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The space of embedded minimal surfaces

of fixed genus in a 3-manifold I;
Estimates off the axis for disks

By Tobias H. Colding and William P. Minicozzi II*

0. Introduction

This paper is the first in a series where we describe the space of all
embedded minimal surfaces of fixed genus in a fixed (but arbitrary) closed
Riemannian 3-manifold. The key for understanding such surfaces is to un-
derstand the local structure in a ball and in particular the structure of an
embedded minimal disk in a ball in R3 (with the flat metric). This study is
undertaken here and completed in [CM6]. These local results are then applied
in [CM7] where we describe the general structure of fixed genus surfaces in
3-manifolds.

There are two local models for embedded minimal disks (by an embedded
disk, we mean a smooth injective map from the closed unit ball in R2 into
R3). One model is the plane (or, more generally, a minimal graph), the other
is a piece of a helicoid. In the first four papers of this series, we will show that
every embedded minimal disk is either a graph of a function or is a double
spiral staircase where each staircase is a multi-valued graph. This will be done
by showing that if the curvature is large at some point (and hence the surface
is not a graph), then it is a double spiral staircase. To prove that such a disk
is a double spiral staircase, we will first prove that it is built out of N -valued
graphs where N is a fixed number. This is initiated here and will be completed
in the second paper. The third and fourth papers of this series will deal with
how the multi-valued graphs fit together and, in particular, prove regularity of
the set of points of large curvature – the axis of the double spiral staircase.

The reader may find it useful to also look at the survey [CM8] and the
expository article [CM9] for an outline of our results, and their proofs, and
how these results fit together. The article [CM9] is the best to start with.

*The first author was partially supported by NSF Grant DMS 9803253 and an Alfred
P. Sloan Research Fellowship and the second author by NSF Grant DMS 9803144 and an
Alfred P. Sloan Research Fellowship.
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Figure 1: The separation of a multi-valued graph.

Our main theorem about embedded minimal disks is that every such disk
can either be modelled by a minimal graph or by a piece of the helicoid de-
pending on whether the curvature is small or not; see Theorem 0.2 below. This
will be proven in [CM6] with the first steps taken here. The helicoid is the
minimal surface in R3 parametrized by (s cos(t), s sin(t), t) where s, t ∈ R.

To be able to discuss the helicoid some more and in particular give a
precise meaning to the fact that it is like a double spiral staircase, we will need
the notion of a multi-valued graph; see Figure 1. Let Dr be the disk in the
plane centered at the origin and of radius r and let P be the universal cover of
the punctured plane C \ {0} with global polar coordinates (ρ, θ) so that ρ > 0
and θ ∈ R. An N -valued graph of a function u on the annulus Ds \ Dr is a
single valued graph over

{(ρ, θ) | r ≤ ρ ≤ s , |θ| ≤ N π} .(0.1)

The middle sheet ΣM (an annulus with a slit as in [CM3]) is the portion over

{(ρ, θ) ∈ P | r ≤ ρ ≤ s and 0 ≤ θ ≤ 2 π} .

The multi-valued graphs that we will consider will never close up; in fact they
will all be embedded. Note that embedded means that the separation never
vanishes. Here the separation (see Figure 1) is the function given by

w(ρ, θ) = u(ρ, θ + 2π) − u(ρ, θ) .

If Σ is the helicoid (see Figure 2), then Σ \ x3 − axis = Σ1 ∪Σ2, where Σ1, Σ2

are ∞-valued graphs. Also, Σ1 is the graph of the function u1(ρ, θ) = θ and
Σ2 is the graph of the function u2(ρ, θ) = θ + π. In either case the separation
w = 2π. A multi-valued minimal graph is a multi-valued graph of a function
u satisfying the minimal surface equation.
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One half rotation

x3-axis

Figure 2: The helicoid is obtained by gluing together two ∞-valued graphs
along a line. The two multi-valued graphs are given in polar coordinates by
u1(ρ, θ) = θ and u2(ρ, θ) = θ + π. In either case w(ρ, θ) = 2π.

Here, we have normalized so that our embedded multi-valued graphs have
positive separation. This can be achieved after possibly reflecting in a plane.

Let now Σi ⊂ B2R be a sequence of embedded minimal disks with ∂Σi ⊂
∂B2R. Clearly (after possibly going to a subsequence) either (1) or (2) occur:

(1) supBR∩Σi
|A|2 ≤ C < ∞ for some constant C.

(2) supBR∩Σi
|A|2 → ∞.

In (1) (by a standard argument) the intrinsic ball Bs(yi) is a graph for all
yi ∈ BR ∩ Σi, where s depends only on C. Thus the main case is (2) which is
the subject of the next theorem.

Using the notion of multi-valued graphs, we can now state our main the-
orem:

Theorem 0.2 (Theorem 0.1 in [CM6] (see Figure 3)). Let Σi ⊂ BRi
=

BRi
(0) ⊂ R3 be a sequence of embedded minimal disks with ∂Σi ⊂ ∂BRi

where
Ri → ∞. If

sup
B1∩Σi

|A|2 → ∞ ,

then there exist a subsequence, Σj , and a Lipschitz curve S : R → R3 such
that after a rotation of R3:

(1) x3(S(t)) = t. (That is, S is a graph over the x3-axis.)

(2) Each Σj consists of exactly two multi -valued graphs away from S (which
spiral together).

(3) For each 1 > α > 0, Σj \ S converges in the Cα-topology to the foliation,
F = {x3 = t}t, of R3.
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(4) supBr(S(t))∩Σj
|A|2 → ∞ for all r > 0, t ∈ R. (The curvatures blow up

along S.)

In (2), (3) that Σj \ S are multi-valued graphs and converge to F means
that for each compact subset K ⊂ R3 \ S and j sufficiently large, K ∩ Σj

consists of multi-valued graphs over (part of) {x3 = 0} and K ∩ Σj → K ∩ F
in the sense of graphs.

One half of Σ.
S

The other half.

Figure 3: Theorem 0.2 — the singular set, S, and the two multi-valued graphs.

Theorem 0.2 (like many of the other results discussed below) is modelled
by the helicoid and its rescalings. Take a sequence Σi = ai Σ of rescaled
helicoids where ai → 0. The curvatures of this sequence are blowing up along
the vertical axis. The sequence converges (away from the vertical axis) to a
foliation by flat parallel planes. The singular set S (the axis) then consists of
removable singularities.

Before we proceed, let us briefly describe the strategy of the proof of
Theorem 0.2.

The proof has the following three main steps; see Figure 4:

A. Fix an integer N (the “large” of the curvature in what follows will
depend on N). If an embedded minimal disk Σ is not a graph (or equivalently
if the curvature is large at some point), then it contains an N -valued minimal
graph which initially is shown to exist on the scale of 1/ max |A|. That is, the
N -valued graph is initially shown to be defined on an annulus with both inner
and outer radii inversely proportional to max |A|.

B. Such a potentially small N -valued graph sitting inside Σ can then be
seen to extend as an N -valued graph inside Σ almost all the way to the bound-
ary. That is, the small N -valued graph can be extended to an N -valued graph
defined on an annulus where the outer radius of the annulus is proportional
to R. Here R is the radius of the ball in R3 in which the boundary of Σ is
contained.

C. The N -valued graph not only extends horizontally (i.e., tangent to the
initial sheets) but also vertically (i.e., transversally to the sheets). That is,
once there are N sheets there are many more and, in fact, the disk Σ consists
of two multi-valued graphs glued together along an axis.
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Figure 4: Proving Theorem 0.2.
A. Finding a small N -valued graph in Σ. B. Extending it in Σ to a large
N -valued graph. C. Extending the number of sheets.

A will be proved in [CM4], B will be proved in this paper, and C will be
proved in [CM5] and [CM6], where we also will establish the regularity of the
“axis.”

We will now return to the results proved in this paper, i.e., the proof of
B above. We show here that if such an embedded minimal disk in R3 starts
off as an almost flat multi-valued graph, then it will remain so indefinitely.

Theorem 0.3 (see Figure 5). Given τ > 0, there exist N, Ω, ε > 0 so
that the following hold :

Let Σ ⊂ BR0 ⊂ R3 be an embedded minimal disk with ∂Σ ⊂ ∂BR0. If
Ω r0 < 1 < R0/Ω and Σ contains an N -valued graph Σg over D1 \ Dr0 with
gradient ≤ ε and

Σg ⊂ {x2
3 ≤ ε2(x2

1 + x2
2)} ,

then Σ contains a 2-valued graph Σd over DR0/Ω \ Dr0 with gradient ≤ τ and
(Σg)M ⊂ Σd.

Figure 5: Theorem 0.3 — extending a small multi-valued graph in a disk.
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Σ
Small multi-valued graph near 0.  

Figure 6: Theorem 0.4— finding a small multi-valued graph in a disk near a
point of large curvature.

Theorem 0.3 is particularly useful when combined with a result from [CM4]
asserting that an embedded minimal disk with large curvature at a point con-
tains a small, almost flat, multi-valued graph nearby. Namely, we prove in
[CM4] the following theorem:

Theorem 0.4 ([CM4] (see Figure 6)). Given N, ω > 1, and ε > 0, there
exists C = C(N, ω, ε) > 0 so that the following holds:

Let 0 ∈ Σ2 ⊂ BR ⊂ R3 be an embedded minimal disk with ∂Σ ⊂ ∂BR. If
for some 0 < r0 < R,

sup
Br0∩Σ

|A|2 ≤ 4 |A|2(0) = 4C2 r−2
0 ,

then there exist R̄ < r0/ω and (after a rotation of R3) an N -valued graph
Σg ⊂ Σ over DωR̄ \ DR̄ with gradient ≤ ε, and distΣ(0,Σg) ≤ 4 R̄.

Combining Theorem 0.3 and Theorem 0.4 with a standard blow-up argu-
ment gives the following theorem:

Theorem 0.5 ([CM4]). Given N ∈ Z+, ε > 0, there exist C1, C2 > 0 so
that the following holds:

Let 0 ∈ Σ2 ⊂ BR ⊂ R3 be an embedded minimal disk with ∂Σ ⊂ ∂BR. If
for some R > r0 > 0,

max
Br0∩Σ

|A|2 ≥ 4 C2
1 r−2

0 ,

then there exists (after a rotation of R3) an N -valued graph Σg over DR/C2
\

D2r0 with gradient ≤ ε and contained in Σ ∩ {x2
3 ≤ ε2 (x2

1 + x2
2)}.

The multi-valued graphs given by Theorem 0.5 should be thought of (see
[CM6]) as the basic building blocks of an embedded minimal disk. In fact, one
should think of such a disk as being built out of such graphs by stacking them
on top of each other. It will follow from Proposition II.2.12 that the separation
between the sheets in such a graph grows sublinearly.
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Axis
“Between
the sheets”

Figure 7: The estimate between the sheets: Theorem I.0.8.

An important component of the proof of Theorem 0.3 is a version of it for
stable minimal annuli with slits that start off as multi-valued graphs. Another
component is a curvature estimate “between the sheets” for embedded minimal
disks in R3; see Figure 7. We will think of an axis for such a disk Σ as a point
or curve away from which the surface locally (in an extrinsic ball) has more
than one component. With this weak notion of an axis, our estimate is that if
one component of Σ is sandwiched between two others that connect to an axis,
then the one that is sandwiched has curvature estimates; see Theorem I.0.8.
The example to keep in mind is a helicoid and the components are “consecutive
sheets” away from the axis. These separate sheets can be connected along the
axis of the helicoid and every component between them must then be graphical
and hence have bounded curvature.

Theorems 0.3, 0.4, 0.5 are local and are for simplicity stated and proved
only in R3 although they can with only very minor changes easily be seen to
hold for minimal disks in a sufficiently small ball in any given fixed Riemannian
3-manifold.

The paper is divided into 4 parts. In Part I, we show the curvature
estimate “between the sheets” when the disk is in a thin slab. In Part II, we
show that certain stable disks with interior boundaries starting off as multi-
valued graphs remain very flat (cf. Theorem 0.3). This result will be needed,
together with Part I, in Part III to generalize the results of Part I to when the
disk is not anymore assumed to lie in a slab. Part II will also be used together
with Part III, in Part IV to show Theorem 0.3.

Let x1, x2, x3 be the standard coordinates on R3 and Π : R3 → R2 or-
thogonal projection to {x3 = 0}. For y ∈ S ⊂ Σ ⊂ R3 and s > 0, the extrinsic
and intrinsic balls and tubes are

Bs(y) = {x ∈ R3 | |x − y| < s} , Ts(S) = {x ∈ R3 |distR3(x, S) < s} ,

(0.6)

Bs(y) = {x ∈ Σ |distΣ(x, y) < s} , Ts(S) = {x ∈ Σ |distΣ(x, S) < s} .(0.7)

Ds denotes the disk Bs(0)∩{x3 = 0}. KΣ the sectional curvature of a smooth
compact surface Σ and when Σ is immersed AΣ will be its second fundamental
form. When Σ is oriented, nΣ is the unit normal. We will often consider
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the intersection of curves and surfaces with extrinsic balls. We assume that
these intersect transversely since this can be achieved by an arbitrarily small
perturbation of the radius.

Part I: Minimal disks in a slab

Let γp,q denote the line segment from p to q and p, q the ray from p

through q. A curve γ is h-almost monotone if given y ∈ γ, then B4 h(y)∩γ has
only one component which intersects B2 h(y). Our curvature estimate “between
the sheets” is (see Figure 8):

Theorem I.0.8. There exist c1 ≥ 4 and 2c2 < c4 < c3 ≤ 1 so that the
following holds:

Let Σ2 ⊂ Bc1 r0 be an embedded minimal disk with ∂Σ ⊂ ∂Bc1 r0 and
y ∈ ∂B2 r0. Suppose that Σ1, Σ2, and Σ3 are distinct components of Br0(y)∩Σ
and

γ ⊂ (Br0 ∪ Tc2 r0(γ0,y)) ∩ Σ

is a curve with ∂γ = {y1, y2} where yi ∈ Bc2 r0(y) ∩ Σi and each component of
γ \ Br0 is c2 r0-almost monotone.

If Σ′
3 is a component of Bc3 r0(y) ∩ Σ3 with y1, y2 in distinct components

of Bc4 r0(y) \ Σ′
3, then Σ′

3 is a graph.

Σ1

y1

Σ′
3

y2

Σ2
γ

Bc1r0

Figure 8: y1, y2, Σ1, Σ2, Σ′
3, and γ in Theorem I.0.8.

The idea for the proof of Theorem I.0.8 is to show that if this were not
the case, then we could find an embedded stable disk that would be almost flat
and would lie in the complement of the original disk. In fact, we can choose
the stable disk to be sandwiched between the two components as well. The
flatness would force the stable disk to eventually cross the axis in the original
disk, contradicting that they were disjoint.
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In this part, we prove Theorem I.0.8 when the surface is in a slab, illus-
trating the key points (the full theorem, using the results of this part, will be
proved later). Two simple facts about minimal surfaces in a slab will be used:

• Stable surfaces in a slab must be graphical away from their boundary
(see Lemma I.0.9 below).

• The maximum principle, and catenoid foliations in particular, force these
surfaces to intersect a narrow cylinder about every vertical line (see the
appendix).

Lemma I.0.9. Let Γ ⊂ {|x3| ≤ β h} be a stable embedded minimal surface.
There exist Cg, βs > 0 so that if β ≤ βs and E is a component of

R2 \ Th(Π(∂Γ)) ,

then each component of Π−1(E) ∩ Γ is a graph over E of a function u with

|∇R2u| ≤ Cg β .

Proof. If Bh(y) ⊂ Γ, then the curvature estimate of [Sc] gives

sup
Bh/2(y)

|A|2 ≤ Cs h−2 .

Since ∆Γx3 = 0, the gradient estimate of [ChY] yields

sup
Bh/4(y)

|∇Γx3| ≤ C̄g h−1 sup
Bh/2(y)

|x3| ≤ C̄g β ,(I.0.10)

where C̄g = C̄g(Cs). Since

|∇R2u|2 = |∇Γx3|2 / (1 − |∇Γx3|2) ,

(I.0.10) gives the lemma.

The next lemma shows that if an embedded minimal disk Σ in the in-
tersection of a ball with a thin slab is not graphical near the center, then it
contains a curve γ coming close to the center and connecting two boundary
points which are close in R3 but not in Σ. The constant βA is defined in (A.6).

Lemma I.0.11. Let Σ2 ⊂ B60 h ∩ {|x3| ≤ βA h} be an embedded minimal
disk with ∂Σ ⊂ ∂B60 h and let zb ∈ ∂B50 h. If a component Σ′ of B5 h ∩ Σ is
not a graph, then there are:

• Distinct components S1, S2 of B8 h(zb) ∩ Σ.

• Points z1 and z2 with zi ∈ Bh/4(zb) ∩ Si.

• A curve γ ⊂ (B30 h ∪ Th(γq,zb
)) ∩ Σ with ∂γ = {z1, z2} and γ ∩ Σ′ 
= ∅.

Here q ∈ B50 h(zb) ∩ ∂B30 h.
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Vertical plane tangent
to Σ at z.

z y

Figure 9: Proof of Lemma I.0.11: Vertical plane tangent to Σ at z. Since
Σ is minimal, we get locally near z on one side of the plane two different
components. Next place a catenoid foliation centered at y and tangent to Σ
at z.

Proof. See Figure 9. Since Σ′ is not graphical, we can find z ∈ Σ′ with Σ
vertical at z, i.e.,

|∇Σx3|(z) = 1 .

Fix a point y ∈ ∂B4 h(z) so that γy,z is normal to Σ at z. Then fy(z) = 4h

(see (A.5)). Let y′ be given such that y′ ∈ ∂B10 h(y) and z ∈ γy,y′ . The first
step is to use the catenoid foliation fy to build the desired curve on the scale
of h; see Figure 10. The second and third steps will bring the endpoints of this
curve out near zb.

γ

y1 and y2 are in different
components of Σ in the ball
B4h(y).

a

y1

y2

yy ′

Figure 10: Proof of Lemma I.0.11: Step 1: Using the catenoid foliation, we
build out the curve to scale h.

Any simple closed curve σ ⊂ Σ \ {fy > 4 h} bounds a disk Σσ ⊂ Σ.
By Lemma A.8, fy has no maxima on Σσ ∩ {fy > 4 h} so that we conclude
Σσ∩{fy > 4 h} = ∅. On the other hand, by Lemma A.7, we get a neighborhood
Uz ⊂ Σ of z where Uz∩{fy = 4h}\{z} is the union of 2n ≥ 4 disjoint embedded
arcs meeting at z. Moreover, Uz \ {fy ≥ 4 h} has n components U1, . . . , Un

with
Ui ∩ Uj = {z} for i 
= j .
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If a simple curve σ̃z ⊂ Σ \ {fy ≥ 4 h} connects U1 to U2, then connecting ∂σ̃z

by a curve in Uz gives a simple closed curve σz ⊂ Σ \ {fy > 4 h} with σ̃z ⊂ σz

and σz ∩ {fy ≥ 4 h} = {z}. Hence, σz bounds a disk Σσz
⊂ Σ \ {fy > 4 h}. By

construction, we have
Uz ∩ Σσz

\ ∪iUi 
= ∅ .

This is a contradiction, so we conclude that U1, U2 are contained in components
Σ1

4 h 
= Σ2
4 h of Σ\{fy ≥ 4 h} with z ∈ Σ1

4 h∩Σ2
4 h. For i = 1, 2, Lemma A.8 and

(A.6) give ya
i ∈ Bh/4(y) ∩ Σi

4 h. Corollary A.10 gives νi ⊂ Th(γy,y′) ∩ Σ with
∂νi = {ya

i , yb
i} where yb

i ∈ Bh/4(y′). There are now two cases:

• If yb
1 and yb

2 do not connect in B4 h(y′) ∩ Σ, then take γ0 ⊂ B5 h(y) ∩ Σ
from ya

1 to ya
2 and set γa = ν1 ∪ γ0 ∪ ν2 and yi = yb

i .

• Otherwise, if γ̂0 ⊂ B4 h(y′) ∩ Σ connects yb
1 and yb

2, set γa = ν1 ∪ γ̂0 ∪ ν2

and yi = ya
i .

In either case, after possibly switching y and y′, we get a curve

γa ⊂ (Th(γy,y′) ∪ B5 h(y′)) ∩ Σ

with ∂γa = {y1, y2} ⊂ Bh/4(y) and yi ∈ Sa
i for components Sa

1 
= Sa
2 of

B4 h(y) ∩ Σ. This completes the first step.

If y1 and y2 can be connected by a curve
η1,2 ⊂ H ∩ Σ, then γa ∪ η1,2 bounds

a disk Σ1,2 ⊂ Σ and so

H

η1,2

γa

y1

y2

y

a curve in ∂B8h(y′) ∩ Σ1,2 would
connect the two components of Σ1,2

in B4h(y) — this is impossible.

y′

B4h(y)

Figure 11: Proof of Lemma I.0.11: Step 2: y1 and y2 cannot connect in the
half-space H since this would give a point in Σ1,2 far from ∂Σ1,2, contradicting
Corollary A.10.

Second, we use the maximum principle to restrict the possible curves from
y1 to y2; see Figure 11. Set

H = {x | 〈y − y′, x − y〉 > 0} .(I.0.12)

If η1,2 ⊂ Th(H)∩Σ connects y1 and y2, then η1,2 ∪ γa bounds a disk Σ1,2 ⊂ Σ.
Since η1,2 ⊂ Th(H), we get that ∂B8 h(y′) ∩ ∂Σ1,2 consists of an odd number
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of points in each Sa
i and hence ∂B8 h(y′) ∩ Σ1,2 contains a curve from Sa

1 to
Sa

2 . However, Sa
1 and Sa

2 are distinct components of B4 h(y) ∩ Σ, so that we
conclude this curve contains a point

y1,2 ∈ ∂B4 h(y) ∩ ∂B8 h(y′) ∩ Σ1,2 .(I.0.13)

By construction, Π(y1,2) is in an unbounded component of R2\Th/4(Π(∂Σ1,2)),
contradicting Corollary A.11. This contradiction shows that y1 and y2 cannot
be connected in Th(H) ∩ Σ.

Third, we extend γa. There are two cases:

(A) If zb ∈ H, Corollary A.10 gives

ν̃1, ν̃2 ⊂ Th(γy,zb
) ∩ Σ ⊂ Th(H) ∩ Σ(I.0.14)

from y1, y2 to z1, z2 ∈ Bh/4(zb), respectively.

(B) If zb /∈ H, then fix zc ∈ ∂B20 h(y) ∩ Π(∂H) on the same side of Π(y, y′)
as Π(zb) and fix zd ∈ ∂B10 h(zc) \H with γzc,zd

orthogonal to ∂H (so the
four points Π(y′),Π(y), zc, zd form a 10h by 20h rectangle). Corollary
A.10 gives curves

ν̃1, ν̃2 ⊂ Th(γy,zc
∪ γzc,zd

∪ γzd,zb
) ∩ Σ(I.0.15)

from y1, y2 to z1, z2 ∈ Bh/4(zb), respectively.

In either case, set γ = ν̃1 ∪ γa ∪ ν̃2. Set q = ∂B30 h(y) ∩ γy,zb
(in (A)) or

q = ∂B30 h(y)∩γzc,zb
(in (B)). By Corollary A.11 as above, z1, z2 are in distinct

components of B8 h(zb) ∩ Σ.

The next result illustrates the main ideas for Theorem I.0.8 in the simpler
case where Σ is in a slab. Set

β3 = min{βA, βs, tan θ0/(2Cg)};

Cg, βs are defined in Lemma I.0.9, θ0 in (A.3), and βA in (A.6).

Proposition I.0.16. Let Σ ⊂ B4 r0 ∩ {|x3| ≤ β3 h} be an embedded min-
imal disk with ∂Σ ⊂ ∂B4 r0 and let y ∈ ∂B2 r0. Suppose that Σ1,Σ2,Σ3 are
distinct components of Br0(y) ∩ Σ and

γ ⊂ (Br0 ∪ Th(γ0,y)) ∩ Σ

is a curve with ∂γ = {y1, y2} where yi ∈ Bh(y) ∩ Σi and each component of
γ \ Br0 is h-almost monotone.

If Σ′
3 is a component of Br0−80 h(y) ∩ Σ3 for which y1, y2 are in distinct

components of B5 h(y) \ Σ′
3, then Σ′

3 is a graph.



GRAPHICAL OFF THE AXIS 39

Proof. We will suppose that Σ′
3 is not a graph and deduce a contradiction.

Fix a vertical point z ∈ Σ′
3. Define z0, y0, yb on the ray 0, y by

z0 = ∂B3 r0−21 h ∩ 0, y ,

y0 = ∂B3 r0−10 h ∩ 0, y ,

yb = ∂B4 r0 ∩ 0, y .

Set zb = ∂B50 h(z) ∩ γz,z0 . Define the half-space

H = {x | 〈x − z0, z0〉 > 0} .(I.0.17)

The first step is to find a simple curve

γ3 ⊂ (Br0−20 h(y) ∪ Th(γy,yb
)) ∩ Σ

which can be connected to Σ′
3 in Br0−20 h(y) ∩ Σ, with ∂γ3 ⊂ ∂Σ, such that

∂Br0−10 h(y) ∩ γ3 consists of an odd number of points in each of two distinct
components of H ∩ Σ. To do that, we begin by applying Lemma I.0.11 to
get q ∈ B50 h(zb) ∩ ∂B30 h(z), distinct components S1, S2 of B8 h(zb) ∩ Σ with
zi ∈ Bh/4(zb) ∩ Si, and a curve

γ�
3 ⊂ (B30 h(z) ∪ Th(γq,zb

)) ∩ Σ, ∂γ�
3 = {z1, z2} , γ�

3 ∩ Σ′
3 
= ∅ .(I.0.18)

Corollary A.10 gives h-almost monotone curves

ν1 , ν2 ⊂ Th(γzb,z0 ∪ γz0,yb
) ∩ Σ

from z1, z2, respectively, to ∂Σ. Then γ3 = ν1 ∪ γ�
3 ∪ ν2 extends γ�

3 to ∂Σ. Fix
points

z+ ∈ Bh(y0) ∩ ν1 ,

z− ∈ Bh(y0) ∩ ν2 .

We will show that z+, z− do not connect in H ∩Σ. If η−+ ⊂ H ∩Σ connects z+

and z−, then η−+ together with the portion of γ3 from z+ to z− bounds a disk
Σ−

+ ⊂ Σ. Using the almost monotonicity of each νi, we get that ∂B50 h(z)∩∂Σ−
+

consists of an odd number of points in each Si. Consequently, a curve σ−
+ ⊂

∂B50 h(z)∩Σ−
+ connects S1 to S2 and so σ−

+\B8 h(zb) 
= ∅. This would contradict
Corollary A.11 and we conclude that there are distinct components Σ+

H and
Σ−

H of H ∩Σ with z± ∈ Σ±
H . Finally, removing any loops in γ3 (so it is simple)

gives the desired curve.
The second step is to find disjoint stable disks

Γ1,Γ2 ⊂ Br0−2 h(y) \ Σ

with ∂Γi ⊂ ∂Br0−2 h(y) and graphical components Γ′
i of Br0−4 h(y)∩Γi so that

Σ′
3 is between Γ′

1,Γ
′
2 and y1, y2,Σ′

3 are each in its own component of

Br0−4 h(y) \ (Γ′
1 ∪ Γ′

2) .
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To achieve this, we will solve two Plateau problems using Σ as a barrier and
then use the fact that Σ′

3 separates y1, y2 near y to get that these are in
different components. Let Σ′

1,Σ
′
2 be the components of Br0−2 h(y) ∩ Σ with

y1 ∈ Σ′
1, y2 ∈ Σ′

2. By the maximum principle, each of these is a disk. Let Σy2

be the component of B3 h(y1) ∩ Σ with y2 ∈ Σy2 . Since y1 /∈ Σy2 , Lemma A.8
gives y′2 ∈ Σy2 \ Nθ0(y1) with θ0 > 0 from (A.3). Hence, the vector y1 − y′2 is
nearly orthogonal to the slab, i.e.,

|Π(y′2 − y1)| ≤ |y′2 − y1| cos θ0 .(I.0.19)

Since Σ′
3 separates y1, y2 in B5 h(y), we get y3 ∈ γy1,y′

2
∩ Σ′

3. Fix a component Ω1

of Br0−2 h(y)\Σ containing a component of γy1,y3 \Σ with exactly one endpoint
in Σ′

1. By [MeYa], we get a stable embedded disk Γ1 ⊂ Ω1 with ∂Γ1 = ∂Σ′
1.

Similarly, let Ω2 be a component of Br0−2 h(y)\(Σ∪Γ1) containing a component
of γy3,y′

2
\ (Σ ∪ Γ1) with exactly one endpoint in Σ′

2. Again by [MeYa], we get
a stable embedded disk Γ2 ⊂ Ω2 with ∂Γ2 = ∂Σ′

2. Since ∂Γ1, ∂Γ2 are linked
in Ω1,Ω2 with (segments of) γy1,y3 , γy3,y′

2
, respectively, we get components Γ′

i

of Br0−4h(y) ∩ Γi with zΓ
1 ∈ Γ′

1 ∩ γy1,y3 and zΓ
2 ∈ Γ′

2 ∩ γy3,y′
2
. By Lemma

I.0.9, each Γ′
i is a graph of a function ui with |∇ui| ≤ Cg β3. Hence, since

1 + C2
g β2

3 < 1/ cos2 θ0, we have

Γ′
i \ {zΓ

i } ⊂ Nθ0(z
Γ
i ) .(I.0.20)

By (I.0.19), we have γy1,y′
2
∩ Nθ0(z

Γ
i ) = ∅, so that (I.0.20) implies Γ′

i ∩ γy1,y′
2

=
{zΓ

i }. In particular, y1, y2, y3 are in distinct components of

Br0−4 h \ (Γ′
1 ∪ Γ′

2) .

This completes the second step.
Set ŷ = ∂Br0+10 h ∩ γ0,y. Let γ̂ be the component of Br0+10 h ∩ γ with

Br0 ∩ γ̂ 
= ∅. Then ∂γ̂ = {ŷ1, ŷ2} with ŷi ∈ Bh(ŷ) ∩ Σ′
i.

The third step is to solve the Plateau problem with γ3 together with part
of ∂Σ ⊂ ∂B4 r0 as the boundary to get a stable disk Γ3 ⊂ B4r0 \ Σ passing
between ŷ1, ŷ2. To do this, note that the curve γ3 divides the disk Σ into two
sub-disks Σ+

3 ,Σ−
3 . Let Ω+,Ω− be the components of B4 r0 \ (Σ∪Γ1 ∪Γ2) with

γ3 ⊂ ∂Ω+ ∩ ∂Ω−. Note that Ω+,Ω− are mean convex in the sense of [MeYa]
since ∂Γ1 ∪ ∂Γ2 ⊂ Σ and ∂Σ ⊂ ∂B4 r0 . Using the first step, we can label
Ω+,Ω− so that the z+, z− do not connect in H ∩ Ω+. By [MeYa], we get a
stable embedded disk Γ3 ⊂ Ω+ with ∂Γ3 = ∂Σ+

3 . By the almost monotonicity,
∂Br0−10 h(y) ∩ ∂Γ3 consists of an odd number of points in each of Σ+

H , Σ−
H .

Hence, there is a curve

γ−
+ ⊂ ∂Br0−10 h(y) ∩ Γ3

from Σ+
H to Σ−

H . By construction, γ−
+ \ B8 h(y0) 
= ∅. Hence, since

∂Br0−10 h(y) ∩ Th(∂Γ3) ⊂ B3 h(y0) ,
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Lemma I.0.9 gives ẑ ∈ Bh(ŷ1) ∩ γ−
+ . By the second step, Γ3 is between Γ′

1

and Γ′
2.

Let Γ̂3 be the component of Br0+19 h ∩ Γ3 with ẑ ∈ Γ̂3. By Lemma I.0.9,
Γ̂3 is a graph. Finally, since γ̂ ⊂ Br0+10 h and Γ̂3 passes between ∂γ̂, this forces
Γ̂3 to intersect γ̂. This contradiction completes the proof.

Part II. Estimates for stable annuli with slits

In this part, we will show that certain stable disks starting off as multi-
valued graphs remain the same (see Theorem II.0.21 below). This is needed
in Part III when we generalize the results of Part I to when the surface is not
anymore in a slab and in Part IV when we show Theorem 0.3.

Theorem II.0.21. Given τ > 0, there exist N1,Ω1, ε > 0 so that the
following holds:

Let Σ ⊂ BR0 be a stable embedded minimal disk with ∂Σ ⊂ Br0 ∪ ∂BR0 ∪
{x1 = 0} where ∂Σ \ ∂BR0 is connected. If Ω1 r0 < 1 < R0/Ω1 and Σ contains
an N1-valued graph Σg over D1 \ Dr0 with gradient ≤ ε,

Π−1(Dr0) ∩ ΣM ⊂ {|x3| ≤ ε r0} ,

and a curve η connects Σg to ∂Σ \ ∂BR0 where

η ⊂ Π−1(Dr0) ∩ Σ \ ∂BR0 ,

then Σ contains a 2-valued graph Σd over DR0/Ω1
\ Dr0 with gradient ≤ τ .

Two analytical results go into the proof of this extension theorem. First,
we show that if an almost flat multi-valued graph sits inside a stable disk, then
the outward defined intrinsic sector from a curve which is a multi-valued graph
over a circle has a subsector which is almost flat (see Corollary II.1.23 below).
As the initial multi-valued graph becomes flatter and the number of sheets in
it go up, the subsector becomes flatter. The second analytical result that we
will need is that in a multi-valued minimal graph the distance between the
sheets grows sublinearly (Proposition II.2.12).

After establishing these two facts, the first application (Corollary II.3.1)
is to extend the middle sheet as a multi-valued graph. This is done by dividing
the initial multi-valued graph (or curve in the graph that is itself a multi-valued
graph over the circle) into three parts where the middle sheet is the second
part. The idea is then that the first and third parts have subsectors which
are almost flat multi-valued graphs and the middle part (which has curvature
estimates since it is stable) is sandwiched between the two others. Hence its
sector is also almost flat.

The proof of the extension theorem is somewhat more complicated than
suggested in the above sketch since we must initially assume a bound for the
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Geodesic γx Σ

x

γ
n

SR1(γ)

γ

Figure 12: An intrinsic sector over
a curve γ defined in (II.0.22).

γ
y

γ∂
∂Σ

SR1(γ)

γy

Σ

Figure 13: The curve γ∂ containing γ

goes to ∂Σ. (γ∂ \ γ is dotted.)

ratio between the size of the initial multi-valued graph and how far out it
extends. This is because the flatness of the subsector comes from a total
curvature estimate which is in terms of this ratio (see (II.1.2)) and can only be
made small by looking at a fixed large number of rotations for the graph. This
forces us to successively extend the multi-valued graph. The issue is then to
make sure that as we move out in the sector and repeat the argument we have
essentially not lost sheets. This is taken care of by using the sublinear growth
of the separation between the sheets together with the Harnack inequality
(Lemma II.3.8) and the maximum principle (Corollary II.3.1). (The maximum
principle is used to make sure, as we try to recover sheets after we have moved
out that we do not hit the boundary of the disk before we have recovered
essentially all of the sheets that we started with.) The last statement is a
result from [CM3] to guarantee as we patch together these multi-valued graphs
coming from different scales that the surface obtained is still a multi-valued
graph over a fixed plane.

Unless otherwise stated in this part, Σ will be a stable embedded disk.
Let γ ⊂ Σ be a simple curve with unit normal nγ and geodesic curvature kg

(with respect to nγ). We will always assume that γ′ does not vanish. Given
R1 > 0, we define the intrinsic sector (see Figure 12),

SR1(γ) = ∪x∈γγx ,(II.0.22)

where γx is the (intrinsic) geodesic starting at x ∈ γ, of length R1, and initial
direction nγ(x). For 0 < r1 < R1, set

Sr1,R1(γ) = SR1(γ) \ Sr1(γ) ,

ρ(x) = distSR1 (γ)(x, γ) .

For example, if γ = ∂Dr1 ⊂ R2 and nγ(x) = x/|x|, then Sr2,R1 is the annulus
DR1+r1 \ Dr2+r1 .

Note that if kg > 0, SR1(γ) ∩ ∂Σ = ∅, and there is a simple curve γ∂ ⊂ Σ
with γ ⊂ γ∂ , ∂γ∂ ⊂ ∂Σ, and γx∩γ∂ = {x} for any γx as above (see Figure 13),
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then the normal exponential map from γ (in direction nγ) gives a diffeomor-
phism to SR1(γ). Namely, by the Gauss-Bonnet theorem, an n-gon in Σ with
concave sides and n interior angles αi > 0 has

(n − 2) π ≥
n∑

i=1

αi −
∫

kg ≥
n∑

i=1

αi .(II.0.23)

In particular, n > 2 always and if
∑

i αi > π, then n > 3. Fix x, y ∈ γ and
geodesics γx, γy as above. If γx had a self-intersection, then it would contain a
simple geodesic loop, contradicting (II.0.23). Similarly, if γx were to intersect
γy, then we would get a concave triangle with α1 = α2 = π/2 (since γx, γy do
not cross γ∂), contradicting (II.0.23).

Note also that Sr1,R1(γ) = SR1−r1(Sr1,r1(γ)) for 0 < r1 < R1.

II.1. Almost flat subsectors

We will next show that certain stable sectors contain almost flat subsec-
tors.

Lemma II.1.1. Let γ ⊂ Σ be a curve with Length(γ) ≤ 3 π m r1, geodesic
curvature kg satisfying 0 < kg < 2/r1, and

distΣ(SR1(γ), ∂Σ) ≥ r1/2 ,

where R1 > 2 r1. If there is a simple curve γ∂ ⊂ Σ with γ ⊂ γ∂ , ∂γ∂ ⊂ ∂Σ,
and so

γx ∩ γ∂ = {x} for each x ∈ γ ,

then for any Ω > 2 and t satisfying 2 r1 ≤ t ≤ 3R1/4,∫
SΩr1,R1/Ω(γ)

|A|2 ≤ C1 R1/r1 + C2 m/ log Ω ,(II.1.2)

t

∫
γ
kg ≤ Length({ρ = t}) ≤ C3 (m + R1/r1) t .(II.1.3)

Proof. The boundary of SR1 = SR1(γ) has four pieces:

γ, {ρ = R1}, and the sides γa, γb .

Define the functions �(t) and K(t) by

�(t) = Length ({ρ = t}) ,(II.1.4)

K(t) =
∫

St

|A|2 .(II.1.5)

Since the exponential map is an embedding, an easy calculation gives

�′(t) =
∫
{ρ=t}

kg > 0 .(II.1.6)
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Let dµ be 1-dimensional Hausdorff measure on the level sets of ρ. The Jacobi
equation gives

d

dt
(kg dµ) = |A|2/2 dµ .(II.1.7)

Define K̄(t) to be the integral of K(t), i.e., set

K̄(t) =
∫ t

0
K(s) ds .

Integrating (II.1.7) twice, we see that (II.1.6) yields

�(t) = �(0) +
∫ t

0

(∫
γ
kg + K(s)/2

)
ds

= Length(γ) + t

∫
γ
kg + K̄(t)/2 .(II.1.8)

This gives the first inequality in (II.1.3). Again by the co-area formula, (II.1.8)
gives

R−2
1 Area(SR1) = R−2

1

∫ R1

0
�(t) ≤ R−1

1 Length(γ) +
∫

γ
kg/2 + R−2

1

∫ R1

0
K̄(t)/2

≤ 6 π m + R−2
1

∫ R1

0
K̄(t)/2 ,(II.1.9)

where the last inequality used kg < 2/r1 on γ, Length(γ) ≤ 3 π m r1, and
R1 > 2 r1.

Define a function ψ on SR1 by

ψ = ψ(ρ) = 1 − ρ/R1

and set dS = distΣ(·, γa ∪ γb). Define functions χ1, χ2 on SR1 by

χ1 =χ1(dS) =

{
dS/r1 if 0 ≤ dS ≤ r1 ,

1 otherwise ,
(II.1.10)

χ2 =χ2(ρ) =

{
ρ/r1 if 0 ≤ ρ ≤ r1 ,

1 otherwise .
(II.1.11)

Set χ = χ1 χ2. Using the curvature estimate |A|2 ≤ C r−2
1 (by [Sc]) and

standard comparison theorems to bound the area of a tubular neighborhood
of the boundary, we get

Area(SR1 ∩ {χ < 1}) ≤ C̃ (R1 r1 + m r2
1) ,(II.1.12)

E(χ1) +
∫

SR1∩{χ1<1}
|A|2 ≤ C̃ R1/r1 ,(II.1.13)

E(χ) +
∫

SR1∩{χ<1}
|A|2 ≤ C̃ (R1/r1 + m) .(II.1.14)
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Substitution of χψ into the stability inequality, the Cauchy-Schwarz in-
equality and (II.1.14) give∫

|A|2χ2ψ2 ≤
∫

|∇(χψ)|2 =
∫ (

χ2|∇ψ|2 + 2χ ψ〈∇χ,∇ψ〉 + ψ2|∇χ|2
)

≤ 2
∫

χ2|∇ψ|2 + 2 C̃(R1/r1 + m) .(II.1.15)

Using (II.1.14) and the co-area formula, we have∫ R1

0
ψ2(t) K ′(t) =

∫
SR1

|A|2ψ2 ≤
∫

|A|2χ2ψ2 + C̃ (R1/r1 + m) .(II.1.16)

Integration by parts twice in (II.1.16), (II.1.15) gives

2 R−2
1

∫ R1

0
K̄(t) =

∫ R1

0
K̄(t)(ψ2)′′ = −

∫ R1

0
K(t)(ψ2)′

=
∫ R1

0
ψ2K ′(t) ≤ 3 C̃ (R1/r1 + m) + 2R−2

1

∫ R1

0
�(t) .(II.1.17)

Note that all integrals in (II.1.17) are in one variable and there is a slight abuse
of notation with regard to ψ as a function on both [0, R1] and SR1 . Substitution
of (II.1.9), (II.1.17) gives

4 R−2
1

∫ R1

0
�(t) ≤ 24 π m + 3 C̃ (R1/r1 + m) + 2R−2

1

∫ R1

0
�(t) .(II.1.18)

In particular, (II.1.18) gives

R−2
1 Area(SR1) ≤ C4 (R1/r1 + m) .(II.1.19)

Since �(t) is monotone increasing (by (II.1.6)), (II.1.19) gives the second in-
equality in (II.1.3) for t = 3R1/4. Since the above argument applies with R1

replaced by t where 2 r1 < t < R1, we get (II.1.3) for 2 r1 ≤ t ≤ 3 R1/4.
To complete the proof, we will use the stability inequality together with

the logarithmic cutoff trick to take advantage of the quadratic area growth.
Define a cutoff function ψ1 by

ψ1 = ψ1(ρ) =


log(ρ/r1)/ log Ω on Sr1,Ω r1 ,

1 on SΩ r1,R1/Ω ,

− log(ρ/R1)/ log Ω on SR1/Ω,R1
,

0 otherwise .

(II.1.20)

Using (II.1.3) and (II.1.19), we get

E(ψ1) ≤ C(m + R1/r1)/ log Ω .(II.1.21)
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As in (II.1.15), we apply the stability inequality to χ1ψ1 to get

∫
|A|2χ2

1ψ
2
1 ≤ 2E(ψ1) + 2E(χ1) ≤ 2 C(m + R1/r1)/ log Ω + 2C̃ R1/r1 .

(II.1.22)

Combination of (II.1.13) and (II.1.22) completes the proof.

The next corollary uses Lemma II.1.1 to show that large stable sectors
have almost flat subsectors:

Corollary II.1.23. Given ω > 8, 1 > ε > 0, there exist m1,Ω1 so that
the following holds:

Suppose γ ⊂ B2 r1 ∩ Σ is a curve with 1/(2 r1) < kg < 2/r1, Length(γ) =
32 π m1 r1, distΣ(SΩ2

1 ω r1
(γ), ∂Σ) ≥ r1/2. If there is a simple curve γ∂ ⊂ Σ

with γ ⊂ γ∂ , ∂γ∂ ⊂ ∂Σ, and

γx ∩ γ∂ = {x} for each x ∈ γ ,

then (after a rotation of R3) SΩ2
1 ω r1

(γ) contains a 2-valued graph Σd over
D2 ω Ω1 r1\DΩ1 r1/2 with gradient ≤ ε/2, |A| ≤ ε/(2 r), and distSΩ2

1 ω r1
(γ)(γ,Σd) <

2 Ω1 r1.

Proof. We will choose Ω1 > 12 and then set m1 = ω Ω2
1 log Ω1. By Lemma

II.1.1 (with Ω = Ω1/6, R1 = Ω2
1 ω r1, and m = 32m1/3),∫

SΩ1 r1/6,6 Ω1 ω r1 (γ)
|A|2 ≤ C(Ω2

1 ω + m1/ log Ω1) = 2C m1/ log Ω1 .(II.1.24)

Fix m1 disjoint curves γ1, . . . , γm1 ⊂ γ with Length(γi) = 32π r1. By (II.1.24)
and since the SΩ2

1 ω r1
(γi) are pairwise disjoint, there exists γi with∫

SΩ1 r1/6,6 Ω1 ω r1 (γi)
|A|2 ≤ 2 C/ log Ω1 .(II.1.25)

To deduce the corollary from (II.1.25) we need a few standard facts. First,
define a map

Φ : [0,Ω2
1ωr1] ×ρ/(2 r1)+1 [0,Length(γ)] → Σ

by Φ(ρ, x) = γx(ρ). By the Riccati comparison argument (using KΣ ≤ 0 and
kg > 1/(2 r1) on γ),

Φ is distance nondecreasing and kg >
1

ρ + 2 r1
.(II.1.26)

Second, let γi/2 ⊂ γi be the subcurve of length 16π r1 with distγ(γi/2, ∂γi)
= 8 π r1. Since kg > 1/(2 r1) on γ, we have

∫
γi/2 kg > 8 π. By (II.1.7),∫

SΩ2
1 ω r1

(γi/2)∩{ρ=t}
kg
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is a monotone nondecreasing function of t. In particular, we can choose a curve
γ̃ ⊂ γi/2 with ∫

SΩ2
1 ω r1

(γ̃)∩{ρ=Ω1 r1/3}
kg = 8π .(II.1.27)

Set S = SΩ1 r1/3,3 Ω1 ω r1
(γ̃) and γ̂ = S ∩ {ρ = Ω1 r1/3}.

Third, by the Gauss-Bonnet theorem, (II.1.25), and (II.1.27) (for Ω1

large),

8 π ≤
∫

S∩{ρ=t}
kg ≤ 8 π +

∫
S
|A|2/2 ≤ 8 π + C/ log Ω1 ≤ 9 π .(II.1.28)

Note also that, by (II.1.26) and (II.1.28),

Length(S ∩ {ρ = t}) ≤ 9 π (t + 2 r1) ≤ 14 π t .

Finally, observe that, by stability, (II.1.25), and by (II.1.26), the mean
value theorem gives for y ∈ S

sup
Bρ(y)/3(y)

|A|2 ≤ C1 ρ−2(y)/ log Ω1 .(II.1.29)

Integrating (II.1.29) along rays and level sets of ρ, we get

max
x,y∈S

distS2(n(x),n(y)) ≤ C2 (log ω + 1)/
√

log Ω1 .(II.1.30)

We can now combine these facts to prove the corollary. Choose Ω1 so that

C2 (log ω + 1)/
√

log Ω1 < C3 ε .

For C3 small, after rotating R3, S is locally a graph over {x3 = 0} with gradient
≤ ε/2. Since γ̃ ⊂ B2 r1 and Ω1 > 12,

γ̂ ⊂ B2 r1+Ω1 r1/3 ⊂ BΩ1 r1/2 .

Choosing Ω1 even larger and combining (II.1.26), (II.1.28), (II.1.29), and
(II.1.30), we see that (the orthogonal projection) Π(γ̂) is a convex planar curve
with total curvature at least 7π, so that its Gauss map covers S1 three times.
Given x ∈ γ̃, set γ̃x = S ∩ γx. By (II.1.29), γ̃x has total (extrinsic geodesic)
curvature at most

C2 log ω/
√

log Ω1 < C3 ε

and hence γ̃x lies in a narrow cone centered on its tangent ray at x̃ = γ̃x ∩ γ̂.
For C3 small, this implies that γ̃x does not rotate and

|Π(x̃) − Π(γ̃x ∩ {ρ = t})| ≥ 9 (t − Ω1 r1/3)/10 .(II.1.31)

Hence, Π(∂γ̃x \ {x̃}) /∈ D2 ω Ω1 r1 which gives Σd and also distSΩ2
1 ω r1

(γ)(γ,Σd) <

2 Ω1 r1.
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Remark II.1.32. For convenience, we assumed that kg < 2/r1 in Corol-
lary II.1.23. This was used only to apply Lemma II.1.1 and it was used there
only to bound

∫
γ kg in (II.1.9).

Recall that a domain Ω is 1/2-stable if and only if, for all φ ∈ C0,1
0 (Ω),

there exists the 1/2-stability inequality:

1/2
∫

|A|2φ2 ≤
∫

|∇φ|2 .(II.1.33)

Note that the interior curvature estimate of [Sc] extends to 1/2-stable surfaces.

In light of Remark II.1.32, it is easy to get the following analog of Corollary
II.1.23:

Corollary II.1.34. Given ω > 8, 1 > ε > 0, C0, and N , there exist
m1,Ω1 so that the following holds:

Suppose that Σ is an embedded minimal disk and γ ⊂ ∂Br1(y) ⊂ Σ is a
curve with ∫

γ
kg < C0 m1 and Length(γ) = m1 r1 .

If Tr1/8(SΩ2
1 ω r1

(γ)) is 1/2-stable, then (after rotating R3) SΩ2
1 ω r1

(γ) contains
an N -valued graph ΣN over Dω Ω1 r1 \DΩ1 r1 with gradient ≤ ε, |A| ≤ ε/r, and

distSΩ2
1 ω r1

(γ)(γ,ΣN ) < 4 Ω1 r1 .

Note that, in Corollary II.1.34, both kg ≥ 1/r1 and the injectivity of the
exponential map follow immediately from comparison theorems.

II.2. The sublinear growth

This section gives an elementary gradient estimate for multi-valued mini-
mal graphs which is applied to show that the separation between the sheets of
certain minimal graphs grows sublinearly; see Figure 14. The example to keep
in mind is the portion of a (rescaled) helicoid in a slab between two cylinders
about the vertical axis. This gives (two) multi-valued graphs over an annulus;
removal of a vertical half-plane through the axis cuts these into sheets which
remain a bounded distance apart.

The next lemma and corollary construct the cutoff function needed in our
gradient estimate.

Lemma II.2.1. Given N > 36/(1 − e−1/3)2, there exists a function 0 ≤
φ ≤ 1 on P with E(φ) ≤ 4 π/ log N and

φ =

{
1 if R/e ≤ ρ ≤ e R and |θ| ≤ 3 π ,

0 if ρ ≤ e−N R or eN R ≤ ρ or |θ| ≥ π N .
(II.2.2)



GRAPHICAL OFF THE AXIS 49

u(R)

Σ

u(2R)

Figure 14: The sublinear growth of the separation u of the multi-valued graph
Σ: u(2R) ≤ 2α u(R) with α < 1.

Proof. After rescaling, we may assume that R = 1. Since energy is
conformally invariant on surfaces, composing with z3 N implies that (II.2.2) is
equivalent to E(φ) ≤ 4 π/ log N and

φ =

{
1 if | log ρ| < 1/(3N) and |θ| ≤ π/N ,

0 if | log ρ| > 1/3 or |θ| ≥ π/3 .
(II.2.3)

This is achieved (with E(φ) = 2π/ log[N(1 − e−1/3)/6]) by setting

φ =


1 on B6/N (1, 0) ,

1 − log[N distP((1,0),·)/6]
log[N(1−e−1/3)/6] on B1−e−1/3(1, 0) \ B6/N (1, 0) ,

0 otherwise .

(II.2.4)

Given an N -valued graph Σ, let Σθ1,θ2
r3,r4 ⊂ Σ be the subgraph (cf. (0.1))

over

{(ρ, θ) | r3 ≤ ρ ≤ r4, θ1 ≤ θ ≤ θ2} .(II.2.5)

Transplanting the cutoff function from Lemma II.2.1 to a multi-valued
graph gives the next corollary:

Corollary II.2.6. Given ε0, τ > 0, there exists N > 0 so if Σ ⊂ R3 is
an N -valued graph over DeN R\De−N R with gradient ≤ τ , then there is a cutoff
function 0 ≤ φ ≤ 1 on Σ with E(φ) ≤ ε0, φ|∂Σ = 0, and

φ ≡ 1 on Σ−π,3π
R/2,5R/2 .(II.2.7)

Proof. Since Σ−π,3π
R/2,5R/2 ⊂ Σ−3π,3π

R/e,eR and the projection from Σ to P is bi-

Lipschitz with bi-Lipschitz constant bounded by
√

1 + τ2, the corollary follows
from Lemma II.2.1.
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If u > 0 is a solution of the Jacobi equation ∆u = −|A|2u on Σ, then
w = log u satisfies

∆w = −|∇w|2 − |A|2 .(II.2.8)

The Bochner formula, (II.2.8), KΣ = −|A|2/2, and the Cauchy-Schwarz in-
equality give

∆|∇w|2 = 2 |Hessw|2 + 2〈∇w,∇∆w〉 − |A|2 |∇w|2

≥ 2 |Hessw|2 − 4 |∇w|2 |Hessw| − 4 |∇w| |A| |∇A| − |A|2 |∇w|2

≥ −2 |∇w|4 − 3 |A|2 |∇w|2 − 2 |∇A|2 .(II.2.9)

Since the Jacobi equation is the linearization of the minimal graph equation
over Σ, analogs of (II.2.8) and (II.2.9) hold for solutions of the minimal graph
equation over Σ. In particular, standard calculations give the following analog
of (II.2.8):

Lemma II.2.10. There exists δg > 0 so that if Σ is minimal and u is a
positive solution of the minimal graph equation over Σ (i.e., {x + u(x)nΣ(x) |
x ∈ Σ} is minimal) with

|∇u| + |u| |A| ≤ δg ,

then w = log u satisfies, on Σ,

∆w = −|∇w|2 + div(a∇w) + 〈∇w, a∇w〉 + 〈b,∇w〉 + (c − 1)|A|2 ,(II.2.11)

for functions aij , bj , c on Σ with |a|, |c| ≤ 3 |A| |u| + |∇u| and |b| ≤ 2 |A| |∇u|.

The following gives an improved gradient estimate, and consequently an
improved bound for the growth of the separation between the sheets, for multi-
valued minimal graphs:

Proposition II.2.12. Given α > 0, there exist δp > 0, Ng > 5 so that
the following holds:

If Σ is an Ng-valued minimal graph over DeNg R \ De−Ng R with gradient
≤ 1 and 0 < u < δp R is a solution of the minimal graph equation over Σ with
|∇u| ≤ 1, then for R ≤ s ≤ 2 R

sup
Σ0,2π

R,2R

|AΣ| + sup
Σ0,2π

R,2R

|∇u|/u ≤ α/(4 R) ,(II.2.13)

sup
Σ0,2π

R,s

u ≤ (s/R)α sup
Σ0,2π

R,R

u .(II.2.14)

Proof. Fix εE > 0 (to be chosen depending only on α). Corollary II.2.6
gives N (depending only on εE) and a function 0 ≤ φ ≤ 1 with compact
support on Σ−Nπ,Nπ

e−NR,eNR

E(φ) ≤ εE and φ ≡ 1 on Σ−π,3π
R/2,5R/2 .(II.2.15)
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Set Ng = N + 1, so that distΣ(Σ−Nπ,Nπ
e−NR,eNR, ∂Σ) > e−N R/2 and hence |A| ≤

CeN/R on Σ−Nπ,Nπ
e−NR,eNR. Now fix x ∈ Σ0,2π

R,2R. When we substitute φ into the
stability inequality, (II.2.15) bounds the total second fundamental form of
Σ−π,3π

R/2,5R/2 by εE . Hence, by elliptic estimates for the minimal graph equation,

sup
B3 R/8(x)

(R2 |∇AΣ|2 + |AΣ|2) ≤ C εER−2 .(II.2.16)

Since Σ and the graph of u are (locally) graphs with bounded gradient, it is
easy to see that

sup
Σ−Nπ,Nπ

e−N R,eN R

|∇u| ≤ C eN sup
Σ

|u|/R ≤ C eN δp .(II.2.17)

Set w = log u. Choose δp > 0 (depending only on N), so that (II.2.17) implies
that w satisfies (II.2.11) on Σ−Nπ,Nπ

e−NR,eNR with

|a|, |b|/|A|, |c| ≤ 1/4 .

Applying Stokes’ theorem to

div(φ2∇w − φ2a∇w)

and using the absorbing inequality, we see that∫
BR/2(x)

|∇w|2 ≤
∫

φ2|∇w|2 ≤ C E(φ) ≤ C εE .(II.2.18)

When we combine (II.2.11) and (II.2.16), an easy calculation (as in (II.2.9))
shows that on B3R/8(x)

∆|∇w|2 ≥ −C |∇w|4 − C εE R−2 |∇w|2 − C εE R−4 .(II.2.19)

By the rescaling argument of [CiSc] (and by the meanvalue inequality), (II.2.18)
and (II.2.19) imply a pointwise bound for |∇w|2 on BR/4(x); combining this
with (II.2.16) gives (II.2.13) for εE small. Integrating (II.2.13) and using the
elementary inequality

(s − R)/R ≤ 2 log(s/R) ,

we get (II.2.14).

II.3. Extending multi-valued graphs in stable disks

Throughout this section Σ ⊂ BR0 is a stable embedded minimal disk with

∂Σ ⊂ Br0 ∪ ∂BR0 ∪ {x1 = 0}
and ∂Σ \ ∂BR0 connected. Fix a constant τk with 0 < τk < 1/4 so that if
Σg is a multi-valued minimal graph over D2R \ DR/2 with gradient ≤ τk, then
Π−1(∂DR) ∩ Σg has geodesic curvature kg satisfying

1/(2R) < kg < 2/R

(with respect to the outward normal).
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The next corollary shows that for certain such Σ containing multi-valued
graphs, the middle sheet ΣM extends to a larger scale. The main point is to
apply Corollary II.1.23 to get two 2-valued graphs on a larger scale with ΣM

pinched between them. We first use the convex hull property to construct the
curves γ∂

j needed for Corollary II.1.23.

Corollary II.3.1. Given ω, m > 1, 1/4 ≥ ε > 0, there exist Ω1, m0, δ so
that for r0, r2, R2, R0 with 4 Ω1 r0 ≤ 4 Ω1 r2 < R2 < R0/(4 Ω1 ω) the following
holds:

Let Σg ⊂ Σ be an m0-valued graph over DR2 \ Dr2 with gradient ≤ τk,
separation between the top and bottom sheets ≤ δ R2 over ∂DR2 , and

Π−1(Dr2) ∩ Σg ⊂ {|x3| ≤ r2/2} .

If a curve η ⊂ Π−1(Dr2) ∩ Σ \ ∂BR0 connects Σg to

∂Σ \ ∂BR0 ,

then ΣM extends to an m-valued graph over Dω R2 \Dr2 with gradient ≤ 1 and
|A| ≤ ε/r over Dω R2 \ DR2.

Proof. First, we set up the notation. Let Ω1, m1 > 1 be given by Corollary
II.1.23. Assume that Ω2

1 ω, m, m1 ∈ Z. Set

m0 = 24 Ω2
1 ω + 32m1 + m + 1 ,

γ = Π−1(∂DR2/Ω1
) ∩ Σg .

Since Π−1(Dr2)∩Σg ⊂ {|x3| ≤ r2/2}, the gradient bound gives, for r2 ≤ R ≤ R2,

max
Π−1(∂DR)∩Σg

|x3| ≤ r2/2 + τk (R − r2) ≤ R/2 ,(II.3.2)

so that γ ⊂ B2R2/Ω1
. By the definition of τk, we have Ω1/(2R2) < kg <

2 Ω1/R2 on γ. Arguing on part of Σ itself, by the convex hull property, we see
that there are m0 components of γ ∩ {x1 ≥ R2/(2 Ω1)} which are in distinct
components of Σ ∩ {x1 ≥ R2/(2 Ω1)}. Hence, see Figure 15, there are m0

distinct yi ∈ γ and (nodal) curves

σ0, . . . , σm0−1 ⊂ {x1 = R2/Ω1} ∩ Σ

with ∂σi = {yi, zi}, σi ∩ γ = {yi}, zi ∈ ∂Σ ∩ {x1 = R2/Ω1} ⊂ ∂BR0 , and for
i 
= j

distΣ(σi, σj) > R2/Ω1 .(II.3.3)

Order the σi’s using the ordering of the yi’s in γ and set i1 = 0, i2 = 8 Ω2
1 ω +

16 m1, i3 = 16 Ω2
1 ω + 16m1 + m, and i4 = m0 − 1. Let γ1, γ2, γ3 ⊂ γ be the

curves
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In different sheets.

Distinct nodal curves.

Plane x1 = R2/Ω1.σi

σj

Figure 15: The proof of Corollary II.3.1: The nodal curves.

• from y4 Ω2
1 ω to y4 Ω2

1 ω+16 m1
,

• from y12 Ω2
1 ω+16 m1

to y12 Ω2
1 ω+16 m1+m,

• from y20 Ω2
1 ω+16 m1+m to y20 Ω2

1 ω+32 m1+m.

Hence, γ1, γ2, γ3 ⊂ γ are 16 m1-, m-, 16 m1-valued graphs, respectively, with
γ2 centered on ΣM , each γj between yij

and yij+1 , and for j = 1, 2, 3

min
{k | yk∈γj}

{|ij − k|, |ij+1 − k|} ≥ 4 Ω2
1 ω .(II.3.4)

Next, we construct the curves γ∂
j needed to apply Corollary II.1.23 to each

γj . We will also use (II.3.3) and (II.3.4) to separate the γj ’s. For k1 < k2,
let γ(k1, k2) ⊂ Σ be the union of σk1 , σk2 , and the curve in γ from yk1 to yk2 .
Since Σ is a disk, ∂γ(k1, k2) ⊂ ∂Σ, and ∂Σ\∂BR0 is connected, one component
Σ(k1, k2) of Σ \ γ(k1, k2) has ∂Σ(k1, k2) ∩ ∂Σ ⊂ ∂BR0 . By the fact that the
σi’s do not cross η, it is easy to see that nγ points into Σ(k1, k2) and

Σ(j1, j2) ∩ Σ(k1, k2) = Σ(max{j1, k1},min{j2, k2}) ,(II.3.5)

where, by convention, Σ(k1, k2) = ∅ if k1 > k2. Set γ∂
j = γ(ij , ij+1) and

note that γj ⊂ γ∂
j and ∂γ∂

j ⊂ ∂Σ. Set Sj = SΩ1 ω R2(γj). By (II.3.4) and
(II.3.5), any curve η̃ ⊂ Σ(ij , ij+1) from γj to γ∂

j \ (γ ∪ ∂BR0) hits at least
4 Ω2

1 ω of the σi’s and so, by (II.3.3), Length(η̃) > 2 Ω1 ω R2. Combining this
with R0 > 4Ω1 ω R2, we get

distΣ(ij ,ij+1)(γj , ∂Σ(ij , ij+1) \ γj) > 2 Ω1 ω R2 .(II.3.6)

Fix x ∈ γj and γx (the geodesic normal to γj at x and of length Ω1 ω R2). By
(II.0.23), the first point (after x) where γx hits ∂Σ(ij , ij+1) cannot be in γ.
Consequently, (II.3.6) implies that γx ⊂ Σ(ij , ij+1) and so γx ∩ γ∂

j = {x} and
γ∂

j separates Sj from Sk ∪ TR2/(2Ω1)(∂Σ) for j 
= k.
The rest of the proof (see Figure 16) is to sandwich ΣM between two

graphs that will be given by Corollary II.1.23 and then deduce from stability
that ΣM itself extends to a graph. Namely, applying Corollary II.1.23 to
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Σ1 ΣM is between Σ1 and Σ3.

Σ3

Figure 16: The proof of Corollary II.3.1: Sandwiching between two graphical
pieces.

γ1, γ3 (with r1 = R2/Ω1), we get 2-valued graphs Σd,1 ⊂ S1, Σd,3 ⊂ S3 over
B2 ω R2 ∩ Pi \ BR2/2 (i = 1, 3) with |A| ≤ ε/(2 r) and gradient ≤ ε/2 ≤ 1/8.
Here Pi is a plane through 0. Using |A| ≤ ε/(2 r) and distSi

(γ,Σd,i) < 2 R2,
we see easily that Σd,i ∩ Σg 
= ∅. Hence, Σd,i contains a 3/2-valued graph Σi

over D3 ω R2/2 \ D2 R2/3 with

gradient ≤ tan
(
tan−1(1/4) + 2 tan−1(1/8)

)
< 3/4 .

By construction, ΣM is pinched between Σ1 and Σ3 which are graphs over
each other with separation ≤ ωC δ R2 (by the Harnack inequality). Since Σ is
stable, it follows that if δ is small, then ΣM extends to an m-valued graph Σ2

over D5 ω R2/4\D4 R2/5 with Σ2 between Σ1 and Σ3. In particular, Σ2 is a graph
over Σ1. Finally, since Σ1 is a graph with gradient ≤ 3/4 and |A| ≤ ε/(2 r),
we get that Σ2 is a graph with gradient ≤ 1 and |A| ≤ ε/r (cf. Lemma I.0.9).

Combining this and Proposition II.2.12, ΣM extends with separation grow-
ing sublinearly:

Corollary II.3.7. Given 1/4 ≥ ε > 0, there exist Ω0, m0, δ0 > 0 so that
for any r0, r2, R2, R0 with Ω0 r0 ≤ Ω0 r2 < R2 < R0/Ω0 the following holds:

Let Σg ⊂ Σ be an m0-valued graph over DR2 \Dr2 with gradient ≤ τ1 ≤ τk,
separations between the top and bottom sheets of ΣM (⊂ Σg) and Σg are ≤ δ1 R2

and ≤ δ0 R2, respectively, over ∂DR2 , and

Π−1(Dr2) ∩ Σg ⊂ {|x3| ≤ r2/2} .

If a curve η ⊂ Π−1(Dr2) ∩ Σ \ ∂BR0 connects Σg to

∂Σ \ ∂BR0 ,

then ΣM extends as a graph over D2 R2 \Dr2 with gradient ≤ τ1+3 ε, |A| ≤ ε/r

over D2 R2 \ DR2 , and, for R2 ≤ s ≤ 2 R2, separation ≤ (s/R2)1/2 δ1 R2 over
Ds \ DR2.

Proof. Let δp > 0, Ng > 5 be given by Proposition II.2.12 with α = 1/2.
Let Ω1, m0, δ > 0 be given by Corollary II.3.1 with m = Ng +3 and ω = 2 eNg .
We will set δ0 = δ0(δ, δp, Ng) with δ > δ0 > 0 and Ω0 = 4 Ω1 eNg .
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By Corollary II.3.1, ΣM extends to a graph

Σ−(Ng+3)π,(Ng+3)π

r2,2 eNg R2

of a function v with |∇v| ≤ 1 and |A| ≤ ε/r over D2 eNg R2
\ DR2 . Integrating

|∇|∇v|| ≤ |A| (1 + |∇v|2)3/2 ≤ 23/2 ε/r ,

we get that |∇v| ≤ τ1 + 4 ε log 2 ≤ τ1 + 3 ε on D2R2 \ DR2 .
For δ0 = δ0(Ng, δp) > 0, writing Σ as a graph over itself and using the

Harnack inequality, we get a solution 0 < u < δp R2 of the minimal graph
equation on an Ng-valued graph over DeNg R2

\De−Ng R2
. Applying Proposition

II.2.12 to u gives the last claim.

The next lemma uses the Harnack inequality to show that if ΣM extends
with small separation, then so do the other sheets. The only complication is
to keep track of ∂Σ.

Lemma II.3.8. Given N ∈ Z+, there exist C3, δ2 > 0 so that for r0 ≤ s <

R0/8 the following holds:
Let Σg ⊂ Σ∩ {|x3| ≤ 2 s} be an N -valued graph over D2 s \Ds. If a curve

η ⊂ Π−1(Ds)∩Σ\∂BR0 connects Σg to ∂Σ\∂BR0 , and ΣM extends graphically
over D4 s \ Ds with gradient ≤ τ2 ≤ 1 and separation

≤ δ3 s ≤ δ2 s ,

then Σg extends to an N -valued graph over D3 s \Ds with gradient ≤ τ2 +C3 δ3

and separation between the top and bottom sheets ≤ C3 δ3 s.

Proof. Suppose N is odd (the even case is virtually identical). Fix
y−N , . . . , yN ∈ Σg with yj over {ρ = 2 s, θ = j π}. Let γ0, γ2 ⊂ ΣM be
the graphs over {2s ≤ ρ ≤ 3s, θ = 0} and {2s ≤ ρ ≤ 3s, θ = 2π}, respectively,
with ∂γ0 = {y0, z0} and ∂γ2 = {y2, z2}.

As in the proof of Corollary II.3.1, there are nodal curves

σ−N , . . . , σN ⊂ {x1 = −2 s} ∩ Σ

from yj (for j odd) to ∂BR0 so that

(1) Any curve in Σ \ Π−1(∂D2 s) from z0 to ∂Σ \ ∂BR0 hits either every σj

with j > 0 or every σj with j < 0.

(2) For i < j, σi and σj do not connect in Π−1(D4s) ∩ {x1 ≤ −2 s} ∩ Σ.

(3) dist(∪jσj , ∂Σ \ ∂BR0) ≥ s.
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Note that (2) follows easily from the convex hull property when i 
= −N or
j 
= N ; the case i = −N and j = N follows since Σ separates y−N , yN in
Π−1(D4s) ∩ {x1 ≤ −2 s}.

By the curvature estimate for stable surfaces of [Sc] and the Harnack
inequality for the minimal graph equation, there exist C4, δ4 > 0 so that if
z3, z4 ∈ Σ \ Ts/4(∂Σ), Π(z3) = Π(z4), and

0 < |z3 − z4| ≤ δ5 s ≤ δ4 s ,

then Bs/8(z4) is a graph over (a subset of) Bs/7(z3) of a function u > 0 with

|∇u| ≤ min{1/2, C4 δ5} .

The lemma now follows easily by repeatedly applying this and using (1)–(3)
to stay away from ∂Σ until we have recovered all N sheets.

II.4. Proof of Theorem II.0.21

Let again Σ ⊂ BR0 be a stable embedded disk with

∂Σ ⊂ Br0 ∪ ∂BR0 ∪ {x1 = 0}

and ∂Σ \ ∂BR0 connected. We will use the notation of (II.2.5), so that Σ0,2π
r3,r4

is an annulus with a slit as defined in [CM3]. The next lemma is an easy
consequence of Theorem 3.36 of [CM3].

Lemma II.4.1. Given τ0 > 0, there exists 0 < ε1 = ε1(τ0) < 1/24 so that
the following holds:

If 2r0 ≤ 1 < r3 ≤ R0/2 and Σ0,2π
1,r3

⊂ Σ is the graph of a function u with
|∇u| ≤ 1/12, maxΣ0,2π

1,1
(|u| + |∇u|) ≤ 2 ε1, |A| ≤ ε1/r, and for 1 ≤ t ≤ r3 the

separation over ∂Dt is
≤ 4 π ε1 t1/2 ,

then |∇u| ≤ τ0.

Lemma II.4.1 follows from Theorem 3.36 of [CM3] and two facts:

• Since Σ is a graph over a larger set in P (by stability and the fact that
∂Σ ⊂ Br0 ∪∂BR0 ∪{x1 = 0}), the bound for the separation and estimates
for the minimal graph equation over Σ give a bound for the difference in
the two values of ∇u along the slit (cf. Proposition II.2.12).

• Theorem 3.36 of [CM3] actually applies directly to B3r3/4 ∩ Σ0,2π
1,r3

\ B2

to get |∇u| ≤ τ0/2 on Dr3/2 \ D2; integrating

|∇|∇u|| ≤ |A| (1 + |∇u|2)3/2 ≤ 2 ε1/r

then gives |∇u| ≤ τ0 on Dr3 \ D1.
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We will prove Theorem II.0.21 by repeatedly applying Corollary II.3.7 to
extend ΣM as a graph, Lemma II.4.1 to get an improved gradient bound, and
then Lemma II.3.8 to extend additional sheets.

Proof of Theorem II.0.21. Set τ0 = min{τ, τk, 1/24}/2 and let ε1 = ε1(τ0)
with

0 < ε1 < 1/72

be given by Lemma II.4.1. The constants Ω0, m0, δ0 are given by Corollary
II.3.7 (depending on ε1) and C3, δ2 > 0 are from Lemma II.3.8 with N = m0.
Set N1 = m0, Ω1 = 2 Ω0, and choose ε > 0 so the following three properties
hold:

ε < min {ε1

2
,

τ0

4 π 21/2 C3
,

δ0

2 π 21/2 C3
,

δ0

2 π m0
,

δ2

4 π 21/2
} ,(II.4.2)

Π−1(Dr0) ∩ Σg ⊂ {|x3| ≤ r0/2} ,

|A| ≤ ε1/r on ΣM \ B2 r0 .

To arrange the last condition, we use the gradient bound, stability, and second
derivative estimates for the minimal graph equation (in terms of the gradient
bound). Note that, integrating the bound gradient ≤ ε around the circle ∂Dt,
we get that the separation between the top and bottom sheets of Σ0,2π

r0,1
and

Σ−m0π,m0π
r0,1

over ∂Dt are at most 2 π ε t and 2π m0 ε t, respectively. Note also
that Π−1(D3 r0) ∩ Σg ⊂ {|x3| ≤ 3 ε r0}.

(1) Apply Corollary II.3.7 (with r2 = r0, R2 = 1, τ1 = 2 τ0) to extend Σ0,2π
r0,1

to a graph Σ0,2π
r0,2

with gradient ≤ 2 τ0 + 3 ε1 < 1/12, |A| ≤ ε1/r over
D2 \ D1, and, for 1 ≤ t ≤ 2,

separation ≤ 2 πε t1/2 over ∂Dt .(II.4.3)

(2) By Lemma II.4.1 (with r3 = 2), Σ0,2π
1,2 and hence Σ0,2π

r0,2
have gradient

≤ τ0.

(3) By Lemma II.3.8 (with N = m0, s = 1/2, τ2 = τ0, δ3 = 4πε 21/2), Σ0,2π
r0,3/2

is contained in an m0-valued graph Σ−m0π,m0π
r0,3/2 ⊂ Σ over D3/2 \Dr0 with

gradient ≤ τ0 + C3 4 πε 21/2 < 2 τ0 and separation ≤ C3 2 πε 21/2 < δ0.

Repeat (1)–(3) with: (1) R2 = 3/2 to extend Σ0,2π
r0,3/2 to Σ0,2π

r0,3
with (II.4.3)

holding for 1 ≤ t ≤ 3, (2) r3 = 3 so that Σ0,2π
r0,3

has gradient ≤ τ0, (3) s = 3/2
to get Σ−m0π,m0π

r0,9/2 ⊂ Σ, and then again (1) R2 = 9/2, etc., giving the theorem.
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Part III. The general case of Theorem I.0.8

III.1. Constructing multi-valued graphs in disks in slabs

Using Part I, we show next that an embedded minimal disk in a slab
contains a multi-valued graph if it is not a graph. We can therefore apply Part
II to get almost flatness of a corresponding stable disk past the slab. This is
needed when the minimal surface is not in a thin slab.

Proposition III.1.1. There exists β > 0 so that the following holds:
Let Σ2 ⊂ Br0 ∩{|x3| ≤ β h} be an embedded minimal disk with ∂Σ ⊂ ∂Br0.

If a component Σ1 of B10 h ∩ Σ is not a graph, then Σ contains an N -valued
graph over Dr0−2 h \ D(60+20 N) h.

Proof. The proof has four steps. First we show, by using Lemma I.0.11
twice, that over a truncated sector in the plane, i.e., over

Ss1,s2(θ1, θ2) = {(ρ, θ) | s1 ≤ ρ ≤ s2, θ1 ≤ θ ≤ θ2} ,(III.1.2)

we have three distinct components of Σ. Second, we separate these by stable
disks and order them by height. Third, we use Proposition I.0.16 to show that
the “middle” component is a graph over a large sector. Fourth, we repeatedly
use the appendix to extend the top and bottom components around the annulus
and then Proposition I.0.16 to extend the middle component as a graph. This
will give the desired multi-valued graph.

In different components by Lemma I.0.11.

γ1

γ2

x3 = βh

x3 = −βh

Applying Lemma I.0.11 twice gives at
least 3 different components of Σ
in (III.1.4).

Figure 17: Proof of Proposition III.1.1:
Step 1: Finding the three components.

For j = 1 and 2, let Σj be the component of B20 j h ∩Σ containing Σ1. By
the maximum principle, each Σj is a disk. Rado’s theorem (see, e.g., [CM1])
gives points

zj ∈ Π−1(∂D(20 j−10) h) ∩ Σj ,

for j = 1, 2, where Σ is not graphical. Rotate R2 so that z1, z2 ∈ {x1 ≥ 0} and
set z = (r0, 0, 0). Apply Lemma I.0.11 twice as in the first step of the proof of
Proposition I.0.16 to get (see Figure 17):
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(1) Disjoint curves γ1, γ2 ⊂ Σ with ∂γk ⊂ ∂Br0/2,

γk ⊂ B5 h(zk) ∪ Th(∂D(20 k−10) h ∩ {x1 ≥ 0}) ∪ Th(γ0,z/2) ,(III.1.3)

which are C β h-almost monotone in Th(γ0,z/2) \ B20 k h.

(2) For k = 1, 2 and y0 ∈ γ0,z/2 \ B20 k h, there are components Σ′
y0,k,1 
=

Σ′
y0,k,2 of B5 h(y0) ∩ Σ each containing points of Bh(y0) ∩ γk.

It follows from (2) that, for k = 1, 2, there are components Σk,1,Σk,2 of

Π−1(S42h,r0−2 h(−3π/4, 3π/4)) ∩ Σ

with Σ′
z/2,k,i ⊂ Σk,i. These components do not connect in

Π−1(S40h,r0(−7π/8, 7π/8)) ∩ Σ .

That is, Σ would otherwise contain a disk violating the maximum principle (as
in the second step of Lemma I.0.11). The same argument gives Σi1,i1 ,Σi2,i2 ,Σi3,i3

which do not connect in

Π−1(S40h,r0(−7π/8, 7π/8)) ∩ Σ .(III.1.4)

By the second step of Proposition I.0.16, if Σi,j ,Σk,� do not connect in

Π−1(S40h,r0(−7π/8, 7π/8)) ∩ Σ ,

then there is a stable embedded disk Γα with ∂Γα ⊂ Σ, Γα∩Σ = ∅, and a graph
Γ′

α ⊂ Γα over S41h,r0−h(−13π/16, 13π/16) separating Σi,j ,Σk,�. Applying this
twice (and reordering the k�, i�), we get Γ′

1 ⊂ Γ1 and Γ′
2 ⊂ Γ2 so that each

Σk�,i�
is below Γ′

� which is in turn below Σk�+1,i�+1 . Let γt
1 and γb

1 be top and
bottom components of ∪jγj \B40 h intersecting ∂Br0/2. Since Σ1 ⊂ Σ2, a curve
γm

1 ⊂ B40 h ∩ Σ connects γt
1 to γb

1.
See Figure 18. By a slight variation of Proposition I.0.16 (with γ = γt

1 ∪
γm

1 ∪γb
1), the middle component Σk2,i2 is a graph over S42 h,r0−2 h(−3π/4, 3π/4).

This variation follows from steps one and three of that proof (step two there
constructs barriers Γi which were constructed here above).

See Figure 19. Corollary A.10 gives curves

γt
2, γ

b
2 ⊂ (B44 h ∪ Th(γ0,(0,r0,0)) \ Π−1(D42 h)) ∩ Σ

from ∂B43 h ∩ γt
1 and ∂B43 h ∩ γb

1, respectively, to ∂Br0/2. In particular, γb
2

is below Σk2,i2 and γt
2 is above Σk2,i2 ; i.e., Σk2,i2 is still a middle component.

Again by the maximum principle, this gives 3 distinct components of

Π−1(S46 h,r0−2 h(−π/4, 5π/4)) ∩ Σ

which do not connect in

Π−1(S45 h,r0(−3π/8, 11π/8)) ∩ Σ .
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Extends since it is
“between the sheets.”

γt
1

γm
1

γb
1

Figure 18: Proof of Proposition III.1.1:
Step 3: Extending the middle component as a graph.

By Proposition I.0.16, Σk2,i2 further extends as a graph over S46 h,r0−2 h(−π/4, 5π/4),
giving a graph Σ−3π/4,5π/4

46 h,r0−2 h over S46 h,r0−2 h(−3π/4, 5π/4). By Rado’s theorem,
this graph cannot close up. Repeating this with

γt
3, γ

b
3 ⊂ (B49 h ∪ Th(γ0,(−r0,0,0)) \ Π−1(D47 h)) ∩ Σ ,

etc., eventually gives the proposition.

Extends by the maximum principle.

Graphical middle component.

γt
1

γm
1

γb
1

Figure 19: Proof of Proposition III.1.1:
Step 4: Extending the top and bottom components by the maximum principle.
They stay disjoint since the middle component is a graph separating them.

III.2. Proof of Theorem I.0.8

In this section, we generalize Proposition I.0.16 to when the minimal sur-
face is not in a slab; i.e., we show Theorem I.0.8. Σ2 ⊂ Bc1 r0 ⊂ R3 will be an
embedded minimal disk, ∂Σ ⊂ ∂Bc1 r0 , c1 ≥ 4, and y ∈ ∂B2 r0 . Σ1,Σ2,Σ3 will
be distinct components of Br0(y) ∩ Σ.

Lemma III.2.1. Given β̄ > 0, there exist 2 c2 < c4 < c3 ≤ 1 so that the
following holds:
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Let Σ′
3 be a component of Bc3 r0(y)∩Σ3 and yi ∈ Bc2 r0(y)∩Σi for i = 1, 2.

If y1, y2 are in distinct components of

Bc4 r0(y) \ Σ′
3 ,

then there are disjoint stable embedded minimal disks Γ1,Γ2 ⊂ Br0(y) \Σ with
∂Γi = ∂Σi, and (after a rotation) graphs Γ′

i ⊂ Γi over D3 c3 r0(y) so that
y1, y2,Σ′

3 are each in their own component of

Π−1(D3 c3 r0(y)) \ (Γ′
1 ∪ Γ′

2)

and Γ′
1,Γ

′
2 ⊂ {|x3 − x3(y)| ≤ β̄ c3 r0}.

Proof. This follows exactly as in the second step of the proof of Proposition
I.0.16.

Proof of Theorem I.0.8. Let N1,Ω1, ε > 0 be given by Theorem II.0.21
(with τ = 1). Assume that N1 is even. Let β > 0 be from Proposition III.1.1.
Set

β̄ = min {βs, ε, ε/Cg, β/(6 [60 + 20 (N1 + 3)])} /(5 Ω1) ,(III.2.2)

where βs, Cg are as in Lemma I.0.9. Let c2, c3, c4 and Γ′
i ⊂ Γi be given by

Lemma III.2.1. Set

c5 = (60 + 20 (N1 + 3))β̄ c3/β ,

so that c5 ≤ c3/(30 Ω1). Finally, set c1 = 16 Ω1.
We will suppose that Σ′

3 is not a graph at z′ ∈ Σ′
3 and deduce a contra-

diction. Set z = Π(z′). Since Σ′
3 separates y1, y2, it is in the slab between

Γ′
1,Γ

′
2. By Proposition III.1.1 (with h = β̄ c3 r0/β) and (III.2.2), Σ contains an

(N1 + 3)-valued graph Σg over Dc3 r0(z) \ Dc5 r0(z) and Σg is also in the slab.
Let σg ⊂ Σg be the (N1 + 2)-valued graph over ∂Dc5 r0(z) (see Figure 20). Let
E be the region in

Π−1(Dc3 r0/2(z) \ Dc3 r0/(2 Ω1)(z))

between the sheets of the (concentric) (N1 + 1)-valued subgraph of Σg.
The first step is to find a curve γ3 ⊂ Σ containing σg so that any stable

disk with boundary γ3 is forced to spiral. Also, γ3 will have six pieces: σg, two
segments, γt, γb, in Σg which are graphs over a portion of the {x1 > x1(z)}
part of the x1-axis, two nodal curves, σt, σb, in {x1 = constant}, and a segment
σ∂ in ∂Σ. Since Σg is a graph, there are graphs γt, γb ⊂ Σg over a portion of
the {x1 > x1(z)} part of the x1-axis from ∂σg to

yt, yb ∈ {x1 = x1(z) + 3 c5 r0} ∩ Σ .

By the maximum principle (as in the proof of Corollary II.3.1), there are nodal
curves

σt, σb ⊂ {x1 = x1(z) + 3 c5 r0} ∩ Σ
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σg γt σt

σb

σ∂

γb Plane
x1=constant

Figure 20: The curve γ3 in the proof of Theorem I.0.8. (γ3 = σb ∪ γb ∪ σg ∪
γt ∪ σt ∪ σ∂ .)

from yt, yb, respectively, to yt
0, y

b
0 ∈ ∂Σ. Finally, connect yt

0, y
b
0 by a curve

σ∂ ⊂ ∂Σ and set
γ3 = σb ∪ γb ∪ σg ∪ γt ∪ σt ∪ σ∂ .

By [MeYa], there is a stable embedded disk Γ ⊂ Bc1 r0 \Σ with ∂Γ = γ3. Note
that ∂Γ \ ∂Br0 is connected.

We claim that σt, σb do not intersect between any two of the components
{σi} of

B(c3−2c5) r0
(z) ∩ {x1 = x1(z) + 3 c5 r0} ∩ Σg .

If not, we can assume that a curve σ ⊂ σt connects yt to a point y0 between
σi, σi+1. By (a slight variation of) Proposition I.0.16, the portion Σy0 of Σ
between the i-th and (i + 1)-st sheets of

B(c3−c5) r0
(z) ∩ Σg \ Π−1(D2 c5 r0(z))

is a graph (in fact, “all the way around”). Note that B3 c5 r0(z) ∩ Σy0 and
B3 c5 r0(z)∩Σg are in the same component of B3 c5 r0(z)∩Σ, since otherwise the
stable disk between them given by [MeYa] would, by Lemma I.0.9, intersect
Σg. We can therefore apply the maximum principle as in the proof of Corollary
II.3.1 (i.e., the case y0 ∈ σj for some j) to get the desired contradiction.

We will show next that Γ contains an N1-valued graph Γg over Dc3 r0/2(z)\
Dc3 r0/(2 Ω1)(z) with gradient ≤ ε,

Π−1(Dc3 r0/(2Ω1)(z)) ∩ (Γg)M ⊂ {|x3 − x3(z)| ≤ ε c3 r0/(2 Ω1)} ,

and a curve η ⊂ Π−1(Dc3 r0/(2Ω1)(z)) ∩ Γ \ ∂Br0 connects Γg to ∂Γ \ ∂Br0 . By
the previous paragraph,

distΓ(E ∩ Γ, ∂Γ) > c3 r0/(5 Ω1) .(III.2.3)

By (the proof of) Lemma I.0.9 (with h = c3 r0/(5 Ω1) and β = 5 Ω1 β̄), (III.2.2),
and (III.2.3), we have that each component of E ∩ Γ is a multi-valued graph
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with

gradient ≤ 5 Cg Ω1 β̄ ≤ ε .

Let σc ⊂ E be a graph over ∂Dc3 r0/(2Ω1)(z). Since σc separates

Π−1(∂Dc3 r0/(2Ω1)(z)) ∩ γt and Π−1(∂Dc3 r0/(2Ω1)(z)) ∩ γb

in the cylinder Π−1(∂Dc3 r0/(2 Ω1)(z)) (and the description of ∂Γ), there is a
curve

η ⊂ Π−1(Dc3 r0/(2 Ω1)(z)) ∩ Γ \ ∂Br0

from Γ∩ σc to ∂Γ \ ∂Br0 . Hence, since E is between the sheets of an (N1 + 1)-
valued graph, we get the desired Γg.

Combining all of this, Theorem II.0.21 gives a 2-valued graph Γd ⊂ Γ over

Dc1 r0/(2Ω1)(z) \ Dc3 r0/(2 Ω1)(z)

with gradient ≤ 1. Let γ̂ be the component of B(2−2 c3) r0
∩ γ intersecting Br0 .

Note that since ∂γ = {y1, y2} is separated by the slab between Γ′
1,Γ

′
2 and

γ \Br0 is c2 r0-almost monotone, Γd separates the endpoints of ∂γ̂. Finally, as
in the proof of Proposition I.0.16, we must have Γd∩ γ̂ 
= ∅. This contradiction
completes the proof.

Many variations of Theorem I.0.8 hold with almost the same proof. One
of these is given in the following theorem:

Theorem III.2.4. There exist d1 ≥ 8 and d2 ≤ 1 so that the following
holds:

Let Σ2 ⊂ Bd1 r0 ⊂ R3 be an embedded minimal disk with ∂Σ ⊂ ∂Bd1 r0 and
let y ∈ ∂D5 r0. Suppose that Σ1,Σ2 ⊂ Σ are disjoint graphs, over D3r0(y) with
gradient ≤ d2, which intersect Bd2r0(y). If

Σ1 and Σ2 can be connected in B3r0 ∩ Σ ,

then any component of Br0(y) ∩ Σ which lies between them is a graph.

Part IV. Extending multi-valued graphs off the axis

In this section Σ ⊂ BR0 ⊂ R3 will be an embedded minimal disk with
∂Σ ⊂ ∂BR0 . In contrast to the results of Part II, Σ is no longer assumed to be
stable.

Note that, by [Sc], we can choose d3 > 4 so that: If Γ0 ⊂ Bd3 s with
∂Γ0 ⊂ ∂Bd3 s is stable, then each component of B4 s ∩Γ0 is a graph (over some
plane) with gradient ≤ 1/2.
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Proof of Theorem 0.3. The proof has two steps. First, the proofs of
Theorem I.0.8 and Lemma II.3.8 give a stable disk Γ ⊂ BR0 \Σ and a 4-valued
graph Γ4 ⊂ Γ so that ΣM “passes between” Γ4. Second, (a slight variation of)
Theorem III.2.4 gives the 2-valued graph Σd ⊂ Σ.

Before proceeding, we choose the constants. Let C3, δ2 be given by Lemma
II.3.8 (with N = 4), d1, d2 be from Theorem III.2.4, and Cg, βs be from Lemma
I.0.9. Set

τ1 = min{τ/(5Cg), βs/5, d2/10} ,

τ2 = min{δ2/3, τ1/(1 + 3C3)} .

Let N1,Ω1, ε be given by Theorem II.0.21 (with τ there equal to τ2). For
convenience, assume that N1 ≥ 16 is even, Ω1 > 4, and rename this ε as ε1.
Set N = N1 + 3, Ω = max{d1, 8 d3 Ω1}, and

ε = min {ε1, ε1/(5Cg), βs/5, 1/4, d2/10} .(IV.0.5)

For N2 ≤ N and r0 ≤ r2 < r3 ≤ 1, let EN2
r2,r3

be the region in Π−1(Dr3 \ Dr2)
between the sheets of the (concentric) N2-valued subgraph of Σg. Note that

EN2
r2,r3

⊂ {x2
3 ≤ ε2 (x2

1 + x2
2)} .

As in the proof of Theorem I.0.8, let σg ⊂ Σg be an (N1 +2)-valued graph
over ∂Dr0 and let γ3 ⊂ Σ be a curve with six pieces: σg, two segments, γt, γb,
in Σg which are graphs over a portion of the positive part of the x1-axis, two
nodal curves, σt, σb, in {x1 = 2 d3 r0}, and σ∂ ⊂ ∂Σ. By [MeYa], there is a
stable embedded disk Γ ⊂ BR0 \ Σ with ∂Γ = γ3.

Let {σi} be the components of B5/8∩{x1 = 2 d3 r0}∩Σg and suppose that
a curve σ ⊂ σt connects γt to a point y0 between σi, σi+1. By Theorem III.2.4,
the portion Σy0 with y0 ∈ Σy0 of E

N1+5/2
3 r0,5/8 ∩Σ is a graph. Note that Bd3 r0 ∩Σy0

and B3 r0∩Σg are in the same component of Bd3 r0∩Σ, since otherwise the stable
disk between them given by [MeYa] would intersect Σg (by [Sc]). Applying the
maximum principle as before gives the desired contradiction. Hence, σt, σb do
not intersect between any of the σi’s. Therefore, if z ∈ EN1+1

4d3 r0,1/2 ∩ Γ, then

distΓ(z, ∂Γ) ≥ |Π(z)|/4 .(IV.0.6)

By the same linking argument as before, EN1+1
4d3 r0,1/2 ∩ Γ contains an N1-valued

graph Γg over D1/2 \ D4 d3 r0 with gradient ≤ 5 Cg ε,

Π−1(∂D4 d3 r0) ∩ Γg ⊂ {|x3| ≤ 4 ε d3 r0} ,

and a curve
η ⊂ Π−1(D4 d3 r0) ∩ Γ \ ∂BR0

connects Γg to ∂Γ\∂BR0 . Since Ω1 < 1/(8 d3 r0), Theorem II.0.21 implies that
Γ contains a 2-valued graph Γd over DR0/Ω1

\ D4 d3 r0 with gradient ≤ τ2 < 1.
In particular,

Γd ⊂ {x2
3 ≤ τ2

2 (x2
1 + x2

2)} .
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Next, we apply Lemma II.3.8 to extend Γd to a 4-valued graph Γ4 over
D5 R0/(6 Ω1) \ D5 d3 r0 with gradient ≤ τ2 + 3C3 τ2 ≤ τ1. Let EΓ be the region

in Π−1(DR0/(2Ω1)
\ D15 d3 r0) between the sheets of the (concentric) 3-valued

subgraph of Γ4, so that EΓ ⊂ {x2
3 ≤ τ2

1 (x2
1 + x2

2)}.
If z ∈ EΓ ∩ Σ, then there is a curve γz ⊂ Γ4 with each component of

γz\Π−1(D5 d3 r0) a graph over the segment γ0,z, ∂γz = {y2
z , y

4
z}, and y2

z , y
4
z are in

distinct components of B3 |Π(z)|/5(Π(z))∩Γ with z between these components.
By (a slight variation of) Theorem III.2.4 (with Σ ∪ Γ as a barrier rather
than just Σ), the portion of Σ inside BR0/d1

∩ EΓ is a graph over Γ4. This is
nonempty since (Σg)M begins in EΓ, so we get the desired 2-valued graph Σd

with gradient ≤ 5 Cg τ1 ≤ τ (by Lemma I.0.9).

Appendix A: Catenoid foliations

We recall here some consequences of the maximum principle for an embed-
ded minimal surface Σ in a slab. Let Cat(y) be the vertical catenoid centered
at y = (y1, y2, y3) given by

Cat(y) = {x ∈ R3 | cosh2(x3 − y3) = (x1 − y1)2 + (x2 − y2)2} .(A.1)

Given an angle 0 < θ < π/2, let ∂Nθ(y) be the cone

{x | (x3 − y3)2 = |x − y|2 sin2 θ} .(A.2)

Since cosh t > t for t ≥ 0, it follows that ∂Nπ/4(y) ∩ Cat(y) = ∅. Set

θ0 = inf {θ | ∂Nθ(y) ∩ Cat(y) = ∅} ,(A.3)

so that ∂Nθ0(y) and Cat(y) intersect tangentially in a pair of circles. Let
Cat0(y) be the component of Cat(y) \ ∂Nθ0(y) containing the neck

{x |x3 = y3, (x1 − y1)2 + (x2 − y2)2 = 1} .

If x ∈ Cat0(y), then y, x∩Cat0(y) = {x} since cosh is convex and cosh′(0) = 0;
i.e., Cat0(y) is a radial graph. In particular, the dilations of Cat0(y) about y

are all disjoint and, consequently (see Figure 21), give a minimal foliation of
the solid (open) cone

Nθ0(y) = {x | (x3 − y3)2 < |x − y|2 sin2 θ0} .(A.4)

The leaves of this foliation have boundary in ∂Nθ0(y) and are level sets of the
function fy given by

y + (x − y)/fy(x) ∈ Cat0(y) .(A.5)

Choose βA > 0 small so that

{x | |x3 − y3| ≤ 2 βA h} \ Bh/8(y) ⊂ Nθ0(y)
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Nθ0(y)

y

Cat (y)

A rescaling
of Cat (y)

Figure 21: The catenoid foliation.

Angle π/n

Figure 22: An n-prong singularity.

and

{x | fy(x) = 3h/16} ∩ {x | |x3 − y3| ≤ 2 βA h} ⊂ B7 h/32(y) .(A.6)

The intersection of two embedded minimal surfaces is locally given by
2n embedded arcs meeting at equal angles as in Figure 22, i.e., an “n-prong
singularity” (e.g., the set where (x + iy)n is real); see Claim 1 in Lemma 4 of
[HoMe]. This immediately implies the next lemma:

Lemma A.7. If z ∈ Σ ⊂ Nθ0(y) is a nontrivial interior critical point of
fy|Σ, then {x ∈ Σ | fy(x) = fy(z)} has an n-prong singularity at z with n ≥ 2.

As a consequence, we get a version of the usual strong maximum principle:

Lemma A.8. If Σ ⊂ Nθ0(y), then fy|Σ has no nontrivial interior local
extrema.

In particular, we can use fy to show that a minimal surface in a narrow
slab either stays near its boundary or comes close to the center of the slab:

Corollary A.9. If ∂Σ ⊂ ∂Bh(y), B3 h/4(y) ∩ Σ 
= ∅, and

Σ ⊂ Bh(y) ∩ {x | |x3 − y3| ≤ 2 βA h} ,

then Bh/4(y) ∩ Σ 
= ∅.

Proof. Scaling (A.6) by 4, we get

{x ∈ Σ | fy(x) = 3h/4} ⊂ B7 h/8(y) \ B3 h/4(y) .

By Lemma A.8, fy has no interior minima in Σ so that the corollary now
follows from

fy(x) ≤ |x − y| .
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Iterating Corollary A.9 along a chain of balls gives the next corollary:

Corollary A.10. If Σ ⊂ {|x3| ≤ 2 βA h}, points p, q ∈ {x3 = 0} satisfy
Th(γp,q) ∩ ∂Σ = ∅, and

yp ∈ Bh/4(p) ∩ Σ ,

then a curve ν ⊂ Th(γp,q) ∩ Σ connects yp to Bh/4(q) ∩ Σ.

Proof. Choose points

y0 = p, y1, y2, . . . , yn = q ∈ γp,q

with |yi−1 − yi| = h/2 for i < n and |yn−1 − yn| ≤ h/2. Repeatedly applying
Corollary A.9 for 1 ≤ i ≤ n, gives curves

νi : [0, 1] → Bh(yi) ∩ Σ

with ν1(0) = yp, νi(1) ∈ Bh/4(yi) ∩ Σ, and νi+1(0) = νi(1). Set ν = ∪n
i=1 νi.

This produces curves which are “h-almost monotone” in the sense that if
y ∈ ν, then B4 h(y) ∩ ν has only one component which intersects B2 h(y).

Corollary A.11. If Σ ⊂ {|x3| ≤ 2 βA h} and E is an unbounded com-
ponent of

R2 \ Th/4(Π(∂Σ)) ,

then Π(Σ) ∩ E = ∅.

Proof. Given y ∈ E, choose a curve

γ : [0, 1] → R2 \ Th/4(Π(∂Σ))

with |γ(0)| > supx∈Σ |x| + h and γ(1) = y. Set

Σt = {x ∈ Σ | fγ(t)(x) = 3h/16} .

By (A.6), we have Σt ⊂ B7 h/32(γ(t)), so that Σ0 = ∅ and Σt ∩ ∂Σ = ∅. By
Lemma A.8, either:

• Σt = ∅, or

• Σt contains an arc of transverse intersection.

In particular, there cannot be a first t > 0 with Σt 
= ∅, which gives the
corollary.
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