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The main conjecture for CM elliptic
curves at supersingular primes

By Robert Pollack and Karl Rubin*

Abstract

At a prime of ordinary reduction, the Iwasawa “main conjecture” for ellip-
tic curves relates a Selmer group to a p-adic L-function. In the supersingular
case, the statement of the main conjecture is more complicated as neither the
Selmer group nor the p-adic L-function is well-behaved. Recently Kobayashi
discovered an equivalent formulation of the main conjecture at supersingular
primes that is similar in structure to the ordinary case. Namely, Kobayashi’s
conjecture relates modified Selmer groups, which he defined, with modified p-
adic L-functions defined by the first author. In this paper we prove Kobayashi’s
conjecture for elliptic curves with complex multiplication.

Introduction

Iwasawa theory was introduced into the study of the arithmetic of elliptic
curves by Mazur in the 1970’s. Given an elliptic curve E over Q and a prime p

there are two parts to such a program: an Iwasawa-Selmer module contain-
ing information about the arithmetic of E over subfields of the cyclotomic
Zp-extension Q∞ of Q, and a p-adic L-function attached to E, belonging to
a suitable Iwasawa algebra. The goal, or “main conjecture”, is to relate these
two objects by proving that the p-adic L-function controls (in precise terms,
is a characteristic power series of the Pontrjagin dual of) the Iwasawa-Selmer
module. The main conjecture has important consequences for the Birch and
Swinnerton-Dyer conjecture for E.
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For primes p where E has ordinary reduction,

• Mazur introduced and studied the Iwasawa-Selmer module [Ma],

• Mazur and Swinnerton-Dyer constructed the p-adic L-function [MSD],

• the main conjecture was proved by the second author for elliptic curves
with complex multiplication [Ru3],

• Kato proved that the characteristic power series of the Pontrjagin dual
of the Iwasawa-Selmer module divides the p-adic L-function [Ka].

The latter two results are proved using Kolyvagin’s Euler system machinery.
For primes p where E has supersingular reduction, progress has been much

slower. Using the same definitions as for the ordinary case gives a Selmer mod-
ule that is not a torsion Iwasawa module [Ru1], and a p-adic L-function that
does not belong to the Iwasawa algebra [MTT], [AV]. Perrin-Riou and Kato
made important progress in understanding the case of supersingular primes,
and independently proposed a main conjecture [PR3], [Ka].

More recently, the first author [Po] proved that when p is a prime of super-
singular reduction (and either p > 3 or ap = 0) the “classical” p-adic L-function
corresponds in a precise way to two elements L+

E ,L−
E of the Iwasawa alge-

bra. Shortly thereafter Kobayashi [Ko] defined two submodules Sel+p (E/Q∞),
Sel−p (E/Q∞) of the “classical” Selmer module, and proposed a main con-
jecture: that L±

E is a characteristic power series of the Pontrjagin dual of
Sel±p (E/Q∞). Kobayashi proved that this conjecture is equivalent to the Kato
and Perrin-Riou conjecture, and (as an application of Kato’s results [Ka])
that the characteristic power series of the Pontrjagin dual of Sel±p (E/Q∞)
divides L±

E .
The purpose of the present paper is to prove Kobayashi’s main conjecture

when the elliptic curve E has complex multiplication:

Theorem. If E is an elliptic curve over Q with complex multiplication,
and p > 2 is a prime where E has good supersingular reduction, then L±

E is a
characteristic power series of the Iwasawa module Hom(Sel±p (E/Q∞),Qp/Zp).

See Definition 3.3 for the definition of Kobayashi’s Selmer groups
Sel±p (E/Q∞), and Section 7 for the definition of L±

E . With the same proof (and
a little extra notation) one can prove an analogous result for Sel±p (E/Q(µp∞)),
the Selmer groups over the full p-cyclotomic field Q(µp∞).

The proof relies on the Euler system of elliptic units, and the results and
methods of [Ru3] which also went into the proof of the main conjecture for
CM elliptic curves at ordinary primes. We sketch the ideas briefly here, but
we defer the precise definitions, statements, and references to the main text
below.
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Fix an elliptic curve E defined over Q with complex multiplication by an
imaginary quadratic field K, and a prime p > 2 where E has good reduction
(ordinary or supersingular, for the moment). Let p be a prime of K above p,
and let K = K(E[p∞]), the (abelian) extension of K generated by all p-power
torsion points on E. Class field theory gives an exact sequence

(1) 0 −→ E/C −→ U/C −→ X −→ A −→ 0

where U , E , and C are the inverse limits of the local units, global units, and
elliptic units, respectively, up the tower of abelian extensions K(E[pn]) of K,
and X (resp. A) is the Galois group over K(E[p∞]) of the maximal unrami-
fied outside p (resp. everywhere unramified) abelian p-extension of K(E[p∞]).
Further

(a) the classical Selmer group Selp(E/K) = Hom(X , E[p∞]),

(b) the “Coates-Wiles logarithmic derivatives” of the elliptic units are special
values of Hecke L-functions attached to E,

(c) the Euler system of elliptic units can be used to show that the (torsion)
Iwasawa modules E/C and A have the same characteristic ideal.

If E has ordinary reduction at p, then U/C and X are torsion Iwasawa
modules. It then follows from (1) and (c) that U/C and X have the same
characteristic ideal, and from (b) that the characteristic ideal of U/C is a
(“two-variable”) p-adic L-function. Now using (a) and restricting to Q∞ ⊂ K

one can prove the main conjecture in this case.
When E has supersingular reduction at p, the Iwasawa modules U/C and

X are not torsion (they have rank one), so the argument above breaks down.
However, Kobayashi’s construction suggests a way to remedy this. Namely, one
can define submodules V+,V− ⊂ U such that in the exact sequence induced
from (1)

0 −→ E/C −→ U/(C + V±) −→ X/image(V±) −→ A −→ 0

we have torsion modules U/(C + V±) and X/image(V±), and the Kobayashi
Selmer groups satisfy

(a′) Sel±p (E/Q∞) = Hom(X/image(V±), E[p∞])GQ∞ .

Using (b) (to relate U/(C + V±) with L±
E) and (c) as above this will enable us

to prove the main conjecture in this case as well.
The layout of the paper is as follows. The general setting and notation

are laid out in Section 1. Sections 2 and 3 describe the classical and Kobayashi
Selmer groups, and Sections 4 and 5 relate Kobayashi’s construction to local
units, elliptic units, and L-values. Section 6 applies the results of [Ru3] to our
situation. The proof of the main theorem (restated as Theorem 7.3 below) is
given in Section 7, and in Section 8 we give some arithmetic applications.
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1. The setup

Throughout this paper we fix an elliptic curve E defined over Q, with
complex multiplication by the ring of integers O of an imaginary quadratic
field K. (No generality is lost by assuming that End(E) is the maximal order
in K, since we could always replace E by an isogenous curve with this property.)
Fix also a rational prime p > 2 where E has good supersingular reduction. As
is well known, it follows that p remains prime in K. It also follows that
ap = p + 1 − |E(Fp)| = 0, so we can apply the results of the first author [Po]
and Kobayashi [Ko]. Let Kp and Op denote the completions of K and O at p.

For every k let E[pk] denote kernel of pk in E(Q̄), E[p∞] = ∪kE[pk],
and Tp(E) = lim

←−
E[pk]. Let K = K(E[p∞]), let K∞ denote the (unique)

Z2
p-extension of K, let Q∞ ⊂ K∞ be the cyclotomic Zp-extension of Q, and

let Kcyc = KQ∞ ⊂ K∞ be the cyclotomic Zp-extension of K. Let ρ denote
the character

ρ : GK −→ AutOp(E[p∞]) ∼= O×
p .

Let Ê denote the formal group giving the kernel of reduction modulo p on E.
The theory of complex multiplication shows that Ê is a Lubin-Tate formal
group of height two over Op for the uniformizing parameter −p. It follows that
ρ is surjective, even when restricted to an inertia group of p in GK . Therefore
p is totally ramified in K/K and ρ induces an isomorphism Gal(K/K) ∼= O×

p .
We can decompose

Gal(K/K) = ∆ × Γ+ × Γ−

where ∆ = Gal(K/K∞) ∼= Gal(K(E[p])/K) is the non-p part of Gal(K/K),
which is cyclic of order p2−1, and Γ± is the largest subgroup of Gal(K/K(E[p]))
on which the nontrivial element of Gal(K/Q) acts by ±1. Then Γ+ and Γ−
are both free of rank one over Zp.

Let M (resp. L) denote the maximal abelian p-extension of K(E[p∞])
that is unramified outside of the unique prime above p (resp. unramified
everywhere), and let X = Gal(M/K) and A = Gal(L/K). If F is a finite
extension of K in K let OF denote the ring of integers of F , and define sub-
groups CF ⊂ EF ⊂ UF ⊂ (OF ⊗ Zp)× as follows. The group UF is the
pro-p-part of the local unit group (OF ⊗Zp)×, EF is the closure of the projec-
tion of the global units O×

F into UF , and CF is the closure of the projection of
the subgroup of elliptic units (as defined for example in §1 of [Ru3]) into UF .
Finally, define

C = lim
←−

CF ⊂ E = lim
←−

EF ⊂ U = lim
←−

UF ,

inverse limit with respect to the norm map over finite extensions of K in K.



MAIN CONJECTURE FOR SUPERSINGULAR PRIMES 451

Class field theory gives an isomorphism Gal(M/L) ∼= U/E . We summarize this
setting in Figure 1 below.

Figure 1.

If K ⊂ F ⊂ K we define the Iwasawa algebra Λ(F ) = Zp[[Gal(F/K)]]. In
particular we have

Λ(K) = Zp[[Gal(K/K)]] = Zp[[∆ × Γ+ × Γ−]],

Λ(K∞) = Zp[[Gal(K∞/K)]] = Zp[[Γ+ × Γ−]],

Λ(Kcyc) = Zp[[Gal(Kcyc/K)]] ∼= Zp[[Γ+]] ∼= Zp[[Gal(Q∞/Q)]].

We write simply Λ for Λ(Kcyc), and we write ΛO(F ) = Λ(F ) ⊗Op and ΛO =
Λ ⊗Op.

Definition 1.1. Suppose Y is a Λ(K)-module. We define the twist

Y (ρ−1) = Y ⊗ HomO(E[p∞], Kp/Op).

The module HomO(E[p∞], Kp/Op) is free of rank one over Op, and GK acts
on it via ρ−1. Thus we have Tp(E)(ρ−1) ∼= Op and E[p∞](ρ−1) ∼= Kp/Op.

If K ⊂ F ⊂ K we define

Y ρ
F = Y (ρ−1) ⊗Λ(K) Λ(F ) = Y (ρ−1)/〈γ − 1 : γ ∈ Gal(K/F )〉,
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the F -coinvariants of Y (ρ−1). We will be interested in Y ρ
K∞ and Y ρ

Kcyc
. Con-

cretely, if we write Z for the ΛO(K∞)-submodule of Y ⊗Op on which ∆ acts
via ρ, then Y ρ

K∞ can be identified with Z(ρ−1) and Y ρ
Kcyc

can be identified with
(Z/(γ∗ − ρ(γ∗))Z)(ρ−1) where γ∗ is a topological generator of Γ−.

2. The classical Selmer group

For every number field F we have the classical p-power Selmer group
Selp(E/F ) ⊂ H1(F, E[p∞]), which sits in an exact sequence

0 −→ E(F ) ⊗ (Qp/Zp) −→ Selp(E/F ) −→ X(E/F )[p∞] −→ 0

where X(E/F )[p∞] is the p-part of the Tate-Shafarevich group of E over F .
Taking direct limits allows us to define Selp(E/F ) for every algebraic extension
F of Q.

Theorem 2.1. Selp(E/Kcyc) ∼= HomO(X ρ
Kcyc

, Kp/Op).

Proof. Combining Theorem 2.1, Proposition 1.1, and Proposition 1.2 of
[Ru1] shows that

Selp(E/Kcyc) ∼= HomO(X , E[p∞])Gal(K/Kcyc)

= HomO(X (ρ−1), Kp/Op)Gal(K/Kcyc) = HomO(X ρ
Kcyc

, Kp/Op).

Remark 2.2. We have rankΛO(K∞)X ρ
K∞ = 1 (see for example [Ru3,

Th. 5.3(iii)]), so rankΛOX
ρ
Kcyc

≥ 1. Thus, unlike the case of ordinary primes,
the Selmer group Selp(E/Kcyc) is not a co-torsion ΛO-module. This makes the
Iwasawa theory for supersingular primes more difficult than the ordinary case.
In the next section, following Kobayashi [Ko], we will remedy this by defining
two smaller Selmer groups which will both be co-torsion ΛO-modules.

3. Kobayashi’s restricted Selmer groups

If F is a finite extension of K in K let Fp denote the completion of F

at the unique prime above p, and for an arbitrary F with K ⊂ F ⊂ K let
Fp = ∪NNp, union over finite extensions of K in F . For every such F let
mF denote the maximal ideal of Fp and let E1(Fp) ⊂ E(Fp) be the kernel of
reduction. Then E1(Fp) is the pro-p part of E(Fp) and we define the logarithm
map λE to be the composition

λE : E(Fp) � E1(Fp)
∼−→ Ê(mF ) −→ Fp
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where the first map is projection onto the pro-p part, the second is the canonical
isomorphism between the kernel of reduction and the formal group Ê, and the
third is the formal group logarithm map.

Definition 3.1. For n ≥ 0 let Qn denote the extension of Q of degree
pn in Q∞, and if n ≥ m let Trn/m denote the trace map from E(Qn,p) to
E(Qm,p). For each n define two subgroups E+(Qn,p), E−(Qn,p) ⊂ E(Qn,p) by

E+(Qn,p) = {x ∈ E(Qn,p) : Trn/mx ∈ E(Qm−1,p) if 0 < m ≤ n, m odd}
E−(Qn,p) = {x ∈ E(Qn,p) : Trn/mx ∈ E(Qm−1,p) if 0 < m ≤ n, m even}

and let E±
1 (Qn,p) = E±(Qn,p) ∩ E1(Qn,p). Equivalently, let Ξ+

n (resp. Ξ−
n )

denote the set of nontrivial characters Gal(Qn/Q) → µpn whose order is an
odd (resp. even) power of p, and then

E±(Qn,p) = {x ∈ E(Qn,p) :
∑

σ∈Gal(Qn/Q) χ(σ)xσ = 0 for every χ ∈ Ξ±
n }

where the sum takes place in E(Qn,p)⊗Z[µpn ]. Note that when n = 1 we get
E+(Qp) = E−(Qp) = E(Qp). When n = ∞ we define

E±(Q∞,p) = ∪nE±(Qn,p).

We also define E±(KQn,p) exactly as above with Qn replaced by KQn. The
complex multiplication map E(Qn,p)⊗Op → E(KQn,p) induces isomorphisms

(2) E1(Qn,p) ⊗Op
∼−→ E1(KQn,p), E±

1 (Qn,p) ⊗Op
∼−→ E±

1 (KQn,p)

for every n ≤ ∞.

Fix once and for all a generator {ζpn} of Zp(1), so ζpn is a primitive pn-
th root of unity and ζp

pn+1 = ζpn . If χ : Γ+ � µpk define the Gauss sum
τ(χ) =

∑
σ∈Gal(Q(µ

pk )/Q) χ(σ)ζσ
pk .

Theorem 3.2 (Kobayashi [Ko]).

(i) E+(Qn,p) + E−(Qn,p) = E(Qn,p).

(ii) E+(Qn,p) ∩ E−(Qn,p) = E(Qp).

Further, there is a sequence of points dn ∈ E1(Qn,p) (depending on the choice
of {ζpn} above) with the following properties.

(iii) Trn/n−1dn =

{
dn−2 if n ≥ 2,
1−p
2 d0 if n = 1.

(iv) If χ : Gal(Qn/Q) ∼−→ µpn then

∑
σ∈Gal(Qn/Q)

χ(σ)λE(dσ
n) =

{
(−1)[

n
2
]τ(χ) if n > 0,

p
p+1 if n = 0.
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(v) If ε = (−1)n then

Eε
1(Qn,p) = Zp[Gal(Qn/Q)]dn and E−ε

1 (Qn,p) = Zp[Gal(Qn−1/Q)]dn−1.

Proof. The first two assertions are Proposition 8.12(ii) of [Ko].
Let dn = (−1)[

n+1
2

]TrQ(µpn+1 )/Qn
c′n+1 where c′n+1 ∈ E1(Q(µpn+1)p) cor-

responds to the point cn+1 ∈ Ê(Q(µpn+1)p) defined by Kobayashi in Section 4
of [Ko]. Then the last three assertions of the theorem follow from Lemma 8.9,
Proposition 8.26, and Proposition 8.12(i), respectively, of [Ko].

Definition 3.3. If 0 ≤ n ≤ ∞ we define Kobayashi’s restricted Selmer
groups Sel±p (E/Qn) ⊂ Selp(E/Qn) by

Sel±p (E/Qn) = ker
(

Selp(E/Qn) → H1(Qn,p, E[p∞])/(E±(Qn,p) ⊗ Qp/Zp)
)

.

Since E(Qn,v) ⊗ Qp/Zp = 0 when v � p, a class c ∈ H1(Qn, E[p∞]) belongs to
Sel±p (E/Qn) if and only if its localizations cv ∈ H1(Qn,v, E[p∞]) satisfy cv = 0
if v � p and

cp ∈ image
(

E±(Qn,p) ⊗ Qp/Zp → H1(Qn,p, E[p∞])
)

.

(If we replace E±(Qn,p) by E(Qn,p) we get the definition of Selp(E/Qn).)
We define Sel±p (E/Kcyc) in exactly the same way with Qn replaced by

KQn, using E±(KQn,p), and then

Sel±p (E/Q∞) ⊗Op
∼= Sel±p (E/Kcyc).

4. The Kummer pairing

The composition

E(Kp) ⊗ Qp/Zp −→ H1(Kp, E[p∞]) ∼−→ Hom(GKp , E[p∞])

−→ Hom(U , E[p∞]) ∼−→ HomO(U(ρ−1), Kp/Op),

where the third map is induced by the inclusion U ↪→ GKp of local class field
theory, induces an Op-linear Kummer pairing

(3) (E(Kp) ⊗ Qp/Zp) × U(ρ−1) → Kp/Op.

Proposition 4.1. The Kummer pairing of (3) induces an isomorphism

Uρ
Kcyc

∼= HomO(E(Kcyc,p) ⊗ Qp/Zp, Kp/Op).

Proof. This is equivalent to Proposition 5.4 of [Ru2].
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Definition 4.2. Define Ṽ± ⊂ Uρ
Kcyc

to be the subgroup of Uρ
Kcyc

corre-
sponding to HomO(E(Kcyc,p)/E±(Kcyc,p)⊗Qp/Zp, Kp/Op) under the isomor-
phism of Proposition 4.1. Since HomO( · , Kp/Op) is an exact functor on
Op-modules we have

E±(Kcyc,p) ⊗ Qp/Zp
∼= HomO(Uρ

Kcyc
/Ṽ±, Kp/Op),(4)

Uρ
Kcyc

/Ṽ± ∼= HomO(E±(Kcyc,p) ⊗ Qp/Zp, Kp/Op).(5)

Let α : U → X be the Artin map of global class field theory. The following
theorem is the step labeled (a′) in the introduction.

Theorem 4.3. Sel±p (E/Kcyc) = HomO(X ρ
Kcyc

/α(Ṽ±), Kp/Op).

Proof. This is Theorem 2.1 combined with Definition 3.3 of Sel±p (E/Kcyc)
and (4).

Proposition 4.4. (i) Uρ
K∞ is free of rank two over ΛO(K∞) and Uρ

Kcyc

is free of rank two over ΛO.

(ii) Ṽ± and Uρ
Kcyc

/Ṽ± are free of rank one over ΛO.

(iii) There is a (noncanonical) submodule V± ⊂ Uρ
K∞ whose image in Uρ

Kcyc

is Ṽ± and such that V± and Uρ
K∞/V± are free of rank one over ΛO(K∞).

Proof. By [Gr], Uρ
K∞ is free of rank two over ΛO(K∞), and then the

definition of Uρ
Kcyc

shows that Uρ
Kcyc

is free of rank two over ΛO. Theorem 6.2

of [Ko] (see also Theorem 7.1 below) and (5) show that Uρ
Kcyc

/Ṽ± is free of

rank one over ΛO, so the exact sequence 0 → Ṽ± → Uρ
Kcyc

→ Uρ
Kcyc

/Ṽ± → 0

splits. Thus Ṽ± is a projective ΛO-module, and Nakayama’s lemma shows that
every projective ΛO-module is free. This proves (ii).

Let u be any element of Uρ
K∞ whose image in Uρ

Kcyc
generates Ṽ±, and let

V± = ΛO(K∞)u. Then V± is free of rank one, and it follows from (ii) and
Nakayama’s lemma that Uρ

K∞/V± is free of rank one over ΛO(K∞) as well.

5. Elliptic units and the explicit reciprocity law

Let ψE denote the Hecke character of K attached to E, and for every
character χ of finite order of GK let L(ψEχ, s) denote the Hecke L-function. If
χ is the restriction of a character of GQ then L(ψEχ, s) = L(E, χ, s), the usual
L-function of E twisted by the Dirichlet character χ. Let ΩE ∈ R+ denote the
real period of a minimal model of E.
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The explicit reciprocity law of Wiles [Wi] together with a computation
of Coates and Wiles [CW] leads to the following theorem, which is the step
labeled (b) in the introduction.

Theorem 5.1. The ΛO(K∞)-module Cρ
K∞ of elliptic units is free of rank

one over ΛO(K∞). It has a generator ξ with the property that if K ⊂ F ⊂ K∞,
x ∈ E(Fp), and χ : Gal(F/K) → µp∞ , then the Kummer pairing 〈 , 〉 of (3)
satisfies∑

σ∈Gal(F/K)

χ−1(σ)〈xσ ⊗ p−k, ξ〉 = p−k L(ψEχ, 1)
ΩE

∑
σ∈Gal(F/K)

χ−1(σ)λE(xσ).

Proof. See [Wi] and [CW, §5], or Theorem 7.7(i) of [Ru3] and Theorem 3.2
and the proof of Proposition 5.6 of [Ru2].

Corollary 5.2. (i) The map Cρ
Kcyc

→ Uρ
Kcyc

is injective.

(ii) Cρ
Kcyc

is free of rank one over ΛO and Cρ
Kcyc

∩ Ṽ+ = Cρ
Kcyc

∩ Ṽ− = 0.

(iii) rankΛO(K∞)Eρ
K∞ = 1 and Eρ

K∞ ∩ V+ = Eρ
K∞ ∩ V− = 0.

Proof. Since Cρ
Kcyc

and Uρ
Kcyc

/Ṽ± are free of rank one over ΛO (Theorem

5.1 and Proposition 4.4(ii)), the map Cρ
Kcyc

→ Uρ
Kcyc

/Ṽ± is either injective or
identically zero. Thus to prove both (i) and (ii) it will suffice to show that the
image ξ̃ ∈ Uρ

Kcyc
of the generator ξ ∈ Cρ

K∞ of Theorem 5.1 satisfies ξ̃ /∈ Ṽ+ and

ξ̃ /∈ Ṽ−.
Rohrlich [Ro] proved that L(E, χ, 1) �= 0 for all but finitely many charac-

ters χ of Gal(Kcyc/K). Applying Theorem 5.1 with x = d2n for large n and
using Theorem 3.2(iv) it follows that the image of ξ in HomO(E+(Kcyc,p) ⊗
Qp/Zp, Kp/Op) is nonzero. Hence ξ̃ /∈ Ṽ+. Similarly, using the points d2n+1

for large n shows that ξ̃ /∈ Ṽ−. This proves (i) and (ii).
By Corollary 7.8 of [Ru3], Eρ

K∞ is a torsion-free, rank-one ΛO(K∞)-module.
Just as in (i), since Uρ

K∞/V± is torsion-free (Proposition 4.4(iii)) the map
Eρ

K∞ → Uρ
K∞/V± is either injective or identically zero. But we saw above that

ξ̃ /∈ Ṽ±, so ξ /∈ V± and Eρ
K∞ → Uρ

K∞/V± is not identically zero. This proves
(iii).

6. The characteristic ideals

If B is a finitely generated torsion module over ΛO(K∞) (resp. ΛO,
resp. Λ), we will write charΛO(K∞)(B) (resp. charΛO(B), resp. charΛ(B)) for
its characteristic ideal.
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The following theorem is Theorem 4.1(ii) of [Ru3], twisted by ρ−1. It is
the step labeled (c) in the introduction.

Theorem 6.1 ([Ru3]). The ΛO(K∞)-modules Aρ
K∞ and Eρ

K∞/Cρ
K∞ are

finitely generated and torsion, and

charΛO(K∞)(Aρ
K∞) = charΛO(K∞)(Eρ

K∞/Cρ
K∞).

Corollary 6.2. Let α : U → X denote the Artin map of global class
field theory. Then X ρ

K∞/α(V±) and Uρ
K∞/(V± + Cρ

K∞) are finitely generated
torsion ΛO(K∞)-modules and

charΛO(K∞)(X ρ
K∞/α(V±)) = charΛO(K∞)(Uρ

K∞/(V± + Cρ
K∞)).

Proof. Class field theory gives an exact sequence

0 −→ E/C −→ U/C α−→ X −→ A → 0.

Twisting by ρ−1 and using the fact that ∆ has order prime to p gives another
exact sequence

0 −→ Eρ
K∞/Cρ

K∞ −→ Uρ
K∞/Cρ

K∞
α−→ X ρ

K∞ −→ Aρ
K∞ −→ 0.

Since Eρ
K∞ ∩ V± = 0 by Corollary 5.2, we get finally an exact sequence

(6) 0 → Eρ
K∞/Cρ

K∞ → Uρ
K∞/(V± + Cρ

K∞) α−→ X ρ
K∞/α(V±) → Aρ

K∞ → 0.

Since Cρ
K∞ ∩ V± = 0, it follows from Theorem 5.1 and Proposition 4.4 that

the quotient Uρ
K∞/(V±+Cρ

K∞) is a finitely generated torsion ΛO(K∞)-module.
Now (6) and Theorem 6.1 show that X ρ

K∞/α(V±) is a finitely generated torsion
ΛO(K∞)-module as well, and that the two characteristic ideals are equal.

Theorem 6.3. The ΛO-modules X ρ
Kcyc

/α(Ṽ±) and Uρ
Kcyc

/(Ṽ± + Cρ
Kcyc

)
are finitely generated torsion modules and

charΛO(X ρ
Kcyc

/α(Ṽ±)) = charΛO(Uρ
Kcyc

/(Ṽ± + Cρ
Kcyc

)).

Further, X ρ
Kcyc

/α(Ṽ±) has no finite ΛO-submodules.

The proof of Theorem 6.3 is given below, after a few lemmas. The proof
is essentially contained in Section 11 of [Ru3], but since it is crucial for our
main result we recall some of the details.

If A is an ideal of ΛO(K∞), let A ⊂ ΛO denote the image of A under
the projection map ΛO(K∞) � ΛO. Fix a topological generator γ∗ of Γ− =
Gal(K∞/Kcyc).

Lemma 6.4. Suppose B is a finitely generated torsion ΛO(K∞)-module
with no nonzero pseudo-null submodules. Then

charΛO(K∞)(B) �= 0 if and only if B/(γ∗ − 1)B is a torsion ΛO-module,
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and in that case

charΛO(B/(γ∗ − 1)B) = charΛO(K∞)(B).

Proof. See Lemma 4 of [PR1, §I.1.3] or Lemma 6.2 of [Ru3].

Lemma 6.5. Suppose B is a finitely generated ΛO(K∞)-module with no
nonzero pseudo-null submodules. If B′ is a free ΛO(K∞)-submodule of B then
B/B′ has no nonzero pseudo-null submodules.

Proof. By induction we may reduce to the case that B′ is free of rank one,
and may reduce further to the case that B/B′ is pseudo-null. Since ΛO(K∞)
is a unique factorization domain it follows that B = B′.

Lemma 6.6. Suppose B is a finitely generated torsion ΛO(K∞)-module
with no nonzero pseudo-null submodules, and both B/(γ∗ − 1)B and
B/(γ∗ − ρ−1(γ∗))B are torsion ΛO-modules. Then B/(γ∗ − 1)B has a nonzero
finite submodule if and only if B/(γ∗ − ρ−1(γ∗))B has.

Proof. This is Lemma 11.15 of [Ru3]

Proof of Theorem 6.3. By Proposition 4.4 and Corollary 5.2, Uρ
Kcyc

and

Ṽ± + Cρ
Kcyc

are free of rank two over ΛO, and Uρ
K∞ and V± + Cρ

K∞ are free of

rank two over ΛO(K∞). Therefore (using Lemma 6.5) Uρ
Kcyc

/(Ṽ± + Cρ
Kcyc

) and
Uρ

K∞/(V±+Cρ
K∞) are torsion modules with no nonzero pseudo-null submodules.

By Lemma 6.4 it follows that

(7) charΛO(Uρ
Kcyc

/(Ṽ± + Cρ
Kcyc

)) = charΛO(K∞)(Uρ
K∞/(V± + Cρ

K∞)) �= 0.

Class field theory shows that the kernel of α : Uρ
K∞ → X ρ

K∞ is Eρ
K∞ .

Therefore by Corollary 5.2 α is injective on V±, so α(V±) is a free, rank-one
ΛO(K∞)-submodule of X ρ

K∞ . By [Gr], rankΛO(K∞)X ρ
K∞ = 1 and X ρ

K∞ has
no nonzero pseudo-null submodules, so (using Lemma 6.5) X ρ

K∞/α(V±) is a
torsion ΛO(K∞)-module with no nonzero pseudo-null submodules. Further,
Corollary 6.2 and (7) show that

(8) charΛO(K∞)(X ρ
K∞/α(V±)) = charΛO(K∞)(Uρ

K∞/(V± + Cρ
K∞)) �= 0.

Thus we can apply Lemma 6.4 to conclude that

charΛO(X ρ
Kcyc

/α(Ṽ±)) = charΛO(K∞)(X ρ
K∞/α(V±)),

and together with (7) and (8) this proves

charΛO(X ρ
Kcyc

/α(Ṽ±)) = charΛO(Uρ
Kcyc

/(Ṽ± + Cρ
Kcyc

)).
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It remains to prove that X ρ
Kcyc

/α(Ṽ±) has no nonzero finite submodules.
This will follow from Lemma 6.6. We give the argument briefly here; see the
proof of Theorem 11.16 of [Ru3] for more details.

We can identify X ρ
K∞/(γ∗ − ρ−1(γ∗))X ρ

K∞ with a subgroup of

(X/(γ∗ − 1)X )(ρ−1).

Standard techniques (for example [Gr, §2]) identify X/(γ∗ − 1)X with a sub-
group of Gal(M0/Kcyc(E[p])) where M0 is the maximal abelian p-extension
of Kcyc(E[p]) unramified outside p, and by [Gr], Gal(M0/Kcyc(E[p])) has no
nonzero finite submodules. Hence X ρ

K∞/(γ∗ − ρ−1(γ∗))X ρ
K∞ has no nonzero

finite submodules.
Let B = X ρ

K∞/α(V±). Lemma 6.5 now shows that B/(γ∗−ρ−1(γ∗))B has
no nonzero finite submodules, and we observed above that B has no nonzero
pseudo-null submodules, so Lemma 6.6 shows that B/(γ∗−1)B = X ρ

Kcyc
/α(Ṽ±)

has no nonzero finite submodules.

7. Local units, elliptic units, and the p-adic L-functions

Fix a topological generator γ of Γ+
∼= Gal(Kcyc/K) ∼= Gal(Q∞/Q). For

every n ≥ 1 define

νn =
p−1∑
i=0

γipn−1 ∈ Λ

and define ω±
n ∈ Λ by

ω+
n =

∏
1≤i≤n,2|i

νi, ω−
n =

∏
1≤i≤n,2�i

νi.

Theorem 7.1 (Kobayashi [Ko]). The ΛO-module

Hom(E±(Q∞,p) ⊗ Qp/Zp,Qp/Zp)

is free of rank one, with a generator µ± such that for every k, n ∈ Z+, and
every character χ : Gal(Qn/Q) → µpn ,∑

σ∈Gal(Qn/Q)

χ(σ)µ±(dσ
n ⊗ p−k) = χ(ω∓

n )p−k.

Proof. An easy exercise shows that for 0 ≤ n ≤ ∞
(9) Hom(E±(Qn,p) ⊗ Qp/Zp,Qp/Zp) = Hom(E±(Qn,p),Zp).

In Section 8 of [Ko], especially Proposition 8.18 and Theorem 6.2, Kobayashi
shows that for every n and ε = ±1, the map

f →
{ ∑

σ∈Gal(Qn/Q) f(dσ
n)σ if (−1)n = ε∑

σ∈Gal(Qn/Q) f(dσ
n−1)σ if (−1)n = −ε
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is an isomorphism from Hom(Eε(Qn,p),Zp) to ω−ε
n Zp[Gal(Qn/Q)], and that

for m ≥ n ≥ 1 these maps are compatible in the sense that the following
diagram commutes

Hom(E±(Qm,p),Zp)
∼−−−−→ ω∓

mZp[Gal(Qm/Q)]	 	
Hom(E±(Qn,p),Zp)

∼−−−−→ ω∓
n Zp[Gal(Qn/Q)].

Here the left-hand vertical map is restriction, and the right-hand vertical map
sends ω∓

m to ω∓
n .

In the limit it follows ([Ko] Theorem 6.2) that Hom(E±(Q∞,p),Zp) is free
of rank one over Λ with a generator f± satisfying

∑
σ∈Gal(Qn/Q) f±(dσ

n)σ = ω∓
n .

If we take µ± to be the map corresponding to f± under (9), then µ± satisfies
the conclusions of the theorem.

Let L±
E ∈ Λ denote the p-adic L-functions defined by the first author in

Section 6.2.2 of [Po]. These are characterized by the formulas

χ(L+
E) = (−1)(n+1)/2 τ(χ)

χ(ω+
n )

L(E, χ̄, 1)
ΩE

if χ has order pn with n odd,(10)

χ(L−
E) = (−1)n/2+1 τ(χ)

χ(ω−
n )

L(E, χ̄, 1)
ΩE

if χ has order pn > 1 with n even.(11)

In addition, if χ0 is the trivial character then

(12) χ0(L+
E) = (p − 1)

L(E, 1)
ΩE

, χ0(L−
E) = 2

L(E, 1)
ΩE

.

Theorem 7.2. There is an isomorphism Uρ
Kcyc

/(Ṽ±+Cρ
Kcyc

) ∼−→ ΛO/L±
EΛO.

Proof. By (5) and (2) we have

Uρ
Kcyc

/Ṽ± ∼= HomO(E±(Kcyc,p) ⊗ Qp/Zp, Kp/Op)
∼= Hom(E±(Q∞,p) ⊗ Qp/Zp, Kp/Op)
∼= Hom(E±(Q∞,p) ⊗ Qp/Zp,Qp/Zp) ⊗Op.

Let µ± be as in Theorem 7.1, let ξ be the generator of Cρ
K∞ from Theorem 5.1,

and let ϕ± be the image of ξ in HomO(E±(Kcyc,p)⊗Qp/Zp, E[p∞]). For some
h± ∈ ΛO we have

(13) ϕ± = h±µ±,

and then Uρ
Kcyc

/(Ṽ± + Cρ
Kcyc

) ∼= ΛO/h±ΛO.
It follows from (13) that for every k, n ≥ 1 and every nontrivial character

χ : Γ+ → µpn ,∑
σ∈Gal(Qn/Q)

χ(σ)ϕ±(dσ
n ⊗ p−k) = χ(h±)

∑
σ∈Gal(Qn/Q)

χ(σ)µ±(dσ
n ⊗ p−k).
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Using the formulas of Theorems 3.2(iv) and 5.1 to compute the left-hand side,
and Theorem 7.1 for the right-hand side, we deduce that if the order of χ is
pn > 1 and ε = (−1)n+1 then

L(E, χ̄, 1)
ΩE

(−1)[
n
2
]τ(χ) ≡ χ(hε)χ(ωε

n) (mod pk)

for every k. It follows from (10) and (11) that h± = −L±
E .

The following theorem is our main result.

Theorem 7.3. charΛ(Hom(Sel±p (E/Q∞),Qp/Zp)) = L±
EΛ.

Proof. We have

charΛO(HomO(Sel±p (E/Kcyc), Kp/Op)) = charΛO(X ρ
Kcyc

/α(Ṽ±))

= charΛO(Uρ
Kcyc

/(Ṽ± + Cρ
Kcyc

))

= L±
EΛO

by Theorems 4.3, 6.3, and 7.2, respectively. Since

Sel±p (E/Kcyc) = Sel±p (E/Q∞) ⊗Op,

we also have

HomO(Sel±p (E/Kcyc), Kp/Op) = Hom(Sel±p (E/Q∞), Kp/Op)

= Hom(Sel±p (E/Q∞),Qp/Zp) ⊗Op

and the theorem follows.

8. Applications

We describe briefly the basic applications of the supersingular main con-
jecture. As in the previous sections, we assume that E is an elliptic curve
defined over Q, with complex multiplication by the ring of integers of an imag-
inary quadratic field K, and p is an odd prime where E has good supersingular
reduction. For this section we write Γ = Γ+, so Λ = Zp[[Γ]].

Remark 8.1. The results below also hold for primes of ordinary reduc-
tion, and can be proved using the main conjecture for ordinary primes.

The following application was already proved in [Ru3], as an application
of Theorem 6.1.

Theorem 8.2 ([Ru3, Th. 11.4]). If L(E, 1) �= 0, then E(Q) is finite and

|X(E)| = r
L(E, 1)

ΩE
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where r ∈ Q× satisfies ordp(r) = 0, as predicted by the Birch and Swinnerton-
Dyer conjecture.

If L(E, 1) = 0, then either E(Q) is infinite or X(E)[p∞] is infinite.

Before proving Theorem 8.2 we need the following lemma.

Lemma 8.3. The natural restriction map Selp(E/Q) → Sel±p (E/Q∞)Γ is
an isomorphism.

Proof. For every number field F let Sel′p(E/F ) denote the Selmer group
of E over F with no local condition at p:

Sel′p(E/F ) = ker : H1(F, E[p∞]) → ⊕v�pH
1(Fv, E[p∞])

(note that E(Fv) ⊗ Qp/Zp = 0 when v � p). Thus we have a commutative
diagram
(14)

0 −→ Selp(E/Q) −→ Sel′p(E/Q) −→ H1(Qp, E[p∞])/A
↓ ↓ ↓

0 −→ Sel±p (E/Q∞)Γ −→ Sel′p(E/Q∞)Γ −→ H1(Q∞,p, E[p∞])/A±
∞

where A and A±
∞ are the images of E(Qp) ⊗ Qp/Zp and E±(Q∞,p) ⊗ Qp/Zp,

respectively, and the vertical maps are restriction maps. It follows from the
theory of complex multiplication that E(Q∞,p) has no p-torsion, and then
standard methods (see for example Proposition 1.2 of [Ru1]) show that the
restriction maps

H1(Qp, E[p∞]) → H1(Q∞,p, E[p∞])Γ, Sel′p(E/Q) → Sel′p(E/Q∞)Γ

are isomorphisms.
We will show that for every n the map E(Qp) ⊗ Qp/Zp → (E±(Qn,p) ⊗

Qp/Zp)Γ is surjective. It will then follow that the right-hand vertical map in
(14) is injective, and then (using the remarks above and the snake lemma) that
the left-hand vertical map in (14) is an isomorphism, which is the assertion of
the lemma.

To show that E(Qp) ⊗ Qp/Zp → (E±(Qn,p) ⊗ Qp/Zp)Γ is surjective it
suffices to check that dimFp(E

±(Qn,p) ⊗ Fp)Γ = 1, since E(Qp) ⊗ Qp/Zp
∼=

Qp/Zp. Identify Fp[Gal(Qn/Q)] with Fp[X]/(Xpn − 1) = Fp[X]/(X − 1)pn
.

Since E±(Qn,p) is cyclic over Zp[Gal(Qn/Q)] (Theorem 3.2(v)),

E±(Qn,p) ⊗ Fp
∼= Fp[X]/(X − 1)a

for some a ≥ 0. Under this identification (E±(Qn,p) ⊗ Fp)Γ is the kernel of
X − 1, which is visibly one-dimensional.
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Proof of Theorem 8.2. By Lemma 8.3 we have

|Selp(E/Q)| = |Hom(Selp(E/Q),Qp/Zp)|
= |Hom(Sel±p (E/Q∞)Γ,Qp/Zp)|
= |Hom(Sel±p (E/Q∞),Qp/Zp) ⊗Λ Zp|.

By Theorems 4.3 and 6.3, Hom(Sel±p (E/Q∞),Qp/Zp) has no nonzero finite
submodules, and by Theorem 7.3 its characteristic ideal is L±

EΛ. Writing χ0

for the trivial character of Γ, standard techniques (for example [PR1, Lemma 4
of §I.1.3]) show that

|Hom(Sel±p (E/Q∞),Qp/Zp) ⊗Λ Zp| = |Zp/χ0(L±
E)Zp| = |Zp/(L(E, 1)/ΩE)Zp|

using (12) for the last equality. This proves the theorem.

Fix a generator γ of Γ. Define ν0 = γ − 1 and for every n ≥ 1 let
νn =

∑p−1
i=0 γipn−1

. If χ is a character of Γ of finite order, let Zp[χ] denote the
ring obtained by adjoining the values of χ to Zp. We view Zp[χ] as a Λ-module
with Γ acting via χ, and if M is a Λ-module we define Mχ = M⊗ΛZp[χ]. Then
χ(νm) = 0 if and only if the order of χ is pm, and if M is finitely generated
or co-finitely generated over Zp and χ has order pm, then Mχ is infinite if and
only if Mνm=0 is infinite, where Mνm=0 is the kernel of νm on M .

For every n write Gn = Gal(Qn/Q).

Theorem 8.4. Suppose χ is a character of Gn. If L(E, χ, 1) �= 0 then
E(Qn)χ and X(E/Qn)χ are finite. If L(E, χ, 1) = 0 then either E(Qn)χ is
infinite or X(E/Qn)χ is infinite.

Before proving Theorem 8.4 we need the following lemma.

Lemma 8.5. Suppose χ is a character of Gn of order pm > 1, and let
ε = (−1)m. Then Selεp(E/Qn)νm=0 is infinite if and only if Selp(E/Qn)νm=0

is infinite.

Proof. We have Selεp(E/Qn) ⊂ Selp(E/Qn), so one implication is clear.
Suppose now that Selp(E/Qn)νm=0 is infinite. By Proposition 10.1 of [Ko],
either Selεp(E/Qn)νm=0 or Sel−ε

p (E/Qn)νm=0 must be infinite. But localiza-
tion at p sends Sel−ε

p (E/Qn)νm=0 into E−ε(Qn,p)νm=0 which is zero, and so
Sel−ε

p (E/Qn)νm=0 ⊂ Selεp(E/Qn)νm=0. Hence Selεp(E/Qn)νm=0 is infinite.

Proof of Theorem 8.4. Let pm be the order of χ. If m = 0 then the
theorem is a consequence of Theorem 8.2. So we may suppose m ≥ 1, and we
let ε = (−1)m.

Selp(E/Qn)χ is infinite ⇐⇒ Selp(E/Qn)νm=0 is infinite

⇐⇒ Selεp(E/Qn)νm=0 is infinite
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⇐⇒ Selεp(E/Q∞)νm=0 is infinite

⇐⇒ Hom(Selεp(E/Q∞),Qp/Zp) ⊗ Λ/νm is infinite

⇐⇒ Λ/(Lε
E , νm) is infinite

⇐⇒ χ̄(Lε
E) = 0

⇐⇒ L(E, χ, 1) = 0

using Lemma 8.5, Theorem 9.3 of [Ko], Theorem 7.3, and (10) and (11).
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