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Radon inversion on Grassmannians
via G̊arding-Gindikin fractional integrals

By Eric L. Grinberg and Boris Rubin*

Abstract

We study the Radon transform Rf of functions on Stiefel and Grassmann
manifolds. We establish a connection between Rf and G̊arding-Gindikin frac-
tional integrals associated to the cone of positive definite matrices. By using
this connection, we obtain Abel-type representations and explicit inversion for-
mulae for Rf and the corresponding dual Radon transform. We work with the
space of continuous functions and also with Lp spaces.

1. Introduction

Let Gn,k, Gn,k′ be a pair of Grassmann manifolds of linear k-dimensional
and k′-dimensional subspaces of Rn, respectively. Suppose that 1 ≤ k < k′ ≤
n − 1. A “point” η ∈ Gn,k (ξ ∈ Gn,k′) is a nonoriented k-plane (k′-plane) in
Rn passing through the origin. The Radon transform of a sufficiently good
function f(η) on Gn,k is a function (Rf)(ξ) on the Grassmannian Gn,k′ . The
value of (Rf)(ξ) at the k′-plane ξ is the integral of the k-plane function f(η)
over all k-planes η which are subspaces of ξ:

(1.1) (Rf)(ξ) =
∫

{η:η⊂ξ}

f(η)dξη, ξ ∈ Gn,k′ ,

dξη being the canonical normalized measure on the space of planes η in ξ.
In the present paper we focus on inversion formulae for Rf , leaving aside
such important topics as range characterization, affine Grassmannians, the
complex case, geometrical applications, and further possible generalizations.
Concerning these topics, the reader is addressed to fundamental papers by
I.M. Gel’fand (and collaborators), F. Gonzalez, P. Goodey, E.L. Grinberg, S.
Helgason, T. Kakehi, E.E. Petrov, R.S. Strichartz, and others.
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and Related Areas, sponsored by the Minerva Foundation (Germany).
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The first question is: For which triples (k, k′, n) is the operator R injective?
(In such cases we will seek an explicit inversion formula, not just a uniqueness
result.) It is natural to assume that the transformed function depends on at
least as many variables as the original function, i.e.,

(1.2) dimGn,k′ ≥ dimGn,k.

(If this condition fails then R has a nontrivial kernel.) By taking into account
that

dimGn,k = k(n − k),

we conclude that (1.2) is equivalent to k+k′ ≤ n (for k < k′). Thus the natural
framework for the inversion problem is

(1.3) 1 ≤ k < k′ ≤ n − 1, k + k′ ≤ n.

For k = 1, f is a function on the projective space RPn−1 ≡ Gn,1 and
can be regarded as an even function on the unit sphere Sn−1 ⊂ Rn. In this
context (Rf)(ξ) represents the totally geodesic Radon transform, which has
been inverted in a number of ways; see, e.g., [H1], [H2], [Ru2], [Ru3]. For
k > 1 several approaches have been proposed. In 1967 Petrov [P1] announced
inversion formulae assuming k′ + k = n. His method employs an analog of
plane wave decomposition. Alas, all proofs in Petrov’s article were omitted.
His inversion formulae contain a divergent integral that requires regulariza-
tion. Another approach, based on the use of differential forms, was suggested
by Gel’fand, Graev and Šapiro [GGŠ] in 1970 (see also [GGR]). A third ap-
proach was developed by Grinberg [Gr1], Gonzalez [Go] and Kakehi [K]. It
employs harmonic analysis on Grassmannians and agrees with the classical
idea of Blaschke-Radon-Helgason to apply a certain differential operator to
the composition of the Radon transform and its dual; see [Ru4] for historical
notes. The second and third approaches are applicable only when k′−k is even
(although Gel’fand’s approach has been extended to the odd case in terms of
the Crofton symbol and the Kappa operator [GGR]). Note also that the meth-
ods above deal with C∞-functions and resulting inversion formulae are rather
involved. Here we aim to give simple formulae which are valid for both odd
and even cases and which extend classical formulae for rank one spaces.

Main results. Our approach differs from the aforementioned methods.
It goes back to the original ideas of Funk and Radon, employing fractional
integrals, mean value operators and the appropriate group of motions. See
[Ru4] for historical details. Our task was to adapt this classical approach
to Grassmannians. This method covers the full range (1.3), agrees completely
with the case k = 1, and gives transparent inversion formulae for any integrable
function f . Along the way we derive a series of integral formulae which are
known in the case k = 1 and appear to be new for k > 1. These formulae may
be useful in other contexts.
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As a prototype we consider the case k = 1, corresponding to the totally
geodesic Radon transform ϕ(ξ) = (Rf)(ξ), ξ ∈ Gn,k′ . For this case, the
well-known inversion formula of Helgason [H1], [H2, p. 99] in slightly different
notation reads as follows:

(1.4) f(x) = c
[( d

d(u2)

)k′−1
u∫

0

(M∗
v ϕ)(x)vk′−1(u2 − v2)(k

′−3)/2dv
]
u=1

.

Here f(x) is an even function on Sn−1, c = 2k′−1/(k′ − 2)!σk′−1, σk′−1 is
the area of the unit sphere Sk′−1, (M∗

v ϕ)(x) is the average of ϕ(ξ) over all
(k′ − 1)-geodesics Sn−1 ∩ ξ at distance cos−1(v) from x.

We extend (1.4) to the higher rank case k > 1 as follows. The key ingre-
dient in (1.4) is the fractional derivative in square brackets. We substitute the
one-dimensional Riemann-Liouville integral, arising in Helgason’s scheme and
leading to (1.4), for its higher rank counterpart:

(1.5) (Iα
+w)(r) =

1
Γk(α)

r∫
0

w(s) (det(r − s))α−(k+1)/2ds, Re α > (k − 1)/2,

associated to Pk, the cone of symmetric positive definite k × k matrices. Let
us explain the notation in (1.5). Here r = (ri,j) and s = (si,j) are “points” in
Pk, ds =

∏
i≤j dsi,j , the integration is performed over the “interval”

{s : s ∈ Pk, r − s ∈ Pk},

and Γk(α) is the Siegel gamma function (see (2.4), (2.5) below). Integrals (1.5)
were introduced by G̊arding [G̊a], who was inspired by Riesz [R1], Siegel [S],
and Bochner [B1], [B2]. Substantial generalizations of (1.5) are due to Gindikin
[Gi] who developed a deep theory of such integrals.

Given a function f(r), r = (ri,j) ∈ Pk, we denote

(D+f)(r) = det
(

ηi,j
∂

∂ri,j

)
f(r), ηi,j =

{
1 if i = j

1/2 if i �= j,
(1.6)

so that D+Iα
+ = Iα−1

+ [G̊a] (see Section 2.2). Useful information about Siegel
gamma functions, integrals (1.5), and their applications can be found in [FK],
[Herz], [M], [T].

Another important ingredient in (1.4) is (M∗
v ϕ)(x). This is the average

of ϕ(ξ) over the set of all ξ ∈ Gn,k′ satisfying cos θ = v, θ being the angle
between the unit vector x and the orthogonal projection Prξx of x onto ξ.
This property leads to the following generalization.

Let Vn,k be the Stiefel manifold of all orthonormal k-frames in Euclidean
n-space. Elements of the Stiefel manifold can be regarded as n× k matrices x

satisfying x′x = Ik, where x′ is the transpose of x, and Ik denotes the identity
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k × k matrix. Each function f on the Grassmannian Gn,k can be identified
with the relevant function f(x) on Vn,k which is O(k) right-invariant, i.e.,
f(xγ) = f(x) ∀γ ∈ O(k) (the group of orthogonal k × k matrices). The
right O(k) invariance of a function on the Stiefel manifold simply means that
the function is invariant under change of basis within the span of a given
frame, and hence “drops” to a well-defined function on the Grassmannian.
The aforementioned identification enables us to reach numerous important
statements and to achieve better understanding of the matter by working with
functions of a matrix argument.

Definition 1.1. Given η ∈ Gn,k and y ∈ Vn,�, 	 ≤ k, we define

(1.7) Cos2(η, y) = y′Prηy, Sin2(η, y) = y′Prη⊥y,

where η⊥ denotes the (n − k)-subspace orthogonal to η.

Both quantities represent positive semidefinite 	 × 	 matrices. This can
be readily seen if we replace the linear operator Prη by its matrix xx′ where
x = [x1, . . . , xk] ∈ Vn,k is an orthonormal basis of η. Clearly,

Cos2(η, y) + Sin2(η, y) = I�.

We introduce the following mean value operators
(1.8)

(Mrf)(ξ) =
∫

Cos2
(ξ,x)=r

f(x)dmξ(x), (M∗
r ϕ)(x) =

∫
Cos2

(ξ,x)=r

ϕ(ξ)dmx(ξ),

x ∈ Vn,k, ξ ∈ Gn,k′ , r ∈ Pk; dmξ(x) and dmx(ξ) are the relevant induced
measures. A precise definition of these integrals is given in Section 3. According
to this definition, (M∗

r ϕ)(x) is well defined as a function of η ∈ Gn,k, and (up
to abuse of notation) one can write (M∗

r ϕ)(x) ≡ (M∗
r ϕ)(η). Operators (1.8)

are matrix generalizations of the relevant Helgason transforms for k = 1 (cf.
formula (35) in [H2, p. 96]). The mean value M∗

r ϕ with the matrix-valued
averaging parameter r ∈ Pk serves as a substitute for M∗

v ϕ in (1.4). For
r = Ik, operators (1.8) coincide with the Radon transform (1.1) and its dual,
respectively (see §4).

Theorem 1.2. Let f ∈ Lp(Gn,k), 1 ≤ p < ∞. Suppose that ϕ(ξ) =
(Rf)(ξ), ξ ∈ Gn,k′ , 1 ≤ k < k′ ≤ n − 1, k + k′ ≤ n, and denote

(1.9) α = (k′ − k)/2, ϕ̂η(r) = (det(r))α−1/2(M∗
r ϕ)(η), c =

Γk(k/2)
Γk(k′/2)

.

Then for any integer m > (k′ − 1)/2,

(1.10) f(η) = c
(Lp)

lim
r→Ik

(Dm
+ Im−α

+ ϕ̂η)(r),
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the differentiation being understood in the sense of distributions. In particular,
for k′ − k = 2	, 	 ∈ N,

(1.11) f = c
(Lp)

lim
r→Ik

(D�
+ϕ̂η)(r).

If f is a continuous function on Gn,k, then the limit in (1.10) and (1.11) can
be treated in the sup-norm.

This theorem gives a family of inversion formulae parametrized by the
integer m. They generalize (1.4) to the higher rank case and f ∈ Lp. The
equality (1.10) coincides with (1.4), if k = 1, m = k′, and has the same
structure. Moreover, (1.10) covers the full range (1.3), including even and odd
cases for k′ − k. A simple structure of the formula (1.10) is based on the fact
that the analytic family {Iα

+} includes the identity operator, namely, I0
+ = I.

Here one should take into account that Iα
+w for Reα ≤ (k− 1)/2 is defined by

analytic continuation (for sufficiently good w) or in the sense of distributions;
see Section 2.2 and [Gi].

As in the classical Funk-Radon theory, Theorem 1.2 is preceded by a
similar one for zonal functions. The results for this important special case are
as follows.

Definition 1.3 (	-zonal functions). Let O(n) be the group of orthogonal
n × n matrices. Fix 	 so that 1 ≤ 	 ≤ n − 1. Given ρ ∈ O(n − 	), let

gρ =
[

ρ 0
0 I�

]
∈ O(n).

A function f(η) on Gn,k is called 	-zonal if f(gρη) = f(η) for all ρ ∈ O(n− 	).

If 	 = k = 1 then an 	-zonal function depends only on one variable,
sometimes called height.

In the following theorems we employ the notion of rank of a symmetric
space. This can be defined in various equivalent ways, e.g., using Lie algebras,
maximal totally geodesic flat subspaces or invariant differential operators [H3].
The rank of Gn,k can be computed: rankGn,k = min (k, n−k). Rank comes up
in the harmonic analysis of functions on Grassmannians, and the injectivity
dimension criterion (1.3) can be motivated by means of rank considerations
[Gr3]. Here we do not use the intrinsic definition of rank explicitly, but it
surfaces autonomously in the analysis.

Theorem 1.4. Choose 	 so that 1 ≤ 	 ≤ min (k, n − k) (= rank Gn,k),
and let f(η) be an integrable 	-zonal function on Gn,k.

(i) There is a function f0(s) on P� so that

f(η) a.e.= f0(s), s = Cos2(η, σ�), σ� =
[

0
I�

]
∈ Vn,�,
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and

(1.12)
∫

Gn,k

f(η)dη =
Γ�(n/2)

Γ�(k/2) Γ�((n − k)/2)

I�∫
0

f0(s)dµ(s),

(1.13) dµ(s) = (det(s))(k−�−1)/2 (det(I� − s))(n−k−�−1)/2 ds.

(ii) If 	 ≤ k′ − k, 1 ≤ k < k′ ≤ n − 1, then the Radon transform
(Rf)(ξ), ξ ∈ Gn,k′ , is represented by the Gårding-Gindikin fractional integral
as follows:

(1.14) (Rf)(ξ) = c (det(S))−(k′−�−1)/2(Iα
+f̃0)(S),

where f̃0(s) = (det(s))(k−�−1)/2f0(s),

α = (k′ − k)/2, S = Cos2(ξ, σ�) ∈ P�, c = Γ�(k′/2)/Γ�(k/2).

Let us comment on this theorem. The identity (1.12) gives precise infor-
mation about the weighted L1 space to which f0(s) belongs. This information
is needed to keep convergence of numerous integrals which arise in the analysis
below under control. The condition 1 ≤ 	 ≤ rankGn,k is natural. It reflects
the geometric fact that Gn,k is isomorphic to Gn,n−k and is necessary to en-
sure absolute convergence of the integral in the right-hand side of (1.12). The
additional condition 	 ≤ k′ − k in (ii) is necessary for absolute convergence of
the fractional integral in (1.14), but it is not needed for (Rf)(ξ) because the
latter exists pointwise almost everywhere for any integrable f . This obvious
gap can be reduced if we restrict ourselves to the case when (Rf)(ξ), as well
as f , is a function on the cone P�. To this end we impose the extra condition
1 ≤ 	 ≤ rankGn,k′ and get

(1.15) 1 ≤ 	 ≤ min(rankGn,k, rankGn,k′) = min (k, n − k′).

This condition does not imply 	 ≤ k′ − k. Hence we need a substitute for
(1.14) which holds for 	 satisfying (1.15) and enables us to invert Rf .

Theorem 1.5. Let 	 satisfy 1 ≤ 	 ≤ min(k, n − k′), and suppose that
ϕ(ξ) = (Rf)(ξ), ξ ∈ Gn,k′ , where f(η) is an integrable 	-zonal function on
Gn,k.

(i) There exist functions f0(s) and F0(S) so that

f(η) a.e.= f0(s), s = Cos2(η, σ�), ϕ(ξ) a.e.= F0(S), S = Cos2(ξ, σ�).

If f̂0(s) = (det(s))(k−�−1)/2f0(s) and F̂0(S) = (det(S))(k
′−�−1)/2F0(S) then

(1.16) I
(n−k′)/2
+ F̂0 = c I

(n−k)/2
+ f̂0, c = Γ�(k′/2)/Γ�(k/2).



RADON INVERSION ON GRASSMANNIANS 789

(ii) The function f0(s) can be recovered by the formula

(1.17) f0(s) = c−1(det(s))−(k−�−1)/2 (Dm
+ Im−α

+ F̂0)(s),

α = (k′ − k)/2, m ∈ N, m > (k′ − 1)/2,

where Dm
+ is understood in the sense of distributions.

Natural analogs of Theorems 1.4 and 1.5 hold for the dual Radon trans-
form. For k = 1, these results were obtained in [Ru2]. Unlike the case
k = 1 (where pointwise differentiation is possible), we cannot do the same
for k > 1. The treatment of Dm

+ in the sense of distributions is unavoidable
in the framework of the method (even for smooth f), because of convergence
restrictions. The latter are intimately connected with the complicated struc-
ture of the boundary of Pk (or P�). It is important to note that in the 	-zonal
case inversion formulae for the Radon transform and its dual hold without the
assumption k + k′ ≤ n.

A few words about technical tools are in order. We were inspired by
the papers of Herz [Herz] and Petrov [P2] (unfortunately the latter was not
translated into English). The key role in our argument belongs to Lemma 2.2
which extends the notion of bispherical coordinates [VK, pp. 12, 22] to Stiefel
manifolds and generalizes Lemma 3.7 from [Herz, p. 495].

The paper is organized as follows. Section 2 contains preliminaries and
derivation of basic integral formulae. In the rank-one case these formulae are
known to every analyst working on the sphere. We need their extension to
Stiefel and Grassmann manifolds. In Section 2 we also prove part (i) of The-
orem 1.4 (see Corollary 2.9). In Section 3 we introduce mean value operators,
which can be regarded as matrix analogs of geodesic spherical means on Sn−1,
and which play a key role in our consideration. In Section 4 we complete the
proof of the main theorems. Theorem 4.6 covers part (ii) of Theorem 1.4, and
a similar statement holds for the dual Radon transform R∗. Theorem 4.10 im-
plies (1.16) and the corresponding equality for R∗. Inversion formulae (1.10),
(1.11), (1.17), and an analog of (1.17) for R∗ are proved at the end of the
section.

Acknowledgements. The work was started in Summer 2000 when B.
Rubin was visiting Temple University in Philadelphia. He expresses gratitude
to his co-author, Professor Eric Grinberg, for the hospitality. Both authors
are grateful to the referee for his comments and valuable suggestions owing to
which the original text of the paper was essentially improved.

2. Preliminaries

2.1. Notation, matrix spaces and Siegel gamma functions. The main
references for the following are [M, Ch. 2 and Appendix], [T, Ch. 4], [Herz]. We



790 ERIC L. GRINBERG AND BORIS RUBIN

recall some basic facts and definitions. Let Mn,k be the space of real matrices
having n rows and k columns. One can identify Mn,k with the real Euclidean
space Rnk so that for x = (xi,j) the volume element is dx =

∏n
i=1

∏k
j=1 dxi,j .

In the following x′ denotes the transpose of x, 0 (sometimes with subscripts)
denotes zero entries; Ik is the identity k×k matrix; e1, . . . , en are the canonical
coordinate unit vectors in Rn.

Let Sk be the space of k× k real symmetric matrices r = (ri,j), ri,j = rj,i.
A matrix r ∈ Sk is called positive definite (positive semidefinite) if a′ra > 0
(a′ra ≥ 0) for all vectors a �= 0 in Rk; this is commonly expressed as r > 0
( r ≥ 0). Given r1, r2 ∈ Sk, the inequality r1 > r2 means r1 − r2 ∈ Pk. The
following facts are well known; see, e.g., [M], [T]:

(i) If r > 0 then r−1 > 0.

(ii) For any matrix x ∈ Mn,k, x
′x ≥ 0.

(iii) If r ≥ 0 then r is nonsingular if and only if r > 0.

(iv) If r > 0, s > 0, r − s > 0 then s−1 − r−1 > 0 and det(r) > det(s).

(v) A symmetric matrix is positive definite (positive semidefinite) if and
only if all its eigenvalues are positive (nonnegative).

(vi) If r ∈ Sk then there exists an orthogonal matrix γ ∈ O(k) such that
γ′rγ = diag(λ1, . . . , λk) where each λj is real and equal to the jth eigenvalue
of r.

(vii) If r is a positive semidefinite k×k matrix then there exists a positive
semidefinite k × k matrix, written as r1/2, such that r = r1/2r1/2.

We hope that, with these properties in mind, the reader will find more
transparent the numerous calculations with functions of a matrix variables that
occur throughout the paper.

The set Sk of symmetric k × k matrices is a vector space of dimension
k(k + 1)/2 and is a measure space isomorphic to Rk(k+1)/2 with the volume
element dr =

∏
i≤j dri,j . For r ≥ 0 we shall use the notation |r| = det(r).

Given positive semidefinite matrices r and R in Sk, the symbol
∫ R
r f(s)ds

denotes integration over the set

{s : s ∈ Pk, r < s < R}.

For Ω ⊂ Pk, the function space Lp(Ω) is defined in the usual way with respect
to the measure dr. The set Pk is a convex cone in Sk. It is a symmetric
space of the group GL(k, R) of non-singular k × k real matrices. The action
of g ∈ GL(k, R) on r ∈ Pk is given by r → g′rg. This action is transitive (but
not simply transitive). The relevant invariant measure on Pk has the form

(2.1) dµ(r) = |r|−d
∏

1≤i≤j≤k

dri,j , d = (k + 1)/2,
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[T, p. 18]. Let Tk be the group of upper triangular matrices t of the form

(2.2) t =


t1

. ti,j
.

.

0 tk

 , ti > 0, ti,j ∈ R.

Each r ∈ Pk has a unique representation r = t′t, t ∈ Tk, so that

(2.3)
∫
Pk

f(r)dr =

∞∫
0

tk1dt1

∞∫
0

tk−1
2 dt2 . . .

∞∫
0

tkf̃(t1, . . . , tk) dtk,

f̃(t1, . . . , tk) = 2k

∞∫
−∞

. . .

∞∫
−∞

f(t′t)
∏
i<j

dti,j

[T, p. 22], [M, p. 592]. In this last integration the diagonal entries of the matrix
t are given by the arguments of f̃ , and the strictly upper triangular entries of
t are variables of integration.

To the cone Pk one can associate the Siegel gamma function

(2.4) Γk(α) =
∫
Pk

e−tr(r)|r|α−ddr, tr(r) = trace of r.

By (2.3), it is easy to check [M, p. 62] that this integral converges absolutely
for Reα > d − 1, and represents the product of the usual Γ-functions:

(2.5) Γk(α) = πk(k−1)/4Γ(α)Γ(α − 1
2
) . . .Γ(α − k − 1

2
).

For the corresponding Beta function we have [Herz, p. 480]

(2.6)

R∫
0

|r|α−d|R − r|β−ddr = Bk(α, β)|R|α+β−d,

Bk(α, β) =
Γk(α) Γk(β)
Γk(α + β)

; Re α,Re β > d − 1; R ∈ Pk.

2.2. Gårding-Gindikin fractional integrals. Let

Q = {r ∈ Pk : 0 < r < Ik}
be the “unit interval” in Pk. Let f be a function in L1(Q). The G̊arding-
Gindikin fractional integrals of f of order α are defined by

(2.7) (Iα
+f)(r) =

1
Γk(α)

r∫
0

f(s)|r − s|α−dds,
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(2.8) (Iα
−f)(r) =

1
Γk(α)

Ik∫
r

f(s)|s − r|α−dds,

where r ∈ Q, d = (k + 1)/2, Re α > d − 1. Both integrals are finite for
almost all r ∈ Q. To see this it suffices to show that the integrals

∫ Ik

0 (Iα
±f)(r)dr

are finite for any nonnegative f ∈ L1(Q). By changing the order of integration,
and evaluating inner integrals according to (2.6), we get

Ik∫
0

(Iα
+f)(r)dr = c

Ik∫
0

f(s)|Ik − s|αds,

Ik∫
0

(Iα
−f)(r)dr = c

Ik∫
0

f(s)|s|αds,

c = Γk(d)/Γk(α + d). Since the right-hand sides of these equalities are ma-
jorized by const ||f ||L1(Q), the statement follows.

The equality (2.6) also implies the semigroup property

(2.9) Iα
±Iβ

±f = Iα+β
± f, f ∈ L1(Q), Re α, Re β > d − 1.

For s = (si,j) ∈ Pk, we define the following differential operators in the
s-variable:

D+ = det
(

ηi,j
∂

∂si,j

)
, ηi,j =

{
1 if i = j

1/2 if i �= j,
D− = (−1)k2

D+.(2.10)

If f is sufficiently good, then

(2.11) Dm
± Iα

±f = Iα−m
± f, m ∈ N, Re α > m + d − 1,

(see, e.g., [G̊a]). Let D(Q) be the space of infinitely differentiable functions
supported in Q. For w ∈ D(Q), the integrals Iα

±w can be extended to all α ∈ C
as entire functions of α, so that I0

±w = w, Iα
±Iβ

±w = Iα+β
± w and Dm

± Iα
±w =

Iα
±Dm

±w = Iα−m
± w for all α, β ∈ C and all m ∈ N [Gi]. This enables us to

define Iα
±f for f ∈ L1(Q) and Reα ≤ d − 1 in the sense of distributions by

setting

(Iα
±f, w) =

∫
Q

(Iα
±f)(r)w(r)dr = (f, Iα

∓w), w ∈ D(Q).

Note that explicit construction of the analytic continuation of Iα
±w is rather

complicated if w does not vanish identically on the boundary of Q (cf. [G̊a],
[R1], [R2]). In order to invert ϕ = Iα

+f for f ∈ L1(Q) and Reα > d − 1 in the
sense of distributions, let m ∈ N, m − Re α > d − 1. By (2.9), Im

+ f = Im−α
+ ϕ,

and therefore

(f, w) ≡
∫
Q

f(r)w(r)dr = (Dm
+ Im−α

+ ϕ, w) ≡ (ϕ, Im−α
− Dm

−w).

2.3. Stiefel manifolds. Let Vn,k = {x ∈ Mn,k : x′x = Ik} be the Stiefel
manifold of orthonormal k-frames in Rn, n ≥ k. For n = k, Vn,n = O(n)
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represents the orthogonal group in Rn. The Stiefel manifold is a homogeneous
space with respect to the action Vn,k � x → γx ∈ Vn,k, γ ∈ O(n), so that
Vn,k = O(n)/O(n − k). The group O(n) acts on Vn,k transitively. The same
is true for the group SO(n) = {γ ∈ O(n) : det (γ) = 1} provided n > k. It is
known that dimVn,k = k(2n − k − 1)/2. We fix invariant measures dx on Vn,k

and dγ on SO(n) normalized by

(2.12) σn,k ≡
∫

Vn,k

dx =
2kπnk/2

Γk(n/2)

and
∫
SO(n) dγ = 1 [M, p. 70], [J, p. 57].

Lemma 2.1 (polar decomposition). Almost all x ∈ Mn,k, n ≥ k (specif-
ically, all matrices x ∈ Mn,k of rank k), can be decomposed as

x = vr1/2, v ∈ Vn,k, r = x′x ∈ Pk so that dx = 2−k|r|(n−k−1)/2drdv.

This statement can be found in [Herz, p. 482], [GK, p. 93], [M, pp. 66,
591].

Lemma 2.2 (bi-Stiefel decomposition). Let k and 	 be arbitrary integers
satisfying 1 ≤ k ≤ 	 ≤ n−1, k + 	 ≤ n. Almost all x ∈ Vn,k can be represented
in the form

(2.13) x =
[

ur1/2

v(Ik − r)1/2

]
, u ∈ V�,k, v ∈ Vn−�,k, r ∈ Pk,

so that

(2.14)
∫

Vn,k

f(x)dx =

Ik∫
0

dν(r)
∫

V�,k

du

∫
Vn−�,k

f

([
ur1/2

v(Ik − r)1/2

])
dv,

(2.15) dν(r) = 2−k|r|γ |Ik − r|δdr, γ =
	 − k − 1

2
, δ =

n − 	 − k − 1
2

.

Proof. For k = 1, this statement is well known and represents bispherical
decomposition on the unit sphere; cf. [VK, pp. 12, 22]. For the general case
related to Stiefel manifolds the proof is essentially the same as that of the
slightly less general Lemma 3.7 from [Herz, p. 495]. For convenience of the
reader we sketch this proof.

Let us check (2.13). If x =
[

a

b

]
∈ Vn,k, a ∈ M�,k, b ∈ Mn−�,k, then

Ik = x′x = a′a+ b′b. By Lemma 2.1 for almost all a we have a = ur1/2. Hence
b′b = Ik − r, and therefore b = v(Ik − r)1/2. This gives (2.13). The explicit
meaning of “almost all” in Lemma 2.2 becomes clear from Lemma 2.1 having
been applied to the matrices a and b.
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In order to prove (2.14) we write it in the form

(2.16)
∫

Vn,k

f(x)dx =
∫

0<a′a<Ik

|Ik − a′a|δda

∫
Vn−�,k

f

([
a

v(Ik − a′a)1/2

])
dv

and show the coincidence of the two measures, dx and d̃x = |Ik − a′a|δdadv.
Following [Herz], we consider the Fourier transforms

F1(s) =
∫

Vn,k

etr(is′x)dx and F2(s) =
∫

Vn,k

etr(is′x)d̃x,

where s ∈ Mn,k, etr(Λ) = etr(Λ), and show that F1 = F2. To this end we
employ the Bessel functions Aλ(r) of Herz for which

(2.17)
∫

Vn,k

etr(is′x)dx = 2kπnk/2A(n−k−1)/2

(
1
4
s′s

)
.

Let

s =
[

s1

s2

]
, x =

[
a

v(Ik − a′a)1/2

]
; s1 ∈ M�,k, s2 ∈ Mn−�,k; a ∈ M�,k.

Then s′x = s′1a + s′2v(Ik − a′a)1/2, and we have

F2(s) =
∫

a′a<Ik

etr(is′1a)|Ik − a′a|δda

∫
Vn−�,k

etr(is′2v(Ik − a′a)1/2)dv.

By (2.17) (use the equality tr(is′2vR) = tr(iR−1Rs′2vR) = tr(iRs′2v) with
R = (Ik − a′a)1/2) the inner integral is evaluated as

2kπ(n−�)k/2Aδ

(
1
4
Rs′2s2R

)
= 2kπ(n−�)k/2Aδ

(
1
4
s′2s2R

2

)
(the last equality holds because of the invariance property Aδ(R−1rR) =
Aδ(r)). Thus

F2(s) =
∫

a′a<Ik

etr(is′1a)ϕ(a′a)da,

ϕ(r) = 2kπ(n−�)k/2|Ik − a′a|δAδ

(
1
4
s′2s2(Ik − r)

)
.

The function F2(s) can be transformed by the generalized Bochner formula∫
M�,k

etr(iy′a)ϕ(a′a)da = π�k/2g

(
1
4
y′y

)
,

g(Λ) =
∫
Pk

Aγ(Λr)|r|γϕ(r)dr, γ =
	 − k − 1

2
, y ∈ M�,k
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[Herz, p. 493], that yields

F2(s) = 2kπnk/2

Ik∫
0

Aγ

(
1
4
s′1s1r

)
|r|γAδ

(
1
4
s′2s2(Ik − r)

)
|Ik − r|δdr,

γ, δ being defined by (2.15). This integral can be evaluated using the formula
(2.6) from [Herz, p. 487]. The result is

F2(s) = 2kπnk/2A(n−k−1)/2

(
1
4
(s′1s1 + s′2s2)

)
= 2kπnk/2A(n−k−1)/2

(
1
4
s′s

)
.

By (2.17), the latter coincides with F1(s).

Remark 2.3. The assumptions k + 	 ≤ n and k ≤ 	 in Lemma 2.2 are
necessary for absolute convergence of the integral

∫ Ik

0 in the right-hand side of
(2.14). It would be interesting to prove this lemma directly, without using the
Fourier transform. Such a proof would be helpful in transferring Lemma 2.2
and many other results of the paper to the hyperbolic space (cf. [VK, pp. 12,
23], [BR], [Ru5] for the rank-one case).

Lemma 2.4. Let x ∈ Vn,k, y ∈ Vn,�; 1 ≤ k, 	 ≤ n. If f is a function of
	 × k matrices then

(2.18)
1

σn,k

∫
Vn,k

f(y′x)dx =
1

σn,�

∫
Vn,�

f(y′x)dy.

Proof. We should observe that formally the left-hand side is a function of
y, while the right-hand side is a function of x. In fact, both are constant. To
prove (2.18) let G = SO(n), g ∈ G, g1 = g−1. The left-hand side is∫

G

f(y′gx)dg =
∫
G

f((g1y)′x)dg1

which equals the right-hand side.

We shall need a “lower-dimensional” representation of integrals of the form

(2.19) If =
∫

Vn,k

f(A′x)dx, A ∈ Mn,�; 0 < k < n, 0 < 	 < n.

For k = 	 = 1 such a representation is well known. In the following lemma we
do not specify assumptions for the function f . For our purposes it suffices to
assume only that the integral (2.19) is absolutely convergent and therefore well
defined for all or almost all A. This enables us to give a proof which consists, in
fact, of a number of applications of the Fubini theorem. Furthermore, for our
purposes it suffices to consider matrices A for which A′A is positive definite.
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It means that we exclude those matrices for which the point R = A′A lies on
the boundary of the cone P�.

Lemma 2.5. For A ∈ Mn,�, let R = A′A ∈ P�, k + 	 ≤ n, γ =
(|k − 	| − 1)/2, δ = (n − k − 	 − 1)/2. If k ≤ 	, then

(2.20) If =
σn−�,k

2k

Ik∫
0

|r|γ |Ik − r|δdr

∫
V�,k

f(R1/2ur1/2)du.

If k ≥ 	, c = 2−�σn,kσn−k,�/σn,�, then

If = c

I�∫
0

|r|γ |I� − r|δdr

∫
Vk,�

f(R1/2r1/2u′)du(2.21)

= c|R|−δ−k/2

R∫
0

|r|γ |R − r|δdr

∫
Vk,�

f(r1/2u′)du.(2.22)

Proof. By Lemma 2.1, A = vR1/2, v ∈ Vn,�. Since the group SO(n) acts
transitively on Vn,k we can set

v = gω�, g ∈ SO(n), ω� =
[

I�

0

]
,

and obtain

If =
∫

Vn,k

f(R1/2v′x)dx =
∫

Vn,k

f(R1/2ω′
�g

′x)dx =
∫

Vn,k

f(R1/2ω′
�x)dx

(we have changed variables g′x → x). Now (2.20) follows by Lemma 2.2. If
k ≥ 	, then (2.18) yields

If =
∫

Vn,k

f(R1/2v′x)dx =
σn,k

σn,�

∫
Vn,�

f(R1/2v′x)dv.

Now we replace x by γωk, γ ∈ SO(n), ωk =
[

Ik

0

]
, and change the variable

v → γv. This gives

If =
σn,k

σn,�

∫
Vn,�

f(R1/2v′γωk)dv

=
σn,k

σn,�

∫
Vn,�

f(R1/2v′ωk)dv =
σn,k

σn,�

∫
Vn,�

f(R1/2(ω′
kv)′)dv.
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We apply Lemma 2.2 again, but with k and 	 interchanged. This gives (2.21).
The proof of (2.22) is as follows.

If =
σn,k

σn,�

∫
Vn,�

f(R1/2(ω′
kv)′)dv

(2.16)
=

σn,k

σn,�

∫
o<a′a<I�

|I� − a′a|δda

∫
Vn−k,�

f

(
R1/2

(
ω′

k

[
a

v(I� − a′a)1/2

])′)
dv

=
σn,k σn−k,�

σn,�

∫
o<a′a<I�

|I� − a′a|δf(R1/2a′)da

(set s = aR1/2 ∈ Mk,� so that ds = |R|k/2da [M, p. 58])

=
σn,k σn−k,�

σn,� |R|δ+k/2

∫
o<s′s<R

|R − s′s|δf(s′)ds.

It remains to apply Lemma 2.1.

2.4. The Grassmann manifolds. Analysis on the Stiefel manifold Vn,k is
intimately connected with that on the Grassmannian Gn,k = Vn,k/O(k). Given
x ∈ Vn,k, we denote by {x} the subspace spanned by the columns of x. Note
that η = {x} ∈ Gn,k. A function f(x) on Vn,k is O(k) right-invariant, i.e.,
f(xγ) = f(x) ∀γ ∈ O(k), if and only if there is a function F (η) on Gn,k so
that f(x) = F ({x}). We endow Gn,k with the normalized O(n) left-invariant
measure dη so that

(2.23)
1

σn,k

∫
Vn,k

f(x)dx =
∫

Gn,k

F (η)dη.

For the sake of convenience, we shall identify O(k) right-invariant functions
f(x) on Vn,k with the corresponding functions F (η) on Gn,k, and use for both
the same letter f . In the case of possible confusion, additional explanation will
be given.
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2.5. Invariant functions.

Definition 2.6. Let ρ ∈ O(n−	), gρ =
[

ρ 0
0 I�

]
∈ O(n). A function f(x)

on Vn,k (F (η) on Gn,k) is called 	-zonal if f(gρx) = f(x) (F (gρη) = F (η)) for
all ρ ∈ O(n − 	).

Lemma 2.7. For k + 	 ≤ n the following statements hold.

(a) A function f(x) on Vn,k is 	-zonal if and only if there is a function f1

on M�,k such that f(x) a.e.= f1(σ′
�x), σ� =

[
0
I�

]
∈ Vn,�.

(b) Let k ≥ 	. A function f(x) on Vn,k is 	-zonal and O(k) right-invariant
(simultaneously) if and only if there is a function f0 on P� such that f(x) a.e.=
f0(s), s = σ′

�xx′σ� = σ′
�Pr{x}σ�. Thus, f0(s) = f1(s1/2u′

0), u′
0 = [0�×(k−�), I�],

where f1 is the function from (a).

(c) Let k ≥ 	. A function F (η) on Gn,k is 	-zonal if and only if there
is a function F0 (or F⊥

0 ) on P� such that F (η) a.e.= F0(s), s = σ′
�Prησ� =

Cos2(η, σ�) (or F (η) a.e.= F⊥
0 (r), r = σ′

�Prη⊥σ� = Sin2(η, σ�)).

Proof. (a) Let f be 	-zonal. We write x =
[

a

b

]
, a ∈ Mn−�,k, b ∈ M�,k.

Since n − 	 ≥ k, Lemma 2.1 gives a = vs1/2, v ∈ Vn−�,k, s = a′a = Ik − b′b.
Thus for ρ ∈ O(n − 	), we have ρa = ρvs1/2. Let

rv ∈ SO(n − 	) so that rv : v0 =
[

Ik

0(n−k−�)×k

]
→ v.

We set ρ = r−1
v . Then

f(x) = f

([
v0s

1/2

b

])
= f

([
v0(Ik − b′b)1/2

b

])
= f1(b) = f1(σ′

�x).

The converse statement in (a) is obvious.

(b) By (a), f(x) = f1(σ′
�x) = f1((x′σ�)′), and Lemma 2.1 yields x′σ� =

us1/2, u ∈ Vk,�, s = σ′
�xx′σ�. Let u0 =

[
0(k−�)×�

I�

]
, ru ∈ O(k), so that

ruu0 = u. Since f is O(k) right-invariant, then

f(x) = f(xru) = f1(σ′
�xru) = f1((r′ux′σ�)′) = f1((r′uus1/2)′)

= f1((u0s
1/2)′) = f1(s1/2u′

0) = f0(s).

The converse statement is obvious.
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(c) For η ∈ Gn,k, let x ∈ Vn,k and y ∈ Vn,n−k be orthonormal bases of η

and η⊥, respectively, i.e. η = {x} = {y}⊥. The functions ψ(x) = F ({x}) and
ψ⊥(y) = F ({y}⊥) are 	-zonal. Moreover, ψ is O(k) right-invariant, and ψ⊥ is
O(n − k) right-invariant. Hence the result follows from (b).

Lemmas 2.7, 2.5, and the equality (2.12) imply the following

Lemma 2.8. Let 1 ≤ k ≤ n − 1, 1 ≤ 	 ≤ min (k, n − k),

(2.24) dµ(s) = |s|γ |I� − s|δds, γ = (k − 	 − 1)/2, δ = (n − k − 	 − 1)/2,

c = Γ�(n/2)/Γ�(k/2)Γ�((n − k)/2).

If f(x) ∈ L1(Vn,k) is 	-zonal and O(k) right-invariant, then there is a function
f0(s) on P� so that for almost all x, f(x) = f0(s), s = σ′

�xx′σ�, and

(2.25)
1

σn,k

∫
Vn,k

f(x)dx = c

I�∫
0

f0(s)dµ(s).

This lemma implies the following corollary for functions on the Grassman-
nian.

Corollary 2.9. If 1 ≤ k ≤ n − 1, 1 ≤ 	 ≤ min (k, n − k), and f(η) ∈
L1(Gn,k) is 	-zonal, then there is a function f0(s) on P� so that for almost
all η,

f(η) = f0(s), s = σ′
�Prησ� = Cos2(η, σ�),

and

(2.26)
∫

Gn,k

f(η)dη = c

I�∫
0

f0(s)dµ(s),

with dµ(s) and c the same as in Lemma 2.8.

This corollary proves part (i) of Theorem 1.4.

3. Mean value operators

Suppose that 1 ≤ k ≤ k′ ≤ n − 1, k + k′ ≤ n. We recall the notation

x0 =
[

0
Ik

]
, η0 = {x0} = Ren−k+1 + . . .+Ren, ξ0 = Re1 + . . .+Rek′ ,

and set G = SO(n),

K =
{

ρ ∈ G : ρ =
[

α 0
0 β

]
, α ∈ SO(n − k), β ∈ SO(k)

}
,

K ′ =
{

τ ∈ G : τ =
[

γ 0
0 δ

]
, γ ∈ SO(k′), δ ∈ SO(n − k′)

}
,
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so that K and K ′ are isotropy subgroups of the coordinate planes η0 and ξ0,
respectively. The corresponding normalized invariant measures will be denoted
by dρ and dτ . Let

[0, Ik] = {r ∈ Pk : 0 < r < Ik} ∪ {0} ∪ {Ik}.

Given r ∈ [0, Ik], we set

xr =


0(k′−k)×k

r1/2

0(n−k′−k)×k

(Ik − r)1/2

 ∈ Vn,k, ηr = {xr} ∈ Gn,k,

where 0 (with subscripts) denotes zero entries,

gr =


Ik′−k 0 0 0

0 (Ik − r)1/2 0 r1/2

0 0 In−k′−k 0
0 −r1/2 0 (Ik − r)1/2

 .

It is easy to check that gr represents a linear transformation preserving coor-
dinate unit vectors ek′+1, . . . , en−k so that grx0 = xr, grη0 = ηr. Moreover,
g′rgr = In, which means that gr ∈ O(n). The proof of the equality g′rgr = In

represents a routine multiplication of matrices, and we skip it. For the reader’s
convenience we only note that, when doing calculations, one should take into
account that matrices r1/2 and (Ik−r)1/2 commute because they are diagonal-
izable by the same orthogonal transformation; see the proof of Theorem A9.3
in [M, p. 588]. To motivate the fact that the matrices r1/2 and (Ik − r)1/2

commute, we can also say that, at least for r < Ik, both matrices are power
series in the matrix variable r, i.e., limits of polynomials; hence they commute.

Given x ∈ Vn,k, η ∈ Gn,k, ξ ∈ Gn,k′ , let gx, gη, and gξ ∈ G be arbitrary
rotations satisfying gxx0 = x, gηη0 = η, gξξ0 = ξ. For f : Vn,k → C and
ϕ : Gn,k′ → C, we set fξ(x) = f(gξx), ϕx(ξ) = ϕ(gxξ), ϕη(ξ) = ϕ(gηξ). If f is
a function on Gn,k we denote fξ(η) = f(gξη).

For functions f on Vn,k and ϕ on Gn,k′ , we introduce the following mean
value operators with the averaging parameter r ∈ [0, Ik]:

(3.1) (Mrf)(ξ) =
∫
K′

fξ(τxr)dτ, (M∗
r ϕ)(x) =

∫
K

ϕx(ρg−1
r ξ0)dρ.

If f is a function on Gn,k we set

(Mrf)(ξ) =
∫
K′

fξ(τgrη0)dτ.
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The mean value M∗
r ϕ can be regarded as a function of η ∈ Gn,k. Up to abuse

of notation we shall write

(M∗
r ϕ)(η) =

∫
K

ϕη(ρg−1
r ξ0)dρ.

These mean value operators have a simple geometric interpretation. Namely,
let x = gξτxr ∈ Vn,k. Multiplying matrices and making use of Definition 1.1,
we get Cos2(ξ, x) = r. Similarly, if x ∈ Vn,k and ξ = gxρg−1

r ξ0 ∈ Gn,k′ , then
again Cos2(ξ, x) = r. Thus (3.1) can be written implicitly as
(3.2)

(Mrf)(ξ) =
∫

Cos2
(ξ,x)=r

f(x)dmξ(x), (M∗
r ϕ)(x) =

∫
Cos2

(ξ,x)=r

ϕ(ξ)dmx(ξ).

Lemma 3.1. For 1 ≤ k ≤ k′ ≤ n − 1, k + k′ ≤ n,

(3.3)
∫

Gn,k′

ϕ(ξ)(Mrf)(ξ)dξ =
∫

Gn,k

f(η)(M∗
r ϕ)(η)dη

provided that either of these integrals converges for f and ϕ replaced by |f | and
|ϕ|, respectively.

Proof. The left-hand side is

∫
G

ϕ(gξ0)(Mrf)(gξ0)dg =
∫
K′

dτ

∫
G

ϕ(gξ0)f(gτgrη0)dg

=
∫
K

dρ

∫
K′

dτ

∫
G

ϕ(gξ0)f(gτgrρ
−1η0)dg

=
∫
G

f(λη0)dλ

∫
K

ϕ(λρg−1
r ξ0)dρ

as desired.

Lemma 3.2. Suppose that 1 ≤ k ≤ k′ ≤ n − 1, k + k′ ≤ n, and let dν(r)
be the measure (2.15) with 	 replaced by k′, namely,

dν(r) = 2−k|r|(k′−k−1)/2|Ik − r|(n−k′−k−1)/2.
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Then ∫
Vn,k

f(x)dx = c

Ik∫
0

(Mrf)(ξ)dν(r), ∀ξ ∈ Gn,k′ ;(3.4)

∫
Gn,k′

ϕ(ξ)dξ = c

Ik∫
0

(M∗
r ϕ)(η)dν(r), ∀η ∈ Gn,k,(3.5)

c =
σk′,k σn−k′,k

σn,k
.

Proof. Replace in (2.14) 	 by k′, f by fξ, and set

u = γ

[
0(k′−k)×k

Ik

]
, v = β

[
0(n−k′−k)×k

Ik

]
,

γ ∈ SO(k′), δ ∈ SO(n − k′). Integration against dγdδ (instead of dudv)
gives (3.4). Let us prove (3.5). Denote the left-hand side of (3.5) by I and
write it as I =

∫
G ϕ̃(g)dg where ϕ̃(g) =

∫
K ϕη(ρg−1ξ0)dρ. Since ϕ̃ is K right-

invariant, one can identify it with a certain function ψ on Gn,k = G/K so that
ϕ̃(g) = ψ(gη0). By (3.4),

I =
∫

Gn,k

ψ(η)dη =
σk′,k σn−k′,k

σn,k

Ik∫
0

dν(r)
∫
K′

ψ(τgrη0)dτ

where the inner integral reads∫
K′

ϕ̃(τgr)dτ =
∫
K′

dτ

∫
K

ϕη(ρg−1
r τ−1ξ0)dρ =

∫
K

ϕη(ρg−1
r ξ0)dρ.

Thus we are done.

Let us introduce another mean value operator on Vn,k which serves as
an approximate identity on Vn,k (or on Gn,k), and which can be regarded
as an analog of the spherical mean on Sn−1. For x, y ∈ Vn,k, we denote

fx(y) = f(gxy), where gx ∈ G satisfies gxx0 = x, x0 =
[

0
Ik

]
. Assuming

2k ≤ n, given a k × k matrix a such that a′a ∈ [0, Ik], we set

(3.6) (Maf)(x) =
1

σn−k,k

∫
Vn−k,k

fx

([
u(Ik − a′a)1/2

a

])
du.

This can be written as
∫
x′y=a f(y)dσa(y) where dσa(y) denotes the correspond-

ing normalized measure on the “section” {y ∈ Vn,k : x′y = a}.
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Lemma 3.3. (i) For x, z ∈ Vn,k,

(3.7)
∫

SO(n−k)

fx(αz)dα = (Mx′
0zf)(x).

(ii) Let fγ(x) = f(xγ), γ ∈ O(k). Then

(3.8) Maγf = Maf
γ .

(iii) If f is O(k) right-invariant, then

(3.9) Mx′
0zf = Mrf, r2 = x′

0zz′x0 ∈ [0, Ik].

Proof. (i) As in the proof of (2.13), we write

z =
[

z1

z2

]
, z2 = x′

0z, z1 = u(Ik − z′2z2)1/2, u ∈ Vn−k,k.

Then ∫
SO(n−k)

fx(αz)dα =
∫

SO(n−k)

fx

(
α

[
u(Ik − z′2z2)1/2

z2

])
dα

which gives (3.7).

(ii) We have
(3.10)∫
Vn−k,k

fx

([
u(Ik − a′a)1/2

a

]
γ

)
du =

∫
Vn−k,k

fx

([
v(γ′(Ik − a′a)1/2γ)

aγ

])
dv,

v = uγ. Since γ′(Ik−a′a)1/2γ = (Ik−γ′a′aγ)1/2, (3.10) implies Maf
γ = Maγf .

(iii) By Lemma 2.1, x′
0z = (z′x0)′ = (vr)′ = rv′, v ∈ O(k), and (3.9)

follows from (3.8).

Lemma 3.4. Let f ∈ Lp(Vn,k), || · ||p = || · ||Lp(Vn,k), 2k ≤ n.

(a) If 1 ≤ p ≤ ∞, then sup0<a′a<Ik
||Maf ||p ≤ ||f ||p.

(b) If 1 ≤ p < ∞, then lim
a→Ik

||Maf − f ||p = 0.

(c) If f ∈ C(Vn,k) and a → Ik, then Maf → f uniformly on Vn,k.
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Proof. For G = SO(n), we have ||f ||pp = σn,k||f(gz)||pLp(G),∀z ∈ Vn,k.
Hence, by the generalized Minkowski inequality,

||Maf ||p =
(
σn,k

∫
G

|(Maf)(gx0)|pdg
)1/p

=
σ

1/p
n,k

σn−k,k

( ∫
G

∣∣∣ ∫
Vn−k,k

f

(
g

[
u(Ik − a′a)1/2

a

])
du

∣∣∣pdg
)1/p

≤
σ

1/p
n,k

σn−k,k

∫
Vn−k,k

( ∫
G

|f(g(...))|pdg
)1/p

du = ||f ||p.

Let us prove (b). Denote zu =
[

u(Ik − a′a)1/2

a

]
. As above,

||Maf − f ||p ≤
σ

1/p
n,k

σn−k,k

∫
Vn−k,k

||f(gzu) − f(gx0)||Lp(G)du

= σ
1/p
n,k

∫
SO(n−k)

||f(gγzω) − f(gx0)||Lp(G)dγ, ω =
[

Ik

0(n−2k)×k

]
.(3.11)

Replace gγ → g under the sign of the norm and denote

(3.12) Aa =

 a 0 (Ik − a′a)1/2

0 In−2k 0
−(Ik − a′a)1/2 0 a

 , f̃ = f(gx0).

Then zω = Aax0, and the integral in (3.11) can be written as ||f̃(gAa) −
f̃(g)||Lp(G). The latter tends to 0 as a → Ik (see [HR, Ch. 5, §20.4]). The
statement (c) follows directly from (3.6).

Lemma 3.5. Let 1 ≤ k ≤ n − 1, 2k ≤ n, λ = (n − 2k − 1)/2. For any
x ∈ Vn,k,

(3.13)
∫

Vn,k

f(y)dy =
σn−k,k

2k

Ik∫
0

|Ik − r|λ|r|−1/2dr

∫
O(k)

(Mvr1/2f)(x)dv.

If f is O(k) right-invariant then for any x ∈ Vn,k,

(3.14)
∫

Vn,k

f(y)dy =
σn−k,k σk,k

2k

Ik∫
0

|Ik − r|λ|r|−1/2(Mr1/2f)(x)dr.
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Proof. By (2.14) with 	 = n − k and r replaced by Ik − r, the integral
I =

∫
Vn,k

f(y)dy can be written as

I = 2−k

Ik∫
0

|Ik − r|λ|r|−1/2 dr

∫
Vk,k

dv

∫
Vn−k,k

fx

([
u(Ik − r)1/2

vr1/2

])
du.

This coincides with (3.13). In order to derive (3.14) from (3.13), we make use
of (3.9) and write Mvr1/2f as M(vrv′)1/2f . Then we interchange integrals and
replace vrv′ → r.

Remark 3.6. The case a = 0 in (3.6) is worth mentioning separately. In

this case (M0f)(x) = σ−1
n−k,k

∫
Vn−k,k

fx

([
u

0

])
du averages f over the set of

all k-frames in the (n − k)-plane {x}⊥. Thus (M0f)(x) represents the Radon
transform of the form (Rf)({x}⊥).

4. Radon transforms

The original Radon transform (Rf)(ξ) was defined by (1.1) for functions
f ≡ f(η) on the Grassmannian Gn,k. For technical reasons we shall also use
another transform (Rf)(ξ) in which f ≡ f(x) is a function on the Stiefel
manifold. If f(x) is O(k) right-invariant then the two transforms coincide.

Let us proceed to give precise definitions. We denote G = SO(n),

x̌0 =
[

Ik

0

]
∈ Vn,k, η̌0 = {x̌0} = Re1 + . . . + Rek, ξ0 = Re1 + . . . + Rek′ ,

K0 =
{

ρ ∈ G : ρ =
[

Ik 0
0 β

]
, β ∈ SO(n − k)

}
,

K ′
0 =

{
τ ∈ G : τ =

[
γ 0
0 In−k′

]
, γ ∈ SO(k′)

}
.

Definition 4.1. Suppose that 1 ≤ k < k′ ≤ n − 1, ξ ∈ Gn,k′ , gξ is an
arbitrary rotation with the property gξξ0 = ξ. If f ≡ f(x), x ∈ Vn,k, we define

(4.1) (Rf)(ξ) =
1

σk′,k

∫
Vk′,k

f

(
gξ

[
u

0

])
du =

∫
K′

0

f(gξτ x̌0)dτ.

If f ≡ f(η), η ∈ Gn,k, we define

(4.2) (Rf)(ξ) =
∫
K′

0

f(gξτ η̌0)dτ.
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In the first formula f(x) is integrated over all k-frames x in ξ, whereas in
the second one we integrate f(η) over all subspaces η of ξ. We draw attention
to a consistency of x̌0, η̌0 and K0 in this definition. The expressions (4.1) and
(4.2) are independent of the choice of rotation gξ : ξ0 → ξ. Furthermore, up
to abuse of notation, one can write

(4.3) (Rf)(ξ) = (Rf)(ξ)

provided that in the right-hand side f is a function on Gn,k, and in the left-
hand side f denotes the corresponding O(k) right-invariant function on Vn,k

(see Section 2.4). If f is not O(k) right-invariant, then (4.3) is replaced by

(4.4) (Rf)(ξ) = (Rf̃)(ξ), f̃(η) =
∫

SO(k)

f

(
rη

[
α 0
0 In−k

]
x̌0

)
dα,

rηη̌0 = η, rη ∈ G. The function f̃(η) is the average of f(x) over all k-frames
in η.

Definition 4.2. For a function ϕ(ξ), ξ ∈ Gn,k′ , the dual Radon transforms
associated to (4.1), (4.2) are defined by

(4.5) (R∗ϕ)(x) =
∫
K0

ϕ(rxρξ0)dρ, (R∗ϕ)(η) =
∫
K0

ϕ(rηρξ0)dρ,

rx and rη being arbitrary rotations satisfying rxx̌0 = x and rηη̌0 = η, respec-
tively.

These transforms average ϕ over the set of all k′-subspaces containing
x ∈ Vn,k (or η ∈ Gn,k). The definition does not depend on the choice of
rotations rx, rη, and therefore

(4.6) (R∗ϕ)({x}) = (R∗ϕ)(x)

(one can take r{x} = rx ).

Lemma 4.3 (duality relations). For 1 ≤ k < k′ ≤ n − 1,∫
Gn,k′

ϕ(ξ)(Rf)(ξ)dξ =
1

σn,k

∫
Vn,k

f(x)(R∗ϕ)(x)dx,(4.7)

∫
Gn,k′

ϕ(ξ)(Rf)(ξ)dξ =
∫

Gn,k

f(η)(R∗ϕ)(η)dη,(4.8)

provided that either integral in the corresponding formula is finite for f and ϕ

is replaced by |f | and |ϕ|, respectively.
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Proof. The left-hand side of (4.7) reads∫
G

ϕ(gξ0)dg

∫
K′

0

f(gτ x̌0)dτ =
∫
G

ϕ(gξ0)dg

∫
K0

dρ

∫
K′

0

f(gτρ−1x̌0)dτ

=
∫
G

f(λx̌0)dλ

∫
K0

ϕ(λρξ0)dρ =
1

σn,k

∫
Vn,k

f(x)(R∗ϕ)(x)dx.

The proof of (4.8) follows the same lines with x̌0 replaced by η̌0.

Corollary 4.4. For 1 ≤ k < k′ ≤ n − 1,

(4.9)∫
Gn,k′

(Rf)(ξ)dξ =
1

σn,k

∫
Vn,k

f(x)dx,

∫
Vn,k

(R∗ϕ)(x)dx = σn,k

∫
Gn,k′

ϕ(ξ)dξ,

(4.10)
∫

Gn,k′

(Rf)(ξ)dξ =
∫

Gn,k

f(η)dη,

∫
Gn,k

(R∗ϕ)(η)dη =
∫

Gn,k′

ϕ(ξ)dξ,

and therefore the Radon transforms Rf, R∗ϕ, Rf, R∗ϕ are well defined almost
everywhere (in the appropriate manifolds) for any integrable f and ϕ.

Consider an important special case when f and ϕ are 	-zonal (see Defini-
tion 2.6). We shall see that there is an essential difference between the cases
(a) 	 ≤ k and (b) 	 > k for Rf , and (a) 	 ≤ n− k′ and (b) 	 > n− k′ for R∗ϕ.
Namely, in the case (a) the Radon transforms and their duals are represented
by G̊arding-Gindikin fractional integrals associated to the cone P�, whereas in
the case (b) such representations fail.

Assuming x ∈ Vn,k, ξ ∈ Gn,k′ , 1 ≤ k < k′ ≤ n − 1, we denote

σ� =
[

0
I�

]
∈ Vn,�, α = (k′ − k)/2,

γ =
|k − 	| − 1

2
, γ̃ =

|n − k′ − 	| − 1
2

, δ =
k′ − k − 	 − 1

2
;

s = σ′
�xx′σ�, S = σ′

�Prξσ�; r = I� − s; R = σ′
�Prξ⊥σ� = I� − S.

Theorem 4.5. (i) Let f(x) be an integrable function on Vn,k. Suppose
that f(x) has the form f(x) ≡ f0(σ′

�xx′σ�), and denote f̃0(s) = |s|γf0(s). If
1 ≤ 	 ≤ k′ − k, then

(4.11) (Rf)(ξ) =


c1|S|−δ−k/2(Iα

+f̃0)(S), if 	 ≤ k,

c2

Ik∫
0

|Ik − t|δ|t|γdt
∫

V�,k

f0(S1/2utu′S1/2)du if 	 > k;
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c1 =
Γ�(k′/2)
Γ�(k/2)

, c2 = 2−kπ−�k/2 Γk(k′/2)
Γk((k′ − 	)/2)

.

(ii) Let ϕ(ξ) be an integrable function on Gn,k′. Suppose that ϕ(ξ) has
the form ϕ(ξ) ≡ ϕ0(σ′

�Prξ⊥σ�), and denote ϕ̃0(R) = |R|γ̃ϕ0(R). If 1 ≤ 	 ≤
min (k, k′ − k) then

(4.12)

(R∗ϕ)(x)

=


c̃1|r|−δ−(n−k′)/2(Iα

+ϕ̃0)(r), if 	 ≤ n − k′,

c̃2

In−k′∫
0

|In−k′ − R|δ|R|γ̃dR
∫

V�,n−k′

ϕ0(r1/2uRu′r1/2)du if 	 > n − k′;

c̃1 =
Γ�((n − k)/2)
Γ�((n − k′)/2)

, c̃2 = 2k′−nπ�(k′−n)/2 Γn−k′((n − k)/2)
Γn−k′((n − k − 	)/2)

.

Proof. (i) By (4.1),

(Rf)(ξ) =
1

σk′,k

∫
Vk′,k

f

(
gξ

[
u

0

])
du =

1
σk′,k

∫
Vk′,k

f0(zuz′u)du, zu = σ′
�gξ

[
u

0

]
.

Denote

a = g−1
ξ σ� =

[
a1

a2

]
, a1 ∈ Mk′,�, a2 ∈ Mn−k′,�.

Then zu = a′1u, and one can write (use Lemma 2.1)

(4.13) (Rf)(ξ) =
1

σk′,k

∫
Vk′,k

f0(a′1uu′a1)du =
1

σk′,k

∫
Vk′,k

f0(S1/2v′uu′vS1/2)du

where

a′1a1 = σ′
�gξ

[
Ik′ 0
0 0

]
g−1
ξ σ� = σ′

�Prξσ� = S.

If 	 ≤ k′ − k then Lemma 2.5 yields the following equalities. In the case 	 > k:

(Rf)(ξ) =
σk′−�,k

2kσk′,k

Ik∫
0

|Ik − t|δ|t|γdt

∫
V�,k

f0(S1/2utu′S1/2)du.

In the case 	 ≤ k:

(Rf)(ξ) =
σk′−k,� σk,�

2� σk′,� |S|δ+k/2

S∫
0

|S − s|δ|s|γf0(s)ds.
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By (2.12) and (2.7), these equalities imply (4.11).

(ii) By (4.5),

(R∗ϕ)(x) =
∫
K0

ϕ(rxρ−1ξ0)dρ =
∫
K0

ϕ0(σ′
�rxρ−1Prξ⊥

0
ρr−1

x σ�)dρ

=
∫
K0

ϕ0(y′ρ−1Λρy)dρ, y = r−1
x σ� ∈ Vn,�,

Λ =
[

0 0
0 In−k′

]
.

As in (2.13) we write

y =
[

y1

y2

]
=

[
v1s

1/2

v2r
1/2

]
, v1 ∈ Vk,�, v2 ∈ Vn−k,�,

s = y′1y1 = y′x̌0x̌
′
0y ∈ P�, r + s = I�.

Then for

(4.14) ρ =
[

Ik 0
0 β

]
, ω =

[
0(k′−k)×(n−k′)

In−k′

]
∈ Vn−k,n−k′ ,

we have y′ρ−1Λρy = y′2β
′ωω′βy2 = r1/2v′2β

′ωω′βv2r
1/2. This gives

(R∗ϕ)(x) =
∫

SO(n−k)

ϕ0(r1/2v′2β
′ωω′βv2r

1/2)dβ

=
1

σn−k,�

∫
Vn−k,�

ϕ0(r1/2v′2ωω′v2r
1/2)dv2(4.15)

(2.18)
=

1
σn−k,n−k′

∫
Vn−k,n−k′

ϕ0(A′ωω′A)dω, A = v2r
1/2 ∈ Mn−k,�.

The last integral has the form (2.19), and Lemma 2.5 gives the following equal-
ities. In the case n − k′ < 	:

(R∗ϕ)(x) =
σn−k−�,n−k′

2n−k′σn−k,n−k′

In−k′∫
0

|R|γ̃ |In−k′ − R|δdR

∫
V�,n−k′

ϕ0(r1/2uRu′r1/2)du.

In the case n − k′ ≥ 	:

(R∗ϕ)(x) =
σn−k′,� σk′−k,�

2� σn−k,� |r|δ+(n−k′)/2

r∫
0

|R|γ̃ |r − R|δϕ0(R)dR.

Owing to (2.12) and (2.7), these coincide with (4.12).
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It is worth noting that for 	 > k, the rank of the matrix s = σ′
�xx′σ� is

≤ k. It follows that s is a boundary point of the cone P�. So is R = σ′
�Prξ⊥σ�

if 	 > n − k′.
By making use of (4.3), (4.6), Lemma 2.7(c), and Definition 1.1, one can

reformulate Theorem 4.5 for Radon transforms R, R∗. We keep the notation
used in Theorem 4.5.

Theorem 4.6. Suppose that f and ϕ are 	-zonal integrable functions on
Gn,k and Gn,k′ , respectively. Let 1 ≤ k < k′ ≤ n − 1, η ∈ Gn,k, ξ ∈ Gn,k′ ,

s=σ′
�Prησ� =Cos2(η, σ�), r=σ′

�Prη⊥σ� =Sin2(η, σ�),

S =σ′
�Prξσ� =Cos2(ξ, σ�).

(i) If 1 ≤ 	 ≤ min (k, k′ − k), then there is a function f0 on (0, I�) such
that f(η) a.e.= f0(s) and

(4.16) (Rf)(ξ) = c1|S|−δ−k/2(Iα
+f̃0)(S), f̃0(s) = |s|γf0(s).

(ii) If 1 ≤ 	 ≤ min (n−k′, k, k′−k), then there is a function ϕ0 on (0, I�)
such that ϕ(ξ) a.e.= ϕ0(S) and

(4.17) (R∗ϕ)(η) = c̃1|r|−δ−(n−k′)/2(Iα
+ϕ̃0)(r), ϕ̃0(S) = |S|γ̃ϕ0(S).

Theorems 4.5 and 4.6 are consistent with similar results in [Ru2] for totally
geodesic transforms (the case k = 1).

Now we switch to the general (not necessarily zonal) case. Let M∗
r and

Ma be the mean value operators from (3.1) and (3.6), respectively. For fixed
x ∈ Vn,k, we denote

(4.18) ψ(s) = |s|−1/2

∫
SO(k)

(Mδs1/2f)(x) dδ, s ∈ Pk,

and suppose in the following that f is an integrable O(k) right-invariant func-
tion on Vn,k.

Lemma 4.7. Let 1 ≤ k < k′ ≤ n − 1, k + k′ ≤ n, α = (k′ − k)/2. If
2k ≤ k′, then

(4.19) |r|α−1/2M∗
r Rf =

Γk(k′/2)
Γk(k/2)

(Iα
+ψ)(r), r ∈ (0, Ik),

where Iα
+ψ is the Gårding-Gindikin fractional integral associated to the cone Pk.
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Proof. By (3.1), (4.1) and (3.7),

(M∗
r Rf)(x) =

1
σk′,k

∫
Vk′,k

du

∫
K

fx

(
ρg−1

r

[
u

0

])
dρ(4.20)

=
1

σk′,k

∫
SO(k)

dδ

∫
Vk′,k

(Mδa(u)f)(x)du,

(4.21) a(u) = x′
0g

−1
r

[
u

0

]
= x′

r

[
u

0

]
= a′1u, a1 =

[
0(k′−k)×k

r1/2

]
∈ Mk′,k.

For 2k ≤ k′, due to (3.8) and O(k) right-invariance of f , by (2.22) we obtain

M∗
r Rf =

σk′−k,k σk,k

2kσk′,k
|r|−(k′−k−1)/2

r∫
0

|r−s|(k′−2k−1)/2|s|−1/2ds

∫
SO(k)

Mδs1/2f dδ.

By (4.18) and (2.12), this gives (4.19).

Remark 4.8. For k = 1, the equality (4.19) is due to Helgason [H1], [H2].
The proof presented above extends the argument from [Ru2, Lemma 2.8(i)] to
the matrix case. The obvious assumption k′ ≥ 2 in [H1], [H2] transforms into
k′ ≥ 2k. For k′ < 2k, the fractional integral in (4.19) diverges.

The equality (4.19) points the way to inversion formulae. First of all we
have to eliminate the artificial restriction k′ ≥ 2k.

Lemma 4.9. Let f be an integrable O(k) right-invariant function on Vn,k,

ϕ(ξ) = (Rf)(ξ), ξ ∈ Gn,k′ , 1 ≤ k < k′ ≤ n − 1; k + k′ ≤ n.

For fixed x ∈ Vn,k, we denote ϕ̂(s) = |s|(k′−k−1)/2(M∗
s ϕ)(x), s ∈ Pk. Then

(4.22) I
(n−k′)/2
+ ϕ̂ =

Γk(k′/2)
Γk(k/2)

I
(n−k)/2
+ ψ,

with ψ(s) defined by (4.18).

Proof. For k′ ≥ 2k, (4.22) follows immediately from (4.19) due to the semi-
group property of fractional integrals. Once the result is known, we shall prove
it in the maximal range of parameters. The idea is to use (2.22) twice, from
the right to the left and from the left to the right, with different parameters.
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Owing to (4.20) and (4.21), by Lemma 2.1 we have

M∗
r Rf =

1
σk′,k

∫
SO(k)

dδ

∫
Vk′,k

Mδa′
1uf du =

1
σk′,k

∫
SO(k)

dδ

∫
Vk′,k

Mδs1/2v′uf du

(s = a′1a, v ∈ Vk′,k)

(2.18)
=

1
σk′,k

∫
SO(k)

dδ

∫
Vk′,k

Mδs1/2v′u0
f dv, u0 =

[
Ik

0

]
∈ Vk′,k.

Thus the left-hand side of (4.22) reads

1
σk′,k Γk((n − k′)/2)

r∫
0

|r − s|(n−k′−k−1)/2|s|(k′−k−1)/2ds

×
∫

SO(k)

dδ

∫
Vk′,k

Mδs1/2v′u0
f dv.

By (2.22) (with k replaced by k′ and 	 replaced by k), this can be written as

(4.23)
2k σn,k |r|(n−k−1)/2

σk′,k σn,k′ σn−k′,k Γk((n − k′)/2)

∫
SO(k)

dδ

∫
Vn,k′

MδA′yu0f dy,

with A ∈ Mn,k so that A′A = r. Then we set

y = γy0, γ ∈ SO(n), y0 =
[

Ik′

0

]
∈ Vn,k′ ,

and integrate in γ. Since y0u0 ∈ Vn,k we have

(4.24)
∫

Vn,k′

MδA′yu0f dy = σn,k′

∫
SO(n)

MδA′γy0u0f dγ =
σn,k′

σn,k

∫
Vn,k

MδA′zf dz.

Now we plug (4.24) in (4.23) and apply (2.22) again (with 	 = k). This gives
(4.22). The conditions for k, k′, and n in the lemma agree with those needed
for (2.22).

In a similar way one can extend the range of parameters in Theorems 4.5
and 4.6. An analog of Theorem 4.5 reads as follows.

Theorem 4.10. Let f(x) and ϕ(ξ) be 	-zonal integrable functions on Vn,k

and Gn,k′ , respectively ; 1 ≤ k < k′ ≤ n − 1, 1 ≤ 	 ≤ min (k, n − k′). Suppose
that f is O(k) right-invariant, and set

s = σ′
�xx′σ�, S = σ′

�Prξσ�, r = I� − s, R = I� − S, σ� =
[

0
I�

]
.
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(i) There exist functions f0(s) and F0(S) on (0, I�) such that f(x) a.e.= f0(s),
(Rf)(ξ) a.e.= F0(S), and

(4.25) I
(n−k′)/2
+ F̂0 =

Γ�(k′/2)
Γ�(k/2)

I
(n−k)/2
+ f̂0,

F̂0(S) = |S|(k′−�−1)/2F0(S), f̂0(s) = |s|(k−�−1)/2f0(s).

(ii) There exist functions ϕ0(R) and Φ0(r) on (0, I�) such that ϕ(ξ) a.e.=
ϕ0(R), (R∗ϕ)(x) a.e.= Φ0(r), and

(4.26) I
k/2
+ Φ̂0 =

Γ�((n − k)/2)
Γ�((n − k′)/2)

I
k′/2
+ ϕ̂0,

Φ̂0(r) = |r|(n−k−�−1)/2Φ0(r), ϕ̂0(R) = |R|(n−k′−�−1)/2ϕ0(R).

Proof. (i) By Lemma 2.7(b), f(x) can be written as f0(s). Owing to
(4.13), for any v ∈ Vk′,�, Lemma 2.1 yields

(Rf)(ξ) =
1

σk′,k

∫
Vk′,k

f0(S1/2v′uu′vS1/2)du

(2.18)
=

1
σk′,�

∫
Vk′,�

f0(S1/2v′u0u
′
0vS1/2)dv = F0(s), u0 =

[
Ik

0

]
∈ Vk′,k.

Hence by (2.22) (with k replaced by k′), the left-hand side of (4.25) can be
written as

1
σk′,� Γ�((n − k′)/2)

t∫
0

|t − S|(n−k′−�−1)/2|S|(k′−�−1)/2dS

×
∫

Vk′,�

f0(S1/2v′u0u
′
0vS1/2)dv(4.27)

=
2� σn,� |t|(n−�−1)/2

σk′,� σn,k′ σn−k′,� Γ�((n − k′)/2)

∫
Vn,k′

f0(A′yu0u
′
0y

′A)dy

provided k′ + 	 ≤ n, A ∈ Mn,�, A′A = t ∈ P�. As in (4.24), the integral in
(4.27) can be replaced by (σn,k′/σn,k)

∫
Vn,k

f0(A′zz′A)dz and transformed by
(2.22). Proceeding as in the proof of Lemma 4.6, we get (4.25).

(ii) Existence of ϕ0 satisfying ϕ(ξ) = ϕ0(R) follows from Lemma 2.7(c)
provided 	 ≤ min (k′, n−k′). By (4.15), R∗ϕ has the form Φ0(r), and by (2.22)



814 ERIC L. GRINBERG AND BORIS RUBIN

(with k replaced by n − k), the left-hand side of (4.26) is represented as

(4.28)

1
σn−k,� Γ�(k/2)

t∫
0

|t − r|(k−�−1)/2|r|(n−k−�−1)/2dr

∫
Vn−k,�

ϕ0(r1/2v′2ωω′v2r
1/2)dv2

=
2� σn,� |t|(n−�−1)/2

σn−k,� σn,n−k σk,� Γ�(k/2)

∫
Vn,n−k

ϕ0(A′yωω′y′A)dy

where A ∈ Mn,�, A′A = t, and ω has the same meaning as in (4.14). The
equality (4.28) holds provided 	 ≤ min (k, n−k). The integral

∫
Vn,n−k

in (4.28)
can be written as

(4.29)
σn,n−k

σn,n−k′

∫
Vn,n−k′

ϕ0(A′zz′A)dz.

We plug (4.29) in (4.28) and apply (2.22) (with k replaced by n − k′ and
1 ≤ 	 ≤ min (k′, n − k′)). This gives (4.26).

Theorem 4.10 can be easily reformulated for f(x) and (R∗ϕ)(x) replaced
by the corresponding functions on Gn,k. This will give us an extension of
Theorem 4.6.

Having (4.22), (4.25) and (4.26) at our disposal, we can change the order of
fractional integrals on both sides by making use of their semigroup property.
That was impossible with (4.11), (4.12) and (4.19), because these formulae
were derived with inevitable additional restrictions.

Corollary 4.11. Let x ∈ Vn,k, ξ ∈ Gn,k′ , 1 ≤ k < k′ ≤ n − 1, α =
(k′−k)/2, m ∈ N, and suppose that the functions ψ, ϕ̂, f̂0, F̂0, ϕ̂0, Φ̂0 have the
same meaning as in (4.22), (4.25), (4.26).

(i) If f(x) ∈ L1(Vn,k), ϕ(ξ) = (Rf)(ξ), k + k′ ≤ n, then for m >

(k′ − 1)/2,

(4.30) Im−α
+ ϕ̂ =

Γk(k′/2)
Γk(k/2)

Im
+ ψ.

(ii) If f ∈ L1(Vn,k) and ϕ ∈ L1(Gn,k′) are 	-zonal, 1 ≤ 	 ≤ min (k, n−k′),
and f is O(k) right-invariant (i.e. f = f0(s), ϕ = ϕ0(R), Rf = F0(S), R∗ϕ =
Φ0(r); see Theorem 4.7), then for m > α + (	 − 1)/2,

Im−α
+ F̂0 =

Γ�(k′/2)
Γ�(k/2)

Im
+ f̂0,(4.31)

Im−α
+ Φ̂0 =

Γ�((n − k)/2)
Γ�((n − k′)/2)

Im
+ ϕ̂0.(4.32)
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Proof. Equalities (4.30)–(4.32) follow from (4.22), (4.25) and (4.26) if we
apply I

m−(n−k)/2
+ (on Pk) to (4.22), I

m−(n−k)/2
+ (on P�) to (4.25), and I

m−k′/2
+

(on P�) to (4.26). If m is not sufficiently large, the action of these operators
is treated in the sense of distributions (see Sec. 2.2). The resulting equalities
(4.30)-(4.32) still hold pointwise almost everywhere (on (0, Ik) for (4.30), and
on (0, I�) for (4.31) and (4.32)), because fractional integrals in these equalities
are well defined and represent integrable functions.

Proof of Theorem 1.2. By (4.30) and (4.18),

(4.33) ψ(r) ≡ |r|−1/2

∫
SO(k)

Mδr1/2f dδ =
Γk(k/2)
Γk(k′/2)

(Dm
+ Im−α

+ ϕ̂)(r).

Note that owing to Remark 3.6, ψ(r) behaves like |r|−1/2 as |r| → 0, and
therefore (unlike the case k = 1) we cannot differentiate (4.30) pointwise, even
for f smooth. Thus we have to invoke distributions. To complete the proof it
remains to note that ψ(r) → f as r → Ik in the required sense. Indeed, by the
generalized Minkowski inequality

‖ψ(r) − f‖p ≤ |r|−1/2

∫
SO(k)

||Mδr1/2f − f ||p dδ + [|r|−1/2 − 1] ||f ||p.

Because of Lemma 3.4(a), the integrand in the first term does not exceed 2||f ||p.
Hence, by the Lebesgue theorem on dominated convergence and Lemma 3.4(b,c),
we obtain lim

r→Ik

ψ(r) = f in the Lp-norm (for f ∈ Lp) or in the sup-norm (if f

is a continuous function).

In a similar way we get the following inversion formulae for the Radon
transform and its dual in the 	-zonal case:

f0(s) =
Γ�(k/2)
Γ�(k′/2)

|s|−(k−�−1)/2(Dm
+ Im−α

+ F̂0)(s),(4.34)

ϕ0(R) =
Γ�((n − k′)/2)
Γ�((n − k)/2)

|R|−(n−k′−�−1)/2(Dm
+ Im−α

+ Φ̂0)(R).(4.35)

F̂0(S) = |S|(k′−�−1)/2F0(S), Φ̂0(r)= |r|(n−k−�−1)/2Φ0(r).

These equalities hold under assumptions of Corollary 4.11(ii) and follow from
(4.31), (4.32). The formula (4.34) was presented in Theorem 1.4(ii) “in Grass-
mannian language”.
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