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Numerical characterization of the
Kähler cone of a compact Kähler manifold

By Jean-Pierre Demailly and Mihai Paun

Abstract

The goal of this work is to give a precise numerical description of the
Kähler cone of a compact Kähler manifold. Our main result states that the
Kähler cone depends only on the intersection form of the cohomology ring, the
Hodge structure and the homology classes of analytic cycles: if X is a compact
Kähler manifold, the Kähler cone K of X is one of the connected components of
the set P of real (1, 1)-cohomology classes {α} which are numerically positive
on analytic cycles, i.e.

∫
Y αp > 0 for every irreducible analytic set Y in X,

p = dimY . This result is new even in the case of projective manifolds, where
it can be seen as a generalization of the well-known Nakai-Moishezon criterion,
and it also extends previous results by Campana-Peternell and Eyssidieux. The
principal technical step is to show that every nef class {α} which has positive
highest self-intersection number

∫
X αn > 0 contains a Kähler current; this is

done by using the Calabi-Yau theorem and a mass concentration technique
for Monge-Ampère equations. The main result admits a number of variants
and corollaries, including a description of the cone of numerically effective
(1, 1)-classes and their dual cone. Another important consequence is the fact
that for an arbitrary deformation X → S of compact Kähler manifolds, the
Kähler cone of a very general fibre Xt is “independent” of t, i.e. invariant by
parallel transport under the (1, 1)-component of the Gauss-Manin connection.

0. Introduction

The primary goal of this work is to study in great detail the structure
of the Kähler cone of a compact Kähler manifold. Recall that by definition
the Kähler cone is the set of cohomology classes of smooth positive definite
closed (1, 1)-forms. Our main result states that the Kähler cone depends only
on the intersection product of the cohomology ring, the Hodge structure and
the homology classes of analytic cycles. More precisely, we have
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Main Theorem 0.1. Let X be a compact Kähler manifold. Then the
Kähler cone K of X is one of the connected components of the set P of real
(1, 1)-cohomology classes {α} which are numerically positive on analytic cycles,
i.e. such that

∫
Y αp > 0 for every irreducible analytic set Y in X, p = dimY .

This result is new even in the case of projective manifolds. It can be
seen as a generalization of the well-known Nakai-Moishezon criterion, which
provides a necessary and sufficient criterion for a line bundle to be ample: a
line bundle L → X on a projective algebraic manifold X is ample if and only
if

Lp · Y =
∫

Y
c1(L)p > 0,

for every algebraic subset Y ⊂ X, p = dimY . In fact, when X is projective,
the numerical conditions

∫
Y αp > 0 characterize precisely the Kähler classes,

even when {α} is not an integral class – and even when {α} lies outside the
real Neron-Severi group NSR(X) = NS(X) ⊗Z R ; this fact can be derived in a
purely formal way from the Main Theorem:

Corollary 0.2. Let X be a projective manifold. Then the Kähler cone of
X consists of all real (1, 1)-cohomology classes which are numerically positive
on analytic cycles, namely K = P in the above notation.

These results extend a few special cases which were proved earlier by com-
pletely different methods: Campana-Peternell [CP90] showed that the Nakai-
Moishezon criterion holds true for classes {α} ∈ NSR(X). Quite recently,
using L2 cohomology techniques for infinite coverings of a projective algebraic
manifold, P. Eyssidieux [Eys00] obtained a version of the Nakai-Moishezon for
all real combinations of (1, 1)-cohomology classes which become integral after
taking the pull-back to some finite or infinite covering.

The Main Theorem admits quite a number of useful variants and corol-
laries. Two of them are descriptions of the cone of nef classes (nef stands
for numerically effective – or numerically eventually free according to the au-
thors). In the Kähler case, the nef cone can be defined as the closure K of the
Kähler cone ; see Section 1 for the general definition of nef classes on arbitrary
compact complex manifolds.

Corollary 0.3. Let X be a compact Kähler manifold. A (1, 1)-coho-
mology class {α} on X is nef (i.e. {α} ∈ K) if and only if there exists a Kähler
metric ω on X such that

∫
Y αk ∧ ωp−k ≥ 0 for all irreducible analytic sets Y

and all k = 1, 2, . . . , p = dimY .

Corollary 0.4. Let X be a compact Kähler manifold. A (1, 1)-coho-
mology class {α} on X is nef if and only for every irreducible analytic set Y in
X, p = dimX, and for every Kähler metric ω on X, one has

∫
Y α∧ωp−1 ≥ 0.
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In other words, the dual of the nef cone K is the closed convex cone generated
by cohomology classes of currents of the form [Y ] ∧ ωp−1 in Hn−1,n−1(X, R),
where Y runs over the collection of irreducible analytic subsets of X and {ω}
over the set of Kähler classes of X.

We now briefly discuss the essential ideas involved in our approach. The
first basic result is a sufficient condition for a nef class to contain a Kähler
current. The proof is based on a technique, of mass concentration for Monge-
Ampère equations, using the Aubin-Calabi-Yau theorem [Yau78].

Theorem 0.5. Let (X, ω) be a compact n-dimensional Kähler manifold
and let {α} in H1,1(X, R) be a nef cohomology class such that

∫
X αn > 0.

Then {α} contains a Kähler current T , that is, a closed positive current T

such that T ≥ δω for some δ > 0. The current T can be chosen to be smooth
in the complement X � Z of an analytic set, with logarithmic poles along Z.

In a first step, we show that the class {α}p dominates a small multiple
of any p-codimensional analytic set Y in X. As we already mentioned, this is
done by concentrating the mass on Y in the Monge-Ampère equation. We then
apply this fact to the diagonal ∆ ⊂ X̃ = X × X to produce a closed positive
current Θ ∈ {π∗

1α+π∗
2α}n which dominates [∆] in X ×X. The desired Kähler

current T is easily obtained by taking a push-forward π1∗(Θ∧π∗
2ω) of Θ to X.

This technique produces a priori “very singular” currents, since we use a
weak compactness argument. However, we can apply the general regularization
theorem proved in [Dem92] to get a current which is smooth outside an analytic
set Z and only has logarithmic poles along Z. The idea of using a Monge-
Ampère equation to force the occurrence of positive Lelong numbers in the
limit current was first exploited in [Dem93], in the case when Y is a finite set
of points, to get effective results for adjoints of ample line bundles (e.g. in the
direction of the Fujita conjecture).

The use of higher dimensional subsets Y in the mass concentration process
will be crucial here. However, the technical details are quite different from the
0-dimensional case used in [Dem93]; in fact, we cannot rely any longer on the
maximum principle, as in the case of Monge-Ampère equations with isolated
Dirac masses on the right-hand side. The new technique employed here is es-
sentially taken from [Pau00] where it was proved, for projective manifolds, that
every big semi-positive (1, 1)-class contains a Kähler current. The Main The-
orem is deduced from 0.5 by induction on dimension, thanks to the following
useful result from the second author’s thesis ([Pau98a, 98b]).

Proposition 0.6. Let X be a compact complex manifold (or complex
space). Then
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(i) The cohomology class of a closed positive (1, 1)-current {T} is nef if and
only if the restriction {T}|Z is nef for every irreducible component Z in
the Lelong sublevel sets Ec(T ).

(ii) The cohomology class of a Kähler current {T} is a Kähler class (i.e. the
class of a smooth Kähler form) if and only if the restriction {T}|Z is
a Kähler class for every irreducible component Z in the Lelong sublevel
sets Ec(T ).

To derive the Main Theorem from 0.5 and 0.6, it is enough to observe
that any class {α} ∈ K ∩ P is nef and that

∫
X αn > 0. Therefore it contains

a Kähler current. By the induction hypothesis on dimension, {α}|Z is Kähler
for all Z ⊂ X; hence {α} is a Kähler class on X.

We want to stress that Theorem 0.5 is closely related to the solution of the
Grauert-Riemenschneider conjecture by Y.-T. Siu ([Siu85]); see also [Dem85]
for a stronger result based on holomorphic Morse inequalities, and T. Bouche
[Bou89], S. Ji-B. Shiffman [JS93], L. Bonavero [Bon93, 98] for other related
results. The results obtained by Siu can be summarized as follows: Let L

be a hermitian semi -positive line bundle on a compact n-dimensional complex
manifold X, such that

∫
X c1(L)n > 0. Then X is a Moishezon manifold and L

is a big line bundle; the tensor powers of L have a lot of sections, h0(X, Lm) ≥
Cmn as m → +∞, and there exists a singular hermitian metric on L such that
the curvature of L is positive, bounded away from 0. Again, Theorem 0.5 can
be seen as an extension of this result to nonintegral (1, 1)-cohomology classes –
however, our proof only works so far for Kähler manifolds, while the Grauert-
Riemenschneider conjecture has been proved on arbitrary compact complex
manifolds. In the same vein, we prove the following result.

Theorem 0.7. A compact complex manifold carries a Kähler current if
and only if it is bimeromorphic to a Kähler manifold (or equivalently, domi-
nated by a Kähler manifold).

This class of manifolds is called the Fujiki class C. If we compare this result
with the solution of the Grauert-Riemenschneider conjecture, it is tempting to
make the following conjecture which would somehow encompass both results.

Conjecture 0.8. Let X be a compact complex manifold of dimension n.
Assume that X possesses a nef cohomology class {α} of type (1, 1) such that∫
X αn > 0. Then X is in the Fujiki class C.

(Also, {α} would contain a Kähler current, as it follows from Theorem 0.5
if Conjecture 0.8 is proved .)

We want to mention here that most of the above results were already
known in the cases of complex surfaces (i.e. dimension 2), thanks to the work
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of N. Buchdahl [Buc99, 00] and A. Lamari [Lam99a, 99b]; it turns out that
there exists a very neat characterization of nef classes on arbitrary surfaces,
Kähler or not.

The Main Theorem has an important application to the deformation the-
ory of compact Kähler manifolds, which we prove in Section 5.

Theorem 0.9. Let X → S be a deformation of compact Kähler manifolds
over an irreducible base S. Then there exists a countable union S′ =

⋃
Sν of

analytic subsets Sν � S, such that the Kähler cones Kt ⊂ H1,1(Xt, C) are in-
variant over S �S′ under parallel transport with respect to the (1, 1)-projection
∇1,1 of the Gauss-Manin connection.

We moreover conjecture (see 5.2 for details) that for an arbitrary deforma-
tion X → S of compact complex manifolds, the Kähler property is open with
respect to the countable Zariski topology on the base S of the deformation.

Shortly after this work was completed, Daniel Huybrechts [Huy01] in-
formed us that our Main Theorem can be used to calculate the Kähler cone
of a very general hyperKähler manifold: the Kähler cone is then equal to one
of the connected components of the positive cone defined by the Beauville-
Bogomolov quadratic form. This closes the gap in his original proof of the
projectivity criterion for hyperKähler manifolds [Huy99, Th. 3.11].

We are grateful to Arnaud Beauville, Christophe Mourougane and Philippe
Eyssidieux for helpful discussions, which were part of the motivation for look-
ing at the questions investigated here.

1. Nef cohomology classes and Kähler currents

Let X be a complex analytic manifold. Throughout this paper, we denote
by n the complex dimension dimC X. As is well known, a Kähler metric on X

is a smooth real form of type (1, 1):

ω(z) = i
∑

1≤j,k≤n

ωjk(z)dzj ∧ dzk;

that is, ω = ω or equivalently ωjk(z) = ωkj(z), such that

(1.1′) ω(z) is positive definite at every point ((ωjk(z)) is a positive definite
hermitian matrix);

(1.1′′) dω = 0 when ω is viewed as a real 2-form; i.e., ω is symplectic.

One says that X is Kähler (or is of Kähler type) if X possesses a Kähler
metric ω. To every closed real (resp. complex) valued k-form α we associate
its de Rham cohomology class {α} ∈ Hk(X, R) (resp. {α} ∈ Hk(X, C)), and to
every ∂-closed form α of pure type (p, q) we associate its Dolbeault cohomology
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class {α} ∈ Hp,q(X, C). On a compact Kähler manifold we have a canonical
Hodge decomposition

(1.2) Hk(X, C) =
⊕

p+q=k

Hp,q(X, C).

In this work, we are especially interested in studying the Kähler cone

(1.3) K ⊂ H1,1(X, R) := H1,1(X, C) ∩ H2(X, R),

which is by definition the set of cohomology classes {ω} of all (1, 1)-forms as-
sociated with Kähler metrics. Clearly, K is an open convex cone in H1,1(X, R),
since a small perturbation of a Kähler form is still a Kähler form. The closure
K of the Kähler cone is equally important. Since we want to consider manifolds
which are possibly non Kähler, we have to introduce “∂∂-cohomology” groups

(1.4) Hp,q

∂∂
(X, C) := {d-closed (p, q)-forms}/∂∂{(p − 1, q − 1)-forms}.

When (X, ω) is compact Kähler, it is well known (from the so-called ∂∂-lemma)
that there is an isomorphism Hp,q

∂∂
(X, C) 
 Hp,q(X, C) with the more usual

Dolbeault groups. Notice that there are always canonical morphisms

Hp,q

∂∂
(X, C) → Hp,q(X, C), Hp,q

∂∂
(X, C) → Hp+q

DR (X, C)

(∂∂-cohomology is “more precise” than Dolbeault or de Rham cohomology).
This allows us to define numerically effective classes in a fairly general situation
(see also [Dem90b, 92], [DPS94]).

Definition 1.5. Let X be a compact complex manifold equipped with a
hermitian positive (not necessarily Kähler) metric ω. A class {α} ∈ H1,1

∂∂
(X, R)

is said to be numerically effective (or nef for brevity) if for every ε > 0 there
is a representative αε = α + i∂∂ϕε ∈ {α} such that αε ≥ −εω.

If (X, ω) is compact Kähler, a class {α} is nef if and only if {α + εω} is a
Kähler class for every ε > 0, i.e., a class {α} ∈ H1,1(X, R) is nef if and only if it
belongs to the closure K of the Kähler cone. (Also, if X is projective algebraic,
a divisor D is nef in the sense of algebraic geometers; that is, D · C ≥ 0 for
every irreducible curve C ⊂ X, if and only if {D} ∈ K, so that the definitions
fit together; see [Dem90b, 92] for more details.)

In the sequel, we will make heavy use of currents, especially the theory
of closed positive currents. Recall that a current T is a differential form with
distribution coefficients. In the complex situation, we are interested in currents

T = ipq
∑

|I|=p,|J |=q

TI,J dzI ∧ dzJ (TI,J distributions on X),

of pure bidegree (p, q), with dzI = dzi1 ∧ . . . ∧ dzip
as usual. We say that T is

positive if p = q and T ∧ iu1 ∧ u1 ∧ · · · ∧ iun−p ∧ un−p is a positive measure
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for all (n − p)-tuples of smooth (1, 0)-forms uj on X, 1 ≤ j ≤ n − p (this is
the so-called “weak positivity” concept; since the currents under considera-
tion here are just positive (1, 1)-currents or wedge products of such, all other
standard positivity concepts could be used as well, since they are the same on
(1, 1)-forms). Alternatively, the space of (p, q)-currents can be seen as the dual
space of the Fréchet space of smooth (n− p, n− q)-forms, and (n− p, n− q) is
called the bidimension of T . By Lelong [Lel57], to every analytic set Y ⊂ X

of codimension p is associated a current T = [Y ] defined by

〈[Y ], u〉 =
∫

Y
u, u ∈ Dn−p,n−p(X),

and [Y ] is a closed positive current of bidegree (p, p) and bidimension
(n − p, n − p). The theory of positive currents can be easily extended to com-
plex spaces X with singularities; one then simply defines the space of currents
to be the dual of space of smooth forms, defined as forms on the regular part
Xreg which, near Xsing, locally extend as smooth forms on an open set of CN

in which X is locally embedded (see e.g. [Dem85] for more details).

Definition 1.6. A Kähler current on a compact complex space X is a
closed positive current T of bidegree (1, 1) which satisfies T ≥ εω for some
ε > 0 and some smooth positive hermitian form ω on X.

When X is a (nonsingular) compact complex manifold, we consider the
pseudo-effective cone E ⊂ H1,1

∂∂
(X, R), defined as the set of ∂∂-cohomology

classes of closed positive (1, 1)-currents. By the weak compactness of bounded
sets in the space of currents, this is always a closed (convex) cone. When X is
Kähler, we have of course

K ⊂ E◦,

i.e. K is contained in the interior of E. Moreover, a Kähler current T has a class
{T} which lies in E◦, and conversely any class {α} in E◦ can be represented by
a Kähler current T . We say that such a class is big.

Notice that the inclusion K ⊂ E◦ can be strict, even when X is Kähler,
and the existence of a Kähler current on X does not necessarily imply that X

admits a (smooth) Kähler form, as we will see in Section 3 (therefore X need
not be a Kähler manifold in that case !).

2. Concentration of mass for nef classes
of positive self-intersection

In this section, we show in full generality that on a compact Kähler mani-
fold, every nef cohomology class with strictly positive self-intersection of max-
imum degree contains a Kähler current.
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The proof is based on a mass concentration technique for Monge-Ampère
equations, using the Aubin-Calabi-Yau theorem. We first start with an easy
lemma, which was (more or less) already observed in [Dem90a]. Recall that
a quasi-plurisubharmonic function ψ, by definition, is a function which is lo-
cally the sum of a plurisubharmonic function and of a smooth function, or
equivalently, a function such that i∂∂ψ is locally bounded below by a negative
smooth (1, 1)-form.

Lemma 2.1. Let X be a compact complex manifold X equipped with a
Kähler metric ω = i

∑
1≤j,k≤n ωjk(z)dzj ∧ dzk and let Y ⊂ X be an analytic

subset of X. Then there exist globally defined quasi-plurisubharmonic poten-
tials ψ and (ψε)ε∈]0,1] on X, satisfying the following properties.

(i) The function ψ is smooth on X � Y , satisfies i∂∂ψ ≥ −Aω for some
A > 0, and ψ has logarithmic poles along Y ; i.e., locally near Y ,

ψ(z) ∼ log
∑

k

|gk(z)| + O(1)

where (gk) is a local system of generators of the ideal sheaf IY of Y in
X.

(ii) ψ = limε→0 ↓ ψε where the ψε are C∞ and possess a uniform Hessian
estimate

i∂∂ψε ≥ −Aω on X.

(iii) Consider the family of hermitian metrics

ωε := ω +
1

2A
i∂∂ψε ≥

1
2
ω.

For any point x0 ∈ Y and any neighborhood U of x0, the volume element
of ωε has a uniform lower bound∫

U∩Vε

ωn
ε ≥ δ(U) > 0,

where Vε = {z ∈ X ; ψ(z) < log ε} is the “tubular neighborhood” of
radius ε around Y .

(iv) For every integer p ≥ 0, the family of positive currents ωp
ε is bounded in

mass. Moreover, if Y contains an irreducible component Y ′ of codimen-
sion p, there is a uniform lower bound∫

U∩Vε

ωp
ε ∧ ωn−p ≥ δp(U) > 0

in any neighborhood U of a regular point x0 ∈ Y ′. In particular, any
weak limit Θ of ωp

ε as ε tends to 0 satisfies Θ ≥ δ′[Y ′] for some δ′ > 0.
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Proof. By compactness of X, there is a covering of X by open coordinate
balls Bj , 1 ≤ j ≤ N , such that IY is generated by finitely many holomorphic
functions (gj,k)1≤k≤mj

on a neighborhood of Bj . We take a partition of unity
(θj) subordinate to (Bj) such that

∑
θ2
j = 1 on X, and define

ψ(z) =
1
2

log
∑

j

θj(z)2
∑

k

|gj,k(z)|2,

ψε(z) =
1
2

log(e2ψ(z) + ε2) =
1
2

log
( ∑

j,k

θj(z)2|gj,k(z)|2 + ε2
)
.

Moreover, we consider the family of (1, 0)-forms with support in Bj such that

γj,k = θj∂gj,k + 2gj,k∂θj .

Straightforward calculations yield

∂ψε =
1
2

∑
j,k θjgj,kγj,k

e2ψ + ε2
,(2.2)

i∂∂ψε =
i

2

(∑
j,k γj,k ∧ γj,k

e2ψ + ε2
−

∑
j,k θjgj,kγj,k ∧

∑
j,k θjgj,kγj,k

(e2ψ + ε2)2

)
,

+ i

∑
j,k |gj,k|2(θj∂∂θj − ∂θj ∧ ∂θj)

e2ψ + ε2
.

As e2ψ =
∑

j,k θ2
j |gj,k|2, the first big sum in i∂∂ψε is nonnegative by the

Cauchy-Schwarz inequality; when viewed as a hermitian form, the value of
this sum on a tangent vector ξ ∈ TX is simply
(2.3)

1
2

(∑
j,k |γj,k(ξ)|2

e2ψ + ε2
−

∣∣ ∑
j,k θjgj,kγj,k(ξ)

∣∣2
(e2ψ + ε2)2

)
≥ 1

2
ε2

(e2ψ + ε2)2
∑
j,k

|γj,k(ξ)|2.

Now, the second sum involving θj∂∂θj−∂θj∧∂θj in (2.2) is uniformly bounded
below by a fixed negative hermitian form −Aω, A � 0, and therefore
i∂∂ψε ≥ −Aω. Actually, for every pair of indices (j, j′) we have a bound

C−1 ≤
∑

k

|gj,k(z)|2/
∑

k

|gj′,k(z)|2 ≤ C on Bj ∩ Bj′ ,

since the generators (gj,k) can be expressed as holomorphic linear combinations
of the (gj′,k) by Cartan’s theorem A (and vice versa). It follows easily that all
terms |gj,k|2 are uniformly bounded by e2ψ + ε2. In particular, ψ and ψε are
quasi-plurisubharmonic, and we see that (i) and (ii) hold true. By construction,
the real (1, 1)-form ωε := ω + 1

2A i∂∂ψε satisfies ωε ≥ 1
2ω; hence it is Kähler

and its eigenvalues with respect to ω are at least equal to 1/2.
Assume now that we are in a neighborhood U of a regular point x0 ∈

Y where Y has codimension p. Then γj,k = θj∂gj,k at x0; hence the rank



1256 JEAN-PIERRE DEMAILLY AND MIHAI PAUN

of the system of (1, 0)-forms (γj,k)k≥1 is at least equal to p in a neighbor-
hood of x0. Fix a holomorphic local coordinate system (z1, . . . , zn) such that
Y = {z1 = . . . = zp = 0} near x0, and let S ⊂ TX be the holomorphic subbun-
dle generated by ∂/∂z1, . . . , ∂/∂zp. This choice ensures that the rank of the
system of (1, 0)-forms (γj,k|S) is everywhere equal to p. By (1.3) and the min-
imax principle applied to the p-dimensional subspace Sz ⊂ TX,z, we see that
the p-largest eigenvalues of ωε are bounded below by cε2/(e2ψ +ε2)2. However,

we can even restrict the form defined in (2.3) to the (p − 1)-dimensional sub-
space S ∩Ker τ where τ(ξ) :=

∑
j,k θjgj,kγj,k(ξ), to see that the (p− 1)-largest

eigenvalues of ωε are bounded below by c/(e2ψ +ε2), c > 0. The pth eigenvalue
is then bounded by cε2/(e2ψ + ε2)2 and the remaining (n − p)-ones by 1/2.
From this we infer

ωn
ε ≥ c

ε2

(e2ψ + ε2)p+1
ωn near x0,

ωp
ε ≥ c

ε2

(e2ψ + ε2)p+1

(
i

∑
1≤�≤p

γj,k�
∧ γj,k�

)p

where (γj,k�
)1≤�≤p is a suitable p-tuple extracted from the (γj,k), such that⋂

� Ker γj,k�
is a smooth complex (but not necessarily holomorphic) subbundle

of codimension p of TX ; by the definition of the forms γj,k, this subbundle must
coincide with TY along Y . From this, properties (iii) and (iv) follow easily;
actually, up to constants, we have e2ψ + ε2 ∼ |z1|2 + . . . + |zp|2 + ε2 and

i
∑

1≤�≤p

γj,k�
∧ γj,k�

≥ c i∂∂(|z1|2 + . . . + |zp|2) − O(ε)i∂∂|z|2 on U ∩ Vε.

Hence, by a straightforward calculation,

ωp
ε ∧ωn−p ≥ c

(
i∂∂ log(|z1|2 + . . .+ |zp|2 + ε2)

)p ∧
(
i∂∂(|zp+1|2 + . . .+ |zn|2)

)n−p

on U ∩ Vε; notice also that ωn
ε ≥ 2−(n−p)ωp

ε ∧ ωn−p, so that any lower bound
for the volume of ωp

ε ∧ ωn−p will also produce a bound for the volume of ωn
ε .

As is well known, the (p, p)-form( i

2π
∂∂ log(|z1|2 + . . . + |zp|2 + ε2)

)p
on Cn

can be viewed as the pull-back to Cn = Cp ×Cn−p of the Fubini-Study volume
form of the complex p-dimensional projective space of dimension p containing
Cp as an affine Zariski open set, rescaled by the dilation ratio ε. Hence it
converges weakly to the current of integration on the p-codimensional subspace
z1 = . . . = zp = 0. Moreover the volume contained in any compact tubular
cylinder

{|z′| ≤ Cε} × K ′′ ⊂ Cp × Cn−p
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depends only on C and K (as one sees after rescaling by ε). The fact that ωp
ε

is uniformly bounded in mass can be seen easily from the fact that∫
X

ωp
ε ∧ ωn−p =

∫
X

ωn,

as ω and ωε are in the same Kähler class. Let Θ be any weak limit of ωp
ε .

By what we have just seen, Θ carries nonzero mass on every p-codimensional
component Y ′ of Y , for instance near every regular point. However, standard
results of the theory of currents (support theorem and Skoda’s extension re-
sult) imply that 1Y ′Θ is a closed positive current and that 1Y ′Θ = λ[Y ′] is
a nonnegative multiple of the current of integration on Y ′. The fact that the
mass of Θ on Y ′ is positive yields λ > 0. Lemma 2.1 is proved.

Remark 2.4. In the proof above, we did not really make use of the fact
that ω is Kähler. Lemma 2.1 would still be true without this assumption. The
only difficulty would be to show that ωp

ε is still locally bounded in mass when
ω is an arbitrary hermitian metric. This can be done by using a resolution of
singularities which converts IY into an invertible sheaf defined by a divisor with
normal crossings – and by doing some standard explicit calculations. As we do
not need the more general form of Lemma 2.1, we will omit these technicalities.

Let us now recall the following very deep result concerning Monge-Ampère
equations on compact Kähler manifolds (see [Yau78]).

Theorem 2.5 (Yau). Let (X, ω) be a compact Kähler manifold and n =
dimX. Then for any smooth volume form f > 0 such that

∫
X f =

∫
X ωn, there

exists a Kähler metric ω̃ = ω + i∂∂ϕ in the same Kähler class as ω, such that
ω̃n = f.

In other words, one can prescribe the volume form f of the Kähler metric
ω̃ ∈ {ω}, provided that the total volume

∫
X f is equal to the expected value∫

X ωn. Since the Ricci curvature form of ω̃ is Ricci(ω̃) := − i
2π∂∂ log det(ω̃) =

− i
2π∂∂ log f , this is the same as prescribing the curvature form Ricci(ω̃) = ρ,

given any (1, 1)-form ρ representing c1(X). Using this, we prove

Proposition 2.6. Let (X, ω) be a compact n-dimensional Kähler mani-
fold and let {α} in H1,1(X,R) be a nef cohomology class such that αn > 0.
Then, for every p-codimensional analytic set Y ⊂ X, there exists a closed
positive current Θ ∈ {α}p of bidegree (p, p) such that Θ ≥ δ[Y ] for some δ > 0.

Proof. Let us associate with Y a family ωε of Kähler metrics as in
Lemma 2.1. The class {α + εω} is a Kähler class, so by Yau’s theorem we
can find a representative αε = α + εω + i∂∂ϕε such that

(2.7) αn
ε = Cεω

n
ε ,
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where

Cε =

∫
X αn

ε∫
X ωn

ε

=

∫
X(α + εω)n∫

X ωn
≥ C0 =

∫
X αn∫
X ωn

> 0.

Let us denote by
λ1(z) ≤ . . . ≤ λn(z)

the eigenvalues of αε(z) with respect to ωε(z), at every point z ∈ X (these
functions are continuous with respect to z, and of course depend also on ε).
The equation (2.7) is equivalent to the fact that

(2.7′) λ1(z) . . . λn(z) = Cε

is constant, and the most important observation for us is that the constant Cε

is bounded away from 0, thanks to our assumption
∫
X αn > 0.

Fix a regular point x0 ∈ Y and a small neighborhood U (meeting only the
irreducible component of x0 in Y ). By Lemma 2.1, we have a uniform lower
bound

(2.8)
∫

U∩Vε

ωp
ε ∧ ωn−p ≥ δp(U) > 0.

Now, by looking at the p smallest (resp. (n − p) largest) eigenvalues λj of αε

with respect to ωε,

(2.9′) αp
ε ≥ λ1 . . . λp ωp

ε ,

(2.9′′) αn−p
ε ∧ ωp

ε ≥ 1
n!

λp+1 . . . λn ωn
ε .

The last inequality (2.9′′) implies∫
X

λp+1 . . . λn ωn
ε ≤ n!

∫
X

αn−p
ε ∧ ωp

ε = n!
∫

X
(α + εω)n−p ∧ ωp ≤ M

for some constant M > 0 (we assume ε ≤ 1, say). In particular, for every
δ > 0, the subset Eδ ⊂ X of points z such that λp+1(z) . . . λn(z) > M/δ

satisfies
∫
Eδ

ωn
ε ≤ δ; hence

(2.10)
∫

Eδ

ωp
ε ∧ ωn−p ≤ 2n−p

∫
Eδ

ωn
ε ≤ 2n−pδ.

The combination of (2.8) and (2.10) yields∫
(U∩Vε)�Eδ

ωp
ε ∧ ωn−p ≥ δp(U) − 2n−pδ.

On the other hand (2.7′) and (2.9′) imply

αp
ε ≥ Cε

λp+1 . . . λn
ωp

ε ≥ Cε

M/δ
ωp

ε on (U ∩ Vε) � Eδ.
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From this we infer
(2.11)∫

U∩Vε

αp
ε ∧ ωn−p ≥ Cε

M/δ

∫
(U∩Vε)�Eδ

ωp
ε ∧ ωn−p ≥ Cε

M/δ
(δp(U) − 2n−pδ) > 0

provided that δ is taken small enough, e.g., δ = 2−(n−p+1)δp(U). The family
of (p, p)-forms αp

ε is uniformly bounded in mass since∫
X

αp
ε ∧ ωn−p =

∫
X

(α + εω)p ∧ ωn−p ≤ Const.

Inequality (2.11) implies that any weak limit Θ of (αp
ε) carries a positive mass

on U ∩ Y . By Skoda’s extension theorem [Sk81], 1Y Θ is a closed positive
current with support in Y , hence 1Y Θ =

∑
cj [Yj ] is a combination of the

various components Yj of Y with coefficients cj > 0. Our construction shows
that Θ belongs to the cohomology class {α}p. Proposition 2.6 is proved.

We can now prove the main result of this section.

Theorem 2.12. Let (X, ω) be a compact n-dimensional Kähler manifold
and let {α} in H1,1(X,R) be a nef cohomology class such that

∫
X αn > 0. Then

{α} contains a Kähler current T , that is, a closed positive current T such that
T ≥ δω for some δ > 0.

Proof. The trick is to apply Proposition 2.6 to the diagonal Ỹ = ∆ in the
product manifold X̃ = X ×X. Let us denote by π1 and π2 the two projections
of X̃ = X × X onto X. It is clear that X̃ admits

ω̃ = π∗
1ω + π∗

2ω

as a Kähler metric, and that the class of

α̃ = π∗
1α + π∗

2α

is a nef class on X̃ (it is a limit of the Kähler classes π∗
1(α+ εω)+π∗

2(α+ εω)).
Moreover, by Newton’s binomial formula∫

X×X
α̃2n =

(
2n

n

)( ∫
X

αn
)2

> 0.

The diagonal is of codimension n in X̃; hence by Proposition 2.6 there exists
a closed positive (n, n)-current Θ ∈ {α̃n} such that Θ ≥ ε[∆] for some ε > 0.
We define the (1, 1)-current T to be the push-forward

T = c π1∗(Θ ∧ π∗
2ω)

for a suitable constant c > 0 which will be determined later. By the lower
estimate on Θ, we have

T ≥ cε π1∗([∆] ∧ π∗
2ω) = cε ω;
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thus T is a Kähler current. On the other hand, as Θ ∈ {α̃n}, the current T

belongs to the cohomology class of the (1, 1)-form

c π1∗(α̃n ∧ π∗
2ω)(x) = c

∫
y∈Y

(
α(x) + α(y)

)n ∧ ω(y),

obtained by a partial integration in y with respect to (x, y) ∈ X × X. By
Newton’s binomial formula again, we see that

c π1∗(α̃n ∧ π∗
2ω)(x) = c

( ∫
X

nα(y)n−1 ∧ ω(y)
)
α(x)

is proportional to α. Therefore, we need only take c =
( ∫

X nαn−1 ∧ ω
)−1 to

ensure that T ∈ {α}. As α is nef and {α} ≤ C{ω} for sufficiently large C > 0,
we have ∫

X
αn−1 ∧ ω ≥ 1

C

∫
X

αn > 0.

Theorem 2.12 is proved.

3. Regularization theorems for Kähler currents

It is not true that a Kähler current can be regularized to produce a smooth
Kähler metric. However, by the general regularization theorem for closed cur-
rents proved in [Dem92] (see Proposition 3.7), it can be regularized up to some
logarithmic poles along analytic subsets.

Before stating the result, we need a few preliminaries. If T is a closed
positive current on a compact complex manifold X, we can write

(3.1) T = α + i∂∂ψ

where α is a global, smooth, closed (1, 1)-form on X, and ψ a quasi-plurisub-
harmonic function on X. To see this (cf. also [Dem92]), take an open covering
of X by open coordinate balls Bj and plurisubharmonic potentials ψj such
that T = i∂∂ψj on Bj . Then, if (θj) is a partition of unity subordinate to
(Bj), it is easy to see that ψ =

∑
θjψj is quasi-plurisubharmonic and that

α := T − i∂∂ψ is smooth (so that i∂∂ψ = T − α ≥ −α). For any other
decomposition T = α′ + i∂∂ψ′ as in (3.1), we have α′ − α = −i∂∂(ψ′ − ψ);
hence ψ′ − ψ is smooth.

The Regularization Theorem 3.2. Let X be a compact complex man-
ifold equipped with a hermitian metric ω. Let T = α + i∂∂ψ be a closed
(1, 1)-current on X, where α is smooth and ψ is a quasi -plurisubharmonic
function. Assume that T ≥ γ for some real (1, 1)-form γ on X with real coef-
ficients. Then there exists a sequence Tk = α + i∂∂ψk of closed (1, 1)-currents
such that

(i) ψk (and thus Tk) is smooth on the complement X �Zk of an analytic set
Zk, and the Zk’s form an increasing sequence

Z0 ⊂ Z1 ⊂ . . . ⊂ Zk ⊂ . . . ⊂ X.
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(ii) There is a uniform estimate Tk ≥ γ − δkω with lim ↓ δk = 0 as k tends
to +∞.

(iii) The sequence (ψk) is nonincreasing, and we have lim ↓ ψk = ψ. As a
consequence, Tk converges weakly to T as k tends to +∞.

(iv) Near Zk, the potential ψk has logarithmic poles, namely, for every
x0 ∈ Zk, there is a neighborhood U of x0 such that

ψk(z) = λk log
∑

�

|gk,�|2 + O(1)

for suitable holomorphic functions (gk,�) on U and λk > 0. Moreover,
there is a (global) proper modification µk : X̃k → X of X, obtained as a
sequence of blow -ups with smooth centers, such that ψk◦µk can be written
locally on X̃k as

ψk ◦ µk(w) = λk

( ∑
n� log |g̃�|2 + f(w)

)
where (g̃� = 0) are local generators of suitable (global) divisors D� on X̃k

such that
∑

D� has normal crossings, n� are positive integers, and the
f ’s are smooth functions on X̃k.

Sketch of the proof. We briefly indicate the main ideas, since the proof
can only be reconstructed by patching together arguments which appeared in
different places (although the core of the proof is entirely in [Dem92]). After

replacing T with T − α, we can assume that α = 0 and T = i∂∂ψ ≥ γ.
Given a small ε > 0, we select a covering of X by open balls Bj together with
holomorphic coordinates (z(j)) and real numbers βj such that

0 ≤ γ − βj i∂∂|z(j)|2 ≤ ε i∂∂|z(j)|2 on Bj

(this can be achieved just by continuity of γ, after diagonalizing γ at the center
of the balls). We now take a partition of unity (θj) subordinate to (Bj) such
that

∑
θ2
j = 1, and define

ψk(z) =
1
2k

log
∑

j

θ2
j e

2kβj |z(j)|2 ∑
�∈N

|gj,k,�|2

where (gj,k,�) is a Hilbert basis of the Hilbert space of holomorphic functions
f on Bj such that ∫

Bj

|f |2e−2k(ψ−βj |z(j)|2) < +∞.

Notice that by the Hessian estimate i∂∂ψ ≥ γ ≥ βj i∂∂|z(j)|2, the weight
involved in the L2 norm is plurisubharmonic. It then follows from the proof
of Proposition 3.7 in [Dem92] that all properties (i)–(iv) hold true, except
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possibly the fact that the sequence ψk can be chosen to be nonincreasing,
and the existence of the modification in (iv). However, the multiplier ideal
sheaves of the weights k(ψ − βj |z(j)|2) are generated by the (gj,k,�)� on Bj , and
these sheaves glue together into a global coherent multiplier ideal sheaf I(kψ)
on X (see [DEL99]); the modification µk is then obtained by blowing-up the
ideal sheaf I(kψ) so that µ∗

kI(kψ) is an invertible ideal sheaf associated with
a normal crossing divisor (Hironaka [Hir63]). The fact that ψk can be chosen
to be nonincreasing follows from a quantitative version of the “subadditivity
of multiplier ideal sheaves” which is proved in Step 3 of the proof of Theorem
2.2.1 in [DPS00] (see also ([DEL99]). (Anyway, this property will not be used
here, so the reader may wish to skip the details.)

For later purposes, we state the following useful results, which are bor-
rowed essentially from the Ph.D. thesis of the second author.

Proposition 3.3 ([Pau98a, 98b]). Let X be a compact complex space
and let {α} be a ∂∂-cohomology class of type (1, 1) on X (where α is a smooth
representative).

(i) If the restriction {α}|Y to an analytic subset Y ⊂ X is Kähler on Y ,
there exists a smooth representative α′ = α + i∂∂ϕ which is Kähler on a
neighborhood U of Y .

(ii) If the restrictions {α}|Y1
, {α}|Y2

to any pair of analytic subsets Y1, Y2 ⊂
X are nef (resp. Kähler), then {α}|Y1∪Y2

is nef (resp. Kähler).

(iii) Assume that {α} contains a Kähler current T and that the restriction
{α}|Y to every irreducible component Y in the Lelong sublevel sets Ec(T )
is a Kähler class on Y . Then {α} is a Kähler class on X.

(iv) Assume that {α} contains a closed positive (1, 1)-current T and that the
restriction {α}|Y to every irreducible component Y in the Lelong sublevel
sets Ec(T ) is nef on Y . Then {α} is nef on X.

By definition, Ec(T ) is the set of points z ∈ X such that the Lelong
number ν(T, z) is at least equal to c (for given c > 0). A deep theorem of
Siu ([Siu74]) asserts that all Ec(T ) are analytic subsets of X. Notice that the
concept of a ∂∂-cohomology class is well defined on an arbitrary complex space
(although many of the standard results on de Rham or Dolbeault cohomology
of nonsingular spaces will fail for singular spaces!). The concepts of Kähler
classes and nef classes are still well defined (a Kähler form on a singular space
X is a (1, 1)-form which is locally bounded below by the restriction of a smooth
positive (1, 1)-form in a nonsingular ambient space for X, and a nef class is a
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class containing representatives bounded below by −εω for every ε > 0, where
ω is a smooth positive (1, 1)-form).

Sketch of the proof. (i) We can assume that α|Y itself is a Kähler form.
If Y is smooth, we simply take ψ to be equal to a large constant times the
square of the hermitian distance to Y . This will produce positive eigenvalues
in α+ i∂∂ψ along the normal directions of Y , while the eigenvalues are already
positive on Y . When Y is singular, we just use the same argument with respect
to a stratification of Y by smooth manifolds, and an induction on the dimension
of the strata (ψ can be left untouched on the lower dimensional strata).

(ii) Let us first treat the Kähler case. By (i), there are smooth functions
ϕ1, ϕ2 on X such that α+i∂∂ϕj is Kähler on a neighborhood Uj of Yj , j = 1, 2.
Also, by Lemma 2.1, there exists a quasi-plurisubharmonic function ψ on X

which has logarithmic poles on Y1 ∩ Y2 and is smooth on X � (Y1 ∩ Y2). We
define

ϕ = m̃ax(ϕ1 + δψ, ϕ2 − C)

where δ � 1, C � 1 are constants and m̃ax is a regularized max function.
Then α + i∂∂ϕ is Kähler on U1 ∩ U2. Moreover, for C large, ϕ coincides with
ϕ1 + δψ on Y1 � U2 and with ϕ2 −C on a small neighborhood of W of Y1 ∩Y2.
Take smaller neighborhoods U ′

1 � U1, U ′
2 � U2 such that U ′

1 ∩ U ′
2 ⊂ W . We

can extend ϕ|U ′
1∩U2

to a neighborhood V of Y1 ∪ Y2 by taking ϕ = ϕ1 + δψ

on a neighborhood of Y1 � U2 and ϕ = ϕ2 − C on U ′
2. The use of a cut-off

function equal to 1 on a neighborhood of V ′ � V of Y1 ∪Y2 finally allows us to
get a function ϕ defined everywhere on X, such that α + i∂∂ϕ is Kähler on a
neighborhood of Y1 ∪ Y2 (if δ is small enough). The nef case is similar, except
that we deal with currents T such that T ≥ −εω instead of Kähler currents.

(iii) By the regularization Theorem 3.2, we may assume that the singulari-
ties of the Kähler current T = α+ i∂∂ψ are just logarithmic poles (since T ≥ γ

with γ positive definite, the small loss of positivity resulting from 3.2 (ii) still
yields a Kähler current Tk). Hence ψ is smooth on X�Z for a suitable analytic
set Z which, by construction, is contained in Ec(T ) for c > 0 small enough.
We use (i), (ii) and the hypothesis that {T}|Y is Kähler for every component Y

of Z to get a neighborhood U of Z and a smooth potential ϕU on X such that
α+ i∂∂ϕU is Kähler on U . Then the smooth potential equal to the regularized
maximum ϕ = m̃ax(ψ, ϕU − C) produces a Kähler form α + i∂∂ϕ on X for
C large enough (since we can achieve ϕ = ψ on X � U). The nef case (iv) is
similar.

Theorem 3.4. A compact complex manifold X admits a Kähler current
if and only if it is bimeromorphic to a Kähler manifold, or equivalently, if
it admits a proper Kähler modification. (The class of such manifolds is the
so-called Fujiki class C.)
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Proof. If X is bimeromorphic to a Kähler manifold Y , Hironaka’s desin-
gularization theorem implies that there exists a blow-up Ỹ of Y (obtained by a
sequence of blow-ups with smooth centers) such that the bimeromorphic map
from Y to X can be resolved into a modification µ : Ỹ → X. Then Ỹ is
Kähler and the push-forward T = µ∗ω̃ of a Kähler form ω̃ on Ỹ provides a
Kähler current on X. In fact, if ω is a smooth hermitian form on X, there is
a constant C such that µ∗ω ≤ Cω̃ (by compactness of Ỹ ); hence

T = µ∗ω̃ ≥ µ∗(C−1µ∗ω) = C−1ω.

Conversely, assume that X admits a Kähler current T . By Theorem 3.2 (iv),
there exists a Kähler current T ′ = Tk (k � 1) in the same ∂∂-cohomology
class as T , and a modification µ : X̃ → X such that

µ∗T ′ = λ[D̃] + α̃ on X̃,

where D̃ is a divisor with normal crossings, α̃ a smooth closed (1, 1)-form and
λ > 0. (The pull-back of a closed (1, 1)-current by a holomorphic map f is
always well-defined, when we take a local plurisubharmonic potential ϕ such
that T = i∂∂ϕ and write f∗T = i∂∂(ϕ◦f).) The form α̃ must be semi-positive;
more precisely we have α̃ ≥ εµ∗ω as soon as T ′ ≥ εω. This is not enough to
produce a Kähler form on X̃ (but we are not very far...). Suppose that X̃ is
obtained as a tower of blow-ups

X̃ = XN → XN−1 → · · · → X1 → X0 = X,

where Xj+1 is the blow-up of Xj along a smooth center Yj ⊂ Xj . Denote by
Ej+1 ⊂ Xj+1 the exceptional divisor, and let µj : Xj+1 → Xj be the blow-up
map. Now, we state the following simple result.

Lemma 3.5. For every Kähler current Tj on Xj, there exists εj+1 > 0
and a smooth form uj+1 in the ∂∂-cohomology class of [Ej+1] such that

Tj+1 = µ	
jTj − εj+1uj+1

is a Kähler current on Xj+1.

Proof. The line bundle O(−Ej+1)|Ej+1 is equal to OP (Nj)(1) where Nj

is the normal bundle to Yj in Xj . Pick an arbitrary smooth hermitian metric
on Nj , use this metric to get an induced Fubini-Study metric on OP (Nj)(1),
and finally extend this metric as a smooth hermitian metric on the line bundle
O(−Ej+1). Such a metric has positive curvature along tangent vectors of Xj+1

which are tangent to the fibers of Ej+1 = P (Nj) → Yj . Assume furthermore
that Tj ≥ δjωj for some hermitian form ωj on Xj and a suitable 0 < δj � 1.
Then

µ	
jTj − εj+1uj+1 ≥ δjµ

	
jωj − εj+1uj+1
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where µ∗
jωj is semi-positive on Xj+1, positive definite on Xj+1�Ej+1, and also

positive definite on tangent vectors of TXj+1|Ej+1
which are not tangent to the

fibers of Ej+1 → Yj . The statement is then easily proved by taking εj+1 � δj

and by using an elementary compactness argument on the unit sphere bundle
of TXj+1 associated with any given hermitian metric.

End of proof of Theorem 3.4. If ũj is the pull-back of uj to the final
blow-up X̃, we conclude inductively that µ	T ′ −

∑
εj ũj is a Kähler current.

Therefore the smooth form

ω̃ := α̃ −
∑

εj ũj = µ	T ′ −
∑

εj ũj − λ[D]

is Kähler and we see that X̃ is a Kähler manifold.

Remark 3.6. A special case of Theorem 3.4 is the following characteriza-
tion of Moishezon varieties (i.e. manifolds which are bimeromorphic to projec-
tive algebraic varieties or, equivalently, whose algebraic dimension is equal to
their complex dimension):

A compact complex manifold X is Moishezon if and only if X possesses a
Kähler current T such that the de Rham cohomology class {T} is rational, i.e.
{T} ∈ H2(X,Q).

In fact, in the above proof, we get an integral current T if we take the
push forward T = µ∗ω̃ of an integral ample class {ω̃} on Y , where µ : Y → X

is a projective model of Y . Conversely, if {T} is rational, we can take the
ε′js to be rational in Lemma 3.5. This produces at the end a Kähler metric
ω̃ with rational de Rham cohomology class on X̃. Therefore X̃ is projective
by the Kodaira embedding theorem. This result was observed in [JS93] (see
also [Bon93, 98] for a more general perspective based on a singular version of
holomorphic Morse inequalities).

4. Numerical characterization of the Kähler cone

We are now in a good position to prove what we consider to be the main
result of this work.

Proof of the Main Theorem 0.1. By definition K is open, and clearly K ⊂ P

(thus K ⊂ P◦). We claim that K is also closed in P. In fact, consider a class
{α} ∈ K ∩ P. This means that {α} is a nef class which satisfies all numerical
conditions defining P. Let Y ⊂ X be an arbitrary analytic subset. We prove
by induction on dimY that {α}|Y is Kähler. If Y has several components,
Proposition 3.3 (ii) reduces the situation to the case of the irreducible compo-
nents of Y , so that we may assume that Y is irreducible. Let µ : Ỹ → Y be a
desingularization of Y , obtained via a finite sequence of blow-ups with smooth
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centers in X. Then Ỹ is a smooth Kähler manifold and {µ∗α} is a nef class
such that ∫

Ỹ
(µ∗α)p =

∫
Y

αp > 0, p = dimY.

By Theorem 2.12, there exists a Kähler current T̃ on Ỹ which belongs to
the class {µ	α}. Then T := µ∗T̃ is a Kähler current on Y , contained in the
class {α}. By the induction hypothesis, the class {α}|Z is Kähler for every
irreducible component Z of Ec(T ) (since dim Z ≤ p − 1). Proposition 3.3 (iii)
now shows that {α} is Kähler on Y . In the case Y = X, we get that {α}
itself is Kähler; hence {α} ∈ K and K is closed in P. This implies that K is a
union of connected components of P. However, since K is convex, it is certainly
connected, and only one component can be contained in K.

Remark 4.1. In all examples that we are aware of, the cone P is open.
Moreover, Theorem 0.1 shows that the connected component of any Kähler
class {ω} in P is open in H1,1(X,R) (actually an open convex cone...). How-
ever, it might still happen that P carries some boundary points on the other
components. It turns out that there exist examples for which P is not con-
nected. Let us consider for instance a complex torus X = Cn/Λ. It is well-
known that a generic torus X does not possess any analytic subset except finite
subsets and X itself. In that case, the numerical positivity is expressed by the
single condition

∫
X αn > 0. However, on a torus, (1, 1)-classes are in one-to-one

correspondence with constant hermitian forms α on Cn. Thus, for X generic,
P is the set of hermitian forms on Cn such that det(α) > 0, and Theorem
0.1 just expresses the elementary result of linear algebra saying that the set
K of positive definite forms is one of the connected components of the open
set P = {det(α) > 0} of hermitian forms of positive determinant (the other
components, of course, are the sets of forms of signature (p, q), p+ q = n, with
q even).

One of the drawbacks of Theorem 0.1 is that the characterization of the
Kähler cone still involves the choice of an undetermined connected compo-
nent. However, it is trivial to derive from Theorem 0.1 the following (weaker)
variants, which do not involve the choice of a connected component.

Theorem 4.2. Let (X, ω) be a compact Kähler manifold and let {α} be a
(1, 1) cohomology class in H1,1(X,R). The following properties are equivalent.

(i) {α} is Kähler.

(ii) For every irreducible analytic set Y ⊂ X, dimY = p, and every t ≥ 0,∫
Y

(α + tω)p > 0.
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(iii) For every irreducible analytic set Y ⊂ X, dimY = p,∫
Y

αk ∧ ωp−k > 0 for k = 1, . . . , p.

Proof. It is obvious that (i)⇒ (iii)⇒ (ii), so we only need to show that
(ii)⇒ (i). Assume that condition (ii) holds true. For t0 large enough, α + t0ω

is a Kähler class. The segment (α + t0ω)t∈[0,t0] is a connected set intersecting
K which is contained in P, thus it is entirely contained in K by Theorem 0.1.
We infer that {α} ∈ K, as desired.

We now study nef classes. The results announced in the introduction can
be rephrased as follows.

Theorem 4.3. Let X be a compact Kähler manifold and let

{α} ∈ H1,1(X,R)

be a (1, 1)-cohomology class. The following properties are equivalent.

(i) {α} is nef.

(ii) There exists a Kähler class ω such that∫
Y

αk ∧ ωp−k ≥ 0

for every irreducible analytic set Y ⊂ X, dimY = p, and every k =
1, 2, . . . , p.

(iii) For every irreducible analytic set Y ⊂ X, dimY = p, and every Kähler
class {ω} on X ∫

Y
α ∧ ωp−1 ≥ 0.

Proof. Clearly (i)⇒ (ii) and (i)⇒ (iii).

(ii)⇒ (i). If {α} satisfies the inequalities in (ii), then the class
{α + εω} satisfies the corresponding strict inequalities for every ε > 0. There-
fore {α + εω} is Kähler by Theorem 4.2, and {α} is nef.

(iii)⇒ (i). This is the most tricky part. For every integer p ≥ 1, there
exists a polynomial identity of the form

(4.4) (y − δx)p − (1 − δ)pxp = (y − x)
∫ 1

0
Ap(t, δ)

(
(1 − t)x + ty

)p−1
dt

where Ap(t, δ) =
∑

0≤m≤p am(t)δm ∈ Q[t, δ] is a polynomial of degree
≤ p − 1 in t (moreover, the polynomial Ap is unique under this limitation

for the degree). To see this, we observe that (y − δx)p − (1 − δ)pxp vanishes
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identically for x = y, so it is divisible by y − x. By homogeneity in (x, y), we
have an expansion of the form

(y − δx)p − (1 − δ)pxp = (y − x)
∑

0≤�≤p−1, 0≤m≤p

b�,mx�yp−1−�δm

in the ring Z[x, y, δ]. Formula (4.4) is then equivalent to

(4.4′) b�,m =
∫ 1

0
am(t)

(
p − 1

�

)
(1 − t)�tp−1−� dt.

Since (U, V ) �→
∫ 1
0 U(t)V (t)dt is a nondegenerate linear pairing on the space of

polynomials of degree ≤ p− 1 and since (
(
p−1

�

)
(1− t)�tp−1−�)0≤�≤p−1 is a basis

of this space, (4.4′) can be achieved for a unique choice of the polynomials
am(t). A straightforward calculation shows that Ap(t, 0) = 1 identically. We
can therefore choose δ0 ∈ [0, 1[ so small that Ap(t, δ) > 0 for all t ∈ [0, 1],
δ ∈ [0, δ0] and p = 1, 2, . . . , n.

Now, fix a Kähler metric ω such that ω′ = α + ω is Kähler (if necessary,
multiply ω by a large constant to reach this). A substitution x = ω and y = ω′

in our polynomial identity yields

(α + (1 − δ)ω)p − (1 − δ)pωp =
∫ 1

0
Ap(t, δ)α ∧

(
(1 − t)ω + tω′)p−1

dt.

For every irreducible analytic subset Y ⊂ X of dimension p we find∫
Y

(α + (1 − δ)ω)p − (1 − δ)p

∫
Y

ωp

=
∫ 1

0
Ap(t, δ)dt

( ∫
Y

α ∧
(
(1 − t)ω + tω′)p−1

)
.

However, (1−t)ω+tω′ is Kähler and therefore
∫
Y α∧

(
(1−t)ω+tω′)p−1 ≥ 0 by

condition (iii). This implies
∫
Y (α + (1 − δ)ω)p > 0 for all δ ∈ [0, δ0]. We have

produced a segment entirely contained in P such that one extremity {α + ω}
is in K, so that the other extremity {α + (1− δ0)ω} is also in K. By repeating
the argument inductively, we see that {α + (1 − δ0)νω} ∈ K for every integer
ν ≥ 0. From this we infer that {α} is nef, as desired.

Since condition 4.3 (iii) is linear with respect to α, we can also view this
fact as a characterization of the dual cone of the nef cone, in the space of
real cohomology classes of type (n − 1, n − 1). This leads immediately to
Corollary 0.4.

In the case of projective manifolds, we get stronger and simpler versions
of the above statements. All these can be seen as an extension of the Nakai-
Moishezon criterion to arbitrary (1, 1)-classes (not just integral
(1, 1)-classes as in the usual Nakai-Moishezon criterion). Apart from the spe-
cial cases already mentioned in the introduction ([CP90], [Eys00]), these results
seem to be entirely new.
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Theorem 4.5. Let X be a projective algebraic manifold. Then K = P.
Moreover, the following numerical characterizations hold :

(i) A (1, 1)-class {α} ∈ H1,1(X,R) is Kähler if and only if
∫
Y αp > 0 for

every irreducible analytic set Y ⊂ X, p = dimY .

(ii) A (1, 1)-class {α} ∈ H1,1(X,R) is nef if and only if
∫
Y αp ≥ 0 for every

irreducible analytic set Y ⊂ X, p = dimY .

(iii) A (1, 1)-class {α} ∈ H1,1(X,R) is nef if and only if
∫
Y α ∧ ωp−1 ≥ 0 for

every irreducible analytic set Y ⊂ X, p = dimY , and every Kähler class
{ω} on X.

Proof. (i) We take ω = c1(A, h) equal to the curvature form of a very
ample line bundle A on X, and we apply the numerical conditions as they are
expressed in 4.2 (ii). For every p-dimensional algebraic subset Y in X we have∫

Y
αk ∧ ωp−k =

∫
Y ∩H1∩...∩Hp−k

ωk

for a suitable generic complete intersection Y ∩H1∩. . .∩Hp−k of Y by members
of the linear system |A|. This shows that P = K.

(ii) The nef case follows when we consider α + εω, and let ε > 0 tend to 0.

(iii) is true more generally for any compact Kähler manifold.

Remark 4.6. In the case of a divisor D (i.e., of an integral class {α}) on
a projective algebraic manifold X, it is well known that {α} is nef if and only
if D · C =

∫
C α ≥ 0 for every algebraic curve C in X. This result completely

fails when {α} is not an integral class – this is the same as saying that the
dual cone of the nef cone, in general, is bigger than the closed convex cone
generated by cohomology classes of effective curves. Any surface such that
the Picard number ρ is less than h1,1 provides a counterexample (any generic
abelian surface or any generic projective K3 surface is thus a counterexample).
In particular, in 4.5 (iii), it is not sufficient to restrict the condition to integral
Kähler classes {ω} only.

5. Deformations of compact Kähler manifolds

Let π : X → S be a deformation of nonsingular compact Kähler mani-
folds, i.e. a proper analytic map between reduced complex spaces, with smooth
Kähler fibres, such that the map is a trivial fibration locally near every point
of X (this is of course the case if π : X → S is smooth, but here we do not want
to require S to be smooth; however we will always assume S to be irreducible
– hence connected as well).
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We wish to investigate the behaviour of the Kähler cones Kt of the various
fibres Xt = π−1(t), as t runs over S. Because of the assumption of local
triviality of π, the topology of Xt is locally constant, and therefore so are
the cohomology groups Hk(Xt,C). Each of these forms a locally constant
vector bundle over S, whose associated sheaf of sections is the direct image
sheaf Rkπ∗(CX). This locally constant system of C-vector space contains as
a sublattice the locally constant system of integral lattices Rkπ∗(ZX). As a
consequence, the Hodge bundle t �→ Hk(Xt,C) carries a natural flat connection
∇ which is known as the Gauss-Manin connection.

Thanks to D. Barlet’s theory of cycle spaces [Bar75], one can attach to
every reduced complex space X a reduced cycle space Cp(X) parametrizing its
compact analytic cycles of a given complex dimension p. In our situation, there
is a relative cycle space Cp(X/S) ⊂ Cp(X) which consists of all cycles contained
in the fibres of π : X → S. It is equipped with a canonical holomorphic
projection

πp : Cp(X/S) → S.

Moreover, as the fibres Xt are Kähler, it is known that the restriction of πp

to the connected components of Cp(X/S) are proper maps. Also, there is a
cohomology class (or degree) map

Cp(X/S) → R2qπ∗(ZX), Z �→ {[Z]}

commuting with the projection to S, which to every compact analytic cycle Z in
Xt associates its cohomology class {[Z]} ∈ H2q(Xt,Z), where q = codimZ =
dimXt − p. Again by the Kähler property (bounds on volume and Bishop
compactness theorem), the map Cp(X/S) → R2qπ∗(ZX) is proper.

As is well known, the Hodge filtration

F p(Hk(Xt,C)) =
⊕

r+s=k,r≥p

Hr,s(Xt,C)

defines a holomorphic subbundle of Hk(Xt,C) (with respect to its locally con-
stant structure). On the other hand, the Dolbeault groups are given by

Hp,q(Xt,C) = F p(Hk(Xt,C)) ∩ F k−p(Hk(Xt,C)), k = p + q,

and they form real analytic subbundles of Hk(Xt,C). We are interested espe-
cially in the decomposition

H2(Xt,C) = H2,0(Xt,C) ⊕ H1,1(Xt,C) ⊕ H0,2(Xt,C)

and the induced decomposition of the Gauss-Manin connection acting on H2

∇ =

 ∇2,0 ∗ ∗
∗ ∇1,1 ∗
∗ ∗ ∇0,2

 .
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Here the stars indicate suitable bundle morphisms – actually with the lower-
left and upper-right stars being zero by Griffiths’ transversality property, but
we do not care here. The notation ∇p,q stands for the induced (real analytic,
not necessarily flat) connection on the subbundle t �→ Hp,q(Xt,C).

The main result of this section is the proof of Theorem 0.8, asserting that
there is a countable union of analytic subsets S′ =

⋃
Sν�S outside which the

Kähler cones Kt ⊂ H1,1(Xt,C) are invariant under parallel transport with re-
spect to the (1, 1)-component ∇1,1 of the Gauss-Manin connection. Of course,
once this is proved, one can apply again the result on each stratum Sν instead
of S to see that there is a countable stratification of S such that the Kähler
cone is essentially “independent of t” on each stratum. Moreover, we have
semi-continuity in the sense that Kt0 , t0 ∈ S′, is always contained in the limit
of the nearby cones Kt, t ∈ S � S′.

Proof of Theorem 0.8. The result is local over S, so we can possibly shrink
S to avoid any global monodromy (i.e., we assume that the locally constant
systems Rkπ	(ZX) are constant). We then define the Sν ’s to be the images in
S of those connected components of Cp(X/S) which do not project onto S. By
the fact that the projection is proper on each component, we infer that Sν is
an analytic subset of S. The definition of the Sν ’s implies that the cohomology
classes induced by the analytic cycles {[Z]}, Z ⊂ Xt, remain exactly the same
for all t ∈ S � S′.

Since S is irreducible and S′ is a countable union of analytic sets, it follows
that S � S′ is arcwise connected by piecewise smooth analytic arcs. Let

γ : [0, 1] → S � S′, u �→ t = γ(u)

be such a smooth arc, and let α(u) ∈ H1,1(Xγ(u),R) be a family of real
(1, 1)-cohomology classes which are constant by parallel transport under ∇1,1.
This is equivalent to assuming that

∇(α(u)) ∈ H2,0(Xγ(u),C) ⊕ H0,2(Xγ(u),C)

for all u. Suppose that α(0) is a numerically positive class in Xγ(0). We then
have

α(0)p · {[Z]} =
∫

Z
α(0)p > 0

for all p-dimensional analytic cycles Z in Xγ(0). Let us denote by

ζZ(t) ∈ H2q(Xt,Z), q = dimXt − p,

the family of cohomology classes equal to {[Z]} at t = γ(0), such that
∇ζZ(t) = 0 (i.e. constant with respect to the Gauss-Manin connection). By
the above discussion, ζZ(t) is of type (q, q) for all t ∈ S, and when Z ⊂ Xγ(0)

varies, ζZ(t) generates all classes of analytic cycles in Xt if t ∈ S � S′. Since
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ζZ is ∇-parallel and ∇α(u) has no component of type (1, 1), we find
d

du
(α(u)p · ζZ(γ(u)) = pα(u)p−1 · ∇α(u) · ζZ(γ(u)) = 0.

We infer from this that α(u) is a numerically positive class for all u ∈ [0, 1].
This argument shows that the set Pt of numerically positive classes in
H1,1(Xt,R) is invariant by parallel transport under ∇1,1 over S � S′.

By a standard result of Kodaira-Spencer [KS60] relying on elliptic PDE
theory, every Kähler class in Xt0 can be deformed to a nearby Kähler class
in nearby fibres Xt. This implies that the connected component of Pt which
corresponds to the Kähler cone Kt must remain the same. The theorem is
thus proved (notice moreover that the remark concerning the semi-continuity
of Kähler cones stated after Theorem 5.1 follows from the result by Kodaira-
Spencer).

From the above results, one can hope for a much stronger semi-continuity
statement than the one stated by Kodaira-Spencer. Namely, we make the
following conjecture, which we will consider in a forthcoming paper.

Conjecture 5.1. Let X → S be a deformation of compact complex man-
ifolds over an irreducible base S. Assume that one of the fibres Xt0 is Kähler.
Then there exists a countable union S′ � S of analytic subsets in the base such
that Xt is Kähler for t ∈ S �S′. Moreover, S′ can be chosen so that the Kähler
cone is invariant over S � S′, under parallel transport by the Gauss-Manin
connection.

In other words, the Kähler property should be open for the countable
Zariski topology on the base. We are not sure what to think about the re-
maining fibres Xt, t ∈ S′, but a natural expectation would be that they are in
the Fujiki class C (at least, under the assumption that Hodge decomposition
remains valid on those fibres – which is anyway a necessary condition for the
expectation to hold true).

Université Joseph Fourier, Grenoble, France
E-mail address: Jean-Pierre.Demailly@ujf-grenoble.fr
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