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On planar web geometry
through abelian relations and connections

By Alain Hénaut

1. Introduction

Web geometry is devoted to the study of families of foliations which are
in general position. We restrict ourselves to the local situation, in the neigh-
borhood of the origin in C2, with d ≥ 1 complex analytic foliations of curves
in general position. We are interested in the geometry of such configurations,
that is, properties of planar d-webs which are invariant with respect to analytic
local isomorphisms of C2.

The initiators of the subject are W. Blaschke, G. Thomsen and G. Bol
in the 1930’s (cf. [B-B], [B] and for instance [H1]). Methods used here extend
some works by S. S. Chern and P. A. Griffiths (cf. for instance [G1], [G2], [C],
[C-G]) which bring a resurgence of interest in web geometry closely related to
basic results due to N. Abel, S. Lie, H. Poincaré and G. Darboux. For recent
results and applications of web geometry in various domains, refer to I. Nakai’s
introduction, all papers and references contained in [W].

Let O := C{x, y} be the ring of convergent power series in two variables.
A (germ of a) nonsingular d-web W(d) in (C2, 0) is defined by a family of leaves
which are germs of level sets {Fi(x, y) = const.} where Fi ∈ O can be chosen
to satisfy Fi(0) = 0 such that dFi(0) ∧ dFj(0) �= 0 for 1 ≤ i < j ≤ d from the
assumption of general position.

From the local inverse theorem, the study of possible configurations for
the different W(d) is interesting only for d ≥ 3. The classification of such W(d)
is a widely open problem and the search for invariants of planar webs W(d)
motivates the present work.

Let F (x, y, p) = a0(x, y) . pd+a1(x, y) . pd−1+· · ·+ad(x, y) be an element of
O[p] without multiple factor, not necessarily irreducible and such that a0 �= 0.
We denote by R = (−1)

d(d−1)
2 a0 .∆ the p-resultant of F where ∆ ∈ O is its

p-discriminant.
In a neighborhood of (x0, y0) ∈ C2 such that R(x0, y0) �= 0, the Cauchy

theorem asserts that the d integral curves of the differential equation of the
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first order

F (x, y, y′) = 0

are the leaves of a nonsingular web W(d) in (C2, (x0, y0)).
Every such F ∈ O[p], up to an invertible element in O, gives rise to an

implicit d-web W(d) in (C2, 0) which is generically nonsingular. Inversely, if
a nonsingular d-web in (C2, 0) is given by d vector fields Xi = Ai∂x + Bi∂y

in general position, one may assume that Ai(0) �= 0 for 1 ≤ i ≤ d after a
linear change of coordinates. Then “its” differential equation F (x, y, y′) = 0

corresponds to F (x, y, p) =
d∏

i=1

(Aip − Bi).

This implicit form of a planar web will be retained throughout the present
text. No leaf is preferred and we shall show how this form presents a natural
setting for the study of planar webs and their singularities. Moreover, with
the help of the web viewpoint, this approach enlarges methods to investigate
the geometry of the differential equation F (x, y, y′) = 0.

Basic examples of planar webs come from complex projective algebraic
geometry. Let C ⊂ P2 be a reduced algebraic curve of degree d, not necessarily
irreducible and possibly singular. By duality in P̌2, one can get a special linear
d-web LC(d) called the algebraic web associated with C ⊂ P2 (cf. for instance
[H1] for details). This web is singular and its leaves are family of straight lines.
It corresponds, in a suitable local coordinate system, to a differential equation
of the previous form given by F (x, y, p) = P (y − px, p) if P (s, t) = 0 is an
affine equation for C. If C contains no straight lines, the leaves of LC(d) are
generically the tangents of the dual curve Č ⊂ P̌2 of C ⊂ P2; otherwise, they
belong to the corresponding pencils of straight lines.

One of the main invariants of a nonsingular planar web W(d) is related to
the notion of abelian relation. A d-uple

(
g1(F1), . . . , gd(Fd)

)
∈ Od satisfying

d∑
i=1

gi(Fi)dFi = 0

where gi ∈ C{t} is called an abelian relation of W(d). By the above component
presentation these relations form a C-vector space denoted by A(d).

For a nonsingular web W(d) in (C2, 0), the following optimal inequality
holds:

rkW(d) := dimC A(d) ≤ 1
2
(d − 1)(d − 2).

This bound is classic and, for example, we will recover it below with new meth-
ods coming from basic results in D-modules theory (cf. for instance [G-M]).
The integer rkW(d) called the rank of W(d) defined above is an invariant of
W(d) which does not depend on the choice of the functions Fi.
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From the previous observations and properties, another basic result in
planar web geometry is related to linear webs L(d) (i.e. all leaves of L(d) are
straight lines, not necessarily parallel). For a linear and nonsingular web L(d)
in (C2, 0), the following assertions are equivalent:

i) There exists an abelian relation
d∑

i=1

gi(Fi)dFi = 0 with gi �= 0 for 1 ≤

i ≤ d;

ii) The linear web L(d) is algebraic; that is, L(d) = LC(d) where C ⊂ P2

is a reduced algebraic curve of degree d, not necessarily irreducible and
possibly singular;

iii) The rank of L(d) is maximal.

These equivalences play a fundamental role in the foundation of web ge-
ometry. Indeed, the implication ii) ⇒ iii) is a special case of Abel’s theorem
and asserts that in fact

rkLC(d) = dimC H0(C, ωC) =
1
2
(d − 1)(d − 2)

(cf. for instance [H1]). The difficult part i) ⇒ ii) is a kind of converse to Abel’s
theorem. In the case d = 4, it was initiated by Lie’s theorem on surfaces of
double translation (cf. for instance [C]) and deeply generalized, for d ≥ 3 and
higher codimension questions, by P. A. Griffiths (cf. [G1]). All modern proofs
of this implication use the so-called GAGA principle.

Using only the methods introduced here we will get a proof for the above
equivalence ii) ⇔ iii) and some complements essentially based on partial differ-
ential equations and the canonical normalization of W(d). In particular, these
results explain why one condition alone implies all the previous equivalences.

This normalization gives rise to several analytic invariants of W(d) on
(C2, 0), where d(d − 3) of them are functions and the remaining d − 2 are
2-differential forms. These invariants extend the Blaschke curvature for W(3)
and should be worth studying. A part of their significance will appear below.

Web geometry for nonsingular planar webs of maximum rank is, however,
larger in extent than the algebraic geometry of plane curves. Indeed, there
exist exceptional webs E(d) in (C2, 0). Such a web E(d) is of maximum rank
and cannot be made algebraic, up to an analytic local isomorphism of C2.
One knows that necessarily d ≥ 5 and the first known example is Bol’s 5-web
B(5) which is related to the functional relation with five terms satisfied by the
dilogarithm (cf. [Bo]). For special models in web geometry and their functional
relations as well, a program to study polylogarithm webs is sketched in [H1].
The next exceptional web expected was Kummer’s 9-web K(9) related to the
functional relation with nine terms of the trilogarithm. G. Robert proved in
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[R] that this 9-web is indeed exceptional and he found “on the road” some
others E(d) ( cf. also L. Pirio’s paper [P]).

A refinement of the rank is the finer invariant (�3, . . . , �d) called the weave
of a nonsingular planar web W(d). This sequence of nonnegative integers is
defined as follows: in the C-vector space A(d) of abelian relations of W(d),
consider the ascending chain of subspaces

A(d)3 ⊆ A(d)4 ⊆ . . . ⊆ A(d)d = A(d)

where A(d)k is generated by special abelian relation
(
g1(F1), . . . , gd(Fd)

)
of

W(d) containing at most k nonzero components. Then set

�k := dimC A(d)k/A(d)k−1

with A(d)2 = 0. In particular, we have rkW(d) = �3 + · · · + �d· For example,
the weave of B(5) is (5, 0, 1) and that of K(9) is (17, 3, 3, 3, 0, 0, 2). In the
algebraic case, the weave of LC(d) is related to the irreducible components of
C ⊂ P2.

According to the previous results, methods for determining the rank (resp.
the weave) of any nonsingular planar web are of great interest, in particular
for the algebraization problem (cf. for instance [H1] through the second order
differential equation y′′ = PW(d)(x, y, y′) associated to W(d)) and the study of
exceptional webs.

Let S be the surface defined by F (x, y, p) = 0. The projection π : S −→
(C2, 0) induced by (x, y, p) �−→ (x, y) is generically finite with degree d and
gives rise to a trace which is very useful on differential forms.

Coming back to the classical geometric study of differential equations
F (x, y, y′) = 0, we shall confirm how some basic objects attached to the pre-
vious projection govern the geometry of the planar web associated with this
equation, from the generic viewpoint as well as the singular one. In fact,
even if we restrict our attention to the nonsingular case, most of the objects
introduced naturally extend to the singular case.

We suppose from now on that the p-resultant R ∈ O of F satisfies
R(0) �= 0. Thus π is a covering map of degree d. The main result in [H2]
will be recalled with some details in the next paragraph. Briefly, it is the
following: the C-vector space of 1-forms

aF :=
{

ω = r · dy − p dx

∂p(F )
∈ π∗(Ω1

S) ; r ∈ O[p] with deg r ≤ d − 3 and dω = 0
}

is identified with the C-vector space A(d) of abelian relations of the web W(d)
generated by F . In this identification an abelian relation is interpreted as
the vanishing trace of an element of aF . By definition the forms in aF are
closed and moreover appear as solutions of a linear differential operator p0 :
J1(Od−2) −→ Od−1 of order 1 induced by the usual differential on 1-forms of
the surface S.
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Using basic results on overdetermined systems of linear partial differential
equations which extend the É. Cartan theory (cf. for instance [S], [B-C-3G])
and in particular the first complex of Spencer of an explicit prolongation pk :
Jk+1(Od−2) −→ Jk(Od−1) of p0, we obtain in the last paragraph one of the
main results of this paper:

There exists a C-vector fiber bundle E of rank 1
2(d − 1)(d − 2) on (C2, 0)

equipped with a connection ∇ such that its C-vector space of horizontal sections
is isomorphic to A(d). Moreover, there exists an adapted basis (e�) of E such
that the curvature of (E ,∇) has the following matrix :

k1 k2 . . . k 1
2
(d−1)(d−2)

0 0 . . . 0
...

... . . .
...

0 0 . . . 0

 dx ∧ dy.

In particular, by the Cauchy-Kowalevski theorem, an explicit way to find
maximal rank webs is given, using only the coefficients of F . In the case d = 3,
we find k1 dx ∧ dy as a curvature matrix and it is proved that this 2-form is
the usual Blaschke curvature of W(3) (cf. [B-B], [B] and for instance [H1]).

Moreover complete effective results are given for d = 3 and d = 4. The
previous curvature probably depends only on the planar web W(d) and not
on the differential equation F (x, y, y′) = 0 that we use to define it. It is at
least true for d = 3 and d = 4. Thus, the construction of the above (E ,∇)
generalizes the W. Blaschke approach.

For a general linear web some simplifications appear in the description of
(E ,∇) and from the above results some of the previous equivalences for the
L(d) are obtained as well as several complements.

Furthermore, it can be noted to close this introduction that in general
the previous (E ,∇) is in fact a meromorphic connection with poles on the
discriminant locus of the differential equation F (x, y, y′) = 0, that is, the
analytic germ defined in a neighborhood of 0 ∈ C2 by ∆(x, y) = 0.

The author would like to thank Phillip Griffiths, Zoltan Muzsnay, Olivier
Ripoll and Gilles Robert for fruitful comments concerning preliminary versions
and the Institute for Advanced Study for its hospitality.

2. Traces from S, abelian relations
and canonical normalisation for W(d)

We recall that R(0) �= 0. Thus, the surface S defined by F is nonsingular
over 0 ∈ C2. Locally on S, we have the complex (Ω•

S , d) where

Ω•
S = Ω•

C3/(dF ∧ Ω•−1
C3 , FΩ•

C3).
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Since ∂x(F ) dx + ∂y(F ) dy + ∂p(F ) dp = 0 in Ω1
S , every element ω in Ω1

S

gives rise to an expression

ω :=
rx dy − ry dx

∂p(F )

with (rx, ry, rp, θ) ∈ O4
S such that the relation rx ∂x(F ) + ry ∂y(F ) + rp ∂p(F )

= θ. F holds. Inversely the previous expression coupled with this relation
corresponds to an element in Ω1

S essentially defined through

ω =
1
3
·
{( rp

∂y(F )
− ry

∂p(F )
)
dx +

( rx

∂p(F )
− rp

∂x(F )
)
dy +

( ry

∂x(F )
− rx

∂y(F )
)
dp

}
because

rx dy − ry dx

∂p(F )
=

ry dp − rp dy

∂x(F )
=

rp dx − rx dp

∂y(F )
in Ω1

S .

Moreover, it can be checked that the exterior differential d : Ω1
S −→ Ω2

S is
defined by

dω = d
(rx dy − ry dx

∂p(F )
)

=
(
∂x(rx) + ∂y(ry) + ∂p(rp) − θ

)dx ∧ dy

∂p(F )

because
dx ∧ dy

∂p(F )
=

dy ∧ dp

∂x(F )
=

dp ∧ dx

∂y(F )
in Ω2

S .

The projection π : S −→ (C2, 0) is a covering map of degree d with local
branches πi(x, y) = (x, y, pi(x, y)). Thus, we have

F (x, y, p) = a0(x, y) .

d∏
i=1

(
p − pi(x, y)

)
.

Moreover, the vector fields which correspond to the nonsingular d-web W(d)
of (C2, 0) generated by the differential equation F (x, y, y′) = 0 have the form

Xi := ∂x + pi∂y with pi(0) �= pj(0) for 1 ≤ i < j ≤ d.

We denote by π∗(Ω1
S) the fiber in 0 ∈ C2 of the direct image sheaf of

Ω1
S with respect to π. We have the trace morphism Traceπ : π∗(Ω1

S) −→ Ω1

defined by Traceπ(ω) :=
d∑

i=1

π∗
i (ω) where Ω1 is the O-module of Pfaff forms

on (C2, 0). This morphism is O-linear and commutes with the differential d.
It can be noted that a large part of the previous constructions extends to the
singular case by means of the Barlet complex (ω•

S , d) constructed via special
meromorphic forms with poles on the singular set of S (cf. [Ba]).

The following result is proved in [H2]: every r ∈ O[p] such that deg r ≤
d − 2 gives an element ω = r · dy − p dx

∂p(F )
which belongs to π∗(Ω1

S).

More precisely, there exist elements rp and t in O[p] with degree less than
or equal to d − 1 which satisfy the following fundamental relation:

(�) r .
(
∂x(F ) + p ∂y(F )

)
+ rp . ∂p(F ) =

(
∂x(r) + p ∂y(r) + ∂p(rp) − t

)
. F.
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Omitting the dependency on (x, y), the proof uses the ubiquitous Lagrange
interpolation formula and consists in checking that if

λ :=
d∑

i=1

ρi ∂y(Fi)
p − pi

, µ :=
d∑

i=1

Xi(pi) . ρi ∂y(Fi)
p − pi

and ν :=
d∑

i=1

Xi(ρi) . ∂y(Fi)
p − pi

where ρi :=
r(x, y, pi)

∂p(F )(x, y, pi)∂y(Fi)(x, y)
for 1 ≤ i ≤ d, we have the following

equality: ∂x(λ)+p ∂y(λ)+∂p(µ) = ν. Then it is sufficient to set rp = F . µ and
t = F . ν since by definition r = F . λ.

Moreover if deg r ≤ d − 3, as we shall assume from now on, then deg t ≤
d − 2 by the relation (�) and from the previous observations, we have the
explicit equality

d
(
r · dy − p dx

∂p(F )
)
= t · dx ∧ dy

∂p(F )
·

With the notation of the introduction, the main result in [H2] can be
stated as the following:

Theorem aF . The map

(
gi(Fi)

)
i
�−→ ω :=

(
F ·

d∑
i=1

gi(Fi)∂y(Fi)
p − pi

)
· dy − p dx

∂p(F )
∈ π∗(Ω1

S)

defines a C-isomorphism T : A(d) −→ aF such that Traceπ(ω) =
d∑

i=1

gi(Fi)dFi

= 0. In particular, rkW(d) = dimC aF .

It can be noted that the previous map T is in fact closely related to the
application E : (C2, 0) × P1 −→ PrkW(d)−1 which extends a basic construction
due to H. Poincaré. This application is very useful in making maximal rank
webs algebraic (cf. [H1]).

The relation (�) implies exactly 2d − 1 relations between the coefficients
ai, bj , ck and tl where

F = a0 . pd + a1 . pd−1 + · · · + ad,

r = b3 . pd−3 + b4 . pd−4 + · · · + bd,

rp = c1 . pd−1 + c2 . pd−2 + · · · + cd,

t = t2 . pd−2 + t3 . pd−3 + · · · + td

are elements in O[p]. Moreover, these relations can be viewed in a matrix form.
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For d = 3, the relation (�) corresponds to the following matrix system:
0 a0 −a0 0 0
a0 a1 0 −2a0 0
a1 a2 a2 −a1 −3a0

a2 a3 2a3 0 −2a1

a3 0 0 a3 −a2




∂x(b3)
∂y(b3)

c1

c2

c3



= b3 ·


∂y(a0)

∂x(a0) + ∂y(a1)
∂x(a1) + ∂y(a2)
∂x(a2) + ∂y(a3)

∂x(a3)

 + t2 ·


a0

a1

a2

a3

0

 + t3 ·


0
a0

a1

a2

a3

 .

It can be verified that the determinant of the 5× 5-matrix above is equal
to the p-resultant R of F . Which is a consequence of the classical formula of
Sylvester, namely

R =

∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 a3 0
0 a0 a1 a2 a3

3a0 2a1 a2 0 0
0 3a0 2a1 a2 0
0 0 3a0 2a1 a2

∣∣∣∣∣∣∣∣∣∣
.

Thus, by Cramer formulas, it can be checked since R(0) �= 0 that the
previous matrix system is equivalent to the following nonhomogeneous linear
differential system:

(�3)
{

∂x(b3) + A1,1 b3 = t3
∂y(b3) + A2,1 b3 = t2

where, in fact, Ai,j ∈ O[1/∆] which would be interesting in the singular case.
For d = 4, the relation (�) corresponds to the following matrix system:

0 0 a0 −a0 0 0 0
0 a0 a1 0 −2a0 0 0
a0 a1 a2 a2 −a1 −3a0 0
a1 a2 a3 2a3 0 −2a1 −4a0

a2 a3 a4 3a4 a3 −a2 −3a1

a3 a4 0 0 2a4 0 −2a2

a4 0 0 0 0 a4 −a3





∂x(b4)
∂x(b3) + ∂y(b4)

∂y(b3)
c1

c2

c3

c4



= b3·



∂y(a0)
∂x(a0) + ∂y(a1)
∂x(a1) + ∂y(a2)
∂x(a2) + ∂y(a3)
∂x(a3) + ∂y(a4)

∂x(a4)
0


+b4·



0
∂y(a0)

∂x(a0) + ∂y(a1)
∂x(a1) + ∂y(a2)
∂x(a2) + ∂y(a3)
∂x(a3) + ∂y(a4)

∂x(a4)


+t2·



a0

a1

a2

a3

a4

0
0


+t3·



0
a0

a1

a2

a3

a4

0


+t4·



0
0
a0

a1

a2

a3

a4


.
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With the same arguments used before, but with a 7×7-matrix, this system
is equivalent to the following:

(�4)


∂x(b4) + A1,1 b3 + A1,2 b4 = t4

∂x(b3) + ∂y(b4) + A2,1 b3 + A2,2 b4 = t3
∂y(b3) + A3,1 b3 + A3,2 b4 = t2

with some Ai,j ∈ O[1/∆].
In the general case, using again the Sylvester formula for the resultant,

the relation (�) gives rise to the following nonhomogeneous linear differential
system:

(�d)



∂x(bd) + A1,1 b3 + · · · + A1,d−2 bd = td
∂x(bd−1) + ∂y(bd) + A2,1 b3 + · · · + A2,d−2 bd = td−1

...
∂x(b3) + ∂y(b4) + Ad−2,1 b3 + · · · + Ad−2,d−2 bd = t3

∂y(b3) + Ad−1,1 b3 + · · · + Ad−1,d−2 bd = t2

with explicit Ai,j ∈ O[1/∆] obtained only from the coefficients of F by Cramer
formulas.

Let M(d) be the homogeneous linear differential system associated with
(�d). Then, using the previous theorem and the fact that aF is uniquely deter-
mined by the analytic solutions of M(d), we have the following identifications:

A(d) = aF = SolM(d)

where SolM(d) denotes the C-vector space of analytic solutions of M(d).
In particular, using only the symbol of the linear differential system M(d),

we recover the classical optimal bound
1
2
(d − 1)(d − 2) for the rank rkW(d).

Indeed, let D be the ring of linear differential operators with coefficients in
O (cf. for instance [G-M] for basic results and terminology). We denote by
M(d) the left D-module associated with M(d) and grM(d) its natural asso-
ciated graded O[ξ, η]-module. The special form of the system M(d), namely
its symbol, implies that

(ξ, η)d−2 ⊆ Fitt0
(
grM(4)

)
⊆ Ann

(
grM(d)

)
where Fitt0

(
grM(4)

)
is the 0-th Fitting ideal of grM(d) and Ann

(
grM(d)

)
its annihilator. This proves that we have the following identification:

M(d) = OrkW(d) as left D−modules.

In other words, we obtain either M(d) = 0, which is the generic case
for webs W(d) or M(d) is an integrable connection. Moreover, the previous
inclusions give the optimal bound for rkW(d) since

rkW(d) = multM(d) := mult grM(d)

≤multO[ξ, η]/(ξ, η)d−2 =
1
2
(d − 1)(d − 2).
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The previous identification with the D-modules viewpoint comes from
the Hilbert-Rückert Nullstellensatz and does not give rise, in a simple way,
to general methods for determining the rank of the nonsingular planar web
W(d). Another method to study the system M(d) will be presented in the
next section with more geometric objects.

However, in the case d = 3, a formula for the rank depending only on the
coefficients of F has been given by G. Mignard (cf. [M]) using the D-modules
approach (cf. [H1]). A different proof of it is given in [H2]. It uses some
normalization for W(d) that we introduce for d ≥ 3 to end this section.

Let ω :=
dy − p dx

∂p(F )
be the particular 1-form in Ω1

S . For 1 ≤ i ≤ d, the

forms ωi := π∗
i (ω) define the d-web W(d) associated to F (x, y, y′) = 0. For

these forms, we have

d∑
i=1

ωi = 0 ,
d∑

i=1

pi . ωi = 0 , . . . ,
d∑

i=1

pd−3
i . ωi = 0;

that is, Traceπ(pk. ω) = 0 for 0 ≤ k ≤ d − 3 since
d∑

i=1

pj
i (x, y)

∂p(F )(x, y, pi(x, y))
= 0

for 0 ≤ j ≤ d − 2 by the Lagrange interpolation formula.
Any family (ω̃i) of 1-forms which defines W(d) and such that the following

d − 2 relations are satisfied:

d∑
i=1

pk
i . ω̃i = 0 for 0 ≤ k ≤ d − 3

will be called a normalization of the nonsingular planar web W(d). From
the general position hypothesis, it may be remarked that the d − 2 previous
relations which are satisfied by the (ω̃i) are necessarily independent.

Such a normalization exists and the previous one (ωi) constructed from

the particular 1-form ω =
dy − p dx

∂p(F )
∈ Ω1

S will be called the canonical normal-

ization of W(d). This terminology is justified by some properties.
The first one gives a useful means to compare two normalisations of W(d).

Proposition 1. Let (ω̃i) be a normalization of W(d). Now, ω̃i = g . ωi

for 1 ≤ i ≤ d where g is an invertible element of O and (ωi) is the canonical
normalization of this web.

Proof. For d = 3, this proposition is a basic result to obtain the prop-
erty of the Blaschke curvature for any W(3) (cf. for instance [B] and below).
This proof naturally extends to d ≥ 4 and we give the method for d = 4.
For any normalization and naturally for (ωi) the canonical one, we have the
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following form: {
ω1 + ω2 = −ω3 − ω4

p1 . ω1 + p2 . ω2 = −p3 . ω3 − p4 . ω4

which implies (p4 − p1) . ω1 ∧ ω2 = (p4 − p3) . ω2 ∧ ω3. By circular permutation
we get, with classical notation, a nonsingular 2-form Ω on (C2, 0) such that

Ω : = (p1 − p2)(p2 − p3) ̂(p3 − p4)(p4 − p1) . ω1 ∧ ω2

=−(p1 − p2)(p2 − p3)(p3 − p4) ̂(p4 − p1) . ω2 ∧ ω3

= ̂(p1 − p2)(p2 − p3)(p3 − p4)(p4 − p1) . ω3 ∧ ω4

=−(p1 − p2) ̂(p2 − p3)(p3 − p4)(p4 − p1) . ω4 ∧ ω1.

For (ω̃i), we have ω̃i = gi . ωi with gi ∈ O∗. From the previous observations,
we get a nonsingular 2-form Ω̃ which satisfies the following equalities:

Ω̃ = g1g2 .Ω = g2g3 .Ω = g3g4 .Ω = g4g1 .Ω.

This proves g1 = g3 and g2 = g4. But also (p2−p4) . ω1∧ω2 = (p4−p3) . ω1∧ω3;
thus we obtain g2 = g3 and Ω̃ = g2 .Ω with g := g1 = g2 = g3 = g4 which ends
the proof of the proposition.

The second property of the canonical normalization (ωi) of W(d) is to be
related to the columns of the (d − 1) × (d − 2)-matrix (Ai,j) which appears
in the previous differential system (�d). In fact, from the explicit expression
of d : Ω1

S −→ Ω2
S , we obtain for 0 ≤ k ≤ d − 3 and for the particular 1-form

ω =
dy − p dx

∂p(F )
∈ Ω1

S the following equalities:

d(pk. ω) =
(
Ad−1,d−2−k . pd−2+Ad−2,d−2−k . pd−3+· · ·+A1,d−2−k

)
· dx ∧ dy

∂p(F )(x, y, p)
·

In particular for 0 ≤ k ≤ d − 3 and 1 ≤ i ≤ d, we have the main equalities

(ki) d(pk
i . ωi) =

(
A1,d−2−k dx + (

d−3∑
j=0

pj
i . Aj+2,d−2−k) dy

)
∧ ωi

which gives by differentiation for d ≥ 4 the following d − 3 relations:

A1,d−3 +
d−2∑
j=1

(Aj+1,d−3 − Aj,d−2) . pj
i − Ad−1,d−2 . pd−1

i =Xi(pi)

...
d−4∑
j=0

Aj+1,1 . pj
i + (Ad−2,1 − A1,d−2) . pd−3

i

+(Ad−1,1 − A2,d−2) . pd−2
i −

d−3∑
j=1

Aj+2,d−2 . pj+d−2
i = (d − 3) pd−4

i . Xi(pi).
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These relations prove that the matrix (Ai,j) has the following particular
form: 

0 0 · · · 0 A1

0 0 · · · A1 A2

0 0 · · · A2 0
...

... . .. . ..
...

...
0 A1 · · · 0 0

A1 A2 · · · 0 0
A2 0 · · · 0 0


if and only if the web W(d) is linear ; that is, W(d) = L(d).

Since we have the equivalence: W(d) is linear if and only if Xi(pi) = 0
for 1 ≤ i ≤ d, the matrix (Ai,j) above is obtained step by step from the
previous relations by using the general position hypothesis and a Vandermonde
determinant. Moreover, in the linear case we have rp = 0 in the relation (�)
from the previous equivalence. Thus, by identification with the t corresponding

to r = 1, we obtain A2 = −∂y(a0)
a0

and A1 = −∂x(a0)
a0

− ∂y

(a1

a0

)
from the

coefficients of F .
Furthermore in the algebraic case, that is W(d) = LC(d) with C ⊂ P2, the

matrix (Ai,j) obtained from F (x, y, p) = P (y − px, p) where P (s, t) = 0 is an
affine equation for C is the null matrix. Indeed, here we have ∂x(F ) + p ∂y(F )
= 0 and the relation (�) in this linear case implies that r = 1 corresponds to
t = 0.

For any normalization (ω̃i) of W(d), the general position hypothesis gives
a matrix (Ãi,j) which satisfies the analogue to the relations (ki) before, but
with ω̃i and Ãi,j . Moreover, the similar d − 3 relations obtained above are
satisfied. This normalization gives rise to several invariants of W(d) as follows:

Theorem 1. With the previous notation, the (d − 1) × (d − 2)-matrix
(Ai,j) coming from F (x, y, y′) = 0 gives analytic invariants on (C2, 0) of the
nonsingular planar web W(d) generated by this differential equation : on the
one hand d(d − 3) functions

Am,n for 2 ≤ m + n ≤ d − 2 and d + 1 ≤ m + n ≤ 2d − 3,

Au,d−1−u − A1,d−2 for 2 ≤ u ≤ d − 2 and Av,d−v − A2,d−2 for 3 ≤ v ≤ d − 1

and on the other hand d − 2 differential forms of degree 2

dΓq for 1 ≤ q ≤ d − 2 where Γq := Ad−q−1,q dx + Ad−q,q dy.

In particular in the linear case the 2-differential form dΓ = k dx ∧ dy is an
invariant of L(d) where Γ := A1 dx + A2 dy, and, explicitly, k := ∂x(A2) −
∂y(A1) = ∂2

y

(a1

a0

)
·
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Proof. For the functions, using the general position hypothesis, we have
Ãm,n = Am,n for suitable index and the other equalities. It is a direct con-
sequence of the relations induced by (ki) and the analogue for any normal-
ization (ω̃i) of W(d). Using Proposition 1 and the general position hypoth-
esis, we have for 1 ≤ q ≤ d − 2 and from the relation (ki), the equalities

˜Ad−q−1,q − Ad−q−1,q =
∂x(g)

g
and Ãd−q,q − Ad−q,q =

∂y(g)
g

which prove the

result for the 2-forms. In the linear case, the result comes from the previous
calculations.

For d = 3, we set γ = A1,1dx + A2,1dy. From the previous observations
and with the canonical normalization (ωi) of W(3), we have dωi = γ ∧ ωi for
1 ≤ i ≤ 3, which proves the following result of [H2]:

The Blaschke curvature of the nonsingular planar web W(3) is equal to dγ.

Indeed, we know (cf. for instance [B] or the previous theorem) that the
Blaschke curvature dγ of W(3) does not depend on the normalization used
to define it, contrary to the 1-form γ on (C2, 0) such that dωi = γ ∧ ωi for
1 ≤ i ≤ 3.

Moreover, according to the integrability condition of the homogeneous dif-
ferential system M(3) associated with (�3), we get the nonsurprising result:

rkW(3) =
{

0 if dγ �= 0
1 if dγ = 0 .

Using integrability conditions for M(d), this concrete approach will be
generalized for d ≥ 3 in the next section.

3. On the connection (E ,∇) associated with W(d) and some
applications

From the previous section, the exterior differential d : π∗(Ω1
S) −→ π∗(Ω2

S)
coming from the surface S, gives by restriction a linear differential operator

ρ : Od−2 −→ Od−1

on (C2, 0). It is defined by ρ (b3, . . . , bd) = (t2, . . . , td) where d
(
r · dy − p dx

∂p(F )
)
=

t · dx ∧ dy

∂p(F )
with r = b3 . pd−3 + · · · + bd and t = t2 . pd−2 + · · · + td.

This operator of order 1 is induced by the homogeneous linear differential
system M(d) associated with (�d). Its corresponding morphism of O-modules

p0 : J1(Od−2) −→ Od−1

satisfies p0 ◦ j1 = ρ where in matrix form j1(b) =
(
b, ∂x(b), ∂y(b)

)
as jets. From

the nature of the system (�d), the kernel R0 of p0 is a free O-module of finite
type.
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We use, with minor modifications, the now classical notation from the
works of D. Spencer and H. Goldschmidt (cf. [S] and for instance [B-C-3G]).
In particular, pk : Jk+1(Od−2) −→ Jk(Od−1) denotes the k-th prolongation of
p0 for k ≥ 0 obtained by successive derivations and Rk is the kernel of pk. For
symbols, we have natural exact sequences:

0 −→ gk −→ Sk+1(Od−2) σk−→ Sk(Od−1)
τk−1−→ Coker σk −→ 0.

With this notation and among others the “snake” lemma, we have for
k ≥ 0 the following exact commutative diagram of O-modules:

0 0 0� � �
0 −−−→ gk+1 −−−→ Sk+2(Od−2)

σk+1−−−→ Sk+1(Od−1) τk−−−→ Kk −−−→ 0� � �
0 −−−→ Rk+1 −−−→ Jk+2(Od−2)

pk+1−−−→ Jk+1(Od−1)

π̄k

� πk

� π̂k

�
0 −−−→ Rk −−−→ Jk+1(Od−2)

pk−−−→ Jk(Od−1)

βk

� � �
Kk 0 0

where πk (resp. π̂k) is the natural projection, πk is the morphism induced on
kernels and Kk := Cokerσk+1 is the obstruction space of formal integrability
of pk .

Moreover, we have the following equivalence: πk is a surjective morphism
if and only if βk = 0.

For p ≥ 1 and k ≥ 0 we have rkJk(Op) =
p

2
(k+1)(k+2); thus rkSk(Op) =

p(k + 1) and we set Jl(Op) = 0 if l < 0.
For k ≥ 1 the O-modules Rk and gk+1 are of finite type but not necessarily

free. However, using the special nature of the symbols of the prolongations of
the system M(d), one can determine the constant rank of each σk.

In particular, it can be checked that gk = 0 for k ≥ d − 3 and gd−4 is a
free O-module of rank 1. Moreover, one obtains that Kk = 0 for k ≤ d− 4 and
that it is a free O-module of rank k − d + 4 for k ≥ d − 3.

Since σd−3 is an isomorphism, we get among others that πd−4 : Rd−3 −→
Rd−4 is an isomorphism of free O-modules with rank

1
2
(d − 1)(d − 2).

Furthermore, we have (cf. [S]) a natural exact sequence of C-vector spaces

0 −→ Op jl−→ Jl(Op) D−→ Ω1 ⊗O Jl−1(Op) D−→ Ω2 ⊗O Jl−2(Op) −→ 0.
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For example with p = 1, l = 2 and the natural projection π : J1(O) −→
J0(O), we have explicitly the following three applications:

j2(f) =
(
f, ∂x(f), ∂y(f), ∂2

x(f), ∂x∂y(f), ∂2
y(f)

)
,

D(z, p, q, r, s, t) = dx ⊗
(
∂x(z) − p, ∂x(p) − r, ∂x(q) − s

)
+ dy ⊗

(
∂y(z) − q, ∂y(p) − s, ∂y(q) − t

)
and D

(
ω ⊗ (z, p, q)

)
= dω ⊗ π(z, p, q) − ω ∧ D(z, p, q)

= dω ⊗ z − ω ∧
(
dx ⊗ (∂x(z) − p) + dy ⊗ (∂y(z) − q)

)
.

With the notation used before, the previous exact sequence induces on
kernels the first Spencer complex associated with the prolongation pk of p0,
that is, the following complex (of families) of C-vector spaces exact at Rk with
injective jk+1:

0 −→ SolM(d)
jk+1−→ Rk

D−→ Ω1 ⊗O Rk−1
D−→ Ω2 ⊗O Rk−2 −→ 0.

Moreover, from the preceding constructions, we have the following commu-
tative diagram of C-vector spaces with exact rows and such that the columns
are complex exact at Rk (resp. Rk+1) with injective jk+1 (resp. jk+2):

0 0� �
0 −−−→ SolM(d) id−−−→ SolM(d) −−−→ 0

jk+2

� jk+1

�
gk+1 −−−→ Rk+1

π̄k−−−→ Rk
βk−−−→ Kk

D

� D

�
Ω1 ⊗O gk −−−→ Ω1 ⊗O Rk

πk−1−−−→ Ω1 ⊗O Rk−1
βk−1−−−→ Ω1 ⊗O Kk−1

D

� D

�
Ω2 ⊗O gk−1 −−−→ Ω2 ⊗O Rk−1

πk−2−−−→ Ω2 ⊗O Rk−2
βk−2−−−→ Ω2 ⊗O Kk−2� �

0 0.

Using the previous results one gets a long sequence of O-modules of finite
type

· · · πd−2−→ Rd−2
πd−3−→ E := Rd−3

πd−4−→ Rd−4

with injective morphisms which begin with an isomorphism πd−4 of free O-
modules with rank 1

2(d − 1)(d − 2).



440 ALAIN HÉNAUT

The operator D : Rk −→ Ω1 ⊗O Rk−1 of the first Spencer complex asso-
ciated with pk satisfies D(fe) = df ⊗ πk−1(e) + fD(e) for e ∈ Rk and f ∈ O.
Thus, it allows us to make for k ≥ d − 3 the following construction related to
the previous long sequence: if βk−1 = 0, that is, πk−1 is an isomorphism, then
Rk = Ker pk ⊂ Jk+1(Od−2) is equipped with a connection defined by

∇k := (πk−1)−1 ◦ D : Rk −→ Ω1 ⊗O Rk

such that its C-vector space Ker∇k of horizontal sections is isomorphic to
SolM(d). Moreover its curvature

∇(1)
k ◦ ∇k : Rk −→ Ω2 ⊗O Rk

takes its values in Ω2⊗Ogk−1 with the identification Ω2⊗ORk
πk−1−→ Ω2⊗ORk−1.

In particular, if this connection (Rk,∇k) exists it is always integrable for k ≥
d − 2. Indeed, it can be checked that, with some abuse of notation, we have
D = πk−1 ◦ ∇(1)

k . Thus, it follows that πk−2 ◦ πk−1 ◦ ∇(1)
k ◦ ∇k = πk−2 ◦ D ◦

(πk−1)−1 ◦ D = D2 = 0. From a basic result on connections, if βk−1 = 0 then
Rk is a free O-module of finite type, even if the connection (Rk,∇k) is not
integrable. Moreover, by the previous commutative diagram, it can be checked
that the inclusion Kerβk ⊆ Ker (∇(1)

k ◦ ∇k) holds.
Since βd−4 = 0, this construction starts with (E ,∇) := (Rd−3,∇d−3) which

is called the connection associated with the planar web W(d) generated by the
differential equation F (x, y, y′) = 0. The curvature K := ∇(1)

d−3◦∇d−3 of (E ,∇)
is O-linear and since gd−4 is a free O-module of rank 1, there exists an adapted
basis (e�) of the free O-module E which verifies

K(e�) = k� dx ∧ dy ⊗ e1 for 1 ≤ � ≤ 1
2
(d − 1)(d − 2) with k� ∈ O

where e1 ∈ E corresponds to a generator of gd−4. Moreover from results above,
βd−3 = 0 implies K = 0.

The successive morphisms βk vanish or not and the construction men-
tioned above jointed with the Cauchy-Kowalevski theorem as below can be
used to give a theoretical approach to the determination of the exact rank of
W(d). However, the level d− 3 at least gives the following effective method to
characterize maximal rank webs:

Theorem 2. With the previous notation, the following conditions are
equivalent :

i) The connection (E ,∇) is integrable, that is k� = 0 for 1 ≤ � ≤
1
2
(d − 1)(d − 2);

ii) The planar web W(d) associated with F (x, y, y′) = 0 is of maximal rank.
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Proof. With natural identification, the Cauchy-Kowalevski theorem as-
serts that the evaluation map Ker∇ = SolM(d) −→ C

1
2
(d−1)(d−2) close to

0 ∈ C2 is an isomorphism if K = 0; hence i)⇒ ii). Conversely, since Ω1 ⊗O(
O⊗CSolM(d)

)
is identified with Ω1⊗CSolM(d), the local system SolM(d) of

dimension 1
2(d−1)(d−2) induces an integrable connection (O⊗CSolM(d),∇S)

defined by ∇S(f ⊗ s) = df ⊗ s. Then we have a morphism of connections
(O ⊗C SolM(d),∇S) −→ (E ,∇) given by f ⊗ s �−→ fs, which is an isomor-
phism. This proves that the connection (E ,∇) is integrable.

Examples. 1. For d = 3, that is for W(3), the matrix (Ai,j) introduced
before has the following simplified form:

(Ai,j) =
(

A1

A2

)
.

It can be checked that the row matrix e1 =
(
1 −A1 −A2

)
∈ J1(O) is

an adapted basis of E := R0. In this basis, the connection (E ,∇) associated
with W(3) has the following matrix:

γ =
(
A1 dx + A2 dy

)
with the corresponding curvature matrix

dγ + γ ∧ γ =
(
∂x(A2) − ∂y(A1)

)
dx ∧ dy

which is the Blaschke curvature of W(3).

2. For d = 4 in the linear case, that is W(4) = L(4), the matrix (Ai,j) has
the following particular form:

(Ai,j) =

 0 A1

A1 A2

A2 0

 .

In this case, one constructs an adapted basis (e1, e2, e3) of E := R1 with
explicit elements of J2(O2) in matrix forms:

e1 =
(

0 −1 0 2A1 A2 0
0 0 1 0 −A1 −2A2

)
,

e2 =
(

1 −A1 −A2 A2
1 − ∂x(A1) A1A2 − ∂x(A2) A2

2 − ∂y(A2)
0 0 0 0 0 k

)
,

e3 =
(

0 0 0 −k 0 0
1 −A1 −A2 A2

1 − ∂x(A1) A1A2 − ∂y(A1) A2
2 − ∂y(A2)

)
,
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where k := ∂x(A2) − ∂y(A1). In this basis, the connection (E ,∇) associated
with W(4) has the following matrix:

γ =

 Γ −k dy −k dx

dx Γ 0
−dy 0 Γ


with the corresponding curvature matrix

dγ + γ ∧ γ =

3 k −∂x(k) ∂y(k)
0 0 0
0 0 0

 dx ∧ dy

where Γ := A1 dx + A2 dy.

Remarks. 1. In the general case W(4) with the previous method and

from the matrix (Ai,j) =

A1,1 A1,2

A2,1 A2,2

A3,1 A3,2

, one gets an adapted basis of (E ,∇)

with curvature matrix

dγ + γ ∧ γ =

k1 k2 k3

0 0 0
0 0 0

 dx ∧ dy,

where we have explicitly

k1 = 2κ1 + κ2 + ∂y(λ1),
k2 =−∂x(κ1) − ∂2

y(A1,1) + λ1κ1 + ∂y(λ2A1,1) + ∂x(A1,1A3,2) + A1,1∂x(A3,2),
k3 = ∂y(κ2) − ∂2

x(A3,2) + λ2κ2 − ∂x(λ1A3,2) + ∂y(A1,1A3,2) + A3,2∂y(A1,1),

with κ1 = ∂x(A3,1) − ∂y(A2,1) and κ2 = ∂x(A2,2) − ∂y(A1,2); that is, dΓq =
κq dx ∧ dy for 1 ≤ q ≤ 2, λ1 = A2,1 − A1,2 and λ2 = A3,1 − A2,2. Moreover,
as with the Blaschke curvature for any W(3), the previous relations prove
that (k�) does not depend on a normalization of W(4). In other words, the
collection (k�) is an invariant of the planar web W(4); that is, the curvature
of its associated connection (E ,∇) is “canonical”.

2. For the weave of a general planar web W(4) introduced in the first
section, it can be noted from the theorem called aF that (b3, b4) ∈ A(4)3 ⊆
A(4)4 = A(4) if and only if b4

3 . F (x, y,
−b4

b3
) = 0. For d ≥ 4, one can get the

same kind of description of elements in A(d)k by adding suitable new equations
on (b3, . . . , bd) ∈ A(d).

To end this section, we give some applications of the previous methods
and results. Let L(d) be a linear and nonsingular web in (C2, 0). The previous
relation (�) is reduced to the following:

(�L) r .
(
∂x(F ) + p ∂y(F )

)
=

(
∂x(r) + p ∂y(r) − t

)
. F.
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Since pi = ξi(Fi) with ξi ∈ C{z} for 1 ≤ i ≤ d in the linear case, rp = 0.
Moreover for L(d), the homogeneous linear differential system M(d) associated
to (�d) has the following particular form:

∂x(bd) + A1 bd = 0
∂x(bd−1) + ∂y(bd) + A1 bd−1 + A2 bd = 0

...
∂x(b3) + ∂y(b4) + A1 b3 + A2 b4 = 0

∂y(b3) + A2 b3 = 0.

With the theorem aF , it can be checked, with the notation used before,
that if dΓ = k dx ∧ dy = 0 then the rank of L(d) is maximally equal to
1
2(d−1)(d−2). Indeed, we have the following explicit description, through the
C-vector space aF , of its C-vector space of abelian relations:

{
e−ϕ(y − px)�1p�2 · dy − p dx

∂p(F )
}
∈ π∗(Ω1

S) with 0 ≤ �1 + �2 ≤ d − 3,

with Γ = A1 dx + A2 dy = dϕ where ϕ ∈ O is given by the Poincaré lemma.
In particular we recover, without using Abel’s theorem and traces of el-

ements in H0(C, ω1
C), that if L(d) = LC(d) is an algebraic web with C ⊂ P2

then it necessarily has maximal rank since in this case we have seen that Γ = 0.
Moreover its space aF has the previous description with ϕ = 0.

In the linear case, an adapted basis (e�) for the connection (E ,∇) associ-
ated with L(d) can be constructed, step by step on d, following the examples
given before. At each step, e1 is chosen and the other vectors e� are constructed
from the steps before, installed on different rows with suitable zeros. Moreover
it can be checked that in this special case, the �-component of each ∇(e�) is
(A1 dx + A2 dy) ⊗ e� which proves the following result:

Proposition 2. Let L(d) be a linear and nonsingular planar web. Then,
the trace of the curvature K of the connection (E ,∇) associated with L(d)
satisfies the following equalities:

tr(K) = k1 dx ∧ dy =
1
2
(d − 1)(d − 2). dΓ.

As announced in the introduction and using only the previous methods,
the following result and its proof give several complements of a basic result in
planar web geometry:

Theorem 3. Let L(d) be a linear and nonsingular planar web associated
with a differential equation F (x, y, y′) = 0 with canonical normalization (ωi).
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Then, the following conditions are equivalent :

1) L(d) is of maximal rank ;

2) ωi = ρ dui for 1 ≤ i ≤ d with elements ui in O and ρ in O∗;

3) The connection (E ,∇) associated with L(d) is integrable;

4) With the previous notation k = ∂2
y

(a1

a0

)
= 0; that is, dΓ = 0;

5) L(d) is algebraic.

Proof. From the previous results, there are the following implications:
5)⇒ 1)⇔ 3)⇒ 4). 2)⇔ 4): For 1 ≤ i ≤ d, we have dωi = (A1 dx+A2 dy)∧ωi =
dρ

ρ
∧ ωi if ωi = ρ dui; hence dΓ = 0 from the general position hypothesis.

Conversely, if dΓ = 0 then Γ = dϕ =
dρ

ρ
if ρ = eϕ. But d(

ωi

ρ
) = −dρ

ρ2
∧ ωi +

dωi

ρ
= 0 since dωi = Γ ∧ ωi, hence ωi = ρ dui for 1 ≤ i ≤ d by the Poincaré

lemma. 4)⇒ 5): We have Γ = dϕ and from the previous description of aF in
this case, the element r := e−ϕ verifies the relation (�L) with t = 0. Thus, F

is a solution of the partial differential equation

∂x(f) + p ∂y(f) = −
(
∂x(ϕ) + p ∂y(ϕ)

)
. f

with unknown f ∈ C{x, y, p}. By a classical argument (cf. for instance [Ca]),
the general solution of the previous equation is f = e−ϕ.Φ(y − px, p) with
Φ ∈ C{s, t}. This implies the equality F = e−ϕ. P (y − px, p) where P is a
reduced element in C[s, t] with degree d from the hypothesis on F ∈ O[p].
Thus L(d) is algebraic with L(d) = LC(d), where P (s, t) = 0 is an affine
equation of the reduced algebraic curve C ⊂ P2.

Bordeaux I University, Talence, France
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