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Uniform bounds for the
bilinear Hilbert transforms, I

By LoukAs GRAFAKOS and XIAOCHUN Lr*

Abstract

It is shown that the bilinear Hilbert transforms
Has(f,9)(x) = pov. / f(x — ot)g(e — pr)

map LP*(R) x LP2(R) — LP(R) uniformly in the real parameters a, 3 when
2<p,pp<occandl<p= IfilTp;z < 2. Combining this result with the main
result in [9], we deduce that the operators Hi , map L*(R) x L®(R) — L*(R)
uniformly in the real parameter « € [0, 1]. This completes a program initiated

by A. Calderén.

1. Introduction

The study of the Cauchy integral along Lipschitz curves during the period
1965-1995 has provided a formidable impetus and a powerful driving force for
significant developments in euclidean harmonic analysis during that period and
later. The Cauchy integral along a Lipschitz curve I' is given by

1 h
Crne) = v [ 2 ac,
r¢—
where h is a function on I', which is taken to be the graph of a Lipschitz
function A: R — R. Calderén [2] wrote Cr(h)(z) as the infinite sum

o

—_

2—mm:0 —1)"Cin(f; A) (),

where z = x +iA(z), f(y) = h(y +iA(y))(1 +iA (y)), and
(A(l‘) - A(y)>m Oy

r—y r—y

)

CanlFi A)(a) =pov. [

R
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reducing the boundedness of Cr(h) to that of the operators Cp,(f; A) with
constants having suitable growth in m. The operators C,,(f; A) are called the
commutators of f with A and they are archetypes of nonconvolution singular
integrals whose action on the function 1 has inspired the fundamental work
on the T'1 theorem [5] and its subsequent ramifications. The family of bilinear
Hilbert transforms

Hy, o, (f1, f2)(x) = p.v. /Rfl(f —aqt) fa(z — ant) %7 ai, a2, € R,

was also introduced by Calderén in one of his attempts to show that the com-
mutator Cy(f; A) is bounded on L?(R) when A(t) is a function on the line
with derivative A’ in L. In fact, in the mid 1960’s Calderén observed that
the linear operator f — Ci(f; A) can be written as the average

1
Co(f: A)(x) = /0 Hyo(f, A)(z) dar,

and the boundedness of C(f; A) can be therefore reduced to the uniform (in «)
boundedness of Hj . Although the boundedness of C1(f; A) was settled in [1]
via a different approach, the issue of the uniform boundedness of the operators
Hi o from L?(R) x L°(R) into L?(R) remained open up to now. The purpose
of this article and its subsequent, part II, is to obtain exactly this, i.e. the
uniform boundedness (in «) of the operators H ,, for a range of exponents that
completes in particular the above program initiated by A. Calderén about 40
years ago. This is achieved in two steps. In this article we obtain bounds for
Hi o from LP'(R) x LP?(R) into LP(R) uniformly in the real parameter ov when
2 <p,py<ocand 1 <p= [ilTp;Q < 2. In part IT of this work, the second
author obtains bounds for H; , from LP*(R) x LP?(R) into LP(R), uniformly
in «a satisfying o — 1| > ¢ > 0 when 1 < p1,p2 < 2 and % <p= plflTp;z < 1.
Interpolation between these two results yields the uniform boundedness of Hi 4
from LP(R) x L>(R) into LP(R) for § < p < 4 when « lies in a compact subset
of R. This in particular implies the boundedness of the commutator C;( -; A)
on LP(R) for % < p < 4 via the Calderén method described above but also has
other applications. See [9] for details. We note that the restriction to compact
subsets of R is necessary, as uniform L” x L*® — L? bounds for H; , cannot
hold as o« — £o0.

Boundedness for the operators H; , was first obtained by M. Lacey and
C. Thiele in [7] and [8]. Their proof, though extraordinary and pioneering,
gives bounds that depend on the parameter «, in particular that blow up
polynomially as « tends to 0, 1 and +0o. The approach taken in this work is
based on powerful ideas of C. Thiele ([10], [11]) who obtained that the H; ,’s
map L?(R) x L2(R) — LY*(R) uniformly in « satisfying |o — 1| > ¢ > 0.
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The theorem below is the main result of this article.

THEOREM. Let 2 < p1, po < 00 and 1 < p = % < 2. Then there is a

constant C = C(p1,p2) such that for all f1, fo Schwartz functions on R,

sup |[Ha, .0, (f1 f2) lp < C [ f1llp. [l f2lp.-

ag,0€ER

By dilations we may take oy = 1. It is easy to see that the boundedness
of the operator Hy _, on any product of Lebesgue spaces is equivalent to that
of the operator

<ﬁﬁwﬁ44ﬁ@ﬁwﬁmwﬂma@@m@m,

where 14 denotes the characteristic (indicator) function of the set A. More-
over in the range 2 < pj, p2 < oo and 1 < p = pIZlTp;z < 2, in view of duality
considerations, it suffices to obtain uniform bounds near only one of the three
‘bad’ directions o« = —1,0,00 of Hy _,. In this article we choose to work
with the ‘bad’ direction 0. This direction corresponds to bilinear multipliers
whose symbols are characteristic functions of planes of the form n < éf . For
simplicity we will only consider the case where é =2 m € Z*. The argu-
ments here can be suitably adjusted to cover the more general situation where
2m < é < 2mH+L ag well.

For a positive integer m, we consider the following pseudodifferential op-
erator

() Tulhs@ = [ [ RORmETE D1 gy (Eon) de
and prove that it satisfies

(1.2) 1T (f15 F2)lp < Cllfillp, [ f2lps

uniformly in m > 2290 where pq, p2, p are as in the statement of the theorem.
The rest of the paper is devoted to the proof of (1.2). In the following
sections, L = 2100 will be a fixed large integer. We will use the notation |S| for
the Lebesgue measure of set S and S¢ for its complement. By ¢(.J) we denote
the center of an interval J and by AJ the interval with length A|J| (4 > 0)

and center ¢(J). For J, J' sets we will use the notation

J<J <= supzx < inf z.
The Hardy-Littlewood maximal operator of g is denoted by Mg and Mg will
be (M|g|P)'/P. The derivative of order a of a function f will be denoted by

D%f. When LP norms or limits of integration are not specified, they are to
be taken as the whole real line. Also C will be used for any constant that de-
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pends only on the exponents pi, p2 and is independent of any other parameter,
in particular of the parameter m. Finally N will denote a large (but fixed)
integer whose value may be chosen appropriately at different times.

Acknowledgments. The authors would like to thank M. Lacey for many
helpful discussions during a visit at the Georgia Institute of Technology. They
are grateful to C. Thiele for his inspirational work [10] and for some help-
ful remarks. They also thank the referee for pointing out an oversight in a
construction in the first version of this article.

2. The decomposition of the bilinear operator T,

We begin with a decomposition of the half plane 7 < 2™¢ on the &-7 plane.
We can write the characteristic function of the half plane n < 2™¢ as a union
of rectangles of size 27% x 275+ as in Figure 1. Precisely, for k,l € Z we set

TP (k1) = [27F21),27F (21 + 1)), TS (k1) = [27Fm (21 — 2), 27K m (21 — 1)],
JA k1) =27 @ +1),27%20+2)], JP (k1) =27k (21 —2), 27 k21 - 1)),

Tk =275 @+ 1),27%20 +2)], JF (k1) = 27821 — 1), 27k @)

We call the rectangles JI(T)(k:,l) X JQ(T)(k,Z) of type r, r € {1,2,3}. It is
easy to see that

bp<zme =3 D (L0 (€100 ) ()

keZ leZ

L5 ) Ly ey (1) + Ly 1y (O Ly gy (1))
which provides a (nonsmooth) partition of unity of the half-plane n < 2™¢.
Next we pick a smooth partition of unity {\I/gl) (&,m) }i1,r of the half-plane

n < 2™¢ with each \Ilgl) supported only in a small enlargement of the rectangle

Jl(r)(k,l) X Jz(r)(k:,l) and satisfying standard derivative estimates. Since the

functions \IJ,(:l) (&,m) are not of tensor type, (i.e. products of functions of £ and
functions of ) we apply the Fourier series method of Coifman and Meyer [4,
pp. 55-57] to write

ven = cmy@!), @), ) )
neZz?

where |C(n)| < Cy(1 4 |n|?)™™ for all M > 0 (n = (n1,n2), |n|?> = n? +n3)
and the functions @Y}g 1 and (I)g]l Ln are Schwartz and satisfy:
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n A = 27715 n= 2m£ _ 2n1—k:+1

rectangle
of type 3

rectangle | rectangle
of type 1 | of type 2

0 = arctan(27"")

rectangle size
9=k « 9—k+m

A 4

Figure 1: The decomposition of the plane n < 2™¢&.

(2.1)
D((@7) 1)) < Call + Inl)* 2, supp (@]7) )™ € (1 + 27257 (k, 1),
(B)1,)" () =2 D) on (197287 (1. 0)

(2.2)

D@41, < Call + In])* 2507 supp (@), )™ < (1+ 27250087 (k, 1),

(D) 1,0) () = e2mima2 " =l om (1 — 2728) I (k, ),

for all nonnegative integers o and all € {1,2,3}. In the sequel, for notational
convenience, we will drop the dependence of these functions on r and we will

concentrate on the case n = (ny,n2) = (0,0). In the cases n # 0, the polyno-
mial appearance of |n| in the estimates will be controlled by the rapid decay
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of C(n), while the exponential functions in (2.1) and (2.2) can be thought of
as almost “constant” locally (such as when n; = ny = 0), and thus a small
adjustment of the case n = (0,0) will yield the case for general n in Z2.

Based on these remarks, we may set ®; . ; = ®; 1,0 and it will be sufficient
to prove the uniform (in m) boundedness of the operator T, defined by

(2.3)
Ty, (f1, f2)(x ZZ/ / FUE P ()™ EMIG 1 (6) o oy () dEdy

keZ leZ

The representation of T, into a sum of products of functions of ¢ and 1 will be
crucial in its study. If follows from (2.1) and (2.2) that there exist the following
size estimates for the functions ®q ;; and ®g ;.

(24) [@10(2)] < On27F(1 +27F|a))
(2.5) o1 ()] < CN27H™ (14 2754 )=
for any N € Z". The next lemma is also a consequence of (2.1) and (2.2).

LEMMA 1. For all N € Z™, there exists Cny > 0 such that for all f €
S(R),

2fk
. <
leZ
2fk+m
. <
(2.7) Z\ fr®op)(w CN/’f (L5 2 Fmjz — )N dy,

leZ

where C is independent of m.

Proof. To prove the lemma we first observe that whenever ®; € S
has Fourier transform supported in the interval [2] — 3,2l + 3] and satisfies
sup; || DY®;||oc < Cy, for all sufficiently large integers «, then we have

) W<
(2.8) S I+ ®) (@) < Cn / 1+|:c—y| ~dy.

l€Z

Once (2.8) is established, we apply it to the function ®;(z) = 2’“<I>1,k,l(2ka:),
which by (2.1) satisfies ]Da@(fﬂ < (4, to obtain (2.6). Similarly, applying
(2.8) to the function ®;(z) = 28-™®y ;. ;(28~™x), which by (2.2) also satisfies
|DY®,(£)| < Ca, we obtain (2.7).
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By a simple translation, it will suffice to prove (2.8) when x = 0. Then
we have

STI(f * 2)(0)
leZ
f(=) N T o=
_Z /2[ 3,21+3] <m> (y)<(I—A)Nq)l)(y) dy
e YL
<z€Zz/l 3,214-3] ( 1—|—471-2’.‘2)N> (y)

)
= / 1+47r2|y| dySCN/tuD w .

2

dy / (T — AN (y) 2dy

3. The truncated trilinear form

Let ¢ be a nonnegative Schwartz function such that LZ is supported in
[—1,1] and satisfies 1/(0) = 1. Let ¢y (x) = 27%(27%2). For EC Rand k € Z
define

(3.1) Ep = {z € E : dist(z, E°) > 2¥},

(3:2) trw(®) = (L xYr)(@), and  Pop(x) = Y3x(2) = Y1 p—m(2).

Note that 1y i, Yo, and 93 depend on the set E but we will suppress this
dependence for notational convenience, since we will be working with a fixed
set I/. Also note that the functions 2 and 3 depend on m, but this
dependence will also be suppressed in our notation. The crucial thing is that
all of our estimates will be independent of m. Define

(3.3) (1 for f3) = ZZ/HW (f; * ;1) (2)d

keZ leZ

where for any o > 0, ®3; depends on @4 ;; and ®5;; and is chosen so that
it satisfies

(3.4) |D°‘<g;l| < ¢20lh=m) suppfb/gk\l C(1+ 2_2L)J3T)(k‘,l), and
Bypr=1 on J (k1) =—(1+ 27250 (k1) — (1427250 (k,1),

for all nonnegative integers . (The number r in (3.4) is the type of the
rectangle in which the Fourier transforms of ®;;; and ®3; are supported.)
One easily obtains the size estimate

(3.5) @3 5 (x)] < C27FF™(1 4 27FFm =N
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Because of the assumption on the indices p1, po, there exists a 2 < p3 < oo
such that 1 Tt o, —|— > 1. Fix such a p3 throughout the rest of the paper. The
following two lemmas reduce matters to the truncated trilinear form (3.3).

LEMMA 2. Let 2 < p1,p2,p3 < 00, p_1 —|— s+ > L and || f;llp, = 1 for
fi €S and j € {1,2,3}. Define

3

E = U{w € R: M, (Mf;)(z) > 2}.

Then for some constant C independent of m and f1, fa, fa,
Ae(fi, fo, f3)| < C.
Lemma 2 will be proved in the next sections. Now, we have
LEMMA 3. Lemma 2 implies (1.2).
Proof. To prove (1.2), it will be sufficient to prove that for all A > 0,

{2 ¢ [TO.(f1, f2)(x)] > A} < OX mms

whenever || fi|lp, = || f2llp, = 1. By linearity and scaling invariance, it suffices
to show that
(3.6) {a : |Tp (fi, fo) (2)] > 2} < C.

Let E = J7_{x € R: M, (Mf;)(z) > 1}. Since |E| < C, it will be enough
to show that

(3.7) {a € B TR, (f1, f2) ()] > 2} < C.

Let G = E°() {|T%(f1, f2)| > 2}, and assuming |G| > 1 (otherwise there is
nothing to prove) choose f3 € S with || f3]|p(ge) < 1, supp f3 C E¢, and

le  Th(f1, f2)
|G[M/P2 | TR, (f1, f2)

Note that for the f3 chosen we have | fs],, < 2 and thus the set
{z € R: M, (M f3)(x) > 2} is empty. Now define

3
(3.8) Alfr, f2, f3) = ZZ/H fi* @) (w)dz.

keZ leZ

f3—

-1
P Iz

< min{1, |72 (f1, f2)

Then by Lemma 2 it follows that

0
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Therefore, to prove (3.7), we only need to show that

(39) ’A(flan)f?))_AE(fl7f27f3)| SC
whenever || f3]| = (ge) < 1 and supp f3 C E°. To prove (3.9) note that

(3.10)

3
AL fs f3) = Ap(fi, fo. fo)] < ZZ/l—H% DT * @) @)
j=1

keZ I€Z
But recall that 19 = 13 1, hence

|1—H¢J, ) <1 =1 p(@)] +2[1 — o k().

Thus the expression on the right in (3.10) is at most equal to the sum of the
following two quantities

1
2

2
(3.11) > / 1=t p(e H (El: |5 * ‘I’j,k,l(fff)!2> Sup | f3 % @311 ()| dox,

keZ 7=1

1
2

(3.12) 22/|1—¢2k yH(Zm*@W )Sl;p‘fg*(l)&k’l(x)]di.

keZ
Using (2.6) and the fact that p; > 2, for any point zyp € E, we obtain

1 , ;
P 5 <C
(Z|f1* Lki(T < </’f1 1+2—klm—y!)Ndy>

leZ

<C (1 + 27 *dist (z, EC)> .
Similarly, using (2.7) and the fact that ps > 2 we obtain

(1o % @apa(@)?)F < € (14275 dist(w, £9))
leZ

By (3.5) and the facts that || f3| zo (<) < 1 and supp f3 C E,

-N
(3.13) |f3 # B3 jos(x)| < Oy (1 + 27k ist(z, EC)>
for all N > 0. Therefore, (3 11) can be estimated by

1
C dy dx
Z//E (1+27 ’“\m—y!) (1+2—k+mdist(a;,Ec))N‘2

1
<c/ _dy < C|E| < C.
,; (1+ 2-Fdist(y, )" 2
2k <dist(y,E°)

Similar reasoning works for (3.12). This completes the proof of (3.9) and
therefore of Lemma 3. O
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We now set up some notation. For k,n € Z, define Iy, = [2¥n, 2% (n + 1)]
and let

P1kn(®) =11, * Vi) (),

Gjkm(x) =(11,, * Yp—m)(x), when j € {2,3}.
Next, we can write

(3.15)

3
Aeh ) =3 3 [ 11

keZ ez’ j=1

(3.14)

(Z Djikn (@) 051 () (5 * ‘I’j,k,z)(x)> d.

neZ

For an integer r with 0 <r < L,let Z, ={{ € Z : { = kL+r for some k € Z}.
Also for S C Z, x Z x Z, we let Sy; ={n € Z: (k,n,l) € S} and define

(3.16)

3
Aps(fi far fa) =Y Z/H > Gikn@) k(@) (f * Bjai)(z) | do.

k:eZ,,, lEZ,,, = nESk,L

For simplicity we will only consider the case where m € Zg. The argument
below can be suitably adjusted to the case where m has a different remainder
when divided by L. We will therefore concentrate on proving Lemma 2 for the
expression Ag s(f1, f2, f3) when m € Zy. To achieve this goal, we introduce
the grid structure.

DEFINITION 1. A set of intervals G is called a grid if the condition below
holds:

(3.17) for J,J €G, if JNnJ #0, then JcCJ or J C.J.
If a grid G satisfies the additional condition:
(3.18) for J,J €G, if JSJ, then 5JC.J,

then it will be called a central grid.

Given S C Z, x Z x Z, and s = (k,n,l) € S we set Iy = I, ,. For each
function ®;;; and each n € Z we define a family of intervals w; s, s = (k,n,[)

€ S so that conditions (3.19)—(3.25) below hold: Say that Qﬁ(ﬁ)@(n) is
supported in a small neighborhood of a rectangle of type » = 1. Then we
define w; , such that

(3.19) le(wi,s) —27% 21+ 1) <527 27",
3.20 c(was) — 2721 — 3| <5.27L27Fm and wey = wsy,
’ 2 b b

(3.21) supp% Cuwjs for je{l,2},
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(3.22)  supp 3.y C [—(14+27™)a, —(1+2"™)b), where [a,b) = ws.s,
(3.23) (1427227 <wy 4| < (1+10-27 527K
(3.24)

(1427252 hm <o | < (142272 +5-27D)27Fm for j € {2,3},
(3.25) {wjs}ses is a central grid, for j e {1,2,3}.

These properties are trivially adjusted when <I>/1?l(§ )(13/2?1(77) is supported in
a small neighborhood, a rectangle of type r = 2 or r = 3.

As in [7], we prove the existence of w; ; by induction. If S is nonempty, pick
so = (k,n,l) € S such that k is minimal and define S = S\{sp}. By induction,
we may assume that for any s’ € S’ there exists a wj; ¢ so that the collection
of all such intervals satisfies (3.19)-(3.25). Now we try to define w; s, so that
(3.19)—(3.25) still hold. Let [a1,b;) be an interval with length (1 4+ 272L)2=F
which contains supp @T?l And for j = 2,3, let [a;,b;) be an interval with
length (1+2-2726)27%+™ which contains supp (IT]-,]C\J By (3.22), we know that
supp Q>/3;l C [-(14+27™)az, —(14+27)bs). Define w; s, 1 as the union of [a;, b;)
and all intervals Sw; o with s € S’ which satisfy dist(w; ¢, [a;,bj)) < 2|wj«|
and wj s be the next smaller interval in S. Inductively we define w;,,; for
I > 1. Let wjs, = Ujsq1 Wjsoi- It is easy to verify conditions (3.19)—(3.25) for
Wj,s,- This completes the proof of the existence of a grid structure.

Furthermore, we have the following geometric picture for wj .

LEMMA 4. Fors,s' € S and wj s # wj ¢, the following properties hold:

(1) If wi,s C wiy, then wjy < wjs and %|wj,3f\ < dist(wj s, wje) < 2|wa,e
for 3 =2,3.

(2) Ifwjs Cwjg forj=2,3, thenwis < wi s and %|w175f < dist(wy 5, w1,s)

< 2’&)175/’.

Proof. For simplicity, let us assume that the w; are associated with

rectangles of type 1.
wie=[27F02l - LY, 27%20+ 14+ LY,
wie =278 @ - LY, 27K @ + 1+ L7Y),
wos = [27FM(20 —2 — 2071, 27 ™(21 — 1+ 2071,
and wy g = [27FF M2 —2 — 207 27t — 142171

For (1), note that if w; s & w1 s, we have 27K — LY <27k21 - L7 <
27kl + L7V 4+ 1) < 27¥(2I' + L7 +1). Thus, 21" < 2¥ k(21 — L=Y) + L~}
and 21 + L7 +1 < 28¥(2' + L7 + 1). By this, we have 27¥+m-1 <
2 ktm (9] — 2Lt —2) — 27K Hm (2 — 14207 1) < 27K+ mFL wwhich proves (1).
We omit the proof of (2) since it is similar. O
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As in [10] we give the following definition.

DEFINITION 2. A subset S of Z, x Z xZ, is called convezif for all s,s” € S,
s'€Zy xZ xZy, je{1,2} with I, C Iy C Iy and wj ¢ C wjy C wjs, We
have s’ € S.

It is sufficient to prove bounds on Ag g for all finite convex sets S of triples
of integers, provided the bound is independent of S and of course m.

4. The selection of the trees

DEFINITION 3. Fix T'C S and t € T. If for any s € T, we have I, C I;
and wj s D wjt, then we call T a tree of type j with top t. Now, T is called a
mazximal tree of type j € {1,2} with top t in S if there does not exist a larger
tree of type j with the same top strictly containing T'. Let T" be a maximal tree
of type j € {1,2} with top ¢ in S, and i € {1,2}, i # j. Denote the mazimal
tree of type © with top t in S by T.

LEMMA 5. Let S C Z, X Z X Z, be a conver set and T C S be a marimal
tree of type j € {1,2} with top t in S. Then T is a convex set.

Proof. Let s,s" € T, s € Z, x Z X Zy, i € {1,2} with Iy C Iy C Iy and
wisr Cwis Cwis. Then s’ € S by the convexity of S. Since s # s”, it follows
from Lemma 4 that ¢ = j. Using that Iy C Iy C It, wj; C wj s C wjg, and
the maximality of T', we obtain that s’ € T, hence the convexity of T follows.

O

LEMMA 6. Let S CZ, X Z X Z, be a convez set and T' be a maximal tree
of type j € {1,2} with top t in S. Then S\(T'JT) is convex.

Proof. Assume that S\(T'\JT) is not convex. Then there exist s,s” €
S\(TUT), s e TUT, i € {1,2} with I, C Iy C Iy and wi o C wi v C wis.
If s € T, then Iy C I; and wj; C wj . Since s is not in T, we have i # j.
By Lemma 4, we have dist(w;s,wis) < 2|wj¢|. Since bw; ¢ C w;s we have
wit C wis. Thus s € f, which is a contradiction. O

For a given subset T' of S we define T}, ; to be the set
{neZ: (knl) eT}.

If T is a tree of type j for j € {1,2,3} and k € Z,, then there is at most
one | € Z, such that T} ; # (. If such an [ exists, then let T}, = T}, and
Q1 = Dk Otherwise, let T, = () and @, = 0. For brevity, we write
(k,n) € T if and only if there exists an [ € Z, with (k,n,l) € T. Thus
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identifying trees with sets of pairs of integers, we will use this identification
throughout.
Therefore, if (k,n,l) € T', we can write w; jn; = wWj k1 = Wj kT, and

(4.1) Apo(fi, forfs) =) /H (Z @ik (2) V50 (2) (/5 *@‘ki)(@) dx.

kEZ, = n€Ty

Let t = (kr,n7,lr) be the top of T. We write I = Iy, n, and wjr = W)k, 7-
For a tree T of type 2 (or 3) with top t and k € Z,, define G;CkyT and Gj_’kj
by

05 7(8) = (-1 — 1) (E)leza,cw, ) ()

—

H;k,T(g) = ((I)j,k‘—L,T - ¢j7k7T)/\(£)]‘£§a]‘C(w‘j’t)(5)7

where a; = 1if j =2 and aj = 1427, if j = 3. Let ¥*(z) = (1 +2%) V. In
accordance with the definitions of ¢, 1, and 1;; we define the functions

(4.2)

D1 k(x) = (e x p) (), () = ¢T g (x), when j € {2,3}.

(4.3)
1 e (@) = (Lr, x ) (@), O (@) = (L1, * ¥p_p,) (), when j € {2,3}.

Let Ay be the set of all connected components of Ej\FEj4r. Obviously Ay is
a set of intervals. Observe that if J € Ay, then 2F < |J| < 281 and U Ak is
a set of pairwise disjoint intervals. Define

Apr={J €Ay :J C Iyymirn, for some (k+m+L,n)eT},
and for J € Ay 1 define
(4.4) prg(z) = 1y (), where ¢fi(x) = 27"p*(27Fx).
Throughout this paper fix 0 < n < L1 (Z?Zl pij — 1) minje{m’g}{p%}

and let

H=J{(1.4.1),(2.1,1), (3,1, 1)}

e

1

J

U(Q 2,2,v), (2 3,1/),(3,2,1/),(3,3,1/)}>.
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We now describe a procedure for selecting a collection of trees T, il and

; by induction on p and [. Let S_1 = S, and for u > 0 let

Sy =Su-1\ U U(Tﬁ,i,j,zufﬁ,i,j,z)

(i,5,v)€H 120

uu

where Tu il T:Z ;1 are defined as follows:

Let [ > 0 be an integer and assume that we have already defined T, EREY

f”ij)\for)\<l If one of the sets T" ”/\,TM])\Wlth)\<llsempty, thenlet

”w
=T = = (. Otherwise, let F denote the set of all trees T' of type 4

By gl T
which satisfy condltlons (1)—(8) below:

(1) For (i,4,v) € H,
(4.5) TC S,u 1\ U ,uz,])\ U 14,8, )\
A<l
and T is a maximal tree of type ¢ in S,_1\ U( ;i3 U M”A)

(2) If (4,4,v) = (1,1,1), then for (k,n) € T, one of the following inequalities
holds:

(4.6) 0% b (fr % 1), = 277270 [T )2,

> 27w I, |3

an | 2

¢T,k,nwik< mEmielwre DO (f 5 Dy ) (- ))

(3) If (4,5,v) = (1,2,1) or (1,3,1), then

as

(4) If (4,4,v) = (2,1,1) or (3,1,1), then one of the following inequalities
holds:

0 =

Z Hgbjk'nw]k‘(f *¢]kT H ) > 242_pij|IkT,nT|%‘

(k,n)eT

(19) ( ) Hd»i‘,k,nwik(fl*cbl,k,T)Hi)z>242‘$—1|IkT,nT|%.

(k,n)eT

(5) Ifi = 2o0r3,j = 2o0r 3, v = 2, then there exists k € {—L,0, L, 2L, 3L, 4L}
such that, for (k,n) € T, one of the following inequalities holds:



UNIFORM BOUNDS FOR THE BILINEAR HILBERT TRANSFORMS, I 903

(10) [0 i * @)l 2 272
(4.11) “¢>{,k,nw;,k+m+l?:(fj * q)g k4+m+k,l H2 >27M2 g |, n|
(4.12)

> 97T | [y | 73

/
¢T,k,nw;:k+m+l~€ <€27mc(wj,k+m+ic,T)(') (f] * (I)j,k—l-m—l-l;,l)(')) ;

|

(4.13) ( 3 H@kn¢MLf*@kT|y)222%‘#ummAi

(k,n)eT

(6) Ifi=2o0r3,j=2or 3, v=3, then

(7) Ifi=2o0r3,j=2or 3, v=4, then

(4.14) ( Z [ErRTNE %05 7) 5 > > 242_1%|IkT7nT|§.

(kn)eT

(8) Ifi =2o0r3,j =2or3, v=">5, then there exists k € {—L,0, L, 2L, 3L, 4L}
such that

(4.15) <Z Z | po—m,s (f5 * D) I ) 2242_”%|Ik7~,n7~|%.

k JEAk—m,T

If no such trees exist, in other words if F = (), then we set Tﬁ il =

Tl/

gl = = (). Otherwise, we select T v, il and T v, R follows

(9) Tt (1,,v) € {(1,2,1), (1,3,1), (2,2,4), (2,3,4), (3,2, 4), (3,3,4)}, then se-
lect T, ., € F Such that for any T € F,
(4.16) wj.T # wiT.

qu

Let T

.vij. be the maximal tree of type 7/ with top t in

N 1\U MZ])\U 1])\

A<l

where i = 2if i = 1,4 = 1if i € {2,3}, and ¢ is the top of T}/, .

(10) 16 (i,4,v) € {(2,1,1), (3,1,1), (2,2,3), (2,3,3), (3,2,3), (3,3,3)}, then se-
lect T””l € F such that for any T € F,

(4.17) wj Ty, Wi

M52,
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Let T

,vi . be the maximal tree of type 7/ with top t in

Su-\J @i U Th g0
A<l
where i = 2if i = 1,4 = 1 if i € {2,3}, and ¢ is the top of T

This completes the selection of trees. Observe that as a consequence of

Lemma 5 and Lemma 6, we have that S,, T

il and T:ijl are convex.

LEMMA 7. For u >0, (i,j,v) € H,

57,0

(418) Z ’ITV | < 02107]1’)1#2“
l

where C' is independent of m.

Let 2 < q1, ¢2, g3 < 0o with qll + q% + q% = 1. Then we have

LEMMA 8. Let n >0, j € {1,2,3}, T be a tree of type j and T C S,,; then
(410)  Apr(fi fo fo)l < C2T2 R R I i j = 1.
And if T is a convex set, then
(4.20) Apr(fis o fo)| < Cq2” Gt towa |1y if j = 2,3,
where C,Cy, are independent of m.

The core of the proof consists of the proofs of these lemmata. These will
be given in the next section. We now state and prove one more lemma which
will allow us to conclude the proof of (1.2), assuming the validity of Lemmas 7
and 8.

LEMMA 9. Let >0, T C Su—1 be a tree of type j € {1,2,3}, P C S,_1,
and T(\P = 0. Suppose T is a mazimal tree in T|JP. Then

Ag 1y p(fis f2, f3) — Ap.p(f1, f2, f3)| < [AET(f1, fo, f3)]
+o2my” Grt e TRk I,

where C' is independent of u, P and T.

Proof. Notice there exists at most one [ such that Tj; # 0 and T is a
maximal tree in T'(J P; now,

A ryp(fi, f2, f3) — Aep(f1, fo, f3)| < |[Aer(f1, f2, f3)] + Z /|Ak($)|d5€,

k<kr
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where Aj, satisfies

(4.21)
3

00 < sy L 2 Geal@ia@ls « 0@,

J=1 “ne(PUT)x

and (PUT)r = (PUT)x if there exists an [ such that T;, # (), and
(PUT)r =0 if such an [ does not exist. Thus we have

[ 1@z
<

C
= Z (1+2 kdist(Iy,,, OI7))N ‘

n’

11

Z D1 k¥l k(1 * P1pT)

Loo(Ik:,n/)

Z ¢;k,n¢;k(fj * O 1)

L2([k,n’)

Jj=2 PUT)k
Note that, since PJT € Syu—1,
Z T ka1 k(1 * P1LgT)
ne(PUT)x Lo (I, nr)
< O|6F ot 1 f (81 ot e 2T (fr 2 By ) ()3
< C27M2 b,

where n” € (P|JT)y is so that it minimizes the distance to n’. And

— B~
< C27M2 Il
Lz(Ik,n')

Z QS],k’ nd}] k(f *(I)]kT)

ne(PUT)k

Hence we obtain

\Agryp(fi, f2, f3) — Mg p(f1, fa, f3)]
<|Apr(fr, for S+ > D

k<krn EZ

<|Apr(f1, for o)l + €272 i P o5 .

0277]/1,2_(%""%""%)“2]{
(1+ 2_kdist(Ik7n/, (9IT))N

This concludes the proof of Lemma 9. O
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We now deduce the proof of (1.2) using assumed Lemmas 7 and 8, and
Lemma 9.

1,12 Ll
’AES(flanaJ% 111 2 pl p2 q2+p3 “ & |IT711|
RN
l

(i) H 10

+C Z ZQ—n#Q*(iJriJri)uz|IT:11*“|
1

(i,4,v)€H p>0

<0 Y Y o Gt eglomugn

(i,4,v)€H p=0
Z Z 2 T s 25 2 e l0np;
—|-qu 2 m P2 a2 ' p3 a3’/ QIUNPILQH
(¢,4,v)€H pu=>0
< Cpy paps < 00

It remains to prove Lemmas 7 and 8. This will be achieved in the following
sections.

5. Some technical material

In this section we prove a variety of technical facts that will be used in
the proofs of Lemmas 7 and 8 presented in the next sections.

LEMMA 10. For any (k,n,l) € S there exists the following:

(5.1) 163 n(Fr % @ri)l|, <O inf My ()|l
! 1
(5.2) ’ ¢Tkn< —2miclwrr)O)( f * Py p1) (- )) <Cxénf M fi(z) Ik n| " 2,
(53) 167 kT (1 % @1l < Cllnl
ot (e 2micne)() ’ -1
(5.4) '¢1,k,nw1,k (e72mietrsO(f 5 @1)()) || < Cllenl ™
2

Proof. Since ¢7 , ,,(z) < C (1 + 27 *dist(z, Ikm))_N we obtain

2
|67 o (f1 % @1,1@,1)“; <C <zg[1f Mf1($)> I -
This proves (5.1). Now observe that
(e 2miclrcdC(f 5 @1 1) (1)) (2)

= /fl(y)@Zﬂic(wl”“’l)y(q’l,k,l(‘)eQMC(M”“”)(')),@? —y)dy,
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and
(@11, (-)e 2@ ()| < 0272 (1 + 27 F|z|) =,

Using this estimate and a similar argument as before we obtain (5.2).

We now prove (5.3) assuming that I, C FE; otherwise (5.3) follows
immediately from (5.1) and from the fact that M fi(x) < M,, fi(x). Pick
a number A > 1 such that Al;,, C E and 2AI;,(E° # (. Then by

i p(2) < (1427 *dist(z, £)) 7", we have
2 2
5 atinChe Prppll; < CA™A <ng5 My, fi <z>) [Tinl < Cllial.

This completes the proof of (5.3). The proof of (5.4) is similar. O

Applying the same idea and the fact that the Littlewood-Paley square
function is bounded from L? to L?, we can prove the following.

LEMMA 11. For any tree T of type 1 and any j € {2, 3},

1

69 (X il aanl) S il Mafyoli 1

(k,m)eT

(5.6) ( > \\¢§,k,n¢§,k(fj*‘I’j,k,T)H;> < Cllig e

(k,m)eT

Similarly we obtain the following lemmas whose proofs we omit.

LEMMA 12. For any tree T of type j, j € {2,3},

(5.7) (

(5.8)

( > inl

(k,n)eT
(5.9)

< > Lkl

(k,n)eT

> [6tnlx0an)]}) < C inf Mool
(k,n)eT r

2

PN
D1 ko <€_2mc(w1’k‘ﬂ(')(f1 * cbl,k,T)(')) > Scxi&f M fy(2)|I7]2,

2

2

/ 1
dﬁ,k,nwik(e2“0<W><'><f1*@1,k,T><->> ) < Cllym

2

S 6t # cbl,k,ﬂui) C < Ol

(k,n)eT

(5.10) (
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LEMMA 13. For (k,n,1) € S, k € {—L,0,L,2L,3L,4L}, and j € {2,3},

(5.11) “¢;,k+l~c,n(fj* o ktE,l H2<C mf M2fJ( )’I’fvn’%’
(5.12) 167 kon (f3 % @ g [, <C inf ij( N ER
(5.13)

<C inf Mfj(x)|In| "2,

xzel k,n

. ~ . !/
DT kem (6_27”6(%"““”“‘”)( )(fj * (I’j,k+m+fc,l)('))

(514) ”¢]k+kn¢]k+k(‘f *(I)]k;_t,_kl H2<C|Ikn|
(515) H¢>{,k,n¢;’k+m+i€(fj * q)j7k+m+]},l) H2 < C’Ik7n|§7
(5.16)

. / .
¢T,k7n¢;k+m+i€ (6—2TFZC(W_7,k+m,+k‘L)(')(fj * (I)j,k—&-m—i-fg,l)(')) H2 < C|Ik,n|_§.

LEMMA 14. For a convex tree T of type j, j € {2,3},
(517) < Z "¢]kn f] *ejkT H ) Scxléllf Mij($)’IkT7nT|E7
(kn)ET r

(5.18) <z |65 (5 %52

<C in]f Mo fi(2) Dy |2
(kn)eT o

1
< C‘IRTJLT‘?v

(5.19) ( Z 165 105k (f *ngTH

(k,)eT

=

(5.20) < 3 Hqs]knw]kfj*f);”\}3)2§0|IkT,nT|%.

(k,n)eT

LEMMA 15. For k € {—-L,0,L,2L,3L,4L}, let T be a tree of type j, j €
{2,3}; then

(5.21) <Z > Hpka(f*@Jk+,;,T)\\§> <C inf Mo f; ()l Iy e |2,

k JEAw_—m,T

522 <Z Z H’Ok mJ(f *(I)],k—i—faT)H;) §C|IkT7nT|%

k JEAq_mor



UNIFORM BOUNDS FOR THE BILINEAR HILBERT TRANSFORMS, I 909

Proof. We prove (5.22) first. Since

2 1 |fi(y) P2~ mdy
—m R < d
Hpk J(fj* j,k—l—k,T)H2—/(1_|_2k+mdist(x’J))N/(1+2k+m|m_y|)N x

2
§C|J| <inf Mgf]($)> §C|J|,
re8J

we have
S0 ekema @B <CY S > I <O,
k JEAj_mr k JEAL_ ot

because the union of Ay_,, is a set of pairwise disjoint intervals. We now prove
(5.21). We have

oD lokma(fi# @ 0)l5 < D1+ Do,
k JEAk_m.T

where

2
29

Di=>" > |ler-ma((filor) * @, )]

k JEA,_mor

D, :Z Z | P, s (fiL21p)e) * q)j7k+];;7T)H§’

k JEAj—_m.r

It is easy to see that

2
Dy < Cliftanl < Clirl inf Mayto)
To control Dy we have to work a bit harder. For any 2o € I,

S ol + @)l

k JEAw_m,T
. —k+m o 2
2> _ CMsf;(z0) / (1422 o —2)”
ek (142 k+mdist((27)c, J))N ) (1+2-F+mdist(z, J))N+2
ClJ| i
< inf Mo f.
= Z Z (142-F+mdist((2I7)e, J))N <;ng 2fg($)>
k JeEAk—m,T
2 2
< C;JEAZ 7] (IlglfT M, fj(m)> < C|Ir (xlglfT M, fj(aj)> :
which proves (5.21) and thus completes the proof of Lemma 15. O

The following lemma is just a version of the boundedness of the Littlewood-
Paley square function from L*° to BMO. Its proof follows standard arguments
and is also omitted.
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LEMMA 16. Let j € {2,3} and T C S be a convex tree of type j. Then

(5.23) [054(f5 * @il <€
2\ 2
(5.24) H( > Gl (@i — 00| )
n€Ty

where C is independent of m and BMO denotes dyadic BMO.

<C,
BMO

6. The size estimate for the trees

Having proved all these preliminary lemmas we now concentrate on the
proof of Lemma 8. This section is entirely devoted to its proof.
We begin by showing (4.19). For a tree T of type 1 and T C S,,,

(Zmn D)y )

nETk

|AET f17f27 dIL‘

sup Z PLkn1k(f1 % Prg1) H
neTy 00
2\ 3
H(Z Z%,kn%k i * Qi) )
Jj=2 neTy 2

<C sup H¢1,k,n¢l,k(f1*(I)lvva)Hoo2_£2_£|IT"
(k,n)eT

Observe that
67 gt 6 (Fr o+ @rper)||

1
2

A

< |61 pn Tk (f1 % Prrr)]]2 (¢1kn¢1k6_2m(w1” (fl*q)lkT)()>l

< 027w |

2

Thus we have
|Aer(f1, f2, f3)| < oo~ Gt

This completes the proof of (4.19) for trees of type 1. We now turn our atten-
tion to the proof of (4.20). Let

Z szkn wzk )(fz *(I)i,k?,T)(x)a
neTy
for i = 1,2,3. Then we write the sum », - f1xforf3k as

Z fl,kf2,k+m+Lf37k+m+L+ Z Z fl,k(flk_,_];f&k_,_]} - f2,k:+l~€+Lf3,k+I::+L)'

keZ, k€Z, ez,
0<k<m
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Note supp flk C wi,k,T, SUPP f2,k+m+L C w2 k+m+L,T, and —supp ﬁ’)7k+m+L C
W1 ktm+L,T + W2 k+m+L,7- Since T is a tree of type 2 or 3, by Lemma 4, we
have W1 k+m+L,T < W1 kT and diSt(w17k+m+L’T,ka7T) > ]w17k7L\/8. Therefore,
we have (Wi kymtr,r + Wokimtr,r) < (WikT + W2ktmL,r), Which implies
—SUpP f3 k+m+L < SUPP f1k + SUPP f2 k+m+r- Thus,

/Zflk ) foktmt-1(2) f3 ktmsr(x)dr = 0.

Therefore, it is sufficient to consider

Z Z f17k(f2,k+12f3,k+12;_fz,k+12+Lf37k+15+L)'

kEZT ];€~ZO
0<k<m

We write this term as

DS fljk_;;> (forfsk — forrnfansr) = I+ Lo+ I3 + Iy + I,

keZ, ];gzo
0<k<m

where

5L (for = fopr)(f3k = fau+L),

I
g
M

&
Il
7 N 7 N N N N

|/\ Eald
Enll
|/\ N

fon
I

(fokt+r — foeter)(f3k — fak+L),

M

ol
m
N
3
El
l?/y\-zm
I/\ N

foct)
focs)
ot ) o = Jossn)faass — foasan)
)
).

keZ, * kez,
0<h<m
Iy= > Fiwei ) forron(fak — fapir),
0<h<m
Is= s foge = foprr) f3 2L
0<k<m
Therefore,
1 1
2 2
11| < sup > fikei <Z |foe = fop+il ) (Z | foh — f3,kz+L|2>
k

kEZo
0<k<m
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and thus for q% + qiz + qis =1and 2 < ¢, ¢2,q3 < 00, we have
(6.1)

3 1
/ |I1(x)| dz < || sup Z ka_]; H (Z \fik — fj,k+L|2>
k€Zo,0<k<m T j=2 k 4
2 :
<Cy, Zfl,k H <Z|fj,k—fj,k+L!2)
k Q1 j=2 k q;

where the L? norm estimate above is a consequence of the Carleson-Hunt
theorem [3] and [6], since the Fourier transforms of f; ;’s have disjoint supports.

To control the product of the last three terms in (6.1) we will need the
following lemma.

LEMMA 17. Let 1 >0, j € {2,3}, T be a tree of type j and T C S,; then

(6.2) HZfl,kH2 < 027 |Ip]3,

(63) H —2mic(wi,r) Z fl k HBMO < g2 p1 .

Proof. The proof of (6.2) follows from the selection of trees (in particular
(4.9) which fails for g — 1), since

HZfMHQ = HZ Z A1,k V1k(f1 % P1pT) H2

k neTy

<30S [ranthinlfy * a3 < 027 |17,

k nGTk

We now prove (6.3). Let J = [2¥/n;, 2% (ns + 1)] for some k; € Z and

define Ty := {(k,n) € T : I;;,, C J}. Then
|J|_linf/ D Gk (@)rg(@) (1 Py ) (@)e AT — ol dy
I emyer

<Ji + Jo2 + J3,

where

dz

Z D1k ()11 (2) (f1 % Prpr) (2)
n)€eT,

1
1,k ()1 () (f1 * Prpr) ()| d2

2
CZ Jy J

=13 J| inf / Z O1kn (1)L () (f1 % @y r) (eI — ¢

(k:,n) €T k>ky

dx.
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Since Ty is a union of trees of type 2 or 3, we have

W =

Jlsw%( > Haﬁ’f,k,nwik(fl*<1>1,k,T>H§) <cot,

(k7n)eTJ

which proves the required estimate for .J;.
For Jy, we use (4.6) (which fails for y — 1) to obtain

_u Lo 2
Jp<C2 g7 Y - - <027
(bmET, (14 27kdist(J, Irn))
k<k;

Finally we can control J3 by

/

which is equal to

/J Z <¢1,k,n(') V1e()(f1 x Prer)()

(kn)eT
k>k;

> (qsl,k,n(-)wl,k(‘)(fl wl,k,ﬂ(-)e2”"*““’”(')> ()] dz

(kn)eT
k>k;

/
% e27ric(w1,k,T)(-)e27Ti(c(w1,T)c(wl,k,T))(')> (;c) dzx.

Thus we obtain the estimate J3 < J31 + J32, where

Ja1 = / Z

(kn)eT k>k,

(S14m (WO 1) (e 2700 () dir,

J32 C/ Z ¢1 k7n($)wl,k(x>(f1 * q)l,k;,T)(.T)e_ch(wlvva)x

(kn)eT k>k,

X (c(wi,r)—c(wi k)| de.

Since T' is a tree of type 2 or 3 it follows from Lemma 4 that |c(wir) —
c(wi k)| < 2|lwi k7| Thus we have

1 27k . )
Jzp < C|J|2 Z (1 + 27 Fdist(J, I, )V Hgbl,k,n¢17k(f1 * (I)l,k,T)H2
(k,n)ET k>k, s dkn

-~ |Ik:n‘
<C2 Pl]J] E E B ~ <C2 .
Pl neTk 1+2 dist(J, I n))

Similarly, we prove J3; < CQiﬁ, by using (4.6) and (4.7) (which failed at the
step ;1 — 1). This completes the proof of (6.3). O
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Now interpolate between (6.2) and (6.3) to obtain

(6.4) H S fk| < C2 i),
k

q1

1
where C' is independent of q1. Next we write (34 [fjx — fikrrl?)? as

(Z

k

D Giknin(fi * Qi) = Y Gikrrnirsr(fi* jrirr)

neTy, nET, 1
2) 5

1
2)5

which we control by I1; + I12 + I13, where

Iy = <Z > Gikrrmiper(fi* Pk — Pjprrr))

k nETk+L

1

y

Iy = <Z Z DjetLin(Vjk — Vjkr) (s * Rjer)

k neTk+L
2 3
Lz = (Z <Z Gikn — D ¢j7k+L,n>¢j,k(fj * k) > :
k neTy n€Tkyr

By (4.13) and (4.14) we obtain

TR ( )3

(k+L,n)eT

¢j,k+L,n¢j,k+L (fj * (‘pj,k,T - ‘I)j,k+L,T))

1
2)2
2

Thus by Lemma 16 and interpolation, we have ||I11]q, < C2 7 % |Ip|% , where
C' is independent of ¢;. As in [10] we observe that

<027 % |Ip)3.

Vi — ikl <lpe \Eeomir * Pheml + LBy ir)e * (Vkem — Yk—me1)]

2
SC Z pk—m,J'
JEAL _m

Introduce sets V" ={n €T : n+1¢ T} and V. ={ne€Ty: n—1¢ T}
Then we have

> GikrLn(in — Yikir)

IS

2
<D G D Pmat D Garra¥ie

n€Tyyir JEAL T neVi UViL

c
* *
+ Z Djk+ LV kL (1 + 2=k +Ldist(Lgs L, (217)¢))N

nET,yr
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Using this, (4.15), and (4.10) we obtain ||I12]]2 < 0275]1}]%. which provides
an L? estimate for I;o. We now obtain a BMO estimate for I;o. For any
I = [2k1ny, 28 (ng + 1)), we have

inf/|112—c\2da;
¢ JI

2
D Gikrrn Wik — Viksr)(fj* )| —c|de
nET,yrL
and we control the last expression above by the sum I}, + I}, where
2
Iy, = il(}f/ Sl DD bikrra@ Wik — ikrn)@)(f * P pr)(@)| —cl|d,
Il s kr+m n€Tk4r
2
Iy = ilgf/ Sl DD bikrra@ @ik — ikrn)@)(f * Py pr)(@)| —cl|da.
- I k<kr+m 'n€Trir
Using (5.23) we can estimate I{4 by
2\ /
C|I? H (( > Gikrrn(Wik — Gixrn)(fj* ‘I)Jyk,T)6_2”0(‘””“’T)(')) )
k>kr+m n€Th41, %)
<cuP Dy 2Mmo< .

k>kr+m

Also using (5.23) we obtain the sequence of estimates

2
1< / SO LS Gk in(@) i — i) @)+ @) (@) da
k<kr4+m ' n€Tiir
<0 35 foemita
k<kr+m JEAK_m

—k+m
€22 // Ak

k<ki+m JEA,_n,J () 21#0

—k+m
DYV e

k<kr+m JEA,_n,J () 21=0

I
<C Z Z ’JH—C Z 1+2—|k:-i‘-m’]’)N

k<kr+m JEAk_m,JCHET k<kr+m

Q(k—m)N

<cll+ciu > v

k§k1+m

<ol

Thus we have proved that ||I12]|pmo < C. Then by interpolation, we obtain

(6.5) 1L1a]lg, < C27 7 4 | Ip|
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where C' is independent of ¢;. For I3,
2 :
I Iis)l2 < (ZZ ‘( > bikn— Y ¢j,k+L,n)¢j,k(fj % P g r) )
k n’ neTy, nET,4 1 Lz(Ik‘n’)
1 * * 1 _ - 1
< I£3) =+ H¢j,kT,nij,kT(fj * (I)j,k’T,T)HQ < [{3) + C27 M »; |IT|2>
(1)

in view of (4.10), where we set I}5’ to be the expression

{ Z Z Z Pjen — Z Djk+Lon

1
2

k#kr n' n€Ty n€Thy 1, Lo (I, )
R
* *
|| Y S kntin(fi * Pip) } :
el L2(I,. 1)

Note that by (4.10),

2 2u
> Gkntia(fi * ®ir) < O272M2 7 I .
neTk LZ(Ik,n/)
Thus,
Iy < 02”“2_”7( YoM bk — Y bikrLm 2k>
k<kr n' "l neTy n€Tvir Lee (L nr)

We next observe that

> ikn— > GiktLin

n€T, nET,4 1

< Z Pi kL T Z Dj ket Lin>

neWiir nGVk-:—L UVk_+L

where
neZ: (k,n) ¢ T but there exists }

Wi = { (k4 L,n') € T such that Iy, C Iyir

Note that by the convexity of T the set U, U,ew,,, {Zkn} is a set of pairwise
disjoint intervals. Hence, we have

Weerm (T8 S M)

k<kr mn' neWgyrp

1

+ CQnu2_7j< Z Z Z 2k”¢;,k+L,nHLw(1k,n/)>
k<kpr n’ nEVkiLUVk:-L

1

g02"“25_3<2 ool > Y !Ik,n!>2

k<kr n€Wjir k<kr nGVILL UViie

<C2MY v I3
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Therefore, we obtain
| Lisll2 < C2727 % |12,

By an argument similar to that used for the BM O estimate of 112, we obtain
that ||I13]/mo is at most a constant. Therefore interpolation yields

(6.6) Isllg, < C2 7% |Ir| %,

where C' is independent of ¢;. We conclude that (6.4)-(6.6) imply

12

111l < g2 G| 1.
Similarly for j =2 and j = 3,

1Ll < G2~ ot s ad)| 1.

Now we write
Iy = Iy1 + Lyo + 143 + L4,

where

Iy = Z ( Z f17k_];>f2,k:+2L

keZ, kez,
0<k<m-—3L
1 DD dskromsprn(fs* (Pspr — (I)S,k:—i-L,T)))a
nETk+L
L= ( > fl,k_;;>f2,k+2L
REZ, N ez
0<k<m—3L
< > GshrrnWsg — Yspar)(fa ‘1’3,1@,T)>,
nETk41L
Liz="Y ( > fl,k;;)fz,mzL
kGZT ~I;€ZO
0<k<m—3L
< > bskn— Y ¢3,k+L,n> Y3k (f3 x Py k1),
n€Ty nET k4L

Iy = Z ( Z ka_;;) forror(far — fartr)-

KeZ, N kez,
m—3L<k<m
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Next we observe the following three set-theoretic inclusions: supp fg,kJrgL C
W2, k42L 5

supp ( Z J?lk,;> C U Wi ko and

~I;€Zo JEEZO
0<k<m—3L 0<k<m—3L

A
—supp ( > Gshrrntsprn(fsx (Dapr — ‘I)3,k+L,T)))

n€ETk4r

C (wik +wop)\(Wikrr +woksr)

Since by Lemma 4

U Wy gk T wekter CWiktL +Wokt L,
~I~CEZ0
0<k<m—3L

we obtain that the function I;; has vanishing integral. For I,

Lio| < sup | > fiai
keZ, I
keZo
0<k<m—3L
1
2 2
( YUY borsrm(Wor — Yoner)||f2* Popror >
keZ,,, nETk+L
1
2 2
< S Y. bsprrn(Wsk — Usprr)|lfs * P ) :
k€Z, ' n€Trir
As for the estimates regarding I; and 2, we have
Tazlli < Cau[ D fin
kEZ, «
1
2
: ( S YD bokrrm(Wor — boprr)|l fo ‘I’z,k+2L,T\2>
k€Z, ' n€Tryr q2

1
2
| f3 * ‘1>3,k,T2>

> GskrrnWs — Vsrir)

n€Tkyr

qs

2 1 2

Ii5lz -

< qu2_(H+Pz 2 o5 13) | I7|.
As in the estimates for I and I3, it is easy to obtain

1Ll < Cp2~Grtoaastosss)| 1.
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In 144, the index k runs th{ough three values. We estimate each of the three
summands separately. For k € {0, L,2L} we have

> riemaif2kron(far = faris)l

keZ,
3 3
< { Z |f1’km+f€f2,k+2L|2} { Z | fane — f3,k+L|2}
keZ, keZ,
from which it follows

Laall1 < C( Z Hflykar;;fQ,k—mLHg) i H( Z | far — f3,k+L|2> ’

keZ, kEZ,

2

— L_’_L
<c2 b p3)|IT| (ksu)pT “¢T,k,n¢;,k+m—1}+2L(f2 * ®2,k+m71~€+2L)Hoo'
n)e

Note that

* * ~
(k?rlzl)IéT Hqﬁl,k,n%,mm#ﬁu(h * s em-iear) o

1
< C sup H¢T,k,n¢;k+m_g+ﬂ(f2 * @2,k+m45+2L)H22
(kn)eT

2

/
* * —2mi . k+2r, ) -
. H <¢17k7n¢2,k’+m—]~c+2[] (6 Tic(Ws km—ky2n,7)( )(f2 * (I)Q,k+m—k+2L)('))>
2
<C27MY T,
Thus, we obtain [|I44]]1 < CQ*"“Q_(EJFEJFE)“\IT\. Hence,
12412

||I4H1 S Cq127($+5q2 Eqs)‘IT’

and a similar estimate is valid for ||5]|;. This completes the proof of (4.20).

7. Counting the trees, Part 1

Having established the proof of Lemma 8, we now turn our attention to
Lemma 7. The proof of this lemma will be presented in this and in the next
two sections. In this section we prove (4.18) for

gvye J {652y UL 1D}

i,j€{2,3}
We will need the following separation lemma from [7] and [8].
LEMMA 18. Let S C Z3, s € S and I;,ws € J such that

1) %!Iuss\ <|Ig < 2| L) |ws], for s,s" € S.

W

2) {Is}ses, {ws}ses are grids.
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3) If s#£ &, then Is( Iy =0 or ws[(\ws = 0.

AlU
For any A> 1, then S = < U Sl> US" where
1=1

4) For1 <1< AW ifs s’ € S;ands # s, then (Al xws) (Aly xwg) = 0.
5) X | <Ce? Y Il

ses’ seST

We give two more definitions. For s € S C Z3,

2m xz —1y)2™
7y o = [ o () o
and
N o —yl2m Y
(7.2) oi(z) = /I A (1 + 7|Is| > dy.

Since ¥*(z) = (1 + 2%)~%, we clearly have
2mdist(z, Is))_N
||

Then we have the following almost orthogonal lemma.

|6 ()| < 2V]¢3 ()| (1 +

LEMMA 19. Let S € Z3, s € S and I;,ws € J. Define the counting
function of S by
Ns(z) = 1p,(2),
ses
and for m >0, let 5 € S(R) be such that supp&); C ws and
|@s(x)] < C2™ |71 (1 + 2™ I =) Y.
Let S, I, ws satisfy 1), 2), and 3) below:

1) 2m7t < || |ws| < 2mFL

2) {Is}ses, {ws}ses are grids.
3) (Al X ws) (Aly X wg) =0 for s,s' € S, s' # s for some A > 1.

Then
D lles(f * @3 < Cn(1+ [NsllowA™ ™)1 £115,

seS
and for any J € {Is}ses,

1 2
5 lon(£ + @) 1B < CulJINGIE L+ Wsllod™) (10 D001 (0))

seS
I,cJ
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where Cy is independent of m. And if m =0,

2

< On(1 + [[NslloA™M)I£113,

2

2 (| b (e*%ic(%)(')(f % q)s)(.)>/

seS

and for any J € {Is}ses,

S ILP

SES
1.CcJ

2

By (e72eI0(f 4 2,)())

2

HNsHoo

}{ ir}fMg(Mf)}Q.

Proof. We may assume that S is a finite set. Let Asf(z) = ¢s(f * D5)(x),
then A*f(x) = (fd,) * Ps(z), where ®,(z) = ®4(—z). Thus, we have

STIAANE =S (ALAL £ < 1Y ALAS oI fll2 = Bl £l

seS ses seS

< Ol INs 15 {1+

Assume || f||2 < B; otherwise there is nothing to prove. Notice that

B*=Y) " (ALAf, AYAsf)

seS s’eS
<O NASIZ D NAl2 D IA«ALIA fl2
seS s€S S'E€S:s'#s
<CB|flla+ Y _lAsflz Y. IIAvALl[||Asfll2 := CB| f]l2 + O.

seS s'€S:8'#s
Note that Ay A% f(z) = [ K(z,y)f(y)dy, where
K(z,y) = ¢ (2)(Ps * Dg)( — )by (y)-

It is easy to see that K(x,y) = 0 if ws[wy = 0. We claim that

3 2mdist(Is, Iy
(73)  |AgAY <C (1 2dist(ls, )

2™ I,
|1, | Ls|

Now we prove (7.3). Notice that

-N
) , if I < 2|1

2m I, 2mdist(I,, Iy)\ Y
[ 1Kl < ot ‘( ++>)

| Ls | | Ls |
Similarly, we have

omdist (I, Iy) ) -

[l dy < e (14 2
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Thus by Schur’s lemma, we obtain (7.3). Hence

0<2Y [1Asfllz Y 1A« AL As fI12

SES s'eS
s'#s

wsCwyr

m|[, |3 Ay
<CY ASl > 21| |As /1l2 )NH.

ses ves  sl? (1 | 2rdist(LL,Ly)
s'#s 1]
wsCwyr
Notice || Asf|l2 < C2™inf,e;. Mf(m)|]s|%, where C' is independent of m. The
proof of this fact is the same as the proof of (5.1). Therefore, we have the

estimate

23m|ls’
o<cC inf M inf M
- ;:puell f(@) sze;s (1+2mdist(ls,ls/)>N+2 aclenl f(z)
s'#s I
wsCwgr
<CANS inf Mf(z) Y / Mi@) 4,
zel, 1. dist(x,1)
SES s'eS s (1+ T)
S/¢S S
wSCwS/
<ca™ Y [ (01 @)* ds
ses /s
SCAN/les(fU) (M(Mf)(z))* dz < CAN||Ns|looB] fl2-
ses

Thus, we have obtained B < Cn(1 + A™Y||Ns|lso)|lfl2 and

(7.4) Y IAFI3 < On (1 + AN (INslloo) L £113-

seS

If we set Jy = 2||Ng||&J, then

1

5 S IASIE < Y 1AL+ D 141 )R = G + G
seS seS seS
I.CJ I.CJ I.CJ

First we use (7.4) to obtain
G1<On(1+ AN [Nslloo) I Ly |13

< ONLTIINS IR (1 + AN lloo) { inf M f ).

Notice that dist(y, Is) > ||[Ns||&]J| if y € (Jn)¢. Thus,
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Ga< > /|¢>5

seS:I,CJ

f(y)@s(z —y)dy| dx

c

<C ) INslIR( mef /y¢> )|dx

se€S:I;CJ
<C Y0 NSl (nf ML < CIM S|y < O1T|(inf Ma(M1))”
se€S:I;CJ

Therefore,

. 2
ST A3 < OnIIING 2+ A [N loo) <infM2(Mf)(x)> .
zeJ

seS:I,CJ
The proofs of the last two statements of this lemma (m = 0) are entirely
similar. This completes the proof of Lemma 19. O
We now turn to the proof of (4.18) for
{Givre U (4,2 J{0 1,1}
6,j€{2,3}

We only prove the case (i, j, 2) if 4,5 € {2,3}. The proof for the case (1,1,1)
is similar. Let 72 = UAT:, .} N7 ,.(2) = Xrer , 11,(2), and

1
N,g:72($) = sup ﬁ Z [ I7|.
Je{Ir:TEF; j2} TeF; ;2
Jox IrCt

It is sufficient to prove
(75) [kl < G210,

Since Nz, ,, is integer-valued, to prove (7.5), it suffices to show that there
exists 0 < € < 7 such that, for any A > 1,

(7.6) {z € R:Nx, ,(x) > \}| < Co2l0mingn\12pie=75

since % — 12p;e > 1. Take F' C Fj 2 such that Nz (z) = min{N7x, ,,(z), A}.
See [7 ] Then,

(o € RN () 2 A} = [{o € R N, () > A}
Let A = X\°. By Lemma 18, we have F/ = Am 1 FIUF", where:
1) for T.7" € Frand T' # T, (Al x wir) (Al X wip) =0, and

2) > rer | < Ce 4 Yrer 1.
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Applying Lemma 19 with S := {(kr,nr,lr)}rer, Ns := Nz, I == Ip,

Ws 1= wjT, s = ¢;kT+l§:nT’ b, = <I>j7kT+,~€7T, N = é, we obtain for J €
{IT T e ﬂ},
% 2
Z H¢j7kT+,;,nT(fj * @ i)l
TeF
IrcJ

< OV 15 (1 + IV llooA™5){ inf Ma(0 f7)}
§C|J|A€{19fM2(ij)}2,

since Ng, < Ngp < A
Assume that T' € F; satisfies (4.10). Then we have

Z |I |<02277H22_Z Z ||¢* - ¢* ~(f,*<1>‘ ~ )”2
Tl= ikt Ve rk % L ek r)112

TeF; TeF,
IrCJ IrCcJ

< 0229 | J|A (;IelfJ Mg(ij)(z:)>2 .
Hence, we obtain
NE () < G221 X (Ma(M ;) ())?
Since p; > 2, using [7] we obtain
[z < CING Iz
< OB N MM ;) < O2W25 X 5|, < C22125 ),

Thus,

{reriam@ V| < Cotmmnyne=.

>
— A0+

Therefore,

B
e 2 <3 [{ 2 o e 2 s )

< C2PinQu\12pE= 5 4 ONOSTL | Ny ||y < C2MPinom\I2PE— T

Here we used the fact that Nz, is integer-valued in the estimate [Nz |1 <
INE, Hg]g This completes the proof of (7.6).
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8. Counting the trees, Part 11

In this section, we prove (4.18) for
4
G.jv)e |J ({(LJ; 1), (6,1, D)} ({6, 4, u)}) :

i,j€{2,3} v=3

First, we need the following almost orthogonal lemma, whose proof is similar
to that of Lemma 18 and is therefore omitted.

LEMMA 20. Letl € Z, T, C Z3, S =2, Ti, s € S and I5,ws € J. Let
A>1, and

o0
Ns(x) = Z L, ().
=1
Also let @ be in S with supp ®; C wy, |®s(2)| < C2™|I,|~1(1+2™ |1, |z|)~ V.
Suppose that S, Is, ws satisfy the following:
1) 270 < o] < 27,
2) {ws}ses is a grid and {Is}ses is a dyadic grid,
3) for s,s' € Ty, if Is = Iy, then s = §'; and (8.1), (8.2), and (8.3) below
hold:
(8.1) Al C Ig, for any s € 1y,

(8.2) ifseT,s €Ty, l#1, and ws C wy, then ws =wg orly, NIy =),
and
(8.3) for s,s" € T}, we have either ws = wy or ws Nwy = 0.

Then there is the inequality

(8.4) D N6s(f * @13 < On(1+ [ NsllaA™™) 1 £1I5,
ses

and for any J € {I1,}7°4,

(8.5)

1 2
S 1n(F + @13 < OxVINGIE( + Wslloa ™) (inf 20001 ))

se U T
LIy CJ
where Cy is independent of m. And if m = 0,

SILP

seSs

2
< On(1+ [[Nsllo A" M) £113,
2

bs (e_mc(ws)(-)(f N ‘133)(-)),
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and for any J € {I1,}7°,,

Z I, H¢S (e—mc(ws)(-)(f * @S)(.))’ 2

2
se UT

LI, CJ

HNsHoo

< O lJINS 5 {1+ } (inf (M 1)),

We now return to the proof of (4.18) for

4
5v) e |J ({140,610 [ J{6G50)}).
i,j€{2,3} v=3
We only prove the case (1, j,1) for j € {2,3}. The proof for the case (i, 1,1)
for i € {2,3} is similar. Let 71 ;1 = |, T,L},l,j,l’ Nr, . () = ZTefm,l 17, (),

and

1
M@= sw 5 3 il
: Je{Ir:TeF1 1} | | TeF1 i1
Jozx ITC:f

It is enough to prove that
INF, . [l < C210mekan,

But since N7, ,, is integer-valued, it is sufficient to show that there exists
0 < & < n such that, for any A > 1,

(8.6) {z € R:NF,, () > A} < C2!0msnign\12nie=

since & — 12p;e > 1. Take F' C F 1 such that Nz (x) = min{ Nz, (), A}.
Then we have

{z €R:Np(2) > N} = [{z € R: N, (@) > A}
Define a partial order on the set {Is}ses X {ws}ses by setting
Is X wg < Iy X wgr
only when I, C Iy and wy C ws. For T € F', define
TN — {s € T': I x w1 is minimal with respect to <},
={seT:I,Nn(1—-2"YIp =0},
TOmax {s € T9 . I, x w1,s 1s maximal in T? with respect to <},

= {s € T\T™" : 2°)°|I,| > |Ir|},

Tnice T\ Tmm U Ta U T)\
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We aim to apply Lemma 20 with S = (Jpcz Thee A = N, Ng = Ng,
Iy = I p, ws = WjkT, G5 = ¢;f7k7n, &, =7, and N = % We check (8.1)—
(8.3). Note that (8.3) holds because T' € F’ is a tree of type 1. And the
subtraction of 7% and 7?9 makes all s € T" satisfy AI; C I, which is (8.1).

Now we check (8.2). Assume T,7" € F',and s € T, s’ € T" with w; s C
wje and wjs # wjg. Since T is a tree of type 1, we have wir C wi.
By Lemma 4, we have w;, < wjr, dist(wjs,wjr) < 2lwas|. Notice that
Swjs C wjs and wjp(\wje # 0. Thus wjr C wjs. Again by Lemma 4, we
have wy 7 < wiy and dist(wy 7, wi,e) < 2|wie|. Since there exists s” € T’
such that s” € (T")™" and 5wy ¢ C wi s, we have wy o (w1t # 0. By the
maximality of 7" and (4.16), we know I () Iy = (), which is (8.2).

For J € {Ir : T € F'}, Lemma 20 gives

2
B0 X X Ikl Bl < Ol (1 M015)(0))

TEF! (kn)eTrice
IrCJ
By (4.8), for any T' € F/,

I <2727 " (|95 i (f * g

(k,n)eT
§2_82p_j Z "¢]kn¢] k(f *(PJkT)HQ
(k,n)€Tmice
+2752% Z |95k Vin (f5 % Pk, 7)lI3
(k’n)eTmm
+27820 65 W+ @)l
(k,n)eT?
+2782p—j Z ||¢]kn1/}] k(f *(I)JkT)”Q
(k,n)eT>
Note that by (4.10),
2(p—1)
Z ||¢Jkn¢j k(f5* Pk, T)H? Z 2—2U(M—1)2 " Mkl
(k,n)ETmin (k,n)€Tmin

2(p—=1)

<9 (=19~ ", |Ip| < 2327 o |I7].

By (4.8) we also have

2(p—1)
Dot (fixPun)lz < Y 22 (L] <2727 ” 7.

(k,n)eT? (k,n) €T 0 max
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Therefore, we conclude
(8.8)

1l <29 165 ki (i Raam)l3 +277270 Y 105 ki (i % i) 13-
(k,n)€Trice (k,n)eT>

Now observe that in view of (4.10),
2(u=1)
DO TR ET ST S i
(k,n)eT> (k,n)eT>
< 232721197 15 (logy A° + 5)| L.
Hence, if log, \° < 227" we obtain
(8.9) Il < €2 Y 6 eaie(fi * ®inr)3.
(k,n)€Tmice

From (8.7) we deduce

2p 2
(8.10) Z |I7| < C275 | J|\® <i25M2(ij)($)> :

TeF'
IrCJ

This gives N& (z) < C’EQ”_j)\e (My(M f;)(x))?. Since p; > 2, when logy \* <
2217#7

(8.11) INF 2 < CIINE |2 < Co2% X7

The situation where log, A° > 22"# is similar. By using a similar method, we
obtain

)\1+2s

(8.12) ||_/\/‘]_.,”p] < C. 2p7 )\125 + C. 217_7 <C. 2p7 /\125

when log, \* > 227, Using (8.11) and (8.12) we deduce

)\1—0—25
< (.20 \1%

(8.13) INE o < Co2% A2 4 CL2m

for any A > 1. Hence, |[{z € R : Nz (z) > \}| < C.2#\P¢=% | which implies
(8.6).

The proof for (i,7,v) € U; jea3) UL_3{(i,5,v)} is similar. We only check
the following separation condition for trees:

Let Fi ;. =, Ty, ;. and

(Wik—r.1 = Wipr) " = (@h-rr —wirr) [ le(wir), o),

(Wih—£1 = wik1)” = Wjh-r,1 = wikr) [ (=00, c(wjr)]-
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LEMMA 21. Let (iaja V) € UiJ‘e{Q,S} Ui:?){(ivjv V)}v T, T € ]:i,j,l/a (ka TL) €
THee (K n') € (T)Mee. Suppose that T #T', k' + L < k < kr, k' +2L < kg,
and that either v = 3 and

(wik—r,1 = Wipe) " (N Wik L1 —wip )™ #0,
orv =4 and
(Wjk—LT — WjkT)” m(wj,k:/—L,T’ —wjrr)” #0.

Then Ik:’,n/ mIT = (Z)

Proof. For simplicity, we only prove the case (i, j,v) = (2,2,3). The other
cases are similar. Assume I () I7 # (0. Since

(wok—r,7 — w2 )" [ Wop—r,07 — wopr )" # 0,

there exists (k”,n”) € (T')™" such that wy 1 C wo kv 7v. By assumption, we
have Iy i X wo g 70 < IT X wo k. 7. It follows from the maximality of 7', that
we chose T" before T.

By (4.17) and ws g, 7 (w2 k7 = 0, we have wo g, 7 < wo,, 7. Note
that

diSt(WZT/, (w2,k'—L7T' — w27k’,T’)+) 2 2- 2_k‘l_L Z 2. 2L‘w27k7T|,

by the convexity of 7", the central grid structure of {wa 7}, and the known
fact that dist(war, (W p—r1 — wop 1)) < 2L\w27;€7T|. This contradicts that
W2 fp T < wa k., 1. Therefore we have Iy, (Ir = 0. This completes the
proof of Lemma, 21. O

9. Counting the trees, Part III

In this section, we prove (4.18) for i,j € {2,3} and v = 5. Here we will
need the following almost orthogonal lemma whose proof we omit since it is
similar to that of Lemma 18.

LEMMA 22. Let F be a collection of trees of type i and
Q:={(k,JT):kecZ,TecF,JeNy_mr}

For g € Q, define Ayf(x) := pg(x)(f * ®q)(x), where py and 4 are functions
satisfying

(9.1) 19q(2)| < CN<1 + |7 dist(a, J))*N,

-N —~
(9.2) 1®,(2)| < Cn|J| (1 + \J\_l\xo and supp @, C wy,
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where wy = wj 1. Assume furthermore that

(9.3) (AT x wg) (VAT x wy) =0,
whenever q,q' € Q with q # q'. Let Ne(x) = > e r 11, (2). Then,
(9-4) D 1A FI3 < O+ [INFlloe A=) £1I3-

q€Q

And for I € {Iy : T € F},

1 2
03) X 14413 < CUINEIZ( + Nollwd ) (inf Ma011)0))
qe@
q=(k,J,T)
JCI
We now prove (4.18) for 4,5 € {2,3} and v = 5. Let F; ;5 = |, Tiﬂ.’j’l,

N]-—i,j,s (l’) = ZTGE,J\S 1IT (l’), and

1
Ni @)= sup o DIz,
\Js JG{ITZTG}—LJ',S} ’ | TEF: 5
Jozx [TCVJ,

To establish (4.18), it will be enough to prove [Nz, . |li < C2!9Pi#2# and for
this it will suffice to show that there exists 0 < € < 7 such that, for any A > 1,

(6.6) {o € R: N, (2) > A}| < C2'0mmgn\12nia=

p

since N, , , is integer-valued and since % — 12p;e > 1. Take F' C Fj 5 such
that Nz (z) = min{Nz, (), A\}. Then,

{z € R:Np(@) 2 M} = [{o € R N, () = A,
Assume A > 2" first. Let A = )¢,
Q ={(k,J,T): k€ Zy,J € Ny_yp1,T € F'}
and ¢ = (k, J,T) € Q', ¢ = (K, J,T') € Q. But if ¢ # ¢/, then
(J X WjktrL,1) ﬂ(J’ X wjrtrr) = 0.

In fact, otherwise we would have J = J', k = k¥ and wjpyr17 = wjptn,1
by the grid structure. By J € Ap_p, 7 () Ak—m, 17, we know that there exist
(k+L,n) € Tand (k+L,n’) € T" such that J C Iy () Ik+Ln which implies
n = n’. Therefore, T and T’ contain a common element (k + L,n,l). This
contradicts the maximality of 7" and T".

By Lemma 18, we have Q' = lA:li Q;UQ", such that

(AJ X Wj7k7T) m(AJ/ X wj"k/’T/) = @)
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for 1 <1< AY g#¢,q,¢ €Q), and

(9.7) doscet Yl

qeQ"” qeQ]
q=(k,J,T) q=(k,J,T)

Applying Lemma 22, we obtain, for I € {Ip: T € F'},

2

08 X okl * i)l < G (1 MR0I5) @)
€Q
q:q(kv‘]vT)
JC1I

where k € {-=L,0,L,2L,3L,4L}. Thus, using (4.15), we obtain

S <2 S5 ST ok (@ 5)IB

TeF' TeF' k JeEAk_m,T
IrcI IrcI

< C27i Z Hpk—m,J(fj * (Pj,k—}-];’T)H%

qeqQ’
q:(szvT)
JcI

Ao

<027 Y 3 orema (i # @ )3

=1 qeQ;
q=(k,J,T)
JCI

+02 Y |l pkem s (F @, i)l

quII
q:(kvL]?T)
JCI
2 2 2
o 11e | . ) Pj
< C.2% [T\ s<£f1M2(MfJ)(x)> +02 > ||
qEQ//
q:(kavT)
JcI
20 2 2\
< C.2v [IAME <ianMz(ij)(w)> + 027 |1,
FAS (&
Therefore,
f 11e 2 A
(9.9) Nz (2) < CAF (Ma(M f) ()" + C2%

e’
Since p; > 2 and suppN%, C Urer I,

2
Pj

A

2u 20\
o S CIWE NIz < C2n N 02 S| | Ir

TeF'
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By (4.15) and (5.21), we have for T' € F/, i}lf M f; > 027’%1, which gives

(9.10) U Irc{e e R: Myfj(a) = C27 7 }.
TeF'

This in turn implies } UTe P IT‘ <CO2* < C/\%. Therefore, we have for A > 2"+

2 2 N1y 2u
(9.11) INF |2 < Co273 A28 4 C275 —— < G275 A%
2 (&
Finally, for A > 27,
(9.12) [{z € R: Np(z) > A}| < o205

If A < 2" applying (9.5) with A :=1, Q := @', and N = 1/¢ we obtain

2

913) 3 ok (5 D, i)l < CTIATE <i2§M2<ij><x>>.
qeQ’
q:(k7J7T)
JCI

By (4.15), for A < 27

20 2
(9.14) > p| < €20 [ TIAM <ian’M2(ij)(x)> .
7;€C]'—I' FAS

Thus, N () < 027 AN+ (My(M f;)(x))? for A < 2% from which we conclude

(9.15) INF o <IN |2 < C205 AT < 021205 \F |

Hence, for A < 27

PjE Py
2 2,

(9.16) {z € R: Nz (x) > \}| < C22Pikr )\~ %
Combining (9.12) and (9.16) we obtain for any A > 1,
(9.17) {z € R: Np(2) > \}| < C22wspopp\12pie—7

which implies (9.6). This completes the proof of Lemma 7 and thus of estimate
(1.2).
We refer to [9] for an application of the results of this paper.
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