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Classification of prime 3-manifolds
with σ-invariant greater than RP3

By Hubert L. Bray and André Neves*

Abstract

In this paper we compute the σ-invariants (sometimes also called the
smooth Yamabe invariants) of RP3 and RP2 × S1 (which are equal) and show
that the only prime 3-manifolds with larger σ-invariants are S3, S2 × S1, and
S2×̃S1 (the nonorientable S2 bundle over S1). More generally, we show that
any 3-manifold with σ-invariant greater than RP3 is either S3, a connect sum
with an S2 bundle over S1, or has more than one nonorientable prime compo-
nent. A corollary is the Poincaré conjecture for 3-manifolds with σ-invariant
greater than RP3.

Surprisingly these results follow from the same inverse mean curvature
flow techniques which were used by Huisken and Ilmanen in [7] to prove the
Riemannian Penrose Inequality for a black hole in a spacetime. Richard Schoen
made the observation [18] that since the constant curvature metric (which is
extremal for the Yamabe problem) on RP3 is in the same conformal class as
the Schwarzschild metric (which is extremal for the Penrose inequality) on RP3

minus a point, there might be a connection between the two problems. The
authors found a strong connection via inverse mean curvature flow.

1. Introduction

We begin by reminding the reader of the definition of the σ-invariant of a
closed 3-manifold and some of the previously known results. Since our results
only apply to 3-manifolds, we restrict our attention to this case.

Given a closed 3-manifold M , the Einstein-Hilbert energy functional on
the space of metrics g is defined to be the total integral of the scalar curvature
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Rg after the metric has been scaled to have total volume 1. More explicitly,

E(g) =

∫
M RgdVg

(
∫
M dVg)1/3

where dVg is the volume form of g. As will become clear, the most important
reference value of this energy function is

E(g0) = 6(2π2)2/3 ≡ σ1

where g0 is any constant curvature (or round) metric on S3. When g0 has
constant sectional curvature 1, Rg0 = 6 and Vol(g0) = 2π2.

Since E is unbounded in both the positive and negative directions, it
is not interesting to simply maximize or minimize E over the space of all
metrics. However, Trudinger, Aubin, and Schoen showed (as conjectured by
Yamabe) that a minimum value for E is always realized in each conformal
class of metrics by a constant scalar curvature metric, so define the [conformal]
Yamabe invariant of the conformal class [g] to be

Y (g) = inf{E(ḡ) | ḡ = u(x)4g, u(x) > 0, u ∈ H1}

where we note that

E(ḡ) =

∫
M (8|∇u|2g + Rgu

2)dVg(∫
M u6dVg

)1/3
.(1)

Given any smooth metric g, we can always choose u(x) to be close to zero
except near a single point p so that the resulting conformal metric is very close
to the round metric on S3 minus a neighborhood of a point. This construction
can be done to make the energy of the resulting conformal metric arbitrarily
close to σ1. Hence,

Y (g) ≤ σ1

for all g and M . Thus, as defined by Schoen in lectures in 1987 and published
the following year [17] (see also O. Kobayashi [9] who attended the lectures),
let

σ(M) = sup{Y (g) | g any smooth metric on M} ≤ σ1

to get a real-valued smooth invariant of M , called the σ-invariant. We note that
the σ-invariant is sometimes called the smooth Yamabe invariant (as opposed
to the conformal Yamabe invariant defined above for conformal classes) as well
as the Schoen invariant. For clarity, we will adopt the convention of referring
to the Yamabe invariant of a conformal class and Schoen’s σ-invariant of a
smooth manifold.
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There are relatively few 3-manifolds for which the σ-invariant is known.
Obata [15] showed that for an Einstein metric g we have Y (g) = E(g), which
when combined with the above inequality proves that σ(S3) = σ1. It is also
known that S2×S1 and S2×̃S1 (the nonorientable S2 bundle over S1) have σ-
invariant equal to σ1 [17]. O. Kobayashi showed that as long as at least one of
the manifolds has nonnegative σ-invariant, then the σ-invariant of the connect
sum of two manifolds is at least the smaller of the two σ-invariants [9]. Hence,
any finite number of connect sums of the two S2 bundles over S1 has σ = σ1. In
addition, σ(M) > 0 is equivalent to M admitting a metric with positive scalar
curvature. Since T 3 (or T 3 connect sum with any other 3-manifold) does not
admit a metric with positive scalar curvature, and since the flat metric on T 3

is easily shown to have Y = 0, it follows that σ(T 3) = 0. From this and O.
Kobayashi’s result it follows that T 3 connect sum any other 3-manifold with
nonnegative σ-invariant has σ = 0 as well. In addition, any graph manifold
which does not admit a metric of positive scalar curvature has σ = 0. For a
more detailed survey of the σ-invariants of 3-manifolds, see the works of Mike
Anderson [2], [3] and the works of Claude LeBrun and collaborators [5], [8],
[10], [11], [12] for 4-manifolds.

Note that the only two previously computed values of the σ-invariant of
3-manifolds are 0 and σ1, although it is expected that there are infinitely many
different values that the σ-invariant realizes on different manifolds. In fact, if
M admits a constant curvature metric g0 (spherical, hyperbolic, or flat), then
Schoen conjectures that σ(M) = E(g0). The flat case is known to be true, but
the other two cases appear to be quite challenging.

In particular, if M = S3/Gn is a smooth manifold and |Gn| = n, then it
is conjectured that

σ(M) =
σ1

n2/3
≡ σn.(2)

In this paper we prove that this conjecture is true when n = 2 and M is RP3.

2. Main results

Theorems 2.1 and 2.12 (a slight generalization which is more complicated
to state but is also very interesting) are the main results of this paper.

Theorem 2.1. A closed 3-manifold with σ > σ2 is either S3, a connect
sum with an S2 bundle over S1, or has more than one nonorientable prime
component.

Note that there are two S2 bundles over S1, the orientable one S2 × S1

and the nonorientable one S2×̃S1, neither of which is simply-connected. Note
also that a simply-connected manifold is always orientable and hence cannot
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have any nonorientable prime components. Hence, the Poincaré conjecture for
3-manifolds with σ > σ2 follows.

Corollary 2.2. The only closed, simply-connected 3-manifold with
σ > σ2 is S3.

We are also able to use the above theorem to compute the σ-invariants of
some additional 3-manifolds.

Corollary 2.3.

σ(RP3) = σ2.

The fact that σ(RP3) ≤ σ2 follows from Theorem 2.1 since RP3 is prime
and is not S3 or a connect sum with an S2 bundle over S1. σ(RP3) ≥ σ2

follows from the fact that Y (g0) = σ2 by Obata’s theorem, where g0 is the
constant curvature metric on RP3.

Corollary 2.4.

σ(RP2 × S1) = σ2.

The fact that σ(RP2 × S1) ≤ σ2 again follows from Theorem 2.1. Note
that S2×S1 is a double cover of RP2×S1. Furthermore, the standard proof on
S2 × S1 that there is a sequence of conformal classes [gi] with limY (gi) = σ1

passes to the quotient to give us a sequence of conformal classes [ḡi] on RP2×S1

with limY (ḡi) = σ2, proving that σ(RP2 × S1) ≥ σ2. We refer the reader to
[17] for the details of the S2 × S1 result.

Corollary 2.5. Let M be any finite number of connect sums of RP3 and
zero or one connect sums of RP2 × S1. Then

σ(M) = σ2.

The upper bound σ(M) ≤ σ2 again comes from Theorem 2.1. The lower
bound σ(M) ≥ σ2 comes from the connect sum theorem of O. Kobayashi
referred to earlier.

It is possible that the above corollary may be able to be strengthened to
allow up to two RP2 × S1 components if these cases can be shown to satisfy
Property B (defined below). In any case, it is curious that there is a limit on
the number of these factors, and it is certainly interesting to try to understand
what happens when you allow for any number of RP2 × S1 components.

Another interesting problem is to compute the σ-invariants of finite con-
nect sums of one or more S2 bundles over S1 with one or more of RP3 and
RP2 ×S1. At the time of the publication of this paper, Kazuo Akutagawa and
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the second author found a nice idea to extend the results of this paper to some
of those cases [1].

Also, closed 3-manifolds admit a nearly unique prime factorization as the
connect sum of prime manifolds [6]. A manifold M is prime if M = A#B

implies that either A or B is S3. Finite prime factorizations always exist
for 3-manifolds and are unique modulo the relation (S2 × S1)#(S2×̃S1) =
(S2×̃S1)#(S2×̃S1). Consequently classifying closed 3-manifolds reduces to
classifying prime 3-manifolds. One natural approach is to try to list prime
3-manifolds in order of their σ-invariants.

Corollary 2.6. The first five prime 3-manifolds ordered by their
σ-invariants are S3, S2 × S1, S2×̃S1, RP3, and RP2 × S1. The first three
manifolds have σ = σ1 and the last two have σ = σ2. All other prime
3-manifolds have σ ≤ σ2.

We conjecture that in fact all other prime 3-manifolds have σ < σ2.
Theorem 2.1 has the advantage of being concise but is actually a special

case of Theorem 2.12. However, to properly state Theorem 2.12 it is convenient
to make the following topological definitions.

Definition 2.7. A 3-manifold M3 has Property A if M3 is not S3 or a
connect sum with an S2 bundle over S1 and M3 can be expressed as P 3#Q3

where P 3 is prime and Q3 is orientable.

Definition 2.8. A 3-manifold M3 has Property B if M3 is not S3 or a
connect sum with an S2 bundle over S1 and M3 can be expressed as P 3#Q3

where P 3 is prime and α(Q3) = 2.

Definition 2.9. Define α(Q3) to be the supremum of the Euler charac-
teristic of the boundary (not necessarily connected) of all smooth connected
regions (with two-sided boundaries) whose complements are also connected.

Note that by smooth and two-sided we mean that at every boundary point
of the region, the region in the manifold locally looks like a neighborhood
around the origin of the upper half space in R3. Also, considering a small ball
in Q3 proves that α(Q3) ≥ 2 always. We also make a nonessential comment
that Property B is equivalent to saying that M3 is not S3 and M3 can be
expressed as I3#Q3 where I3 is irreducible and α(Q3) = 2.

Lemma 2.10. Property A implies Property B.

Proof. Assume M3 has Property A. Then the first part of Property B
is immediate. For the last part, by Property A we know that M3 can be
expressed as P#Q where P is prime and Q is orientable. We will show that
α(Q) = 2.
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Let U be a smooth, regular, connected region in Q3, and let Σ be the
boundary of U . Since Q3 is orientable, it follows that Σ (which has a glob-
ally defined normal vector pointing in the direction of U for example) is also
orientable. Hence, the connected components of Σ are spheres and surfaces of
higher genus with nonpositive Euler characteristic.

Lemma 3.8 on page 27 of [6] states that if Q3 minus an embedded
2-sphere is connected, then Q3 is a connect sum of an S2 bundle over S1

with some other 3-manifold. Hence, since Property A assumes that M3 and
hence Q3 are not connect sums with S2 bundles over S1, any sphere component
of Σ must already split Q3 into two regions. In this case, Σ must be exactly a
single sphere, since any other components of Σ would split Q3 into more than
two connected regions. Hence, the two possibilities are that either Σ is a single
sphere, or Σ is the disjoint union of any number of connected surfaces with
nonpositive Euler characteristic. In both cases the Euler characteristic of Σ is
less than or equal to 2, so α(Q3) = 2, proving Property B.

The topological invariant α is new to the authors. We make a couple of
nonessential comments about it here. Besides always having to be at least two,
consideration of the connect sum operation implies that α(A#B) ≥ α(A) +
α(B) − 2. This inequality is an equality when both A and B are orientable
due to the following lemma.

Lemma 2.11. If M3 is orientable and has exactly k S2 × S1 components
in its prime factorization, then α(M3) = 2(k + 1).

Sketch of Proof. The fact that α(S2×S1) ≥ 4 implies (by the connect sum
observation just stated) that α(M3) ≥ 2(k +1). Conversely, α(M3) ≥ 2(k +1)
implies that there must be at least (k + 1) spheres in Σ since the boundary
surface Σ is orientable (since M3 is orientable). Referring the reader to the
argument used by Hempel in [6] in Lemma 3.8 on page 27 implies that there
must be at least k S2 × S1 bundles in M3, proving the lemma.

However, if M3 is not orientable, then it is harder to understand α(M3).
This is because the boundary surface Σ does not have to be orientable and
therefore can have RP2’s contributing positive Euler characteristic. We leave
this case as an interesting problem to investigate.

Theorem 2.12. A closed 3-manifold M3 with Property A or B has
σ(M3) ≤ σ2.

The above theorem could be thought of as the main theorem of this paper and
implies Theorem 2.1 by considering the negation of Property A. In the next
section we will see how the above theorem follows from Theorem 3.2.
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3. The basic approach and some definitions

The purpose of the remainder of this paper is to prove Theorem 2.12.
In this section we will show that Theorem 2.12, a statement about closed 3-
manifolds, follows from Theorem 3.2, a statement about the Sobolev constants
of asymptotically flat 3-manifolds with nonnegative scalar curvature.

Suppose that M has Property A or B. Then we want to prove that
σ(M) ≤ σ2. This would follow if we could show that

Y (g) ≤ σ2

for all conformal classes of metrics [g] on M .
If Y (g) ≤ 0, then we are done. Otherwise, Y (g) > 0 implies that the

metric g0 which minimizes E in [g] has constant positive scalar curvature R0.
Working inside of (M, g0) now, define

L0 ≡ ∆0 −
1
8
R0

to be the “conformal Laplacian” with respect to g0. Now choose any point
p ∈ M and define Gp(x) to be the Green’s function of L0 at p scaled so that

L0Gp = 0

on M − {p} and

lim
q→p

d(p, q)Gp(q) = 1.

This Green’s function exists and is positive since R0 > 0 and by the maximum
principle.

Definition 3.1. A Riemannian 3-manifold (M, g) is said to be asymptot-
ically flat if there’s a compact set K ⊆ M such that M − K is diffeomorphic
to R3 − {|x| ≤ 1} and in the coordinate chart defined by this diffeomorphism
we have

g =
∑
i,j

gij(x)dxidxj ,

where

gij = δij + O(|x|−1), gij,k = O(|x|−2), gij,kl = O(|x|−3).

Let gAF = Gp(x)4g0 on M−{p}. Then (M−{p}, gAF ) is an asymptotically
flat Riemannian manifold with zero scalar curvature where the point p has been
sent to infinity. Note that the formula for the scalar curvature of a conformal
metric is

RAF = −8G−5
p L0(Gp) = 0.
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Also note that the metrics g, g0, and gAF are all in the same conformal
class, so

Y (g) = Y (g0) = Y (gAF )

as long as the conformal factors on gAF are required to go to zero at infinity
sufficiently rapidly. Then since gAF has zero scalar curvature, it follows from
equation 1 that

C(gAF ) = inf

{ ∫
M 8|∇u|2dV(∫
M u6dV

)1/3
| u ∈ H1(M − {p}, gAF ) and has compact support

}

≡ 8 S(gAF )

where S(gAF ) is the Sobolev constant of (M − {p}, gAF ). Note that requiring
conformal factors on (M −{p}, gAF ) to have compact support is equivalent to
requiring conformal factors on (M, g) and (M, g0) to be zero in an arbitrarily
small open neighborhood around p which does not affect that values of Y (g)
or Y (g0). It is also okay to use u(x) in the above Sobolev expression which do
not have compact support but instead are in H1

loc ∩ L6 and satisfy

lim
x→∞

u(x)|x|1/2 = 0(3)

where |x| is defined as the distance from some base point in (M − {p}, gAF ).
The reason is that this decay condition guarantees that it is possible to cut off
u at infinity to yield a compactly supported function with energy arbitrarily
close to the energy of u.

By the discussion in this section, Theorem 2.12 follows from the following
result on asymptotically flat 3-manifolds with nonnegative scalar curvature
which we will prove in the remainder of this paper using inverse mean curvature
flow techniques.

Theorem 3.2. Let (M, g) be an asymptotically flat 3-manifold with non-
negative scalar curvature satisfying Property A or B. Then

S(g) ≤ σ2/8.

4. Some intuition

The (Riemannian) Schwarzschild metric on RP3 minus a point p is the only
case which gives equality in Theorem 3.2, so this case deserves discussion. We
begin by working on the covering space of (RP3, g0) which is of course (S3, g0),
where g0 is again the constant curvature round metric. Removing a point on
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RP3 is equivalent to removing two antipodal points n and s on S3. Note that
(S3−n−s, g0) still has an O(3) symmetry as well as a Z2 symmetry. Next, let
G(x) be the Green’s function of the conformal Laplacian at p as in the previous
section and lift G(x) to S3. Then (S3 − n − s, gAF ), where gAF = G(x)4g0,
is a zero scalar curvature metric with two asymptotically flat ends. Note that
since G(x) satisfies LG = 0 on S3 − n− s with identical asymptotics on n and
s, G has the O(3) and Z2 symmetries as well. Hence, (S3 − n − s, gAF ) has
these same symmetries. Said another way, (S3 − n − s, gAF ) is a spherically
symmetric, zero scalar curvature, asymptotically flat manifold with two ends.

Besides R3, the only other spherically symmetric, zero scalar curvature,
geodesically complete 3-manifolds are scalings of the Schwarzschild metric
(with mass set to 2 here) which is most conveniently written as

(R3 − {0}, (1 + 1/|x|)4δij).

Note that since the conformal factor blows up at 0, the above metric has two
asymptotically flat ends, one at ∞ and one at 0. The O(3) symmetry of the
Schwarzschild metric in the above picture is clear, but the Z2 symmetry (which
sends x to x/|x|2) is harder to see. Another good picture of the Schwarzschild
metric with mass 2 is as the submanifold of the Euclidean space R4 which
satisfies

|(x, y, z)| =
w2

16
+ 4,

which is a parabola rotated about an S2. Here both the O(3) and Z2 symme-
tries are clear as well as the fact that there is a minimal sphere which is fixed
by the Z2 symmetry.

Thus, in the first model for the Schwarzschild metric, when we mod out
by the Z2 symmetry we get

(R3 − B1(0), (1 + 1/|x|)4δij) ≡ (L, s)

where the antipodal points of the minimal sphere |x| = 1 are identified. By the
uniqueness of this construction, (RP3 − {p}, gAF ) must be isometric to some
constant scaling of (L, s).

By the previous section, we know that S(gAF ) = Y (gAF )/8 = Y (g0)/8.
But Obata’s theorem tells us that Y (g0) = σ2. Hence, we see that the Sobolev
constants of (RP3 − {p}, gAF ) and therefore (L, s) are both σ2/8.

Define u0(x) on (L, s) such that (L, u0(x)4s) is isometric to (RP3−{p}, g0).
For convenience, scale u0(x) so that its maximum value is 1. By the previous
section we know that it is this function u0(x) which has Sobolev ratio σ2/8
which is the minimum. The key point here is that u0(x) also has the O(3)
symmetry.
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The main idea for proving Theorem 3.2 will be to show that on M which
satisfy Property B (or Property A since A implies B), we can always construct
a function u(x) with Sobolev ratio ≤ σ2/8. Then it follows that the Sobolev
constant, which is the minimum of the Sobolev ratios, must be ≤ σ2/8. We
now perform this construction on (L, s) since we already know what the answer
has to be here.

Let Σ(0) be the minimal sphere in (L, s) which is the coordinate sphere
|x| = 1. Note that Σ0 weakly bounds a compact region. Flow this sphere in
the outward normal direction to define a family of surfaces Σ(t) where at each
point the speed of the flow equals 1/H, where H is the mean curvature of Σ(t).
In our case there is a slight issue at the beginning of the flow since Σ(0) has
zero mean curvature, but this flow can still be defined for all t > 0 since all
of the other spherically symmetric spheres Σ(t) have positive H. For now we
just require that Σ(t) converges to Σ(0) as t goes to zero. We can also think
of this flow of surfaces using a level set formulation where we define φ(x) such
that

Σ(t) = {x | φ(x) = t}.

Define f(t) for t ≥ 0 such that

f(t) = u0(Σ(t))(4)

which makes sense since u0(x) is constant on each Σ(t). Note that we have
used our knowledge of u0(x), which has the minimal Sobolev ratio on (L, s),
to define f . Equivalently, given f we can recover u0 since u0(x) = f(φ(x)).

In the general case on (M, gAF ), the results of Huisken and Ilmanen [7] say
that if we have an outermost minimal surface with a connected component Σ0

which weakly bounds a compact region, then it is always possible to define a
weak version of inverse mean curvature flow using a level set formulation to get
a locally Lipschitz function φ(x). Then we will show that u(x) = f(φ(x)) has
Sobolev ratio ≤ σ2/8. We see that this construction does indeed work in the
model case (L, s). The fact that this case works in general follows from some
very special properties of inverse mean curvature flow. The most central of
these amazing facts is that the Hawking mass of Σ(t), which is defined entirely
in terms of the geometry of Σ(t), is nondecreasing in t.

When the weak inverse mean curvature flow is smooth, it agrees with the
classical flow. The classical 1/H flow though clearly has problems since it is
not clear how to define the flow if the mean curvature is zero anywhere on
Σ(t). The trick to defining the weak flow is to have the family of surfaces Σ(t)
occasionally “jump” outward. This corresponds to flat regions in the level set
function φ(x). The fact that these occasional jumps allow the flow to be defined
such that the Hawking mass is still nondecreasing is really quite remarkable.
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5. Inverse mean curvature flow

We will use the weak formulation of inverse mean curvature flow as devel-
oped by Huisken and Ilmanen in [7]. Before stating the results in [7] which we
need, we introduce some of their terminology.

If Σ is a C1 surface of a Riemannian 3-manifold (N, h), we say that
H ∈ L1

loc(Σ) is the weak mean curvature of Σ provided∫
Σ

divN ( �X)dAh =
∫

Σ
H〈 �X, �ν〉 dAh

for all compactly supported vector fields on N , where �ν is the exterior unit
normal.

In the case that Σ is smooth, −H�ν coincides with the usual mean curvature
vector of Σ.

Definition 5.1. Given a compact C1 hypersurface Σ with weak mean cur-
vature H in L2(Σ), the Hawking mass is defined to be

mH(Σ) :=

√ ∣∣Σ∣∣
(16π)3

(
16π −

∫
Σ

H2dAh

)
,

where
∣∣Σ∣∣ is the two dimensional Hausdorff measure of Σ.

Finally, a compact set E is said to be a minimizing hull in N if it minimizes
area on the outside, i.e., if ∣∣∂∗E

∣∣ ≤ ∣∣∂∗F
∣∣

for all F containing E such that F − E ⊂⊂ N , where ∂∗F is the reduced
boundary of F .

Theorem 5.2 (Huisken-Ilmanen). Let (N, h) be an asymptotically flat
3-manifold with nonnegative scalar curvature. If E0 is an open precompact
minimizing hull in N having a smooth boundary ∂E0, then there is a precompact
locally Lipschitz φ satisfying :

(i) For t ≥ 0, Σt = ∂{φ < t} defines an increasing family of C1,α surfaces
such that Σ0 = ∂E0;

(ii) For almost all t ≥ 0, the weak mean curvature of Σt is |∇φ |Σt
;

(iii) For almost all t ≥ 0,

|∇φ |Σt
�= 0 for almost all x ∈ Σt

(with respect to the surface measure) and∣∣Σt

∣∣ =
∣∣Σ0

∣∣ et for all t ≥ 0;
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(iv) The Hawking mass mH(Σt) is a nondecreasing function of t ≥ 0 provided
the Euler characteristic χ(Σt) ≤ 2 for all t ≥ 0.

Note that when φ is smooth with nonvanishing gradient then (ii) is just
saying that the surfaces {φ = t}t≥0 solve the inverse mean curvature flow with
initial condition ∂E0 because in this situation the speed of this flow is given
by

|∇φ |−1�ν,

where �ν is the exterior unit normal to {φ = t}.

6. Application of inverse mean curvature flow

Let (M, g) be an asymptotically flat 3-manifold with nonnegative scalar
curvature which has property B (or A since A implies B).

Proof of Theorem 3.2. Given an asymptotically flat 3-manifold (M, g),
there is a very useful concept of its “outermost minimal surface.” An outermost
minimal surface is a minimal surface which encloses all other compact minimal
surfaces. A result due to Meeks, Simon, and Yau [14] is that as long as (M, g)
is not topologically R3 (that is, S3 before one point was removed), then the
outermost minimal surface always exists and is the disjoint union of a finite
number of [weakly] embedded 2-spheres (limits of uniformly smooth embedded
2-spheres). Even more remarkably, their result also states that the region
exterior to the outermost minimal surface is topologically R3 minus a finite
number of balls.

Hence, Property B implies that an outermost minimal surface must exist
in our case since our original manifold is not allowed to be S3. Furthermore,
since our manifold is not a connect sum with an S2 bundle over S1, then (as
referred to earlier) each sphere in the outermost minimal surface splits the
manifold into two parts and therefore bounds a connected, compact region.
In fact, since the exterior region is topologically trivial, we may view M as a
connect sum along the spheres of the outermost minimal surface of the regions
inside the minimal spheres.

Now recall that Property B states that M = P#Q, where P is prime and
α(Q) ≤ 2. By the uniqueness of prime decompositions of 3-manifolds which
do not have S2×̃S1 components, the prime manifold P must be entirely inside
one of the spheres of the outermost minimal surface. Let us call this particular
sphere Σ.

Σ will be the starting point for our inverse mean curvature flow. Note that
since inverse mean curvature flow always flows outward, we may equivalently
view the flow as always being inside a subset of Q.
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Because Σ is the boundary of a region which is a minimizing hull, The-
orem 5.2 may be applied. What is also crucial is that the surface Σt in the
inverse mean curvature flow always has Euler characteristic less than or equal
to 2. The reason for this is that there is a critical step in the Huisken-Ilmanen
argument [7] which uses ∫

Σt

K ≤ 4π,(5)

where K is the Gauss curvature of Σt, to prove that the Hawking mass is
nondecreasing. By the Gauss-Bonnet theorem, this condition will be satisfied
if and only if Σt always has Euler characteristic less than or equal to 2.

Fortunately, one property of the Huisken-Ilmanen inverse mean curva-
ture flow is that both the interior and exterior regions of Σt stay connected
for all t. The interior region stays connected by Huisken and Ilmanen’s en-
ergy minimization argument: if the interior region ever became disconnected,
the energy could be decreased by simply removing the new component. The
exterior region stays connected because if it ever developed more than one
component, filling in the components not connected to infinity would decrease
the area of Σ, which would violate the condition that Σ is not enclosed by
surfaces with less area.

Thus, since our flow takes place entirely in a subset of Q, and since Σt splits
M (and therefore Q) into connected interior and exterior regions, Property B
guarantees us that the Euler characteristic of Σt is always ≤ 2 since α(Q) ≤ 2
by assumption.

Let φ be the precompact function given by Theorem 5.2 from an inverse
mean curvature flow starting at Σ. Define a locally Lipschitz function u on M

by

u(x) :=
{

f(0) if φ(x) ≤ 0
f(φ(x)) if φ(x) > 0

where f(t) is defined in equation 4. The goal is to show that this particular
test function for the Sobolev quotient has∫

M
|∇u|2dVg(∫

M
u6dVg

)1/3
≤ σ2

8

and that u(x) decays at infinity sufficiently rapidly. Then since the Sobolev
constant is the infimum of the above ratio over all test functions, it will follow
that S(g) ≤ σ2

8 , proving Theorem 3.2.
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Let Σt := ∂{φ < t}. To estimate the numerator the coarea formula gives∫
M

|∇u|2dVg =
∫
{φ≥0}

f ′(φ(x))2 |∇φ |2dVg

=
∫ ∞

0
f ′(t)2

∫
Σt

|∇φ |dAg dt

=
∫ ∞

0
f ′(t)2

∫
Σt

HdAg dt,

where the last equality comes from Theorem 5.2 (ii).
To estimate the denominator we apply again the coarea formula. In order

to do so set

Cε := {x ∈ M | |∇φ | > ε } ∩ {φ ≥ 0}.

Then ∫
M

u6 dVg ≥
∫

Cε

u6 dVg

=
∫ ∞

0
f(t)6

∫
Σt∩Cε

|∇φ |−1 dAg dt.

Note that by Theorem 5.2 (iii), for almost all t ≥ 0, Σt differs from Σt ∩C0 by
a null measure set with respect to the surface measure. So, making ε going to
zero in the previous inequality, the Lebesgue Monotone Convergence Theorem
implies: ∫

M
u6 dVg ≥

∫ ∞

0
f(t)6

∫
Σt

|∇φ |−1 dAg dt

=
∫ ∞

0
f(t)6

∫
Σt

H−1 dAg dt

≥
∫ ∞

0
f(t)6

∣∣Σt

∣∣2 (∫
Σt

H dAg

)−1

dt

=
∫ ∞

0
f(t)6e2t

∣∣Σ0

∣∣2 (∫
Σt

H dAg

)−1

dt

where in the last two steps we used Hölder’s inequality and
∣∣Σt

∣∣ = et
∣∣Σ0

∣∣
respectively.

Next, using the monotonicity of the Hawking mass (Theorem 5.2 (iv)), we
find an upper bound for

∫
Σt

H dAg.

Lemma 6.1. For all t ≥ 0,∫
Σt

HdAg ≤
√

16π
∣∣Σ0

∣∣(et − et/2).
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Proof. Using the monotonicity of the Hawking mass (Theorem 5.2 (iv))
we have √ ∣∣Σt

∣∣
(16π)3

(
16π −

∫
Σt

H2 dAg

)
=mH(Σt)

≥mH(Σ0)

=

√∣∣Σ0

∣∣
16π

and so, by Theorem 5.2 (iii),∫
Σt

H2 dAg ≤ 16π

(
1 −

√∣∣Σ0

∣∣∣∣Σt

∣∣−1
)

= 16π
(
1 − e−t/2

)
.

Thus, it follows from Hölder’s inequality that∫
Σt

HdAg ≤
√

16π
∣∣Σt

∣∣(1 − e−t/2)

=
√

16π
∣∣Σ0

∣∣(et − et/2).

Combining Lemma 6.1 with the previous estimates for the numerator and
denominator we obtain∫

M
|∇u|2dVg(∫

M
u6dVg

)1/3
≤

(16π)2/3

∫ ∞

0
f ′(t)2

√
et − et/2 dt(∫ ∞

0
f(t)6e2t (et − et/2)−1/2dt

)1/3

=
σ2

8
.

Observe that a dramatic simplification occurs at the last step. The point
is that we are not actually computing the two fairly complicated integrals.
Instead, we observe that we have equality in all of our inequalities in the
model case where we take a Schwarzschild metric on RP3 − {p}. Then since
f(t) is chosen to give the optimal test function in this case and we know that
the Sobolev constant of the Schwarzschild metric on RP3 −{p} is σ2/8, we get
the simplification. Note that there is no need to even compute f(t) explicitly
much less to actually evaluate the above integrals.

However, for those who are interested,

f(t) =
1√

2et − et/2
.
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We leave it to the brave reader to actually plug this expression into the above
integrals. We congratulate and thank Kevin Iga of Pepperdine University for
being the first person to actually perform this check successfully.

As a final note, we need to verify that the test function u(x) which we
defined using inverse mean curvature flow actually decays sufficiently rapidly
at infinity to be a valid test function. This is straightforward and follows from
the fact that in the asymptotically flat coordinate chart, Σt lies in the annular
region {x | c1 < |x|e−t/2 < c2} by the maximum principle for some positive
constants c1 and c2 for sufficiently large t. From this it can be shown that

k1 ≤ u(x)|x| ≤ k2

for some positive k1 and k2 and sufficiently large t. Hence, u(x) satisfies
equation 3, so Theorem 3.2 follows.

7. Open problems and acknowledgments

Since this paper was motivated by the computation of σ(RP3), it makes
since to next try to verify equation 2 for all n. One could also hope that solving
these problems might have the corresponding spin-offs that this paper did and
could be used to classify prime manifolds which admit metrics with nonnegative
scalar curvature. The expected result is that the only such manifolds are
quotients of S3 and S2 ×S1. Naturally these same questions are interesting in
higher dimensions as well.

Another great conjecture comes from considering the negative σ-invariant
case. Suppose Mn is compact and admits a hyperbolic metric g0. Then Schoen
conjectures that σ(M) = E(g0) (as well as the corresponding positive constant
curvature statement). This conjecture about hyperbolic 3-manifolds is equiva-
lent to the following volume comparison conjecture: If g is any other metric on
Mn with scalar curvature larger than that of g0, then Vol(g) ≥ Vol(g0). It is
possible that these conjectures will follow from Perelman’s work on the Ricci
flow (see below).

More generally, it would be extremely interesting to have a procedure
under which the σ-invariant could be related to a natural topological decom-
position or geometrization of the 3-manifold. In the negative case, Perelman’s
recent work on the Ricci flow appears on the verge of answering this request. In
this case, it would appear that the σ-invariant is likely given by the long time
limit of λ̄ (defined at the end of Perelman’s first paper [16]) under Ricci flow,
which in turn can be understood in terms of the geometrization of the original
manifold into graph manifold pieces and hyperbolic pieces. Other connections
between Ricci flow and the σ-invariant would also be very interesting, since
both can be broadly interpreted as attempts at some kind of geometrization.
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However, so far Ricci flow techniques have not been useful for finding the
σ-invariants when these invariants are positive. This is related to the fact that
Perelman’s λ̄ quantity is only necessarily nondecreasing when λ̄ is negative.
As mentioned earlier, at the time of this paper Kazuo Akutagawa and the
second author found a way to extend the results of this paper to compute
σ(RP3#(S2 × S1)) as well as the σ-invariants of some other 3-manifold. Since
their paper is still in progress, we refer the reader to [1] for their full results. We
also believe that the 3-manifold topological invariant α defined in this paper
deserves further consideration. It would also be very nice to show that except
for the five manifolds listed in Corollary 2.6, all other prime 3-manifolds have
σ < σ2. This last conjecture may follow from a strengthening of some of the
techniques in this paper.

This paper began after a talk given by Richard Schoen at the Gilbarg
Memorial Conference at Stanford University in April 2002. We would also
like to thank John Hempel and Steven Kerckhoff for helping us formulate the
topological hypotheses of this paper as cleanly as possible and Jeff Viaclovsky
for helpful discussions.
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