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A new construction of the moonshine

vertex operator algebra over
the real number field

By MASAHIKO MIYAMOTO*

Abstract

We give a new construction of the moonshine module vertex operator al-
gebra V%, which was originally constructed in [FLM2]. We construct it as a
framed VOA over the real number field R. We also offer ways to transform a
structure of framed VOA into another framed VOA. As applications, we study
the five framed VOA structures on Vg, and construct many framed VOAs in-
cluding V! from a small VOA. One of the advantages of our construction is
that we are able to construct V7 as a framed VOA with a positive definite
invariant bilinear form and we can easily prove that Aut(V?) is the Monster
simple group. By similar ways, we also construct an infinite series of holomor-
phic framed VOAs with finite full automorphism groups. At the end of the
paper, we calculate the character of a 3C' element of the Monster simple group.

1. Introduction

All vertex operator algebras (VOAs) (V,Y,1,w) in this paper are sim-
ple VOAs defined over the real number field R and satisfy V = @72,V; and
dim Vy=1. CV denotes the complexification C ®g V of V. Throughout this
paper, v(,,) denotes a coeflicient of vertex operator Y(v,2)=>,.cz v(m)z_m_l
of v at 7™ ! and Y(w,2) = Y,,c7 L(m)z"""2, where w is the Virasoro
element of V. VOAs (conformal field theories) are usually considered over C,
but VOAs over R are extremely important for finite group theory. The most
interesting example of VOAs is the moonshine module VOA V#=3"° VZ-h over
R, constructed in [FLM2], whose second primary space V; coincides with the
Griess algebra and the full automorphism group is the Monster simple group
M. Although it has many interesting properties, the original construction
essentially depends on the actions of the centralizer Cy(0) = 21+21Co.1 of a
2B-involution 6 of M and it is hard to see the actions of the other elements
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explicitly. The Monster simple group has the other conjugacy class of involu-
tions called 2A. One of the aims in this paper is to give a new construction
of the moonshine module VOA V! from the point of view of an elementary
abelian automorphism 2-group generated by 2A-elements, which gives rise to
a framed VOA structure on V% In this paper, we will show several techniques
to transform framed VOAs into other framed VOAs. An advantage of our
ways is that we can construct many framed VOAs from smaller pieces. As
basic pieces, we will use a rational Virasoro VOA L(3,0) with central charge
%, which is the minimal one of the discrete series of Virasoro VOAs. We note
that L(3,0) over R satisfies the same fusion rules as the 2-dimensional Ising
model (CL(%, 0) does. In particular, we will use a rational conformal vector
e €V with central charge 3, that is, a Virasoro element of sub VOA (e) which
is isomorphic to L(%, 0). In this case, we have an automorphism 7. of V' defined
by

1 1 on all (e)-submodules isomorphic to L(3,0) or L(3, 3)
L { —1  on all {¢)-submodules isomorphic to L(}, &) ,
whose complexification was given in [Mil].

In this paper, we will consider a VOA (V,Y,1,w) of central charge §
containing a set {e; | i=1,--- ,n} of mutually orthogonal rational conformal
vectors e; with central charge % such that the sum ) ;" | e; is the Virasoro
element w of V. Here, “orthogonal” means (e;)ye; = 0 for i # j. This
is equivalent to the fact that a sub VOA T = (ey,--- ,ey) is isomorphic to
L(1,0)®" with Virasoro element w. Such a VOA V is called “a framed VOA”
in [DGH] and we will call the set {eq, ..., e} of conformal vectors “a coordinate
set.” We note that a VOA V of rank 5 is a framed VOA if and only if V' is a
VOA containing L(%, 0)®™ as a sub VOA with the same Virasoro element. It is
shown in [DMZ] that V¥ is a framed VOA of rank 24. Our main purpose in this
paper is to reconstruct V7 as a framed VOA. Another important example of
framed VOASs is a code VOA Mp for an even linear code D, which is introduced
by [Mi2]. It is known that every irreducible T-module W is a tensor product
®, L(3, h;) of irreducible L(3,0)-modules L(},h;) (hi=0, 1, 55); see [DMZ].
Define a binary word
(1.2) TW)=(a1, - ,an)
by a;=1if h;= % and a; =0 if h; =0 or % It follows from the fusion rules of
L(3,0)-modules that if U is an irreducible Mp-module, then 7(W) does not
depend on the choice of irreducible T-submodules W of U and so we denote it
by 7(U). We call it a (binary) 7-word of U since it corresponds to the actions
of automorphisms 7.,. Even if U is not irreducible, we use the same notation
7(U) if it is well-defined. We note that T is rational and the fusion rules are
given by

(B, W) x (BI,U) = L, (W' x U)
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for L(%,0)-modules W*, U’ as proved in [DMZ]. We have to note that their
arguments also work for VOAs over R.

As we will show, if V' is a framed VOA with a coordinate set {e1,--- , ey},
then there are two binary linear codes D and S of length n such that V has
the following structure:

(].) V: EBQGSVO‘.
(2) V) is a code VOA Mp.
(3) V¢ is an irreducible Mp-module with 7(V*)=a for every a€S.

We will call such a framed VOA a (D, S)-framed VOA.

In order to transform structures of framed VOAs smoothly, the unique-
ness of a framed VOA structure is very useful (see Theorem 3.25). Although
the uniqueness theorem holds for framed VOAs over C (see [Mi5]), it is not
true for framed VOAs over R. In order to avoid this anomaly, we assume the
existence of a positive definite invariant bilinear form (PDIB-form). In this
setting, we are able to transform framed VOA structures as in VOAs over
C. For example, “tensor product”: for a (D, S)-framed VOA V = @,csV ?,
Ve is a (D", S%")-framed VOA, and “restriction”: for a subcode R of S,
Resp(V) = @BnecrV® is a (D, R)-framed VOA, are easy transformations. The
most important tool is “an induced VOA Ind2(V).” Let us explain it for
a while. For £ C D C Sl, we had constructed “induced CMp-module”
Ind2(CW) from an Mg-module W in [Mi3]. We apply it to a VOA and con-
struct a (D, S)-framed VOA Ind2(W) from an (E,S)-framed VOA W. For-
tunately, it preserves the PDIB-form. Moreover, the maximal one Indz (W)
becomes a holomorphic VOA. As an example, we will construct the Leech
lattice VOA V from V¥ by restricting and inducing.

We note that it is possible to construct V% over the rational number field
(even over Z[%]) in this way. However, we need several other conditions to get
the uniqueness theorem and we will avoid such complications.

Our essential tool is the following theorem, which was proved for VOAs
over C by the author in [Mi5].

Hypotheses I: (1) D and S are both even linear codes of length 8k.
(2) Let {V* | a€S} be a set of irreducible Mp-modules with 7(V*)=a.
(3) For any «, 3€ S, there is a fusion rule V@ x VA =V+5,

(4) For a, e S—{(0™)} satisfying o # 3, it is possible to define a (D, («, 3))-
framed VOA structure with a PDIB-form on

Vil =Mp e Ve VP g vets,

(4") If S=(a), Mp ® V* is a framed VOA with a PDIB-form.
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THEOREM 3.25. Under Hypotheses 1,

V="
a€esS
has a structure of (D,S)-framed VOA with a PDIB-form. A framed VOA
structure on V. = @acsV® with a PDIB-form is uniquely determined up to
Mp-isomorphisms.

Theorem 3.25 states that in order to construct a framed VOA, it is suf-
ficient to check the case dimgz, S =2. It is usually difficult to determine the
fusion rules V x V? but an extended [8,4]-Hamming code VOA My, will
solve this problem. For example, the condition (3) may be replaced by the
following conditions on codes D and S as we will see.

THEOREM 3.20. Let W' and W? be irreducible Mp-modules with o =
F(W1h), B=F(W?). For a triple (D, , 3), assume the following two conditions:

(3.a) D contains a self-dual subcode E which is a direct sum of k extended
[8,4]- Hamming codes such that E, = {7y € E|Supp(y) C Supp(a)} is a
direct factor of E or {0}.

(3.b) Dg and Dy contain mazimal self-orthogonal subcodes H? and HoP
containing Eg and E,yg, respectively, such that they are doubly even
and HP + E = H**P + E, where the subscript S, denotes a subcode

{B € S|Supp(B) C Supp(a)} for any code S.
Then W x W2 is irreducible.
Fortunately, these properties are compatible with induced VOAs.

THEOREM 3.21 (Lemma 3.22). Assume that a triple (D, o, 3) satisfies the
conditions of Theorem 3.20 for any o, 5 € (d,7). Let F C (4, 7>J‘ be an even
linear code containing D. If W=Mp@®W2@WYOWO+Y is a (D, (5,7))-framed
VOA, then

IndE(W) = Mp & Ind5(W?) & Ind5 (W) @ Indby (W)
has an (F, (0,7))-framed VOA structure which contains W as a sub VOA.

COROLLARY 4.2. Let W = Mp @ W° @ WY @ Wt be a (D, (6,7))-
framed VOA with a PDIB-form and assume that a triple (D, «, (3) satisfies the
condition of Theorem 3.20 for any o, B€(6,7v). If F is an even linear subcode
of <a,ﬁ>J‘ containing D, then Ind5 (W) also has a PDIB-form.

Theorems 3.21 and 3.25 state that in order to construct VOAs, it is suffi-
cient to collect Mp-modules satisfying the conditions of Hypotheses I. We will
construct such modules from the pieces of the lattice VOA Vg, with a PDIB-
form, which is constructed from the root lattice of type Eg. We will show that
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f/E8 is a (Dg,, Sg, )-framed VOA EBaeSEs(f/Es)a, where Dp, is isomorphic to
the second Reed Miiller code RM(2,4) [CS] and
(1.3)

Sk, = ((1'9), (0°1%), ({0'11}?), ({0°1%}"), ({01}®)) =Dz, = RM(L,4).

We will show that a triple (Dg,, «, 3) satisfies (3.a) and (3.b) of Theorem 3.20
for any «, € SE,; see Lemma 5.1. In particular, we have

(1.4) Ve x Vi = VgtP
for o, B € SE,.

We next explain a new construction of the moonshine module VOA. Set
(1.5) 5% = {(o, a, ), (o, @, ), (@, 0, @), (o, o, ) | €S, }

and D= (S%)1, where o= (1'6)—a. S% and D% are even linear codes of length
48. We note that D? is of dimension 41 and contains Dg,®3 := D, @ Dp, @ D,
as a subcode. Clearly, a triple (Dg, 3, a, 3) satisfies the conditions of Theorem

3.20 for any «, 8 € S%. Our construction consists of the following three steps.
First, ng is a (D%f, S%S)—framed VOA with a PDIB-form and

(1.6) Vi= P (VEeVL VL)
(B,7)6S"

is a sub VOA of (V,)®? by the fusion rules (1.4). The second step is to twist
it. Set & = (10'%) of length 16 and let R denote a coset module Mp,, +¢,- To

simplify the notation, we denote R X 1758 by R‘Nfgs. Set
Q = ((6£0'), (0°°6&)) € Z5°.
We induce V! from D%S to D%g’—i—Q:

@3
V2 .= Ind"% +Q(

®3
DEB

vh.
V2 is not a VOA, but we are able to find the following Mpes-submodules in
V2

W(avavo‘) = VE('NS X Vgg ® VEOégv

W(a70‘7ac) = (RVEO;) ® (RVEQS) ® ‘N/gsc’

W@t .= (RVE) @ Vi, ® (RVE)

and ~ = ¥
wletea) .= Vi © (RVE) @ (RVE)

for a€ Sp,. At the end, we extend WX from D®3 to D",

(VH)X = IndB5, (WX)
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for x € S%. We will show that these Mps-modules (V)X satisfy the conditions
in Hypotheses 1. Therefore we obtain the desired VOA

Vii= (V)X

XESt
with a PDIB-form.

Remark. If we construct an induced VOA Indg:)as(vl) from V1 directly,
then it is easy to check that it isomorphic to the Leech lattice VOA Vi (see
Section 9). In particular, Vi has a (D% S%)-framed VOA structure, too.

Since V' is a (D!, S)-framed VOA and S% = (D)1, V! is holomorphic
by Theorem 6.1. It comes from the structure of V! and the multiplicity of
irreducible M ps-submodules that ¢~ " dim V,fq" =q ' 4+196884g+- - - is the
J-function J(q). We will also see that the full automorphism group of V% is the
Monster simple group (Theorem 9.5). It is also a Zy-orbifold construction from
Vi (Lemma 9.6). Thus, this is a new construction of the moonshine module
VOA and the monster simple group.

In §2.5, we construct a lattice VOA V;, with a PDIB-form. We investigate
framed VOA structures on VES in §5. In §7, we construct the moonshine VOA
V!, In Section 8, we will construct a lot of rational conformal vectors of V¥
explicitly. In Section 9, we prove that Aut(V?) is the Monster simple group and
V% is equal to the one constructed in [FLM2]. In Section 10, we will construct
an infinite series of holomorphic VOAs with finite full automorphism groups.
In Section 11, we will calculate the characters of some elements of the Monster
simple group.

2. Notation and preliminary results

We adopt notation and results from [Mi3] and recall the construction of a
lattice VOA from [FLM2]. Codes in this paper are all linear.

2.1. Notation.
Throughout this paper, we will use the following notation.

c

o The complement (1")—« of a binary word « of length n.
Dg = {ae D | Supp(a) C Supp(f)} for any code D.

Dt st The moonshine codes. See (1.5).

‘DE37SE8 See (13)

D A group extension {k*|a€ D} of D by +1.

Eg, Eg(m) An even unimodular lattice of type Fjg; also see (5.1).

F, The set of all even words of length r.

Hsg The extended [8,4]-Hamming code.
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H(i o), H(L,B) Irreducible Mp,-modules; see Def.13 in [Mi5]

’ b or Theorem 3.16.
Ind2(U) An induced Mp-module from Mg-module U;
see Theorem 3.15.
() A vector in a lattice VOA Vi, = @, S(H)u(x);
see §2.3.
M =M°e M, M°=L(3,0),M*=L(3,3).
Mgy p A coset module
Da-an)es+D (R M) @ kl@a)); see §3.
Mp A code VOA; see §3.
g =u(x)+i(x)eEM 21 ® M' C Vg, with (z,z)=1.
Q — <(10151015016)? (10150161015)>.
RVEaS M(107)+DE8 X VEag'
T(W) A 7-word (ai,--- ,a,); see (1.2).
T =@, L(3,0)=(e1, - ,en) =Mgn).
A(z,z) ~ B(z,z) (x—2)"(A(x,2)—B(z,2))=0 for some neN.
0 An automorphism of V;, defined by —1 on L.
& A binary word which is 1 in the i-th entry and 0

everywhere else.

2.2. VOAs over R and VOAs over C. At first, we will quote the following
basic results for a VOA over R from [Mi6]. In this paper, L(c,0) and L(c,0)c
denote simple Virasoro VOAs over R and C with central charge ¢, respectively.
Also, Vir denotes the Virasoro algebra over R.

LEMMA 2.1. Let V be a VOA over R and Ug an irreducible CV-module
with real degrees. Then Uc s an irreducible V-module or there is a unique

V-module U such that CU =2 Uc as CV-modules.

COROLLARY 2.2. Assume that L(c,h)c is an irreducible L(c,0)c-module
with lowest degree h€R. Then there exists a unique irreducible L(c,0)-module

L(c, h) such that L(c,h)c = CL(c,h). In particular, CL(c,0) = L(c,0)c.

Proof. First of all, we note that C ®g W = W & W as L(c,0)c-
modules for any L(c, 0)c-module W and C@r U = U & U as L(c,0)-modules
for any L(c,0)-module U. Therefore, for any proper L(c,0)-module W of
L(c,h)c, CW = L(c,h)c or L(c,h)c @ L(c,h)c as L(c,0)c-modules. Since
dimg (L(c, h)c)n=2, L(c, h)c is not irreducible and hence there is an irreducible
L(c,0)-module L(c, h) such that L(c, h)c = CL(c, h) by Lemma 2.1. O

In particular, the number of irreducible L(c,0)-modules is equal to the
number of irreducible L(¢, 0)c-modules with real degrees.
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COROLLARY 2.3. The irreducible L(%,0)-modules are L(5,0), L(3, ) and
L L),

THEOREM 2.4. If CV is rational, then so is V. In particular, L(%,O) 18
rational, that is, all modules are completely reducible.

Proof. We have to show that all V-modules are completely reducible.
Suppose this is false and let U be a minimal counterexample; that is, every
proper V-submodule of U is a direct sum of irreducible V-modules. By the
minimality, we can reduce to the case where U contains a V-submodule W
such that U/W and W are irreducible. So, we have a matrix representation of

iea = (U573

vertex operator

of v on U, where Y(v, 2) € End(W)[[z, 2], Y2(v, z) € Hom(U /W, W)][z, 2~ 1]]
and Y3(v,2) € End(U/W)[[z,27!]]. By the assumption, CU is completely
reducible and so CU=CW & X¢ as CV-modules. Hence there is a matrix P=

Iy A 1. . . (Y(v,2) 0
(O B> such that PY (v,z)P~" is a diagonal matrix < 0 Yi(v, )

with Y4(v, 2) € End(CU/CW)[[z, 27 1]], where Iy is the identity of End(CW),
A€Hom(CU/CW,CW) and B €End(CU/CW). Denote A by Aj+y/~1A, with
real matrices A; (i=1,2). By direct calculation,

Y (v, 2)AB™ ' 4+Y?(v,2) B"' + AY3(v, 2) B~ =0
and hence we have
Y1 (v, 2)A+Y?%(v,2)+ AY3 (v, 2) =0

and
Y, 2) A +Y? (v, 2) + A1 Y3 (v, 2)=0.

Set Q= <ISV I?/;/) with an identity map Iy on U/W; then QY (v, 2)Q 7!

Yi(v,2) 0

0 Vv, z))’ which contradicts the choice of U.

is a diagonal matrix (
O
About the fusion rules, we have the following:

LEMMA 2.5. Let WY W2 W3 be V-modules. Then

. w3 : cw?
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3
Proof. Clearly, if I € Iy, <W1W W2> then we can extend it to an inter-
twining operator I € Icy cw? by defining I(yu,z) = vI(u,z) for
cwt Ccw? ’ ’

3
yeC,uc W' It is easy to see that if {I',---  I*} is a basis of Iy, <W1WW2>

o cw?
then {I',--- ,I*} is a linearly independent subset of Icy (CWI (CWQ) For,
if Zle(ai—l—bl-\/—_l)fi(v, 2)u =0 for ve W ueW?, then Zle ail' (v, 2)u=0
and Zle bil'(v, z)u=0. O
2.3. Lattice VOAs. Since we will often use lattice VOAs, we recall the
definition from [FLMZ2].
Let L be a lattice of rank m with a bilinear form (-, -). Viewing H=R®z L

as a commutative Lie algebra with a bilinear form (, ), we define the affine Lie
algebra

H = H[t,t Y +RC
[C,H] =0, [ht", Wt™] = 6pminonih, h')C

associated with H and the symmetric tensor algebra S(H ™) of H~, where
H-=H[t7']t~!. As in [FLM2], we shall define the Fock space

Vi = @erS(H )u(x)

with the vacuum 1 = ¢(0) and the vertex operators Y (x,z) as follows: The
vertex operator of v(a) (a€ L) is given by

(2.1) Y(u(a),z) = exp ZMZ” exp Z@z*” ez
n

_n
T’LGZ+ HEZ+
and that of a(_1y¢(0) is
Y(a—1)t(0),2) = a(z) = Za(n)z_"_l.
Here the operator of a ® t" on M (1)c(b) is denoted by a(,) and satisfies

amyt(b)=0 forn >0,
a(0y¢(b) = {a, b)u(b)

and the operators e®, z* are given by
e“t(b) =c(a,b)i(a+Db) with some c(a,b) €R,
2%0(b) = 1(b) 2\

If L is an even lattice, then we can take a suitable cocycle c(a,b) such that

e%eb = (—1){@b ebe, The vertex operators of the other elements are defined by
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the normal product:
Y(amyv,z) = a(2)nY (v, 2) = Resg{ (v —2)"a(2)Y (v,2) = (2—2)"Y (v, z)a(x)}

and by extending them linearly. The definition above of vertex operator is very
general and so we may think

Y(v,z) = Z U(m)z_m_l €End(Veer){z} = Zsjz_j_1|sj eEnd(Vegr)
meR jeC

for ve)  cpe,r M(1)(a). The Virasoro element w is given by
3 Z(ai)(—l)(ai)(—l)l

with a;,a/ € RL satisfying (a;,a’) =6; ;. The degree of (b1)(_i,)- - - (br)(—i.)t(d)
is i1+ -+ig+3(d,d) for by, by, d € L. It is shown in [FLM2] that if L is
an even positive definite lattice of rank m, then (V7,Y,:(0),w) is a VOA of
rank m.

2.4. L(%, 1—16) ® L(%, %6) In this subsection, we study a lattice L = Zzx
of rank one with (x,z) = 1 and we will not use a cocycle c(a,b) since
{t(mz) | m € Z} is generated by one element ¢(x). We note that V7, is not
a VOA, but a super vertex operator algebra (SVOA); see [Fe]. We also note
t(xz) € (V)1. As mentioned in [DMZ], there are two mutually orthogonal

2

conformal vectors

et (2z) = %(."L‘(_l))2b(0)+%(L(Qﬂ:‘)—FL(—QJJ))
and

e (22) = L ((_1))20(0) — 1((20) +1(-22))

with central charge % such that w = e (2z)+e~(22) = %(x(_l))QL(O) is the
Virasoro element of a VOA V5z,. Let 6 be an automorphism of V;, induced
from an automorphism —1 on L, which is given by

e(x(—nl) o w(—nl)b(v)) = (_1)ix(—n1) o x(—nl)b(_@)

Note that 6 is not an ordinary automorphism defined by

9(33(,7“) o w(fnl)b(v)) = (_1)i+kx(fm) T x(fm)L(_[U)

for wt(1(v)) = k, because we have half integral weights here. Let (Va,7)? denote
the sub VOA of #-invariants in Va,7. We note that V5,7 has a unique invariant
bilinear form ( , ) with (1,1) =1. Then (, ) on (Vaz,)? is positive definite
as we will see in the next subsection. Hence e®(2x) generates a vertex oper-
ator subalgebra (e*(2z)) isomorphic to L(3,0), since e*(2z) € (Va,z)?. So Vi,
contains a sub VOA T = (e (2z), e (22)) = L(3,0) ® L(3,0). Viewing V7
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as a T-module, we see that Vi is a direct sum of irreducible T-modules
L(3,hi) ® L(§,k;) with (hs,k; = 0,4, 15); see §2.5. There are no (e*(2z))-
submodules isomorphic to L(2, 16) in V7, since all elements v € V7, have integral
or half integral weights. Since dim(Vy)o=1, dim(VL)1=1 and dim(V%);/2=2,
V1, is isomorphic to
(L(3,0)8L(3,0) @ (L(3,00®L(3, 5))
® (L(z,3)2L(3,0)) @ (L(3,3)2L(3, 3))

as T-modules. Since 6 fixes e*(2z) and z(_1y(t(z)—1(=x)), it keeps the above
four irreducible T-submodules invariant. Consequently, we obtain the decom-
position:

(Vi)' = (L(3,0)® L(3,0) & (L(3,3) @ L(3,0))
as T-modules. Set M ={ve (V;)? | (e7(2z))1)v=0}. It is easy to see that M
contains e’ (2z) and has the following decomposition:
220 M=M oM, = (e"(2x)) = L(},0) and M" = L(3, 3)

s (1 (2z))-modules. Since M is closed under the multiplications in Vz,, M is
an SVOA with the even part M? and the odd part M. We note that

(2.3) ¢ = u(x)+1()

is a lowest degree vector of M! and q(l)(o)q(l) =24(0). We fix it throughout
this paper.

It follows from the definition of vertex operators that V2Z N

are irreducible Vaz,.-modules. By calculating the eigenvalues of

and
VvQZac— 1 R

1
5
et (22), Wehave

the following table:

0
(2z) €L(1,0)® L(3,0) +1
(e 11 11 _
o ( 111 ) eL(i,z)@)L(f,f) _1
v(z) (=) €L(5,0)® L(5,3) 1
v(x)+u(=x) EL(%,%) ®L(%,O) +1

) () 9L H) © (L) S L)

Fix lowest weight vectors L(%l‘) and L(—%m) of Vogpyaso and Vazy /9, respec-

tively. Let W(h) denote the eigenspace of e~ (2x)(;) on VL+ 1 with eigenvalue
2

h for h=0, %, iﬁ. By restricting the actions of the vertex operator Y (v, z) of

vEM?' to W(h), we have the following three intertwining operators:
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1 L, 1 )
2.5 I129(x, 2 €I< 222 ,
= SR VER I (X0
11 L(3,0) )
122(x,2)el 2’
9 (1 7 b
and (1 1)
11 L(}, &
1276 (x,2) el 2716 )
< (g 57 B

Also, for ve€ MY the action of Y (v, z) to W (h) defines the following intertwining
operators:

1
)
1 L(3,Y)
70 2(x,2) el (L(%,O)Q 12,(5, %))
and
N L(3, &)
71916 (x,2)el (L(%70)2 Ilfz%, 1_16)> ’

which are actually vertex operators of elements in (' (2z)) on L(3,h)
(h=0, %, %6) We fix these intertwining operators throughout this paper.

We defined the above intertwining operators over R, but they are essen-
tially the same as those of (V)¢ and so we recall their properties from [Mi3].

1
PROPOSITION 2.6. (1) The powers of z in I%*(x,z), 12°(x,2z) and
11 11
12°2(x,z) are all integers and those of z in 12°16 (x,z) are half-integers, that

18, in %—i—Z.

(2) I™*(x,z) satisfies the L(—1)-derivative property.

1
(3) I™716(x,z2) satisfies “supercommutativity”:

0,75 0,75 (7 0L, 0k

(2.7) I7716 (v, 21) 1716 (V' 29) ~ 716 (V', 29) 716 (v, 21),
0L 11 11 0L

I™"16 (Uv 21)12716 (u7 22) ~ 1216 (ua ZQ)I 116 (’U, 21)

and 11 1111
1276 (u, 21)12°76 (U, 29) ~ —[2°T6 (U, 29)[2°16 (u, 21),

for v,v' e M° and u, v’ € M.

2.5. A lattice VOA with a PDIB-form. In this subsection, we will con-
struct a lattice VOA Vi, over R with a PDIB-form for an even positive definite
lattice L.
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Here a bilinear form (-,-) on V is said to be invariant if
(Y (a, 2)u,v) = (u, Y (e**M (=) L0 271)0) for a,u,veV.

It was proved in [FHL] that any invariant bilinear form on a VOA is automat-
ically symmetric and there is a one-to-one correspondence between invariant
bilinear forms and elements of Hom(Vy/L(1)Vi,R). Since we will only treat
VOAs V with dim Vp =1 and L(1)V; =0, there is a unique invariant bilinear
form up to scalar multiplication. This bilinear form is given as follows:

the coefficient of Y (e (—z2)LOy, 271w at z is (u, v)1.

If we construct a lattice VOA V7, over R for an even positive definite lattice
L as in [FLM2], then ¢(v)2x_1)(v) € S(H™)1(2v) N (V1 )o={0} for any element
0 # ve L with (v,v) =2k and hence (t(v),¢(v)) = (1, (—1)kb(v)(2k_1)b(’l))> =0.
Namely, Vi, does not have a PDIB-form.

PROPOSITION 2.7. Let L be an even positive definite lattice. Then there
is a VOA Vi with a PDIB-form such that C® Vy = (V)c.

Proof. A lattice VOA Vi, = @, S(R ®z LT)u(v) constructed from a
lattice L in [FLM2] has a unique invariant bilinear form ( , ) with (1,1)=1.
That is, it satisfies

(¥ (@, 2)u,v) = {u, Y (70 (27220, ;1))
for a,u,veVy; see [FHL|. Here
T — zL(1 —2\L(0 -1\ _ o —m—
Yi(a,2) =Y (XM (2)L 0 - )—Za(m)z

is the adjoint vertex operator. For v € R ® L, we identify v with ’U(_l)L(O) €
(V)1. Since L(1)v(—1)t(0) =0 and L(0)v(_1y(0) =v(—1y¢(0), we have Yi(v,2)=
—~272Y (v,27!) and so U(Tn) = —U(_p). In [FLM2], the authors used a group
extension (a cocycle c(x,%)) satisfying e% e = (1)@ Webe?  e¥y(u) =
c(u,u')e(u+u') and e’t(—v)=1¢(0). In particular, for ¢(v) € (VL)g,

L(U)(%fl)L(_(U):L(_{U)(%fl)L(U):L(O)'
By definition, YT(:(v), 2) = (~=2)"*/2Y (1(v), 2~1). We hence have (L(U))In):
(—1)*(e(v)) (2k—n—2) for ¢(v) €V, and thus
(t(v)+ (=), e(v) +e(=0))¢(0)

(1)
(1)

Lv

(1(v)+ (=) @2r-1) (¢t(v) + ()
(¢(v) 2k—1)t(0) + (V) (2h—1)t(v)) = (=1)*2.(0).

Similarly,
(1(v) = t(), e(v) —1(0)) = (1)*12:(0).
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Let 6 be an automorphism of V, induced from —1 on L, which is given by

00y 0, t(2)) = ED oLy ol ).

Then the space V= (V7)? of f-invariants is spanned by elements of the forms

Uy V) (1) + ) 1)
and
U(l .. .U2m+1 )(L(U)—(—l)kb(—fu))

—n1) (—n2m+1
for all «(v) € Vi, k € Z and so V' has a PDIB-form. Similarly V= :=
{v € V;|0(v) = —v} has a negative definite invariant bilinear form. Since
V=Vt ® V™ is a Zy-graded VOA, Vi, =V @ /IV~ is also a VOA with a
PDIB-form such that CV;, =CV;, = (V)c. O

Clearly, if we define an endomorphism 6 of V;, = V* & IV~ by 1 on
VT and —1 on VA1V, 6 is an automorphism of V. Since we mainly treat a
VOA with a PDIB-form, we sometimes denote the ordinary lattice VOA Vp,
by (V.)! @ \/——H~/L_, where VL_ ={veVy | 0(v)=—0}.

In the remainder of this paper, V;, denotes a lattice VOA with a PDIB-
form.

2.6. L(3,0)-modules and framed VOAs. ~ We will show the following
result.

LEMMA 2.8. If V is a framed VOA with a coordinate set {e1,--- ,en},
then there are two binary linear codes D and S of length n such that V' has the
following decomposition:

(1) V= EBO(ESVCY)
(2) €V s a code VOA (Mp)c,
(3) V* is an irreducible V©")-module with 7(V*)=a for a€S.

Proof. Set P = (1, | i=1,---,n) C Aut(V), which is an elementary

abelian 2-group. Decompose V' into a direct sum
V= EBXGIrr(P)VX

of eigenspaces of P, where Irr(P) is the set of linear characters of P and VX
denotes {veV | gu=x(g)v for g€ P} and V1» =V is the set of P-invariants
and 1p is the trivial character of P. It is known by [DM2] that VX is a nonzero
irreducible V*-module for y €Irr(P). It follows from the definition of 7., that
7(VX)=(a;) is given by (—1)% =x(7¢,). Set S={7(VX) | x€Ilrr(P)} and denote
VX by V7V using a binary word 7(VX). In particular, CV' is a VOA with
#(CVP)=(0") and hence it is isomorphic to a code VOA (Mp)c for some even
linear binary code D. Then V has the desired decomposition. O
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3. Code VOAs with PDIB-forms

In this section, we review several results from [Mi2]-[Mi5] and prove their
R-versions. We will first construct a code VOA Mp with a PDIB-form for
an even linear binary code D of length n. Set M = L(3,0) and M' =
L(%, %) As we showed in §2.4, M = M° @ M' has a super VOA structure
(M,Y™). Although an SVOA structure on CM is uniquely determined, an
SVOA structure on M is not unique. For example, if (M@ M Y)is an SVOA,
then (M° @ /1M Y) is the other SVOA. They are isomorphic together as
MP-modules. We already have a VOA structure on CM" @ CM! and the
isomorphism v +/TvM — v 44(1) defines another VOA structure on
CM°@®CM*. So we choose one of them satisfying q((é))q(l) €R*1 and denote it
by (M,YM), where ¢(!) is the highest weight vector of M given by (2.3) and
Rt ={reR|r > 0}.

An essential property is “super-commutativity”:

(3.1) YM (v, 2)YM(u, 29) ~ (<)Y M (0, 20)YM (v, 1)

for v € M* and w € M7 (i,j = 0,1). Here A(z1,22) ~ B(z1,22) means
(21 —22)NV A(21, 22) = (21 — 22)V B(21, 22) for some integer N. Take n copies
MU= (MO g (MY of M=MO@® M for i=1,--- ,n and set M =M@

.-® M. For a binary word o= (ar, -+ ,ap) GZ 5, set M, = ®?:1(M‘“)m,
which is a subspace of M®". Define a Vertex operator Y®"(v, z) of ve M®"
by setting

(3.2) VO 0, 2) (R ut) =@ (Y M (v, 2)u)

for u?, v’ € M and extending it to the whole space M ®" linearly. It follows
from (3 1) that for v€ M, u€ Mg, we have super commutativity:

(3.3) YO (0, 21) YO (u, 29) ~ (1) @B YE (4, 20)YE (0, 21),

where ((a;), (b)) = >.iqaib; € Zy. Viewing D as an elementary abelian
2-group with an invariant form, we will show that there is a central exten-
sion D={4x® | a€ D} of D by %1 such that k*s? = (-1){*# Bk since D is

an even linear lattice. Actually, let & (i=1,--- ,n) denote a word (0°"1107~%)
and define formal elements x& (i=1,--- ,n) satisfying k% ré = k(") =1 and
k& kS = —kS kS for i # j. For a word a=§; +---+E;, with ji <---< ji, set
(3.4) kY = K81k b,

It is straightforward to check the following:

LEMMA 3.1 ([Mi3]). For a, 3,
(3.5) kKD = (1) BBl oo e {40 tBY

k(k—1)

Ok =(1)" 2z k) for|a| = k.
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In order to combine (3.3) and (3.5), set
(3.6) Ms = M; ® °
for 6 €Z5 and

(3.7) Mp = @Md-
seD

Define a new vertex operator Y (u, z) of u€ Mp by setting
(3.8) Y (v ® kY, 2)(u®KP) = YO (0, 2)u @ k2K

forv@k*e M, = M, ® k%, u® kP e Mg and extending it linearly. We then
obtain the desired commutativity:

(3.9) Y(v,21)Y (w, 22) ~ Y(w, 22)Y (v, 21)

for v,weMp. Set e;=(1N @ ... @1l-gull g1t g...@ 1) @ 0" 1t
is not difficult to see that

is the Virasoro element of Mp and
(3.11) 1= (1[1]®...®1[n])®,€(0")

is the vacuum of Mp, where wld and 16 are the Virasoro element and the
vacuum of MU respectively. To simplify the notation, we will omit super-
scripts [i] of M from now on. We have proved the following theorem, whose
complexification was proved in [Mi2].

THEOREM 3.2. If D is an even binary linear code, then (Mp,Y,w,1) is
a VOA over R.

It follows from the construction that Mgs,p = @aepMpiq is an irre-
ducible Mp-module for any 8 € Zy and we will call it a coset module of Mp.
From the definition of k* in (3.4), we have the following lemma.

LEMMA 3.3. If g € Aut(D), there is an automorphism g of a code VOA
Mp such that g(e;) =eqqy and G(Ma)= Mgy
Proof. For g€ Aut(D), we define a permutation g; on {M, | a € D} by
gl(®?:1vm) = ®?:1v[9(i)] and an automorphism gs of D by gg(/ﬁgil ---mfit) =
kSt ... gfGo . Combining both actions, we have an automorphism §=g1 ® go
of Mp=@a (M, ® k%). O
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Our next aim is to prove that Mp has a PDIB-form (, ) with (1,1)=1.
Set W ={ve Mpl(e;)mv=0 for all m > 2,i=1,--- ,n}.

LEMMA 3.4. (, ) on W is positive definite.
Proof. Set
(3.12) i = (q(al) R ® q(an))

for a = (ay,--- ,an) € D, where ¢! is the highest weight vector of M* given
by (2.3) and ¢ denotes the vacuum of MY. It is easy to see that

(3.13) q“ =q* ® k"

is a lowest degree element of M,. Since M, = ®?:0L(%, %) and Mp =

BacpMa, {¢* : a € D} spans W. Let k, denote half of the weight of «.
For «, 8, we have

(0*,a")1 = (g 1)1,¢") 1 =Res. {7 Y (1) 27 %)¢", 2 71)¢"}
= (D) g, 1)0” = b0 527

Thus, {5t-¢®|a€ D} is an orthonormal basis of W. O

Let V = ®2,V; be a VOA satisfying dimVp =1 and L(1)V; = 0. Set
B=RL(1)®RL(0) ®RL(-1). Since B = sly(R) as Lie algebras and L(1)V; =0,
V is a direct sum of irreducible B-modules. If U is an irreducible B-submodule
of V and u is a lowest degree vector of U with degree k, then
(3.14)

(u,v)1 = (u_)1,v)1 = Res, (Y ((((1)* 27 %), 271 z"1o = (—1)ku(2k_1)v

for any ve V. Also we obtain
(3.15) (L(-1), L(—l){u> = (L(-1)" 1o, | |
L)LY u) = (2kj+5% =) (L) o, L))

and (2kj+j%2—35) > 0 for i,57 > 0. Thus (, ) on V is positive definite if and
only if

(3.16) Uk u € (—1)FRT1

for every nonzero homogeneous element u € Vj, satisfying L(1)u=0.
We first prove an R-version of Theorem 4.5 in [Mi3].

PrROPOSITION 3.5. Let V' be a framed VOA with a coordinate set
{e1, -+ ,en}. If 7(V)=(0") and V has a PDIB-form, then there is an even
linear code D of length n such that V is isomorphic to a code VOA Mp.
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Proof. Since 7(V)=(0"), 7., =1 and so we can define automorphisms o,
for i=1,---,n, where o, is defined by exp(2mv/~I(e;)(1)) on V; see [Mil]. We
note that the eigenvalues of (e;)(;) on V are in Z/2. Set Q=(o, | i=1,--- ,n),
which is an elementary abelian 2-group. Let

V= Bxenr(@Q) VX

be the decomposition of V' into the direct sum of eigenspaces of ), where
Irr(Q) is the set of linear characters of Q. Since dimVy =1 and VX is an
irreducible V¢-module by [DM2], we have V@ =T and VX = ®?:1L(%, %) as
T-modules, where h; € {0, 1} is defined by x(ce,)=(-1)". Identifying y and a
binary word (h;), VX 2 M, = M, ® X as T-modules. Since all weights of VX
are integers, the weight of x is even, say 2k,. Let pX € VX be a lowest degree

vector with (pX, pX) =22, We identify pX with §X ® &X, see X at (3.12). Since

Qékx_l)qx:2kx 1, we have
(3.17) 2hx1 = (¥ @ &Y, X @ RX)1

= (1, (DM@ @ FX) 2k, —1)@* ® FX)1
=22 (1, (1) RRXRX) 1.

Hence #XiX = (—1)*x&0 for any y, which determines a cocycle uniquely and it
coincides with (3.5). This completes the proof of Proposition 3.5. O

As a corollary, we have:

COROLLARY 3.6. For an even linear code D, Mp has a PDIB-form. In
particular, if a is even, then a coset module Mp, also has a PDIB-form.

Proof. 1t is sufficient to show that there is a VOA V with a PDIB-form
such that V contains Mp. Since Mp is a sub VOA of Mg if D C S and we
can also embed Mp = Mp®1 C Mp ® Mp, we may assume that D is the set
of all even words of length 2n. Let {x1, - ,x,} be an orthonormal basis of a
Fuclidian space of dimension n and set

(3.18) L= {Zaixi | aieZ,ZaiEO (mod 2)}
i=1 i=1

Clearly, L is an even lattice and V;, denotes a lattice VOA with a PDIB-form.
Since Vi, contains 2n mutually orthogonal rational conformal vectors

(3.19) e(2z)* = %((xi)(_l))ﬂ + 2(u(23)+e(22;))  (i=1,---,n)

with central charge 3, V1, is a framed VOA. Since (v, 2z;) € 2Z for v€ L and
j=1,---,n, (2.4) implies 7(Vz) = (0*") and hence V7, is isomorphic to a code
VOA Mg for some even linear code S of length 2n by Proposition 3.5. It is
easy to see dim(Mg); =n(2n—1) and so S is the set of all even words of length
2n. Hence Mp has a PDIB-form. O
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LEMMA 3.7. If a VOA V contains a code VOA Mp and D contains a
codeword § of weight 2, then CV contains an automorphism g satisfying

g = (1) on Mg for BeD.
In particular, g coincides with oc,0c, on Mp if Supp(d)={i,j}.

Proof. Let a € D be a codeword of weight 2, say o = (110"72), then
(Mga)1 #0. Set E={(00), (11)}, then My, =Mg ® (L(3,0)""?) and Mg is
isomorphic to Vaz, with (x,x)=1 as given in §2.4. Let v be an element of V;
corresponding to x(_1)1. Define g = exp(27r\/—_1v(0)). Since v €V, and Mg is
rational, v(g) acts on V' semisimply and g is an automorphism of V' satisfying
the desired conditions. O

We propose one conjecture.

CONJECTURE 1. If V is a (D, S)-framed VOA and [ € D, then there is

an automorphism g of V' such that g=]] ) Te, 0N Mp.

1€Supp(fS

3.1. Mp-modules. We recall the structures of irreducible CM p-modules
from [Mi3]. Let W be an irreducible Mp-module with 7(W)=p. Then CW
is a CMp-module and CW =W @& W as Mp-modules. Since we have defined

1
nonzero intertwining operators I%*(v, z) and I2"*(u, z) over R in §2.4, we have
an R-version of Theorem 5.1 in [Mi3]:

TuEOREM 3.8. Let (W, YY) be an irreducible Mp-module with #(W)=p
and {X* | i=1,--- ,m} the set of all nonisomorphic irreducible T-submodules
of W. Set D,, ={a € D|Supp(ar) € Supp(p)} and let D denote a group ex-
tension {£x*|a€ Dy} given by (3.4). Then there are zrreduczble ]RD -modules
Q' and representations ¢ : D — End(Q") satisfying ¢'(—<0")) = —lgi for
i=1,---,m such that W = @ (X' ® Q") as Mp, -modules.

Here the vertex operator YW (¢%,z2) of ¢® = (®?:1q(‘”)) ® k* € M, on
(X7 ®@Q7) is given by

B (@12 (™), 2) & ¢ (1))

for a=(ay, - ,an). See (3.13), §2.2 and §2.3 for ¢* and ®?:llai/27*(q(ai),z).
Before we study M p-modules, we explain the structure of a 2-group D. An
important property of our cocycle is that if a maximal self-orthogonal subcode
H of Dy, is doubly even (for example, an extended [8, 4]-Hamming code), then
H={+x"|acH}isan elementary abelian 2-group and hence every irreducible
RH- -representation is linear. If y : D — End(Q) is an irreducible RD -module
with y(—©")) = —Ip, then K := Ker(x) is in the center of D Since H is a

maximal normal abelian subgroup of D, H /K is a maximal normal abelian
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subgroup of Du /K. Since Du /K has a faithful irreducible representation, the
center Z ( ./ K) is cyclic and so is of order 2. Hence D, /K is an extra-special
2-group and Qg is a direct sum of distinct H-irreducible modules.

In the remainder of this section, we use the following notation:

one of the maximal self-orthogonal
subcodes of Dg is doubly even '

B(D) = {BGZS |

COROLLARY 3.9. If H is a doubly even code and W 1is an irreducible
Mp-module with 7(W)=(1"), then W is also irreducible as a T-module.

LEMMA 3.10. Let W be an irreducible Mp-module with 7(W) € B(D).
Then CW is an irreducible CMp-module.

Proof. Let H be a maximal self-orthogonal doubly even subcode of Dz (.
Since CW = W @ W as Mp-modules and W is a direct sum of distinct
Mp,-modules, we may assume D, =D and W = X ® @), where X is an ir-
reducible Mg-module and @ is an irreducible RD-module by Theorem 3.8. As
mentioned above, Q| 7 1s a direct sum of distinct linear H-modules and (CQ‘ fi

is a direct sum of distinct irreducible C H-modules. Hence CQ is an irreducible
CD-module and so CW is an irreducible CM p-module. O

3 3
COROLLARY 3.11. If Icpy, (CWSW(/CW2> # 0, then Iy, <W?VW2> # 0

for Mp-modules W, W2 and W3.

cws?

Proof. Choose 0 # I(x,2) € Icm, <(CW1 CW2

). By restricting I(x, z) on
wiews
wt w?

Taking the first entry and the second entry of CW?3 =W?3 @ /-1W?3, we have
3

w
wt w2
them at least is nonzero. O

W' and W2, we have a nonzero intertwining operator I(*, z) € I MD(

two intertwining operators I'(x,z) and I%(x,z) in Iy, < ) and one of

One of the attributes of lattice VOAs and their modules is that we can
find all Mp-modules inside of them in some sense. This fact is very useful in
studying the fusion rules among M p-modules. For example, one obtains:

LEMMA 3.12. If W', W? are Mp-modules, then W' x W? is nonzero.

Proof. By Corollary 3.11, we may assume that all VOAs are considered
over C, and so we omit the subscript C. If W! x W? =0, then (W1)®? x
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(WH®2 = 0 as (Mp)®2 -modules. We may hence assume that 7(W1!) =
(12h+2k(25+28) and 7#(W?2) = (0%712%1250%") by rearranging the order. Set
a=7FWh, B=7FW?) and n =2(h+k+s+t). Let F. denote the set of all
even words of length 7. We may also assume that D= (a, 8)*. Set D'=(a)*
and D?= (ﬁ>l. Clearly, D' = Fyp, o @ Fas19:. Generally, Mp, is isomorphic
to a lattice VOA Vi), where N(r)={>"/_ a;x; | a;€Z,} a; =0 (mod 2)}
with an orthonormal basis {1, - ,z,} as we showed in the proof of Corollary
3.6. An irreducible Vz-module V, Bt is isomorphic to L(3, £)%* ® Q as

L(%, 0)®2"-modules and @ is an irreducible F\n—module. Since ﬁ; is a direct sum
of an extra-special 2-group and a group of order 2, Q| ;; contains all irreducible

H-modules on which —©") acts as —1. Tt is easy to see that Mp C Mp: and

Mp = VN(h+k) & VN(s+t) and W1 - V{N(h+k)+%(:v1+--':ch,+k)} & VN(ert)‘ Simi-

larly, we can find W2 in Viy,. It follows from the definition of vertex operators
that there are v€ W' and u € W2 such that Y (v, z)u # 0. Since commutativity
holds for Y (v, z) and Y (u, 2) for u€ Mp and v€ W1, we have an intertwining

) by restriction. Namely, W' x W? is nonzero.

operator Y (x, z) € I, (WYRévz

O

An irreducible V-module X is called a “simple current” if W x X is irre-
ducible for any irreducible V-module W.

COROLLARY 3.13. If X is an irreducible Mp-module with 7(X) € B(D),
then the fusion product
Ma+D x X

s an irreducible Mp-module for any a.

Proof.  Since CX is an irreducible CMp-module by Lemma 3.10
and CM,,p is a simple current, CM,+p x CX is also irreducible. If

1 ( v > # 0, then 7(U)=7(X) € B(X) and so CU is irreducible and
Motp X

. U : cu

prm— . < -
CU=CM,+p xCX. Hence dim I <Ma+D X) < dim/ <(CMa+D (CX) 1
and so Myyp x X=U.

LEMMA 3.14. Let (W, YY) be an irreducible Mp-module with #(W) = pu
and let W= @;’ZOUi be the decomposition of W into the direct sum of distinct
homogeneous Mp,-submodules U'. Then U’ is irreducible and YV is uniquely
determined by U* for any i.

Proof. Let X be an irreducible T-submodule of U° and set X 2@, L(3, h;)

(hi = 0,3, ). By the fusion rule of L(3,0)-modules, U" is homogeneous
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as a T-module; that is, every irreducible T-submodule of U° is isomorphic
to X. By Proposition 4.1 in [DM2], {vpyu | u € CX,v € CM,,a € D}
spans CW. On the other hand, if o = (a;) & D,,, then the irreducible CT-
submodule generated by v(,,)u is isomorphic to ®;‘:1(CL(%, hi+%) and hence
<v(m)u | ueX,ve(CMa,aeD> N CUY = CX, which proves CU? = CX and
UY=X. We also have that <v(m)u | ueU°, 'UEMOH—DN> is an irreducible Mp -
module U’ for some j by the same arguments, which we denote by U%. Corol-
lary 3.13 implies that Myyp, x U 0 is irreducible. Considering the image of
Y(v,2) from UY we have a nonzero intertwining operator Y (v,z) : U% —
U%[[z,271]] for v € Mayp,. We hence conclude Myyp, x U =U>"P. That
is, if one of the {U? | i=1,--- ,r} is given, then the other U7’s are uniquely
determined as Mp, -modules. Assume that there is another Mp-module S
such that S|MDM =~ EBﬁeD/DMUﬁ as Mp, -modules. Denote the restriction of
YW (x,2) on UP by I*P(x,2) : UP — U8 and that of Y5(x,2) on UP by

JoB . 778 atfB M Sj im I ueth —_

Plx,z) : UP - U or v € Muayp,. Since dim <MD”+Q U/B) =1,
there are scalars Aggy such that J*%(v,2) = Aggial®P(v,z) for any
vEMyyp,. Foreach a, let A(a) bea|D/D,|x|D/D,|-matrix whose (3, fH«)-
entry is A\ggi+q for any 3€ D/D,, and 0 otherwise. Since {YW(v,z2)[ve Mp}
and {Y¥(v, 2)|v € Mp} satisfy mutual commutativity and associativity, respec-
tively, A : D/D,, — M(|D/D,| x |D/D,|,R) is a regular representation. We
are hence able to reform A(«) into a permutation matrix by changing the ba-
sis. Therefore we may assume J%% =TI and so W is isomorphic to S as an
Mp-module. O

Combining the arguments above, we have the following theorem:

THEOREM 3.15. Let W be an irreducible Mg-module with 7(W) = p €
B(E). Let D be an even code containing E such that (D,u) =0. Assume
that there is a mazimal self-orthogonal (doubly even) subcode H of E,, such
that H is also a mazimal self-orthogonal subcode of D,. Then there is a
unique irreducible Mp-module X containing W as an Mg-submodule. Here
the subscript S,, denotes {a€ S|Supp(a) C Supp(p)} for any code S.

We will call X in Theorem 3.15 an induced Mp-module and denote it by
Ind2(W).

We next quote the results about an extended [8,4]-Hamming code VOA
CVpy, from [Mi2]. Here an extended [8, 4]-Hamming code Hg is a subspace of Z5
spanned by {(1%), (1*0%), (12021202), ({10}*)}, which is isomorphic to the Reed
Miiller code RM(1,3). Let {e1,--- ,es} be a coordinate set of an extended
[8, 4]-Hamming code VOA Mpy,. Let W be an irreducible My, ,-module. If
F(W) = (0®), then CW is isomorphic to a coset module CMpy, , for some
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o € Z§ and hence W is isomorphic to My, . We denote it by H(%,a). If
7(W) = (1%), then there is a linear representation Y : Hs — {#£1} such that
CW is isomorphic to (L(3,£)®®) ® C,. If we fix a basis {a!,a? a3, a’}
of Hg, then there is a word § such that x(k*') = (-1)(%*). In particular,
X is realizable over R and so W is isomorphic to (L(3, 4)®%) ® Ry, which
we denote by H(%,ﬁ). We should also note that H(l%,ﬁ) depends on the
choice of the basis of Hg. So, we fix a basis {(18), (140%), (12021%202), ((10)%)}
of Hg throughout this paper. We should also note that CH (h, «) is denoted
by H(h,«a) in [Mi5]. Reforming the results in [Mi5] into those for VOAs over

R by a similar argument as in §2.2, we have the following result.

THEOREM 3.16. Let W be an irreducible My,-module. If 7(W) = (08),
then W is isomorphic to one of
{H(3,0) | acZ3}.
If #(W)=(18), then W is isomorphic to one of
{H({5,a) | a€Z3}.
H %,a) & H(%,ﬂ) if and only if a+0 € Hg and H(l—lﬁ,a) ? H(l%,ﬁ) if and only
if =

if a+B€Hs. H(3,a) is a coset module My, o and H(3, 8) is isomorphic to
L

In [Mi5], the author obtained the fusion rules among

{CH(r,a) | r=1%, &, a€Z}.

Since Hg is doubly even, we have the following by Lemma 2.5 and Lemma 3.12.

LEMMA 3.17.

,o) x H
yo) x H
and

H(i, o) x H(i,8)=H(3, a+p).

We next show that My, contains the other two coordinate sets. To sim-
plify the notation, we will choose another cocycle of .F/I\g for a while. We
have already fixed a basis {a1, -, a4} of Hg. Set R* = k™ ... (%% for
a= E?:l a;a; € Hg. Note that Hg contains 14 words of weight 4. For such a
codeword (or a 4 points set) 3=(b; ---bg), let

¢’ =1(@5q")) ® k* € (M, ).
It follows from a direct calculation that

§& — %(61—1----—1—68)—&-% Z (_1)(0175)(]5
BEHs, |84
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is a conformal vector with central charge % for every word a € Z§ as we showed
in [Mi2]. Clearly, s* = s if and only if a+3 € Hg. It is also straightforward
to check that (s*,s%) =0 if and only if a+f is an even word. Therefore we
have two new coordinate sets {d1,--- ,ds} and {fi,---, fs} in Mpy,. Set Ty=
(di,---,dg) and Ty =(f1,---, fg). With My, a Ty-module and a Ty module,
D (ay,—,as)eHs (®%_,L(3,%)) & Mp,. Therefore there is an automorphism o
of My, such that o(e;) = d; and o(d;) = f; for every i, which is obtained
by rearrangment of the orders of {d;} and {f;}. Viewing an Mgy, -module
as a Ty-module and a Ty-module, we have the following correspondence (see
Proposition 2.2 and Lemma 2.7 in [Mi5)):

LEMMA 3.18. There is an automorphism o of My, such that
o(H(3,(0%)) = H(s, (0%)),
o(H(5,€1)) = H(55, (09),
o(H (g5, (0%))) = H (45, &1)
and
o(H(55,€1)) = H(3, &),
where & denotes (107). In particular, O'(q(lg))(g) acts on H(5s, (0%)) as —q((;),
where ¢(1*) = ((®§:1q(1)) ® /1(18)).

Since all codewords of Hg are in B(Hg), we have the following as a corol-
lary.

COROLLARY 3.19. H(3,a) and H(&, a) are all simple currents.
We will next prove the following important theorem.

THEOREM 3.20. Let W' and W2 be irreducible Mp-modules with o =
F(W1h), p=7F(W?). For a triple (D, a, ), the following two conditions are
assumed:

(3.a) D contains a self-dual subcode E which is a direct sum of k extended
[8,4]-Hamming codes such that E, = {v € E|Supp(y) C Supp(«)} is a
direct factor of E or {0}.

(3.b) There are mazimal self-orthogonal subcodes HP and HP of Dg and
Dgyp containing Eg and E.g, respectively, such that they are doubly
even and

HP+E = HtP4+E,

where the subscript S, denotes a subcode {5 € S|Supp(B) C Supp(a)} for
any code S.

Then W x W?2 is irreducible.
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Proof. Suppose the conclusion is false and choose D as a minimal coun-
terexample. If a =0 or B =0, then W' or W? is a coset module and the
assertion follows from Corollary 3.13, since 7(W?*) € B(D). By the assumption
(3.a), the weight of « is a multiple of eight. We may assume o = (1870%%)

and B # 0. Let @ be an irreducible Mp-module so that 0 # I <W1QW2)’

Clearly 7(Q) = a+ . By the assumption (3.a), there is a self-dual subcode
E=FE, ® E,- of D such that E is a direct sum of extended [8,4]-Hamming
codes.

(1) Assume first that Eg={v € E|Supp(y) C Supp(f)} is a direct factor
of E; that is, E=E & Eg.. Let U’ be an irreducible Mpg-submodule of W*
for each i=1,2. By Theorem 3.16, U! = (®/_, H(,a')) ® (®§:1H(%,Bj))
as Mp-modules and hence U! x U? is an irreducible Mpg-module. Since Q
contains U' x U? as an Mpg-module, @Q is uniquely determined as an
Mp-module. Since @ is a direct sum of distinct irreducible Mpg-submodules

1 2
and the restrictions [ <W1 QW2> — I (Ul QU2> — I <g1 X g2> are injec-
tive, we have W' x W2=0Q.

(2) We assume that Eg is not a direct factor of E. By the assumption (3.b),
there are maximal self-orthogonal (doubly even) subcodes H? and H*™¥ of Dg
and D4 containing Eg and F4 g, respectively, such that H PLE=H"P4+E.
Set D'=HP+D. It is easy to check that (D', a, 3) satisfies (3.a) and (3.b).

Assume that D # D'. Let X! and X? be irreducible Mp,-submodules of
W1 and W2, respectively. By the minimality of D, X' x X? is irreducible.
Since @ contains a submodule isomorphic to X' x X? as an Mp,-module and
D, 4 contains H a8 (@ is uniquely determined. Since Q contains only one
irreducible submodule isomorphic to X! x X2, we have W' x W? = Q and
D=HP+E.

(2.1) We claim that W?2 and Q are irreducible as Mpg-modules.

First, note that 7(Q) = a+( and D = H°+E = H**P + E. Since the
proofs are almost the same, we will prove the assertion only for W?2. Since
HP contains Eg and D = HP + E., we obtain Dg = HB. If P is an irre-
ducible Mys-submodule of W2, then W2 =Ind5,(P) and P is irreducible as a
T-module. In particular, P is irreducible as an Mp,-module. Since 7(P) =03,
Indgﬁ(P) is an irreducible Mpg-submodule of W2. On the other hand, since
D/H? = E/Es, we have dim(Indf, (P)) = dim(Indjjs(P)) = dim W? so that
W? is an irreducible Mg-module, which proves the claim.

(2.2) Let U! be an irreducible Mg-submodule of W1. Since 7(U') = «
and E, is a direct sum of E, U' is a simple current. Since W? and U are
both irreducible Mpg-modules by the claim above, U' x W? is irreducible.
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Furthermore, since

(3.20) 0 # dim Iy, (WlQW2> < dim Iy, <U1 QW2> <1,

we have U' x W2 = ) as Mpg-modules. Fix a nonzero intertwining operator

I'(x,2) €Iy, (Ul QW2> .

For I(x,z) € Iy, (Ul QW2
MY (v, 2) for veU?. Since Y®Q(u, 2)I(v,2) ~ I(v,2)Y?(u, z), we have
YO (u, 2)I (v, 2) =T (v, 2)Y%(u, 2)

for w € Mp and v € U. Since the coefficients of {I'(v,2)w | v€ U, we W?}
spans @, Y?(u, 2) is uniquely determined by Y?(u, z) and hence the action of
Mp on Q is uniquely determined. Thus W' x W2=Q by (3.20). O

>, there is a scalar A € R such that I(v,z) =

We now arrive at the main result of this section, which is an R-version of
Theorem 6.5 in [Mi5]:

THEOREM 3.21. Let W=Mp & W° @ WY @ W+ be a (D, (6, 7))-framed
VOA and let F be an even linear subcode of (9, ’y}l containing D. Assume that
(0,v) € B(D), D,, contains a maximal self-orthogonal (doubly even) subcode
of F, for any pe(d,v) and
(3.21) Ind5 (W) x Ind55(W?) = Ind5(Weth)
for a,B€(d,v). Then

Ind5 (W) := Mp @ Ind5(W°) @ Ind5 (W) @ Indh (WOH7)
has an (F, (0,7))-framed VOA structure, which contains W as a sub VOA.

We will also prove that if Mp®W? is a (D, (8))-framed VOA and Ind (W?)
x Ind55(W?) = Mp, then Mp @ Ind5(W?) is an (F, (§))-framed VOA. Before
we prove Theorem 3.21, we note that the conditions of Theorem 3.21 including
the fusion rule (3.21) follow from the conditions of Theorem 3.20.

PROPOSITION 3.22. Assume the triple (D, «, 3) satisfies the conditions of
Theorem 3.20 for any o, B € (8,7). Then Indl (W) xIndL(W?#) =Ind5 (Wo+5)
for o, B€(0,7).

Proof of Theorem 3.21. Set V =Ind%(W). For simplicity, we denote Ind%

by Ind. Let YW (v, 2) € End(W)][[z, 2~!]] be the given vertex operator of v W.
For o/, 3 € S=(4,7), let

, , a/+ﬂ/
« 7/6
J (’U,Z)EIMD (Wa/ W”B,>
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be the restriction of YW (v, 2) on W# for ve W and o/, '€ S=(,7). Since
Theorem 11.9 in [DL] implies that a natural restriction

_ Ind(W"") wY
¢ I <Ind(W°‘/) Ind(Wﬁ’)> = I (Wa’ Wﬂ’>

is injective and the multiplicity of W x W#" in Ind(W'*#") is one, we can
choose

’ ’ a/+ﬁ/
190 (%, 2) e Iy, ( Indi ) )

Ind(We) Ind(W?)

such that 1% (v, 2)u = J* 7 (v, 2)u for any v € W* and u € W7, Define
Y (v,2) € End(V)[[z,27Y]] by Y (v,2)u = I¥F (v,2)u for v € Ind(W*') and
u € Ind(W#"). Note that Y (v, 2)u =YW (v, 2)u for u,v € W. Moreover, the
powers of z in Y (v,z) are all integers since (7(Ind(W)), F) =0 by Proposi-
tion 2.6. For u,v € W, we have Y (u,21)Y (v, 22) ~ Y (v, 22)Y (u, z1). We also
have that Y (v, 2)|maqwe) is at least an intertwining operator for v€V and so
Y(v,21)Y (u, 22) ~ Y(u,22)Y (v, 21) for u€ Mp and v€Ind(W*). Hence

(3.22) T = {wend(W) | Y (', 2)Y (u, z)w ~ Y (u, 2)Y (v, 2)w}

is an Mp-module for u,uw’ € W. Since T%%* contains W, it coincides with V.
Namely, {Y (u, z) | ue WUMp} satisfies mutual commutativity on V. Clearly,
{Y(v,2) | ve Mp UW} generates vertex operators for all elements of V' by the
normal products and hence {Y (v, z)|v € V'} satisfies mutual commutativity by
Dong’s lemma. The other required conditions are also easy to check and so we
have a desired VOA structure on V =Ind(W). O

LEMMA 3.23. Let V = @BnesV® be a (D, S)-framed VOA satisfying the
conditions of Theorem 3.20 and assume that W is an irreducible V-module.
Let W= @geS/Wﬁ be the decomposition into the direct sum of nonzero Mp-
modules W8 with #(WP) = 3 for all 8 € S'. Then W? are all irreducible
Mp-modules and there is a word vy such that S"'=S+.

Proof. We note that Mp is rational. By arguments similar to those in the
proof of Theorem 3.8, we have that W7 is irreducible. We note 7(V x W8) =
a+. Since Y (v, z)u # 0 for 0 #veV® and 0 # ue W8 by [DL], S’ contains
~v+S for any y€.S’. Since W is irreducible, S’ is a coset. O

Hypotheses 1.
(1) D and S are both even linear codes of length 8k.

(2) V is a direct sum PyesV® of irreducible Mp-modules V¢ satisfying
T(VY) =a.

(3) For any o, 3€ S, there is a fusion rule V® x V#=v+5,
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(4) For a, € S—{(0™)} satisfying o # (3, it is possible to define a framed
VOA structure with a PDIB-form on

Vel —Mp e Ve VP g Vers,

As a special case, if S=(a), then we assume that V{® =Mp @ V* has a
framed VOA structure with a PDIB-form.

LEMMA 3.24. Let V = PnocsV?* be a VOA satisfying the conditions of
Hypotheses 1 and W = EBﬁeSJWWﬁ an irreducible V-module. Assume that
(D, a, B) satisfies the conditions of Theorem 3.20 for any «, 3€ S+Zo7y. Then
W is uniquely determined by W5 for any € S+7.

Proof. Since V x WP =W+8 by Theorem 3.20, an Mp-module structure
on W is uniquely determined by W#. By arguments similar to those in the
proof of Theorem 3.15, we have the desired conclusion. O

Since the intertwining operators among L(%, 0)-modules are all well-defined
over R (even over Q ), we can rewrite Theorem 4.1 of [Mi5] into the following
theorem.

THEOREM 3.25. Under Hypotheses 1,

v-@ve

a€es
has a structure of (D,S)-framed VOA with a PDIB-form. A framed VOA
structure on V= @aecsV* with a PDIB-form is uniquely determined up to

Mp-isomorphisms.

Proof. First, we fix vertex operators YV (v, 2) of v€ Mp on Mp-modules
Ve, Set 1%%(v,2)=Y"V" (v, 2). Let Y(*# denote a vertex operator of the VOA
Vi) = MpaVeaVigVets. We may assume that V(%) (v, 2)u=Y"" (v, 2)u
«
for v € Mp and u € V° for § € (o, 3). Define I*0(x,2) € I v by
Ve Mp
the skew-symmetry property: Io‘o(u z)v = 2LEDYV (v, —2)u for v € Mp
and u € V®, which is equal to Y (@ ( ) v for any 3. We also define
A,

I(x,2)el (VO{W Vo‘) by I(v/,2)u=Y z)u for u,u’ € V* for some (.

We will show that this does not depend on (3. Since V¢ x V¢ = Mp and our
VOAs are over R, there are two possibilities of VOA structures on Mp @ V¢
0 +1(v,2)
190w, 2) 0
that Mp @ V< has a PDIB-form, there is a unique VOA structure on Mp ® V<
up to Mp-isomorphism. That is, if we fix an orthonormal basis {u$* | i€ I,}

given by Y*(v, 2) = > for ve€ V. Since we also assumed
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of V, then Y{@P) (v, 2)v for u,v € V* does not depend on the choice of 3. So
set 1%(v, z)=1(v, z). Define a nonzero intertwining operator

vots
a,B
I (*,z)é[(va Vﬁ>

for a, 8 € S satisfying dim (o, 3) =2 by I*?(v, 2)u =Y P (v, 2)u for v e V*
and u€ V8. Now we have I (x, z) for all a, € S.

Our next step is to choose suitable scalars A and define a new vertex
operator Y (v, z) €End(V)[[z, 27 1]] by

(3.23) Y (v, 2)u := XP 1B (v, 2)u

for ve V® and u € V? so that {Y (v,2) | v€V} satisfies mutual commutativity.
We note that intertwining operators already satisfy the L(—1)-derivative prop-
erty and the other conditions except mutual commutativity and so “mutual
commutativity” is the only thing we have to prove. Let {ay, -+, a4} be a basis
of S and set S;= (a1, ,a) for i=0,1,--- ,t and VI = P ecq. V. We will
choose A*? inductively so that (3.23) becomes a vertex operator of VOA VU
by restriction to V1 and also is a vertex operator on VId-module V. Since the
V@ are all Mp-modules, the vertex operators YV (v, z) of ve VI (2 Mp) on V
satisfy mutual commutativity and so set A\>*=1. We next assume that there
are an integer r and scalars A*” for a € S, and 3€ S such that Y (v, z) given
by (3.23) is a vertex operator of VI by restricting on VI and is also a vertex
operator of VOA VIl on VIl-module V. Tt is clear that V54 =@ g VO+7
is an irreducible V["l-module for each 6 € S by the fusion rules and hence V
decomposes into the direct sum of irreducible V[l-modules. It follows from
the fusion rule of Mp-modules V? and Lemma 3.24, that

V6+Sr % V'y+Sr =V6+7+ST

as VIl-modules. Decompose VIl = Il ¢ yoratS: a5 VIl omodules. To
simplify the notation, we denote ;1 by a. Let {r; €S | i€ J} be a set of
representatives of cosets S/Sy41. Since the natural restriction

VSrtaty VSrtaty
™ Iy VSrta 1S+ — Inp Ve yo
VSrtaty

Ve y
VSrtatyi

is injective and dim Iz, ( ) =1, we can choose a nonzero intertwining

operator Jo+Sr it (., z)EI( ) such that

VSrta S+

Jo+Sr Sy (v, 2)u=T%" (v, 2)u

for vEV®, ue V. Restricting 149745 (x, ) to VOtB%+9 for 3,6 € S,., we

have a scalar Aoy g,,+4 such that

Jo+Se it S, (v, 2)u= )\a+57%+61a+ﬂ,%+5 (v, 2)u
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for ve VotP and we V0, We will show that VIl is a VOA and V is a
module with a vertex operator Y (v, z) =I%+57i+5 (y, 2) for v€ V+2 which
proves the assertion. Set

Q={weV|Y(u,2)Y(,2)w~ Y 2)Y(u,z)w for u,u’ € V*}.

Since Y (%, 2) is an intertwining operator of V["-modules, Q is a V["l-module.
On the other hand, by the definition of Y, Q contains V7' for all i. Hence
Q coincides with V. In particular, {Y (u,2) | u€ VI U V®} satisfies mutual
commutativity. Since VI is generated by VIl and V*, we have the desired
result. This completes the construction of our VOA.

We next show that a framed VOA structure on V = @,V is unique.
Assume that there are two VOA structures (V,Y) and (V,Y”’) on V. Clearly,

(0%

the V(*A) are sub VOAs of both (V,Y) and (V,Y”). Since dim Iy, <V‘: +‘ﬁ/ﬁ> =
1, there are real numbers A, g such that Y'(v, 2)u= Ay gY (v, z)u for ve V®,
u e VP, Clearly A« s is a cocycle of an elementary abelian 2-group S. We
will show that it is a coboundary so that we have the desired result. Let S
be a group extension of S by a cocycle A, .. Since both {Y (v, z)|lv eV} and
{Y'(v, 2)|v € V} satisfy mutual commutativity, respectively, S is an abelian
2-group. By the assumption, Agn) g=1 and so Ag »)=1 by the skew symme-
try. Since both have a PDIB-form, we may assume A\, =1 for all « €S by
changing the basis of (V,Y”), which implies that S is an elementary abelian
2-group and )\, , is a coboundary of S over R. O

For a word o, we can define an automorphism o, of Mp= @gepMgs by
oot (1) on Mg

and extend it by linearity. We will next show a relation between o, and a
fusion product M,+p x W.

LEMMA 3.26. Let W be an irreducible Mp-module with 3 = 7(W) €
B(D). Let H be a mazimal self orthogonal (doubly even) subcode H of Dg and
a a binary word in HL. Then o, W is isomorphic to W as an Mp-module.

Proof. Decompose Mp into Mg ® M, where
ME={veMp | o4(v)==v}.

Set E={y€D | (y,a)=0}. Clearly, M} =Mg. Since E contains H, there is
an Mp-module U such that Ind2(U) =W by Theorem 3.15. Tt follows from
the definition of the induced modules that IndR(U) = U & (M, x U) as Mp-
modules. The actions of M switch U and M x U; that is, u(,,) (U) € My xU
and u(y,)(Mp x U) € U for any m € Z and v € M. Moreover, u(y,)0qv =
—U(yv for ue Mp and veInd2(U). Tt is easy to check that (Lo, =Ly xv) on
U @ My x U is an isomorphism from o, (Ind2 (U)) to Ind2(U). O
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For an irreducible Mp-module W, o,W is also an irreducible M p-module.
Clearly, W and o,W are isomorphic as T-modules and o, = o if and only
if a+3¢€ D*. Let a be a word satisfying Supp(a) C Supp(7(W)). In this
case Mpy, x W is isomorphic to W as a T-module. The following lemma is
important.

LEMMA 3.27. Let W be an irreducible Mp-module with 7(W) € B(D) and
assume Supp(a) C Supp(7(W)). Then My+p X W is isomorphic to o, W as
an Mp-module.

Proof. Set f=7(W). Clearly, 7(Mpiq X W)=7(c,W)=0. By Corollary
3.13, W/ = My.p x W is irreducible. Let H be a maximal self-orthogonal
(doubly even) subcode of Dg. Since an Mp-module W with 7(W) = 3 is
uniquely determined by an Mpg-submodule, we may assume that D is a self-
orthogonal doubly even code and Supp(D) C Supp(8). In particular, we may
also assume that W and W’ are both isomorphic to L(% 16)®” as T-modules.
Si < dim I w’ < dim I L(%,w)@" - . ..

ince 1 <dim Ips, <U W) <dim I <M L(ia E)®n> =1, an intertwining
!

M,ip, W

for v € D+«. As shown in §2.4 or in [Mi5], we can choose a nonzero intertwining

L(3, 16)®”
M L(% )®n by

operator of type ( ) is uniquely determined up to scalar multiple

operator I(x,z)€ Iy <

I(q7,2) =1(q" ® v, 2) = Qi Ig’lﬁ( ,2) @K,

1
where v = (g1, i gn) and 19976 (x, z) are the fixed intertwining operators of
L(i L
type (L(l &()2’ f()l _)> given by (2.5) and (2.6). By Theorem 3.8, there
202 27 16

are linear modules R, and Ry of D={x"ae D} such that W = L(3, )" ®

R, and W’ = L(ﬁ, 1—6)®" ® Ry, respectively. By associativity of intertwining

operators, we have

I(g,)4%2)
=Res,{(z—2)"Y"'(¢", 2)I(¢*, 2) — (=2 +2)"1(¢*, 2)YV (¢, )}
=Res,{(z—2)"I19"(¢", 2) (k") 1(q*, 2) — (2 +2)" I (¢*, 2)I"(¢”, )X (r")}

for ¢% € Mg C Mp and ¢* € M,. In particular, for a sufficiently large N, we
obtain

0= Resx{(x_z)NI(gm(qAﬁv x)qb(/ﬁﬂ)f(qo" Z)—(—Z—I—.r)NI(qa, Z)I@m(@@’ $)X(K,ﬁ)}

On the other hand, as we showed in Proposition 2.6, I(x, z) satisfies super-
commutativity:

(z—2)NI%"(%, )%™ (¢%, 2) — (1) P (24 2) VN TP (4%, 2) I (§7, ) = 0.
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Therefore
Resq { (2 —2)V o (k7) = (1)) (z+2)Vx (57)} = 0

and so ¢(k?) = (—1)0) y(kP) for € D. Hence W' is isomorphic to oo, W as
an Mp-module. O

Remark 1. The above lemma may look a little strange since we usu-
ally obtain relations o(W?') x o(W?) = o(W! x W?) and (My1p x W1) x
(Myyp x W?)= (W x W?2) for an automorphism o and a coset module M, p,
respectively. However, if o(W?%) & Mp,, x W for i = 1,2, then W' x W?
does not satisfy the condition of the above lemma by the fusion rules of
L(%,0)-modules and so o(W?! x W2)=W! x W2

4. Positive definite invariant bilinear form

In our construction, “induced VOAs” play important roles. We will show
that they inherit PDIB-forms.

THEOREM 4.1. Assume that W% is an irreducible Mp-module with
T(W) =a and that (D, a,«) satisfies the conditions of Theorem 3.20. Let F
be an even code containing D such that (F,a)=0. If a VOA U=Mp® W has
a PDIB-form, then so does the induced VOA Ind5(U) (= Mp @ Ind5(W®)).

Proof. Clearly, it is sufficient to prove the assertion for F = (a, (1"))™.
Since (o, (1"))* is generated by words of weight 2, it is also sufficient to prove
the assertion for F'= D+7Z53 where the weight of 5 & <a>J‘ is 2. We may assume
B = (110""2). Since {3,a) =0, we have Supp(3) C Supp(a) or Supp(3) N
Supp(a) =0.

By the assumption, D, contains a direct sum E, of extended [8,4]-
Hamming codes such that Supp(E,)=Supp(a). Since E, C Dq, Ind5 (W) is
irreducible. Set

V = Mp @ Ind55(W®).

By an argument similar to that in the proof of Theorem 3.25, we are able to
prove that V has a framed VOA structure. Since Indf (W) x Ind5y (W)= Mp
by Lemma 3.22, there are two possibilities of VOA structures on V. Namely, if
one is (Mp @ Ind5(W®),Y), then the other is (Mp @ /—1Ind5(W®),Y). Since
W x W= Mp, we may assume (Mp @ Ind5(W®),Y) contains U= Mp & W
as a sub VOA. As an Mg _-module, W is a direct sum @;c;W* of distinct
irreducible Mg, -modules W' and V= Mg, & Mg 5 ® W' ® (Mg, 15 x W)
is a sub VOA of V for each i. Since (Mg, & Wi,Y|MEa@W¢) is a sub VOA of
Mp & W, (Mg, ® W*, Y|y, ewi) has a PDIB-form.

If we once prove that a VOA structure (V*,Y) on V* has a PDIB-form,
then Wi& (Mpysx W) has an orthonormal basis with respect to Y and so we



THE MOONSHINE VERTEX OPERATOR ALGEBRA 567

have the desired result, since Mpg x W coincides with @;c;(Mpg,s x W?).
Therefore we may assume that Supp(D) = Supp(a) and D is a direct sum
El' @ .- @ E* of extended [8,4]-Hamming codes E'. In particular, W is
irreducible as a T-module, where T'= Myn). Since a VOA structure (V,Y’) on
V' containing U is uniquely determined, we have to show that there exists a
VOA structure on (V,Y) with a PDIB-form. For if (V,Y”) is the other VOA
structure on V, then (W®,Y”’) has a negative definite invariant bilinear form
and it is impossible for (V,Y”) to contain U. We will divide the proof into two
cases:

(1) If Supp(B) N Supp(a) = 0, then there is a code D° of length n —2
such that D = {(00a)|a € D°}, Mp = L(3,0) ® L(3,0) ® Mpo and Mp 5=
L(%, %) ® L(%, %) ® Mpo. By the decompositions above, we are able to write

W= L(3,h1) ® L(3, ha) @ W'
and
Mpigx W2 L3, +3) @ L(3, ha+3) @ W',
for some irreducible Mpo-module W’ and hq, hs =0, %, wher~e hi—i—% denotes
0 if h; :% and % if h; =0. Since L(%,O)@2 &) L(%, %)@’2 >~ Vaze = (Vaza)? ®
V-1(Vaze)™ for (z, ) =1, V=1 () is an isomorphism from L(3,h1) ® L(3, ho)
to L(3, h1+1) ® L(3, ha+3) and (2(0))? acts diagonally on L(3,h)®L(3, ho)
with positive eigenvalues. Let {v® | i € I} be an orthogonal basis such that
each v’ is in an eigenspace of (z(g))?. Then {v—lzgv' | i € I} is a basis of
L(i,hi+3)® L(3,ha+3) and
<\/—_193(0)vi, \/—_133(0)vj> = <vi, (x(o))ij> :(51-j<vi7 (3:(0))2vj> > 0.
Hence Ind5(U) has a PDIB-form.

(2) We next assume Supp(f) C Supp(a). Since D is a direct sum of
extended [8, 4]-Hamming codes and the weight of § is 2, we have to treat the
following two cases:

(2.1) Supp(f) € Supp(E").
(2.2) D=FEg®---® Eg and f=(1071070""16).

Case (2.1). By Lemma 3.18, there is an automorphism o of Mp such that
o (W) is isomorphic to a coset module Mp.. Since Supp(3) C Supp(E?) and
3 has an even weight, o (Mg, p) is also isomorphic to a coset module Mj; p for
some 6. Namely, o(Ind5(U)) is isomorphic to a code VOA M, (D,s,7)- Therefore
it has a PDIB-form.

Case (2.2). We may assume that a=(1") and 8= (1071070""16). Since
L(3,3) ®L(%, 1) has a PDIB-form and the lowest weight is an integer, we may
also assume that n=16 and a=(1'¢). We will find such a VOA as a sub VOA

of ‘N/Es in the next section. This will complete the proof of Theorem 4.1.
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COROLLARY 4.2. Let W=Mp @ W oWY@ W be a (D, (6,7))-framed
VOA with a PDIB-form and assume that a triple (D, o, 3) satisfies the con-
dition of Theorem 3.20 for any o, B € (0,7). If F is an even linear subcode of
(a, B)F containing D, then Ind¥ (W) also has a PDIB-form.

Proof. By Theorem 3.21, V = Ind5(W) is an (F, (a, 8))-framed VOA
®e(a,3 V7 containing W, where V7 = Ind5(W7). It follows from Theorem
4.1 and from the fact that V7 x V7= Mp by Lemma 3.22 that V7 has a PDIB-
form or a negative definite invariant bilinear form. However, since W has a

PDIB-form, V has a PDIB-form. O

5. FEg-lattice VOA

As mentioned in the introduction, we will construct the parts of V? by
using the decomposition of Vi, where Vg, is a lattice VOA constructed from
the root lattice of type Fg with a PDIB-form; (see §2.5). The main purpose
of this section is to study five framed VOA structures of Vg, and Vg,. In
particular, we will show that there are codes D, and Sg, of length 16 such that
Vi, isa (Dg,, Sg, )-framed VOA satisfying the conditions (1)-(4) of Hypotheses
I and triple sets (Dg,, o, 3) satisfy the conditions of Theorem 3.20 for any
a, B € Sg,. Incidentally, we will see that an orbifold construction from VOA
CVpg, coincides with the changing of coordinate sets of extended [8, 4]-Hamming
code sub VOAs of CVg,.

Let Eg denote the root lattice of type FEg. It is known that Eg is the
unique even unimodular positive definite lattice of rank 8. We first define four
expressions of Eg, that is, lattices Eg(m) : m=1,2,3,4,5. Let {z1,--- ,zs} be
an orthonormal basis and set

8

i=1

and N(1)=(z; | i=1,---,8), where (u; | i€I) denotes a lattice generated by
{u; | i€I}. It is easy to check that Eg(1) is isomorphic to Eg. We can define
other expressions of lattice Fg as follows:

(5.2)

ES(Q) = <%(x1—x2—x3—x4)+a?5, %(w5+a:6+a:7+x8)+x1,

xz:l:l‘] | iaj€{17273a4}3 or 17]6{5763778}>

Eg(3) = (3(z1—z2—a5—26)+23, 3(21+22— 23— 34) — 27,
1

1
2 )
Eg(4) = (3(w1—w3—a5—27)+22, 3 (21— 22+ 75— 36) — 73,
)

1 1
sr1t+x2—T3—24)— 27, §(x1+x3—x6+x8)+x5,2m1, o ,21‘8>.
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Fix m=1,2,3,4 and denote Eg(m) by L. Let V7, be a lattice VOA constructed
from L as in [FLM2] and 6 an automorphism of V7, induced from —1 on L. We
note that all V7, are isomorphic to Vg,. Since Eg(m) contains an orthogonal
basis {2x1, - ,2xg} of square length 4, V7 is a framed VOA with a coordinate
set I={e; | i=1,---,16} given by

(5.3) eai—j = g ()] 1~ F(2zi)H(22)) (i=1,2...,8 and j = 0,1)

by [DMZ]. Since they are all in the set V of f-invariants, we can also take
this set as a coordinate set of f/L.

Let P(m)=(r, | i=1,---,16) C Aut(V) and denote Eg(m) N N(1) by
N(m). It is straightforward to verify that VN(W) contains (eq,--- ,e1) and
(V)™ coincides with VN(m) by (2.4). Since (V)™ has a PDIB-form and
F((V)Pm)) = (016), there is a code D(m) of length 16 such that (V7)™
is isomorphic to a code VOA Mp,,). It is also not difficult to check that
(D(m), a, 3) satisfies the conditions of Theorem 3.20 for a, 8 € .S™ := D(m)~*
and (V1) is a (D(m), D(m)")-framed VOA satisfying Hypotheses I. However,
these are not the pieces we will use to construct V¥ since D(m) has a root and
(Mp(my)1 #0 for m=1,2,3,4. In order to construct the moonshine VOA Ve,
we need a code D without roots. To find the desired decomposition, we will
change coordinate sets. Incidentally, this process coincides with a Zs-orbifold
construction of Vg, from itself as we will see.

Let us explain the relation between a Zso-orbifold construction and chang-
ing the coordinate sets. It is known that a Zs-orbifold model from CVg, is iso-
morphic to itself. Let 6 be an automorphism of V7, induced from —1 on L. Also,
0 fixes ¢(w;)+u(—x;) and acts as —1 on C(x;)_1)1 and C(¢(z;)—t(~z;)). Hence 0
acts on My, as (—1){®{01}*) and hence the fixed point space M]%(m) is equal to
the direct sum @ ,c p(n,+) Ma, where D(m, +)={a€D(m) | (a, ({01}%))=0}.
Suppose that V = @,esV® is a (D, S)-framed VOA satisfying Hypotheses I,
where D is a code of length 2n containing (0%110%?"~2=2) for all i=1,--- ,m.
Set 5= ({01}"). Assume that the twisted part of the Zs-orbifold model does
not contain any coset modules. Then the Zs-orbifold construction is corre-
sponding to the following three steps as we will see in the next example.

(1) Take a half Mp ) of Mp, where D(+)={a€D | (o, 3)=0}.

(2) Take an Mp4)-module V8 with 7(V8) =3 and generate Mp(4)-modules
VAT with #(VATY) =4+ by VAT =VF x V7 for y€8S.

(3) Define a VOA structure on f/:eaae(ww.

If we start from Eg(1), 7(Vy(1)40) = (1'%) for v= %(Z?:l z;) and so S'=
((11%)) and D(1) is the set of all even words of length 16. D(1) contains a self
dual subcode H =H} & HZ2, where H{ are extended [8,4]-Hamming codes and
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Supp(Hg) ={1,2,---,8} and Supp(H3Z) ={9,---,16}. Since (((10)%),3) =0
for any 6 € H, we have My C VL9 . Therefore the decompositions of Vj,
and Vi, as Mp-modules are exactly the same. Since D(1) consists of all

even words, the center Z(E(\)) is <:|:/<a(016) :l:n(lw)> and hence there are ex-
actly two irreducible Mp(;)-modules Ind (1)(H(16, (0%) ® H(55,(0%))) and
Ind; ba )( H (55, (0%)®H(5, ")) by Theorem 3.8. The difference between them
is poss1bly to be judged by the action of ¢(1'*) :=((¢M)®16) @ x(1"*). By Table
(2.4) and the proof of Proposition 2.7, we have g™ = (1) (1) (z8)(—)1
and (7)1l = VA ((gM)®?) @ k&i-1k8 . Since the eigenvalue of ¢(*'*) on
Re(3 Y ;) is positive,

Vi, & Mpy ® Tndp " (H(4, (0%) @ H(s, (09))) (5.4)

by the choice of E(1). By Lemma 3.18, there is an automorphism o € Aut(Mp,)
such that {o(e1),---,0(es)} is another coordinate set of My, satisfying

o(H(yg, (&) = H(3,6) = Mpe and o(H(3,61)) = H(gg, (0%). Take

a new coordinate set

J={o(e1), - ,0(es),e9, - ,e16}

of Vg,. Then for 8 € D(1) with (3,(130%)) = 1, 7(c(Mp4g)) = (180%) and
0(Mp+q) is also a coset module for (av, (130%)) =0. We also have 7(o(H (&, &1))
® H(75,&))=(0%1%). Hence the set 7(V;,) with respect to J is

7(
§% = {(0%°), (1°0°), (0°1%), (11%)}.

Set P2:<Ta(ei),7'ej |i=1,---,8,7=9,--- ,16> and define a linear code Ds by
(Vp)P* =2 Mp, with respect to .J; then Dy splits into a direct sum D} @ D3
such that D} and D3 are the sets of all even words whose supports are in
{1,2,---,8} and {9,--- , 16}, respectively. Note that this process corresponds
to an orthogonal transformation

1 1 -1 -1
1 1 1 1
1
(5-5) 21 1 1 1
11 1 -

by (2.4). Therefore this decomposition coincides with the decomposition given
by E8(2) and D(2) Note that (116) EDQ and O'(M(llﬁ)) = M(lm).

We next consider the case of Fg(2) and S? = ((1%0%), (0%1%)). We use
the decomposition above again by renaming J={co(e1), - - ,0(es), €9, - , €16}
and Dy by I={ey, - ,e1} and D(2), respectively. Set

I ={aeD(2) | Supp(a) C {1,2,3,4,9,10,11,12}},
Iy={aeD(2) | Supp(a) C {5,6,7,8,13,14,15,161} .
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It is clear that I; contains an extended [8,4]-Hamming code H; for i =1, 2.
Take a new coordinate set {f1, -, fa, fo, -+, fiz} of Hy and define a new
coordinate set

JZ{fl?"' 7f47657"' 7687f97"' 7f1276137"' 7616}

of V. Then if an My, ® Mp,-module U has a 7-word
(o, B)€e{1,---,4,9,--- 12} ® {5,---,8,13,--- , 16}

with respect to I, then the 7-word with respect to J is either (a, 3) or (o€, 3).
Moreover, there is a submodule with a 7-word (140*1%0%) with respect to J. An
example is My, g 1,10, Where o is a word with (o, (1%0140%)) = 1. Therefore
we have

(5.6) Dy = (D} ® Di @ D @ D3, {1,5,9,13})

where D} is the set of all even words in {4i—3,4i—2,4i—1,44} for i=1,---, 4.
We also obtain

(5.7) S% = ((19), (1%0%), (1*0*1%0%)) .

This corresponds to the decomposition with respect to Eg(3) and D3 = D(3).
D(3) also contains two orthogonal extended [8,4]-Hamming codes H;(3) and
H,(3) whose supports are

{1,2,5,6,9,10,13,14} and {3,4,7,8,11,12,15,16}.
Repeating the arguments above, we have
(5.8) St = ((11%), (1), (1'0"1%0"), ({120%}1))

and Dy = (S*)*. We have Dy = D(4) and D(4) still contains a direct sum
of 2 extended [8,4]-Hamming codes whose supports are ({10}%) and ({01}%).
Repeating the same arguments again, we finally obtain new codes

(5.9) S% = ((1'9), (1%0%), (1*0*1%0%), ({1100}*), ({10}*®))

and D(5)=(S°)+, which are not codes we can get from lattice constructions.

Let us finish the proof of Theorem 4.1. Set &1 = (107) so that 8= (£1£1).
Consider a framed VOA structure

Vi, = Mpy @ Indp™ (H (&, (0%) @ H (&, (0%))).

Set H = Hg ® Hg and My C Mp(). Since VEB is an Mp-module, it is a
direct sum of distinct irreducible Mp-modules. Since D(1) is the set of all
even words, Mp(;) contains H(3,&) ® H(3,&) and so Vg, has a sub VOA
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isomorphic to
(5:10)  (H (3, (0%) ® H (3,(0%)) @ (H (3.6) @ H (3,€))

®© (H (15, (09) ® H (55, (0%)) @ (H (55:&1) @ H (15:&1)) -

This is the desired VOA in Theorem 4.1.
Set Dg, = D(5) and Sg, = S°. We note that Dp, is a Reed Miiller code
RM(2,4) and Sg, is a Reed Miiller code RM(1,4).

LEMMA 5.1. Triples (RM(2,4), o, 3) satisfy the conditions (3.a) and (3.b)
of Theorem 3.20 for any o, B€ RM(1,4).

Proof. To simplify the notation, set D=RM(2,4) and S=RM(1,4). The
weight enumerator of RM(1,4) is 21¢+302%y® +4!0. If a = (0'%) or (119),
then for any maximal self-orthogonal (doubly even) subcodes H? and H?® of
Dg and Dg. which are direct sums of extended (8, 4]-Hamming codes or zero,
E = HP @ H? satisfies the desired conditions. So we may assume that the
weight of « is eight. We note that D, and D. are isomorphic to the extended
[8, 4]-Hamming code. Set E= D, ® Dy and H* = D,,. If 3 is (09), (119),
or af, then E and H*)=F satisfy the desired conditions.

The remaining case is that all of «, 3, a4 have weight eight. Say o =
(130%) and B=(1%0*1%0*). We use an expression

Z%G = {(51,52,(53,54) ’ (SEZ;I}

Clearly, since E, =H" =D, is an extended [8, 4]-Hamming code for v € S with
|v| =8, we have

={(660%0%), (36°0%0%) | 6 €Z3 even},
E,- ={(0*0%50), (0%0%66%) | 6 €Z3 even},
H? = {(50*50%), (50*5°0%) | 6 €Z4 even}
and

HYP ={(0%650%), (0*66°0%) | 6 € Z3 even}.

Since (0%660%) — (60%60%) = (660%0%) and (0*65°0%) = (60*6°0%)+(650%0%), we
obtain H**+ E=HP+E. O

PROPOSITION 5.2. VEs is a (Dg,, Sg,)-framed VOA with a PDIB-form.

We found a (Dg,, Sg, )-framed VOA structure on Vg, from the (D(m), S™)-
framed structure on Vg,. Although it is easy to reverse the process, there is
another important step. Namely, let

VEs = Bacsm Ve
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be the decomposition such that V(™) = Mp(m). Let 8 be an even word so
that <ﬂ)L NS™=S5m"1 Then VT =@ucg= V" is a sub VOA and we can define
the induced VOA

v = dgr o),

which is also a VOA containing Mp,,_1). Thus, the above process to get an
induced VOA is a reverse step of Zs-orbifold construction. As an application,
we will explain properties of automorphisms of a lattice VOA V7, for an even
lattice L in the remainder of this section. Let Lo denote the set of all elements
of L with squared length 4. As we showed, for any a € Lo, we can define two
conformal vectors

et(a) = f5(a(-1))*1+ 1 (@) +1(-a)),
e (a) = 15(a1)*1+1(e(a) +1(-a)).
Then we have:

LEMMA 5.3. Let Te+(q) =Te—(a) 0 VL. Then 74 ="Tc+(a), [Ta, Ym)l =0 for
yeL and
ot u(x) — (1)@ (2)

for x € L. In particular, (1, | a€ La) is an elementary abelian 2-subgroup of
Aut(Vy). If {a,b) is odd for a,b€ Lo, then 7(e*(a))=eT(a).
Proof. Since (a, L)€Z and (a,a)=4, L C 1Za & % (a)*. In particular, we
may view V, C Vi, @ V1 @ From Table (2.4), we have
4 1

{ 1 on Ra(-1)1, Ru((3+Z)a), Ru(Za)
Tex(a) -1 on Ru((3+3Z)a).

Hence [T.=(q), Ym)] =1 for y € L and
Tet(a) - L(x) - (_1)(x,a>[/(x)

for x € L. Therefore we obtain the desired results. O

THEOREM 5.4. For g€ Aut(Sg,), there is an automorphism g of VES such
that ge;)=egyqy for all i=1,--- ,16.

Proof. Recalling the definition of a Reed Miiller code RM(1,4), letting
F =73 be a vector space over Zy of dimension 4 and denote (1000), (0100),
(0010), (0001) by v', v?, v3, v*, respectively. Define ((a;), (b;)) = Z?:l aib;.
The coordinate set of a Reed Miiller code RM(1,4) is the set of all 16 vectors
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of F and RM(1,4) consists of (0'6),(116) and the codewords of length eight
given by hyperplanes. It is easy to see that

Aut(RM(1,4)) = Aut(RM(2,4)) = GL(5,2);
= {0 €GL(5,2)|0"(10000) = £(10000)}

and it is generated by

ai): veEF — v+o' and
a(i,j) 1 veEF — v+{v,v' )" fori#j.

Choose g € Aut(Sg,). By Lemma 3.8, we may assume g€ Aut(Mp,, ) and
g(M116)) = M(116y. Set q = ¢, Since ¢ is an even permutation, we may
assume g(k(!"))=x(1"") and g(q)=g¢. For an Mp,, -module W, g(W) denotes
an Mp, -module defined by v(,(g(u)) = g(vfn)u) for v € Mp, and ue€ W.
Clearly,

9(VE,) = @aes,, 9(VE,)

is a VOA with a PDIB-form. Note that g(Vg,) contains 9(Mp,,) = Mp,,.
Using the backward processes according to the sequences

5% =g(S°%) 2g(S") 2 g(5?) 2 g(5?) 2 g(s') =S,
D(5) =g(D(5)) Cg(D4) Cg(D@B) C<Cg(D(?2) C<Cg(D1))=D),
Mpi)y =9(Mpiy) S g(Mpuwy) Cg(Mpsy) S g(Mpey) <€ g(Mpay) = Mpay,

we obtain a coordinate set {é1,---, €16} of f/E8 such that g(f/ES) has the de-
composition
9(VEy) = Mpy & W.

Here we note that D(1) coincides with the set of all even words of length 16
and W is an irreducible Mp;y-module with 7(W)=(1'¢). So W is isomorphic

to Tndp ™M (H (L, (0%)) @ H (5, (0%)) or ndD™ (H(&, &) ® H(, (0%). The
action ¢(7) on (Vi)™ is equal to qery = 9(q)(7) on 9((Ve,)™)) by the def-
inition. Since the coordinates sets are changing parallel, the expression of ¢
by {é',---,&'6} is equal to {e,--- ,e15}. We note that x(1'") is in the center
of lj(T) Therefore we conclude that W IndlE)(l)(H(l—lﬁ, (0%) ® H(4, (0%))),
which coincides with (5.4). Therefore there is a VOA isomorphism

¢: Vi, — 9(Va,)
such that ¢(e;)=¢' fori=1,--- ,16. By changing the coordinate sets according
to
st Cs?  Csd Ccst CsS
g(8") Cg(8%) Cg(8%) Cg(s*) Cg(s),
respectively, we have an isomorphism ¢ of VES to g(VES) with ¢(e;) = e; for

all 4. Hence we have the desired automorphism ¢~g of V,. O
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6. Holomorphic VOA

Let V be a (D, S)-framed VOA with a coordinate set {¢; | i=1,--- ,n}.
As we showed in [Mi5], S is orthogonal to D.

THEOREM 6.1. If S=D*, then V is the only irreducible V-module. That
is, V' is holomorphic.

Proof. Let (U,YY) be an irreducible V-module. Since M, is rational, U
is a direct sum of irreducible Mp-modules. Decompose U into the direct sum
@®sUP of Mp-modules such that 7(U?)=p. Choose 3 so that U” # 0. Since
UP is an Mp-module, 3€ D=8 and so V7 # 0. Since

U:<v(n)u | v€V°‘,n€Z,ozES>
for any 0 # uc UP by [DM2],
Uﬂ:<v(n)u | veMp,neZ)

for any 0 # u € UP and hence U? is an irreducible Mp-module. Since the

U U U
(o) =1 (v o) =1 (0 )

are injective, we have U©") £ 0 and U©") is isomorphic to a coset module

restrictions

Mp4q for some word a € Zy. Using the skew symmetry, we can define a

U c
U V) with integral powers of z
by I(u, 2)v=e*LEDY Y (v, —2)u for ve€V and u€U. By restriction, we have a

nonzero intertwining operator I(x, z) € Iny,, <

. - ol .
nonzero intertwining operator I7(v, z) € Inr, <M V7> for v € S. Since
a+D

I7 (v, 2) has integral powers of z, « is orthogonal to S and so o € S* = D. Hence
U is isomorphic to Mp. Let ¢ be a lowest degree vector of U(") correspond-
ing to the vacuum of Mp. Since L(-1)q=0, I(q,z) € Hom(V,U[[z,271]]) is a
scalar and gives an Mp-isomorphism of V to U. This completes the proof of
Theorem 6.1. O

7. Construction of the moonshine VOA

In this section, we will construct a framed VOA V¥, which is equal to the
moonshine module VOA constructed in [FLM2], as we will see in Section 9. In
Section 5, we found that Vi, is a (Dg,, Sg, )-framed VOA with a coordinate
set {e; | i=1,---,16} and Sg, :Dﬁs is spanned by

(7.1) {(179), (0°1%), ({0*1%}2), ({0*12}%), ({01}%)}.
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To simplify the notation, we denote Dg, and Sg, by D and S in this section,
respectively. In Lemma 5.1 and Proposition 5.2, we showed that (D, S) satisfies
the conditions in Theorem 3.20 and that Vg, is a (D, S)-framed VOA

(7.2) VEg = @ Ve
a€cs

satisfying the conditions of Hypotheses I.
We note that all codewords of S except (016) and (1%6) are of weight eight.
We define a new code S% of length 48 by

(7.3) S% = ((119000), (0'°1'60'6), (0'60'61'), (a, 0, @) | € S).

The weight enumerator of S? is X*34+3X324120X?*4+3X 1041 which has another
expression:

(7.4) St = {(a,a, ), (a,a,a9), (a,af ), (o a,a) | aeS}.

Set D = (S%)L and call it “the moonshine code.” Now D contains D®3 =
{(a, 8,7) | @, B,7y€ D} and it is easy to see that

(7.5) D' ={(a,3,7) | a+B+7€D, B, is even}.

Hence Df is of dimension 41 and has no codewords of weight 2. We note that
a triple (D®3, o, 3) satisfies the conditions (3.a) and (3.b) of Theorem 3.20 for
any «, 3€ 5%, since S7 C S¥3. Denote (10'°) by &; and set

(7.6) Q = ((£1£10'°),(0"%1&1)) .

To simplify the notation, we let R denote a coset module M¢ p and RW
denote a fusion product (tensor product) R x W for an Mp-module W. As
explained in the introduction, our construction consists of the following steps.
First, Vi, ® Vi, ® Vg, is a (D3, $93)-framed VOA with a coordinate set

{e®1®1, 1®e¢;®1, 1®1®e |i,jk=1,--,16},
where 1 is the vacuum of Vg,. Decompose it into

(7.7) Vi, ® Vi, @ Vg, = @ (Ve ® VEsﬂ ® Vg,").
a,ﬁ,'}'@s‘

By the fusion rules,

(7.8) Vi= @ (Ve eVe’evy)
(a5:7)ES"

is a sub (D®3, S%)-framed VOA. Using induction we obtain

(7.9) V2 = Idl e,
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Note that since (Q,S?) # 0, a vertex operator of some element in V2 does
not have integral powers of z. In particular, V2 is not a VOA. However, as
Mpes-modules, we have
Indg:z+Q(VEsa®VEgﬂ®VEJ}
= (V5" ®Vi, ®@Ve,") @ (RVE,*®RVE, @ Vi,")
&(Ve,*®RVE, @ RVE,") & (RVE,*@ Ve, @ RVE,).

Using (7.4), define W57 for (a, 3,7) € 5% as follows:

(7.10) W) = Vi, ® @ Vp," © Vp,",
W) = (RVip,*) @ (RVis,*) @ Vis, ™,
W™ = (RVE,®) ® VE,* ® (RVE,®),
)

Since all RVg, @ are irreducible Mp-modules by Corollary 3.13, all W (@B are
irreducible Mpes-modules. Induce them into

(7.11) VX = IndBes (WX)

for x € S%. Finally, set

(7.12) vi= v
XESE

This is the desired Fock space. We will show that V% has a (D?, S%)-framed
VOA structure.

Since (DY, a, ) satisfies the conditions of Theorem 3.20 for a, 3 € S it
only remains to prove that

VOO = Mp, @ VX @ VH @ VXt

has a VOA structure with a PDIB-form for any p, x € S% with dim (u, x) = 2.
We note that since Mpes & W(@*%) and Mp: & W(@22) are sub VOAs
of Ind%?’(&&Ow»(MD@s @ W @®a)) they have VOA structures with PDIB-
forms. Take a sub VOA

(VO = Mpes @ (VHX @ (VI @ (VHXHe
of V1 in (7.8) and set
W hom — Mpes @ WX @ WH @ WXTH

for x, pe S8, If (x, p) is orthogonal to (£,£,0%), then Indg%ezd’(&&ow»((Vl)x’“)
is a VOA with the desired properties and it contains W as a sub VOA.
Similarly, if {x, ) is orthogonal to (0'6£1£1) or (£10%6¢;), then we have the
desired properties. Therefore we may assume that xy = (o, a,af) and p =
(8,6 03). Set y=a+[. We divide the proof into two cases.
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Case (1): Assume that Supp(a) N Supp(B) # (. Choose ¢ € Supp(a) N
Supp(B). Set &= (0"110'""") and R'=Mp.¢,. Since

(§&0")H(&600) €D, (§0'6)+(510'¢1) € DF, - (0'96£)+(0"%6161) € D,
we have
Ind25s (R'VE,* @ R'VE,* @ Vi, ) =IndBes (RVE,* @ RVE,® ® Vi,*),
IndBss (R'Ve,” @ Vi,” @ R'Vg,”) =IndB5s (RVe,” ® Ve,” ® RVE"P),
IndB%s (Ve,”” ® R'WVe,Y ® R'Vg,") =IndBes (V" @ RVe,” ® RVE,").
Set
p1 = (&&0"0),  po = (&0'°&), ps = (0'°44&).

Since Supp(p1) € Supp(x), Supp(p2) < Supp(n) and Supp(psz) C
Supp(x+p), it follows from Lemma 3.27 that

R (Vi) @ R (Vis)* @ (Vi)™ Zary, (V1) (@),
R{(Vg,)? @ (V)" ® RN (Vi,)? 20, (V1) B840,
(VES)WC ® Rl(VE8)7 ® (VES)’Y =

Since Mpes®(V1)(@xa) (V13558 g (V1) (77 has a VOA structure with a
PDIB—form, 50 does Uﬂl +u? (MD@B ) @UIH +p2 ( (Vl ) (a,a,ac) ) @Upl +p2 ((Vl ) (B’507/B) ) S3)
T pr 1o (V' 1)07577)). Clearly, we have

12

1%
(Vl)(wcmv)‘

O py
Ops

O p1+p2 (MD®3) = Mpes,
Optpa (V)@ 2, (V)(@0)
Oprr (V)T 2y, (V1)

by Lemma 3.26. Since p1+pa+p3 =0, 0 1,,(VH0O7) =2 o, (V10577
Hence WOoH) = Mpes ® W (@) g W (B8%8) @ W77 has the desired VOA
structure and so does (V)00

Case (2): Assume Supp(a) N Supp(B)=0. Then one of {a, B, a+[°} is at
least (016) since o, € S. We may assume o = (016). Note that y = (032116).
It follows from the structure of D that there is a self dual subcode E of D%3
which is a direct sum @?:1 E' of 6 extended [8,4]-Hamming codes E° such
that Es={p€ E|Supp(r) C Supp(d)} is a direct factor of E for any ¢ € (3, 5°).
In particular, there are Mpg-modules UX, U¥, UXTH such that

and

Indgh (UX) _ (Vu)(olﬁowllﬁ)’

Ind2" (U*) = (V) (B:5°0)
and IndlEjh (UXHH) = (V) (BF°5°),
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In the following, we will only prove the case || =8, but we are able to prove
the assertions for 8= (01¢) or 3=(1!6) by similar arguments. We may assume

8= (1808) and § = (0818). As shown in Section 5, we have a VOA f/}é’f’(g) =
‘N/]égw) @ Véigos) &5, ‘7];2818) @ f/]éim) with a PDIB-form such that
Ve =Indp (H (3,0%) @ H (3, (0%)),
VE(isos) ~Indp (H (£.6) @ H (3,&4)) .
(H (3.61) ® H (15.61))

e P 2l (H (5, (0%)) @ H (5, (0%))

16>

where F'= D(1s0s) © D(gs1s) is a direct sum of two extended [8, 4]-Hamming
codes. In order to simplify the notation, we omit “®” between H (x,*) and
H(*,%). As a sub VOA,

H (5,(0%) H (5,(0%) & H(55, €0 H (3. 61) @H<2’51) (46
& H (75, (0%) H (15, (0%))

has a VOA structure with a PDIB-form. Since W (©*°0"°1'%) jg given by Rf/g;m)@
RVE(SM) ® f/éiw) =Mpie®@ Mpye® VEg(lw), we have

UX=H (5,&)H (3, (0°)H(3,6)H (5, (0%)H (g5, (0%)) H (15, (0%)).

We similarly obtain

U"=H (g5, (0°)H(3, &) H(3, &) H (55, &) H (55, (0°) H(3, &)

&)
L
16

and
UXTH = H (&, &) H(3,6)H(3,0)H (&, &) H

By changing the order of the components, (123456

L (0%)H

Mp=H(s, )H(
1)) H(

Ux=H (L,
Ut H (L,

—~

D=
/\
oo \_/

NI— N

o O
o

S~—

\_/

/\

—

Sl

—

o

N—

—

N[

—

7223

—_

N—

S~—

—~

cn|'_‘

—

()
oo

N—

S~—

I\DIH wlv—\ wl»—‘

—
(@)

0
N—
N—
—
—~

£1))

—
7Y
—
~—
~—
=
—
sl=
-
7Y
—
~—
=
—
N[
:ﬂ
7Y
—
~—
SN—
=
—
sl
—
(e
o]
~—
~—
=
—
&=
—
(e
~—
~—
=
—~
N)lH
/-\
\_/

and

UXT = H (3, (61))H (55, (€0)H (3. (%) H (3, (£1))H (55, (§1)) H (55, (€1))-

By Lemma 3.17, there is an automorphism o of My, such that

and
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Changing the coordinate set by {o(e1),---,0(e®)}, we have

V) = maR(H(L, (0%)
L (&)
2

and

~ 116 ~

VA = mdR(H (5, (€) © H(4, (€0)):
Therefore UXH = My & UX & UF & UXTH is a subset of f/E8 ® f/Es ® VES.
It is also easy to check that U is closed under the products given by
vertex operators. Consequently, U is a VOA with a PDIB-form and so is
(VE)0or) =IndR* (U, This completes the construction of V. O

COROLLARY 7.1. V¥ has a PDIB-form.

Remark 2. Because of our construction, a VOA satisfying Hypotheses I is
a direct sum of the tensor product of L(3,0), L(3, 3), L(3, 15) and we know the
multiplicities of irreducible L(3,0)®"-modules by Theorem 3.8 (cf. Corollary
5.2 in [Mi3]). Hence it is not difficult to calculate its character

Chv(Z) — 62m’z(rank(V))/24 (Z dim V,, 627riz> ]

n=0

For example, let us show that (V%); =0. We first have (Mps); =0 since D"
has no codewords of weight 2. Also, if (V“)’l< # 0 for some Y, then the weight
of x is equal to 16 and hence x is one of (116016016), (016116016) or (016016116),
Say x = (1'60'60'). Since (VAX=TndD; (Vi ® Mp, te, @ Mp,, +¢,) and
D" does not contains any words of the form («, &1, &), the minimal weight of

(V)X is greater than 1, which contradicts the choice of x. Therefore we obtain
Vi=0.

8. Conformal vectors

Since each rational conformal vector e € V' with central charge % gives rise
to an automorphism 7, it is very important to find such conformal vectors for
studying the automorphism group Aut(V'). Therefore we will construct several
conformal vectors of V¥ explicitly.

8.1.Case 1. Set Dy = (Hg @ Hs, (£1£1)) and S = ((1'6)), where & = (107).
Then the pair (o, 3, 5) satisfies the conditions (3.a) and (3.b) of Theorem 3.20
for any o, 3€S7. Set
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U is isomorphic to a sub VOA of Vg,. It is easy to see that

dim(H (4, 0)H(%,0))1 =0

and
dim(H (5, €1)H (3, &)1 = dim(H ({5, &) H (15, 0)1
=dim(H (15,0)H (55, &) = 1.
Hence the weight-one space U; of U is isomorphic to sl(2) as a Lie algebra. If we

view (H(3,£&1)H(%,&))1 as a Cartan subalgebra of s1(2), H (5, &) H(5,0) @

H(116,0) (1—16,51) contains two roots « and 3. A sub VOA generated by U

is isomorphic to a lattice V7, of type A; with (z,z)=2. Identifying o and (3
with ¢(z) and ¢(—x), respectively, we obtain the following elements:

znle(H(3,&)®H(3,&),
L(.Z')—i—b(—x) € (H(%7€1) ® H(%ﬁv 0))17
and
L(l’)—b(—w) S ( (16’51) ® H(16,0))
Take another copy of these and set
y—nle(H(3,6)®H(3, &),
Wy)+1(y) € (H(15, &) ® H(gg,0))1,
and

U(y)—u(y) € (H(75,&) © H(75,0))1.

Then we have

U(£2) ® o(£y)+u(F2) @ (Fy) € H(55,0)H (55, 1) H (55, 0)H (55, €1)

and
(x(—l))217 (y(—l))21 S H(%v O)H(%7 O)H(%v O)H(%a O)

It follows from (r + y,x + y) =2 that
eF(zty)=15((z £ y)-1)* 1+ 10z £ y)+ilw Fy)

and
e (z+y)=15((z £ y) 1)’ 1-1((z £ y)+i(= F y))

are rational conformal vectors with central charge % Therefore we obtain four
rational conformal vectors e®(z £ y) in

H(3,0)H(5,0)H(5,0)H(3,0) & H(3,6)H(3,&)H(5,£)H(3,6)
& H(15,0)H (15, £1) H (75, 0) H (15, &1) © H (15, &1) H (15, 0) H (15, £1) H (15, 0).
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8.2. Case II. We treat the first component Vg, ® 1®1 of Vg, @ Vi, ® VE,.
For simplicity, we denote Dpg,, Sg, and Vg, by D, S, V, respectively. For
a, €S with |a|=|8|=|a+B3|=8, V contains a sub VOA

Ve = Mpo Ve @V @ vers,

Since Dge, Dge and D, g are all isomorphic to Hg, the multiplicities of the
irreducible L(1,0)®%-modules in V" & V5 @V P are all one by Theorem 3.8.
Hence dim(V*"); = dim(V?°); = dim(V*+#); = 8. Since D does not contain
any words of weight 2, (Mp); =0 and so (Mp ® V)y, (Mp @ V), and
(Mp @ VetB) are all commutative Lie algebras. Since V(%) is a sub VOA
of a lattice VOA V of rank 8 and hence (V{*5%)); is isomorphic to s1(2)®8.
Let {1, --,28} be the set of positive roots of AP®. Viewing (Vo9); as a
Cartan subalgebra of s1(2)®8 and embedding it into a lattice VOA Vjes of root
lattice AY®, we are able to denote the positive roots by ¢(x1),--- ,t(2g) and
the negative roots by t(—x1),- -+ ,t(—g). In addition, we may assume

(xi)(fl)]- € Vlﬂé-ﬁ-ﬁ,
L) +e(wi) € VP,
(i) —t(=mz;) € Vlﬁc
fori=1,---,8.
We next treat the second and third components of Vg, ® Vg, ® Vg,. Set
VO = V7 @ VY and VO = RVY @ RV for v € S. We also set F =
o, o+0 e, a,p even ; an Y =Indpe: ’ or 0. We note
{( /ﬂ/) ’ / ,6/ D /B/ } d w6 —1 dg (V(65))f 5. W

that F' does not contain any roots and D @ F C D?. By a similar argument as
in the construction of the moonshine VOA,

has a VOA structure. By Theorem 3.25, we have a VOA
w(@a),(5.6)) — Mp @ W@ g BB g yylatbats)

Since the numbers of codewords in F, o), F(g,8) and F((a4g),(atp)) are all
211 the multiplicities of irreducible L(%,O)@’lﬁ—submodules are all 21178 =8,

where F(, .y = {6 € F[Supp(d) € Supp((7,7))}. Hence dim(Wl(%V)) =8 for
ve{a, B, a+F}. We also have that

X=Mp® (e ® W (aka) ® W (B:B) @ WlatB.ats)
AW () g (86 g 7 (@Fbes ot po)

has a VOA structure. If |§| = 16, only irreducible T-submodules of W?° iso-
morphic to ®32, L(3, f—é) contribute the weight-one space for 6 =(dy, - - ,ds2).
Since o] =|r] =8, (Mp@ W T™0), =0 and (W gppecios),
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is of dimension 16. Since X is a sub VOA of a lattice VOA of rank 16,

X is isomorphic to s1(2)®1¢ and V[/1<(a’&)’(ﬂ’ﬁ)> is isomorphic to s1(2)®%. View-
ing (W(t8.248)), as a Cartan subalgebra and embedding it in a lattice VOA
Vjes of the root lattice A8 we are able to denote the positive roots by
t(y1), -+ ,t(ys) and the negative roots by t(—y1), -+ ,t(~ys). Then we may
assume that

(i) —nle (WietBoth)y,

W(yi)+i(yi) € (W(&’&))l
and _
U(ys) — () € (WD),
fori=1,---,8.
Set
U(Om}a,a) — VEgaC ® W(&,@)7
U(ﬂcﬂﬁ7ﬂ) — VESBC ® U(B:B)
and
ylatB.otBath) _ VE8a+,6’ @ WlatBa+B).
Then

U= Mpgr ® U(ac,a,a) P U(/Bcﬂ,ﬁ) ey U(a‘f‘ﬁ,a-"ﬂ,a-i‘ﬁ)
is a sub VOA of V. We have

((%’)(—1))21 € Mp,
((yi)(-1))°1 € Mp,
(i) (1) (i) (_py L € Ul@tBactiath),
(L(xi)—l—L(—xi)) X (L(yz)‘f'b(—’yl)) c U(ac,a,a)
and,

(e(s) = 1(:)) @ (1(yi) —e(yi)) € WPH),

By the same arguments as in the case I, we have 32 mutually orthogonal
conformal vectors

dai—z = 15 ((xi+yi) (—1) 1+ T (@it ya) +e(—zi—yi))
dai—2 = 15 ((Ti+yi) (<1))* 1= F(e(zi+y) +o(xi—ys))
daim1 = 15 (@i — i) (—1)) 1+ 5 (@i —ya) + ol +1:))

dai = 35 (2 —yi) (~1))* 1= 3 (e(@i—ys) +e(=xi+y;))

in V1, where «(z;+y;) denotes t(x;) ® t(y;).
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9. The automorphism group

In this section, we will prove that the full automorphism group of V¥ is
the Monster simple group.

Hypotheses I1.
(1) V=372,V is a framed VOA over R with a PDIB-form ( , ).
(2) V1=0.

We recall the following results from [Mi4].

THEOREM 9.1. Under Hypotheses 11, if e, f are two distinct conformal
vectors with central charge %, then

(e,f) <15 and (e—fe—f)>43.

In particular, there are only finitely many conformal vectors with central charge %

Proof. By a product ab= a(;)b and an inner product (a,b)1 = ae)b for
a,beVy, Vo becomes a commutative algebra called a Griess algebra. Decom-
pose Va as Re @ Ret with Ret ={v € Va|(v,e) =0}. For a conformal vector f,
there are r€R and u€Re' such that

f=retu.
Since (eu, €) = (u, €2) = (u, 2e) =0, we have eu € Re* and hence
re+2u=2f=ff={2re+(uu)e} +{(vu—(uu).)+2reu},
where (uu), denotes the first entry of uu in the decomposition Re®ReL. Hence
2 /24 (e, (un).) = (e, 2r2e+ (uu).) = (e, f f) = (e, 2f) = (e, 2re) =71/2
and so (e, (uu)e) =7(1—7r)/2. On the other hand, we have

1= f) =11+ {u,u),

and hence (u, u)=1(1—r?). Since (e) = L(3,0) as VOAs and every irreducible
L(%, 0)-module is isomorphic to one of L(%, 0), L(%, %), L(%, %), the eigenvalues
of e(1y on V are 0, 14Z7, 3 3HZ7T, &, =+Z7F. Let v be an element in Ret C V5.
Since e(yv € V3, for m € Z, we have e(,,yv =0 for m = 2,4,5,---. Also

since (e,v) = 0, we have e3)v = 0. Therefore v is a sum of highest weight

vectors of (e)-modules. Hence the eigenvalues of e(;) on Ret are 0, %, or %.

S

Consequently, we obtain
) =413

r/2—12/2 = (e, (uu),) = (e, uu) = (ue,u) < u,
and thus 3r2—4r+1 > 0. This implies r > 1 or r < If » > 1, then it
contradicts (u,u) > 0. We now have r < % and so (e, f) < £, which implies
(e—f,e—f) > % Therefore there are only finitely many conformal vectors with

Lol

central charge 3 since {v€ V5|(v,v) =4} is a compact space. O
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THEOREM 9.2. If V satisfies Hypothesis 11, then Aut(V') is finite.

Proof. Suppose the theorem is false and let G be an automorphism group
of V of infinite order. Since G acts on the set J of all conformal vectors
with central charge % and J is a finite set by Theorem 9.1, we may as-
sume that G fixes all conformal vectors with central charge % In particular,
G fixes every conformal vector e; in a coordinate set {e;|[i =1,---,n}. Set
P={(r, |i=1,---,n). By the definition of 7.,, P is an elementary abelian
2-group. Let V =@, crr(p)VX be the decomposition of V' into the direct sum
of eigenspaces of P, where Irr(P) is the set of all linear characters of P and
VX={veV | gv=x(g)v Vg € P}. As we mentioned in the introduction,
T(VX)=(a1,--- ,an) € ZY is given by (—1)% = x(e;). Since G fixes all e; and
gilTeig:Tg(ei) for g€ Aut(V') by the definition of 7,, [G, P]=1 and hence G
leaves all VX invariant. In particular, G acts on V'¢. We think over the action
of G on V1¢ (=V7P) for a while. Set T=(eq,--- ,e,), which is isomorphic to
L(%, 0)®". Since dim Vy =1, T is the only irreducible T-submodule of V iso-
morphic to L(%, 0)®" as a T-module. By the hypotheses, V has a PDIB-form
and so V¥ is simple. Hence V' is isomorphic to a code VOA Mp= @®ncpMa
for some even linear code D. Since T is generated by {e; | i=1,--- ,n} and G

fixes all e;, G fixes all elements of 7" and so g € G acts on M, as a scalar A\, (g).
Since V has a PDIB-form, we have 0 # (v,v) = (9(v), g(v)) = A2 (g){v,v) and
hence Ay (g) ==1. Since the order of D is finite, we may assume that G fixes
all elements in VP. Since VX is an irreducible V7-module by [DM2], g € G
acts on VX as a scalar p,(g). By the same arguments as above, we have a
contradiction. a

In Lemma 3.3, we showed that we are able to induce every automorphism
of D into an automorphism of Mp. We will show that we can induce every
automorphism of S into an automorphism of V.

LEMMA 9.3. For any g€ Aut(S?), there is an automorphism § of V¥ such
that ge;)=eg(;)-

Proof. By Lemma 3.3, we may assume that g is an automorphism of Mpy.
Let g((VE)X) be an Mp:-module defined by Oy (9 - u) =g (g7 (V) omyu) for
veEMp:, ue (VHX and meZ. Clearly, 7(g((VH)X)=g~1(x) and

g(V?) = Byes:g((VH)X)

has a (D%, S%)-framed VOA structure by Theorem 3.25. We will prove that
there is an M p:-isomorphism

m g((VAY) = (VA7)
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for x € S%. In this case, by the uniqueness theorem (Theorem 3.25), there are
scalars A, such that an endomorphism

¢:g(VF) — vV

given by ¢ = @, A mx on EBXg((Vh)X) is a VOA-isomorphism. Hence g(v) =
#(g - v) for v€V? becomes one of the desired automorphisms of V.

Since S* = {(o, 3,7) | o, 3,7 € Sg,,B,7 = a or a°}, Aut(S%) = X3 x
Aut(Sg,), where 33 is the symmetric group on three letters. As we showed in
the proof of Theorem 5.4,

Aut(Sg,) = GL(5,2); ={g€ GL(5,2) | ¢"(10000)="*(10000)}.

In particular, g leaves D®3 = Dp, @ Dg, ® Dp, and D? invariant. Set x =
(o, 3,7). We first assume that g € ¥3. Since (V)X = Indgipg (W(@B:7) and
W(@B7) is given by (7.10), we have g(W(®#1) =2 Wa(@5:7) as Mpes-modules
and so we have the desired isomorphism for g € ¥3. Assume g= (h, h, h) with
h € Aut(Sg,). By Theorem 5.4, h(f/gs) = Vgga) and hence g(W(®®)) =
W (ha)h(e):h(@) - For x = (a, a, o),

gWeD) = h(RVE ) ® h(RVE,) @ h(V)

~ (W(R)Vp @ (h(R) V™ @ Vo)

as Mp, ® Mp, ® Mp, -modules. Since R = Mp, y¢,, M(R) = Mp,_ ¢,
where j = h(1) and & = (097110177). Since (& +&;,& +¢&;,0%6) € DA,
(R X h(R)) &® (R X h(R)) (9 MDEs is a submodule MDEBS_‘_(&H_&].’SY%J,’O]G) of Mp:
and so we have the desired conclusion:

g(Vﬂ)X - g(Indg% W(a,a,ae))
=df; (M(B)V") @ () V™) @ (V™)

~Idp; RV © RVEY @ V5
=~ (Y8)900), O

Let A be the Leech lattice and let V be a lattice VOA constructed from A.
The following result easily comes from the construction of Vj in [FLM2].

LEMMA 9.4. Aut(Vy) = ((RX)®24)Co0.0, where RX =R—{0} is the multi-
plicative group of R. (C0.0 does not mean a subgroup.)

Proof. Since (Vj)1 is a commutative Lie algebra RA of rank 24 and
exp(a()) = s %(a(o))i is an automorphism acting on Ru(x) as a scalar
exp((, z)) for o€ (V)1 and z € A, we have an automorphism group R*®**,
which is a normal subgroup of Aut(V}). On the other hand, Frenkel, Lepowsky
and Meurman [FLM2] induced g€ Aut(A) into an automorphism of the group
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extension A = {£u(z) | € A} and also into an automorphism of V) using
cocycles. Hence V) has an automorphism group (RX@M)CO.O. Conversely,
suppose Aut(Vy) # (R*¥*")C0.0 and g€ Aut(Vy)—(R**C0.0; then g leaves
(Va)1 invariant and hence it leaves a sub VOA ((Va)1) of free bosons invariant.
Then g acts on the lattice of highest weights of V as a ((V)1)-module, which
is isomorphic to the Leech lattice. Multiplying an element of C0.0 :=Aut(A),
we may assume that g fixes all highest weight vectors {¢(z) | x€A} of V) as a
((VA)1)-module up to scalar multiple and so g commutes with x(0) for x € A.
Consequently, g fixes all elements of (Va); and acts on Re(x) as a scalar and
so g€ (RX@M), which contradicts the choice of g. O

THEOREM 9.5. Aut(VY) is the Monster simple group.

Proof. As we proved, the full automorphism group of V¥ is finite. Set
6 =7, Te, and decompose V¥ into the direct sum

Vi=VteVv-

of the eigenspaces of §, where V* = {v € V# | §(v) = +v}. By the definition

of 7.,
vt = > (Vhe.
a6S%, (o, (11046))=0

Set SA:<(11046)>J' N S% and Dy=S3. Since

S*={(c, 8,7) | @, B, 7€ Sk, B,vE{a,a}}

and

SE _ <(116)’ (1808)7 (1404)2, (1202)47 (10>8> 7

8

we have an expression:
Sa = {(ala"' ,azg) €57 | aie{(OO),(ll)}}.

In particular, § is equal to 7e,, ,Te,,, for any m=1,--- ,24. We note that V'
is a (Df, Sp)-framed VOA. Since Sy is larger than D", we can construct an
induced VOA

V =IndDr (V).

Since (So)+ = Dy, V is a holomorphic VOA of rank 24 by Theorem 6.1. It
follows from the direct calculation that the codewords of Dy of weight 2 are

{(110%), (00110*), - - , (0%611)}.

We assert that (Indgg‘ (V) = 0 for o # 0. Suppose false and assume
(Indgg‘(Vu)O‘)l # 0 for some a. Then the weight of o is 16 and so « is
one of (1'6032),(016116016), (03219), say o = (1'60%2). Since (V9 is given
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by Ind?; (Véiw) ® Mp,, +¢, ® Mp,_+¢,) and Dy does not contain any word of

@3
DEs

the form (x£1&1), we have a contradiction. Consequently,
G = (V)1 = (Mp,)1 = Baep, jaj=2(Ma)1

is a commutative Lie algebra of rank 24 and G := <(‘~/)1> is a VOA of free
bosons of rank 24. We note that G has a PDIB-form (-, -) given by v(;yu=(v,u)1
since V has a PDIB-form. Hence CV is isomorphic to a lattice VOA CV, of
the Leech lattice A by [Mo]. More precisely, we will show the following lemmas
in order to continue the proof of the theorem.

LEMMA 9.6. V is isomorphic to the lattice VOA Vy of the Leech lattice A
given in Proposition 2.7. In particular, one can choose a set of mutually orthog-
onal vectors {x1,--- ,xaa} in A of squared length 4 such that every conformal
vector ey, in a coordinate set of V is written as

e2j—i = 15 ((x;)(—1)* 1+ (1) 3 (e()) + ()
for j=1,---,24 and i=0,1 by identifying V and Vi. Moreover,
(b1b1babg - - - bogbayg) € Sy

if and only if there is (a;) €Z** such that

24 24
1‘:% Zaia:i—l—% Zbi$ieA7
i=1 i=1
where b; €{0,1} denotes integers and binary words, by an abuse of notation.

Proof. Set
W= {veV | T(pyv = 0 for all r€G and n > 0}.

Then the action of {z(g) | v€G} on CW is diagonalizable since G is commuta-
tive. Let L be the set of highest weights of G-submodules of CW as a G-module.
It is easy to see that L is an even unimodular positive definite lattice without
roots since W7 =0. Hence L is the Leech lattice A and CV CVy.

On the other hand, V has a PDIB-form and it also has a Zy-grading

V=vHgyv-

by the definition of induced VOAs, where V=~ = M 10s0)pn X (VOO Let 0
be an automorphism of CV defined by 1 on C(V#)® and -1 on CV~. Now
0 is acting on C(V); as —1 and so we may assume that it is equal to an
automorphism of CV} induced from —1 on A by taking a conjugate. When V =

(VB @ /TIV~, it is also a sub VOA of CV. Let ¢(z) denote a highest weight
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vector for G which lies in CV with highest weight # € A. Namely, uoyL(z) =
(u,z)1(x) for u € G. We note that 0(c(z)) = (-1)*i(z) for (x,x) = 2k. The
space W spanned by highest weight vectors for G is a direct sum of irreducible
G-modules W whose dimensions are less than or equal to 2. If dimW?=1,
then CW® = Cu(z) for some x € A. On the other hand, if dim W* = 2, then
CW? = Cu(x)+Cu(y). Since W' is irreducible, «(x) and ¢(y) are in the same
homogeneous space (C(f/) ;. for some k. Since CG=CV; = CA, we have Zz=Zy
and so y = —w. Hence W' has a basis {av(z)+bi(~x), ct(z)+di(—x)} for some
a,b,c,de C. We may assume that a € R. Since V has a PDIB-form, we may
also assume that { \}—(ab( x)+bi(—x)), \/—( ( Hdi(—z))} is an orthonormal basis
of W Therefore b=(-1)*ka"t, d=(-1)*c! and ad+bc=(-1)*(ac ' +a~1c)=0.
Hence a?> = —?> > 0 and we hence have ¢ = v/~la and d = —/~1b. Since
CW' = Cu(z)+Ci(—) and Wi =CWi NV, 0 keeps W' invariant. Therefore
O(ac(z)+ (1) a (=) = a lu(x) + (<1)*ar(—x) € W*, which implies a = £1.
Hence ¢(z)+(-1)ki(—x), v (e(z) — (1) ke (= ))GW and v~lz)1€gG for zeA.
Consequently, V coincides with the lattice VOA Vj defined in Pr0p051t10n 2.7
and V coincides with Vj.

We recall the structure Vz, = L(3,0) ® L(3,0) & L(3,
(L, Yo LA, %))1 = Ry~lz_y1 for a VOA Vz, with (
(V)1=(Mp,)1=0* (MEZiilﬂ_fzi)l, we have

%)
Z,

e2j —€2j—1 GW:{UGV]a:(n)v: 0 for all z€ (V); and n > 0}

and R(egj—ea;j_1)+v—1R(x;) () (e2j—e2;-1) is an irreducible G-submodule of L.
Hence, by the arguments above, we have
ezj—i = 15((25) (1)) 1+ (1) § (e(xy) +e(z))

for some x; € A. Since

0 = (egj—1+e2;) 1) (ezk—e2m—1) = g1 (@, i) (L(wp) +e(—xk))

for k # j, we have (xj,x)) =0. Namely, {z1,---,2z24} is a set of mutually
orthogonal vectors of A with squared length 4. If y= Z?il c;ix; €A, then ¢; € iZ
since (y,z;) € Z. Assume that y =1 b;z; is in A and set U = Vi
and 77 = (egj_1, e25). As we showed in Section 2,

\T24)+y

(1) b; €1+2Z if and only if an irreducible T7-submodule of U is isomorphic
to L(ia 1—6) ® L(z, 16) In particular, (byb1bobs - - - bagbag) € Sh.

(2) b; €2+47 if and only if an irreducible T7-submodule of U is isomorphic

to L(1,4)® L(,0) or L(3,0) ® L(3, 3).

(3) b; €47 if and only if an irreducible T7-submodule of U is isomorphic to
L(3,0) ® L(3,0) or L(3,3) ® L(3,3).
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Conversely, if v = (b1b1babg - - - bagbag) € Sy, then G acts on (‘N/A)7 and so
(f/A)W N W # 0. By the arguments above, there is an element x € A such
that o(z) € Vy or o(x)+ (1)"I/2(—) € (VA)?. Hence there is a codeword
(a1 ---agy) €Z3* such that ZL':% Zaixmti dobix €A O

LEMMA 9.7. For any y € A with squared length 4, T+ = Te(y)- N
Aut(Vy) and Tey)+ € (£1)%* C (R¥)P24,

Proof. Since C'o.0 acts on the set of all vectors in A with squared length
4 transitively, we may assume that y = 21 and e(y)™ = e; and e(y)” = e,
where {x1,--- ,z24} is the set defined in the above lemma. By the arguments
in the proof of the above lemma, it is clear that 7.(,)+ =7, -. Since ¢, i(z)=

(1)) (z) and [Teys T(—n)] =0, we have 7, € (£1)%, O

Returning to the proof of Theorem 9.5, we have V) = (V1) @ IV~
Let 6 be an automorphism of Vi defined by 1 on (V%) and —1 on =1V .
We identify (V) with V{. Let J be the set of all rational conformal vectors
in (V%) with central charge . Set G=Aut(V?%), Kf=(7, | e€J) C Aut(V?),
K=(1, | ecJ) C Aut(VH©®)), H=Aut(Vy) and Kp= (7. | e€J) C Aut(Vy).
By Lemma 9.4, H = (R*®*YC0.0 and Cy((0)) = 222C0.0. (Co0.0 does not
imply a subgroup.) Clearly, K* C Cg((d)) and Ky C Cg((0)).

By restricting automorphisms of V2 and V, to (V%) and V/@, respec-
tively, we have epimorphisms 7% : K — K and my : Ky — K. By [DM2],
Ker(n%) = (§) and Ker(my)=(f) N K. So we have the following diagram.

G = Aut(V?) Aut((V%)?) H = Aut(V))
|CG(5)\ / \ - — |CH(9)
Ca(9) Cr(0)
K" Ky
<<L> \\ K//// <9‘> N Ky
1

First, we will show that Ky Z 224(6), where 224 denotes the elementary
normal abelian 2-subgroup (£1)%** of (R*)®24C0.0. Let g=(2,4)(6, 8)(10,12)
.-+ (46,48) € Syg. It is straightforward to check that g is an automorphism of St
By Lemma 9.3, there is an automorphism § € Aut(V?) such that g(e;) = €g(i)-
Set &' = 7,7, (= §(6)) and L\ = g(Ly). By Lemma 9.7, there is a set of
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mutually orthogonal vectors {x1,- - ,x24} in A of squared length 4 such that

€2j—i= %((%’)(—1))20(0)4‘ (—1)1%@(%') +u(=x5))-

It is easy to see that v=(0%180%180818) € S,. Since ((V)?)2 # 0, there is y € A
of squared length 4 such that (y,z;) = 1 (mod 2) if and only if i € Supp(7).
For each y € A, e™(y) = 15 (y(-1))?(0)+ ; (t(y) +¢(¥)) is a rational conformal

vector in (VA)<9’T€1’“2"“’T€8>. In particular, g(e* (y)) € (V). Since (y,z5) = 1
(mod 2), we have 7., (¢(£r5)) = —(£x5) and so 7.(,) exchanges eg and e19. On
the other hand, § fixes eg and exchanges e1g and e2. Hence 75(e(y)) exchanges
eg and ejp and hence 74 (,)) does not belong to 224 (9). Hence Kx Z 2% (6).

Since Kp is generated by all automorphisms given by conformal vectors
in (V3)¥, Ky is a normal subgroup of Cx({f)) = 22*C0.0 and so we have
Kx=Cg((h)). Consequently, K = 22*Co.1, Kf=0y(K")Co.1 and Oy(K") is
of order 225 where O2(G) denotes the maximal normal 2-subgroup of G. If
O5 (K1) is an abelian 2-group, then Oy(K?) is an elementary 2-group of order
225 and decomposes into (§) @ N as a C'o.1-module. Let y be a vector of A of
squared length 4 satisfying (i, zo4) =1. Then e*(y) € (V1) and Te+(y) fixes 0=
TeyTey = TesnTess and exchanges eq7 and egs. By Lemma 9.7, 7o,,, Te,, € O2(KF).
Since 0 =Te,,Te,s, We may assume eq7 € N and esg &N, which contradicts that
Te(y) €xchanges eq7 and egs. Hence Oa(K 1) is not abelian and hence Oy(K"Y) is
isomorphic to a central extension of A/2A given by the inner product of A/2A,
since Co.1 acts on Oo(K?)/(6) faithfully. That is, Oy(K?) is an extra-special
2-group of order 2%°, which is denoted by 2?4, By Lemma 9.3, Aut(V?)
contains a subgroup whose restriction on {ej,---,e4g} is isomorphic to
GL(5,2)1 x X3, where X3 is the symmetric group on three letters and per-
mutes three components of ng’, and GL(5,2); denotes

{A€GL(5,2) | A'(10000)="(10000)}.

Set 61 = Te, Te, and B2 =(6,61). Denote § and 691 by dp and dz, respectively.
Since a subgroup of GL(5,2); acts on {dg, 01, 02} transitively and es is given by
a vector of A of squared length 4, we have Ny (ye)(B?) & 2212722 (55 Myy)
from the structure of Cy¢(vq)(d) = 21724C0.1. Similarly, all nontrivial ele-
ments of B3 = (7., Te,, Te, Tes, Te, Tes ) aTe conjugate by the actions of GL(5,2); C
Aut(V?) and s0 Npyqva) (B?) = 23T6H12018(353 5 PSL(3,2)). By the same ar-
guments, we can calculate the normalizer of B* = (T, Te,, Te, Tess Te, Tews Tey Tey ) -
We leave these calculation to the reader.

We will next prove that Aut(V?) is a simple group. If H is a nontrivial
minimal normal subgroup of Aut(V?), then Cy(d;) is a normal subgroup of
C(6;)=2'12*Co.1 for i=0,1,2. Hence C(6;) =2'+?*Co.1 or Cy(8;) =212 or
Crr(0;)=(6;). We note that §;(i=0, 1, 2) are conjugate to each other in Aut(V?)
and hence Cp(0;) = Cr(dp) for i=1,2. In any case, d; € H and so Cgr(6;) # (0;)
since §; € (Cy(8;) | i=1,2,3) = H. If Cp(61) =224 then P :=Cy(8) is a
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Sylow 2-subgroup of H. Since |P : Cp(d2)] =2 and Cp(d2) is not abelian,
we have [Cp(d2),Cp(d2)] = (d1), which contradicts [Cr(d2), Cr(d2)] = (d2).
Therefore we have O (6;) =21724Co.1. Since (J;) is a characteristic subgroup
of a Sylow 2-subgroup of H, we have H = Aut(V%) and hence Aut(VF) is
a simple group. By the characterization of the Monster simple group and
the above facts, we know that Aut(V?) is the Monster simple group; see [I],
[S], [T]. O

As shown above, V¥ is a holomorphic VOA with rank 24 with (V%); =0 and
the Monster simple group M acts on B :V2u faithfully. Since the M-invariant
commutative algebraic structure on a vector space of dimension 196884 B is
unique, B is isomorphic to the Griess algebra constructed in [Gr]. We have
also proved that (V%)% is isomorphic to (V)?, which means that V¥ is a VOA
given by a Zs-orbifold construction from the Leech lattice VOA V. Hence V*
is equal to the moonshine module VOA constructed in [FLM2].

10. Holomorphic VOAs

In this section, we will construct an infinite series of holomorphic VOAs
whose full automorphism groups are finite. We will adopt the notation from
Section 7 and repeat the similar constructions as in Section 7.

For n=1,2,---, set

S5(n) = (({0"}'11%{0")2" ), ({a}*"*) | € Sy i=1,--- , 2n).
S%(n) is an even linear code of length 16+32n and (S%(n))* contains a direct

sum (Dg,)®2" ! of 2n+1 copies of Dg, for each n. When v is an element of
S%(n), then there is o€ Sp, such that

Y= (/817 o 7/82n+1)7

where (3; € {a, a°}. We may assume that the number of j; satisfying 3; =« is
odd. Set
_ ox2n+1y178:
W'Y - ®Z7:11 Wﬂ )

where

WP =Vp® if 6 =«
and 3

WP = RV, ® if §; = of.

Set

Vin)= @ W

V€S (n)

and

St(n))+
Vi(n) = mad> "M (V3 (n)).

( Ezs)eB
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Then we can show that V%(n) has a framed VOA structure by exactly the same
proof as in the construction of V¥, Tt also satisfies (V#(n)); =0. Moreover, it is
a holomorphic VOA by Theorem 6.1 and its full automorphism group is finite
by Theorem 9.2.

11. Characters

In this section, we will calculate the characters of the 3C element and the
2B element of the Monster simple group. By Lemma 9.3, we are able to induce
an automorphism of D! into an automorphism of V1.

11.1. 3C.  Clearly, g = (1,17,33)(2,18,34) --- (16, 32,48) is an auto-
morphism of D!. Let § be an automorphism of V¥ induced from g. By the
definition, g acts on {e; | i=1,---,48} as (1,17,33)(2,18,34) - -- (16, 32, 48).

In this subsection, we denote Dpg, by D. Vi contains Mpes = Mp &
Mp @ Mp. We view V1 as an Mp @ Mp @ Mp-module. Since g permutes
{VX | xe S8}, we obtain

ch v (g, Z) =tr g,z(vh)

=trg. @ VX

x9=x€S"!

g | @ v ),

a€Dpg

where try . (V)= <z tr(9),, 2T for V— @V
By the definition of V(O"O‘v‘)‘)7

Ve®e) — mdBl (Ve ® @ Vie,* @ Vi,%).
It follows from the definition of induced modules that
mdPes(U) = €  Mpesy, x U
peD:/D®3
as Mpss-modules. Since D?={(a, 3,7) | a+8+y€ D, a, 3,5 even }, we obtain
G(DP3 4 1) =D®3 41 if and only if € DP3. Hence
tr g’z(v(a,a,a)) = tr g,Z(VE‘Sa ® VEsa ® VEsa)
= ftr 1732(VE80‘).
Therefore,
ch ye(g,2)= D tr13.(Ve®)
a€D g
=tr 13,(Vg,) =ch Vi, (1,32).
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11.2. 1 and 2B. Let 6 =7,,7.,. We proved that (V%) is isomorphic to
(VA)®). Hence
ch (VH))) =1+ 98580¢% + - - - .

So we will calculate the character of (V1)™ ={ve V| §(v)=—}. It follows
from the definition of 7, that

ch (VH7)= Y ch ((VHY).
(x,(11040))=1
Set x = (a, 3,7) with o, 3,y €Z3°. Assume (x, (110%6)) =1. Then the weight of
o is 8 and so the weight of y is 24 since xy € S%. Consequently, dim DE( =T+74+4
and hence the multiplicity of every irreducible T-submodule of (V#)X is 26. Let
U be an irreducible T-submodule of (V#)X. It follows from the total degree
that the number of L(3, 1) in U=®?3, L(3, ;) is odd. On the other hand, let
v be an odd word with Supp(y) N Supp(x) =0. By the action of Mps, there
exists an irreducible T-submodule isomorphic to ®§§1L(%, h;) with h; :% for

i€Supp(y), hi= 1—16 for i€ Supp(x) and h; =0 for i & Supp(x+~). Hence
ch((V*)X) = 2%ch {L(3, 15)°**5((L(3,0)+ L (5, 3))** = (L(3,0)— L(3, $)¥*")}

:32q3/2 H(1+qn)24 H (1_|_qn)24_ H (1_qn)24
neN neN+ 3 neN+ 3

Since there are 64 codewords x such that (, (110%6)) =1, we have

(V7)) =2"g*2 [T+ | ] +am*= [T -a9*
neN neN+ 3 neN+3
=M (14244 - )(48¢ % +- )
=212(24¢%+- ).
In particular, we obtain (V?); =0 and dim(V?), =196884.
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