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Quasiconformal homeomorphisms
and the convex hull boundary

By D. B. A. Epstein, A. Marden and V. Markovic

Abstract

We investigate the relationship between an open simply-connected region
Ω ⊂ S2 and the boundary Y of the hyperbolic convex hull in H3 of S2 \ Ω. A
counterexample is given to Thurston’s conjecture that these spaces are related
by a 2-quasiconformal homeomorphism which extends to the identity map on
their common boundary, in the case when the homeomorphism is required to
respect any group of Möbius transformations which preserves Ω. We show that
the best possible universal lipschitz constant for the nearest point retraction
r : Ω → Y is 2. We find explicit universal constants 0 < c2 < c1, such that no
pleating map which bends more than c1 in some interval of unit length is an
embedding, and such that any pleating map which bends less than c2 in each
interval of unit length is embedded. We show that every K-quasiconformal
homeomorphism D2 → D2 is a (K, a(K))-quasi-isometry, where a(K) is an
explicitly computed function. The multiplicative constant is best possible and
the additive constant a(K) is best possible for some values of K.

1. Introduction

The material in this paper was developed as a by-product of a process
which we call “angle doubling” or, more generally, “angle scaling”. An account
of this theory will be published elsewhere. Although some of the material
developed in this paper was first proved by us using angle-doubling, we give
proofs here which are independent of that theory.

Let Ω ⊂ C, Ω �= C be a simply connected region. Let X = S2 \ Ω and let
CH(X) be the corresponding hyperbolic convex hull. The relative boundary
∂CH(X) ⊂ H3 faces Ω. It is helpful to picture a domed stadium—see Figure 5
in Section 3—such as one finds in Minneapolis, with Ω its floor and the dome
given by Dome(Ω) = ∂CH(X).

The dome is canonically associated with the floor, and gives a way of
studying problems concerning classical functions of a complex variable defined
on Ω by using methods of two and three-dimensional hyperbolic geometry.
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In this direction the papers of C. J. Bishop (see [7], [4], [6] and [5]) were
particularly significant in stimulating us to do the research reported on here.

Conversely, the topic was developed in the first place (see [28] and [29]) in
order to use methods of classical complex variable theory to study 3-dimensional
manifolds.

The discussion begins with the following result of Bill Thurston.

Theorem 1.1. The hyperbolic metric in H3 induces a path metric on the
dome, referred to as its hyperbolic metric. There is an isometry of the dome
with its hyperbolic metric onto D2 with its hyperbolic metric.

A proof of this can be found in [17].

1.2. In one special case, which we call the folded case, some interpretation
is required. Here Ω is equal to C with the closed positive x-axis removed, and
the convex hull boundary is a hyperbolic halfplane. In this case, we need
to interpret Dome(Ω) as a hyperbolic plane which has been folded in half,
along a geodesic. Let r : Ω → Dome(Ω) be the nearest point retraction. By
thinking of the two sides of the hyperbolic halfplane as distinct, for example,
redefining a point of Dome(Ω) to be a pair (x, c) consisting of a point x in the
convex hull boundary plus a choice c of a component of r−1(x) ⊂ Ω, we recover
Theorem 1.1 in a trivially easy case.

The main result in the theory is due to Sullivan (see [28] and [17]); here and
throughout the paper K refers either to the maximal dilatation of the indicated
quasiconformal mapping, or to the supremum of such maximal dilatations over
some class of mappings, which will be clear in its context. In other words, when
there is a range of possible values of K which we might mean, we will always
take the smallest possible such value of K.

Theorem 1.3 (Sullivan, Epstein-Marden).There exists K such that,
for any simply connected Ω �= C, there is a K-quasiconformal map Ψ : Dome(Ω)
→ Ω, which extends continuously to the identity map on the common boundary
∂Ω.

Question 1.4. If Ω ⊂ S2 is not a round disk, can Ψ : Dome(Ω) → Ω be
conformal?

In working with a kleinian group which fixes Ω setwise, and therefore
Dome(Ω), one would normally want the map Ψ to be equivariant. Let K be
the smallest constant that works for all Ω in Theorem 1.3, without regard to
any group preserving Ω. Let Keq be the best universal maximal dilatation for
quasiconformal homeomorphisms, as in Theorem 1.3, which are equivariant
under the group of Möbius transformations preserving Ω. Then K ≤ Keq, and
it is unknown whether we have equality.
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In [17] it is shown that Keq < 82.7. Using some of the same methods,
but dropping the requirement of equivariance, Bishop [4] improved this to
K ≤ 7.82. In addition, Bishop [7] suggested a short proof of Theorem 1.3,
which however does not seem to allow a good estimate of the constant. Another
proof and estimate, which works for the equivariant case as well, follows from
Theorem 4.14. This will be pursued elsewhere.

By explicit computation in the case of the slit plane, one can see that
K ≥ 2 for the nonequivariant case. In [29, p. 7], Thurston, discussing the
equivariant form of the problem, wrote The reasonable conjecture seems to
be that the best K is 2, but it is hard to find an angle for proving a sharp
constant. In our notation, Thurston was suggesting that the best constants
in Theorem 1.3 might be Keq = K = 2. This has since become known as
Thurston’s K = 2 Conjecture. In this paper, we will show that Keq > 2. That
is, Thurston’s Conjecture is false in its equivariant form. Epstein and Markovic
have recently shown that, for the complement of a certain logarithmic spiral,
K > 2.

Complementing this result, after a long argument we are able to show in
particular (see Theorem 4.2) the existence of a universal constant C > 0 with
the following property: Any positive measured lamination (Λ, µ) ⊂ H2 with
norm ‖µ‖ < C (see 4.0.5) is the bending measure of the dome of a region Ω
which satisfies the equivariant K = 2 conjecture. This improves the recent
result of Šarič [24] that given µ of finite norm, there is a constant c = c(µ) > 0
such that the pleated surface corresponding to (Λ, cµ) is embedded.

We prove (see Theorem 3.1) that the nearest point retraction r : Ω →
Dome(Ω) is a continuous, 2-lipschitz mapping with respect to the induced
hyperbolic path metric on the dome and the hyperbolic metric on the floor.
Our result is sharp. It improves the original result in [17, Th. 2.3.1], in which
it is shown that r is 4-lipschitz. In [12, Cor. 4.4] it is shown that the nearest
point retraction is homotopic to a 2

√
2-lipschitz, equivariant map. In [11], a

study is made of the constants obtained under certain circumstances when the
domain Ω is not simply connected.

Any K-quasiconformal mapping of the unit disk D2 → D2 is automatically
a (K, a)-quasi-isometry with additive constant a = K log 2 when 1 < K ≤ 2
and a = 2.37(K − 1) otherwise (see Theorem 5.1). This has the following
consequence (see Corollary 5.4): If K is the least maximal dilatation, as we
vary over quasiconformal homeomorphisms in a homotopy class of maps R → S

between two Riemann surfaces of finite area, then the infimum of the constants
for lipschitz homeomorphisms in the same class satisfies L ≤ K.

We are most grateful to David Wright for the limit set picture Figure 3 and
also Figure 2. A nice account by David Wright is given in http://klein.math.
okstate.edu/kleinian/epstein.
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2. The once punctured torus

In this section, we prove that the best universal equivariant maximal di-
latation constant in Theorem 1.3 is strictly greater than two. The open subset
Ω ⊂ S2 in the counterexample is one of the two components of the domain
of discontinuity of a certain quasifuchsian group (see Figure 3). In fact, we
have counterexamples for all points in a nonempty open subset of the space of
quasifuchsian structures on the punctured torus.

This space can be parametrized by a single complex coordinate, using
complex earthquake coordinates. This method of constructing representations
and the associated hyperbolic 3-manifolds and their conformal structures at
infinity is due to Thurston. It was studied in [17], where complex earthquakes
were called quakebends. In [21], Curt McMullen proved several fundamental
results about the complex earthquake construction, and the current paper
depends essentially on his results.

A detailed discussion of complex earthquake coordinates for quasifuchsian
space will require us to understand the standard action of PSL(2, C) on upper
halfspace U3 by hyperbolic isometries. We construct quaternionic projective
space as the quotient of the nonzero quaternionic column vectors by the nonzero
quaternions acting on the right. In this way we get an action by GL(2, C) acting
on the left of one-dimensional quaternionic projective space, and therefore
an action by SL(2, C) and PSL(2, C). (However, note that general nonzero
complex multiples of the identity matrix in GL(2, C) do not act as the identity.)

If (u, v) �= (0, 0) is a pair of quaternions, this defines[
a b

c d

]
.[u : v] = [au + bv : cu + dv],

so that u = [u : 1] is sent to (au + b)(cu + d)−1, provided cu + d �= 0. A
quaternion u = x + iy + jt = [u : 1] with t > 0 is sent to a quaternion of the
same form. The set of such quaternions can be thought of as upper halfspace
U3 = {(x, y, t) : t > 0} ≡ H3, and we recover the standard action of PSL(2, C)
on U3. The subgroup PSL(2, R) preserves the vertical halfplane based on R,
namely {(x, 0, t) : t > 0}, where we now place U2.

The basepoint of our quasifuchsian-space is the square once-punctured
torus T0. This means that on T0 there is a pair of oriented simple geodesics α

and β, crossing each other once, which are mutually orthogonal at their point
of intersection, and that have the same length. A picture of a fundamental
domain in the upper halfplane U2 is given in Figure 1.

2.1. For each z = x+ iy ∈ C, we will define the map CEz : U2 → U3. We
think of U2 ⊂ U3 as the vertical plane lying over the real axis in C ⊂ ∂U3. Our
starting point is this standard inclusion CE0 : U2 → U2 ⊂ U3. Given z = x+iy,
CEz is defined in terms of a complex earthquake along α: We perform a right
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Figure 1: A fundamental domain for the square torus. The dotted semicircle
is the axis of B0. The vertical line is the axis of A.

earthquake along α through the signed distance x, and then bend through
a signed rotation of y radians. U2 is cut into countably many pieces by the
lifts of α under the covering map U2 → T0. The map CEz : U2 → U3 is an
isometry on each piece and, unless x = 0, is discontinuous along the lifts of α.
We normalize by insisting that CEz = CE0 on the piece immediately to the
left of the vertical axis.

Note that CEz = Ψz ◦ Ex, where Ex : U2 → U2 is a real earthquake and
Ψz : U2 → U3 is a pleating map, sometimes known as a bending map. The
bending takes place along the images of the lifts of α under the earthquake
map, not along the lifts of α, unless x = 0. The pleating map is continuous
and is an isometric embedding, in the sense that it sends a rectifiable path to
a rectifiable path of the same length.

Let F2 be the free group on the generators α and β. We define the ho-
momorphism ϕz : F2 → PSL(2, C) in such a way that CEz is ϕz-equivariant,
when we use the standard action of F2 on U2 corresponding to Figure 1 and
the standard action described above of PSL(2, C) on U3. We also ensure that,
for each z ∈ C,

traceϕz[α, β] = −2.

This forces us (modulo some obvious choices) to make the following definitions:

ϕz(α) = A =
[
−1 +

√
2 0

0 1 +
√

2

]
and

ϕz(β) = Bz =
[ √

2 exp(z/2) (1 +
√

2) exp(z/2)
(−1 +

√
2) exp(−z/2)

√
2 exp(−z/2)

]
.

Set Gz = ϕz(F2).
The set of values of z, for which ϕz is injective and Gz is a discrete group

of isometries, is shown in Figure 2.
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Figure 2: The values of z for which ϕz is injective and Gz is a discrete
group of isometries is the region lying between the upper and lower curves. The
whole picture is invariant by translation by arccosh(3), which is the length of α

in the punctured square torus. The Teichmüller space of T is holomorphically
equivalent to the subset of C above the lower curve. The point marked u is a
highest point on the upper curve, and xu is its x-coordinate. We have here a
picture of the part of quasifuchsian space of a punctured torus, corresponding
to trace(A) = 2

√
2. This picture was drawn by David Wright.

Here is an explanation of Figure 2. Changing the x-coordinate corresponds
to performing a signed earthquake of size equal to the change in x. Changing
the y-coordinate corresponds to bending.

If we start from the fuchsian group on the x-axis and bend by making y

nonzero, then at first the group remains quasifuchsian, and the limit set is a
topological circle which is the boundary of the pleated surface CEz(U2). The
convex hull boundary of the limit set consists of two pleated surfaces, one of
which is CEz(U2) = Ψz(U2), which we denote by Pz.

For z = x+ iy in the quasifuchsian region, the next assertion follows from
our discussion.

Lemma 2.2. From the hyperbolic metric on Pz given by the lengths of
rectifiable paths, as in Theorem 1.1, Pz/Gz has a hyperbolic structure which
can be identified with that of U2/Gx.

We have Pz = Dome(Ωz), where Ωz is one of the two domains of dis-
continuity of Gz. Let Ω′

z be the other domain of discontinuity. Each domain
of discontinuity gives rise to an element of Teichmüller space, and we get
Tz = Ωz/Gz and T ′

z = Ω′
z/Gz, two punctured tori. Because of the symmetry

of our construction with respect to complex conjugation, Tz = T ′
z̄.
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For fixed x, as y > 0 increases, the pleated surface CEz(U2) will eventually
touch itself along the limit set. Since the construction is equivariant, touching
must occur at infinitely many points simultaneously. For this z, Ω′

z either
disappears or becomes the union of a countable number of disjoint disks. In
fact the disks are round because the thrice punctured sphere has a unique
complete hyperbolic structure. Similarly, as y < 0 decreases, the mirror image
events occur, the structure Tz disappears, and we reach the boundary of Teich-
müller space.

As McMullen shows, Tz continues to have a well-defined projective struc-
ture for all z with y > 0, and Tz therefore has a well-defined conformal struc-
ture.

It may seem from the above explanation that, for fixed x, there should be a
maximal interval a ≤ y ≤ b, for which bending results in a proper dome, while
no other values of y have this property. Any such hope is quickly dispelled by
examining the web pages http://www.maths.warwick.ac.uk/dbae/papers
/EMM/wright.html. (This is a slightly modified copy of web pages created by
David Wright.) One sees that the parameter space is definitely not “vertically
convex”.

Let T be the set of z = x + iy ∈ C such that either y > 0 or such
that the complex earthquake with parameter z gives a quasifuchsian structure
Tz and a discrete group Gz of Möbius transformations. The following result,
fundamental for our purposes, is proved in [21, Th. 1.3].

Theorem 2.3 (McMullen’s Disk Theorem). T is biholomorphically
equivalent to the Teichmüller space of once-punctured tori. Moreover

U2 ⊂ T ⊂ {z = x + iy : y > −iπ} .

In Figure 2, T corresponds to the set of z above the lower of the two curves.
From now on we will think of Teichmüller space as this particular subset of C.
We denote by dT its hyperbolic metric, which is also the Teichmüller metric,
according to Royden’s theorem [23].

We denote by QF ⊂ T the quasifuchsian space, corresponding to the region
between the two curves in Figure 2.

The following result summarizes important features of the above discus-
sion.

Theorem 2.4. Given u, v ∈ QF ⊂ T ⊂ C, let f : Tu → Tv be the Teich-
müller map. Then the maximal dilatation K of f satisfies dT(u, v) = log K.

Let f̃ : Ωu → Ωv be a lift of f to a map between the components of the
ordinary sets associated with u, v. Any F2-equivariant quasiconformal home-
omorphism h : Ωu → Ωv, which is equivariantly isotopic to f̃ , has maximal
dilatation at least K; K is uniquely attained by h = f̃ .
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Let u = xu + iyu be a point on the upper boundary of QF, with yu

maximal. An illustration can be seen in Figure 2. Such a point u exists since
QF is periodic. Automatically ū = xu − iyu is a lowest point in T̄.

Theorem 2.5. Let u be a fixed highest point in QF. Let U be a sufficiently
small neighbourhood of u. Then, for any z = x+ iy ∈ U ∩QF, the Teichmüller
distance from Tx to Tz satisfies dT(x, z) > log(2).

For any F2-equivariant K-quasiconformal homeomorphism Ωz →
Dome(Ωz) which extends to the identity on ∂Ωz, K > 2. Therefore Keq > 2.

Proof. Let d− denote the hyperbolic metric in the halfplane

H− = {t ∈ C : Im(t) > −yu} .

In this metric, d−(u, xu) = log(2), since u = xu− iyu ∈ ∂H−. Now d−(u, xu) ≤
dT(u, xu) since T ⊂ H−. The inequality is strict because Teichmüller space is
a proper subset of H−. This fact was shown by McMullen in [21]. It can be
seen in Figure 2.

Consequently, when U is small enough and z = x+iy ∈ U∩QF, dT(x, z) >

log(2). By Lemma 2.2, Tx represents the same point in Teichmüller space as
Pz/Gz, which is one of the two components of the boundary of the convex
core of the quasifuchsian 3-manifold U3/Gz. Up in U3, Pz = Dome(Ωz), while
Ωz/Gz is equal to Tz in Teichmüller space. The Teichmüller distance from Tz

to Tx is equal to dT(z, x) > log(2).
By the definition of the Teichmüller distance, the maximal dilatation of

any quasiconformal homeomorphism between Tz and Tx, in the correct isotopy
class, is strictly greater than 2. Necessarily, any F2-equivariant quasiconformal
homeomorphism between Pz and Ωz has maximal dilatation strictly greater
than 2. In particular, any equivariant quasiconformal homeomorphism which
extends to the identity on ∂Ωz has maximal dilatation strictly greater than 2.

This completes the proof that Keq > 2. The open set of examples {Ωz}
we have found, that require the equivariant constant to be greater than 2,
are domains of discontinuity for once-punctured tori quasifuchsian groups. In
particular each is the interior of an embedded, closed quasidisk.

We end this section with a picture of a domain for which Keq > 2; see
Figure 3. Now, Ωz is a complementary domain of a limit set of a group Gz,
with z ∈ U ∩ QF.

Curt McMullen (personal communication) found experimentally that the
degenerate end of the hyperbolic 3-manifold that corresponds to the “lowest
point” u appears to have ending lamination equal to the golden mean slope
on the torus. That is, the ending lamination is preserved by the Anosov map[

2 1
1 1

]
of the torus.
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Figure 3: The complement in S1 of the limit set shown here is a coun-
terexample to the equivariant K = 2 conjecture. The picture shows the limit
set of Gu, where u is a highest point in QF ⊂ T ⊂ C. This seems to be a
one-sided degeneration of a quasifuchsian punctured torus group. This would
mean that, mathematically, the white part of the picture is dense. However,
according to Bishop and Jones (see [8]), the limit set of such a group must have
Hausdorff dimension two, so the blackness of the nowhere dense limit set is not
surprising. In fact, the small white round almost-disks should have a great deal
of limit set in them; this detail is absent because of intrinsic computational
difficulties. This picture was drawn by David Wright.

3. The nearest point retraction is 2-lipschitz

Let Ω ⊂ C be simply connected and not equal to C. We recall Thurston’s
definition of the nearest point retraction r : Ω → Dome(Ω): given z ∈ Ω,
expand a small horoball at z. Denote by r(z) ∈ Dome(Ω) ⊂ H3 the (unique)
point of first contact.

In this section we prove the following result.

Theorem 3.1. The nearest point retraction r : Ω → Dome(Ω) is
2-lipschitz in the respective hyperbolic metrics. The result is best possible.
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Question 3.2. What are the best constants for the quasi-isometry

r−1 : Dome(Ω) → Ω?

Note that r−1 is a relation, not a map.

Proof of Theorem 3.1. First we look at the folded case, described in §1.2.
The Riemann mapping z �→ z2 maps the upper halfplane onto a slit plane Ω,
obtained by removing the closed positive x-axis from C. This enables us to
work out hyperbolic distances in Ω. The nearest point retraction r sends the
negative x-axis to the vertical geodesic over 0 ∈ U3. These are geodesics in the
hyperbolic metric on Ω and the hyperbolic metric on Dome(Ω) respectively, and
r exactly doubles distances. It follows that, in the statement of Theorem 3.1,
we can do no better than the constant 2. At the other extreme, if Ω is a round
disk, then r is an isometry. We now show that the lipschitz constant of r is at
most 2.

It suffices to consider the case that S = Dome(Ω) is finitely bent and no
two of its bending lines have a common end point. For we may approximate
Ω by a finite union Ωn of round disks so that no three of the boundary circles
of Ωn meet at a point [17]. Given points z1, z2 ∈ Ω we may arrange the
approximations so that, for all n and for i = 1, 2, r(zi) = rn(zi) ∈ Sn =
Dome(Ωn). Then the hyperbolic distances dΩn

(z1, z2) and dSn
(rn(z1), rn(z2))

are arbitrarily close to dΩ(z1, z2) and dS(r(z1), r(z2)) respectively.
Therefore if we can prove that for all n, dSn

(rn(z1), rn(z2)) ≤ 2dΩn
(z1, z2),

then in the limit dS(r(z1), r(z2)) ≤ 2dΩ(z1, z2), which is what we need to prove.
So we may assume that Dome(Ω) is finitely bent such that no two bending

lines have a common end point. We may also assume that Ω is not a slit plane
or a round disk.

Now S = Dome(Ω) is a finite union of flat pieces and bending lines. A flat
piece F is a polygon in some hyperbolic plane H ⊂ H3. The circle ∂H ⊂ S2

is the common boundary of two open round disks in S2 exactly one of which,
say D, lies in Ω. The disk D is maximal in the sense that it is not contained
in any larger disk lying in Ω. Since D is associated with a flat piece, ∂D ∩ ∂Ω
consists of at least three distinct points.

If � ⊂ S is a bending line, then the inverse r−1(�), which is a closed set, is
a crescent with vertex angle α where α is the exterior bending angle of S at �.
Here we are using the term crescent in the following sense.

Definition 3.3. A crescent in S2 is a region bounded by two arcs of
round circles. It is equivalent under a Möbius transformation to a region in
the plane lying between two straight rays from the origin to infinity.

The open regions in Ω which are exterior to the union of crescents coming
from bending lines are called gaps. Thus if G is a gap, r is a conformal
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Figure 4: Ω is the union of four disks. Dome(Ω) is the union of five flat
pieces as can be seen in Figure 5. The fifth piece is a hyperbolic triangle
in the hyperbolic plane represented by a circle lying in the union of three of
the original disks. The dome has four bending lines, as shown in Figure 5.
The crescents shown are the inverse images of the bending lines under the
nearest point retraction. Notice that each boundary component of a crescent
is orthogonal to the appropriate circle.

isomorphism of G onto a flat piece F ; the set of inverses {r−1(int(F ))} of flat
pieces F is the set of gaps.

Given a flat piece F , it lies in a unique hyperbolic plane. The boundary
of this plane is a circle in S2, which bounds an open disk D ⊂ Ω. Let G ⊂ D

be the closure of the inverse image of the interior of F . So G = r−1(int(F )),
where we are taking the closure in D. Then r : G → F is an isometry if we
use the hyperbolic metrics on S and D. The inverse image in Ω of a bending
line is a crescent in C.

Definition 3.4. A set like G above is called a gap. We also use “gap”
to denote a component of the complement of the bending lamination in the
hyperbolic plane. Figure 4 illustrates the situation.

Each gap G is contained in a maximal disk D: the flat piece F ⊂ H3

corresponding to G lies in a hyperbolic plane H ⊂ H3, and H corresponds to
D ⊂ S2. The hyperbolic metric on H is isometric to the Poincaré metric on
D, and the isometry induces the identity on the common boundary ∂D = ∂H.
The relative boundary ∂G ∩ D is a nonempty finite union of geodesics in the
hyperbolic metric of D. Each component c of ∂G ∩ D is an edge of a crescent
C ⊂ Ω. The other edge c′ of C is a geodesic in another maximal disk D′ of
Ω and D′ corresponds to a flat piece F ′ that is adjacent to F along a bending
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Figure 5: Dome(Ω), where Ω is shown in Figure 4. The dome is placed in
the upper halfspace model, and is viewed from inside the convex hull of the
complement of Ω, using Euclidean perspective. The space under the dome lies
between Ω and Dome(Ω). Since the upper halfspace model is conformal, the
angle between disks in Figure 4 is equal to the angle between flat pieces shown
in Figure 5.

line �; the exterior bending angle satisfies 0 < α < π (since S is not folded).
The set of vertices of C is equal to ∂D ∩ ∂D′. This is also the set of endpoints
of �. The vertex angle of C is α. The nearest point retraction r sends C onto �.
Overall, Ω is the union of gaps and crescents, as shown in Figure 4.

Lemma 3.5. Suppose Ω ⊂ C is simply connected �= C and Dome(Ω) is
finitely bent, such that no two bending lines have a point at infinity in common.
Let D ⊂ Ω be a maximal disk and let G ⊂ D be a gap. Then the hyperbolic
metrics ρD|dz| of D and ρΩ|dz| of Ω satisfy

∀z ∈ G, ρΩ(z) ≤ ρD(z) ≤ 2ρΩ(z).(3.5.1)

Proof. The left-hand side of Inequality 3.5.1 is immediate. We need to
prove the righthand inequality.

Let ξ ∈ ∂G be a point that lies on an edge c of a crescent C associated with
the intersecting maximal open disks D, D′, with c ⊂ D. We will prove ρD(ξ) ≤
2ρΩ(ξ). Since the inequality is invariant under Möbius transformations, we may
assume that C is a wedge, with one vertex at 0 and the other at infinity. Then
D and D′ become euclidean halfplanes and Ω contains the union of these two
halfplanes. The picture is shown in Figure 6.

Denoting euclidean distance by d, we have

d(ξ, ∂Ω) = d(ξ, ∂D) = |ξ| = d(ξ, 0).
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Figure 6: This illustrates the first part of the proof of Lemma 3.5. The dotted
lines are part of the boundary of Ω.

Since ∞ /∈ Ω, by the Koebe inequality (see [2]),

ρΩ(ξ) ≥ 1
2d(ξ, ∂Ω)

.

Since D is a halfplane,

ρD(ξ) =
1

d(ξ, ∂D)
=

1
d(ξ, ∂Ω)

.

We conclude that ρD(ξ)/ρΩ(ξ) ≤ 2. This holds for all points ξ ∈ ∂G ∩ D,
where D is the open halfplane or disk defined above.

Next consider a component c of ∂G∩∂D ⊂ ∂Ω. For the purpose of proving
the inequality, we may assume that D is equal to the upper halfplane, and that
c is equal to the positive x-axis.

Fix ε > 0. We choose a horizontal euclidean strip R (see Figure 7) in
the upper halfplane, so that R is a neighbourhood of c in G. For all points
ξ = (x, y) ∈ G ∩ R with x ≥ 0, the orthogonal projection of ξ to R is the
closest point of ∂Ω, while if ξ ∈ G ∩ R, with x < 0, the closest point in ∂Ω
is 0. Making R sufficiently thin, we can ensure that d(ξ, ∂Ω) ≤ y(1 + ε).

We conclude as before that, for all ξ sufficiently close (in the euclidean
sense) to c,

ρΩ(ξ) ≥ 1
2d(ξ, ∂Ω)

≥ 1
2d(ξ, ∂D)(1 + ε)

=
ρD(ξ)

2(1 + ε)
.

We have shown, for all points ξ on or near ∂G, that

ρD(ξ) ≤ 2(1 + ε)ρΩ(ξ).
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Ω G

R
cΩ

Figure 7: This illustrates the second part of the proof of Lemma 3.5. The
label Ω appears twice in order to indicate that Ω encompasses the upper arc
shown. G, on the other hand, lies entirely above the upper arc. The dotted
line indicates the boundary of D.

Now
∆ log ρD = ρD

2 and ∆ log ρΩ = ρΩ
2.

Here ∆ is the euclidean laplacian. The first expression can be seen by direct
calculation with D equal to the upper halfplane. The second follows immedi-
ately upon changing coordinates since holomorphic functions are harmonic.

We conclude that, for all z ∈ D,

∆τ(z) > 0, where τ(z) = log
ρD

ρΩ
(z),

since we have excluded the case that Ω is a round disk. That is, τ is sub-
harmonic in D. Consequently τ cannot have a maximum in D. So it cannot
have a maximum in the interior of G. Now τ(ξ) ≤ log 2 on ∂G ∩ D and, near
∂G ∩ ∂Ω, τ(z) ≤ log(1 + ε) + log 2. Since ε > 0 is arbitrary, this establishes
Inequality 3.5.1 for G.

We now continue with the proof of Theorem 3.1 where no two bending
lines meet at infinity and the convex hull boundary is finitely bent.

Suppose G is a gap, that is, a region bounded by bending lines. We
normalize so that r(G) ⊂ S = Dome(Ω) is contained in a vertical halfplane in
U3. Then r|G is a euclidean rotation and, for z ∈ G, |r′(z)| = 1, where r′ refers
to the euclidean derivative. Consequently, from Inequality 3.5.1, for z ∈ G we
have

ρS(r(z))|r′(z)||dz| = ρS(r(z))|dz| = ρD(z)|dz| ≤ 2ρΩ(z)|dz|,

where the extreme terms give a form that is invariant under Möbius transfor-
mations.

Next consider a crescent C. Normalize so that its endpoints are 0,∞.
Then C is a wedge of vertex angle α < π. The euclidean halfplanes D, D′ are
adjacent to C along the two edges of C, with the earlier notation. Therefore,
given z ∈ C, the closest euclidean distance d(z, ∂Ω) is |z|, the distance to z = 0.
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Consequently

ρΩ(z) ≥ 1
2d(z, ∂Ω)

=
1

2|z| .

The bending line � corresponding to C becomes the vertical halfline ending
at 0 ∈ U3. The nearest point retraction r : C → � is a euclidean isometry on
each line in C through 0. In particular r : C → � preserves euclidean distances
to z = 0. Also, for z ∈ C, |r′(z)| ≤ 1. Consequently

ρS(r(z))|r′(z)| ≤ ρS(r(z)) =
1
|z| ≤ 2ρΩ(z).

We conclude that, for all z ∈ Ω,

ρS(r(z))|r′(z)| ≤ 2ρΩ(z).(3.5.2)

Upon integration, we find, for any two points z1, z2 ∈ Ω,

dS(r(z1), r(z2)) ≤ 2dΩ(z1, z2).(3.5.3)

4. Embedded pleated surfaces

Let (Λ, µ) be a measured lamination on the hyperbolic plane. We allow
µ to be a real-valued signed measure; the only restriction is that it should be
a Borel measure, supported on the space of leaves of Λ. In particular, the
measure of any compact transverse interval is finite.

Following Thurston, there is a pleating map Ψ(Λ,µ) : H2 → H3, which
sends rectifiable curves to rectifiable curves of the same length, such that the
signed bending along any short geodesic open interval C ⊂ H2 is µ(C) (see [17,
p. 209–215]). In subsection 2.1, we had a similar situation, but the pleating
map was denoted by Ψiy.

More generally, we have the complex earthquake

CE(Λ,zµ) : H2 → H3

based on (Λ, zµ), where Λ is a geodesic lamination of H2, µ is a transverse
signed measure, and z = x + iy ∈ C. To define this, we first apply a (real)
earthquake E(Λ,xµ) : H2 → H2. This is discontinuous along any leaf with
atomic measure and is continuous otherwise. It extends to a homeomor-
phism ∂H2 → ∂H2. The earthquake sends the geodesic lamination Λ to a
new geodesic lamination Λ′, with transverse measure µ′, induced from µ. We
now define the pleating map Ψ(Λ′,yµ′) : H2 → H3, sending rectifiable paths to
rectifiable paths of the same length. Then we define the complex earthquake
as the composition

CE(Λ,zµ) = Ψ(Λ′,yµ′) ◦ E(Λ,xµ).(4.0.4)
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The pleated surface P(Λ,zµ) ⊂ H3 is defined to be the image of the discontinuous
map CE(Λ,zµ). This image is also equal to the image of the isometric map
Ψ(Λ′,yµ′).

Consider the norm

‖µ‖ = ‖(Λ, µ)‖ = sup
C

|µ|(C) ∈ [0,∞](4.0.5)

as C varies over all open transverse geodesic intervals C of unit length. (We
get the same supremum if we vary over all half-open intervals of unit length,
but the answer may be larger if we vary over closed intervals of unit length.)
This is much the same thing as the average bending introduced by Martin
Bridgeman in [9]; more generally, he considered the quotient of the bending
measure deposited on a geodesic interval divided by the length of the interval.
The average bending has been used in other works, for example in Bridgeman
and Canary (see [11]).

Since ‖(Λ, µ)‖ = 0 if and only if the image of the pleating map is a plane,
the norm can be used as a measure of the “roundness” of a simply connected
region Ω ⊂ C, Ω �= C. We formalize this point of view with the following
definition:

Let (Λ, µ) be the bending measure on H2 for S = Dome(Ω).

Definition 4.1. We define the roundness measure ρ(Ω) = ‖(Λ, µ)‖.

Theorem 4.2. 1. There is a constant c1 > 0, satisfying

π + 1 ≤ c1 ≤ 2π − arcsin(1/ cosh(1)) ≈ 4.8731,

such that for each simply connected Ω �= C, ρ(Ω) ≤ c1. Let c1 be the
smallest such constant. The upper bound for c1 is due to Bridgeman in
[9] and [10].

2. There is a number c2 > 0 with the following property. Let (Λ, µ) be
any measured lamination on H2, where µ is a signed Borel measure with
‖(Λ, µ)‖ < c2. Then the pleating map Ψ(Λ,µ) : H2 → H3 is a bilipschitz
embedding which extends to an embedding of S1 = ∂H2 as a quasicircle
in S2 = ∂H3. Let c2 = 0.73.

3. If c2 is the largest constant satisfying 4.2.2, then

c2 ≤ 2 arcsin(tanh(1/2)) ≈ 0.96.

For any number c > 2 arcsin(tanh(1/2)), there is a geodesic lamination
Λ and a nonnegative measure µ, such that ‖(Λ, µ)‖ = c and the pleating
map Ψ(Λ,µ) : H2 → H3 is not an embedding.

4. If ρ = ρ(Ω) < c2, then there is a K(ρ)-quasiconformal homeomorphism
fΩ : Ω → Dome(Ω), which extends continuously to the identity on ∂Ω.
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Figure 8: Take Ω to be the central region shown in the diagram. The vertical
(euclidean) distance between the horizontal intervals is exactly twice the length
of the horizontal intervals. The vertical lines go to infinity.

Here K : [0, c2) → [1, 2] is a continuous, monotonic increasing function
with K(0) = 1.

If G is the group of Möbius transformations which preserves Ω, then fΩ

is G-equivariant. Thus Ω satisfies the equivariant K = 2 conjecture.

Remark 4.3. We conjecture that c2 = 2 arcsin(tanh(1/2)).

Proof of Theorem 4.2(1). Every explicit example of a convex hull boundary
gives a lower bound for c1. The inequality c1 ≥ π + 1 follows by taking Ω ⊂ C
as in Figure 8. The dome in upper halfspace is the union of two vertical planes,
with half-disks removed, together with the boundary of a half-cylinder which
joins the two vertical planes. The path along the top of the half-cylinder is
an interval of hyperbolic length 1. The bending along this interval is π + 1,
proving that c1 ≥ π + 1.

We next discuss the upper bound for c1. It is easy to show that c1 is
bounded above, if one is not bothered by the size of the bound. An ex-
plicit upper bound for c1, that is not too huge, can be estimated using [17,
Prop. 2.14.2]. The best available technique for estimating c1 is due to Bridge-
man (see [9, Th. 1]). This is further explained in [10], where it is shown that
c1 ≤ 2π − arcsin(1/ cosh(1) ≈ 4.8731.

For the following key lemma we have to choose a pair of numbers ε, θ0 > 0
such that θ0 +ε < π/2 while sin(θ0) > ε. Thus ε, θ0 must satisfy the inequality

ε < sin(θ0) < cos(ε).
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Lemma 4.4. Choose ε, θ0 as above. Let γ : [0,∞) be a piecewise geodesic
in H3, parametrized by pathlength, such that the sum of the bending angles
along each half -open subinterval of length 1 is at most ε. Let θ(t) be the angle
between γ′(t) (when it exists) and the geodesic ray from γ(0) through γ(t).
Then, for all t ≥ 0, 0 ≤ θ(t) ≤ θ0 + ε < π/2.

Proof. Suppose first γ : R → D2 is a geodesic parametrized by hyperbolic
arclength and let p ∈ H2. We write s = s(t) = d(p, γ(t)). We set θ(t) equal
to the angle between the oriented geodesic from p through γ(t) and γ, where
0 < θ < π. Then

s′(t) = cos(θ(t)) and θ′(t) = − sin(θ(t))
tanh(s(t))

< − sin(θ(t)).

In particular θ(t) is strictly decreasing along a geodesic, unless it is identically
zero.

Now let γ : [0,∞) → H3 be as in the statement of Lemma 4.4, p = γ(0). As
before define θ(t) at the smooth points to be the angle which the geodesic ray
from p to γ(t) makes with the tangent vector γ′(t). At a bending point s of γ,
instead define θ(s) to be the limit of θ(t) as t increases to s. At a bending point,
θ may jump upwards, but at other points it is strictly decreasing, provided
θ(t) > 0. The initial segment of γ has θ(t) = 0.

We will prove by contradiction that

∀ t ∈ [0,∞), 0 ≤ θ(t) ≤ θ0 + ε <
π

2
.

So suppose this is false. Then we can define

t2 = inf {t : θ(t) > θ0 + ε} .

Since the initial segment of γ has θ(t) = 0, we must have t2 > 0.
Again because of the initial segment, we can define

t1 = sup {t : 0 < t < t2 and θ(t) < θ0}
and see that t1 > 0. So, for t1 < t ≤ t2, we have

θ(t1) < θ0 ≤ θ(t) < θ0 + ε.

It follows that, at smooth points in (t1, t2),

θ′(t) = − sin(θ(t)) < − sin(θ0) < −ε.

We must have t2 ≥ t1 + 1, because θ can jump upwards a distance at most ε

in an open interval of length 1.
By integration, and taking into account that θ(t) is defined at bending

points by a limiting process, we find that

θ(t1 + 1) − θ(t1) < − sin(θ0) + ε < 0.

Therefore θ(t1 + 1) < θ(t1) < θ0. This contradicts the definition of t1 and
completes the proof of Lemma 4.4.
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From Lemma 4.4, we have

∀ t ∈ [0,∞), cos(θ0 + ε) ≤ cos(θ(t)) ≤ 1,

while at the smooth points, cos(θ(t)) = s′(t). Therefore

cos(θ0 + ε) ≤ s′(t) ≤ 1,

and upon integrating, we obtain

cos(θ0 + ε)(t2 − t1) ≤ d(γ(t1), γ(t2)) ≤ (t2 − t1).

This shows that γ is a bilipschitz map onto its image, where the image has the
induced metric from H3.

Corollary 4.5. In Lemma 4.4, ε = 0.73, and θ0 = 0.83 can be chosen,
since θ0 + ε < π/2 and sin(.83) > 0.73. For these choices, cos(θ0 + ε) > 1/100,
and

|t1 − t2|/100 ≤ d(γ(t1), γ(t2)) ≤ |t1 − t2|.

Corollary 4.6. There exists ε > 0, with the following property. Suppose
that (Λ, µ) is a measured lamination of the hyperbolic plane with ‖(Λ, µ)‖ ≤ ε.
(The measure is allowed to be signed .) Then the pleating map Ψ(Λ,µ) : H2 → H3

is bilipschitz so that its image is embedded. Moreover Ψ(Λ,µ) has a continuous
extension to ∂H2 which maps ∂H2 onto a quasicircle.

Explicitly, choose ε, θ0 so as to satisfy Lemma 4.4; for example set ε =
0.73, θ0 = 0.83. Then, in the respective hyperbolic metrics,

cos(θ0 + ε)d(u, v) ≤ d(Ψ(Λ,µ)(u), Ψ(Λ,µ)(v)) ≤ d(u, v).

Proof. Choose ε so that there is a pair ε, θ0 that satisfies Lemma 4.4.
Consider first the case that the bending lines are isolated, as we have been
assuming. The proof of Lemma 4.4 shows that the pleating mapping is bilips-
chitz, with the inequality as given.

For a general lamination, we approximate by a finite lamination. The
relevant inequalities remain the same.

It is a well-known fact that a bilipschitz map of D2 onto itself extends to a
homeomorphism of D2 which is quasisymmetric on ∂D2. In fact, even a quasi-
isometric map extends to a quasisymmetric map on S1. The same argument
applies to the map of D2 to a pleated surface in D3.

This type of phenomenon was first uncovered by Efremovič, Tihomirova
and others in the Russian school in the early 1960’s (see [15], [16] and [13]).
Margulis ([20]) independently proved a version which was similar to De-Spiller’s.
At much the same time, Mostow ([22]) proved a more general version, where
the map on the disk is assumed only to be a quasi-isometry, and does not even
have to be continuous. Mostow used such results to prove his famous Rigidity
Theorem.
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For those who are unfamiliar with the interesting argument, we give a
quick sketch of the proof of the Mostow version of these results, at least in
the special form in which we need it in our paper. A geodesic in the domain
maps to a quasigeodesic in the range. Each such quasigeodesic is at a uni-
formly bounded Hausdorff hyperbolic distance from some geodesic. This gives
a well-defined injective extension ∂D2 → ∂D3. Given four points in S2, the six
geodesics joining them define an ideal tetrahedron. The shape of the tetrahe-
dron, which is the same as the cross-ratio of the four points, is determined by
the hyperbolic distances between opposite edges and similarly for four points
in S1. For a quasi-isometry, large hyperbolic distances in H3 are controlled up
to a multiplicative constant by the corresponding large hyperbolic distances
in H2. For example continuity on the boundary can be proved by fixing three
points, u, v, w ∈ ∂D2. A point z ∈ D2 converges to u if and only if the dis-
tance from the geodesic zu to the fixed geodesic vw tends to infinity. This
implies that the distances between the image quasigeodesics tend to infinity,
and therefore that the image of z converges to the image of u. Quasisymmetry
can be defined in terms of the effect on cross-ratios.

Proof of Theorem 4.2(2). We have just proved that Theorem 4.2(2) holds
with c2 = 0.73.

Proof of 4.2(3). By abuse of notation, we are now using c2 to denote the
supremum of all values of c2 for which 4.2(2) is true. We have shown that
c2 ≥ 0.73. All that remains is to prove the stated upper bound for c2.

Return to the number θ0 = 2 arcsin(tanh(1/2)) used in Corollary 4.5.
We claim that c2 ≤ θ0. To show this, consider a horizontal horocycle in the
upper halfplane. Mark points along this horocycle such that consecutive points
are a unit distance apart. Join each pair of consecutive points by a geodesic
arc. Then the exterior bending angle between successive geodesic arcs is θ0;
the bending along any half-open interval of length 1 that is transverse to the
bending lines is the same.

The relevant region Ω is the region in the complex plane lying between
such a curve and its complex conjugate. Then Dome(Ω) is embedded, but it
touches itself at infinity. Any increase in angle will result in a self-intersection.

The proof of 4.2.4 will come at the end of this section. First we must get
in position to apply the λ-lemma.

Given a finite lamination (Λ, µ) and λ ∈ C, we have the complex earth-
quake map CEλ = CE(Λ,λµ) : D2 → D3. This map is discontinuous on the
bending lines if and only if the real part of λ is nonzero, but the extension to
S1 → S2 is always continuous. Let λ = x+ iy ∈ C. Let (Λ′, µ′) be the image of
(Λ, µ) under the earthquake E(Λ,xµ). We recall that the complex earthquake
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CE(Λ,λµ) : D2 → D3, is quasi-isometric and in general discontinuous, whereas
the pleating map Ψ(Λ′,yµ′) : D2 → D3 is bilipschitz.

Lemma 4.7. Let (Λ, µ) be a measured lamination. Suppose U ⊂ C is an
open subset such that, for all λ ∈ U , ‖(Λ, λµ)‖ < c2. Then, for each z ∈ S1,
CE(Λ,λµ)(z) is a holomorphic function of λ ∈ U .

In Corollary 4.13 we will produce a fixed, simply-connected U containing
R which is independent of Λ and µ, and for which the hypotheses of the lemma
hold whenever ‖µ‖ ≤ 1.

Proof. Let (Λn, µn) be a sequence of finite measured laminations con-
verging to (Λ, µ), in the sense that, for any continuous function f , with com-
pact support in an interval transverse to Λ,

∫
f dµn converges to

∫
f dµ. We

also assume that the norm of each µn is less than c2 and that, for each n,
Λn ⊂ Λn+1 ⊂ Λ. We write CEn,λ = CE(Λn,µn).

For each z ∈ S1, and each n ∈ N, CEn,λ(z) is a holomorphic function of
λ ∈ U , since the finite set of Möbius transformations involved in the definition
of CEn,λ all depend holomorphically on λ.

Let γ be a geodesic or gap for Λ. For each z ∈ γ, CEn,λ(z) converges
to CEλ(z). The convergence is known to be uniform on γ ∩ K, where K is
a compact subset of D2 (see, for example [17]). Moreover, the restriction to
γ is given by a Möbius transformation. It follows that CEn,λ(z) converges to
CEλ(z), uniformly for λ ∈ D2 and z ∈ γ, where the closure of γ is taken in the
closed unit disk. Consequently for each fixed z ∈ S1∩γ, CEλ(z) is holomorphic
in λ.

Now each map in the family {CEn,λ, CEλ} gives a quasi-isometry D2 →
D3, with constants depending only on ‖µ‖. The family

{
CEn,λ|S1, CEλ|S1

}
is therefore equicontinuous, with constants depending only on ‖µ‖. Since the
set {γ} is dense in S1, it follows that CEn,λ|S1 converges to CEλ|S1, and the
convergence is uniform in λ and in z ∈ S1. Therefore, for z ∈ S1, CEλ(z) is a
holomorphic function of λ.

We now recall the λ-lemma, as treated in Mané–Sad–Sullivan [19], Sullivan–
Thurston [27], Bers–Royden [3], and Slodkowski [25]. The strongest of these
is Slodkowski’s and that has been further expanded to an equivariant form in
[14] and, independently, in [26].

Definition 4.8. Let B ⊂ S2 be an arbitrary set containing at least three
points. Let {fλ(z)} denote a family of functions B → S2 with parameter
λ ∈ D2. The family {fλ} is called a holomorphic motion of B if it has the
following three properties:

• For each fixed λ ∈ D2, fλ : z ∈ B �→ fλ(z) ∈ S2 is injective.
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• For each fixed z ∈ B, the map λ �→ fλ(z) is a holomorphic map D2 → S2.

• For each z ∈ B, f0(z) = z.

Theorem 4.9 (λ-Lemma). Let G be a group of Möbius transformations
which preserves a subset B ⊂ S2. Suppose {fλ} is a holomorphic motion of B.
Suppose further that, for each λ ∈ D2, we have an isomorphism G → Gλ with
a group of Möbius transformations of fλ(B), such that fλ is G-equivariant.

Then

1. fλ(z) is jointly continuous in λ and z.

2. For fixed λ ∈ D2, fλ(z) (z ∈ B) is the restriction to B of a K∗
λ -quasi-

conformal and G-equivariant mapping f∗λ : S2 → S2 where

K∗
λ =

1 + |λ|
1 − |λ| .

3. With λ ∈ D2 and z ∈ S2, {f∗λ (z)} gives a holomorphic motion of S2.

Note that continuity in z is not assumed; instead, continuity is a conclu-
sion. In particular, if B = D2, then fλ(B) is a quasidisk.

In order to apply the λ-lemma to our situation, we need to identify a set
of λ ∈ C for which CE(Λ,λµ)|S1 is injective. This will require some estimates
from hyperbolic geometry.

Lemma 4.10. Let α : R → H2 and β : R → H2 be disjoint geodesics in
H2 with arclength parameters. Let A = α(0) and B = α(x), with x > 0. Let
π : H2 → β be orthogonal projection onto the geodesic β. Let P = π(A) and
Q = π(B). Let u = d(A, P ) and v = d(B, Q). Then

sinh(u) ≤ ex sinh(v), and sinh(v) ≤ ex sinh(u).

Equality is attained in one of the two equalities if and only if α and β meet at
infinity.

Proof. Let θ = ∠PAB. Working in the Minkowski model, we find a
general identity for a quadrilateral with two right angles,

sinh(v) = cosh(x) sinh(u) − cos(θ) sinh(x) cosh(u).(4.10.6)

When α and β meet at ∞, the quadrilateral becomes a right triangle for which
tanh(u) = cos(φ). Here φ < π/2 is the smallest possible value for θ. Therefore
we have also

− tanh(u) ≤ cos(θ) ≤ tanh(u).

With the help of this latter inequality, the claimed result follows from Iden-
tity 4.10.6.
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Figure 9: This picture illustrates the proof of Lemma 4.11.

Lemma 4.11. Let α, β and γ be disjoint geodesics, such that β separates
α from γ. Let E be an earthquake along β through a distance x ∈ R. Let α′ and
γ′ be the images of α and γ under E. Then sinh(d(α′, γ′)) ≤ e|x| sinh(d(α, γ))
and d(α′, γ′) ≤ e|x|/2d(α, γ).

Proof. If α and γ have a common point at infinity, then the inequalities
say that 0 ≤ 0. So we assume that α and γ do not have a common endpoint at
infinity. In this case, and if in addition x �= 0, the inequalities in the statement
are strict.

By reflecting in β if necessary, we may assume that x > 0. We take a
shortest geodesic segment σ from a point of α to a point of γ. The earthquake
breaks σ into two segments, AC of length u1 and EF of length u2, where
C, E ∈ β, A ∈ α′ and E ∈ γ′ and d(C, E) = x (see Figure 9). Since σ is
a geodesic, we have ∠ACE = ∠FEC. Let D be the midpoint of CE. We
drop perpendiculars from D to α′ and γ′, obtaining segments DB and DG of
lengths v1 and v2 respectively.

Clearly d(α′, γ′) ≤ v1 + v2. By Lemma 4.10, sinh(vi) ≤ ex/2 sinh(ui).
Also cosh2(vi) = 1 + sinh2(vi) < ex cosh2(ui), so that cosh(vi) < ex/2 cosh(ui).
Putting this together, and using the sum formula for sinh, we obtain

sinh(d(α′, γ′)) ≤ sinh(v1 + v2) < ex sinh(u1 + u2) = ex sinh(d(α, γ)).

To prove the final inequality, note that

sinh(vi) ≤ ex/2 sinh(ui) < sinh(ex/2ui),

so that vi < ex/2ui.
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The next estimate is an improvement on that found in [24].

Theorem 4.12. Let α and γ be leaves of a geodesic lamination (Λ, µ) with
signed measure µ. Let X be an open transverse geodesic segment, with end-
points on α and γ. Let x = |µ|(X). Let α′ and β′ be the images of α and β un-
der the earthquake specified by µ. Then sinh(d(α′, β′)) ≤ ex sinh(d(α, β)), and
sinh(d(α, β)) ≤ ex sinh(d(α′, β′)). Also, d(α′, β′) ≤ ex/2d(α, β), and d(α, β) ≤
ex/2d(α′, β′).

Proof. Only leaves strictly between α and γ make any difference to the
computation. We may therefore assume that α and γ carry no atomic measure,
and that all other leaves separate α from γ. We may therefore approximate
(Λ, µ) by a finite lamination with leaves β1, . . . , βn which lie strictly between
α and γ and are numbered consecutively. Let Ei be the hyperbolic trans-
formation with axis βi, translating a distance xi ∈ R. We may assume that
x =

∑
|xi|.

We may assume that the earthquake fixes α. We have

E1 . . . En(γ) = γ′.

For 1 ≤ i ≤ n + 1, we define γi = Ei . . . En(γ). By Lemma 4.11, we have
sinh(d(α, γi)) ≤ e|xi| sinh(d(α, γi+1)). It follows that

sinh(d(α, γ′)) ≤ ex sinh(d(α, γ)).

The reverse inequality follows since γ′ is obtained from γ by applying the
inverse earthquake. The proof of the other inequalities is virtually the same.

We can apply Theorem 4.12 to construct the region U for Lemma 4.7.

Corollary 4.13. Let (Λ, µ) be a nontrivial measured lamination, µ a
signed measure and c2 any constant that satisfies condition 4.2(2); for example,
c2 = 0.73. Let

f(u, x) = min
(
arcsinh(e|x| sinh(u)), e|x|/2u

)
.(4.13.7)

Let U ⊂ C be the simply connected region given by

U =
{

x + iy : |y| <
c2

f(1, |x|) + 1

}
.

Then, for each λ ∈ U , ‖(Λ, λµ/ ‖µ‖)‖ < c2 and the corresponding pleating map
Ψ(Λ′,λµ′/‖µ‖) is a bilipschitz embedding. (The notation is explained just before
Equation 4.0.4.)

The region U is shown in Figure 10.
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Figure 10: The region U . The highest point in the boundary of the region is
(0, c2) and the lowest point is (0,−c2).

Proof. Set λ = x + iy. Let E be the earthquake supported on Λ, induced
by the measure xµ/ ‖µ‖, which has norm |x|. Under E, the image lamination
is Λ′, with transverse measure E(µ). The measure used for bending is µ′ =
yE(µ)/ ‖µ‖. We want to estimate

‖λµ/ ‖µ‖‖ =
∥∥µ′∥∥ = |y| ‖E(µ)‖ / ‖µ‖ .

We need to find the maximum E(µ)-measure of any half-open interval A′ of
length 1. By Theorem 4.12, a shortest geodesic interval A, meeting exactly the
leaves of Λ corresponding to those leaves of Λ′ met by A′, has length at most
f(1, |x|), where f is defined in Equation 4.13.7. The |µ|-measure carried by A

is bounded above by ‖µ‖ for each unit of length. This means that the |E(µ)|-
measure carried by A′ is at most ‖µ‖ (f(1, |x|)+1). Here we have taken account
of the fact that Theorem 4.12 deals with an interval of any length, whereas
our knowledge of the measure on a transverse interval is confined to intervals
of integral length. (So a better estimate could have been found by using the
smallest integer greater than or equal to ‖µ‖ f(1, |x| ‖µ‖), but Figure 10 would
not have looked so nice.) So ‖E(µ)‖ ≤ ‖µ‖ (f(1, |x|) + 1). It follows that
‖µ′‖ ≤ |y|(f(1, |x|) + 1). The region U is determined by the requirement that
‖µ′‖ ≤ c2.

We summarize our work of this section in the following result, which also
proves 4.2.4. In the next result, λ ‖µ‖ plays the role that was played by λ in
Corollary 4.13.

Theorem 4.14. Let (Λ, µ) be any geodesic lamination with signed mea-
sure of finite norm ‖µ‖ = ‖(Λ, µ)‖. Let λ ∈ C be chosen so that λ ‖µ‖ ∈ U .

1. The complex earthquake map CE(Λ,λµ) : D2 → D3 extends to a holo-
morphic motion of S1 in S2. By Theorem 4.9, the holomorphic motion
extends to a holomorphic motion of S2 in S2, which we denote by Φ(Λ,λµ).
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2. For λ ‖µ‖ ∈ U , Φ(Λ,λµ) : S2 → S2 is a quasiconformal homeomorphism.
Its maximal dilatation K satisfies

K ≤ 1 + |h(λ ‖µ‖)|
1 − |h(λ ‖µ‖)| ,

where h : U → D2 is a Riemann map taking 0 to 0.

3. If there is a group of Möbius transformations which preserves (Λ, µ), then
the holomorphic motion ψ can be taken so that it commutes with G.

4. Suppose in addition that µ is a nonnegative measure. Set

V = {w ∈ C : |w| < 1/3}.

If λ ‖µ‖ ∈ U , then the image of CE(Λ,λµ) is the dome of a region Ωλ.
It is also the image of Ψ(Λ′,λµ′). Any nonnegative real -valued measured
lamination (Λ, µ) for which h(‖µ‖) ∈ V , determines an embedded pleated
surface over a floor Ω for which Keq ≤ 2 holds.

Proof. It follows from Theorem 4.2(2) that the pleated surface which is
the image of Ψ(Λ′,λµ′) or, equivalently, of CE(Λ,λµ), is the dome of a simply
connected open region Ωλ ⊂ S2.

According to Lemma 4.7, we have a holomorphic motion of S1 in S2,
with parameter λ ‖µ‖ in the open topological disk U . After transforming U

to the unit disk by a Riemann mapping h, the hypotheses of the λ-Lemma
(Theorem 4.9) are satisfied. We obtain a holomorphic motion Φ(Λ,λµ) : S2 →
S2, where the dependence on λ is holomorphic. According to [14], we can
choose this holomorphic motion equivariantly.

If λ = iy is pure imaginary, we have

CE(Λ,λµ) = Ψ(Λ,yµ)

since the earthquake component of the factorization is the identity. It follows
that the holomorphic motion Φ(Λ,λµ) agrees with extension of the pleating map
to the boundary S1.

According to Theorem 4.9, Φ(Λ,λµ) is an equivariant quasiconformal home-
omorphism with constant at most 2, since h(|y| ‖µ‖) ∈ V . Recall that Ψ(Λ,λµ) :
D2 → Dome(Ωλ) is an equivariant isometry. Hence

Φ(Λ,λµ) ◦
(
Ψ(Λ,λµ) : D2 → Dome(Ωλ)

)−1

is an equivariant quasiconformal homeomorphism which extends to the identity
on the boundary, and the constant of quasiconformality is at most 2. This
proves that Keq ≤ 2 for such regions.
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5. Boundary values

The object of this section is to show that all quasiconformal homeomor-
phisms are quasi-isometries. This useful general fact is established in Theo-
rem 5.1.

An indication of this phenomenon is seen in the Ahlfors-Beurling and
Douady-Earle extensions to D2 of quasisymmetric homeomorphisms of S1.
These are known to be quasi-isometries, with constants determined by the
quasisymmetric constants. Our work also controls constants, and we obtain a
sharp result for the multiplicative constant.

In the converse direction, it is clear that we cannot hope for a quasi-
isometry to be quasiconformal: a quasi-isometry doesn’t even need to be con-
tinuous, and quasiconformality is a local property.

In 5.3 we will apply the result to give an upper bound for best lipschitz
constants.

Theorem 5.1. Suppose f : D2 → D2 is a K-quasiconformal map. Let d

denote the hyperbolic metric. Then there exists a = a(K) > 0 such that

∀ z, w ∈ D2, (d(z, w) − a)/K ≤ d(f(z), f(w)) ≤ Kd(z, w) + a,(5.1.8)

where a = a(K) > 0. Also, a(K) = K log 2 if 1 < K ≤ 2 and a(K) =
2.37(K − 1) if K > 2.

Proof. We may assume that f(0) = 0. It suffices to estimate d(0, f(z)).
By the Hersch-Pfluger distortion theorem (see [18, p. 64]),

∀ z ∈ D2, |f(z)| ≤ φK(|z|).(5.1.9)

Here φK is the distortion function which only depends on the maximal dilata-
tion K. In particular for K = 2,

φ2(t) =
2
√

t

1 + t
, 0 ≤ t ≤ 1.

For a 2-quasiconformal map f , Inequality 5.1.9 implies

|f(z)| ≤ 2
√

|z|
1 + |z| .(5.1.10)

Recall that in the unit disk model, hyperbolic distance is given by the
formula d(0, z) = log

(
1+|z|
1−|z|

)
. Introducing the strictly increasing function

g : [0, 1] → [1, 2] given by g(u) = (1+u)2

1+u2 and substituting Inequality 5.1.10,
we find

d(0, f(z)) − 2d(0, z) ≤ 2 log
(
g

(√
|z|

))
< 2 log 2.

From this we conclude that

d(0, f(z)) ≤ 2d(0, z) + 2 log 2.(5.1.11)
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This proves the right side of Inequality 5.1.8 when K = 2. The left side is
proved by applying Inequality 5.1.11 to f−1.

To continue, we need the following lemma.

Lemma 5.2. Given L ≥ 1, and a point p on a hyperbolic geodesic γ, there
is an L-quasiconformal diffeomorphism fL : H2 → H2 which fixes p and sends
γ to itself, stretching hyperbolic distances along γ by a factor L, and stretching
all other distances by a factor between 1 and L.

Proof. We use the upper halfplane model. Take i = p and γ to be
a vertical geodesic through i. In polar coordinates about the origin define
fL : (r, θ) �→ (rL, θ). Its complex dilatation is µ = L−1

L+1
z
z .

Continuing with the proof of Theorem 5.1, we separate the proof into two
cases. In the case 1 < K < 2, apply Lemma 5.2 to D2, with L = 2/K, p = 0
and γ equal to the geodesic passing through 0 and f(z). Note that fLf is
2-quasiconformal and fixes 0. We obtain

Ld(0, f(z)) = d(0, fLf(z)) ≤ 2d(0, z) + 2 log 2.

Therefore d(0, f(z)) ≤ Kd(0, z) + K log 2.
In the case K > 2, find the integer n ≥ 2 such that 2n−1 < K ≤ 2n.

According to [1, p. 100], f can be written as the composition of K1/n-quasi-
conformal maps fi : D2 → D2, 1 ≤ i ≤ n

f = f1 ◦ f2 ◦ · · · ◦ fn.

Apply Inequality 5.1.8 to each fi, with K replaced by K1/n ≤ 2. We find a
constant an such that, for all z, w ∈ D2, d(g(z), g(w)) ≤ Kd(z, w) + an. The
inductive procedure allows us to find a value for an in terms of K:

an =
K1/n log(2) (K − 1)

K1/n − 1
≤ (K − 1)

√
2 log 2√

2 − 1
.

Here we are also using the fact that

K1/n > 2(n−1)/n ≥
√

2.

So, if K > 2, we can take a(K) = 2.37(K − 1).

5.3. Minimal lipschitz constants. Suppose g : R → S is a homeomor-
phism between complete hyperbolic surfaces of finite area. Let Lg be the lips-
chitz constant of g if g is lipschitz and ∞ otherwise. Let Kg be the dilatation
of g if g is quasiconformal and ∞ otherwise.

We obtain a new proof of Wolpert’s Theorem (see [31]).
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Corollary 5.4. Let f : R → S be a homeomorphism between complete
hyperbolic surfaces of finite topological type. Set K(f) = inf{Kg : g � f}, and
L(f) = inf{Lg : g � f}, where g varies over all homeomorphisms which are
homotopic to f . Then L(f) ≤ K(f).

We remark that in the definition of K(f), “min” replaces “inf” in the light
of Teichmüller’s famous theorem. In the case of L(f), likewise “min” can be
used in place of “inf” because L(f) is achieved by a (not necessarily unique)
lipschitz homeomorphism, as shown by Thurston [30, p. 4].

Proof. We may assume without loss of generality that f is the Teichmüller
map with Kf = K(f). According to Thurston’s unpublished manuscript [30],

L(f) = inf
α

length[f(α)]
length[α]

,

where α is a simple closed geodesic on R of hyperbolic length length[α] and
length[f(α)] is the length on S of the geodesic freely homotopic to f(α).

Choose fuchsian representations GR, GS for R and S so that πR : D2 →
D2/GR and πS : D2 → D2/GS . Let f∗ : D2 → D2 be a lift of f . Let α be
an arbitrary simple closed geodesic on R. Choose a component α∗ of π−1

R (α).
We can write α∗ as the disjoint union of half-closed arcs α∗ = ∪jαj , where
πR : αj → α is bijective. Applying Theorem 5.1 we find

length[f∗(αj ∪ αj+1)] ≤ Kf (length[αj ∪ αj+1]) + a(Kf ).

Projecting back to the surfaces we have

2length[f(α)] ≤ 2Kf (length[α]) + a(Kf ),

or,

length[f(α)] ≤ Kf length[α] +
a(Kf )

2
.

More generally,

length[f(α)] ≤ Kf (length[α]) +
a(Kf )

n
.

Since this holds for all indices,

length[f(α)] ≤ Kf (length[α]).

Now α is an arbitrarily chosen simple closed geodesic. Consequently Corol-
lary 5.4 follows directly from Thurston’s result above.

Finally we will generalize Corollary 5.4 to the disk.

Theorem 5.5. Let f : D2 → D2 be a homeomorphism from the closed disk
to itself and set K(f) = inf{Kg : g � f} where g varies over all quasiconformal
maps with the same boundary values as f . Set L(f) = inf{Lg : g � f},
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where g now varies over all continuous mappings D2 → D2, not necessarily
homeomorphisms, which have the same boundary values as f . Then L(f) ≤
K(f).

Proof. We may assume that K(f) = Kf is finite. We normalize by fixing
three points on S1. We will assume that all our maps fix these same three
points.

Let µ be the Beltrami differential of f . Choose a large genus n and then
a fundamental domain Fn ∈ D2 for a closed surface of genus g. We take Fn to
be a regular polygon with 4n sides, centre 0 and vertex angles π/2n. Let Gn

be the group of Möbius transformations preserving the unit disk generated by
the transformations that pair opposite sides of Fn. Now, Gn is isomorphic to
the fundamental group of a closed surface of genus n. Let µn be the result of
distributing µ around D2, using the action of Gn. Solving the Beltrami equation
gives a quasiconformal homeomorphism fn : D2 → D2 which conjugates Gn to
another fuchsian group Hn.

As n → ∞, Fn ↗ D2. Since µn converges to µ pointwise on D2, fn

converges to f uniformly. This is most easily seen by reflecting µn, µ to the
exterior of D2 and solving the Beltrami equations on S2. The normalized
solutions automatically map D2 onto itself. Since ‖µn‖ ≤ ‖µ‖, and µn → µ

pointwise a.e., fn → f uniformly on S2 and hence on D2 (we have normalized
them consistently); see [18, Th. 4.1] or [1, Lemma 1, Ch. V]. In particular the
boundary values of {fn} converge to those of f .

For each n, let gn be a Gn-equivariant lipschitz mapping which minimizes
the lipschitz constant Ln. By Corollary 5.4, Ln ≤ K. Since gn has the same
boundary values as fn, these converge uniformly to boundary values of f .

By the Ascoli theorem, we have a subsequence of (gn)n∈N which converges
to a limit g : D2 → D2 which is lipschitz, with lipschitz constant L ≤ K.
Clearly, g has the same boundary values as f .

A similar technique can be applied to obtain a corresponding result on an
arbitrary hyperbolic surface. It would be interesting to know if in Theorem 5.5
one could take g to be a homeomorphism, or even bilipschitz.
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