

(I1.1.33) 1/2/ |A]2¢? < /w\?
Note that the interior curvature estimate of [Sc] extends to 1/2-stable surfaces.

In light of Remark I1.1.32, it is easy to get the following analog of Corollary
11.1.23:

COROLLARY II.1.34. Given w > 8,1 > ¢ > 0,Cy, and N, there exist
mq, 1 so that the following holds:

Suppose that ¥ is an embedded minimal disk and v C 9B, (y) C X is a
curve with

/kg < Copmy and Length(y) =mqiry .
.

If T, /8(Saz wr, (7)) is 1/2-stable, then (after rotating R?) S0z, (7) contains
an N-valued graph X over Dy, r, \ Da,r, with gradient <e, |A| <e/r, and

diStSQ%w‘l(W)(fy’ EN) <4 r.

Note that, in Corollary I1.1.34, both k, > 1/ and the injectivity of the
exponential map follow immediately from comparison theorems.

I1.2. The sublinear growth

This section gives an elementary gradient estimate for multi-valued mini-
mal graphs which is applied to show that the separation between the sheets of
certain minimal graphs grows sublinearly; see Figure 14. The example to keep
in mind is the portion of a (rescaled) helicoid in a slab between two cylinders
about the vertical axis. This gives (two) multi-valued graphs over an annulus;
removal of a vertical half-plane through the axis cuts these into sheets which
remain a bounded distance apart.

The next lemma and corollary construct the cutoff function needed in our
gradient estimate.

LEMMA I1.2.1. Given N > 36/(1 — e='/3)2, there exists a function 0 <
¢ <1 onP with E(¢) <4w/log N and
6= {1 if Rle<p<eR and|f] <3,

11.2.2
( ) 0 ifp<e ™ RoreNR<por||>rN.
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by

% ——u(2R)

u(R)

Figure 14: The sublinear growth of the separation u of the multi-valued graph
Y u(2R) < 2%u(R) with o < 1.

Proof. After rescaling, we may assume that R = 1. Since energy is
conformally invariant on surfaces, composing with 23~ implies that (I1.2.2) is
equivalent to E(¢) < 47/log N and

(11.2.3)

o if |log p| < 1/(3N) and |0] < 7/N,
o if|logp| > 1/3 or 6] > 7/3.

This is achieved (with F(¢) = 27/log[N (1 —e~/3)/6]) by setting

1 on Bg/n(1,0),
(124) ¢ =q1— A=A on By_e-1s(1,0) \ Byn(1,0),

0 otherwise . 0

Given an N-valued graph X, let 2?;:532 C ¥ be the subgraph (cf. (0.1))
over

(11.2.5) {(p, 9) ‘ rs S 1% S T4, 91 S 9 S 92} .

Transplanting the cutoff function from Lemma I1.2.1 to a multi-valued
graph gives the next corollary:

COROLLARY 11.2.6. Given g, 7 > 0, there exists N > 0 so if ¥ C R? is
an N-valued graph over Den g\ Do-n~ g with gradient < T, then there is a cutoff
function 0 < ¢ < 1 on X with E(¢) < eo, ¢lox =0, and

_ —m, 37T
(I1.2.7) p=1onXp i cp,-

Proof. Since E}_%%?’g ry2 C Eéi’gfg and the projection from ¥ to P is bi-

Lipschitz with bi-Lipschitz constant bounded by v/1 + 72, the corollary follows
from Lemma I1.2.1. O
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If u > 0 is a solution of the Jacobi equation Au = —|A|?>u on ¥, then
w = log u satisfies
(I1.2.8) Aw = —|Vuw|* — |A]%.
The Bochner formula, (I1.2.8), Ky, = —|A|?/2, and the Cauchy-Schwarz in-

equality give
A|lVw|? = 2|Hessy|? + 2(Vw, VAw) — |A]* |Vw|?
> 2|Hess, |2 — 4|Vw|? [Hess,| — 4 |Vw| |A| [VA| — |A]? [Vw]|?
(I1.2.9) > —2|Vuw|* = 3|42 |[Vw|* - 2|VA]?.
Since the Jacobi equation is the linearization of the minimal graph equation
over ¥, analogs of (I1.2.8) and (I1.2.9) hold for solutions of the minimal graph

equation over Y. In particular, standard calculations give the following analog
of (I1.2.8):

LeEMMA I1.2.10. There ewists 0, > 0 so that if 3 is minimal and u is a
positive solution of the minimal graph equation over ¥ (i.e., {z + u(z) ny(x) |
x € B} is minimal) with

[Vul + |ul |A] <4,
then w = logu satisfies, on X,
(I1.2.11) Aw = —|Vw|? + div(aVw) 4+ (Vw, aVw) + (b, Vw) + (c — 1)|A[*,
for functions a;j,b;,c on X with |al,|c| < 3|A||u] + |Vu| and [b] < 2|A]|Vul.

The following gives an improved gradient estimate, and consequently an
improved bound for the growth of the separation between the sheets, for multi-
valued minimal graphs:

ProrosiTiON 11.2.12. Given a > 0, there exist 6, > 0, Ny > 5 so that
the following holds:

If ¥ is an Ng-valued minimal graph over D, g \ Do-n, g with gradient
<1 and0 <u<dpR is a solution of the minimal graph equation over ¥ with
|[Vu| <1, then for R< s <2R

(I1.2.13) sup |Ax|+ sup |Vu|/u < a/(4R),
D Fon
(I1.2.14) sup u < (s/R)* sup u.
zar X

Proof. Fix eg > 0 (to be chosen depending only on «). Corollary I11.2.6
gives N (depending only on eg) and a function 0 < ¢ < 1 with compact

support on E;]X,’;%’ NR

(I1.2.15) E(¢) <epand ¢ =1 on 21}75??3/2-
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Set Ny = N + 1, so that distg(E;]nge[gR,BE) > e Y R/2 and hence |A| <

CeN/R on E;]YV%]ZLT r- Now fix z € E%QJR. When we substitute ¢ into the
stability inequality, (I1.2.15) bounds the total second fundamental form of

2;%%3;7 R/2 by eg. Hence, by elliptic estimates for the minimal graph equation,
(I1.2.16) sup (R?|VAg|*+ |As|?) < CepR 2.

Bs ry/s(z)
Since ¥ and the graph of u are (locally) graphs with bounded gradient, it is
easy to see that

(I1.2.17) _sup Vu| < CeN sgp lu|/R < CeV6,.
e_NIYQ,e”;VR

Set w = logu. Choose 6, > 0 (depending only on N), so that (I1.2.17) implies

that w satisfies (I[.2.11) on Z;]Y\,TEJER with

lal, [b]/] Al |e] < 1/4.
Applying Stokes’ theorem to
div(¢*Vw — ¢2aVw)

and using the absorbing inequality, we see that
(I11.2.18) / |Vw|? < /¢2|Vw|2 <CE(¢)<Cep.
Br/2()

When we combine (I1.2.11) and (I1.2.16), an easy calculation (as in (II.2.9))
shows that on Bsp/s(7)
(1I1.2.19) AlVw|* > —C |Vw|! = Ceg R?|Vuw|* = Cep R™*.

By the rescaling argument of [CiSc| (and by the meanvalue inequality), (I1.2.18)
and (I1.2.19) imply a pointwise bound for [Vw|? on Bgy(x); combining this
with (I1.2.16) gives (I1.2.13) for g small. Integrating (11.2.13) and using the
elementary inequality

(s —R)/R < 2log(s/R),

we get (11.2.14). O

11.3. Extending multi-valued graphs in stable disks

Throughout this section ¥ C Bpg, is a stable embedded minimal disk with
oY C B, U@BRO U {.%'1 = 0}

and 0% \ 0Bp, connected. Fix a constant 73 with 0 < 73, < 1/4 so that if
¥4 is a multi-valued minimal graph over Dag \ Dg/; with gradient < 7, then
I~1(0Dg) N, has geodesic curvature k, satisfying

1/2R) <ky <2/R

(with respect to the outward normal).
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The next corollary shows that for certain such ¥ containing multi-valued
graphs, the middle sheet ¥™ extends to a larger scale. The main point is to
apply Corollary I1.1.23 to get two 2-valued graphs on a larger scale with M
pinched between them. We first use the convex hull property to construct the
curves 'yja needed for Corollary I1.1.23.

COROLLARY I1.3.1. Givenw,m > 1,1/4 > € > 0, there exist Q1,mg,0 so
that for ro,re, Ro, Ry with 4Q119 < 4Q1719 < Ry < Ro/(4Q1w) the following
holds:

Let ¥4 C ¥ be an mg-valued graph over Dpg, \ D,, with gradient < Ty,
separation between the top and bottom sheets < § Ry over ODpg,, and

II7Y(Dy,) NEy C {|zs] < ro/2}.
If a curve n C II"Y(D,,,) N X\ OB, connects X, to
0¥\ 0Bg, ,

then XM extends to an m-valued graph over Dy g, \ D,, with gradient <1 and
|A| < e/r over Dyg, \ DR,-

Proof. First, we set up the notation. Let €21, m; > 1 be given by Corollary
I1.1.23. Assume that Q3 w,m,m; € Z. Set

my = 24Q%w+32m1 +m+4+1,
v =1""(0Dg,/0,) N .
Since II"Y(D,,, )N, C {|z3| < r2/2}, the gradient bound gives, for ro < R < Ry,

(I1.3.2) H_l(rgg;()ng |zg| <re/2+ 7K (R—12) < R/2,

so that v C Bag,/q,- By the definition of 73, we have Q1/(2Rp) < kg <
21 /Ry on . Arguing on part of 3 itself, by the convex hull property, we see
that there are mgy components of v N {x; > R/(2Q1)} which are in distinct
components of ¥ N{z1 > Ry/(2Q1)}. Hence, see Figure 15, there are mg
distinct y; € v and (nodal) curves

00y, Ome—1 C {21 = Ro/U}NX
with do; = {yi, 2z}, s Ny = {yi}, zs € 0¥ N{x1 = R2/U} C IBR,, and for
P F ]
(11.3.3) diStE(O‘i,O'j) > RQ/Ql .

Order the o;’s using the ordering of the y;’s in 7 and set i; = 0, ip = 8QF w +
16mq, i3 = 16Q%w 4+ 16m1 +m, and i4 = mg — 1. Let v1,72,v3 C v be the
curves
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In different sheets.

Distinct nodal curves.

Plane 21 = Ry /.

0

Figure 15: The proof of Corollary II.3.1: The nodal curves.

e from Y402 w to Y402 w416 my»
e from Y1202, 116m, 10 Y12020w+16m,+ms

® from Y2002 w1 16m,+m 10 Y2002 w432my +m-

Hence, v1,72,7v3 C v are 16 m1-, m-, 16 mi-valued graphs, respectively, with
72 centered on £ each 7, between y;, and y;,,,, and for j =1,2,3
(11.3.4) min  {|i; — k|, |ij41 — K|} >4 w.
{klyr€vi}

Next, we construct the curves 'yj‘? needed to apply Corollary 11.1.23 to each
v;. We will also use (II.3.3) and (I1.3.4) to separate the v;’s. For ki < ko,
let vy(k1,k2) C X be the union of oy,, ok,, and the curve in 7 from yg, to y,.
Since X is a disk, 0v(k1, k2) C 93, and 9%\ 0Bpg, is connected, one component
Y (k1,ka) of ¥\ v(k1, k) has 0% (k1, ko) N 0¥ C OBR,. By the fact that the
oi’s do not cross 7, it is easy to see that n, points into 3(k1, k2) and

(1135) E(jl,jg) N E(kl, kQ) = E(max{jl, kl}, min{jg, kg}) ,

where, by convention, X (ki,k2) = 0 if k1 > ko. Set 'y]a = (4j,1j4+1) and
note that v; C 'yj‘? and &yj‘? C 0. Set Sj = Sq,wr,(v;)- By (IL.3.4) and
(IL.3.5), any curve 77 C X(ij,4j41) from ~; to 7? \ (y U OBpg,) hits at least
402w of the o;’s and so, by (I1.3.3), Length(7}) > 2Q; w Ry. Combining this
with Ry > 491 w Rs, we get

(11.3.6) diStE(ij,iHl)(’yj’ ﬁz(ij, ’L'j+1) \ ’7]') >20whRy.

Fix z € 7; and ~, (the geodesic normal to «; at z and of length ; w Ry). By
(I1.0.23), the first point (after x) where -y, hits 0%(i;,7;41) cannot be in 7.
Consequently, (I1.3.6) implies that v, C X(ij,4j41) and so v, N 'y]a = {z} and
7](? separates S; from Sy U TR, /(20,)(0%) for j # k.

The rest of the proof (see Figure 16) is to sandwich X between two
graphs that will be given by Corollary 11.1.23 and then deduce from stability
that XM itself extends to a graph. Namely, applying Corollary 11.1.23 to
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by
1\ »M ig between ¥ and g

N
/

X3

Figure 16: The proof of Corollary I1.3.1: Sandwiching between two graphical
pieces.

1,73 (with r1 = Ra/Qy), we get 2-valued graphs ¥4, C Si, X43 C S3 over
Bywr, NP\ B,/ (i = 1,3) with |[A| < ¢/(2r) and gradient < ¢/2 < 1/8.
Here P; is a plane through 0. Using |A| < ¢/(27) and distg, (7, £4:) < 2 Ra,
we see easily that ¥4, N X, # 0. Hence, ¥, contains a 3/2-valued graph ¥;
over D3, g,/2 \ Do R,/3 With

gradient < tan (tan™'(1/4) 4+ 2tan"'(1/8)) < 3/4.

By construction, £ is pinched between ¥; and X3 which are graphs over
each other with separation < w®é Ry (by the Harnack inequality). Since ¥ is
stable, it follows that if ¢ is small, then ™ extends to an m-valued graph ¥,
over D5, g,/4\ D4 R,/5 With Yo between X1 and 3. In particular, ¥ is a graph
over 1. Finally, since ¥; is a graph with gradient < 3/4 and |A| < ¢/(27),
we get that Xg is a graph with gradient < 1 and |A| <e/r (cf. Lemma 1.0.9).

O

Combining this and Proposition I1.2.12, M extends with separation grow-
ing sublinearly:

COROLLARY I1.3.7. Given 1/4 > ¢ > 0, there exist Qy, mg,do > 0 so that
for any 1o, ra, Ra, Ry with Qyro < Qore < Ra < Ro/Qo the following holds:

Let ¥4, C ¥ be an mo-valued graph over Dg,\ D,, with gradient < 7 < 7y,
separations between the top and bottom sheets of EM(C Eg) and 34 are < 01 Ry
and < §y Ra, respectively, over 0Dpg,, and

Hil(Dﬁ) N Eg C {|.C63‘ < 7’2/2} .
If a curve n C II"Y(D,,,) N X\ OB, connects X, to
0¥\ 0Bg, ,

then M extends as a graph over Dy g, \ Dy, with gradient < 11+3¢, |A| < ¢e/r
over Dy, \ Dr,, and, for Ry < s < 2 Ry, separation < (s/R3)'/? 51 Ry over
Dg \ Dg,.

Proof. Let 6, > 0, N, > 5 be given by Proposition I1.2.12 with o = 1/2.
Let Q1,mq,8 > 0 be given by Corollary I1.3.1 with m = N, + 3 and w = 2e™s.
We will set 69 = do(6, dp, Ng) with 6 > dg > 0 and Qo =4O elVs
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By Corollary I11.3.1, ™ extends to a graph

27(N9+3)7"’(N9+3)7r
7”2,2 eNg R2

of a function v with |[Vv| <1 and |A| < e/r over Dyen, g, \ Dr,. Integrating
VIVol| < [A] (1 + [Vo]?)*? < 2% /r,

we get that |Vv| <7 +4¢elog2 <7+ 3¢ on Dag, \ Dg,.

For 6y = d9(Ny,0p) > 0, writing ¥ as a graph over itself and using the
Harnack inequality, we get a solution 0 < u < §, Ry of the minimal graph
equation on an Ny-valued graph over Dy, g\ Do-n, p,. Applying Proposition
11.2.12 to u gives the last claim. O

The next lemma uses the Harnack inequality to show that if M extends
with small separation, then so do the other sheets. The only complication is
to keep track of 0%.

LEMMA 11.3.8. Given N € Z., there exist C3,d2 > 0 so that forrg < s <
Ry/8 the following holds:

Let ¥y C XN {|x3| < 2s} be an N-valued graph over Dys\ Ds. If a curve
n C II7Y(Ds)NE\OBg, connects Sy to 0%\ OBg,, and XM extends graphically
over Dy \ Dy with gradient < 19 <1 and separation

§535§6287

then ¥4 extends to an N-valued graph over D3\ Ds with gradient < 15+ Cs 63
and separation between the top and bottom sheets < C5 3 s.

Proof. Suppose N is odd (the even case is virtually identical). Fix
Y-N,--- YN € X4 with y; over {p = 25,0 = jw}. Let 79,72 C M e
the graphs over {2s < p < 3s,0 = 0} and {2s < p < 3s,0 = 27}, respectively,
with 9vo = {yo, 20} and Ovy2 = {ya2, 22}.

As in the proof of Corollary I1.3.1, there are nodal curves
O_Ny...,onN C{x1 =—-2s}NX

from y; (for j odd) to OBg, so that

(1) Any curve in ¥\ II"1(0Dy;) from 2o to O \ OBg, hits either every o;
with j > 0 or every o; with j < 0.

(2) For i < j, 0; and o do not connect in II71(Dys) N {z1 < —2s} N3,

(3) diSt(U]’O’j,aE \ GBRO) > s.
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Note that (2) follows easily from the convex hull property when i # —N or
j # N; the case i = —N and j = N follows since ¥ separates y_n,yn in
Hil(D4s) N {.%'1 <=2 S}.

By the curvature estimate for stable surfaces of [Sc] and the Harnack
inequality for the minimal graph equation, there exist C4,d4 > 0 so that if
23,24 € X\ T3/4(0%), 11(23) = I1(24), and

0< ‘2’3—2’4| §(558§548,
then B, /s(z4) is a graph over (a subset of) By,7(23) of a function v > 0 with
]Vu\ < min{l/?, 04 (55} .

The lemma now follows easily by repeatedly applying this and using (1)—(3)
to stay away from 9% until we have recovered all N sheets. O

I1.4. Proof of Theorem I1.0.21

Let again ¥ C Bp, be a stable embedded disk with
0 C By, U@BRO U {.%'1 = O}

and 0X \ 0BpR, connected. We will use the notation of (I1.2.5), so that ngﬂ
is an annulus with a slit as defined in [CM3]. The next lemma is an easy
consequence of Theorem 3.36 of [CM3].

LEMMA I1.4.1. Given 19 > 0, there exists 0 < 1 = e1(19) < 1/24 so that
the following holds:

If 2ro <1 < r3 < Ro/2 and E?:i: C X is the graph of a function u with
|[Vu| < 1/12, maxz?,fwﬂul + |Vu|) < 2¢1, |A] < ei/r, and for 1 <t < r3 the
separation over 0Dy is

<4rme t'/?,

then |Vu| < 1.
Lemma II.4.1 follows from Theorem 3.36 of [CM3] and two facts:

e Since ¥ is a graph over a larger set in P (by stability and the fact that
0¥ C B,,U0Bpr,U{z1 = 0}), the bound for the separation and estimates
for the minimal graph equation over X give a bound for the difference in
the two values of Vu along the slit (cf. Proposition 11.2.12).

e Theorem 3.36 of [CM3] actually applies directly to Bs,, /4 N E?:if \ B
to get |Vu| < 10/2 on D, /5 \ Da; integrating

VIVull < Al (1 +|Vul’)*? < 261/r

then gives |Vu| < 19 on D, \ D;.
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We will prove Theorem I1.0.21 by repeatedly applying Corollary I1.3.7 to
extend ©M as a graph, Lemma I1.4.1 to get an improved gradient bound, and
then Lemma I1.3.8 to extend additional sheets.

Proof of Theorem 11.0.21. Set 179 = min{7, 7, 1/24}/2 and let 1 = &1(79)
with
0<el <1/72

be given by Lemma I1.4.1. The constants g, mg,dg are given by Corollary
I1.3.7 (depending on 1) and C3,d2 > 0 are from Lemma I1.3.8 with N = my.
Set N1 = mg, 1 = 2, and choose € > 0 so the following three properties
hold:

&1 70 (50 50 52
27 4 21/203" 2w2Y2Cy" 2wmg’ 4w 2L/2

(I1.4.2) € < min { },

(D) N8 C {las| < ro/2},
|A| < e1/r on M\ By, .

To arrange the last condition, we use the gradient bound, stability, and second
derivative estimates for the minimal graph equation (in terms of the gradient
bound). Note that, integrating the bound gradient < e around the circle Dy,

Y

we get that the separation between the top and bottom sheets of ngl and
ro ﬁ“”’m"ﬂ over 0D; are at most 2mwet and 27 mget, respectively. Note also

that H_l(Dgro) N Eg C {‘$3| < 367“0}.

(1) Apply Corollary 11.3.7 (with r9 = 19, Ro = 1,71 = 279) to extend Eg(’ff
to a graph 22025 with gradient < 279 + 3¢; < 1/12, |A| < e1/r over
DQ\Dl, and, for 1 <t< 2,

(I1.4.3) separation < 2met'/2 over dD;.

(2) By Lemma I1.4.1 (with r3 = 2), Eg:gﬂ and hence Y%7 have gradient

7"0,2
< 70.

(3) By Lemma I1.3.8 (with N = mq,s = 1/2, 7 = 10,03 = 47e 21/?), nggﬂ

is contained in an mg-valued graph Z;”;"}g’moﬂ C ¥ over Dyj5 \ Dy, with

gradient < 79 4+ C34me 21/2 < 21y and separation < C52me 21/2 < do.

Repeat (1)—(3) with: (1) Re = 3/2 to extend ngg/z to Eg(’fg with (11.4.3)
holding for 1 <t¢ < 3, (2) r3 = 3 so that 22025: has gradient < 79, (3) s = 3/2

to get Z;{g‘}g’m” C ¥, and then again (1) R = 9/2, etc., giving the theorem.
[l
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Part III. The general case of Theorem 1.0.8

II1.1. Constructing multi-valued graphs in disks in slabs

Using Part I, we show next that an embedded minimal disk in a slab
contains a multi-valued graph if it is not a graph. We can therefore apply Part
II to get almost flatness of a corresponding stable disk past the slab. This is
needed when the minimal surface is not in a thin slab.

ProrosiTION II1.1.1. There exists 3 > 0 so that the following holds:
Let X2 C B,,N{|xs| < Bh} be an embedded minimal disk with 0% C OB, .
If a component 31 of Bigp, N X is not a graph, then ¥ contains an N-valued

graph over Dy, _2p \ D(go+20 Ny h-

Proof. The proof has four steps. First we show, by using Lemma 1.0.11
twice, that over a truncated sector in the plane, i.e., over

(11112) 551’32(01,92) = {(p, 9) | S1 S P S S92, 91 S 0 S 92},

we have three distinct components of . Second, we separate these by stable
disks and order them by height. Third, we use Proposition 1.0.16 to show that
the “middle” component is a graph over a large sector. Fourth, we repeatedly
use the appendix to extend the top and bottom components around the annulus
and then Proposition 1.0.16 to extend the middle component as a graph. This
will give the desired multi-valued graph.

In different components by Lemma 1.0.11.

M i \ x3 = ph
\'\ =2 ~
i‘ ¥
| ]:/_a
/ / xr3 = —fph

. / . .
I Applying Lemma 1.0.11 twice gives at
[ .
least 3 different components of ¥

in (IT1.1.4).

V2

Figure 17: Proof of Proposition I1I.1.1:
Step 1: Finding the three components.

For j = 1 and 2, let ¥; be the component of Bag j, MY containing 1. By
the maximum principle, each 3; is a disk. Rado’s theorem (see, e.g., [CM1])
gives points

zj € T (0D j—10y) N 5 ,

for j = 1,2, where ¥ is not graphical. Rotate R? so that 21,z € {1 > 0} and
set z = (rp,0,0). Apply Lemma 1.0.11 twice as in the first step of the proof of
Proposition 1.0.16 to get (see Figure 17):
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(1) Disjoint curves 71,72 C X with 0y C 0B, /2,

(ITL.1.3) Y € Bsn(2k) UTh(0D 20 k—10)n N {71 = 0}) U Th(70,2/2) 5
which are C' 3 h-almost monotone in Ty (vo,./2) \ B2ok h-

(2) For k = 1,2 and yo € Y0,2/2 \ Bsokh, there are components E;O’kyl +
Z’yo 2 Of Bsx(yo) N X each containing points of By, (yo) N k-

It follows from (2) that, for k = 1,2, there are components 3y, 1, X 2 of
T (Syonry—an(—37/4,37/4)) N T
with E’Z/Zk?i C X,i- These components do not connect in
T (Saon (= 77/8,77/8)) N S.

That is, ¥ would otherwise contain a disk violating the maximum principle (as
in the second step of Lemma I.0.11). The same argument gives ¥;, ;,, 3, i,, 2
which do not connect in

(IT1.1.4) T (Saonr, (—77/8,77/8)) N 2.

13,13

By the second step of Proposition 1.0.16, if ¥; ;, 3 ¢ do not connect in
T (Suon s (—77/8,77/8)) N X,

then there is a stable embedded disk ', with 0Ty, C 3, ',NY = @, and a graph
I, C Ty over Sypro—n(—137/16,137/16) separating ¥; ;, Xy . Applying this
twice (and reordering the kg, ip), we get I'y C I'y and I, C I'y so that each
Skesi, is below I, which is in turn below Xy, ;,.,. Let 74 and 7% be top and
bottom components of U;v; \ Byop, intersecting 0B, /2. Since X1 C Xz, a curve
Y C Bygp N'Y connects 4 to 4.

See Figure 18. By a slight variation of Proposition 1.0.16 (with v = 7% U
Y"UAY), the middle component Sy, ;, is a graph over Sya ro—2n(—37/4, 37/4).
This variation follows from steps one and three of that proof (step two there
constructs barriers I'; which were constructed here above).

See Figure 19. Corollary A.10 gives curves

V4,75 C (Baan U Th(0,(0.00.0) \ T (Dazp)) N E

from 0Byz, N~ and OBysy N 1Y, respectively, to 0B, /2. In particular, 78
is below X, ;, and 74 is above Xy, ;,; i.e., X, ;, is still a middle component.
Again by the maximum principle, this gives 3 distinct components of

I (Sag pyro—2n(—7/4,5m/4)) N
which do not connect in

T (Sysp.0, (—37/8,117/8)) N T
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Extends since it is
“between the sheets.”

S

Figure 18: Proof of Proposition I1I.1.1:
Step 3: Extending the middle component as a graph.

By Proposition I.0.16, ¥, ;, further extends as a graph over Sy pr,—24(—7/4,57/4),

giving a graph 2263;4?5224 over Sygn,ro—2h(—31/4,5m/4). By Rado’s theorem,

this graph cannot close up. Repeating this with

V4,75 C (Bagp U Th(Y0,(—r0,0,0) \ T (Dazn)) N X,

etc., eventually gives the proposition. O

Extends by the maxin}um principle.

Graphical middle component.

Figure 19: Proof of Proposition I11.1.1:
Step 4: Extending the top and bottom components by the maximum principle.
They stay disjoint since the middle component is a graph separating them.

II11.2. Proof of Theorem 1.0.8

In this section, we generalize Proposition 1.0.16 to when the minimal sur-
face is not in a slab; i.e., we show Theorem 1.0.8. % C B, ,, C R3 will be an
embedded minimal disk, 0¥ C 0B, ,, ¢1 > 4, and y € 0Ba,,. X1, X2, 23 will
be distinct components of B, (y) N 2.

LEMMA I11.2.1. Given 3 > 0, there exist 2¢y < ¢4 < c3 < 1 so that the
following holds:
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Let ¥f be a component of Be,r,(y) X3 and y; € B, r,(y)NE; fori=1,2.
If y1,y2 are in distinct components of

BC4T0(y)\E/37

then there are disjoint stable embedded minimal disks I'1, Ty C By, (y) \ ¥ with
oy = 0%, and (after a rotation) graphs T, C T'; over Dsc,r,(y) so that
Y1, Y2, X4 are each in their own component of

I (Dse,ry(y)) \ (I UTY)
and T, T C {|vs — 23(y)| < Besrol-

Proof. This follows exactly as in the second step of the proof of Proposition
1.0.16. O

Proof of Theorem 1.0.8. Let Np,Qq,e > 0 be given by Theorem 11.0.21
(with 7 = 1). Assume that Ny is even. Let 3 > 0 be from Proposition III.1.1.
Set

(I11.2.2) B =min{Bs, ¢, /Cy, B/(6[60 + 20 (N1 +3)])} /(5),

where f;,Cy are as in Lemma 1.0.9. Let ¢2,c3,¢4 and T'; C T'; be given by
Lemma II1.2.1. Set

cs = (60 +20 (N1 +3))Bc3/8,

so that ¢5 < ¢3/(30€2). Finally, set ¢; = 16 ;.

We will suppose that 3j is not a graph at 2’ € X5 and deduce a contra-
diction. Set z = II(2'). Since Xf separates yi,y2, it is in the slab between
'}, T%. By Proposition II1.1.1 (with h = 3c379/3) and (I11.2.2), ¥ contains an
(N1 + 3)-valued graph ¥, over Dg, (2) \ D¢, r,(2) and ¥ is also in the slab.
Let 04 C ¥4 be the (N + 2)-valued graph over 0D, r, (%) (see Figure 20). Let
FE be the region in

H_I(D03 TO/Q(z) \ D03 ro/(ZQl)(z))

between the sheets of the (concentric) (N1 + 1)-valued subgraph of ¥,.

The first step is to find a curve y3 C X containing o, so that any stable
disk with boundary ~3 is forced to spiral. Also, 73 will have six pieces: o4, two
segments, 7%,7%, in ¥, which are graphs over a portion of the {z; > ()}
part of the z;-axis, two nodal curves, of, ¢, in {1 = constant}, and a segment
o? in 0. Since Y, is a graph, there are graphs e Y4 over a portion of

the {z1 > z1(2)} part of the z;-axis from doy to
yt,yb S {xl = l‘l(Z) +3C5T’0} nx.

By the maximum principle (as in the proof of Corollary I1.3.1), there are nodal
curves
oo c{z1 =z1(2) + 3510} NT
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' !
‘\ w,h/y Plane
N r1=constant

Figure 20: The curve 3 in the proof of Theorem 1.0.8. (y3 = c® U~® U og U
Fuetue?)

from yt,y®, respectively, to yé,yg € 0. Finally, connect yé,yg by a curve
09 C 9% and set
vgzabUVbUUgU'thatU08.

By [MeYa], there is a stable embedded disk I' C B, r, \ ¥ with OI' = v3. Note
that OI' \ 0B, is connected.
We claim that ¢f, ¢® do not intersect between any two of the components
{Ui} of
B(03—205)7“o (z) N{z1 =2x1(2) +3csmo} N g

If not, we can assume that a curve o C ¢! connects y' to a point 3y between
0i,0i+1. By (a slight variation of) Proposition 1.0.16, the portion X, of X
between the i-th and (i + 1)-st sheets of

B(03—05)ro (z)N g \H_1<D2C5 ro(2))

is a graph (in fact, “all the way around”). Note that Bz, r,(2) N Xy, and
Bs ¢, ry(2)NE, are in the same component of Bs, »,(2) N Y, since otherwise the
stable disk between them given by [MeYa] would, by Lemma I1.0.9, intersect
¥4. We can therefore apply the maximum principle as in the proof of Corollary
I1.3.1 (i.e., the case yo € o; for some j) to get the desired contradiction.

We will show next that I' contains an Ni-valued graph I'y over D, 2(2)\
D¢, ry/20,)(2) with gradient < e,

I (Dey rop202)(2)) N (L) € {lar — 23(2)| < eearo/(2)},

and a curve n C II"Y (D, 1, /(2 0,)(2)) NT'\ 0B, connects I'y to '\ B;,. By
the previous paragraph,

(I11.2.3) distp(ENT,T) > esro/(58).

By (the proof of) Lemma 1.0.9 (with h = c379/(51) and 3 = 50 3), (111.2.2),
and (I11.2.3), we have that each component of E N T is a multi-valued graph
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with
gradient <5C; B<e.

Let 0. C E be a graph over 9D, /20,)(2). Since o, separates

1'[*1(8ch ro/(2 Ql)(z)) N ")/t and H*1(6D63 7"0/(291)(2)) N ")/b

in the cylinder II"1(dD,, , /(20,)(2)) (and the description of OI'), there is a
curve

nc H_l(D03 7"0/(291)(2)) nr \ aB7'0

from I'N o, to OI' \ OB,,. Hence, since E is between the sheets of an (N + 1)-
valued graph, we get the desired I'y.
Combining all of this, Theorem I1.0.21 gives a 2-valued graph I'y C I" over

Dcl 7"0/(291)(’2) \ DC?, 7»0/(291)(2)

with gradient < 1. Let 4 be the component of B(y_3.,),, N7 intersecting By,.
Note that since 9y = {y1,y2} is separated by the slab between I'}, I, and
v\ By, is ¢a ro-almost monotone, I'y separates the endpoints of 95. Finally, as
in the proof of Proposition 1.0.16, we must have I'yN4 # (). This contradiction
completes the proof. O

Many variations of Theorem 1.0.8 hold with almost the same proof. One
of these is given in the following theorem:

THEOREM II1.2.4. There exist di > 8 and do < 1 so that the following
holds:

Let X% C By, ,, C R? be an embedded minimal disk with ¥ C By, », and
let y € ODs5,,. Suppose that ¥1,39 C X are disjoint graphs, over Dsy (y) with
gradient < da, which intersect Bg,,,(y). If

Y1 and X9 can be connected in Bs,, N X,

then any component of By, (y) N Y which lies between them is a graph.

Part IV. Extending multi-valued graphs off the axis

In this section ¥ C Bg, C R3 will be an embedded minimal disk with
0% C 0BR,. In contrast to the results of Part II, ¥ is no longer assumed to be
stable.

Note that, by [Sc], we can choose d3 > 4 so that: If Iy C By, with
Oy C 0By, s is stable, then each component of BysNT is a graph (over some
plane) with gradient < 1/2.
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Proof of Theorem 0.3.  The proof has two steps. First, the proofs of
Theorem 1.0.8 and Lemma I1.3.8 give a stable disk I' C Bg, \ ¥ and a 4-valued
graph T'y C I so that ¥ “passes between” I'y. Second, (a slight variation of)
Theorem I11.2.4 gives the 2-valued graph >; C X.

Before proceeding, we choose the constants. Let C'3, d2 be given by Lemma
I1.3.8 (with N = 4), dy, d2 be from Theorem III1.2.4, and Cj, 55 be from Lemma
1.0.9. Set

71 = min{7/(5Cy), Bs/5,d2/10} ,
Ty = min{52/3,71/(1 + 303)} .

Let N1,Q1,e be given by Theorem I1.0.21 (with 7 there equal to 72). For
convenience, assume that Ny > 16 is even, {21 > 4, and rename this € as 7.

Set N = Nj + 3, Q = max{d;,8d3; }, and

(IV.0.5) e = min {e1,61/(5Cy), Bs/5,1/4,d2/10} .
For Ny < N and rg <y <73 <1, let EN2, be the region in II"*(Dy, \ D,,)

between the sheets of the (concentric) No-valued subgraph of 3,. Note that

EN: {23 <& (a? +ad)).

T2,T3

As in the proof of Theorem 1.0.8, let 04 C 3, be an (N +2)-valued graph
over dD,, and let 73 C X be a curve with six pieces: 0,4, two segments, 7,40,
in X, which are graphs over a portion of the positive part of the x;-axis, two
nodal curves, of, 0% in {z; = 2d37p}, and 0? C 0%. By [MeYa], there is a
stable embedded disk I' C By, \ ¥ with 0I' = 3.

Let {o;} be the components of B; /gN{x1 = 2d3 79} NX, and suppose that
acurve o C o' connects 7 to a point yo between o;,0;,1. By Theorem I11.2.4,
the portion X, with yo € Xy, of E?i\il:55//82 NX is a graph. Note that By, ,, N¥y,
and B3 ,,MN, are in the same component of By, ,,NY, since otherwise the stable
disk between them given by [MeYa] would intersect ¥, (by [Sc]). Applying the
maximum principle as before gives the desired contradiction. Hence, ot, ¢ do

not intersect between any of the ¢;’s. Therefore, if z € Eﬁlﬂ 15N T, then
370, /2

(IV.0.6) distr(z, OT) > |II(2)|/4.

By the same linking argument as before, Eﬁ{“ N T contains an Nj-valued

3 7‘071/2
graph Iy over Dy /5 \ Dyg,r, with gradient <5Cje¢,

H_1(6D4d37~0) ﬂFg C {|l‘3| < 4€d3’l“0},
and a curve
n C Hfl(D4d3,«0) NI \ 8BR0

connects I'g to OI'\ 0BpR,. Since Oy < 1/(8d3rp), Theorem I1.0.21 implies that
' contains a 2-valued graph I'y over Dy /o, \ Did,r, with gradient < m < 1.
In particular,

Py € {25 < m3(af +a3)}.
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Next, we apply Lemma I1.3.8 to extend I'y to a 4-valued graph I'y over
Dy Ro/(691) \ D54, r, with gradient < 75 4+ 3Cs7 < 71. Let Er be the region
in H*l(DRD/(2 o) \ Di54,r,) between the sheets of the (concentric) 3-valued
subgraph of 'y, so that Er C {z3 < 72 (22 + 23)}.

If 2z € Er N%, then there is a curve v, C I'y with each component of
Y \II"Y(Ds 4, r,) a graph over the segment 7o -, d7, = {y2,y1}, and y2, y1 are in
distinct components of Bsry(;)/5(I1(2)) NT' with 2z between these components.
By (a slight variation of) Theorem II1.2.4 (with ¥ UT as a barrier rather
than just X), the portion of ¥ inside Bpg, /d, N Er is a graph over I'y. This is
nonempty since (Zg)M begins in ET, so we get the desired 2-valued graph X,
with gradient < 5Cy 1 < 7 (by Lemma 1.0.9). O

Appendix A: Catenoid foliations

We recall here some consequences of the maximum principle for an embed-
ded minimal surface ¥ in a slab. Let Cat(y) be the vertical catenoid centered

at y = (y1,¥2,y3) given by
(A.1) Cat(y) = {z € R?| cosh®(z5 — y3) = (v1 — y1)* + (22 — y2)*} .

Given an angle 0 < 6 < /2, let ONy(y) be the cone

(A2) {z] (x5 —ys)® = |z —y|* sin 6} .
Since cosht >t for t > 0, it follows that ON,/4(y) N Cat(y) = 0. Set
(A.3) 0o = inf {6 | ONy(y) N Cat(y) = 0},

so that ONp,(y) and Cat(y) intersect tangentially in a pair of circles. Let
Cato(y) be the component of Cat(y) \ 0Ny, (y) containing the neck

{z|23 =y3, (1 —y1)* + (22 — y2)? = 1}

If x € Cato(y), then i7,2N Catg(y) = {z} since cosh is convex and cosh’(0) = 0;
i.e., Catg(y) is a radial graph. In particular, the dilations of Caty(y) about y
are all disjoint and, consequently (see Figure 21), give a minimal foliation of
the solid (open) cone

(A.4) Noy(y) = { | (23 — y3)* < & — y|* sin® o} .

The leaves of this foliation have boundary in dNy, (y) and are level sets of the
function f, given by

(A.5) y+(z—y)/fy(z) € Cato(y) .

Choose B4 > 0 small so that

{z ||z —y3| <284 h}\ Bys(y) C No, ()
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Nﬁo (y)
Angle 7/n

A rescaling
Y of Cat (y)
Cat (y)

Figure 21: The catenoid foliation. Figure 22: An n-prong singularity.

and

(A.6) {z] fy(x) =3h/16} N{x||rs —ys| < 2Bah} C Brpza(y) -

The intersection of two embedded minimal surfaces is locally given by
2n embedded arcs meeting at equal angles as in Figure 22, i.e., an “n-prong
singularity” (e.g., the set where (x 4 iy)™ is real); see Claim 1 in Lemma 4 of
[HoMe]. This immediately implies the next lemma:

LEMMA A.7. If z € ¥ C Ny, (y) is a nontrivial interior critical point of
fyls, then {x € X| fy(x) = fy(2)} has an n-prong singularity at z with n > 2.

As a consequence, we get a version of the usual strong maximum principle:

LEMMA A.8. If ¥ C Ny, (y), then fy|s has no nontrivial interior local
extrema.

In particular, we can use f, to show that a minimal surface in a narrow
slab either stays near its boundary or comes close to the center of the slab:

COROLLARY A.9. If 0% C OBp(y), Bsp/a(y) N X # 0, and
X C Buly) N{z ||z —ys| <2Bah},
then Bj/4(y) NS # 0.
Proof. Scaling (A.6) by 4, we get
{x e X| fy(z) =3h/4} C Brys(y) \ Banjaly) -

By Lemma A.8, f, has no interior minima in ¥ so that the corollary now
follows from

fylx) <z =yl D
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Iterating Corollary A.9 along a chain of balls gives the next corollary:

COROLLARY A.10. If ¥ C {|x3| < 284 h}, points p,q € {x3 = 0} satisfy
Th(Vp,g) NOX =0, and

Yp € Bh/4(p) N 27

then a curve v C Th(7p,q) N connects y, to By a(q) N E.
Proof. Choose points

Yo =Py Y1592+ - Yn = 4 € Vpg
with |y;—1 — yi| = h/2 for i < n and |yp—1 — yn| < h/2. Repeatedly applying
Corollary A.9 for 1 <14 < n, gives curves
vi : [0,1] — Bp(yi) N'E
with 11(0) = yp, vi(1) € By a(yi) N %, and v;41(0) = v;(1). Set v = U, ;. O

This produces curves which are “h-almost monotone” in the sense that if
y € v, then Byp(y) Nv has only one component which intersects Bap(y).

COROLLARY A.11. If ¥ C {|x3| < 2B4h} and E is an unbounded com-
ponent of
R\ T;,,(11(9%))

then I(X) N E = 0.

Proof. Given y € E, choose a curve
7+ [0,1] = R*\ T4 (TI(9))
with [v(0)| > sup,cy |z| + h and v(1) = y. Set
Y = {l‘ ex | f,y(t)(.%) = 3h/16} .

By (A.6), we have ¥; C Brj/32(7(t)), so that ¥p = 0 and ¥; N 9% = ). By
Lemma A.8, either:

e Y, =0, or

e >, contains an arc of transverse intersection.

In particular, there cannot be a first ¢ > 0 with X; # (), which gives the
corollary. O
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