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Hilbert series, Howe duality and
branching for classical groups

By Thomas J. Enright and Jeb F. Willenbring*

Abstract

An extension of the Littlewood Restriction Rule is given that covers all
pertinent parameters and simplifies to the original under Littlewood’s hypothe-
ses. Two formulas are derived for the Gelfand-Kirillov dimension of any unitary
highest weight representation occurring in a dual pair setting, one in terms of
the dual pair index and the other in terms of the highest weight. For a fixed
dual pair setting, all the irreducible highest weight representations which occur
have the same Gelfand-Kirillov dimension.

We define a class of unitary highest weight representations and show that
each of these representations, L, has a Hilbert series HL(q) of the form:

HL(q) =
1

(1 − q)GKdim L
R(q),

where R(q) is an explictly given multiple of the Hilbert series of a finite di-
mensional representation B of a real Lie algebra associated to L. Under this
correspondence L → B , the two components of the Weil representation of the
symplectic group correspond to the two spin representations of an orthogonal
group. The article includes many other cases of this correspondence.

1. Introduction

(1.1) Let V be a complex vector space of dimension n with a nondegener-
ate symmetric or skew symmetric form. Let G be the group leaving the form
invariant. Now, G is either the orthogonal group O(n) or the sympletic group
Sp(n

2 ) for n even. The representations F λ of Gl(V ) are parametrized by the
partitions λ with at most n parts. In 1940, D. E. Littlewood gave a formula
for the decomposition of F λ as a representation of G by restriction.

*The second author has been supported by the Clay Mathematics Institute Liftoff Pro-
gram.



338 THOMAS J. ENRIGHT AND JEB F. WILLENBRING

Theorem 1 (Littlewood Restriction [Lit 1,2]). Suppose that λ is a par-
tition having at most n

2 (positive) parts.
(i) Suppose n is even and set k = n

2 . Then the multiplicity of the finite
dimensional Sp(k) representation V µ with highest weight µ in F λ equals

(1.1.1)
∑

ξ

dim HomGL(n)(F
λ, Fµ ⊗ F ξ),

where the sum is over all nonnegative integer partitions ξ with columns of even
length.

(ii) Then the multiplicity of the finite dimensional O(n) representation Eν

in F λ equals

(1.1.2)
∑

ξ

dim HomGL(n)(F
λ, F ν ⊗ F ξ),

where the sum is over all nonnegative integer partitions ξ with rows of even
length.

Recently Gavarini [G] (see also [GP]) has given a new proof of this the-
orem based on Brauer algebra methods and has extended the result for the
orthogonal group case. In that case the weaker hypothesis is: The sum of the
number of parts of λ plus the number of parts of λ of length greater than one
is bounded by n. In this article we describe some new results in character
theory and an interpretation of these results through Howe duality. This will
yield yet another proof of the Littlewood Restriction and more importantly a
generalization valid for all parameters λ.

In 1977 Lepowski [L] gave resolutions of each finite dimensional represen-
tation of a semisimple Lie algebra in terms of generalized Verma modules as-
sociated to any parabolic subalgebra. This work extended the so-called BGG
resolutions [BGG] from Borel subalgebras to general parabolic subalgebras.
The first result of this article gives an analogue of the Lepowski result for uni-
tarizable highest weight representations. To formulate this precisely we begin
with some notation.

Let G be a simple connected real Lie group with maximal compactly em-
bedded subgroup K with (G, K) a Hermitian symmetric pair and let g and k

be their complexified Lie algebras. Fix a Cartan subalgebra h of both k and
g and let ∆ (resp. ∆k) denote the roots of (g, h) (resp. (k, h)). Let ∆n be the
complement so that ∆ = ∆k ∪ ∆n. We call the elements in these two sets the
compact and noncompact roots respectively. The Lie algebra k contains a one
dimensional center Cz0. The adjoint action of z0 on g gives the decomposi-
tion: g = p− ⊕ k ⊕ p+, where k equals the centralizer of z0 and p± equals the
±1 eigenspaces of ad z0. Here q = k ⊕ p+ is a maximal parabolic subalgebra.
Let ∆+ denote a fixed positive root system for which ∆+ = ∆+

k
∪ ∆+

n and
where ∆+

n is the set of roots corresponding to p+. Let W (resp. Wk) denote
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the Weyl group for (g, h) (resp. (k, h)). We call the latter the Weyl group
of k and regard it as a subgroup of W. Then W = WkWk where we define
Wk = {x ∈ W|x∆+ ⊃ ∆+

k
}. Let ρ (resp. ρk, ρn) equal one half the sum over

the set ∆+ (resp. ∆+
k
,∆+

n ). When the root system ∆ contains only one root
length we call the roots short. For any root α let α∨ denote the coroot defined
by (α∨, ξ) = 2(α,ξ)

(α,α) .

Next we define the root systems and reductive Lie algebras associated to
unitarizable highest weight representations of G. Suppose L = L(λ + ρ) is
a unitarizable highest weight representation of G with highest weight λ. Set
Ψλ = {α ∈ ∆|(α, λ + ρ) = 0} and Ψ+

λ = Ψλ ∩∆+. We call Ψλ the singularities
of λ + ρ and note that Ψ+

λ is a set of strongly orthogonal noncompact roots.
Define Wλ to be the subgroup of the Weyl group W generated by the identity
and all the reflections rα which satisfy the following three conditions:

(1.1.3) (i) α ∈ ∆+
n and (λ + ρ, α∨) ∈ N∗ (ii) α is orthogonal to Ψλ ,

(iii) if some δ ∈ Ψλ is long then α is short .

Let ∆λ equal the subset of ∆ of elements δ for which the reflection rδ ∈ Wλ and
let ∆λ,k = ∆λ∩∆k, ∆+

λ = ∆λ∩∆+ and ∆+
λ,k = ∆λ,k∩∆+. Then in our setting

∆λ and ∆λ,k are abstract root systems and we let gλ (resp. kλ) denote the
reductive Lie algebra with root system ∆λ (resp. ∆λ,k) and Cartan subalgebra
h equal to that of g. Then the pair (gλ, kλ) is a Hermitian symmetric pair
although not necessarily of the same type as (g, k). For example, if λ is the
highest weight of either component of the Weil representation of Sp(n) then ∆λ

will be the root system of type Dn and the Hermitian symmetric pair (gλ, kλ)
will correspond to the real form so∗(2n). Let ρλ (resp. ρk,λ) equal half the sum
of the roots in ∆+

λ (resp. ∆+
k,λ).

For any ∆+
k

(resp. ∆+
λ,k , ∆+

λ )-dominant integral weight µ, let Eµ (resp.
Ekλ,µ, Bgλ,µ) denote the finite dimensional k (resp. kλ, gλ) module with highest
weight µ. Set Wλ,k = Wλ ∩Wk and define:
(1.1.4)
Wk

λ = {x ∈ Wλ|x∆+
λ ⊃ ∆+

λ,k} and Wk,i
λ = {x ∈ Wk

λ|card(x∆+
λ ∩ −∆+

λ ) = i} .

For any k-integral ξ ∈ h∗, let ξ+ denote the unique element in the Wk-orbit
of ξ which is ∆+

k
-dominant. For any k-dominant integral weight λ define the

generalized Verma module with highest weight λ to be the induced module
defined by: N(λ + ρ) = U(g) ⊗U(k⊕p+) Eλ. Finally we define what will be an
important hypothesis. We say that λ is quasi -dominant if (λ + ρ, α) > 0 for
all α ∈ ∆+ with α ⊥ Ψλ. Whenever λ is quasi-dominant then we find that
there are close connections between the character theory and Hilbert series of
L(λ+ρ) and the finite dimensional gλ-module Bgλ,λ+ρ−ρλ

. To simplify notation
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we set Bλ = Bgλ,λ+ρ−ρλ
. In the examples mentioned above where L is one of

the two components of the Weil representation then the resulting Bλ are the
two spin representations of so∗(2n).

Theorem 2. Suppose L = L(λ + ρ) is a unitarizable highest weight mod-
ule. Then L admits a resolution in terms of generalized Verma modules. Specif-
ically, for 1 ≤ i ≤ rλ = card(∆+

λ ∩ ∆+
n ), set Cλ

i =
∑

x∈Wk,i
λ

N((x(λ + ρ))+).
Then there is a resolution of L:

(1.1.5) 0 → Cλ
rλ

→ · · · → Cλ
1 → Cλ

0 → L → 0 .

The grading of Wk
λ plays an important role in this theorem. Note that

the grading Wk,i
λ is not the one inherited from Wk. We have two applications

of this theorem. The first will generalize the Littlewood Restriction Theorem
while the second in the quasi-dominant setting will give an identity relating
the Hilbert series of L and Bλ.

(1.2) Let L denote a unitarizable highest weight representation for g, one
of the classical Lie algebras su(p, q), sp(n, R) or so∗(2n). These Lie algebras
occur as part of the reductive dual pairs:

(i) Sp(k) × so∗(2n) acting on P(M2k×n),(1.2.1)

(ii) O(k) × sp(n) acting on P(Mk×n) and

(iii) U(k) × u(p, q) acting on P(Mk×n),

where n = p+q. Let S = P(M2k×n) or P(Mk×n) as in (1.2.1). We consider the
action of two dual pairs on S. The first is GL(m)×GL(n) with m = 2k or k and
the second is G1 ×G2, one of the two pairs (i) or (ii) in (1.2.1). In this setting
G1 is contained in GL(m) while GL(n) is the maximal compact subgroup of G2.
We can calculate the multiplicity of an irreducible G1 × GL(n) representation
in S in two ways. The resulting identity is the branching formula.

For any integer partition λ = (λ1 ≥ · · · ≥ λl) with at most l parts, let
F λ

(l) be the irreducible representation of GL(l) indexed in the usual way by
its highest weight. Similarly, for each nonnegative integer partition µ with at
most l parts, let V µ

(l) be the irreducible representation of Sp(k) with highest
weight µ. Let Eν

(l) denote the irreducible representation of O(l) associated to
the nonnegative integer partition ν with at most l parts and having Ferrers
diagram whose first two columns have lengths which sum to l or less. Our
conventions for O(l) follow [GW, Ch. 10].

The theory of dual pairs gives three decompositions of S: as a GL(m) ×
GL(n) representation,

(1.2.2) S =
∑

λ

F λ
(m) ⊗ F λ

(n),
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where the sum is over all nonnegative integer partitions having min{m, n} or
fewer parts; as a Sp(k) × so∗(2n) representation,

(1.2.3) S =
∑

µ

V µ
(k) ⊗ V (n)

µ ,

where the sum is over all nonnegative integer partitions µ having min{k, n} or
fewer parts; and as a O(k) × sp(n) representation,

(1.2.4) S =
∑

ν

Eν
(k) ⊗ E(n)

ν ,

where the sum is over all nonnegative integer partitions ν having min{k, n} or
fewer parts and having a Ferrers diagram whose first two columns sum to k or
less.

Several conventions regarding highest versus lowest weights and an affine
shift coming from the dual pair action of k introduce an involution on weights
as follows. For an n-tuple τ = (τ1, · · · , τn), define:

(1.2.5) τ � =

{
(−k

2 − τn, · · · ,−k
2 − τ1) for the (O(k), sp(n)) case,

(−k − τn, · · · ,−k − τ1) for the (Sp(k), so∗(2n)) case.

Note that (τ �)� = τ . Computing the multiplicity of V µ
(k) ⊗ F λ

(n) in S and
Eν

(k) ⊗ F λ
(n) in S we obtain:

Theorem 3. (i) The multiplicity of the Sp(k) representation V µ
(k) in F λ

(2k)

equals the multiplicity of F λ�

(n) in the unitarizable highest weight representation

V
(n)
µ of so∗(2n).

(ii) The multiplicity of the O(k) representation Eν
(k) in F λ

(k) equals the

multiplicity of F λ�

(n) in the unitarizable highest weight representation E
(n)
ν of

sp(n).

In the cases where the unitarizable highest weight representation is the full
generalized Verma module we call the parameter a generic point. A short cal-
culation shows that the Littlewood hypothesis implies inclusion in the generic
set. Then Theorem 3 implies Theorem 1.

For any partitions λ and µ with at most n parts, define constants:

(1.2.6) Cλ
µ =

∑
ξ

dim HomGL(n)(F
λ
(n), F

µ
(n) ⊗ F ξ

(n)),

where the sum is over all nonnegative integer partitions ξ with rows of even
length, and

(1.2.7) Dλ
µ =

∑
ξ

dim HomGL(n)(F
λ
(n), F

ν
(n) ⊗ F ξ

(n)),
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where the sum is over all nonnegative integer partitions ξ with columns of even
length. We refer to these constants as the Littlewood coefficients and note that
they can be computed by the Littlewood-Richardson rule.

For any k-integral ξ ∈ h∗ and s ∈ W, define:

(1.2.8) s � ξ = (s(ξ + ρ))+ − ρ , and s · ξ = (s � ξ�)� .

Theorems 2 and 3 combine to give:

Theorem 4. (i) Given nonnegative integer partitions σ and µ with at
most min(k, n) parts and with µ having a Ferrers diagram whose first two
columns sum to k or less, then

(1.2.9) dim HomO(k)(E
µ
(k), F

σ
(k)) =

∑
i

∑
s∈Wk,i

µ�

(−1)i Cσ
s·µ.

(ii) Given partitions σ and ν such that 	(σ) ≤ min(2k, n) and 	(ν) ≤
min(k, n),

(1.2.10) dim HomSp(k)(V
ν
(k), F

σ
(2k)) =

∑
i

∑
s∈Wk,i

ν�

(−1)i Dσ
s·ν .

An example is given at the end of Section 7 where the sum on the right reduces
to a difference of two Littlewood coefficients.

(1.3) For any Hermitian symmetric pair g, k and highest weight g-module
M , let M0 denote the k-submodule generated by any highest weight vector.
Write g = p− ⊕ k ⊕ p+, where p+ is spanned by the root spaces for positive
noncompact roots, and set Mj = p− ·Mj−1 for j > 0. Define the Hilbert series
HM (q) of M by:

(1.3.1) H(q) = HM (q) =
∑
j≥0

dim Mj qj .

Since the enveloping algebra of p− is Noetherian there are a unique integer d

and a unique polynomial RM (q) such that:

(1.3.2) HM (q) =
RM (q)
(1 − q)d

where RM (q) =
∑

0≤j≤e

aj qj .

In this setting the integer d is the Gelfand-Kirillov dimension ([BK], [V]),
d = GKdim(M) and RM (1) is called the Bernstein degree of M and denoted
Bdeg(M). This polynomial RM (q) is a q-analogue of the Bernstein degree.
For any gλ-dominant integral µ we let Bi

gλ,µ denote the grading of Bgλ,µ as a
gλ ∩ p−-module as in (1.3.1) with p− replaced by gλ ∩ p−. Define the Hilbert
series of Bgλ,µ by :

(1.3.3) P (q) = Pµ(q) =
∑

dim Bi
gλ,µ qi .
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Theorem 5. Suppose L = L(λ + ρ) is unitarizable and λ + ρ is quasi -
dominant. Set d equal to the Gelfand -Kirillov dimension of L as given by
Theorems 6 and 7. Then the Hilbert series of L is:

(1.3.4) HL(q) =
dim Eλ

dim Ekλ,λ

P (q)
(1 − q)d

.

Moreover the Bernstein degree of L is given by :

(1.3.5) Bdeg(L) =
dim Eλ

dim Ekλ,λ
dim Bλ.

Theorem 6. Suppose that L is a unitarizable highest weight representa-
tion occurring in one of the dual pairs settings (1.2.1).

(i) If g is so∗(2n), then the Gelfand -Kirillov dimension of L equals
k(2n − 2k − 1) for 1 ≤ k ≤ [n−2

2 ] and equals
(
n
2

)
otherwise.

(ii) If g is sp(n), then the Gelfand -Kirillov dimension of L equals k
2 (2n−k+1)

for 1 ≤ k ≤ n − 1 and equals
(
n+1

2

)
otherwise.

(iii) If g is u(p, q), then the Gelfand -Kirillov dimension of L equals k(n − k)
for 1 ≤ k ≤ min{p, q} and equals pq otherwise.

Note that in all cases the Gelfand-Kirillov dimension is dependent only on
the dual pair setting given by k and n and is independent of λ otherwise. It is
of course convenient to compute the Gelfand-Kirillov dimension of L directly
from the highest weight. Let β denote the maximal root of g.

Theorem 7. Set s = −2(λ,β)
(β,β) . Then for so∗(2n), the Gelfand -Kirillov

dimension of L is {
s
2(2n − s − 1) for 2 ≤ s ≤ 2[n

2 ] − 2(
n
2

)
otherwise;

for sp(n), the Gelfand -Kirillov dimension of L is{
s(2n − 2s + 1) for 1 ≤ 2s ≤ n(
n+1

2

)
otherwise;

and for u(p, q) with n = p + q, the Gelfand -Kirillov dimension of L is{
s(n − s) for 1 ≤ s ≤ min{p, q}
pq otherwise.

(1.4) In Section 6 we apply Theorems 5 and 6 to determine the Gelfand-
Kirillov dimension, Hilbert series and Bernstein degree of some well-known
representations. We begin with the Wallach representations [W]. Let r equal
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the split rank of g, let ζ be the fundamental weight of g which is orthogonal to
all the roots of k. Suppose g is isomorphic to either so∗(2n), sp(n) or su(p, q)
and set c = 2, 1

2 or 1 depending on which of the three cases we are in. For 1 ≤
j < r define the jth Wallach representation Wj to be the unitarizable highest
weight representation with highest weight −jcζ. For so∗(2n) the Hilbert series
for the first Wallach representation is:
(1.4.1)

HL(q) =
R(q)

(1 − q)2n−3
=

1
(1 − q)2n−3

1
n − 2

∑
0≤j≤n−3

(
n − 2

n − 3 − j

)(
n − 2

j

)
qj .

For sp(n) the Hilbert series for the first Wallach representation is:

(1.4.2) HL(q) =
1

(1 − q)n

∑
0≤t≤[ n

2
]

(
n

2t

)
qt.

This is the Hilbert series for the half of the Weil representation generated by a
one dimensional representation of k. The other part of the Weil representation
has Hilbert series:

(1.4.3) HL(q) =
1

(1 − q)n

∑
0≤t≤[ n

2
]

(
n

2t + 1

)
qt.

For U(p, q) the Hilbert series for the first Wallach representation is:

(1.4.4) HL(q) =
1

(1 − q)n−1

∑
0≤t<min{p,q}

(
p − 1

t

)(
q − 1

t

)
qt .

These examples are obtained from Theorem 5 by writing out respectively the
Hilbert series of the n − 3rd exterior power of the standard representation of
so∗(2n− 4), the two components of the spin representation of so∗(2n) and the
p − 1st fundamental representation of U(p − 1, q − 1). In these four examples
the Bernstein degrees are: 1

n−2

(
2n−4
n−3

)
, 2n−1, 2n−1 and

(
n−2
p−1

)
. In Section 6

we give several other families of representations with interesting combinatorial
expressions for the Hilbert series and Bernstein degrees including all high-
est weight representations with singular infinitesimal character and minimal
Gelfand-Kirillov dimension.

Call a highest weight representation positive if all the nonzero coeffi-
cients of the polynomial RL(q) in (1.3.2) are positive. All Cohen-Macaulay
S(p−)-modules including the Wallach representations are positive but many
unitary highest weight representations are not. From this perspective Theorem
5 introduces a large class of positive representations, those with quasi-dominant
highest weight.

The representation theory of unitarizable highest weight modules was
studied from several different points of view. Classifications were given in
[EHW] and [J]. Studies of the cohomology and character theory can be found
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in [A], [C], [ES], [ES2] and [E]. Both authors thank Professor Nolan Wallach
for his interest in this project as well as several critical suggestions. A form of
Theorem 3 and its connection to the Littlewood Restriction Theorem are two
of the results in the second author’s thesis which was directed by Professor
Wallach.

Upon completion of this article we have found several references related
to the Littlewood branching rules. The earliest (1951) is by M. J. Newell [N]
which describes his modification rules to extend the Littlewood branching rules
to all parameters. A more recent article by S. Sundaram [S] generalizes the
Littlewood branching to all parameters in the symplectic group case. In both
articles the results take a very different form from what is presented here.

During the time this announcement has been refereed, there has been
some related research which has appeared [NOTYK]. In this work the authors
begin with a highest weight module L and then consider the associated variety
V(L) as defined by Vogan. This variety is the union of KC-orbits and equals
the closure of a single orbit. In [NOTYK] the Gelfand-Kirillov dimension and
the Bernstein degree of L are recovered from the corresponding objects for
the variety V(L). As an example of their technique they obtain the Gelfand-
Kirillov dimension and the degree of the Wallach representations ([NOTYK,
pp. 149–150]). Our results in this setting obtain these two invariants as well
as the full Hilbert series since all the highest weights are quasi-dominant. The
results of these two very different approaches have substantial overlap although
neither subsumes the other.

Most of the results presented in this article were announced in [EW].

2. Unitarizable highest weight modules and standard notation

(2.1) Here we set down some notation used throughout the article and
state some well-known theorems in the precise forms needed later. Let (G, K)
be an irreducible Hermitian symmetric pair with real (resp. complexified) Lie
algebras go and ko (resp. g and k) and Cartan involution θ. Let all the associated
notation be as in (1.1). Let b be the Borel subalgebra containing h and the
root spaces of ∆+.

(2.2) For any ∆k dominant integral weight λ let Fλ denote the irreducible
finite dimensional representation of k with highest weight λ. Define the gener-
alized Verma modules by induction. Let p+ act on Fλ by zero and then induce
up from the enveloping algebra U(q) to U(g):

(2.2.1) N(λ + ρ) := N(Fλ) := U(g) ⊗U(q) Fλ .

We call N(λ+ρ) the generalized Verma module with highest weight λ. Let
L(λ + ρ) denote the unique irreducible quotient of N(λ + ρ). Since g = q⊕ p−

and p− is abelian we can identify N(λ + ρ) with S(p−) ⊗ Fλ, where the S( )
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denotes the symmetric algebra. Therefore the natural grading of the symmetric
algebra induces a grading N(λ + ρ)i of N(λ + ρ). Different levels in the grade
correspond to different eigenvalues of adz0 and so any k-submodule of N(λ+ρ)
will inherit a grading by restriction. Suppose that N(λ + ρ) is reducible with
maximal submodule M . Then M inherits a grading and we define the level of
reduction of N(λ + ρ) to be the minimal j for which M j �= 0.

We say that L(λ+ρ) is unitarizable if there exists a unitary representation
of G whose U(g) module of K-finite vectors is equivalent as a g-module to
L(λ+ρ). The unitarizable highest weight modules are central to all that we do
here so we now describe much that is known about this set. The classification
we follow is from [EHW]. Let λ be any k-dominant integral weight in h∗. Let
β denote the unique maximal root. Choose ζ ∈ h∗ orthogonal to the compact
roots and with (ζ, β∨) = 1. Consider the lines L(λ) = {λ + zζ | z ∈ R}, for
k-dominant integral λ ∈ h∗. A normalization is chosen for each line so that
z = 0 corresponds to the unique point with highest weight module a limit of
discrete series module. When λ is such we write λ0 in place of λ and the line
is parametrized in the form {λ0 + zζ|z ∈ R}. Then (λ0 + ρ, β) = 0 and the set
of values z with λ0 + zζ unitarizable takes the form:
(2.2.2)

•
A

• •... ... • •
B

Let Λ denote the highest weights of all the unitarizable highest weight modules.
Let Λr denote the subset of weights λ for which N(λ+ ρ) is reducible. We call
these the unitary reduction points. These points correspond to the elements on
the line (2.2.2) which are the equally spaced dots from A to B. The constants
A and B are both positive.

The characteristics of the line and these equally spaced points are deter-
mined by two real root systems Q(λ) and R(λ) associated to each line L(λ).
As defined in [EHW] Q(λ) ⊂ R(λ) and equality holds in the equal root length
cases. In all cases the number of reduction points on the line equals the split
rank of Q(λ) and the level of reduction is one at the rightmost dot and it
increases by one each step until the level equals the split rank of Q(λ) at the
leftmost dot. For any reduction point λ let l(λ) denote the level of reduction
of that point and define the triple a(λ) = (Q(λ), R(λ), l(λ)). Let A denote the
set of all such triples as λ ranges over the set of reduction points. For a ∈ A,
let Λa denote the set of all λ with a(λ) = a.

(2.3) Set L = L(λ + ρ), N = N(λ + ρ) and assume that L is unitarizable
and N is reducible. Consider the short exact sequence 0 → M → N → L → 0.
From [DES] and [EJ] the subspace M has several canonical characterizations.

Let γ1 < · · · < γl be Harish-Chandra’s system of strongly orthogonal
roots for ∆+

n . That is, let γ1 equal the unique simple noncompact root and let
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Ψ1 = {γ ∈ ∆+
n − {γ1}| γ ± γ1 /∈ ∆}. If Ψ1 = ∅ then l = 1. Otherwise, let γ2

be the smallest element of Ψ1 and set Ψ2 = {γ ∈ Ψ1 − {γ2}| γ ± γ2 /∈ Φ}. By
induction if γj and Ψj−1 have been defined set Ψj = {γ ∈ Ψj−1|γ±γi is not zero
or a root for all i, 1 ≤ i ≤ j}. Let γj+1 be any minimal element in Ψj so long as
this set is non empty. Define weights µi, 1 ≤ i ≤ l, by µi = −(γ1 +γ2 + · · ·+γi).
Set nk = k∩ [b, b]. Let Fi denote the k submodule of S(p−) with highest weight
µi. Suppose that ξ and δ are k-dominant integral then Fξ ⊗ Fδ contains, with
multiplicity one, the irreducible module with extreme weight ξ − δ. We call
this component of the tensor product the PRV component.

Proposition [EJ], [DES]. Suppose L is unitarizable and not isomorphic
to N and let d be the level of reduction of L. Then M is isomorphic to a
quotient of the generalized Verma module N(Fν) with Fν equal to the PRV
component of Fd ⊗ Fλ.

3. A BGG type resolution for unitarizable highest weight modules

(3.1) Each finite dimensional representation of a semisimple Lie algebra
has a resolution in terms of sums of Verma modules [BGG]. Lepowski [L] gives
a refinement resolving in terms of generalized Verma modules associated to
a parabolic subalgebra. In this section we give a very similar resolution for
unitarizable highest weight representations. Define subsets of the Weyl group
by W i = {x ∈ W|card(x∆+ ∩ −∆+) = i} and set Wk,i = W i ∩Wk.

Theorem [L]. Suppose λ is g-dominant integral and E is the finite dimen-
sional g-module L(λ+ρ). For 0 ≤ i ≤ r = |∆+

n |, set Ci =
∑

x∈Wk,i N(x(λ+ρ)).
Then there exists a resolution of E:

(3.1.1) 0 → Cr → · · · → C1 → C0 → E → 0 .

(3.2) We next consider the case where E is replaced by the Weil repre-
sentation. Suppose that g is the symplectic Lie algebra sp(n). Then the Weil
representation decomposes as the sum of two irreducible highest weight repre-
sentations. Normalizing parameters as in [EHW] set ζ equal to the functional
on h orthogonal to all the compact roots and with 2(β,ζ)

(β,β) = 1. Here ζ is the
fundamental weight corresponding to the long root in the Dynkin diagram
and is usually denoted ωn. Let ωn−1 be the adjacent fundamental weight.
Then the two components of the Weil representation are L′ = L(−1

2ζ + ρ) and
L′′ = L(−3

2ζ + ωn−1 + ρ). Expressed in the usual Euclidean coordinates the
highest weights are (−1

2 ,−1
2 , · · ·− 1

2 ,−1
2) and (−1

2 ,−1
2 , · · ·− 1

2 ,−3
2) respectively.

Theorem. Let ∆+
s denote the short roots in ∆+. Let U denote the index-

two subgroup of W which corresponds to permutations and even numbers of
sign changes and set Uk = U ∩Wk and Uk,i = {x ∈ Uk|card(x∆+

s ∩−∆+
s ) = i}.

For 1 ≤ i ≤ r◦ = ∆+
n ∩ ∆+

s , define C′
i =

∑
x∈Uk,i N(x(−1

2ζ + ρ)) and C′′
i =
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x∈Uk,i N(x(−3

2ζ + ωn−1 + ρ)). Then there are resolutions of the components
of the Weil representation,

(3.2.1) 0 → C′
r◦ → · · · → C′

1 → C′
0 → L′ → 0 ,

and

(3.2.2) 0 → C′′
r◦ → · · · → C′′

1 → C′′
0 → L′′ → 0 .

Note that the grading Uk,i is not the one inherited from Wk,i; in general
Uk,i �= U ∩Wk,i.

Proof. The proof begins with a review of the proof of Theorem 3.1[L].
The canonical imbeddings of the Verma submodules into Verma modules are
used to define what are called the standard maps between generalized Verma
modules. Of course in some cases some of these induced maps can be zero.
In any case these maps can be used to construct a complex with terms as in
(3.1.1). Here U is the Weyl group of type Dn and the grading Uk,i comes from
that root system. Therefore Lepowski’s argument applies by switching root
systems from Cn to Dn. To prove that this complex is a resolution Lepowski
relies on the known Kostant p−-cohomology formulas for the finite module E.
This same argument gives the proof in this setting when we replace the Kostant
results with the cohomology formulas in the next theorem.

(3.3) Theorem [E, Th. 2.2]. Suppose λ equals either λ′ or λ′′ as above
and L = L(λ + ρ). Then, for i ∈ N, there exists the cohomology formula of
k-modules:

(3.3.1) H i(p+, L) ∼= ⊕x∈Uk,i Fx(λ+ρ)−ρ .

(3.4) We now turn to the corresponding results in the general case.

Proof of Theorem 2. We have two proofs of this result. The first proof
begins with the standard maps, as in the proof of Theorem 3.2, and uses
the constants associated with the root system ∆λ to define a complex as in
(3.1.1). Then the p+-cohomology formulas [E, Th. 2.2] can be used in place
of the Kostant formulas in the Lepowski [L] argument. This knowledge of the
p+-cohomology implies that the complex is in fact exact, which completes the
first proof.

The second is a consequence of the proof of the p+-cohomology formulas
in [E]. In that article it is proved that every unitarizable highest weight module
L was an element of a category of highest weight modules which was equivalent
to another category of highest weight modules and this equivalence carried L

to either the trivial representation or one of the two components of the Weil
representation in the image category. Therefore the general result follows from
Theorems 3.1 and 3.2 since this equivalence carries generalized Verma modules
to generalized Verma modules.
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4. Hilbert series for unitarizable highest weight modules

(4.1) For any highest weight module A define the character of A to be the
formal sum: char(A) =

∑
ξ dim(Aξ)eξ, where the subscript denotes the weight

subspace. For any weight λ and Weyl group element x, define:

(4.1.1) x � λ = (x(λ + ρ))+ − ρ .

Theorem. Suppose L = L(λ+ρ) is a unitarizable highest weight module.
Then

(4.1.2) char(L) =
1∏

α∈∆+
n
(1 − e−α)

∑
1≤i≤rλ

x∈Wk,i
λ

(−1)i char Fx�λ .

Proof. This result is an immediate consequence of the resolution given in
Theorem 2.

Since this sum can be rather complicated we now look at a courser invari-
ant than the character. This is obtained by using the eigenspaces for the action
of the central element zo of k. In our setting the 1, 0 and −1 eigenspaces under
the adjoint action are p+, k and p− respectively. For each Weyl group element
x let gx denote the difference of eigenvalues defined: gx = λ(z0)− (x � λ)(z0).
Note that since z0 is k central, gx also equals (λ + ρ)(z0)− (x(λ + ρ))(z0). Let
S = U(p−). Then S is the symmetric algebra of p− and any irreducible highest
weight module is finitely generated as an S module. So L has a Hilbert series.

(4.1.3) HL(q) =
1

(1 − q)dim p+

∑
1≤ι≤rλ

x∈Wk,i
λ

(−1)i dim Fx�λ qgx .

Define the degree of L, deg(L), to be the order of the pole at 1 in the rational
expression (4.1.3). Then we have:

(4.1.4) HL(q) =
1

(1 − q)deg(L)
R(q) with R(q) =

∑
ai qi

which we refer to as the reduced form of the Hilbert series. In this setting the
degree of L is also equal to the Gelfand-Kirillov dimension of L, GKdim(L).
The set Wk,rλ contains one element, say {x◦} and so by comparison of (4.1.3)
and (4.1.4), the degree of the polynomial R(q) equals gx◦−dim p++GKdim(L).

As an illustration of an especially simple case where these formulas lead
to something interesting, suppose that λ = 0. Then deg(L) = 0 and HL = 1.
This gives:

Lemma. For each of the Hermitian symmetric settings and for 0 ≤ i ≤
r = dim(p+),

(4.1.5)
∑

x∈Wk,i

dim Fx(ρ)−ρ =
(

r

i

)
.
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Proof. Set H(0) = 1 in (4.1.3) and note that in this case gx = i.

(4.2) For the remainder of this section we assume that g is of type so∗(2n),
sp(n, R) or u(p, q). These Lie algebras occur as part of the dual pair setting:

Sp(k) × so∗(2n) acting on P(M2k×n),(4.2.1)

O(k) × sp(n) acting on P(Mk×n) and

U(k) × u(p, q) acting on P(Mk×n),

where n = p + q. In these cases the element z0 equals (1
2 , 1

2 , . . . , 1
2) in the first

two cases and ( q
n , . . . , q

n ; −p
n , . . . , −p

n ) for u(p, q) where a p-tuple precedes the
semi-colon and a q-tuple follows it.

The proof of Theorem 6 will rely on the following lemma regarding the
decomposition of tensor products.

(4.3) We continue with the three cases in (4.2.1). Let E denote the ir-
reducible finite dimensional g-module with highest weight ω1, the first fun-
damental weight. Here ω1 = (1, 0, . . . , 0) in the first two cases and ω1 =
(n−1

n , −1
n , . . . , −1

n ) for u(p, q). So the z0-eigenvalues of E are ±1
2 in the first

two cases and q
n and −p

n in the u(p, q) case. Then E splits as a direct sum of
two irreducible k-modules E = E+ ⊕ E− corresponding to the z0-eigenvalues
±1

2 in the first two cases and q
n and −p

n in the third. Set b+ = 1
2 or q

n and
b− = −1

2 or −p
n respectively in the first two and third cases.

Lemma. For any k-dominant integral weight ν, let Fν denote the irre-
ducible finite dimensional k-module with highest weight ν. Then as k-modules
E ⊗ Fν =

∑
γ Fν+γ , where the sum is over all weights γ of E for which ν + γ

is k-dominant.

Proof. The Weyl character formula gives:

char(Fν) = (1/D)
∑

x∈Wk

ε(x) ex(ν+ρ).

From this we have: char(E ⊗ Fν) = (1/D)
∑

γ

∑
x∈Wk

ε(x) ex(ν+γ+ρ), where
the sum is over the weights γ of E. A calculation shows that ν + γ + ρ is
always dominant and so the only cancellation which can and will occur in this
expression is for those γ for which ν + γ + ρ is singular. This is precisely the
set for which ν + γ is not k-dominant. The Littlewood-Richardson rule gives
an alternate proof.

(4.4) Lemma. Let γ1 ≥ γ2 ≥ · · · ≥ γr be an enumeration of all the weights
γ of E for which ν + γ is dominant. Then there is a filtration E ⊗ N(Fν) =
B1 ⊃ B2 ⊃ · · · ⊃ Br+1 = 0 where Bi/Bi+1

∼= N(Fν+γi+ρ) , 1 ≤ i ≤ r.

Proof. Using the preceding lemma choose a b stable filtration of E ⊗ Fν

and then induce up from U(b) to U(g).
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(4.5) Lemma. Suppose that L = L(λ+ρ) is unitarizable. Let γ be a weight
of E and assume that λ + γ is k-dominant.

(i) Suppose the level of reduction of L is not one. Then E ⊗ L contains
L(λ + γ + ρ).

(ii) Suppose that L has level of reduction one and choose δ ∈ ∆n so that
λ − δ is the highest weight of the PRV component in p− ⊗ Fλ. Assume
that δ �= −γ+γ′ for any weight γ′ of E. Then E⊗L contains L(λ+γ+ρ).

Proof. From Proposition 2.3, we have a right exact sequence N(ν + ρ) →
N(λ + ρ) → L → 0. Tensoring with E we obtain the right exact sequence:

(4.5.1) E ⊗ N(ν + ρ) → E ⊗ N(λ + ρ) → E ⊗ L → 0 .

Therefore using (4.4), to prove that L(λ+γ+ρ) does occur in E⊗L we merely
check that it does not occur in E ⊗ N(ν + ρ).

First suppose that L has a level of reduction l0 not equal to one. If the
level is zero then L = N(λ + ρ) and (4.4) implies the result. So assume the
level is greater than one. Let a denote the eigenvalue of z0 on Fλ. Then z0 acts
by a+ b+ or a+ b− on Fλ+γ . But the eigenvalues of z0 acting on E ⊗N(ν + ρ)
are less than or equal to a− l0 + b+. In all cases b+ − b− = 1 and so these sets
of eigenvalues do not intersect for l0 > 1. So L(λ + γ + ρ) cannot occur as a
subquotient of E ⊗ N(ν + ρ). This proves (i).

Now suppose the level of reduction is one and E ⊗ L does not contain
L(λ + γ + ρ). Then ν = λ − δ and we know L(λ + γ + ρ) must occur in
E⊗N(ν +ρ). By the preceding argument about eigenvalues of z0, there exists
γ′ a weight of E+ with λ− δ + γ′ = λ+ γ. This gives δ = γ′− γ and completes
the proof.

Proof of Theorem 6. It is most convenient to proceed case by case.

(4.6) The so∗(2n) case. This is the easiest case both notationally and
theoretically so we will begin here. Suppose that L = L(λ + ρ) is a highest
weight representation occurring in the dual pair setting (4.2.1) for Sp(k) ×
so∗(2n). Set r = min{k, n}. Then from [KV], [EHW] or [DES], in Euclidean
coordinates, λ has the form:

(4.6.1) λ = (−k,−k, . . . ,−k,−k−wr, . . . ,−k−w1) with w1 ≥ · · · ≥ wr ≥ 0 ,

(4.6.2) λ + ρ = (n − 1 − k, . . . ,−k + r,−k + r − 1 − wr, . . . ,−k − w1) .

Let w = (w1, . . . , wr) and let λ(w) denote the expression in (4.6.1). Choose t

maximal with wt �= 0 and set x = n − t. Then organizing into segments, we
have:

(4.6.3) λ = (−k, . . . ,−k︸ ︷︷ ︸
x

,−k − wt, . . . ,−k − w1) .
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In the general case, for k ≥ n−1, N(λ+ρ) is irreducible and the lemma holds.
So we may assume that 1 ≤ k ≤ n − 2 and thus the first two coordinates
of λ are equal. The root system Q(λ) associated to λ in [EHW] is either
su(1, q), 1 ≤ q ≤ n − 1, or so∗(2p), 3 ≤ p ≤ n. First suppose that Q(λ) ∼=
su(1, q). Then since the first two coordinates of λ are equal, Q(λ) is a root
system of rank either one or three with the set of simple roots either {−β} or
{−β, e2 − e3, e1 − e2} where β = e1 + e2 is the maximal root. If we are at a
reduction point in this case then the level of reduction is one, q = 1 or 3 and

(4.6.4) λ + ρ = (1, 0, −̂1, · · · ) or λ + ρ = (2, 1, 0, −̂1, · · · ) .

Alternatively suppose that λ has level of reduction one and Q(λ) ∼= so∗(2p), 3 ≤
p ≤ n. From Section 9 of [EHW],

(4.6.5) λ + ρ = (p − 1, p − 2. · · · , 1, 0, −̂1, · · · ) ,

where the superscript ̂ denotes omission of that term.
Recall from (2.2.2) the line L(λ) and the parametrization λ = λ0 + zζ for

some real number z. Set d(λ) = B − z with B as in (2.2.2). So d(λ) is the
distance from λ (identified with z) to the last reduction point B. From (4.6.5)
and (4.6.4) and the fact that the distance is zero when the level of reduction
is one, we conclude: x = p and

(4.6.6) λ + ρ + d(λ)ζ = (p − 1, p − 2, . . . , 1, 0, −̂1, · · · ) .

So for all λ in the dual pair setting Sp(k)× so∗(2n) and for all k, 1 ≤ k ≤ n−2,
we solve for d(λ) to obtain:

(4.6.7) d(λ) = 2k − 2n + 2x.

Lemma. The Gelfand -Kirillov dimension of L equals k(2n − 2k − 1), for
1 ≤ k < [n

2 ] and equals
(
n
2

)
otherwise. So in all cases it is independent of w .

Proof. We proceed by induction on |w| =
∑

wi. First if this norm is zero
then λ has all coordinates −k and so this representation is the kth point on
the line containing the trivial module of g, a so-called Wallach representation
[W]. For 1 ≤ k < [n

2 ], this module is the coordinate ring for the variety of
skew symmetric n × n matrices of rank less than or equal to 2k [DES]. Its
dimension is k(2n − 2k − 1). For k ≥ [n

2 ], L is not a reduction point and the
Gelfand-Kirillov dimension of L = dim p+ =

(
n
2

)
. This proves the result when

w = 0.
Now suppose w �= 0. If k ≥ n − 1, then N(λ + ρ) is irreducible and the

lemma holds. So assume 1 ≤ k ≤ n− 2. Suppose L has level of reduction one.
Then from the formulas (4.6.5) and (4.6.6) the leading n−t coordinates form a
consecutive string of descending integers which include 0 as the xth coordinate
and −1 does not occur. Moreover in these cases the root δ in (4.5) equals
ex−1 + ex. Set γ = ex+1 and let w′ = (w1, . . . , wt−1, wt − 1) and λ′ = λ(w′).
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Let x′ correspond to x when λ is replaced by λ′. If wt ≥ 2 then x = x′ and
d(λ′) = d(λ) = 0. Then the pairs λ, γ and λ′,−γ both satisfy the hypotheses
of (4.5)(ii). Here the level of reduction is one and the δ are equal for both λ

and λ′. If wt = 1 then x′ = x + 1 and so d(λ′) = d(λ) + 2 = 2 and λ′ does
not have level of reduction one. We conclude that for all wt, L(λ′) occurs in
E ⊗ L(λ) and L(λ) occurs in E ⊗ L(λ′).

Next suppose λ has level of reduction l ≥ 2. Then d(λ) ≥ 1. Let w′ and
γ be as above. Then x′ = x or x + 1 and so d(λ′) ≥ d(λ) �= 0. From this we
conclude that L(λ′+ρ) has level of reduction not equal to one. Thus by Lemma
4.5(i) we obtain the same inclusions as above: L(λ′) occurs in E ⊗ L(λ) and
L(λ) occurs in E⊗L(λ′). By the induction hypothesis the lemma holds for λ′.
Then the two inclusions in the tensor products imply that the Gelfand-Kirillov
dimension of L(λ) equals the Gelfand-Kirillov dimension of L(λ′). This implies
they all have the same Gelfand-Kirillov dimension and completes the proof for
the so∗(2n) case.

(4.7) The sp(n) case. Suppose that L = L(λ + ρ) is a highest weight
representation occurring in the dual pair setting (4.2.1) for sp(n). For some
t-tuple µ = (µ1, . . . , µt) with weakly decreasing coordinates, t = min{k, n},
s = |{i|µi > 0}| and j = |{i|µi > 1}|, we have: s + j ≤ k and

(4.7.1) λ =
(
−k

2
,−k

2
, . . . ,−k

2
,−k

2
− µt, . . . ,−k

2
− µ1

)
.

Organizing into segments, we have:
(4.7.2)

λ =
(
−k

2
, . . . ,−k

2︸ ︷︷ ︸
x

,−k

2
− 1, . . . ,−k

2
− 1︸ ︷︷ ︸

y

,−k

2
− 1 − bj , . . . ,−k

2
− 1 − b1︸ ︷︷ ︸

j

)
,

with b1 ≥ b2 ≥ · · · ≥ bj > 0, x + y + j = n, x ≥ n − k + j, y ≤ k − 2j. We
say that λ is of the first type if y = 0 and otherwise of the second type. To
express the dependence on µ we write λ(µ) in place of λ when necessary.

Now suppose that L has level of reduction one. From [EHW] we obtain
the form: for some integers 1 ≤ q ≤ r ≤ n,

(4.7.3) λ + ρ =

(
q + r

2
,
q + r

2
− 1, . . . ,

−̂q + r

2
, . . . ,

q − r

2
,

̂q − r

2
− 1 · · ·

)
,

with x = q and x + y = r. Here the superscript ̂ designates omission of that
term in the segment. Recall from (2.2.2) the line L(λ) and the parametrization
λ = λ0 + zζ for some real number z. Set d(λ) = B − z with B as in (2.2.2).
Then as in (4.6.7),

(4.7.4) λ + ρ + d(λ)ζ =
(

q + r

2
, · · ·

)
.
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Now, solving for d(λ) we have, for all λ,

(4.7.5) d(λ) =
1
2
(k − 2n + 2x + y).

From (4.7.3) and [EHW], we obtain:

Lemma. Suppose that L has level of reduction one and choose δ ∈ ∆n

so that λ − δ is the highest weight of the PRV component in p− ⊗ Fλ. Then
δ = eq + er. In both cases the nonzero coordinates of δ are disjoint from the
coordinates of λ where the bi, 1 ≤ i ≤ j, occur.

(4.8) Suppose λ and µ are given as in (4.7.1). Assume for some integer p

that µp > µp+1 if 1 ≤ p < t or µp > 0 if p = t. Set µ′ = (µ1, . . . , µp−1, . . . , µt).
Let λ = λ(µ) and λ′ = λ(µ′).

Lemma. Assume t �= n. Let x, y, j be the indices given in (4.7.2) for λ and
let x′, y′, j′ be the indices given in (4.7.2) for λ′. Then x′ ≥ x , x′ + y′ ≥ x + y

and d(λ) ≤ d(λ′). Moreover if both λ and λ′ are reduction points then the level
of reduction of L(λ′) minus the level of reduction of L(λ) equals 2(x′−x)+y′−y.
In particular the levels of reduction at λ and λ′ either stay the same or increase
depending as the indices x and x + y either stay the same or increase.

Proof. The inequalities on x and x+y are clear. These inequalities and the
formula (4.7.5) imply the inequality for d(λ). Let l denote the level of reduction
for L. The last reduction point on the line (2.2.2) has level of reduction one
and the level increases by one for each unitarizable representation until we
reach the maximum (for that line) at the first reduction point. So when λ is a
reduction point then l = 2d(λ) + 1 which implies the result.

(4.9) Lemma. The Gelfand -Kirillov dimension of L equals k
2 (2n − k + 1)

for 1 ≤ k ≤ n and equals
(
n+1

2

)
otherwise.

Proof. We proceed by induction on |µ| as in the proof of (4.6). First
suppose that λ is of the first type. If µ is zero then λ is on the line containing
the trivial representation and for 1 ≤ k ≤ n, L is realized on the coordinate
ring of the variety of symmetric n×n matrices of rank less than or equal to k.
The dimension of this variety is k

2 (2n− k + 1). For k ≥ n, λ is not a reduction
point and the Gelfand-Kirillov dimension of L equals

(
n+1

2

)
. This proves the

formula in this case.
Now suppose λ is of the first type and µ �= 0. Choose the maximal index p

with µp �= 0 and let γ be the weight of E whose coordinate expression is all zeros
except +1 as the n + 1 − pth coordinate. Let µ′ = (µ1, . . . , µp − 1, . . . , µr).
Now suppose that L has level of reduction one. Then with notation as in
Lemma 4.7, δ = 2ex and x < n + 1 − p. From Lemmas 4.5(ii) and 4.7 we
conclude that L(λ′) occurs in E ⊗ L(λ). Using Lemma 4.8 we find that if the
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indices x′, y′, j′ for λ′ are not equal to x, y, j, then the level of reduction for
L′ is greater than one. So if λ′ has level of reduction one, then x, y, j equals
x′, y′, j′ and with the argument as above L(λ) occurs in E ⊗ L(λ′). On the
other hand if these indices are not equal then the level of reduction of λ′ is
greater than one and so by (4.5)(i) we get the same inclusion: L(λ) occurs in
E ⊗ L(λ′). In turn this implies they have the same degree. By the induction
hypothesis the lemma holds for λ′ = λ(µ′) and this completes the proof for λ

of type one.
Next suppose that λ is of the second type. By essentially the same tech-

nique as above we prove that the degree is independent of the bi chosen in
(4.7.2). Suppose the bi are not all 0 and choose the maximal index p with
bp �= 0 and let γ be the weight of E whose coordinate expression is all zeros
except +1 as the n+1−pth coordinate. Let µ′ = (µ1, . . . , µp−1, . . . , µr). By
the induction hypothesis the lemma holds for λ′ = λ(µ′). As above Lemmas
4.5, 4.7 and 4.8 complete the argument proving L(λ′) occurs in E ⊗ L(λ) and
L(λ) occurs in E ⊗ L(λ′). This proves the independence of the bi.

To complete the proof we determine the degree formula when λ is of the
second type and bi = 0, 1 ≤ i ≤ j. In this case λ has indices x, y, j with j = 0
and y = n − x.

(4.9.1) λ =
(
−k

2
, . . . ,−k

2︸ ︷︷ ︸
x

,−k

2
− 1, . . . ,−k

2
− 1︸ ︷︷ ︸

n−x

)
.

Set p = x + 1 and let γ be the weight of E whose coordinate expression is
all zeros except +1 as the pth coordinate. Let µ′ = (µ1, . . . , µp − 1, . . . , µr).
Suppose L has level of reduction one. Then from (4.7.3), we have:

(4.9.2) λ + ρ =
( x + n

2
,
x + n

2
− 1, · · ·︸ ︷︷ ︸

x

,
−̂x + n

2
, . . . ,

x − n

2

)
,

where as before superscript ̂ designates omission of the term. From Lemma
4.7, δ = ex + en, γ = ep and so δ �= −γ + γ′ and thus by Lemma 4.5(ii), L(λ′)
occurs in E ⊗ L(λ). By Lemma 4.8, d(λ′) is greater than zero and so L(λ′)
does not have level of reduction one. So L(λ) occurs in E⊗L(λ′). By applying
this shift λ to λ′ successively n − x times we obtain the parameter:

(4.9.3) λ′′ =
(
−k

2
,−k

2
, . . . ,−k

2

)
.

Each shift of the type λ to λ′ increases the value of the function d() by one.
So we continue to get both inclusions in tensor products and thus the Gelfand-
Kirillov dimension of L equals the Gelfand-Kirillov dimension of L(λ′′). The
case of λ′′ was handled above. The proof is complete for level of reduction
one. If the level of reduction of L is not one then d(λ′) ≥ d(λ) ≥ 1

2 and the
argument above applies with (4.5)(i) replacing (4.5)(ii). This proves (4.9).
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(4.10) The u(p, q) case. Suppose that L = L(λ + ρ) occurs in the
dual pair U(k) × u(p, q) setting (4.2.1) acting on polynomials in nk variables
with n = p + q. Choose r, s with 0 ≤ r ≤ p − 1, 0 ≤ s ≤ q − 1 and let
w = (w1, . . . , wr) and u = (u1, . . . , us) be weakly decreasing sequences of
nonnegative integers with wr �= 0 and us �= 0. Then in Euclidean coordinates,
for some integers l ≥ 0 and m ≥ 0,
(4.10.1)
λ = (−k−l, . . . ,−k−l,−k−l−wr, . . . ,−k−l−w1;u1+m, . . . , us+m, m, . . . , m) ,

where k satisfies one of the four inequalities: k ≥ r + s if l = m = 0; k ≥ p+ s

if l �= 0 and m = 0; k ≥ r + q if l = 0 and m �= 0; and finally k ≥ p + q if
l �= 0 and m �= 0. In (4.10.1) the semicolon designates the separation of the
n-tuple into a p-tuple and q-tuple. We write λ(w, u) in place of λ if we need to
emphasize the dependence on w and u. Organizing into segments, we have:

λ = (−k − l, . . . ,−k − l︸ ︷︷ ︸
x

,−k − l − wr, . . .(4.10.2)

. . . ,−k − l − w1;u1 + m, . . . , us + m, m, . . . , m︸ ︷︷ ︸
y

).

Now suppose in addition that L has level of reduction one. Then from [EHW]
with c = −n+1

2 + y + m,
(4.10.3)

λ + ρ = (x + c, . . . , 1 + c︸ ︷︷ ︸
x

, ĉ, · · · ; · · · , 1̂ + c, c,−1 + c, . . . ,−y + 1 + c︸ ︷︷ ︸
y

) .

Comparing these last two formula, we see that if λ has level of reduction one
then k = n − l − m − x − y.

Recall from (2.2.2) the line L(λ) and the parametrization λ = λ0 + zζ for
some real number z. As was done above in the other two cases set d(λ) = B−z

with B as in (2.2.2). From (4.10.3) we obtain:

(4.10.4) λ + ρ + d(λ)ζ = (x + c, . . . ,−y + 1 + c) .

Then solving for d(λ), for all λ,

(4.10.5) d(λ) = k + l + m − n + x + y.

Turning to the proof of Theorem 6 we begin by eliminating some of the
easy cases. First note that the first reduction point on the line (2.2.2) occurs
at d(λ) = min{x, y}−1. Suppose m = 0 and l ≥ 1. Then k ≥ p+s = p+ q−y

and d(λ) = k + l − n + x + y ≥ l + x > x ≥ min{x, y}. Suppose m ≥ 1 and
l = 0. Then k ≥ r + q = p + q − x and d(λ) = k + m − n + x + y ≥ m + y >

y ≥ min{x, y}. Finally suppose m ≥ 1 and l ≥ 1. Then k ≥ p + q = n and
d(λ) = k + l + m − n + x + y ≥ l + m + x + y > min{x, y}. Therefore in all
three cases N(λ + ρ) is irreducible. So if λ is a reduction point then we may
assume that both m and l are zero.
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Lemma. Suppose L is unitarizable with level of reduction one. Choose
δ ∈ ∆n so that λ − δ is the highest weight of the PRV component in p− ⊗ Fλ.
Then δ = ex − en+1−y. In particular the coordinates of δ are disjoint from the
coordinates where the wi and ui occur.

Proof. The properties of δ follow from (4.10.3).

(4.11) Choose integers a, 1 ≤ a ≤ r, and b, 1 ≤ b ≤ s, and assume either
wa > wa+1 if 1 ≤ a < r; or wa > 0 if a = r; and either ub > ub+1 if
1 ≤ b < s; or ub > 0 if b = s. Set w′ = (w1, . . . , wa − 1, . . . , wr), u′ =
(u1, . . . , ub − 1, . . . , us), λ′ = λ(w′, u) and λ′′ = λ(w, u′). Let x′, y′ and δ′

(resp. x′′, y′′ and δ′′ ) denote the indices x, y in (4.10.2) and the weight δ in
(4.10) obtained when λ is replaced by λ′ (resp. λ′′).

Lemma. With notation as above, x′ ≥ x = x′′ , y′′ ≥ y = y′. If λ does
not have level of reduction one then both λ′ and λ′′ also do not have level of
reduction one. If both λ and λ′ (resp. λ′′) have level of reduction one then
x = x′ and δ = δ′ (resp. y = y′′ and δ = δ′′) .

Proof. The inequalities on x and y are clear. Since λ has level of reduction
one if and only if d(λ) = 0, the rest of the lemma follows from the formula for
d(∗) in (4.10.5).

Let E1 denote the first fundamental representation of su(p, q). Set e = − 1
n

and f = n−1
n and, for 1 ≤ i ≤ n, set f

i
equal to the n-tuple with the

ith coordinate f and all the others equal to e. The f
i
are the weights of E1. Let

E denote the tensor product of E1 with the central character 1
n(1, 1, · · · , 1).

The weights of E are the n-tuples ei with 1 in the ith coordinate and zeros
elsewhere.

(4.12) Lemma. The Gelfand -Kirillov dimension of L(λ+ρ) equals k(n−k)
for all 1 ≤ k ≤ min{p, q} and equals pq otherwise.

Proof. First consider the three cases considered in (4.10) where l and
m are not both zero. Then k ≥ min{p, q}, N(λ + ρ) is irreducible and the
Gelfand-Kirillov dimension is pq. So the lemma holds in these cases.

Now suppose l = m = 0. Suppose that w and u are not zero and let λ′ and
λ′′ be defined as above. By (4.10) and (4.5), L(λ′ + ρ) occurs in E ⊗ L(λ + ρ)
and L(λ′′ + ρ) occurs in E∗ ⊗ L(λ + ρ). Now suppose L(λ + ρ) has level of
reduction one. Then by Lemma 4.11, if L(λ′ + ρ) also has level of reduction
one, δ = δ′ = δ′′ = ex − en+1−y. If we set γ = ea or −eb and then apply
(4.5)(ii), L(λ+ρ) occurs in both E∗⊗L(λ′ +ρ) and E⊗L(λ′′ +ρ). If L(λ+ρ)
does not have level of reduction one then we apply (4.5)(i) and obtain the same
inclusions. Therefore the Gelfand-Kirillov dimension is independent of both w

and u.
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Now suppose w = u = 0. Then the parameter λ lies on the line with
the trivial representation and the Wallach representations. We know N(λ+ ρ)
is irreducible unless 1 ≤ k < min(p, q) and these representations lie in the
Wallach set. They are isomorphic to the coordinate ring of the variety of all
p × q matrices having rank less than or equal to k. Now Gl(p) × Gl(q) acts
on this space and a calculation of the stabilizer gives the dimension equal to
k(n − k). This completes the proof.

This completes the proof of Theorem 6 in all three cases.

(4.13) Corollary. With notation now as in Theorem 6, suppose L(λ+ ρ)
is an irreducible highest weight module occurring in one of the dual pair set-
tings. Let J denote the annihilator of L in U(g). Then in the three cases
so∗(2n), sp(n) and u(p, q); the Gelfand -Kirilov dimension of U(g)/J is,

2k(2n − 2k − 1) (resp. k(2n − k + 1) , 2k(n − k) ),

where the restrictions on k are as in (4.2).

Proof. From Borho-Kraft [BK], the Gelfand-Kirillov dimension of U(g)/J
is twice the Gelfand-Kirillov dimension of L.

5. Hilbert series of unitarizable and finite dimensional
representations

The generalized BGG resolution is given as a sum indexed by the coset
space W k. These spaces have interesting combinatorial descriptions which will
offer some detailed presentations of Hilbert series. They will also give the most
direct route to the proof of a theorem which relates Hilbert series for unitary
highest weight representations and those for finite dimensional representations.
We describe the results separately in the three cases: so∗(2n), sp(n, R) and
u(p, q).

(5.1) The so∗(2n) case. Let L(λ + ρ) be any unitarizable highest weight
representation and let λ + ρ = (a1, . . . , an) be its expression in Euclidean
coordinates as in (4.6). We partition these coordinates as follows. Define Θs

to be the set of all positive coordinates a for which −a is also a coordinate of
λ + ρ. Let Θ be the set of all nonnegative coordinates c not in Θs. Let Ψ be
a complementing set defined by:

(5.1.1) λ + ρ = (Θ,Θs,−Θs,Ψ)+ .

Choose indices i1 < · · · < im so that

(5.1.2) Θ = {(λ + ρ)i1 , . . . , (λ + ρ)im
} .
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Lemma. Suppose that λ is a reduction point. Then Θ contains two or
more coordinates. If |Θ| = 2, then gλ

∼= sl(2, R). If m = |Θ| ≥ 3 then
∆+

λ = {eij
± eik

|1 ≤ j < k ≤ m} and is of type Dm.

Proof. From (4.6.5) and (4.6.6), λ + ρ = (b, . . . , c, · · · ) where the initial
segment from b to c is a set of consecutive decreasing integers which includes 0.
From this we see that Θ contains 0 and all coordinates in Ψ are negative with
absolute value greater than all the coordinates in Θ. Since λ is a reduction
point, |Θ| ≥ 2. Then Wλ is generated by the reflections sα for roots α =
eis

+ eit
, 1 ≤ s < t ≤ m. From this, gλ is contained in so(2m). We now

check the opposite inclusion. Set αs = eis
+ eis+1 , 1 ≤ s < m, and αm =

sα2(ei1 + ei3) = ei1 − ei2 . Then the set of roots

{α1,−α2, α3, . . . , (−1)mαm−1,−αm}

is contained in ∆λ and is a set of simple roots for the root system Dm. With
the earlier inclusion, gλ is of type Dm.

The terms in the resolution of L(λ + ρ) in Theorem 2 correspond to all
subsets of Θ of even cardinality as follows. For any subset Φ ⊂ Θ of even
cardinality, define Φ∨ by the identity Θ = Φ ∪ Φ∨ and set:

(5.1.3) λΦ + ρ = (Φ∨,Θs,−Θs,−Φ,Ψ)+ .

Recalling (4.1.1), we have equality of sets:

(5.1.4) {λΦ} = {s � λ|s ∈ Wk
λ} ,

where Φ is any subset of Θ of even cardinality. If λΦ = s � λ then define εΦ to
be 0 or 1 depending on whether the parity of the length of s in Wλ is even or
odd. So εΦ has the same parity as the cardinality of s∆+

λ ∩ −∆+
λ .

(5.2) The sp(n) case. Let L(λ + ρ) be any unitarizable highest weight
representation and let λ + ρ = (a1, . . . , an) be its expression in Euclidean
coordinates. We partition these coordinates as follows. Define Θs to be the
set of all positive coordinates a for which −a is also a coordinate of λ + ρ.
Let Θ be the set of all coordinates c not in Θs with c > 0 and all pairs of
coordinates c, d both not in Θs, both nonzero and with c + d > 0. Let Ψ be a
complementing set defined by:

(5.2.1) λ + ρ =

{
(Θ,Θs, 0,−Θs,Ψ)+, if zero is a coordinate of λ + ρ

(Θ,Θs,−Θs,Ψ)+, if zero is not a coordinate of λ + ρ.

Choose indices i1 < · · · < im so that

(5.2.2) Θ = {(λ + ρ)i1 , . . . , (λ + ρ)im
} .
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Lemma. Suppose λ is a reduction point. Then from (4.7.3):

λ + ρ + d(λ)ζ =

(
q + r

2
,
q + r

2
− 1, . . . ,

−̂q + r

2
, . . . ,

q − r

2
,

̂q − r

2
− 1 · · ·

)
.

i. Suppose q = r. If λ has level of reduction one, then ∆+
λ = {2ei1} and is

of type A1 for m = 1 while

∆+
λ = {eij

± eik
|1 ≤ j < k ≤ m} ∪ {2eij

|1 ≤ j ≤ m}
and is of type Cm for larger m. If λ has level of reduction greater than
one, then ∆+

λ = {ei1 + ei2} and is of type A1 for m = 2 while ∆+
λ =

{eij
± eik

|1 ≤ j < k ≤ m} and is of type Dm for m > 2.

ii. Suppose r > q and let l denote the level of reduction. If l = r − q + 1
then ∆+

λ = {2ei1} and is of type A1 for m = 1 while

∆+
λ = {eij

± eik
|1 ≤ j < k ≤ m} ∪ {2eij

|1 ≤ j ≤ m}
and is of type Cm for larger m. If l �= r − q + 1 then ∆+

λ = {ei1 + ei2}
and is of type A1 for m = 2 while ∆+

λ = {eij
± eik

|1 ≤ j < k ≤ m} and
is of type Dm for m > 2.

Proof. First suppose q = r. From (4.7.3) if λ has level of reduction one,
λ + ρ takes the form (a, a − 1, · · · 1, 0̂, · · · ). So Ψ is a set of negative integers
with absolute value greater than a. It follows that ∆+

λ = {2ei1} and is of type
A1 for m = 1 while ∆+

λ = {eij
± eik

|1 ≤ j < k ≤ m} ∪ {2eij
|1 ≤ j ≤ m} and is

of type Cm for larger m. Again since λ is a reduction point, m ≥ 1.
If the level of reduction is greater than one, then λ + ρ will begin with

either the integer a and include all the decreasing consecutive integers to zero
or it will begin with the odd half integer a and include all the decreasing
consecutive odd half integers to 1

2 . Again this implies that Ψ is a set of negative
integers(or negative odd half integers) with absolute value greater than a. In
either case Wλ will only contain permutations with an even number of sign
changes. So ∆λ will only contain short roots. With the argument exactly
as in the so∗(2n) case, ∆+

λ = {ei1 + ei2} and is of type A1 for m = 2 while
∆+

λ = {eij
± eik

|1 ≤ j < k ≤ m} and is of type Dm for m > 2. Here, since λ is
a reduction point, m ≥ 2.

Now suppose q < r. From (4.7.3), λ + ρ has the form:

(5.2.3) (a, a − 1, . . . , ê, . . . ,−b, −̂b − 1, · · · ),
for some integers(or odd half integers) a, b and e with a > b > 0, e �= −b and
|e| ≤ b; by which we mean that the initial segment of λ+ρ is a decreasing string
of consecutive integers (or consecutive odd half integers) from a to −b with one
omission, the value e. From this form, all the elements of Ψ are negative and
have absolute value greater than a. Let l denote the level of reduction of λ.
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Then from (4.7.3), e = 1
2(r − q − l + 1). Now consider cases depending on the

value of e. If e = 0, then Θ is a set of positive integers and ∆+
λ = {2ei1} and is

of type A1 for m = 1 while ∆+
λ = {eij

±eik
|1 ≤ j < k ≤ m}∪{2eij

|1 ≤ j ≤ m}
and is of type Cm for larger m. If e < 0, then either 0 is a coordinate of
λ + ρ or the coordinates are odd half integers. In either case Wλ is a set of
permutations with even numbers of sign changes. So ∆λ is contained in the
short roots. Then as in the so∗(2n) case, ∆+

λ = {ei1 + ei2} and is of type A1

for m = 2 while ∆+
λ = {eij

± eik
|1 ≤ j < k ≤ m} and is of type Dm for

m > 2. Finally suppose e > 0. Then either 0 is a coordinate of λ + ρ or the
coordinates are odd half integers. In either case Wλ is a set of permutations
with even numbers of sign changes. From the form (5.2.3), the last coordinate
in Θ, (λ + ρ)im

equals −e and we have:

(5.2.4) (λ + ρ)i1 > (λ + ρ)i2 > · · · > (λ + ρ)im−1 > |(λ + ρ)im
| = e .

So in this case as well, ∆+
λ = {ei1 + ei2} and is of type A1 for m = 2 while

∆+
λ = {eij

± eik
|1 ≤ j < k ≤ m} and is of type Dm for m > 2.

In (5.2.1) the first formula gives an integral point because of the zero
coordinate. In the second formula we have an integral subcase when the coor-
dinates are integers and a half integral subcase when the coordinates are odd
half integers. We refer to these as the first, second and third cases. Now, by
the lemma the terms in the resolution of L(λ + ρ) correspond to all subsets of
Θ in the second case and all subsets of even cardinality in the first and third
cases. Set Θ = Φ ∪ Φ∨ and
(5.2.5)

λΦ + ρ =

{
(Φ∨,Θs, 0,−Θs,−Φ,Ψ)+, if zero is a coordinate of λ + ρ

(Φ∨,Θs,−Θs,−Φ,Ψ)+, if zero is not a coordinate of λ + ρ .

As in the previous example, we have equality of sets:

(5.2.6) {λΦ} = {s � λ|s ∈ Wk
λ} ,

where Φ is any subset of Θ in the second case and any subset of even cardinality
in the first and third cases. If λΦ = s�λ then define εΦ to be 0 or 1 depending
on whether the parity of the length of s in Wλ is even or odd. So in all cases
εΦ has the same parity as the cardinality of s∆+

λ ∩ −∆+
λ . Note that when 0

occurs as a coordinate (the first case), 0 is not in Θ. However in the so∗(2n)
case 0 ∈ Θ. So the descriptions vary accordingly in the so∗(2n) and the first
case here.

(5.3) The u(p, q) case. Let n = p+q and let λ+ρ = (a1, . . . , ap; b1, . . . , bq)
= (a; b) be the highest weight plus ρ of a unitarizable highest weight repre-
sentation of u(p, q). Let Θs be the intersection of the coordinates of a and
coordinates of b. Now let Θ1 be the coordinates ai which are not in Θs and
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for which ai > bj for some bj not in Θs. Similarly let Θ2 be the coordinates bj

which are not in Θs and for which ai > bj for some ai not in Θs. Finally let
Ψi , i = 1, 2 be the complementing coordinates for which

(5.3.1) λ + ρ = ((Θ1,Θs,Ψ1)+; (Ψ2,Θs,Θ2)+) .

Choose indices i1 < · · · < ip′ and j1 < · · · < jq′ so that

(5.3.2) Θ1 = {(λ + ρ)i1 , . . . , (λ + ρ)ip′}, Θ2 = {(λ + ρ)j1 , . . . , (λ + ρ)jq′} .

From (4.10.3), for some half integers c and d with d ≥ c,
(5.3.3)

λ + ρ = (x + c, . . . , 1 + c︸ ︷︷ ︸
x

,
∧
c, · · · ; · · · ,

∧
1 + d, d,−1 + d, . . . ,−y + 1 + d︸ ︷︷ ︸

y

) ,

where l = d − c + 1 equals the level of reduction of λ.

Lemma. Suppose λ is a reduction point. Then 1 ≤ i1 < · · · < ip′ ≤ x <

n + 1 − y ≤ j1 < · · · < jq′ ≤ n. Moreover

∆+
λ = {ej − ek|1 ≤ j < k ≤ n and j, k ∈ {i1 · · · ip′} ∪ {j1 · · · jq′}}

which is of type Ap′+q′−1 and [gλ, gλ] ∼= su(p′, q′).

Proof. The form (5.3.3) implies that d ≥ c and so any element of Ψ1 is
less than d − y + 1 and any element of Ψ2 is greater than x + c. Then for
a ∈ Ψ1, a < d − y + 1 ≤ d − l + 1 = c. Similarly, for b ∈ Ψ2, b > x + c ≥
l + c = d + 1.

Suppose i ∈ Θ1 and i > x. Then for some j, q + 1 ≤ j ≤ n, (λ + ρ)i >

(λ + ρ)j . So (λ + ρ)j < (λ + ρ)i < c ≤ d. Since the last y coordinates of λ + ρ

are a consecutive set of integers or odd half integers, (λ + ρ)i occurs twice as
a coordinate of λ + ρ. This implies (λ + ρ)i ∈ Θs which is a contradiction and
proves i ≤ x. Similarly suppose j ∈ Θ2 and j < n + 1 − y. Then for some
i, 1 ≤ i ≤ p, (λ + ρ)i > (λ + ρ)j . So (λ + ρ)i > (λ + ρ)j ≥ d + 2 ≥ c + 2.
Since the first x coordinates of λ + ρ are a consecutive set of integers or odd
half integers, (λ + ρ)j occurs twice as a coordinate of λ + ρ. This implies
(λ + ρ)j ∈ Θs which is a contradiction and proves j ≥ n + 1 − y. It follows
that 1 ≤ i1 < · · · < ip′ ≤ x < n + 1 − y ≤ j1 < · · · < jq′ ≤ n. Then
∆+

λ = {ej − ek|1 ≤ j < k ≤ n and j, k ∈ {i1 · · · ip′} ∪ {j1 · · · jq′}} which is of
type Ap′+q′−1 and [gλ, gλ] ∼= su(p′, q′).

The terms in the resolution of L(λ + ρ) are parametrized by all pairs of
subsets Φ = (Φ1,Φ2) with Φi ⊂ Θi , i = 1, 2 and card Φ1 = card Φ2 as follows.
Define Φ∨

i and λΦ by the identities:

(5.3.4) Θi = Φi ∪Φ∨
i and λΦ + ρ = ((Φ2,Φ∨

1 ,Θs,Ψ1)+; (Ψ2,Θs,Φ1,Φ∨
2 )+) .
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As in the previous examples, we have equality of sets:

(5.3.5) {λΦ} = {s � λ|s ∈ Wk
λ} ,

where Φ = (Φ1,Φ2) with Φi ⊂ Θi , i = 1, 2 and card Φ1 = card Φ2. If
λΦ = s�λ then define εΦ to be 0 or 1 depending as the parity of the length of
s in Wλ is even or odd. So in all cases εΦ has the same parity as the cardinality
of s∆+

λ ∩ −∆+
λ .

(5.4) Let FΦ denote the finite dimensional k-module with highest weight
λΦ. Set Dm =

∏
1≤j≤m−1 j! . For any r-tuple a, let

∏
a =

∏
1≤i<j≤r(ai − aj).

Lemma. (i) Suppose k ∼= u(n) and λΦ + ρ = (a1, . . . , an). Then

dim FΦ =
1

Dn

∏
1≤i<j≤n

(ai − aj) .

(ii) Suppose k ∼= u(p) × u(q) and λΦ + ρ = (a1, . . . , ap; b1, . . . , bq). Then

dim FΦ =
1

DpDq

∏
1≤i<j≤p

(ai − aj)
∏

1≤i<j≤q

(bi − bj) .

(iii) Suppose (5.1.3) holds and Ψ = ∅. Then

dim FΦ = dim F∅

∏
(−Φ,Φ∨)+∏

(Φ,Φ∨)+
.

(iv) Suppose (5.2.5) holds and Ψ = ∅. Then

dim FΦ = dim F∅

∏
(−Φ,Φ∨)+∏

(Φ,Φ∨)+
.

(v) Suppose (5.3.4) holds and Ψ1 = Ψ2 = ∅. Then

dim FΦ = dim F∅

∏
(Φ2,Φ∨

1 )+
∏

(Φ1,Φ∨
2 )+∏

(Φ1,Φ∨
1 )+

∏
(Φ2,Φ∨

2 )+
.

Proof. The formulas in (i) and (ii) are coordinate versions of the Weyl
character formula. To verify (iii) , note that (i) gives:

dim FΦ

dim F∅
=

∏
(−Φ,Φ∨,Θs,−Θs)+∏
(Φ,Φ∨,Θs,−Θs)+

.

Since the set Θs ∪ −Θs is stable under multiplication by −1, all terms in this
ratio cancel except those in ∏

(−Φ,Φ∨)+∏
(Φ,Φ∨)+

.

This gives (iii). The verification of (iv) is similar. To verify (v), we begin
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with (ii). Then

dim FΦ

dim F∅
=

∏
(Φ2,Φ∨

1 ,Θs)+
∏

(Φ1,Φ∨
2 ,Θs)+∏

(Φ1,Φ∨
1 ,Θs)+

∏
(Φ2,Φ∨

2 ,Θs)+
.

Cancelling factors of the form a − b with b ∈ Θs gives (v).

(5.5) For any weight µ which is dominant for kλ, let Eµ denote the finite
dimensional kλ-module with highest weight µ. For each Φ as above, let EΦ

denote the finite dimensional irreducible kλ-module with highest weight λΦ.

Corollary. Suppose Ψ = Ψ1 = Ψ2 = ∅. Then in all cases:

dim FΦ =
dim F∅
dim E∅

dim EΦ .

Proof. First suppose we are in the cases so∗(2n) and sp(n), and ∆+
k,λ =

{eij
− eik

|1 ≤ j < k ≤ m} where Θ = {(λ + ρ)i1 , . . . , (λ + ρ)im
}. From

Lemma 5.4 (i), dim EΦ = 1
Dc

∏
(−Φ,Φ∨)+ where c equals the cardinality

of Θ. Combining this with (iii) and (iv) gives the result. By Lemmas 5.1
and 5.2 in all the remaining cases kλ = h , Wk

λ contains only two elements
and the corresponding weights in the Wk

λ orbit are {(±(λ + ρ))+}. The two
representations of k with these highest weights are dual to each other and so
have the same dimension. So the formula holds in these degenerate cases as
well.

Now consider the u(p, q) case. Here by Lemma 5.3,

∆+
k,λ = {eij

− eik
|1 ≤ j < k ≤ p′} ∪ {ejs

− ejt
|1 ≤ s < t ≤ q′} .

Then dim EΦ = 1
Dp′ Dq′

∏
(Φ2,Φ∨

1 )+
∏

(Φ1,Φ∨
2 )+. Therefore identity (v) in

Lemma 5.4 implies the formula.

(5.6) For any gλ-dominant integral µ we let Bµ denote the irreducible
finite dimensional gλ-module with highest weight µ. Let Bi

µ denote the grading
of Bµ as a gλ ∩ p−-module. Define the Hilbert series by:

(5.6.1) P (q) = Pλ(q) =
∑

dim Bi
λ qi .

Theorem. Set e = dim p+ and e′ = dim p+ ∩ gλ. Suppose that L =
L(λ + ρ) is unitarizable and λ is a quasi -dominant reduction point and that
in the coordinate form either (5.1.3), (5.2.5) or (5.3.4) holds. Then Ψ = Ψ1 =
Ψ2 = ∅. Set d equal to the Gelfand -Kirillov dimension of L given by Theorem 6.
Then d = e − e′ and the Hilbert series in reduced form for L is:

(5.6.2) HL(q) =
dim F∅
dim E∅

P (q)
(1 − q)d

.
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Proof. In this setting (4.1.3) becomes:

(5.6.3) HL(q) =
1

(1 − q)e

∑
Φ

(−1)εΦ dim FΦ q〈Φ〉 ,

where 〈Φ〉 = (λ − λΦ)(z0). By (5.5), this becomes:

(5.6.4) HL(q) =
1

(1 − q)e

dim F∅
dim E∅

∑
Φ

(−1)εΦ dim EΦ q〈Φ〉 .

Now using the generalized BGG resolution [L] for finite dimensional represen-
tations, this becomes:

(5.6.5) HL(q) =
1

(1 − q)e−e′

dim F∅
dim E∅

P (q).

Since the polynomial P (q) is finite nonzero at q = 1, the exponent e − e′

must equal the Gelfand-Kirillov dimension d. Alternatively we could verify
this formula directly from the expressions in Theorem 6. This completes the
proof.

Corollary. The Bernstein degree of L(λ + ρ) is dim F∅
dim E∅

dimBλ.

Proof. This follows from (5.6.2) and the identity: P (1) = dimBλ.

6. Examples of Hilbert series

(6.1) Suppose L = L(λ+ρ) is a unitarizable highest weight representation
occurring in a dual pair setting. We say L is minimal if its Gelfand-Kirillov
dimension is positive and minimal in the set of Gelfand-Kirillov dimensions of
unitarizable highest weight representations occurring in the dual pair settings.
For the cases so∗(2n), sp(n) and u(p, q) we now describe quite explicitly the
Hilbert series of all minimal L with singular λ + ρ. These results are shown to
be a consequence of Theorem 5.6. A calculation using Theorem 6 shows that
the minimal L are those with λ + ρ given by (4.6.2), (4.7.2) and (4.10.3) with
k = 1.

(6.2) The sp(n) case. This is the easiest of the three cases. Here for
k = 1 we obtain only two highest weights, the two components of the Weil
representation. The two parameters are: λ + ρ = (n − 1/2, . . . , 1/2) and
λ+ ρ = (n− 1/2, . . . , 3/2,−1/2). Then the Bλ are the representations of type
Dn with highest weight (1/2, . . . , 1/2) and (1/2, . . . , 1/2,−1/2) which are the
two spin representations each of dimension 2n−1. The weight spaces are all
one dimensional with weights having coordinates of ±1/2 where the number
of negatives is even (resp. odd). A quick calculation shows that the Hilbert
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series for the spin representations are:

(6.2.1) P (q) =
∑

0≤j≤n

2

(
n

2j

)
qj

and

(6.2.2) P (q) =
∑

0≤j≤n

2

(
n

2j + 1

)
qj .

Then by (5.6), the Hilbert series for the minimal representations of sp(n)
are:

(6.2.3) HL(q) =
1

(1 − q)n

∑
0≤j≤n

2

(
n

2j

)
qj

and

(6.2.4) HL(q) =
1

(1 − q)n

∑
0≤j≤n

2

(
n

2j + 1

)
qj .

The Bernstein degree of these two representations is 2n−1.

(6.3) The so∗(2n) case. From (4.6.2) the λ+ ρ for minimal L in this case
are:

(6.3.1) λ + ρ = (n − 2, n − 3, . . . , 0,−1 − w),

where w is a nonnegative integer. If λ + ρ is singular then 0 ≤ w ≤ n − 3.
Then gλ is of type Dn−2 and Bλ is isomorphic to ∧n−3−wE tensored with a
central character of gλ where E is the first fundamental representation of gλ of
dimension 2n − 4. Here the zero exponent denotes the trivial representation.
As a kλ module E = E+ ⊕ E− where E+ (resp. E−) has all weights with 1
(resp. −1) as one coordinate and all others zero. Then

(6.3.2) ∧n−3−wE ∼=
∑

0≤j≤n−3−w

∧n−3−w−jE+ ⊗ ∧jE−.

From this isomorphism the Hilbert series of the finite dimensional gλ module
Bλ is:

(6.3.3) P (q) =
∑

0≤j≤n−3−w

(
n − 2

n − 3 − w − j

)(
n − 2

j

)
qj .

If λ + ρ is singular and given by (6.3.1) then its Hilbert series is:
(6.3.4)

HL(q) =
1

(1 − q)2n−3

(
n−1+w

n−1

)(
n−2

n−3−w

) ∑
0≤j≤n−3−w

(
n − 2

n − 3 − w − j

)(
n − 2

j

)
qj .
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The Bernstein degree of this representation is:

(6.3.5)

(
n−1+w

n−1

)(
n−2

n−3−w

)(
2n − 4

n − 3 − w

)
.

(6.4) The u(p, q) case. Suppose g is of type u(p, q), k = 1 and λ + ρ

is singular. If either p or q equals one then N(λ + ρ) is irreducible and thus
H(q) = 1

(1−q)pq . So we assume p, q ≥ 2. From (4.10) the possibilities are:

(6.4.1a) λ + ρ = (n − 1, n − 2, . . . , q − w; q, q − 1, . . . , 1)

or

(6.4.1b) λ + ρ = (n − 1, n − 2, . . . , q;u + q, q − 1, . . . , 1) .

where 0 ≤ w ≤ q − 1, 0 ≤ u ≤ p − 1 and for convenience we introduce a
shift to ρ and write ρ = (n, n − 1, . . . , 1). For all of these values of w and
u, gλ

∼= u(p − 1, q − 1). The representation Bλ equals a one dimensional
representation for the extremes w = 0, q− 1 and u = 0, p− 1 and otherwise Bλ

is the fundamental representation with highest weight ωp−1+w or ωp−1−u plus
a central character of gλ. Let E denote the first fundamental representation
of u(p − 1, q − 1) and write E = Ep−1 ⊕ Eq−1 with the components the k

submodules of dimension p − 1 and q − 1 respectively.
The decompositions we want are:

(6.4.2a)
p−1+w∧

Cn−2 ∼=
∑

0≤j≤p−1

p−1−j∧
Cp−1 ⊗

w+j∧
Cq−1 and

(6.4.2b)
p−1−u∧

Cn−2 ∼=
∑

0≤j≤q−1

p−1−u−j∧
Cp−1 ⊗

j∧
Cq−1

This leads to the Hilbert series for Bλ;
(6.4.3)

P (q) =
∑

0≤j≤p−1

(
p − 1

j

)(
q − 1
w + j

)
qj and P (q) =

∑
0≤j≤q−1

(
p − 1
u + j

)(
q − 1

j

)
qj ,

which leads to the Hilbert series for L = L(λ + ρ);

(6.4.4a) HL(q) =
1

(1 − q)n−1

(
p−1+w

p−1

)(
q−1
w

) ∑
0≤j≤p−1

(
p − 1

j

)(
q − 1
w + j

)
qj

and

(6.4.4b) HL(q) =
1

(1 − q)n−1

(
q−1+u

q−1

)(
p−1
u

) ∑
0≤j≤q−1

(
p − 1
u + j

)(
q − 1

j

)
qj .
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The Bernstein degrees of these representations are respectively:

(6.4.5)

(
p−1+w

p−1

)(
q−1
w

) (
n − 2

p − 1 + w

)
and

(
q−1+u

q−1

)(
p−1
u

) (
n − 2

p − 1 − u

)
.

This completes the singular cases of minimal Gelfand-Kirillov dimension.

7. Branching rules

(7.1) By a partition λ we mean a finite sequence of weakly decreasing
positive integers, λ1 ≥ λ2 ≥ · · · ≥ λl. The number of terms in the sequence
λ will be called the length of λ and be denoted 	(λ). Partitions will always
be denoted by lower case Greek letters. Let |λ| =

∑
i λi denote the size of λ.

Given a partition λ we denote the conjugate partition to λ by λ′. That is, the
partition obtained by flipping the Young diagram of λ over the main diagonal.
Equivalently, (λ′)i = |{j : λj ≥ i}|. Note that |λ| = |λ′| and 	(λ) = (λ′)1. Let
P denote the set of partitions. Define

PR = {λ ∈ P : λi ∈ 2N for all i} ,(7.1.1)

PC =
{
λ ∈ P : (λ′)i ∈ 2N for all i

}
.

The set PR (resp. PC) consists of partitions whose Young diagrams have even
rows (resp. columns).

For each partition λ such that 	(λ) ≤ m let F λ
(m) denote the irreducible

(finite dimensional) representation of GL(m) with highest weight λ1ε1 +λ2ε2 +
· · ·+λmεm. Similarly, let V λ

(m) be the irreducible Sp(m) representation indexed
by λ ; and, for λ with (λ′)1 + (λ′)2 ≤ m let Eλ

(m) be the irreducible O(m)
representation indexed by λ.

(7.2) Given nonnegative integer partitions, µ, σ and ν, each with at most
m parts, define the classical Littlewood-Richardson coefficients cσ

µν by,

(7.2.1) cσ
µν = dim HomGL(m)

(
F σ

(m), F
µ
(m) ⊗ F ν

(m)

)
.

Given σ, µ, and ν such that 	(σ), 	(µ), 	(ν) ≤ n0, for all n ≥ n0,

dim HomGL(n)(F
σ
(n), F

µ
(n) ⊗ F ν

(n)) = dim HomGL(n0)(F
σ
(n0)

, Fµ
(n0)

⊗ F ν
(n0)

).

In this sense cσ
µν is independent of n.

For partitions σ and µ, we define the following sums of Littlewood-Richardson
coefficients,

(7.2.2) Cσ
µ :=

∑
ν∈PR

cσ
νµ and Dσ

µ :=
∑

ν∈PC
cσ
νµ.
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Theorem (Littlewood Restriction Formula (LRF), [Lit1]). (i) (LRF for
O(k) ⊆ GL(k)). Set r = �k

2�. Let σ and µ be partitions with at most r parts.
Then,

(7.2.3) Cσ
µ = dim HomO(k)(E

µ
(k), F

σ
(k)).

(ii) (LRF for Sp(k) ⊆ GL(2k)). For partitions σ and µ, with at most k

parts,

(7.2.4) Dσ
µ = dim HomSp(k)(V

µ
(k), F

σ
(2k)).

The above theorem does not answer the branching question in general
because the length of σ is restricted. In the following, we provide a description
for general σ.

(7.3) Theorem 4 provides a resolution where each term is of the Littlewood
form. If n is large, (n ≥ k for O(k) and n ≥ 2k for Sp(k)) then σ indexes a
general irreducible GL(n) representation. In particular, the above is a general
solution to the branching problem in the sense of Littlewood if we take n = k

(resp. n = 2k) for O(n) (resp. Sp(k)).

Lemma. Under the Littlewood hypotheses, the general branching formulas
(1.2.9) and (1.2.10) imply the formulas of Littlewood , (7.2.3) and (7.2.4).

Proof. In the first case we suppose that σ and µ have at most [k
2 ] parts.

Set n = [k
2 ]. Then from (4.7.1) we observe that µ� + ρ has all nonpositive

coordinates and thus the generalized Verma module N(µ� + ρ) is irreducible.
So the sum in formula (1.2.9) degenerates to one term, giving the Littlewood
formula.

In the second case we suppose that σ and µ have at most k parts. Set
n = k. Then from (4.6.2) we observe that µ�+ρ has all nonpositive coordinates
and thus the generalized Verma module N(µ� + ρ) is irreducible. Now, the
sum in formula (1.2.10) degenerates to one term, again giving the Littlewood
formula. In both cases, Wk

µ� is the trivial group.

(7.4) The proof of Theorem 4 will depend on several applications of Howe
duality. Next we review the three cases needed. Let M = Mm×n denote the
m × n matrices and let G = Gl(m) × Gl(n). Let θ denote the automorphism
of Gl(m) given by the composite of inverse and transpose.Then there are two
natural group actions on M . Let φ denote the first and τ the second. For
a ∈ M, (g, h) ∈ G,

φ(g, h)a = gah−1 τ(g, h)a = θ(g)ah−1 .
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These actions also induce representations on P(Mm×n) which we also denote
by φ and τ respectively. For f ∈ P(Mm×n),

φ(g, h)f(a) = f(φ(g−1, h−1)a) = f(g−1ah),(7.4.1)

τ(g, h)f(a) = f(τ(g−1, h−1)a) = f(gT ah).

Let Dm and Dn be the invertible diagonal matrices in Gl(m) and Gl(n).
Let Nm and Nn be the upper triangular unipotent matrices in Gl(m) and
Gl(n) and let Nm and Nn be the lower triangular unipotent matrices. A set of
generators for the polynomial algebra P(Mm×n) is the set of xi,j , 1 ≤ i ≤ m,
1 ≤ j ≤ n, where xi,j is the functional with xi,j(a) equaling the i, jth entry
of a. For a ∈ Dm and b ∈ Dn let a = (a1, . . . , am) and b = (b1, . . . , bn) denote
the diagonal entries. Then the weight structure is determined by:

(7.4.2) φ(a, b)xs
i,j = a−s

i bs
jx

s
i,j , τ(a, b)xs

i,j = as
i b

s
jx

s
i,j .

Theorem (Howe duality GL(m, C) × GL(n, C)). The two actions of
GL(m) × GL(n) lead to two multiplicity-free decompositions: Under the ac-
tion of φ,

(7.4.3) P(Mm×n) =
⊕

σ

(F σ
(m))

∗ ⊗ F σ
(n),

and under the action τ ,

(7.4.4) P(Mm×n) =
⊕

σ

F σ
(m) ⊗ F σ

(n),

where both sums are over all partitions σ with at most min(m, n) parts.

The form 7.4.3 of duality can be found in [GW, Th. 5.2.7] and 7.4.4 is
easily obtained from it.

In order to compare these actions with those of other Howe dual pairs, we
now express φ and τ in terms of Euler type operators. Choose the standard
basis of gl(n) of elementary matrices {ei,j}1≤i,j≤n where ei,j has 1 in the ijth

entry and zeros elsewhere. Then

(φ(0, ei,j)xa,b)(m) =xa,b(mei,j) = δb,j xa,i(m) ,(7.4.5)

(φ(ei,j , 0)xa,b)(m) =xa,b(−ei,jm) = −δa,i xj,b(m).

Define operators on P(Mm×n) for 1 ≤ i, j ≤ n, 1 ≤ s, t ≤ m,

(7.4.6) Ei,j =
∑

1≤p≤m

xp,i
∂

∂xp,j
, E′

s,t =
∑

1≤q≤n

xs,q
∂

∂xt,q
.

These definitions and the identities above give:

(7.4.7) φ(0, ei,j) = τ(0, ei,j) = Ei,j , φ(ei,j , 0) = −E′
j,i, τ(ei,j , 0) = E′

i,j .
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Let n denote the upper triangular matrices in gl(m) × gl(n) and for 0 ≤ i ≤
min{m, n}, let

∆i = det

x11 · · · x1i
...

...
xi1 · · · xii


be the ith principal minor. These polynomials generate the algebra of n highest
weight vectors under the action of τ and establish the isomorphism (7.4.4).

(7.5) Next we consider the dual pair O(k)×sp(n) following the notation in
[GW, §4.5.5]. Let π1 denote the action of this pair on Mk×n. Then the action
of the left factor O(k) is the restriction of the representation φ from Gl(k)
to O(k). The action of the right factor sp(n) is given by certain polynomial
differential operators. The compactly embedded subalgebra k is isomorphic to
gl(n) and this right action is given by:

(7.5.1) π1(0, ei,j) = Ei,j +
k

2
δij .

Now consider the dual pair Sp(k)×so∗(2n) again following the notation in
[GW, §4.5.5]. Let π2 denote the action of this pair on M2k×n. Then the action
of the left factor Sp(k) is the restriction of the representation φ from Gl(2k)
to Sp(k). The action of the right factor so∗(2n) is given by certain polynomial
differential operators. The compactly embedded subalgebra k is isomorphic to
gl(n) and this right action is given by:

(7.5.2) π2(0, ei,j) = Ei,j + kδij .

In both of these cases the positive noncompact root spaces are identified
with certain upper triangular matrices which act as multiplication operators on
polynomials. So in order to obtain a decomposition in terms of highest rather
than lowest weight representations we compose the action of the right factor
with the involution θ(x) = −XT . To conveniently compare the decompositions
with those in Theorem 7.4 we also compose the action of the left factor with
Θ(g) = (g−1)T . Define

(7.5.3) π1(g, X) = π1(Θ(g), θ(X)) , π2(g, X) = π2(Θ(g), θ(X)) .

The dual pair decompositions now take the form:

(7.6) Theorem (Howe Duality O(k, C)×sp(n), [H]). Under the represen-
tation π1 of O(k) × sp(n) the space P(Mk×n) has a multiplicity free decompo-
sition:

(7.6.1) P(Mk×n) =
⊕

µ

Eµ
(k) ⊗ Eµ,

where the above direct sum is over all partitions µ with at most r = min(k, n)
parts and subject to the conditions that (µ′)1 + (µ′)2 ≤ k. Furthermore, Eµ is
the irreducible highest weight representation of sp(n) with highest weight µ�.
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(7.7) Theorem (Howe duality Sp(k, C) × so∗(2n), [H]). Under the rep-
resentation π2 of Sp(k) × so∗(2n) the space P(M2k×n) has a multiplicity free
decomposition:

(7.7.1) P(M2k×n) =
⊕

µ

V µ
(k) ⊗ Vµ

where the above summation is over all partitions µ with at most min(k, n) parts.
Furthermore, Vµ is the irreducible highest weight representation of so∗(2n) with
highest weight µ�.

(7.8) We now study the multiplicities of various isotypic subspaces of these
polynomial spaces.

Lemma. Suppose W is a subspace of P(Mk×n) (resp. P(M2k×n). If W

is stable under the action of π1 restricted to O(k) × gl(n) (resp. π2 restricted
to Sp(k) × gl(n)) then it is also stable under the restriction of τ (or φ) and
vice versa. If W is irreducible under one action then it is irreducible under the
other. Finally if W is irreducible under the restricted τ action of type µ ⊗ ν,
then under the restricted action π1 (resp. π2), W has type µ ⊗ ν�.

Proof. The actions of the left factor are all equal and the actions of the
right are given by ei,j → Ei,j , ei,j → −Ej,i − kδi,j and ei,j → −Ej,i − k

2δi,j .

Corollary. Suppose W is the isotypic subspace of P(Mk×n) (resp.
P(M2k×n) for type µ ⊗ ν for the action τ restricted to O(k) × gl(n) (resp.
Sp(k) × gl(n)). Then under the action of π1 restricted to O(k) × gl(n) (resp.
π2 restricted to Sp(k) × gl(n)), W is the isotypic subspace of type µ ⊗ ν�.

Finally the multiplicity of this isotypic space W is equal to both the mul-
tiplicity of the O(k) (resp. Sp(k)) representation Eν

(k) (resp. V ν
(k)) in the Gl(k)

(resp. Gl(2k)) representation Fµ
(k) (resp. Fµ

(2k)) as well as the multiplicity of the

gl(n) representation Fµ�

(n) in the highest weight representation of sp(n) (resp.
so∗(2n)) with highest weight ν�.

Proof. The first assertions are clear. As for the multiplicities, the first
comes from the decomposition in Theorem 7.4 while the second and third
come from the decompositions Theorems 7.6 and 7.7.

(7.9) Lemma. (i) As a representation of GL(n), the space of symmetric
n×n matrices (under the action (g, X) �→ gXgT ) is equivalent to the symmetric
square of the standard representation, denoted S2(Cn). Furthermore, if g ∼=
sp(n),

(7.9.1) S(p+) ∼= S
(
S2(Cn)

) ∼=
⊕

F σ
(n),

where the sum is over σ ∈ PR such that 	(σ) ≤ n .
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(ii) As a representation of GL(n), the space of skew symmetric n × n

matrices (under the action (g, X) �→ gXgT ) is equivalent to the exterior square
of the standard representation, ∧2(Cn). Furthermore, if g ∼= so∗(2n),

(7.9.2) S(p+) ∼= S
(
∧2(Cn)

) ∼=
⊕

F σ
(n),

where the sum is over σ ∈ PC such that 	(σ) ≤ n .

Proof. See [GW, p. 257, §5.2.5] and [GW, p. 258, §5.2.6].

These identities lead to the k multiplicity formulas for generalized Verma
modules in the next corollary.

Corollary. (i) In the (O(k), sp(n)) case, g ∼= sp(n) and

(7.9.3) Cσ
µ = dim Homk

(
F σ�

(n), N(µ�)
)

.

(ii) In the (Sp(k), so∗(2n)) case, g ∼= so∗(2n) and

(7.9.4) Dσ
µ = dim Homk

(
F σ�

(n), N(µ�)
)

.

Proof. As a k (∼= gl(n)) representation,

(7.9.5) p− ∼=
{

S2(Cn)∗ for sp(n),
∧2(Cn)∗ for so∗(2n),

p+ ∼=
{

S2(Cn) for sp(n),
∧2(Cn) for so∗(2n).

By Lemma 7.9, S(p+) has a multiplicity-free decomposition involving par-
titions from either PR or PC depending on which case we are in (sp(n) or
so∗(n)). By definition of Cσ

µ (resp. Dσ
µ) we have,

S(p+) ⊗ Fµ
(n)

∼=
{⊕

Cσ
µ F σ

(n) for sp(n),⊕
Dσ

µ F σ
(n) for so∗(2n).

As a k representation, for any partition ν,

F ν�

(n)
∼=


(
F ν

(n) ⊗ F
k

2
ζ

(n)

)∗
for sp(n),(

F ν
(n) ⊗ F kζ

(n)

)∗
for so∗(2n).

For any half-integer m, Fmζ
(n) is one dimensional and therefore for any

highest weights ν1 and ν2,

Homgl(n)

(
F ν1

(n) ⊗ Fmζ
(n) , F ν2

(n) ⊗ Fmζ
(n)

)
∼= Homgl(n)

(
F ν1

(n), F
ν2

(n)

)
.

And this implies,

Homgl(n)

(
F σ

(n), S(p+) ⊗ Fµ
n

)
∼= Homgl(n)

(
F σ�

(n), S(p−) ⊗ Fµ�

(n))
)

.

Since as a k representation N(µ�) ∼= S(p−) ⊗ Fµ�

(n), this completes the proof.
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(7.10) Proof of Theorem 4. Set m = dim HomO(k)(E
µ
(k), F

σ
(k)). Then by

Corollary 7.8, m equals the multiplicity under π1 of F σ�

(n) in the irreducible
highest weight representation L = L(µ� + ρ) of sp(n). By Theorem 2, L has a
resolution in terms of generalized Verma modules. So combining this resolution
with the identities in Corollary 7.9, we obtain the formula (1.2.9). The proof of
the other formula (1.2.10) is essentially the same when we replace the identities
(7.9.3) by (7.9.4). This completes the proof of Theorem 4.

(7.11) Set n = k and consider the dual pair O(k) × sp(n). For positive
integers a, b and c, let µ be the partition:

(7.11.1) µ =

a b c

(d,
︷ ︸︸ ︷
2, · · · , 2,

︷ ︸︸ ︷
1, · · · , 1,

︷ ︸︸ ︷
0, · · · , 0 )︸ ︷︷ ︸

k

with: d ≥ 2 and (µc)1 + (µc)2 ≤ k (i.e. 2 + 2a + b ≤ k). Similarly define µ′ to
be the k tuple:

(7.11.2)
c b a

µ′ = (d,
︷ ︸︸ ︷
2, · · · , 2,

︷ ︸︸ ︷
1, · · · , 1,

︷ ︸︸ ︷
0, · · · , 0 ).

A short calculation shows that gµ�
∼= sl(2, R) and thus there are exactly two

Littlewood coefficients in the sum in Theorem 4. The theorem gives: for all ν,

dim HomO(k)(E
µ, F ν) = Cν

µ − Cν
µ′ .
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