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Higher composition laws III:
The parametrization of quartic rings

By Manjul Bhargava

1. Introduction

In the first two articles of this series, we investigated various higher ana-
logues of Gauss composition, and showed how several algebraic objects involv-
ing orders in quadratic and cubic fields could be explicitly parametrized. In
particular, a central role in the theory was played by the parametrizations of
the quadratic and cubic rings themselves.

These parametrizations are beautiful and easy to state. In the quadratic
case, one need only note that a quadratic ring—i.e., any ring that is free of rank
2 as a Z-module—is uniquely specified up to isomorphism by its discriminant;
and conversely, given any discriminant D, i.e., any integer congruent to 0 or 1
(mod 4), there is a unique quadratic ring having discriminant D, namely

S(D) =


Z[x]/(x2) if D = 0,

Z · (1, 1) +
√

D(Z ⊕ Z) if D ≥ 1 is a square,
Z[(D +

√
D)/2] otherwise.

(1)

Thus we may say that quadratic rings are parametrized by the set D =
{D ∈ Z : D ≡ 0 or 1 (mod 4)}. (For a more detailed discussion of quadratic
rings, see [2].)

The cubic case is slightly more complex, in that cubic rings are not
parametrized only by their discriminants; indeed, there may sometimes be sev-
eral cubic orders having the same discriminant. The correct object parametriz-
ing cubic rings—i.e., rings free of rank 3 as Z-modules—was first determined
by Delone-Faddeev in their classic 1964 treatise on cubic irrationalities [8].
They showed that cubic rings are in bijective correspondence with GL2(Z)-
equivalence classes of integral binary cubic forms, as follows. Given a binary
cubic form f(x, y) = ax3 + bx2y + cxy2 + dy3 with a, b, c, d ∈ Z, one associates
to f the ring R(f) having Z-basis 〈1, ω1, ω2〉 and multiplication table

ω1ω2 = −ad,

ω2
1 = −ac + bω1 − aω2,

ω2
2 = −bd + dω1 − cω2.

(2)
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One easily verifies that GL2(Z)-equivalent binary cubic forms yield isomorphic
rings, and conversely, that every isomorphism class of ring R can be represented
in the form R(f) for a unique binary cubic form f , up to such equivalence.
Thus we may say that isomorphism classes of cubic rings are parametrized by
GL2(Z)-equivalence classes of integral binary cubic forms.

The above parametrizations of quadratic and cubic orders are at once both
beautiful and simple, and have enjoyed numerous applications both within
this series of articles and elsewhere (see e.g., [7], [8], [9], [10], [13]). It is
therefore only natural to ask whether analogous parametrizations might exist
for orders in number fields of degree k > 3. In this article, we show how such a
parametrization can also be achieved for quartic orders (i.e., the case k = 4).
The problem of parametrizing quintic orders (the case k = 5) will be treated
in the next article of this series [5].

In classifying quartic rings, a first approach (following the cases k = 2
and k = 3) might be simply to write out the multiplication laws for a rank 4
ring in terms of an explicit basis, and examine how the structure coefficients
transform under changes of basis. However, since the jump in complexity from
k = 3 to k = 4 is so large, this idea goes astray very quickly (yielding a huge
mess!), and it becomes necessary to have a new perspective in order to make
any further progress.

In Section 2 of this article, we give such a new perspective on the case k = 3
in terms of what we call resolvent rings. We call them resolvent rings because
they are natural integral models of the resolvent fields occurring in the clas-
sical literature. The notion of quadratic resolvent ring, defined in Section 2.2,
immediately yields the Delone-Faddeev parametrization of cubic orders from
a purely ring-theoretic viewpoint. Our formulation is slightly different—we
prove that there is a canonical bijection between the set of GL2(Z)-orbits on
the space of binary cubic forms and the set of isomorphism classes of pairs
(R, S), where R is a cubic ring and S is a quadratic resolvent of R. Since it
turns out that every cubic ring R has a unique quadratic resolvent S up to
isomorphism, the information given by S may be dropped if desired, and we
recover Delone-Faddeev’s result.

Generalizing this perspective of resolvent rings to the case k = 4 then
suggests that the analogous objects parametrizing quartic orders should be pairs
of ternary quadratic forms, up to integer equivalence.

Section 3 is dedicated to proving this assertion and its ramifications. Fol-
lowing [2], let us use (Sym2Z3 ⊗ Z2)∗ to denote the space of pairs of ternary
quadratic forms having integer coefficients. Then our main result is:

Theorem 1. There is a canonical bijection between the set of GL3(Z) ×
GL2(Z)-orbits on the space (Sym2Z3⊗Z2)∗ of pairs of integral ternary quadratic
forms and the set of isomorphism classes of pairs (Q, R), where Q is a quartic
ring and R is a cubic resolvent ring of Q.
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In coordinate-free language, Theorem 1 states that isomorphism classes of
such pairs (Q, R) are in natural bijection with isomorphism classes of quadratic
maps φ : M → L, where M and L are free Z-modules having ranks 3 and 2
respectively. In fact, under this bijection we have that M = Q/Z and L = R/Z.

In the case that Q is an order in an S4-quartic field K, we find that R

is an order in the usual cubic resolvent field of K, which is the subfield of the
Galois closure K̄ of K fixed by a dihedral subgroup D4 ⊂ S4. Furthermore, in
this case φ : M → L turns out to be none other than the mapping from Q/Z
to R/Z induced by the resolvent mapping

φ̃(x) = xx′ + x′′x′′′(3)

from Q to R used in the classical solution to the quartic equation, where we
have used x, x′, x′′, x′′′ to denote the conjugates of x in K̄.

Thus quartic rings may also be described naturally through their resolvent
rings. However, unlike the case of cubic rings, not every quartic ring has a
unique resolvent ring! Thus it becomes important to ask when two elements
of (Sym2Z3 ⊗ Z2)∗ yield the same quartic ring Q in Theorem 1. If (A, B) ∈
(Sym2Z3 ⊗ Z2)∗ is a pair of ternary quadratic forms yielding a quartic ring
Q by Theorem 1, and if A is a multiple of n, then we find that the pair
( 1

nA, nB) ∈ (Sym2Z3 ⊗ Z2)∗ also yields the same quartic ring Q. In fact, with
the exception of the trivial quartic ring (i.e., the ring Z+Zx1 +Zx2 +Zx3 with
all xixj = 0), such transformations essentially tell the whole story. Namely,
we show that: (a) every nontrivial quartic ring Q occurs in the correspondence
of Theorem 1; and (b) two pairs of ternary quadratic forms are associated
to the same quartic ring in Theorem 1 if and only if they are related by a
transformation in the group GL±1

2 (Q) ⊂ GL2(Q) consisting of elements having
determinant ±1.

Finally, we show that a pair of ternary quadratic forms (A, B) corresponds
to a nontrivial quartic ring in Theorem 1 if and only if A and B are linearly
independent over Q. Together these statements give the following:

Theorem 2. There is a canonical bijection between isomorphism classes
of nontrivial quartic rings and GL3(Z)×GL±1

2 (Q)-equivalence classes of pairs
(A, B) of integral ternary quadratic forms where A and B are linearly inde-
pendent over Q.

There is a third version of the story that is also very useful. If T is a ring,
free of rank k over Z with unit, then it possesses the subring Tn = Z + nT for
any positive integer n. Conversely, any nontrivial ring can be written as Tn for
a unique maximal n which we call the content, and for a unique ring T , which
is then called primitive (content 1). This gives a bijection, for any k, between
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sets

{nontrivial rings of rank k} ↔ N × {primitive rings of rank k}.

Hence classifying all rings of rank k is equivalent to classifying just those rings
that are primitive.

For example, in the case of quadratic rings the content coincides with what
is usually called the “conductor”. The conductor of a quadratic ring S whose
discriminant is D ∈ D is simply the largest integer n such that D/n2 ∈ D. In
particular, a quadratic ring has conductor 1 if and only if its discriminant is
fundamental; i.e., it is an element of D that is not a square times any other ele-
ment of D. Thus, we may say that isomorphism classes of primitive quadratic
rings are parametrized by nonzero elements of D modulo equivalence under
scalar multiplication by Q×2.

In the case of cubic rings, the content of a cubic ring R = R(f) is equal to
the content of the corresponding binary cubic form f (in the usual sense, i.e.,
the greatest common divisor of its coefficients). Indeed, the correspondence
f ↔ R(f) given by (2) implies that

R(nf) = Z + nR(f) = R(f)n

for all f and n, so that a ring corresponding to a cubic form of content n

has content at least n, and, conversely, a cubic form corresponding to a cu-
bic ring of content n must be a multiple of n. In particular, primitive cu-
bic rings correspond to primitive binary cubic forms. We may thus say that
isomorphism classes of primitive cubic rings are in canonical bijection with
GL2(Z) × GL1(Q)-equivalence classes of nonzero integral binary cubic forms,
where GL1(Q) acts on binary cubic forms by scalar multiplication.

The corresponding result for primitive quartic rings is as follows.

Theorem 3. There is a canonical bijection between isomorphism classes
of primitive quartic rings and GL3(Z) × GL2(Q)-equivalence classes of pairs
(A, B) of integral ternary quadratic forms where A and B are linearly inde-
pendent over Q.

In coordinate-free terms, Theorem 3 states that primitive quartic rings
correspond to pairs (M, V ), where M is a free Z-module of rank 3 and V

is a two-dimensional rational subspace of the (six-dimensional) vector space
of Q-valued quadratic forms on M . Equivalently, primitive quartic rings Q

correspond to pairs (M, Λ), where Λ is a maximal two-dimensional lattice of
Z-valued quadratic forms on M .

The connection to Theorem 2 is now clear: if Qn = Z + nQ is the content
n subring associated to a primitive quartic ring Q, then the two-dimensional
Z-lattices corresponding to Qn under the bijection of Theorem 2 are just the
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index n sublattices of Λ, any two of which have Z-bases related by a ratio-
nal 2 × 2 matrix of determinant ±1. We also now understand Theorem 1
better, because the different cubic resolvents corresponding to the content n

subring Qn are in one-to-one correspondence with the index n sublattices of
Λ. This observation has an important consequence on the ring-theoretic side,
concerning cubic resolvents:

Corollary 4. The number of cubic resolvents of a quartic ring depends
only on its content n; it is equal to the number

∑
d|n d of sublattices of Z2

having index n.

In particular, since
∑

d|n d ≥ 1 for all n, cubic resolvent rings always
exist for any quartic ring. Moreover, a primitive quartic ring always has a
unique cubic resolvent. As a special case of this, we observe that a maximal
quartic ring—such as the ring of integers in a quartic number field—will always
have a unique, canonically associated cubic resolvent ring. We summarize this
discussion as follows.

Corollary 5. Every quartic ring has a cubic resolvent ring. A primitive
quartic ring has a unique cubic resolvent ring up to isomorphism. In particular,
every maximal quartic ring has a unique cubic resolvent ring.

We introduce the notion of resolvent ring in Section 2, and use it to show
how pairs of integral ternary quadratic forms are connected to quartic rings.
In Section 3, we then investigate the integer orbits on the space of pairs of
ternary quadratic forms in detail, and in particular, we establish the bijections
of Theorems 1–3 as well as Corollaries 4 and 5. Finally, in Section 4 we
investigate how maximality and splitting of primes in quartic rings manifest
themselves in terms of pairs of ternary quadratic forms. This may be important
in future computational applications (see, e.g., [6]), and will also be crucial for
us in obtaining results on the density of discriminants of quartic fields (to
appear in [4]).

We note that the relation between pairs of ternary quadratic forms and
quartic fields has previously been investigated in the important work of Wright-
Yukie [15], who showed that nondegenerate rational orbits on the space of pairs
of ternary quadratic forms correspond bijectively with étale quartic extensions
of Q. As Wright and Yukie point out, rational cubic equations had been studied
even earlier as intersections of zeroes of pairs of ternary quadratic forms in the
ancient work of Omar Khayyam [12]. Our viewpoint differs from previous
work in that we consider pairs of ternary quadratic forms over the integers Z;
as we shall see, the integer orbits on the space of pairs of ternary quadratic
forms have an extremely rich structure, yielding insights not only into quartic
fields, but also into their orders, their “cubic resolvent rings”, their collective
multiplication tables, their discriminants, local behavior, and much more.
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2. Resolvent rings and parametrizations

Before introducing the notion of resolvent ring, it is necessary first to
understand a formal construction of “Galois closure” at the level of rings,
which we call “Sk-closure”. We view this construction as a formal analogue of
Galois closure because if R is an order in an Sk-field of degree k, then it turns
out that its Sk-closure R̄ is an order in the usual Galois closure K̄ of K. More
generally, the Sk-closure operation gives a way of attaching to any ring R with
unit that is free of rank k over Z, a ring R̄ with unit that is free of rank k!
over Z.

Let us fix some terminology. By a ring of rank k we will always mean a
commutative ring with unit that is free of rank k over Z. To any such ring
R of rank k we may attach the trace function Tr : R → Z, which assigns
to an element α ∈ R the trace of the endomorphism mα : R

×α−→ R given by
multiplication by α. The discriminant Disc(R) of such a ring R is then defined
as the determinant det(Tr(αiαj)) ∈ Z, where {αi} is any Z-basis of R.

The discriminants of individual elements in R may also be defined and
will play an important role in what follows. Let Fα denote the characteristic
polynomial of the linear transformation mα : R → R associated to α. Then
the discriminant Disc(α) of an element α ∈ R is defined to be the discriminant
of the characteristic polynomial Fα. In particular, if R = Z[α] for some α ∈ R,
then we have Disc(R) = Disc(α).

2.1. The Sk-closure of a ring of rank k. Let R be any ring of rank
k having nonzero discriminant, and let R⊗k denote the kth tensor power
R⊗k = R ⊗Z R ⊗Z · · · ⊗Z R of R. Then R⊗k is seen to be a ring of rank kk in
which Z lies naturally as a subring via the mapping n �→ n(1 ⊗ 1 ⊗ · · · ⊗ 1).

Denote by IR the ideal in R⊗k generated by all elements of the form

(x ⊗ 1 ⊗ · · · ⊗ 1) + (1 ⊗ x ⊗ · · · ⊗ 1)+ · · · +(1 ⊗ 1 ⊗ · · · ⊗ x) − Tr(x)

for x ∈ R. Let JR denote the Z-saturation of the ideal IR; i.e., let

JR = {r ∈ R⊗k : nr ∈ IR for some n ∈ Z}.
With these definitions, it is easy to see that if α ∈ R satisfies the charac-

teristic equation Fα(x) = xk−a1x
k−1 +a2x

k−2−· · ·±ak = 0 with ai ∈ Z, then
the ith elementary symmetric polynomial in the k elements α ⊗ 1 ⊗ · · · ⊗ 1,
1⊗ α ⊗ · · · ⊗ 1, . . . , 1⊗ 1⊗ · · · ⊗ α will be congruent to ai modulo JR for all
1 ≤ i ≤ k.

For example, if k = 2 and α ∈ R satisfies Fα(x) = x2 − a1x+ a2 = 0, then

2 α ⊗ α = (α ⊗ 1 + 1 ⊗ α)2 − (α2 ⊗ 1 + 1 ⊗ α2)
≡ Tr(α)2 − Tr(α2) = 2a2 (mod IR)

and hence α ⊗ α ≡ a2 (mod JR). An analogous argument works for all k.
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It is therefore natural to make the following definition:

Definition 6. The Sk-closure of a ring R of rank k is the ring R̄ given by
R⊗k/JR.

This notion of Sk-closure is precisely the formal analogue of “Galois clo-
sure” we seek. We may write Gal(R̄/Z) = Sk, since the symmetric group
Sk acts naturally as a group of automorphisms on R̄. Furthermore, the sub-
ring R̄Sk consisting of all elements fixed by this action is simply Z. Indeed,
it is known by the classical theory of polarization that the Sk-invariants of
R⊗k are spanned by elements of the form x ⊗ · · · ⊗ x (x ∈ R), and the lat-
ter is simply N(x) modulo JR. A similar argument shows that we also have
Gal(R̄/R) = Sk−1, where R naturally embeds into R̄ by x �→ x ⊗ 1 ⊗ · · · ⊗ 1.

For example, let us consider the case where R is an order in a number
field K of degree k such that Gal(K̄/Q) = Sk. Then R̄ is isomorphic to the
ring generated by all the Galois conjugates of elements of R in K̄, i.e.,

R̄ = Z[{α : α Sk-conjugate to some element of R}].

More generally, if R is an order in a number field K of degree k whose associated
Galois group has index n in Sk, then the “Sk-closure” of K will be a direct
sum of n copies of the Galois closure of K (and hence will have dimension k!
over Q), and the Sk-closure of R will be a subring of this having Z-rank k!.

In the next two subsections, we use the notion of Sk-closure to attach
rings of lower rank to orders in cubic and quartic fields.

2.2. The quadratic resolvent of a cubic ring. Given a cubic ring, there is a
natural way to associate to R a quadratic ring S, namely the unique quadratic
ring S having the same discriminant as R. Since the discriminant D = Disc(R)
of R is necessarily congruent to 0 or 1 modulo 4, the quadratic ring S(D) of
discriminant D always exists; we call S = S(D) the quadratic resolvent ring
of R.

Definition 7. For a cubic ring R, the quadratic resolvent ring Sres(R) of
R is the unique quadratic ring S such that Disc(R) = Disc(S).

Given a cubic ring R, there is a natural map from R to its quadratic
resolvent ring S that preserves discriminants. Indeed, for an element x ∈ R,
let x, x′, x′′ denote the S3-conjugates of x in the S3-closure R̄ of R. Then the
element

φ̃3,2(x) =
[(x − x′)(x′ − x′′)(x′′ − x)]2 + (x − x′)(x′ − x′′)(x′′ − x)

2
(4)

is contained in some quadratic ring, and φ̃3,2(x) has the same discriminant as x.
(Notice that the expression (4) is only interesting modulo Z, for φ̃3,2(x) could
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be replaced by any translate by an element of Z and these same properties
would still hold.) Moreover, all the elements φ̃3,2(x) may be viewed as lying in
a single ring Sinv(R) naturally associated to R, namely the quadratic subring
of R̄ ⊗ Q defined by

Sinv(R) = Z[{φ̃3,2(x) : x ∈ R}].(5)

This ring is quadratic because it is fixed under the natural action of the alter-
nating group on the rank 6 ring R̄⊗Q. We call Sinv(R) the quadratic invariant
ring of R.

How is Sinv(R) related to the quadratic resolvent ring S = Sres(R)? To
answer this question, note that forming φ̃3,2(x) for x ∈ R involves taking a
square root of the discriminant of x in (R̄ ⊗ Q)A3 . Since Disc(x) is equal to
n2Disc(R) for some integer n, we see that φ̃3,2(x) is naturally an element of
the quadratic resolvent S for all x ∈ R, so that Sinv(R) is naturally a subring
of S. In particular, the map φ̃3,2 : R → Sinv(R) may also be viewed as a
discriminant-preserving map

φ̃3,2 : R → S.(6)

When does Sinv(R) = S? As we shall prove in the next section, the answer
is that Sinv(R) = S precisely when R is primitive and R ⊗ Z2 �∼= Z3

2. Thus for
“most” cubic rings R, Sinv(R) = S.

Let us now examine the implication of our construction for the parametriza-
tion of cubic rings. Suppose R is a cubic ring and S is the quadratic resolvent
ring of R, and let φ̃3,2 : R → S be the mapping defined by (4). Then observe
that φ̃3,2(x) = φ̃3,2(x + c) for any c ∈ Z; hence, in particular, φ̃3,2 : R → S

descends to a mapping

φ3,2 : R/Z → S/Z.(7)

As a map of Z-modules, φ3,2 is seen to be a cubic map from Z2 to Z, and thus
corresponds to an integral binary cubic form, well-defined up to GL2(Z) ×
GL1(Z)-equivalence.

To produce explicitly a binary cubic form corresponding to the cubic ring
R as above, we compute the discriminant of xω1 + yω2 ∈ R, where R has
Z-basis 〈1, ω1, ω2〉 and multiplication is defined by (2). An explicit calculation
shows that

Disc(xω1 + yω2) = D (ax3 + bx2y + cxy2 + dy3)2.

Since S/Z is generated by (D +
√

D)/2, it is clear that the binary cubic form
corresponding to the map φ3,2 is given by√

Disc(xω1 + yω2)/2√
D/2

= ax3 + bx2y + cxy2 + dy3.
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Thus we have obtained a concrete ring-theoretic interpretation of the Delone-
Faddeev parametrization of cubic rings.

2.3. Cubic resolvents of a quartic ring. Now let Q be a quartic ring, i.e.,
any ring of rank 4. Developing the quartic analogue of the work of the previous
section is the key to determining what the corresponding parametrization of
quartic rings should be. To accomplish this task, we must in particular de-
termine the correct notions of a cubic resolvent ring R of Q, a cubic invariant
ring Rinv(Q) of Q, and a map

φ̃4,3 : Q → R.

As it turns out, the notion of what the cubic resolvent ring R should be is
not quite as immediate and clear cut as was the concept of quadratic resolvent
ring in the cubic case. Thus, we turn first to the map φ̃4,3 and to the cubic
invariant ring Rinv(Q), which are easier to define.

In analogy with the cubic case of the previous section, we should like φ̃4,3

to be a polynomial function that associates to any x in a quartic ring a natural
element of the same discriminant in a cubic ring. Such a map does indeed
exist: if Q̄ denotes the S4-closure of Q, and x, x′, x′′, x′′′ denote the conjugates
of x in Q̄, then φ̃4,3(x) is defined by the following well-known expression:

φ̃4,3(x) = xx′ + x′′x′′′.(8)

It is known from the classical theory of solving the quartic that φ̃4,3 is discrimi-
nant-preserving; it is also clear that φ̃4,3(x) lies in a cubic ring, having exactly
three S4-conjugates in Q̄. In fact, all elements φ̃4,3(x) for x ∈ Q are seen to lie
in a single cubic ring, namely, the cubic subring of Q̄ fixed under the action of
a fixed dihedral subgroup D4 ⊂ S4 of order 8. Following the example of the
previous section, let us define

Rinv(Q) = Z[{φ̃4,3(x) : x ∈ Q}].(9)

We call Rinv(Q) the cubic invariant ring of Q. Thus we have a natural,
discriminant-preserving map

φ̃4,3 : Q → Rinv(Q).

Let us return to the notion of cubic resolvent of Q. In analogy again
with the cubic-quadratic case, we should like to define the cubic resolvent of
the quartic ring Q to be a cubic ring R that has the same discriminant as Q

and that contains Rinv(Q). However, there may actually be many such rings,
and no single one naturally lends itself to being distinguished from the others.
Thus we ought to allow any such ring to be called a cubic resolvent ring of Q.

Definition 8. Let Q be a quartic ring, and Rinv(Q) its cubic invariant ring.
A cubic resolvent ring of Q is a cubic ring R such that Disc(Q) = Disc(R) and
R ⊇ Rinv(Q).
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In the next section we will see that every quartic ring has at least one cubic
resolvent ring, and moreover, for a primitive quartic ring Q the cubic resolvent
is in fact unique (and is simply Rinv(Q)). Thus cubic resolvents exist, and
given any cubic resolvent R of Q, we may then of course speak of the natural
map

φ̃4,3 : Q → R.

Following the cubic case, let us see what implications our construction of
cubic resolvents has for the parametrization of quartic rings. Suppose Q is a
quartic ring, R is its cubic resolvent ring, and φ̃4,3 : Q → R is the natural map
as defined by (8). Then observe that for any c ∈ Z,

φ̃4,3(x + c) = (x + c)(x′ + c) + (x′′ + c)(x′′′ + c) = φ̃4,3(x) + d

for some d ∈ Z, namely d = c Tr(x) + 2c2. Hence φ̃4,3 : Q → R descends
naturally to a map

φ4,3 : Q/Z → R/Z.(10)

As a map between Z-modules, this map is a quadratic map from Z3 to Z2, and
thus corresponds to a pair of integral ternary quadratic forms, well-defined up
to GL3(Z) × GL2(Z)-equivalence.

As the reader will have noticed, the analogy with the cubic case up to
this point is very remarkable, and if it is to continue, it suggests that iso-
morphism classes of quartic rings should be parametrized roughly by pairs of
integral ternary quadratic forms, up to integer equivalence.

On the other hand, proving the latter statement, or even just determin-
ing the pair of ternary quadratic forms attached to a given quartic ring Q, is
not quite as easy as the corresponding calculation was in the cubic case. The
difference lies in the fact that, in the case of cubic rings, one could completely
describe the quadratic resolvent ring, and so φ3,2 could also be described ex-
plicitly. For quartic rings, however, it is difficult to say anything a priori
about the cubic resolvent ring other than that it is a ring of rank 3 and certain
discriminant D; more structural information is not forthcoming without some
additional work, which we carry out in Section 3.

Remark 1. The notion of cubic resolvent ring may also be defined without
the notion of Sk-closure and cubic invariant ring. If Q is a quartic ring, a cubic
resolvent ring R is a cubic ring equipped with a degree 2 polynomial map
φ4,3 : Q → R, satisfying certain formal properties which make it “look like”
xx′ + x′′x′′′. Such a definition can be useful when one wishes to extend the
results here to situations where the base ring is not Z, or where the quartic
rings being considered have discriminant zero. Further details of this approach
are described in the Appendix to Section 3.
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Remark 2. There are three canonically isomorphic copies of the cubic
invariant ring of Q in Q̄. The choice of map φ4,3 here thus corresponds simply
to a fixed choice of cubic invariant ring in Q̄. The other choices are obtained
by renumbering the conjugations.

3. Quartic rings and pairs of ternary quadratic forms

Given a quartic ring Q, and a cubic resolvent ring R of Q, we have shown
that one may associate to (Q, R) a natural, discriminant-preserving, quadratic
map φ4,3 : Q/Z → R/Z. If we choose bases for Q/Z and R/Z, we may think of
this map as a pair (A, B) of integral ternary quadratic forms A(t1, t2, t3) and
B(t1, t2, t3). However, even if we are given explicitly a pair of rings (Q, R)—say
via their multiplication tables—it is not immediate how to produce explicitly
the pair (A, B) of integral ternary quadratic forms corresponding to (Q, R).
Hence our strategy is to work the other way around: given a pair (A, B) of
integral ternary quadratic forms, we determine the possible structures that the
rings Q and R can have.

It is necessary first to understand some of the basic invariant theory of
pairs of ternary quadratic forms. This is summarized briefly in Section 3.1.
In Sections 3.2–3.5, we gather structural information on the rings Q and R,
using only the data (A, B) corresponding to the map (10). This results in
a proof of Theorem 1 in cases of nonzero discriminant. In Sections 3.6 and
3.7, we study the integral invariant theory of the space of pairs of ternary
quadratic forms, and in particular, we show how the content of a quartic ring
Q is related to the number of cubic resolvents of Q. This yields Theorems 2
and 3 and Corollaries 4 and 5, again in cases of nonzero discriminant. Finally,
in the Appendix (Section 3.9), we describe a coordinate-free approach to some
of the constructions used in this section. This approach allows, in particular,
for a proof of Theorems 1–3 and Corollaries 4 and 5 in all cases including those
of zero discriminant.

3.1. The fundamental invariant Disc(A, B). In studying a pair (A, B) of
ternary quadratic forms representing the map φ4,3 as in (13), we may change
the basis of Q/Z or R/Z by elements of GL3(Z) or GL2(Z) respectively. This
reflects the fact that the group GZ = GL3(Z) × GL2(Z) acts on the space VZ
of pairs (A, B) of integral ternary quadratic forms in a natural way; namely, if
(A, B) ∈ (Sym2Z3 ⊗ Z2)∗ is a pair of integral ternary quadratic forms (which
we write as a pair of symmetric 3 × 3 matrices whose diagonal entries are
integers and nondiagonal entries are half-integers), then an element (g3, g2) ∈
GZ operates by sending (A, B) to

(g3, g2) · (A, B) = (r · g3Agt
3 + s · g3Bgt

3, t · g3Agt
3 + u · g3Bgt

3),(11)

where we have written g2 as ( r s
t u ) ∈ GL2(Z).
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We observe that the representation of GL3(Z)×GL2(Z) on (Sym2Z3⊗Z2)∗

has just one polynomial invariant. To see this, notice first that the action of
GL3(Z) on VZ has four independent polynomial invariants, namely the coeffi-
cients a, b, c, d of the binary cubic form

f(x, y) = 4 · Det(Ax + By).

Next, GL2(Z) acts on the cubic form f(x, y), and it is well-known that this ac-
tion has exactly one polynomial invariant, namely the discriminant Disc(f)
of f . Thus the unique GL3(Z) × GL2(Z)-invariant on (Sym2Z3 ⊗ Z2)∗ is
Disc(4 · Det(Ax + By)). We call this fundamental invariant the discriminant
Disc(A, B) of the pair (A, B). (The factor 4 has been included to insure that
any pair of integral ternary quadratic forms has integral discriminant.)

3.2. How much of the structure of Q is determined by (A, B)? The only
fact we have so far relating the structures of Q, R, and the map φ4,3 is that
φ4,3 is discriminant-preserving as a map from Q to R. However, this fact alone
yields little information on the nature of Q and R. Thus the following lemma
on φ4,3 plays an invaluable role in determining the multiplicative structure
of Q.

To state the lemma, we use the notation IndM (v1, v2, . . . , vk) to denote
the (signed) index of the lattice spanned by v1, v2, . . . , vk in the oriented rank k

Z-module M ; in other words, IndM (v1, v2, . . . , vk) is the determinant of the
transformation between v1, v2, . . . , vk and any positively oriented Z-basis of M .

Lemma 9. If Q is a quartic ring, and R is a cubic resolvent of Q, then
for any x, y ∈ Q,

IndQ(1, x, y, xy) = ± IndR(1, φ4,3(x), φ4,3(y)).(12)

Proof. Since Disc(Q) = Disc(R), the assertion of the lemma is equivalent
to the following identity:∣∣∣∣∣∣∣∣

1 1 1 1
x x′ x′′ x′′′

y y′ y′′ y′′′

xy x′y′ x′′y′′ x′′′y′′′

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 1 1

xx′ + x′′x′′′ xx′′ + x′x′′′ xx′′′ + x′x′′

yy′ + y′′y′′′ yy′′ + y′y′′′ yy′′′ + y′y′′

∣∣∣∣∣∣∣∣ .

The identity may be verified by direct calculation.

The sign in expression (12) of course depends on how Q and R are oriented.
To fix the orientations on Q and R once and for all, let 〈1, α1, α2, α3〉 and
〈1, ω1, ω2〉 be bases for Q and R respectively such that the map φ4,3 is given
by

φ4,3(t1ᾱ1 + t2ᾱ2 + t3ᾱ3) = B(t1, t2, t3)ω̄1 + A(t1, t2, t3)ω̄2,(13)
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where ᾱ1, ᾱ2, ᾱ3, ω̄1, ω̄2 denote the reductions modulo Z of α1, α2, α3, ω1, ω2 re-
spectively. Then we fix the orientations on Q and R so that IndQ(1, α1, α2, α3)
= IndR(1, ω1, ω2) = 1.

We may make one additional assumption about the basis 〈1, α1, α2, α3〉
without any harm. By translating α1, α2, α3 by appropriate constants in Z,
we may arrange for the coefficients of α1 and α2 in α1α2, together with the
coefficient of α1 in α1α3, to each equal zero. We call a basis 〈1, α1, α2, α3〉 sat-
isfying the latter conditions a normal basis for Q. Similarly, a basis 〈1, ω1, ω2〉
of R is called normal if the coefficients of ω1 and ω2 in ω1ω2 are both equal to
zero. If we write out the multiplication laws for Q explicitly as

αiαj = c 0
ij +

3∑
k=1

c k
ijαk ,(14)

where c k
ij ∈ Z for all i, j ∈ {1, 2, 3} and k ∈ {0, 1, 2, 3}, then the condition that

the basis 〈1, α1, α2, α3〉 is normal is equivalent to

c 1
12 = c 2

12 = c 1
13 = 0.(15)

Similarly, that the basis 〈1, ω1, ω2〉 of R is normal is equivalent to the multipli-
cation table of R taking the form (2). We choose to normalize bases because
bases of Q/Z (resp. R/Z) then lift uniquely to normal bases of Q (resp. R).

We use Lemma 9 as follows. Let x = r1α1 + r2α2 + r3α3, y = s1α1 +
s2α2 + s3α3 be general elements of Q, where ri, si ∈ Z. Then using (14), we
find that

xy = c + t1α1 + t2α2 + t3α3,

where c ∈ Z and

tk =
∑

1≤i,j≤3

c k
ij risj(16)

for k = 1, 2, 3. It follows that

IndQ(1, x, y, xy) =

∣∣∣∣∣∣∣∣
1 0 0 0
0 r1 r2 r3

0 s1 s2 s3

0 t1 t2 t3

∣∣∣∣∣∣∣∣ .(17)

The right side of (17) is a polynomial of degree 4 in the variables r1, r2, r3, s1,
s2, s3, which we denote by p(r1, r2, r3, s1, s2, s3).

Similarly,

IndR(1, φ4,3(x), φ4,3(y)) =

∣∣∣∣∣∣∣
1 0 0

0 B(r1, r2, r3) A(r1, r2, r3)

0 B(s1, s2, s3) A(s1, s2, s3)

∣∣∣∣∣∣∣ .(18)
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The right side of (18) is also a polynomial of degree 4 in the variables r1,
r2, r3, s1, s2, s3, which we denote by q(r1, r2, r3, s1, s2, s3). (Note that the
multiplicative structure of R was not needed for computing the polynomial q.)

By Lemma 9, we conclude that for all integers r1, r2, r3, s1, s2, s3,

p(r1, r2, r3, s1, s2, s3) = q(r1, r2, r3, s1, s2, s3).

As they take equal values at all integer arguments, the polynomials p and q

must in fact be identical. Equating coefficients of like terms yields a system
of linear equations in the 15 variables c k

ij in terms of the coefficients of the
quadratic forms A and B, and this system is easily seen to have a unique
solution. Writing out the pair (A, B) of ternary quadratic forms as

A(x1, x2, x3) =
∑

1≤i≤j≤3

aij xixj

B(x1, x2, x3) =
∑

1≤i≤j≤3

bij xixj ,
(19)

and letting aji = aij and bji = bij , define the constants λij
k� = λij

k�(A, B) by

λij
k�(A, B) =

∣∣∣∣ aij bij

ak� bk�

∣∣∣∣ ;(20)

the λij
k� thus take up to 15 possible nonzero values up to sign. Then we find

that the unique solution to the system p = q is given as follows. For any
permutation (i, j, k) of (1, 2, 3), we have

c i
ii = ±λik

ij + Ci,

c j
ii = ±λii

ik,

c i
ij = ±1

2λik
jj + 1

2Cj ,

c k
ij = ±λjj

ii ,

(21)

where we have used ± to denote the sign of the permutation (i, j, k) of (1, 2, 3),
and where the constants Ci are given by

C1 = λ23
11, C2 = −λ13

22, C3 = λ12
33.(22)

In particular, the values of the c k
ij (for k > 0) are all integral!

Note that the c 0
ij are still undetermined. However, it turns out that the

associative law for Q now uniquely determines the c 0
ij from the other c k

ij . In-
deed, computing the expressions (αiαj)αk and αi(αjαk) using (14), and then
equating the coefficients of αk, yields the equality

c 0
ij =

3∑
r=1

(
c r
jkc

k
ri − c r

ijc
k
rk

)
(23)
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for any k ∈ {1, 2, 3} \ {j}. One easily checks using the explicit values given
in (21) that the above expression is independent of k, and that with these
values of c 0

ij all relations among the c k
ij implied by the associative law are

completely satisfied. Furthermore, the c 0
ij are clearly all integers. Thus we

have completely determined the ring structure of Q = Q(A, B) from (A, B); it
is given in sum by (14), (21), (22), and (23).

It is also now easy to determine the multiplication structure of Q(A, B)
in terms of nonnormalized bases. If a basis element αi ∈ Q as above is trans-
lated by an integer mi, then evidently the constant Ci will be translated by
2mi. Therefore, the multiplication table of Q in terms of a general basis
〈1, α1, α2, α3〉 is given by (21) and (23), where the Ci are any integer values
satisfying

Ci ≡ λjk
ii (mod 2).(24)

Thus we have obtained a general description of the multiplication table of
Q = Q(A, B) in terms of any Z-basis 〈1, α1, α2, α3〉 of Q (not necessarily nor-
malized).

It is interesting to ask what the discriminant of the resulting quartic ring
Q(A, B) is in terms of the pair of ternary quadratic forms (A, B). As an explicit
calculation shows, the answer is happily that Disc(Q(A, B)) = Disc(A, B). We
may summarize this discussion as follows:

Proposition 10. Let (A, B) ∈ (Sym2Z3 ⊗ Z2)∗ be a pair of ternary
quadratic forms. If (A, B) represents the map φ4,3 for some pair of rings
(Q, R) as in equation (13), then the quartic ring Q = Q(A, B) is uniquely de-
termined by (A, B). The multiplication table of Q(A, B) is given by (14), (21),
(22), and (23), and Disc(Q(A, B)) = Disc(A, B).

Notice that all the structure coefficients of Q are given in terms of the
quantities λij

k�(A, B), which are SL2-invariants on the space of pairs (A, B) of
ternary quadratic forms. This should be expected since SL2(Z) acts only on
the basis of the cubic ring R and does not affect Q nor the chosen basis of Q.
We study the SL2-invariants λij

k�(A, B) in more detail in Section 3.7.

3.3. How much of the structure of R is determined by (A, B)? Since we
have now found that the structure of Q is uniquely determined from the data
(A, B), it may come as little surprise that the cubic ring R is also completely
determined by (A, B).

In fact, it is easy to guess what R should be. By the Delone-Faddeev
parametrization of cubic rings, there is a binary cubic form f(x, y) = ax3 +
bx2y+cxy2+dy3 associated to R = 〈1, ω1, ω2〉 such that Disc(f) = Disc(R) and
multiplication in R is as in (2). On the other hand, there is another natural
binary cubic form associated to the pair (A, B) of ternary quadratic forms,
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namely g(x, y) = a′x3 + b′x2y + c′xy2 +d′y3 = 4 ·Det(Ax+By), and this cubic
form also has the same discriminant as Q(A, B). Thus it is natural to guess
that f = g, i.e., a = a′, b = b′, c = c′, d = d′.

To prove the latter assertion, we may simply use the relation

IndQ(1, x, x2, x3) = IndR(1, φ4,3(x), φ4,3(x)2),(25)

since the multiplicative structure of Q is now in place. Let x = r1α1 + r2α2 +
r3α3 ∈ Q. Then

IndQ(1, x, x2, x3) = p(r1, r2, r3)

and

IndR(1, φ4,3(x), φ4,3(x)2) = q(r1, r2, r3),

where p and q are determinantal expressions similar to (17) and (18), but
quite a bit larger and thus best left suppressed. As before, we argue that
the polynomials p and q must take the same values for all integer choices of
r1, r2, r3, and consequently are identical. Equating coefficients of like terms, we
obtain a system of several linear equations in a, b, c, d in terms of the coefficients
of A and B. Solving these equations for a, b, c, d, we find that there is a unique
solution whenever the image of φ4,3 generates a lattice of rank 2 in R/Z;
this occurs, in particular, whenever Disc(A, B) �= 0. In that case the unique
solution is indeed given by a = a′, b = b′, c = c′, d = d′. That is,

ax3 + bx2y + cxy2 + dy3 = 4 · Det(Ax + By)(26)

and hence the structure of R is determined, at least whenever Disc(A, B) �= 0.

Proposition 11. Let (A, B) ∈ (Sym2Z3 ⊗ Z2)∗ be a pair of ternary
quadratic forms such that Disc(A, B) �= 0. If (A, B) represents the map φ4,3

for some pair of rings (Q, R) as in equation (13), then the ring R = R(A, B)
is uniquely determined by (A, B). The multiplication table of R(A, B) is given
by (2) and (26), and Disc(R(A, B)) = Disc(A, B).

3.4. Is R the cubic resolvent of Q? It remains only to verify that the
unique pair (Q, R) of rings we have obtained from (A, B) satisfy the conditions
we require of them, namely, that R is a cubic resolvent of Q and that (A, B)
describes the map

φ4,3 : Q/Z → R/Z.

We have already seen that Disc(Q) = Disc(R). Hence it suffices just to show:
if Fw,x,y,z is the characteristic polynomial of a general element w + xα1 +
yα2 + zα3 ∈ Q (acting on Q by multiplication), then there exists a con-
stant c ∈ Z such that the characteristic polynomial Gw,x,y,z,c of the element
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c+B(x, y, z)ω1 +A(x, y, z)ω2 ∈ R (acting on R by multiplication) is the cubic
resolvent of Fw,x,y,z.∗

To prove the latter assertion, we use (14), (21), (22) and (23) to deter-
mine the action of w+xα1 +yα2 +zα3 on Q explicitly, allowing us to compute
Fw,x,y,z. Similarly, we use (2) to explicitly compute Gw,x,y,z,c. These (some-
what lengthy) computations then show that there is a certain polynomial c, in
the entries of A and B, such that Gw,x,y,z,c is the cubic resolvent of Fw,x,y,z, as
desired.

Proposition 12. Let (A, B) ∈ (Sym2Z3 ⊗ Z2)∗ be a pair of ternary
quadratic forms with Disc(A, B) �= 0. Let Q(A, B) and R(A, B) be the quartic
and cubic rings associated to (A, B) by Propositions 10 and 11 respectively.
Then the ring R(A, B) is a cubic resolvent of Q(A, B).

3.5. The fundamental bijection: Remarks on Theorem 1. The proof of
Theorem 1 is now complete, at least in cases of nonzero discriminant. Indeed,
the work in Sections 3.2–3.4 makes the bijection of Theorem 1 very precise.
Given a quartic ring Q and a cubic resolvent ring R, one obtains a pair (A, B)
of ternary quadratic forms from equation (13). Conversely, given a pair (A, B)
of ternary quadratic forms, one obtains a quartic ring Q whose multiplication
table is given by (14), (21), (22), and (23), and a cubic resolvent ring R of Q

whose multiplication laws are given by (2) and (26). Moreover, it is clear from
construction that the maps (Q, R) → (A, B) and (A, B) → (Q, R) are inverse
to each other. This proves Theorem 1. We have also shown:

Proposition 13. The bijection in Theorem 1 is discriminant-preserving.
That is, if (Q, R) is the pair of rings associated to a pair (A, B) of ternary
quadratic forms as in Theorem 1, then Disc(A, B) = Disc(Q) = Disc(R).

Notice that the mapping (A, B) → (Q, R) is described entirely by integer
polynomials. Hence the same polynomials can be used to extend this mapping
even to cases where (A, B) has zero discriminant. To maintain the bijection of
Theorem 1, one need only understand what the appropriate definition of cubic
resolvent ring is for degenerate quartic rings. The reader interested in more
details is referred to the appendix at the end of this section.

As we remarked in the introduction, the cubic resolvent ring associated to
a quartic ring is not necessarily unique. This leads to various questions: Does
a cubic resolvent always exist for a quartic ring? For which quartic rings is the
cubic resolvent ring unique? More generally, given a quartic ring Q, how can

∗The cubic resolvent of a quartic polynomial F (t) = t4 + pt3 + qt2 + rt + s is given by
the expression G(t) = t3 − qt2 + (pr − 4s)t − (p2s + 4qs − r2). If the roots of F are denoted
κ, κ′, κ′′, κ′′′, then the roots of G are κκ′ + κ′′κ′′′, κκ′′ + κ′κ′′′, κκ′′′ + κ′κ′′.
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one determine the number of cubic resolvents of Q? To answer these questions,
it is necessary to introduce the notion of content of a ring, which we discuss in
the next section.

3.6. The content of a ring. In addition to the discriminant, rings of
rank k possess another very important invariant which we call the content.

Definition 14. Let R be a ring of rank k. The content ct(R) of R is
defined to be

ct(R) = max{n : ∃ R̃ of rank k such that R = Z + nR̃},
if the latter maximum exists; otherwise, the content is said to be ∞.

For example, the quadratic ring Z[x]/(x2) of discriminant 0 has content
∞, since it is equal to Z + nSn, where Sn = Z[xn]/(x2

n) and x = nxn. For
other quadratic rings, the content coincides with what is usually called the
conductor.

It is clear from formulas (14), (21), (22), and (23) that the content of a
quartic ring Q = Q(A, B) is equal to the greatest common divisor of the fifteen
SL2-invariants λij

k�(A, B). It is thus natural to define the content ct(A, B) of
a pair (A, B) of integral ternary quadratic forms to be the content of the
corresponding quartic ring, i.e.,

ct(A, B) = ct(Q(A, B)) = gcd{λij
k�(A, B)}.

Most “nice” rings have content 1. For example, it is easy to see that any
Gorenstein ring R of rank at least 3 must have content 1; for if R did not have
content 1, then there would exist a prime p such that

R/(p) ∼= Fp[x1, x2, . . . , xk−1]/(x1, x2, . . . , xk−1)2,

and the latter is clearly not Gorenstein if k > 2. Gan-Gross-Savin [10] have
shown that in the rank 3 case, the notions of Gorenstein and content 1 ac-
tually coincide. This, however, does not hold true for higher rank, as the
non-Gorenstein content 1 ring Z ⊕ Z[x, y]/(x2, xy, y2) illustrates.

Like the discriminant, the content gives important structural information
about a ring of rank k. Our motivation for introducing the content arises from
its close relation to resolvent rings. We explain this first briefly in the case of
cubic rings. Here, the notion of content is exactly what is needed to answer
the question posed in Section 2.2: when is the quadratic invariant ring of a
cubic ring equal to its quadratic resolvent ring?

Theorem 15. Let R be a cubic ring, Sinv(R) the quadratic invariant ring
of R, and S the quadratic resolvent ring of R. Then [S : Sinv(R)] = ε(R)·ct(R),
where ε(R) = 2 if R = Z+ct(R)·R1 with R1⊗Z2

∼= Z3
2, and ε(R) = 1 otherwise.

In particular, Sinv(R) = S if and only if R is primitive and R ⊗ Z2 �∼= Z3
2.
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Proof. We observe that, by definition, the quadratic invariant ring Sinv(R)
is the smallest ring containing the image of the mapping φ3,2 : R → S, and
any subring of S takes the form Z + rS for some nonnegative integer r. In the
case of Sinv(R) ⊂ S, this number is simply the smallest nonnegative integer r

such that φ3,2(x) is a multiple of r in S/Z for all x ∈ R/Z.
However, φ3,2 is given by a binary cubic form, and the greatest common

divisor of the values taken by a binary cubic form f is simply ε(f) · ct(f),
where ct(f) denotes the content of f and ε(f) = 2 if f/ct(f) factors into linear
factors (mod 2), and ε(f) = 1 otherwise. Now it is easy to check from (2) that
ε(f) = ε(R) and ct(f) = ct(R). This gives the desired conclusion.

In Section 3.8 we will show that the analogue of Theorem 15 is true also
for quartic rings: [R : Rinv(Q)] = ct(Q) for any cubic resolvent R of Q, and
so the cubic invariant ring Rinv(Q) of a quartic ring Q forms the (unique)
cubic resolvent ring if and only if ct(Q) = 1. To prove this result, and its
ramifications, it is first necessary to better understand the SL2-related invariant
theory of pairs of ternary quadratic forms. This is carried out in Section 3.7.

3.7. More on the invariant theory of pairs of ternary quadratic forms. We
observed in Section 3.1 that the polynomial invariants for the action of SL3(C)
on the space VC = Sym2C3 ⊗ C2 of pairs (A, B) of ternary quadratic forms
over C are given by the four coefficients of the binary cubic form f(x, y) =
4 ·Det(Ax+ By) = ax3 + bx2y + cxy2 + dy3. Moreover, the unique polynomial
invariant for the action of SL3(C) × SL2(C) on VC is simply Disc(A, B) =
Disc(4 · Det(Ax + By)).

In this section, we examine more closely the SL2(C)-invariants on VC, as
these are precisely the quantities that determine the structure of the quartic
rings corresponding to points in VC. If we write out again the element (A, B) ∈
VC in the form (19), then as observed earlier the SL2(C)-invariants on VC
are given by the 15 numbers λij

k� as defined by (20), where 1 ≤ i ≤ j ≤ 3,
1 ≤ k ≤ � ≤ 3, and (1, 1) ≤ (i, j) < (k, �) ≤ (3, 3) in lexicographic ordering.
However, unlike the case of the four SL3-invariants a, b, c, d, these 15 SL2-
invariants are not independent, but are related by the fifteen syzygies

λgh
k� (A, B) λij

mn(A, B) = λgh
ij (A, B) λk�

mn(A, B) + λgh
mn(A, B) λij

k�(A, B),(27)

where (1, 1) ≤ (g, h) < (i, j) < (k, �) < (m, n) ≤ (3, 3) again in lexicographic
ordering.† The identity (27) is simply a special case of the Plücker relations
applied to the four vectors (agh, bgh), (aij , bij), (ak�, bk�), (amn, bmn) ∈ C2.

Conversely, given any set of 15 constants {λij
k�} satisfying the fifteen rela-

tions (27), there is always an SL2(C)-orbit in VC possessing these 15 constants

†These fifteen syzygies are also not independent, but this does not matter for our purposes.



1348 MANJUL BHARGAVA

as the SL2-invariants. In fact, something stronger is true; namely, if these
15 constants λij

k� are actually integers, then there exists an integer point in
VC possessing these 15 constants as the SL2-invariants. We state this more
precisely in the following lemma.

Lemma 16. For any 15 constants λij
k� ∈ C satisfying the relations (27),

there exists an irreducible SL2(C)-orbit W ⊂ VC such that

λij
k�(W ) = λij

k� for all i ≤ j, k ≤ �, (i, j) < (k, �).

If the 15 constants λij
k� are not all equal to zero, then W is uniquely determined,

and if furthermore all the λij
k� are integers, then the variety W contains an

integer point (A, B) ∈ VZ.

Proof. It is easy to see that all invariants λij
k�(A, B) are equal to zero if and

only if {A, B} spans a zero or one-dimensional space in V . There are of course
(infinitely) many such points (A, B), both in VC/GC as well as in VZ/GZ.

We therefore proceed to the case where not all invariants are zero; without
loss of generality, we may assume λ11

12 �= 0. Applying the appropriate transfor-
mation in SL2(C), we may assume then that a11 = 1, b11 = 0, a12 = 0, and
b12 = λ11

12 �= 0.
With these assumptions, the definition (20) of λij

k� for (i, j) = (1, 1) and
(1, 2) immediately implies that bk� = λ11

k� for all k, �, and that ak� = λ12
k�/b12

for all (k, �) �= (1, 1). Six of the equations in (20) remain unused, but they,
when expanded, now turn out to be equivalent to six of the syzygies in (27).
Therefore, if the 15 invariants λij

k� are fixed, not all zero, and satisfy the syzygies
(27), then there is a unique solution for (A, B) of the above type, and so a
unique SL2(C)-orbit W having the prescribed set of invariants.

Assume now that the 15 constants λij
k� are also integral. Then, by the

above discussion, the quantities bij = λ11
ij are themselves forced to be integers,

while the quantities aij = λ12
ij /b12 are all integer multiples of 1/b12. Con-

sider the pair of integral forms (b12A, B) ∈ VZ, whose λ-invariants are all
multiples of b12. By the theory of elementary divisors, there exists an SL2(Z)-
transformation (A′, B′) of (b12A, B) such that A′ is a multiple of n1 and B′

is a multiple of n2, where n1, n2 are integers such that n1n2 = b12. It follows
that (A′/n1, B

′/n2) ∈ VZ is SL2(Q)-equivalent to (A, B), and is therefore an
integer point of W .

Lemma 16 implies that if the λij
k�’s are integers satisfying (27), then there

exists at least one GZ-orbit on VZ having those integers as its SL2-invariants.
The next lemma strengthens this, by giving the exact number of GZ-orbits on
VZ having a prescribed set of (integral) SL2-invariants.



HIGHER COMPOSITION LAWS III 1349

Lemma 17. Let λij
k� ∈ Z be any 15 integers satisfying the relations (27),

and let n be their gcd. Then the number of GZ-orbits WZ in VZ such that

λij
k�(WZ) = λij

k� for all i ≤ j, k ≤ �, (i, j) < (k, �)

is equal to the number of index n sublattices of Z2 (and hence to the sum of
the divisors of n).

Proof. The lemma is true when all the SL2-invariants λij
k� are zero (i.e.,

n = ∞), and so we assume the integers λij
k� are not all equal to zero.

Clearly, the set of integers {λij
k�/n} also satisfy the syzygies (27); hence,

by Lemma 16, there is exactly one SL2(C)-orbit W in VC having {λij
k�/n} as

the SL2-invariants, and W contains an integral point (A, B). Let X ⊂ Sym2C3

denote the two-dimensional C-vector space of ternary quadratic forms spanned
by A and B (equivalently, X is the vector space spanned by A0, B0 for any
point (A0, B0) ∈ W ), and let XZ denote the (unique) maximal lattice in X

consisting of integral ternary quadratic forms. Since gcd{λij
k�(A, B)} = 1, it

must be that A, B span a maximal integral lattice in X, so A, B actually form
a Z-basis for XZ.

Define WZ by

WZ = {(A, B) : {A, B} spans XZ as a Z-module}.

Then WZ ⊂ W , WZ forms a single SL2(Z)-orbit, and any integral point
(A, B) ∈ W must lie in WZ. Hence WZ is the unique SL2(Z)-orbit in VZ
having λij

k�/n as the SL2-invariants.
Similarly, if W ′

Z is an SL2(Z)-orbit in VZ having SL2-invariants λij
k�, then

for any (A′, B′) ∈ W ′
Z, A′, B′ span a lattice L in XZ, and we may define W ′

Z
by

W ′
Z = {(A, B) : {A, B} spans L as a Z-module}.(28)

Moreover, gcd{λij
k�(A, B)} = n implies that this sublattice L has index n in XZ.

Conversely, given any index n sublattice L of XZ, let W ′
Z be defined by (28).

Then W ′
Z is an SL2(Z)-orbit with the desired invariants. Thus the SL2(Z)-

orbits in VZ having SL2-invariants λij
k� are in one-to-one correspondence with

the index n sublattices of XZ ∼= Z2. This implies the lemma.

3.8. Isolating Q: Remarks on Theorems 2 and 3. Given a quartic ring Q,
and given the structure coefficients of Q with respect to a normal basis
〈1, α1, α2, α3〉 of Q, the relations (21), (22), and (23) completely determine
the values of the 15 constants λij

k�. Indeed, equation (21) shows that only the
coefficients c k

ij for k > 0 are needed in order to determine the values of λij
k�.

The associative law in Q then does two things. First, as we have observed
earlier, it implies that the values of the constant coefficients c 0

ij must then be
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as given in (23). Second, it implies that the syzygies (27) must hold among the
λij

k�. By Lemma 16, it follows that there exists an integer orbit x̄ ∈ VZ/GZ such
that Q(x̄) = Q and Disc(Q(x̄)) = Disc(x), and Lemma 17 gives the number
of such orbits. In conjunction with Theorem 1, this proves Theorems 2 and 3
and Corollaries 4 and 5.

We may also now prove the analogue of Theorem 15 for quartic rings:

Corollary 18. Let Q be a quartic ring, Rinv(Q) the cubic invariant ring
of Q, and R any cubic resolvent ring of Q. Then [R : Rinv(Q)] = ct(Q).
In particular, Rinv(Q) = R if and only if Q is primitive.

Proof. Let (A, B) denote any pair of ternary quadratic forms correspond-
ing to (Q, R) as in Theorem 1. If ct(A, B) = ct(Q) = 1, then the six vectors
(aij , bij) ∈ Z2 for 1 ≤ i, j ≤ 3 generate all of Z2. It follows that the Z-module
generated by φ4,3(ᾱ), for ᾱ ∈ Q/Z, is all of R/Z. Hence, if Q is primitive, then
Rinv(Q) = R.

Suppose now that ct(A, B) = ct(Q) = n > 1. Let Q′ be the quartic
ring such that Q = Z + nQ′. Since Q′ is primitive, R′ = Rinv(Q′) is the
(unique) cubic resolvent of Q′. Furthermore, because the discriminant of a
quartic ring is equal to the discriminant of any of its cubic resolvents, we must
have [R′ : R] = [Q′ : Q] = n3. Finally, since φ4,3 is quadratic, it is clear that
Rinv(Q) = Z+n2R′, and therefore we have [R′ : Rinv(Q)] = n4. It follows that
[R : Rinv(Q)] = [R′ : Rinv(Q)]/[R′ : R] = n4/n3 = n, as desired.

Note that the proof of Corollary 18 implies that for a quartic order Q, the
Z-module in Q̄ generated by 1 and φ̃4,3(α) (α ∈ Q) is in fact always a ring,
namely, it is the cubic invariant ring Rinv(Q) as defined by (9).

3.9. Appendix : An alternative description of cubic resolvents. In this
appendix, we describe an alternative definition of a cubic resolvent ring of
a quartic ring which does not use the notion of Sk-closure. This definition
is especially useful for quartic rings of zero discriminant, and allows for an
immediate proof of Theorem 1 in all cases. It also allows one to use base rings
other than Z, such as Zp or Fp. In the case of Fp, discriminant zero rings
are particularly important as they frequently arise as reductions modulo p of
orders in a number field.

The idea is to view a cubic resolvent ring of a quartic ring Q as a cubic
ring R equipped with a quadratic map φ : Q/Z → R/Z (called the resolvent
mapping) which satisfies all properties of the “xx′ +x′′x′′′ map” (i.e., the “φ4,3

map”) that were crucial for us in Sections 2.3 and 3.2–3.4. To isolate the
necessary properties, we examine the identities (12) and (25), as these are the
identities that were needed to obtain multiplication structures on Q and R

respectively.
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Let us first consider the identity (12). To choose the positive sign in this
identity, it was necessary for us to assign compatible orientations on Q and R.
This may be viewed as a choice of isomorphism ξ̃ : ∧4Q → ∧3R, or equivalently,
as an isomorphism ξ : ∧3(Q/Z) → ∧2(R/Z). Equation (12) then states that
we have, for any x, y ∈ Q, the identity

ξ(x ∧ y ∧ xy) = φ(x) ∧ φ(y).(29)

As was proven in Section 3.2, this identity suffices to determine the multipli-
cation structure on Q from the data φ.

Next, we consider equation (25), which states that

ξ(x ∧ x2 ∧ x3) = φ(x) ∧ φ(x)2.(30)

As noted in Section 3.3, this identity is enough to determine the structure on
R, provided that the cubic invariant ring Z[φ(x) : x ∈ Q] is actually a cubic
ring. For Q having discriminant zero, however, this is not always the case.
Nevertheless, the canonical multiplication structure on R obtained from (25)
in cases of nonzero discriminant can naturally be extended by Zariski closure
to a canonical multiplication structure on R in all cases, including those of
discriminant zero. Namely, if φ is represented by a pair of ternary quadratic
forms (A, B) as in (13), then R should be the cubic ring R(f) given by the
Delone-Faddeev correspondence, where f is as before the binary cubic form
f(x, y) = Disc(Ax + By) = 4 · Det(Ax + By).

This description of R may be expressed in coordinate-free language as
follows. A quadratic map φ : Q/Z → R/Z is equivalent to a linear map
Sym2(Q/Z) → R/Z, and so may be viewed as an element

φ ∈ Sym2(Q/Z)∗ ⊗ R/Z.(31)

Now an element Sym2(Q/Z)∗ is a quadratic form on Q/Z, and so one can take
its discriminant Disc = 4 ·Det in the usual sense. Therefore, we may apply the
map disc = Disc ⊗ id to (31) and we obtain

disc ◦ φ ∈ ∧3(Q/Z)⊗−2 ⊗ R/Z.(32)

Next, there is a natural bilinear skew-symmetric pairing ( , ) : R/Z⊗R/Z →
∧2(R/Z) ∼= Z given by (x, y) = x ∧ y, yielding a natural isomorphism
ι : R/Z →̃ ∧2 (R/Z) ⊗ (R/Z)∗. Since ∧3(Q/Z)∗ is isomorphic to ∧2(R/Z)∗

via the map ξ∗−1, we may apply η = ξ∗−1 ⊗ ξ∗−1 ⊗ ι to (32) to obtain

η ◦ disc ◦ φ ∈ ∧2(R/Z)∗ ⊗ (R/Z)∗.(33)

Finally, because of the alternating pairing ( , ) on R/Z, the spaces R/Z
and (R/Z)∗ may be naturally identified up to sign. Therefore, ∧2(R/Z) and
∧2(R/Z)∗ are canonically isomorphic, with no issues of sign, and so we may
view the element in (33) as a map

η ◦ disc ◦ φ : R/Z → ∧2(R/Z).
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We write η ◦ disc ◦ φ = Disc(φ). In this notation, the requirement that R

correspond to φ under the Delone-Faddeev correspondence amounts to the
identity

[ Disc(φ) ](z) = z ∧ z2,(34)

for any z ∈ R. It follows from Delone and Faddeev’s theorem that the above
identity determines the ring R from the data φ.

The following definition thus isolates the essential properties of the classi-
cal resolvent mapping φ4,3(x) = xx′+x′′x′′′ that were needed during the course
of the proof of Theorem 1.

Definition 19. Let Q be a quartic ring, R a cubic ring, and ξ : ∧3(Q/Z) →
∧2(R/Z) an isomorphism. Then we call a quadratic map φ : Q/Z → R/Z
a resolvent mapping if (a) the identity (29) holds for all x, y ∈ Q; and (b) the
binary cubic form associated to R under the Delone-Faddeev correspondence
is Disc(φ) (that is, the identity (34) holds for all z ∈ R).

It is clear from the work of Sections 3.2–3.4 that the above definition
agrees with the classical resolvent mapping φ4,3 in the case that Q lies in a
quartic field and R lies in the cubic resolvent field.

We may now define a general notion of cubic resolvent ring:

Definition 20. Let Q be a quartic ring. A cubic resolvent ring of Q is a
cubic ring R equipped with an isomorphism ξ : ∧3(Q/Z) → ∧2(R/Z) and a
resolvent mapping φ : Q/Z → R/Z.

With these definitions, Theorem 1 immediately extends also to cases of
zero discriminant, and our remarks on the proof of Theorem 1 (Section 3.5,
first paragraph) hold true without any change.

Remark. Professor Deligne has recently remarked to me that, with
the latter formulation of cubic resolvent ring, it should be possible to extend
Theorem 1 to locally-free quartic algebras over an arbitrary base ring. We
hope that this interesting possibility will be considered in future work.

4. Maximality, prime splitting, and local densities

An important class of rings on which Theorem 1 gives a bijective corre-
spondence are the maximal orders in quartic number fields. These, of course,
are the quartic rings of greatest interest to algebraic number theorists. We
therefore wish to understand those pairs (A, B) of integral ternary quadratic
forms that correspond to maximal orders in quartic fields, and moreover, to
understand the splitting behavior of primes in those fields in terms of the
corresponding pairs (A, B).
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This is the goal of Sections 4.1 and 4.2. In particular, we determine the
p-adic density of the set of all (A, B) ∈ V corresponding to maximal quartic
rings Q(A, B), and we similarly determine the p-adic density of all (A, B)
such that Q(A, B) has any one of the various types of prime-splitting behavior
at p. These results may be useful in future computational applications (see
e.g., [6]), and they also play a very important role in determining the density
of discriminants of quartic fields (see [4]).

4.1. Local behavior. In this section, we consider pairs (A, B) of ternary
quadratic forms over the p-adic ring Zp and over its residue field Fp = Z/pZ.

Let (A, B) be an element of VZ (resp. of VZp
, VFp

). Over the residue field
Fp, (A, B) determines two conics in P2

F̄p
, which, aside from certain degenerate

cases, intersect each other in exactly four points (counting multiplicities). For
such nondegenerate pairs (A, B), define the symbol ((A, B), p) by putting

((A, B), p) = (fe1
1 fe2

2 · · · ),(35)

where the fi’s indicate the degrees of the residue fields at the points of intersec-
tion, and the ei’s indicate the respective multiplicities. There are thus eleven
possible values for the symbol ((A, B), p), namely, (1111), (112), (13), (22),
(4), (1211), (122), (1212), (22), (131), and (14). (As is customary, we suppress
exponents that are equal to one.)

It is clear that if two points x, y in VZ (resp. VZp
, VFp

) are equivalent under
a transformation in GL2(Z) (resp. GL2(Zp), GL2(Fp)), then (x, p) = (y, p). By
Tp(1111), Tp(112), etc., let us denote the set of x such that (x, p) = (1111),
(x, p) = (112), etc.

By the definition of Q(A, B), the ring structure of the quotient ring
Q(A, B)/(p) depends only on the GL2(Fp)-orbit of the pair (A, B) modulo
p; thus the symbol ((A, B), p) should indicate something about the structure
of the ring Q(A, B) when reduced modulo p. In fact, a direct calculation shows
that

(A, B) ∈ Tp(fe1
1 fe2

2 · · · )(36)

if and only if

Q(A, B)/(p) ∼= Fpf1 [t1]/(te1
1 ) ⊕ Fpf2 [t2]/(te2

2 ) ⊕ · · · ,(37)

except in the case Tp(14), where the ring Q(A, B)/(p) might take other forms,
namely F2[x, y]/(x2, xy+y2), Fp[x, y]/(x2, y2), or Fp[x, y]/(xy, x2+ny2), where
n denotes a quadratic nonresidue modulo p. It is therefore natural to partition
Tp(14) into two further sets: T

(1)
p (14), consisting of the pairs (A, B) such that

Q(A, B)/(p) ∼= Fp[t]/(t4); and T
(2)
p (14), consisting of the remaining elements

of Tp(14). Geometrically, T
(1)
p (14) consists of pairs (A, B) where the two conics

A = 0 and B = 0 intersect in exactly one point and at least one of A = 0
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or B = 0 is irreducible over F̄p, while T
(2)
p (14) consists of pairs (A, B) where

A = 0 and B = 0 are reducible conics passing through a single common point.
For any set S in VZ (resp. VZp

, VFp
) that is definable by congruence con-

ditions, denote by µ(S) = µp(S) the p-adic density of S in VZp
, where we

normalize the additive measure µ on V so that µ(VZp
) = 1. The following

lemma gives the p-adic densities of the sets Tp(·).

Lemma 21.

µ(Tp(1111)) = 1
24 (p − 1)4 p4 (p + 1)2 (p2 + p + 1) / p12,

µ(Tp(112)) = 1
4 (p − 1)4 p4 (p + 1)2 (p2 + p + 1) / p12,

µ(Tp(13)) = 1
3 (p − 1)4 p4 (p + 1)2 (p2 + p + 1) / p12,

µ(Tp(22)) = 1
8 (p − 1)4 p4 (p + 1)2 (p2 + p + 1) / p12,

µ(Tp(4)) = 1
4 (p − 1)4 p4 (p + 1)2 (p2 + p + 1) / p12,

µ(Tp(1211)) = 1
2 (p − 1)3 p4 (p + 1)2 (p2 + p + 1) / p12,

µ(Tp(122)) = 1
2 (p − 1)3 p4 (p + 1)2 (p2 + p + 1) / p12,

µ(Tp(1212)) = 1
2 (p − 1)2 p4 (p + 1)2 (p2 + p + 1) / p12,

µ(Tp(22)) = 1
2 (p − 1)3 p4 (p + 1) (p2 + p + 1) / p12,

µ(Tp(131)) = (p − 1)3 p3 (p + 1)2 (p2 + p + 1) / p12,

µ(T (1)
p (14)) = (p − 1)3 p2 (p + 1)2 (p2 + p + 1) / p12,

µ(T (2)
p (14)) = (p − 1)2 p3 (p + 1) (p2 + p + 1) / p12.

Proof. Since the criteria for membership of (A, B) in a Tp(·) depend only
on the residue class of (A, B) modulo p, it suffices to consider the situation
over Fp.

We examine first µ(Tp(1111)). The number of unordered quadruples of
points in P2

Fp
, no three of which are collinear, is

1
24

(p2 + p + 1)(p2 + p)(p2)(p2 − 2p + 1).

Furthermore, given such a quadruple of points, there is a two-dimensional
vector space of conics passing through those four points; that is, there are
(p2−1)(p2−p) ordered pairs (A, B) of ternary quadratic forms over Fp having
those four points as common zeros. Since the total number of pairs of ternary
quadratic forms over Fp is p12, it follows that

µ(Tp(1111))

= 1
24

[
(p2 + p + 1)(p2 + p)(p2)(p2 − 2p + 1)

]
·
[
(p2 − 1)(p2 − p)

]
/ p12,

as given by the lemma.
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Let us next consider µ(Tp(122)). The number of unordered conjugate
pairs of points P1, P2 in P2

Fp2
\ P2

Fp
is 1

2(p4 + p2 + 1 − p2 − p − 1) = 1
2(p4 − p).

Furthermore, the number of points P3 in P2
Fp

not lying on the line through P1

and P2 is p2, and the number of possible tangent lines � through such a point P3

is p+1. As before, given the data P1, P2, P3, �, there will be a two-dimensional
vector space of conics that pass through P1, P2, P3 and that are tangent to �

at P3. Thus we obtain

µ(Tp(122)) = 1
2

[
(p4 − p)(p2)(p + 1)

]
·
[
(p2 − 1)(p2 − p)

]
/ p12

as in the lemma.
Let us consider next T

(1)
p (14). Note that (A, B) is contained in T

(1)
p (14)

only if there is a linear combination C of A and B such that C = 0 is a double
line and, moreover, A = 0 and B = 0 are tangent to this double line at the
same point P . The number of choices for this double line � is p2 + p + 1, and
the number of choices for the point P on � is then p + 1. There is a four-
dimensional vector space of conics passing through P and tangent to � at P ,
and the number of two-dimensional subspaces that contain the element C is
p2+p+1. Of these p2+p+1 two-dimensional spaces, p+1 correspond to pencils
of reducible conics containing the common component �, while an additional p

consist solely of reducible conics passing through the point P with multiplicity
two (hence instead giving elements of T

(2)
p (14)). The p2 − p two-dimensional

spaces that remain are the ones that contribute to T
(1)
p (14), and so we have

µ(T (1)
p (14)) =

[
(p2 + p + 1)(p + 1)(p2 − p)

]
·
[
(p2 − 1)(p2 − p)

]
/ p12

as in the lemma.
The other parts may be handled with essentially identical arguments.

It can be seen by a direct calculation that a pair (A, B) has nonzero
discriminant modulo p if and only if it is in Tp(1111), Tp(112), Tp(13), Tp(22),
or Tp(4) (i.e., if and only if A = 0 and B = 0 intersect in four distinct points as
conics over F̄p). Note that these are the cases with positive asymptotic density
as p → ∞.

4.2. Maximal quartic rings. A quartic ring having nonzero discriminant
is said to be maximal if it is not a subring of any other quartic ring. In this
section, we determine necessary and sufficient conditions on (A, B) ∈ VZ for
Q(A, B) to be a maximal quartic ring.

By the theory of algebraic numbers, a maximal ring R of nonzero discrim-
inant is a direct sum of Dedekind domains. In particular, a prime p factorizes
uniquely in Q as a product of prime ideals of Q. If p = P e1

1 P e2
2 · · · is the

factorization of p into prime ideals of Q(A, B), where Q/Pi
∼= Fpfi , we define
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the symbol (Q, p) by setting

(Q, p) = (fe1
1 fe2

2 · · · ).(38)

Suppose now (A, B) ∈ VZ is such that Q(A, B) is maximal. If (Q, p) =
(fe1

1 fe2
2 · · · ), then clearly

Q(A, B)/(p) ∼= Fpf1 [t1]/(te1
1 ) ⊕ Fpf2 [t2]/(te2

2 ) ⊕ · · · ,(39)

so that by (36), (A, B) ∈ Tp(fe1
1 fe2

2 · · · ). Therefore, if the ring Q(A, B) is
maximal for an element (A, B) ∈ VZ, then (A, B) is contained in one of the
Tp(·)’s as defined in the previous section (with the exception of T

(2)
p (14)), and

we have

((A, B), p) = (Q(A, B), p).(40)

Now a quartic ring Q is maximal if and only if for all primes p, the
ring Q is maximal at p, i.e., Q ⊗ Zp is not contained in any other quartic
Zp-algebra. Since a quartic ring Q with discriminant prime to p is necessar-
ily maximal at p, Q(A, B) is automatically maximal at p for any (A, B) in
Tp(1111), Tp(112), Tp(13), Tp(4), or Tp(22).

In order to understand the other Tp(·)’s with regard to maximality, we
require the following lemma.

Lemma 22. If Q is any quartic ring that is not maximal at p, then there
exists a Z-basis 1, α1, α2, α3 of Q such that at least one of the following is true:

(i) Z + Z · (α1/p) + Z · α2 + Z · α3 forms a ring;

(ii) Z + Z · (α1/p) + Z · (α2/p) + Z · α3 forms a ring;

(iii) Z + Z · (α1/p) + Z · (α2/p) + Z · (α3/p) forms a ring.

Proof. Since Q is not maximal at p, there exists a quartic ring Q′ contain-
ing Q such that p divides the index of Q in Q′. By the theory of elementary
divisors, there exist positive integers n1, n2, n3 and a basis 〈α1, α2, α3〉 of Q

such that

Q′ = Z + Z(α1/n1) + Z(α2/n2) + Z(α3/n3)(41)

and n3 | n2 | n1. Note that p | n1. If n1 = p, then we are done. Hence we
assume that n1/p is an integer greater than 1.

Let the multiplicative structure of Q with respect to the basis 〈α1, α2, α3〉
be given by (14). That the right side of (41) is a ring then translates into the
following congruence conditions on the structure coefficients:

nkc
k
ij ≡ 0 (mod ninj),(42)

for all i, j, k ∈ {1, 2, 3}.
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Suppose � �= p is a prime dividing n1. Then removal of all factors of � in
the prime factorizations of n1, n2, n3 maintains the truth of the congruences
(42), and the new Q′ as defined by (41) remains a ring. Hence we may assume
that � � n1, n2, n3 for all primes � �= p.

Now, if p � n2, n3 but p2 | n1, then it is easy to see that replacing
(n1, n2, n3) by (n1/p, n2, n3) maintains the truth of the congruences (42), so
that Q′ as defined by (41) is again a ring. Similarly, if p � n3, but p2 | n2, then
we may replace (n1, n2, n3) by (n1/p, n2/p, n3), and if p2 | n3, then we may
replace (n1, n2, n3) by (n1/p, n2/p, n3/p). Thus by a finite sequence of such
moves we arrive at n1 = p, the desired conclusion.

For an (A, B) ∈ VZ, using the multiplication laws of Q(A, B) as given
in (14), (21), (22), and (23), we may translate the conditions itemized in
Lemma 22 into the following conditions respectively on the λ-invariants of
(A, B):

(i) λ11
22, λ

11
23, λ

11
33, λ

12
13 are multiples of p, and λ11

12, λ
11
13 are multiples of p2,

(ii) λ11
13, λ

11
23, λ

12
13, λ

12
23, λ

13
22, λ

22
23 are all multiples of p, and λ11

12, λ
11
22, λ

12
22 are mul-

tiples of p2,

(iii) all the λij
k�’s are multiples of p.

Recall that condition (iii) is equivalent to A, B spanning a rank zero or
one space over Fp. In particular, an element (A, B) satisfying (iii) will not lie
in any of the Tp(·)’s.

Let us therefore assume that we are not in case (iii), so that A, B span a
two-dimensional space of conics over Fp. Then condition (i) occurs if and only
if a11 ≡ b11 ≡ 0 (mod p) and the vectors (a11/p, a12, a13) and (b11/p, b12, b13)
are linearly dependent (mod p). By a transformation in GL2(Z), we may then
assume in sum that

a11 ≡ b12 ≡ b13 ≡ 0 (mod p), and b11 ≡ 0 (mod p2).(43)

In particular, we see that (1, 0, 0) is an intersection point of multiplicity at
least two when A, B are viewed as two conics in P2

F̄p
. It follows that if such an

element (A, B) is in a Tp(·), it must be in one of Tp(1211), Tp(122), Tp(1212),
Tp(131), or Tp(14).

Similarly, one observes that condition (ii) occurs if and only if at least one
of the following two conditions holds:

(a) The top left 2 × 2 blocks of A and B are zero (mod p).

(b) After a GL2(Z)-transformation, the top left 2 × 2 block of B is zero
(mod p2), and b13 ≡ b23 ≡ 0 (mod p).
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Subcase (a) implies that A = 0 and B = 0 share a common component in P2
Fp

,
and this situation will not arise for an (A, B) in a Tp(·). Subcase (b) implies
that B = 0 is a double line in P2

Fp
. If (A, B) is in a Tp(·), then it is clear that

a double line will lie in the span of A and B (mod p) if and only if (A, B) is
in Tp(1212), Tp(22), or Tp(14). (These are the so-called “over-ramified” cases;
their significance will be discussed in more detail in [4].)

Thus, if we have an (A, B) in some Tp(·) such that Q(A, B) is not maxi-
mal at p, then after a suitable transformation in GL2(Z)×SL3(Z), the element
(A, B) will satisfy condition (i) (i.e., equation (43)) or condition (ii)(b). These
observations suffice to determine which elements of the various Tp(·)’s corre-
spond to maximal quartic rings.

Let us use Up(·) to denote the subset of elements (A, B) ∈ Tp(·) for which
Q(A, B) is maximal at p. To determine whether an element (A, B) ∈ Tp(·) is
in Up(·), we simply transform that element into one satisfying the conditions
(i) or (ii)(b) above modulo p—and then check whether it satisfies the necessary
conditions modulo p2.

For example, if (A, B) is an element of Tp(1211), Tp(122), or Tp(131), then
it can be brought into the form

a11 ≡ b12 ≡ b13 ≡ 0 (mod p), and b11 ≡ 0 (mod p)

by sending the unique multiple point of intersection of A = 0 and B = 0 in
P2

Fp
to the point (1, 0, 0) ∈ P2

Fp
via a transformation in SL3(Z). One may then

use a GL2(Z) transformation to insure that, modulo p, the conic B = 0 is a
product of two lines each of which passes through (1, 0, 0). Of all (A, B) ∈
Tp(1211), Tp(122), or Tp(131) rendered in such a form, a proportion of 1/p

actually satisfies (43). Since we have observed that such an (A, B) cannot
satisfy condition (ii), we have µ(Up(1211)) = p−1

p µ(Tp(1211)), µ(Up(122)) =
p−1

p µ(Tp(122)), and µ(Up(131)) = p−1
p µ(Tp(131)).

Similarly, if (A, B) ∈ Tp(22), then (A, B) cannot satisfy condition (i), since
there is no rational intersection point of A = 0 and B = 0 in P2

Fp
of multiplicity

at least two. However, the GL2(Z)-span of A and B will contain a double line,
so that by applying a transformation in GL3(Z) × GL2(Z), we may assume
that (A, B) satisfies

b11 ≡ b12 ≡ b13 ≡ b22 ≡ b23 ≡ 0 (mod p).(44)

Now such an (A, B) can be GL2(Z)-transformed to satisfy condition (ii)(b) if
and only if the vectors (a11, a12, a22) and (b11/p, b12/p, b22/p) are linearly de-
pendent (mod p). The first vector (a11, a12, a22) will be nonzero, for otherwise
A = 0 and B = 0 would contain a common component modulo p. Therefore,
the probability that (b11/p, b12/p, b22/p) is a multiple of (a11, a12, a22) modulo p

is p/p3 = 1/p2. It follows that µ(Up(22)) = p2−1
p2 µ(Tp(22)).
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An element (A, B) in any one of the remaining cases—namely, Tp(1212) or
Tp(14)—can be transformed to satisfy condition (i) or condition (ii)(b) modulo
p. In fact, one can transform such an (A, B) so that it satisfies both conditions
modulo p simultaneously. There will be a GL2(Z)-transformation that makes
B = 0 a double line in P2

Fp
, and one can then use a GL3(Z)-transformation to

move this line to (∗, ∗, 0) ⊂ P2
Fp

and also to move one of the multiple intersection
points of A = 0 and B = 0 in P2

Fp
to (1, 0, 0). After such transformations,

condition (i) evidently subsumes condition (ii)(b), so that we need not consider
(ii)(b). Therefore, just as with the cases (1211), (122), and (131), we have
µ(Up(14)) = p−1

p µ(T (1)
p (14)). As for Tp(1212), since there are not one but two

rational double intersection points in P2
Fp

for an element (A, B) ∈ Tp(1212), and
since each of these two intersection points must satisfy the same maximality
condition, we conclude that µ(Up(1212)) =

(p−1
p

)2
µ(Tp(1212)).

Finally, we have already remarked that Tp(·) = Up(·) in the case of the
splitting types (1111), (112), (13), (22), and (4). We have therefore proven the
following:

Lemma 23.

µ(Up(1111)) = 1
24 (p − 1)4 p4 (p + 1)2 (p2 + p + 1)/ p12,

µ(Up(112)) = 1
4 (p − 1)4 p4 (p + 1)2 (p2 + p + 1)/ p12,

µ(Up(13)) = 1
3 (p − 1)4 p4 (p + 1)2 (p2 + p + 1)/ p12,

µ(Up(22)) = 1
8 (p − 1)4 p4 (p + 1)2 (p2 + p + 1)/ p12,

µ(Up(4)) = 1
4 (p − 1)4 p4 (p + 1)2 (p2 + p + 1)/ p12,

µ(Up(1211)) = 1
2 (p − 1)4 p3 (p + 1)2 (p2 + p + 1)/ p12,

µ(Up(122)) = 1
2 (p − 1)4 p3 (p + 1)2 (p2 + p + 1)/ p12,

µ(Up(1212)) = 1
2 (p − 1)4 p2 (p + 1)2 (p2 + p + 1)/ p12,

µ(Up(22)) = 1
2 (p − 1)4 p2 (p + 1)2 (p2 + p + 1)/ p12,

µ(Up(131)) = (p − 1)4 p2 (p + 1)2 (p2 + p + 1)/ p12,

µ(Up(14)) = (p − 1)4 p (p + 1)2 (p2 + p + 1)/ p12.

Let Up denote the union of the eleven Up(·)’s in VZ, as described above.
Then Lemma 23 implies that

µ(Up) = (p − 1)4 p (p + 1)2 (p2 + p + 1)(p3 + p2 + 2p + 1)/ p12.(45)

Regarding maximality, we have shown:

Theorem 24. Let (A, B) ∈ VZ. Then Q(A, B) is a maximal ring if and
only if (A, B) ∈ Up for all primes p. The p-adic density of Up in VZ is given
by (45).
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The preceding density results will play an important role in obtaining the
density of discriminants of quartic rings and fields (see [4]).
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