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Higher composition laws I:

A new view on Gauss composition,
and quadratic generalizations

By Manjul Bhargava

1. Introduction

Two centuries ago, in his celebrated work Disquisitiones Arithmeticae of
1801, Gauss laid down the beautiful law of composition of integral binary
quadratic forms which would play such a critical role in number theory in the
decades to follow. Even today, two centuries later, this law of composition still
remains one of the primary tools for understanding and computing with the
class groups of quadratic orders.

It is hence only natural to ask whether higher analogues of this composi-
tion law exist that could shed light on the structure of other algebraic number
rings and fields. This article forms the first of a series of four articles in which
our aim is precisely to develop such “higher composition laws”. In fact, we
show that Gauss’s law of composition is only one of at least fourteen compo-
sition laws of its kind which yield information on number rings and their class
groups.

In this paper, we begin by deriving a general law of composition on 2×2×2
cubes of integers, from which we are able to obtain Gauss’s composition law
on binary quadratic forms as a simple special case in a manner reminiscent of
the group law on plane elliptic curves. We also obtain from this composition
law on 2 × 2 × 2 cubes four further new laws of composition. These laws of
composition are defined on 1) binary cubic forms, 2) pairs of binary quadratic
forms, 3) pairs of quaternary alternating 2-forms, and 4) senary (six-variable)
alternating 3-forms.

More precisely, Gauss’s theorem states that the set of SL2(Z)-equivalence
classes of primitive binary quadratic forms of a given discriminant D has an
inherent group structure. The five other spaces of forms mentioned above
(including the space of 2× 2× 2 cubes) also possess natural actions by special
linear groups over Z and certain products thereof. We prove that, just like
Gauss’s space of binary quadratic forms, each of these group actions has the
following remarkable properties. First, each of these six spaces possesses only
a single polynomial invariant for the corresponding group action, which we call
the discriminant. This discriminant invariant is found to take only values that
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are 0 or 1 (mod 4). Second, there is a natural notion of projectivity for elements
in these spaces, which reduces to the notion of primitivity in the case of binary
quadratic forms. Finally, for each of these spaces L, the set Cl(L; D) of orbits
of projective elements having a fixed discriminant D is naturally equipped with
the structure of a finite abelian group.

The six composition laws mentioned above all turn out to have natural
interpretations in terms of ideal classes of quadratic rings. We prove that the
law of composition on 2 × 2 × 2 cubes of discriminant D gives rise to groups
isomorphic to Cl+(S)×Cl+(S), where Cl+(S) denotes the narrow class group
of the quadratic order S of discriminant D. This interpretation of the space of
2× 2× 2 cubes then specializes to give the narrow class group in Gauss’s case
and in the cases of pairs of binary quadratic forms and pairs of quaternary
alternating 2-forms, and yields roughly the 3-part of the narrow class group in
the case of binary cubic forms. Finally, it gives the trivial group in the case of
six-variable alternating 3-forms, yielding the interesting consequence that, for
any fundamental discriminant D, there is exactly one integral senary 3-form
E ∈ ∧3Z6 having discriminant D (up to SL6(Z)-equivalence).

We note that many of the spaces we derive in this series of articles were
previously considered over algebraically closed fields by Sato-Kimura [7] in
their monumental work classifying prehomogeneous vector spaces. Over other
fields such as the rational numbers, these spaces were again considered in
the important work of Wright-Yukie [9], who showed that generic rational
orbits in these spaces correspond to étale extensions of degrees 1, 2, 3, 4, or 5.
Our approach differs from previous work in that we consider orbits over the
integers Z; as we shall see, the integer orbits have an extremely rich structure,
extending Gauss’s work on the space of binary quadratic forms to various other
spaces of forms.

The organization of this paper is as follows. Section 2 forms an ex-
tended introduction in which we describe, in an elementary manner, the above-
mentioned six composition laws and the elegant properties which uniquely de-
termine them. In Section 3 we describe how to rephrase these six composition
laws in the language of ideal classes of quadratic orders, when the discriminant
is nonzero; we use this new formulation to provide proofs of the assertions of
Section 2 as well as to gain an understanding of the nonprojective elements of
these spaces in terms of nonprojective ideal classes. In Section 4, we conclude
by discussing the mysterious relationship between our composition laws and
the exceptional Lie groups.

Remarks on terminology and notation. An n-ary k-ic form is a homoge-
neous polynomial in n variables of degree k. For example, a binary quadratic
form is a function of the form f(x, y) = ax2 + bxy + cy2 for some coefficients
a, b, c. We will denote by (SymkZn)∗ the

(
n+k−1

k

)
-dimensional lattice of n-ary
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k-ic forms with integer coefficients. The reason for the “∗” is that there is also
a sublattice SymkZn corresponding to the forms f : Zn → Z satisfying f(ξ) =
F (ξ, . . . , ξ) for some symmetric multilinear function F : Zn × · · · × Zn → Z
(classically called the “polarization” of f). Thus, for example, (Sym2Z2)∗ is the
space of binary quadratic forms f(x, y) = ax2+bxy+cy2 with a, b, c ∈ Z, while
Sym2Z2 is the subspace of such forms where b is even, i.e., forms corresponding
to integral symmetric matrices

[
a b/2

b/2 c

]
. Analogously, (Sym3Z2)∗ is the space

of integer-coefficient binary cubic forms f(x, y) = ax3+bx2y+cxy2+dy3, while
Sym3Z2 is the subspace of such forms with b and c divisible by 3. Finally, one
also has the space ∧kZn of n-ary alternating k-forms, i.e., multilinear functions
Zn × · · · × Zn → Z that change sign when any two variables are interchanged.

2. Quadratic composition and 2 × 2 × 2 cubes of integers

In this section, we discuss the space of 2 × 2× 2 cubical integer matrices,
modulo the natural action of Γ = SL2(Z)× SL2(Z)× SL2(Z), and we describe
the six composition laws (including Gauss’s law) that can be obtained from
this perspective. No proofs are given in this section; we postpone them until
Section 3.

2.1. The fundamental slicings. Let C2 denote the space Z2 ⊗ Z2 ⊗ Z2.
Since C2 is a free abelian group of rank 8, each element of C2 can be represented
as a vector (a, b, c, d, e, f, g, h) or, more naturally, as a cube of integers

a b

c d

e f

g h
��

��

��

��

.
(1)

Here, if we denote by {v1, v2} the standard basis of Z2, then the element of C2

described by (1) is

av1⊗v1⊗v1 + bv1⊗v2⊗v1 + cv2⊗v1⊗v1 + dv2⊗v2⊗v1

+ ev1⊗v1⊗v2 + fv1⊗v2⊗v2 + gv2⊗v1⊗v2 + hv2⊗v2⊗v2 ;

but the cubical representation is both more intuitive and more convenient and
hence we shall always identify C2 with the space of 2× 2× 2 cubes of integers.

Now a cube of integers A ∈ C2 may be partitioned into two 2× 2 matrices
in essentially three different ways, corresponding to the three possible slicings
of a cube—along three of its planes of symmetry—into two congruent paral-
lelepipeds. More precisely, the integer cube A given by (1) can be partitioned
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into the 2 × 2 matrices

M1 =
[

a b

c d

]
, N1 =

[
e f

g h

]
or into

M2 =
[

a c

e g

]
, N2 =

[
b d

f h

]
or

M3 =
[

a e

b f

]
, N3 =

[
c g

d h

]
.

Our action of Γ is defined so that, for any 1 ≤ i ≤ 3, an element ( r s
t u )

in the ith factor of SL2(Z) acts on the cube A by replacing (Mi, Ni) by
(rMi + sNi, tMi + uNi). The actions of these three factors of SL2(Z) in Γ
commute with each other; this is analogous to the fact that row and column
operations on a rectangular matrix commute. Hence we obtain a natural action
of Γ on C2.

Now given any cube A ∈ C2 as above, let us construct a binary quadratic
form Qi = QA

i for 1 ≤ i ≤ 3, by defining

Qi(x, y) = −Det(Mix − Niy).

Then note that the form Q1 is invariant under the action of the subgroup
{id} × SL2(Z) × SL2(Z) ⊂ Γ, because this subgroup acts only by row and
column operations on M1 and N1 and hence does not change the value of
−Det(M1x − N1y). The remaining factor of SL2(Z) acts in the standard way
on Q1, and it is well-known that this action has exactly one polynomial invari-
ant1, namely the discriminant Disc(Q1) of Q1 (see, e.g., [6]). Thus the unique
polynomial invariant for the action of Γ = SL2(Z) × SL2(Z) × SL2(Z) on its
representation Z2 ⊗ Z2 ⊗ Z2 is given simply by Disc(Q1). Of course, by the
same reasoning, Disc(Q2) and Disc(Q3) must also be equal to this same invari-
ant up to scalar factors. A symmetry consideration (or a quick calculation!)
shows that in fact Disc(Q1) = Disc(Q2) = Disc(Q3); we denote this common
value simply by Disc(A). Explicitly, we find

Disc(A) = a2h2 + b2g2 + c2f2 + d2e2

−2(abgh + cdef + acfh + bdeg + aedh + bfcg) + 4(adfg + bceh).

1We use throughout the standard abuse of terminology “has one polynomial invariant” to
mean that the corresponding polynomial invariant ring is generated by one element.
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2.2. Gauss composition revisited. We have seen that every cube A in
C2 gives three integral binary quadratic forms QA

1 , QA
2 , QA

3 all having the
same discriminant. Inspired by the group law on elliptic curves, let us define
an addition axiom on the set of (primitive) binary quadratic forms of a fixed
discriminant D by declaring that, for all triplets of primitive quadratic forms
QA

1 , QA
2 , QA

3 arising from a cube A of discriminant D,

The Cube Law. The sum of QA
1 , QA

2 , QA
3 is zero.

More formally, we consider the free abelian group on the set of primitive
binary quadratic forms of discriminant D modulo the subgroup generated by
all sums [QA

1 ] + [QA
2 ] + [QA

3 ] with QA
i as above.

One basic and beautiful consequence of this axiom of addition is that
forms that are SL2(Z)-equivalent automatically become “identified”, for the
following reason. Suppose that γ = γ1 × id × id ∈ Γ, and that A gives rise to
the three quadratic forms Q1, Q2, Q3. Then A′ = γA gives rise to the three
quadratic forms Q′

1, Q2, Q3, where Q′
1 = γ1Q1. Now the Cube Law implies

that the sum of Q1, Q2, Q3 is zero, and also that the sum of Q′
1, Q2, Q3 is

zero. Therefore Q1 and Q′
1 become identified, and thus we may view the Cube

Law as descending to a law of addition on SL2(Z)-equivalence classes of forms
of a given discriminant.

In fact, with an appropriate choice of identity, this simple relation imposed
by the Cube Law turns the space of SL2(Z)-equivalence classes of primitive
binary quadratic forms of discriminant D into a group! More precisely, for a
binary quadratic form Q let us use [Q] to denote the SL2(Z)-equivalence class
of Q. Then we have the following theorem.

Theorem 1. Let D be any integer congruent to 0 or 1 (mod 4), and let
Qid,D be any primitive binary quadratic form of discriminant D such that there
is a cube A0 with QA0

1 = QA0
2 = QA0

3 = Qid,D. Then there exists a unique group
law on the set of SL2(Z)-equivalence classes of primitive binary quadratic forms
of discriminant D such that :

(a) [Qid,D] is the additive identity ;
(b) For any cube A of discriminant D such that QA

1 , QA
2 , QA

3 are primitive,
we have

[QA
1 ] + [QA

2 ] + [QA
3 ] = [Qid,D].

Conversely, given Q1, Q2, Q3 with [Q1] + [Q2] + [Q3] = [Qid,D], there exists
a cube A of discriminant D, unique up to Γ-equivalence, such that QA

1 = Q1,
QA

2 = Q2, and QA
3 = Q3.

The most natural choice of identity element in Theorem 1 is

Qid,D = x2 − D

4
y2 or Qid,D = x2 − xy +

1 − D

4
y2(2)
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in accordance with whether D ≡ 0 (mod 4) or D ≡ 1 (mod 4). That Qid,D

satisfies the condition required of it follows from the triply-symmetric cubes

Aid,D =

0 1

1 0

1 0

0 D/4
��

��

��

��

or Aid,D =

0 1

1 1

1 1

1 (D+3)/4 ,
��

��

��

��

(3)

whose three associated quadratic forms are all given by Qid,D (as defined
by (2)).

Indeed, if the identity element Qid,D is given as in (2), then the group law
defined by Theorem 1 is equivalent to Gauss composition! Thus Theorem 1
gives a very short and simple description of Gauss composition; namely, it im-
plies that the group defined by Gauss can be obtained simply by considering
the free group generated by all primitive quadratic forms of a given discrim-
inant D, modulo the relation Qid,D = 0 and modulo all relations of the form
QA

1 + QA
2 + QA

3 = 0 where QA
1 , QA

2 , QA
3 form a triplet of primitive quadratic

forms arising from a cube A of discriminant D.

In Section 3.3 we give a proof of Theorem 1, and of its equivalence with
Gauss composition, using the language of ideal classes. An alternative proof,
not using ideal classes, is given in the appendix.

We use (Sym2Z2)∗ to denote the lattice of integer-valued binary quadratic
forms2, and we use Cl

(
(Sym2Z2)∗; D

)
to denote the set of SL2(Z)-equivalence

classes of primitive binary quadratic forms of discriminant D equipped with
the above group structure.

2.3. Composition of 2×2×2 cubes. Theorem 1 actually implies something
stronger than Gauss composition: not only do the primitive binary quadratic
forms of discriminant D form a group, but the cubes of discriminant D—that
give rise to triples of primitive quadratic forms—themselves form a group.

To be more precise, let us say a cube A is projective if the forms QA
1 , QA

2 ,
QA

3 are primitive, and let us denote by [A] the Γ-equivalence class of A. Then
we have the following theorem.

2Gauss actually considered only the sublattice Sym2Z2 of binary forms whose correspond-
ing symmetric matrices have integer entries. From the modern point of view, however, it
is more natural to consider the “dual lattice” (Sym2Z2)∗ of binary quadratic forms having
integer coefficients. This is the point of view we adopt.
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Theorem 2. Let D be any integer congruent to 0 or 1 (mod 4), and let
Aid,D be the triply-symmetric cube defined by (3). Then there exists a unique
group law on the set of Γ-equivalence classes of projective cubes A of discrim-
inant D such that :

(a) [Aid,D] is the additive identity ;

(b) For i = 1, 2, 3, the maps [A] 	→ [QA
i ] yield group homomorphisms to

Cl
(
(Sym2Z2)∗; D

)
.

We note again that other identity elements could have been chosen in
Theorem 2. However, for concreteness, we choose Aid,D as in (3) once and
for all, since this choice determines the choice of identity element in all other
compositions (including Gauss composition).

Theorem 2 is easily deduced from Theorem 1. In fact, addition of cubes
may be defined in the following manner. Let A and A′ be any two projec-
tive cubes having discriminant D; since ([QA

1 ] + [QA′

1 ]) + ([QA
2 ] + [QA′

2 ])+

([QA
3 ] + [QA′

3 ]) = [Qid,D] in Cl
(
(Sym2Z2)∗; D

)
, the existence of a cube A′′ with

[QA′′

i ] = [QA
i ] + [QA′

i ] for 1 ≤ i ≤ 3 and its uniqueness up to Γ-equivalence
follows from the last part of Theorem 1. We define the composition of [A] and
[A′] by setting [A] + [A′] = [A′′].

We denote the set of Γ-equivalence classes of projective cubes of discrim-
inant D, equipped with the above group structure, by Cl(Z2 ⊗ Z2 ⊗ Z2; D).

2.4. Composition of binary cubic forms. The above law of composition
on cubes also leads naturally to a law of composition on (SL2(Z)-equivalence
classes of) integral binary cubic forms px3 + 3qx2y + 3rxy2 + sy3. For just
as one frequently associates to a binary quadratic form px2 + 2qxy + ry2 the
symmetric 2 × 2 matrix [

p q

q r

]
,

one may naturally associate to a binary cubic form px3 + 3qx2y + 3rxy2 + sy3

the triply-symmetric 2 × 2 × 2 matrix

p q

q r

q r

r s
��

��

��

��

.
(4)
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Using Sym3Z2 to denote the space of binary cubic forms with triplicate central
coefficients, the above association of px3 + 3qx2y + 3rxy2 + sy3 with the cube
(4) corresponds to the natural inclusion

ι : Sym3Z2 → Z2 ⊗ Z2 ⊗ Z2

of the space of triply-symmetric cubes into the space of cubes.
We call a binary cubic form C(x, y) = px3 +3qx2y+3rxy2 +sy3 projective

if the corresponding triply-symmetric cube ι(C) given by (4) is projective. In
this case, the three forms Q

ι(C)
1 , Q

ι(C)
2 , Q

ι(C)
3 are all equal to the Hessian

H(x, y) = (q2 − pr)x2 + (ps − qr)xy + (r2 − qs)y2 = − 1
36

∣∣∣ Cxx Cxy

Cyx Cyy

∣∣∣ ;(5)

hence C is projective if and only if H is primitive, i.e., if gcd(q2 − pr,

ps − qr, r2 − qs) = 1.
The preimages of the identity cubes (3) under ι are given by

Cid,D = 3x2y +
D

4
y3 or Cid,D = 3x2y + 3xy2 +

D + 3
4

y3(6)

in accordance with whether D ≡ 0 (mod 4) or D ≡ 1 (mod 4). Denoting
the SL2(Z)-equivalence class of C ∈ Sym3Z2 by [C], we have the following
theorem.

Theorem 3. Let D be any integer congruent to 0 or 1 modulo 4, and let
Cid,D be given as in (6). Then there exists a unique group law on the set of
SL2(Z)-equivalence classes of projective binary cubic forms C of discriminant
D such that :

(a) [Cid,D] is the additive identity ;

(b) The map given by [C] 	→ [ ι(C) ] is a group homomorphism to
Cl(Z2 ⊗ Z2 ⊗ Z2; D).

We denote the set of equivalence classes of projective binary cubic forms of
discriminant D, equipped with the above group structure, by Cl(Sym3Z2; D).

2.5. Composition of pairs of binary quadratic forms. The group law on
binary cubic forms of discriminant D was obtained by imposing a symmetry
condition on the group of 2 × 2 × 2 cubes of discriminant D, and determining
that this symmetry was preserved under the group law. Rather than imposing
a threefold symmetry, one may instead impose only a twofold symmetry. This
leads to cubes taking the form
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a b

b c

d e

e f
��

��

��

��

.
(7)

That is, these cubes can be sliced (along a certain fixed plane) into two 2 × 2
symmetric matrices and therefore can naturally be viewed as a pair of binary
quadratic forms (ax2 + 2bxy + cy2, dx2 + 2exy + fy2).

If we use Z2 ⊗ Sym2Z2 to denote the space of pairs of classically integral
binary quadratic forms, then the above association of (ax2 +2bxy + cy2, dx2 +
2exy + fy2) with the cube (7) corresponds to the natural inclusion map

 : Z2 ⊗ Sym2Z2 → Z2 ⊗ Z2 ⊗ Z2.

The preimages of the identity cubes Aid,D under  are seen to be

Bid,D =
(

2xy, x2 +
D

4
y2

)
or Bid,D =

(
2xy + y2, x2 + 2xy +

D + 3
4

y2

)(8)

in accordance with whether D ≡ 0 or 1 (mod 4). Denoting the SL2(Z)×SL2(Z)-
class of B ∈ Z2 ⊗ Sym2Z2 by [B], we have the following theorem.

Theorem 4. Let D be any integer congruent to 0 or 1 modulo 4, and
let Bid,D be given as in (8). Then there exists a unique group law on the set
of SL2(Z) × SL4(Z)-equivalence classes of projective pairs of binary quadratic
forms B of discriminant D such that :

(a) [Bid,D] is the additive identity ;

(b) The map given by [B] 	→ [ (B) ] is a group homomorphism to
Cl(Z2 ⊗ Z2 ⊗ Z2; D).

The set of SL2(Z)×SL2(Z)-equivalence classes of projective pairs of binary
quadratic forms having a fixed discriminant D, equipped with the above group
structure, is denoted by Cl(Z2 ⊗ Sym2Z2; D).

The groups Cl(Z2 ⊗ Sym2Z2; D), however, are not new. Indeed, we have
imposed our symmetry condition on cubes so that, for such an element B ∈
Z2 ⊗Sym2Z2 ↪→ Z2 ⊗Z2 ⊗Z2, the last two associated quadratic forms QB

2 and
QB

3 are equal, while the first, QB
1 , is (possibly) different. Therefore the map

Cl(Z2 ⊗ Sym2Z2; D) → Cl
(
(Sym2Z2)∗; D

)
,
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taking twofold symmetric projective cubes B ∈ Z2 ⊗ Sym2Z2 to their third
associated quadratic form QB

3 , yields an isomorphism of groups.3

2.6. Composition of pairs of quaternary alternating 2-forms. Instead
of imposing conditions of symmetry, one may impose conditions of skew-
symmetry on cubes using a certain “fusion” process. To define these skew-
symmetrizations, let us view our original space Z2 ⊗ Z2 ⊗ Z2 as the space of
Z-trilinear maps L1 × L2 × L3 → Z, where L1, L2, L3 are Z-modules of rank 2
(namely, the Z-duals of the three factors Z2 in Z2 ⊗Z2 ⊗Z2). Then given such
a trilinear map

φ : L1 × L2 × L3 → Z

in Z2 ⊗ Z2 ⊗ Z2, one may naturally construct another Z-trilinear map

φ̄ : L1 × (L2 ⊕ L3) × (L2 ⊕ L3) → Z

that is skew-symmetric in the second and third variables; this map
φ̄ = id ⊗ ∧2,2(φ) is given by

φ̄ (r, (s, t), (u, v)) = φ(r, s, v) − φ(r, u, t).

Thus we have a natural Z-linear mapping

id ⊗ ∧2,2 : Z2 ⊗ Z2 ⊗ Z2 → Z2 ⊗ ∧2(Z2 ⊕ Z2) = Z2 ⊗ ∧2Z4(9)

taking 2×2×2 cubes to pairs of alternating 2-forms in four variables. Explicitly,
in terms of fixed bases for L1, L2, L3, this mapping is given by

a b

c d

e f

g h
��

��

��

��

→




a b

c d

−a −c

−b −d


,


e f

g h

−e −g

−f −h




.

(10)

Let Γ = SL2(Z) × SL2(Z) × SL2(Z) as before, and set Γ′ = SL2(Z)×
SL4(Z). Then it is clear from our description that two elements in the same
Γ-equivalence class in Z2 ⊗ Z2 ⊗ Z2 will map by (9) (or (10)) to the same
Γ′-equivalence class in Z2 ⊗ ∧2Z4. More remarkably, as we will prove in Sec-
tion 3.6, the map (9) is surjective on the level of equivalence classes; that is,

3That these two spaces (Sym2Z2)∗ and Z2 ⊗ Sym2Z2 carry similar information is a re-
flection of the fact that, in the language of prehomogeneous vector spaces, Sym2Z2 is a
reduced form of the space Z2 ⊗ Sym2Z2, i.e., is the smallest space that can be obtained from
Z2 ⊗ Sym2Z2 by what are called “castling transforms” (cf. [7]).
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any element v ∈ Z2 ⊗ ∧2Z4 can be transformed by an element of Γ′ to lie in
the image of (9) or (10). We say that an element F ∈ Z2 ⊗ ∧2Z4 is projective
if it is Γ′-equivalent to (id ⊗ ∧2,2)(A) for some projective cube A.

Now to any pair F = (M, N) ∈ Z2 ⊗ ∧2Z4 of alternating 4 × 4 matrices,
one can naturally associate a binary quadratic form Q = QF given by

−Q(x, y) = Pfaff(Mx − Ny) =
√

Det(Mx − Ny),

where, as is customary, we choose the sign of the Pfaffian so that

Pfaff
([

I

−I

])
= +1.

We obtain therefore an SL2-equivariant map

Z2 ⊗ ∧2Z4 → (Sym2Z2)∗.(11)

One easily checks that the coefficients of the covariant Q(x, y) give a complete
set of polynomial invariants for the action of SL4(Z) on Z2 ⊗∧2Z4. Hence the
space of elements (M, N) ∈ Z2⊗∧2Z4 possesses a unique polynomial invariant
for the action of Γ′ = SL2(Z) × SL4(Z), namely

Disc(Pfaff(Mx − Ny)).

We call this unique, degree 4 invariant the discriminant Disc(F ) of F . It is
evident from the explicit formula (10) that the linear map (9) is discriminant-
preserving.

Since the mapping (9) is surjective on the level of equivalence classes, and
the Γ-equivalence classes of projective cubes having discriminant D form a
group, we might suspect that the Γ′-equivalence classes of projective elements
in Z2 ⊗ ∧2Z4 having discriminant D also possess a natural composition law.
In fact, this is the case; denoting by [F ] the Γ′-equivalence class of F , we have
the following theorem.

Theorem 5. Let D be any integer congruent to 0 or 1 modulo 4, and let
Fid,D = id ⊗ ∧2,2(Aid,D). Then there exists a unique group law on the set of
Γ′-equivalence classes of projective pairs of quaternary alternating 2-forms F

of discriminant D such that :

(a) [Fid,D] is the additive identity ;

(b) The map given by [A] 	→ [id⊗∧2,2(A)] is a group homomorphism from
Cl(Z2 ⊗ Z2 ⊗ Z2; D);

(b′) The map given by [F ] 	→ [QF ] is a group homomorphism to
Cl

(
(Sym2Z2)∗; D

)
.

In fact, either (b) or (b′) would be sufficient in Theorem 5 to specify
the desired group structure. We denote the set of Γ′-equivalence classes of
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projective pairs of quaternary alternating 2-forms of discriminant D, equipped
with the above group structure, by Cl(Z2 ⊗ ∧2Z4; D).

We will prove Theorem 5 in Section 3.6 in terms of modules over quadratic
orders. In particular, we will prove the following (somewhat unexpected) group
isomorphism:

Theorem 6. For all discriminants D, the map

Cl(Z2 ⊗ ∧2Z4; D) → Cl
(
(Sym2Z2)∗; D

)
defined by [F ] 	→ [QF ] is an isomorphism of groups.4

2.7. Composition of senary alternating 3-forms. Finally, rather than im-
posing only a double skew-symmetry, we may impose a triple skew-symmetry.
This leads to the space ∧3Z6 of alternating 3-forms in six variables, as follows.
For any trilinear map

φ : L1 × L2 × L3 → Z

in Z2 ⊗ Z2 ⊗ Z2, construct the alternating trilinear map

φ̄ = ∧2,2,2(φ) : (L1 ⊕ L2 ⊕ L3)3 → Z,

given by

φ̄ ((r1, r2, r3), (s1, s2, s3), (t1, t2, t3)) = Detφ(r, s, t)

=
∑
σ∈S3

(−1)σ φ(rσ(1), sσ(2), tσ(3)).

This is an integral alternating 3-form in six variables, and so we obtain a
natural Z-linear map

∧2,2,2 : Z2 ⊗ Z2 ⊗ Z2 → ∧3(Z2 ⊕ Z2 ⊕ Z2) = ∧3Z6,(12)

taking 2 × 2 × 2 cubes to senary alternating 3-forms.
By construction, it is clear that two elements in the same Γ-equivalence

class in Z2 ⊗ Z2 ⊗ Z2 will map under ∧2,2,2 to the same SL6(Z)-equivalence
class in ∧3Z6. Moreover, we will find in Section 3.7 that the map (12) is
surjective on the level of equivalence classes, i.e., every element v ∈ ∧3Z6 is
SL6(Z)-equivalent to some vector in the image of (12).

The space ∧3Z6 also has a unique polynomial invariant for the action of
SL6(Z), which we call the discriminant. This discriminant again has degree 4,
and one checks that the map (12) is discriminant-preserving.

4Despite the isomorphism, the spaces Sym2Z2 and Z2 ⊗∧2Z4 are not related by so-called
“castling transforms”, i.e., Sym2Z2 is not a reduced form of Z2 ⊗∧2Z4. (Compare footnote 3

at the end of Section 2.5.)
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We say that an element E ∈ ∧3Z6 is projective if it is SL6(Z)-equivalent to
∧2,2,2(A) for some projective cube A. Because the projective classes of cubes
in Z2 ⊗ Z2 ⊗ Z2 of discriminant D possess a group law, and the map (12) is
surjective on equivalence classes, we may reasonably expect that (as in the case
of Z2⊗∧2Z4) the projective classes in ∧3Z6 of discriminant D should also turn
into a group, defined by a pair of conditions (a) and (b) analogous to those
presented in Theorems 1–5. This is indeed the case.

However, as we will prove in Section 3.7 from the point of view of mod-
ules over quadratic orders, this resulting group Cl(∧3Z6; D) always consists of
exactly one element! Thus it becomes rather unnecessary to state a theorem
for ∧3Z6 akin to Theorems 1–5. Instead, we have the following theorem.

Theorem 7. Let D be any integer congruent to 0 or 1 modulo 4. Then the
set Cl(∧3Z6; D) consists only of the single element [Eid,D] = [∧2,2,2(Aid,D)]. If
furthermore D is a fundamental discriminant,5 then all six -variable alternating
3-forms with discriminant D are projective, and hence up to SL6(Z)-equivalence
there is exactly one senary alternating 3-form of discriminant D.

To summarize Section 2, we have natural, discriminant-preserving arrows

Sym3Z2 �� Z2 ⊗ Sym2Z2 ��

��

Z2 ⊗ Z2 ⊗ Z2

��
(Sym2Z2)∗ Z2 ⊗ ∧2Z4��

��
∧3Z6

leading to the group homomorphisms

Cl(Sym3Z2; D) �� Cl(Z2 ⊗ Sym2Z2; D) ��

��

Cl(Z2 ⊗ Z2 ⊗ Z2; D)

��
Cl

(
(Sym2Z2)∗; D

)
Cl(Z2 ⊗ ∧2Z4; D)��

��
Cl(∧3Z6; D)

where the central two arrows to Cl
(
(Sym2Z2)∗; D

)
are in fact isomorphisms,

and the bottom group Cl(∧3Z6; D) is trivial.

5Recall that an integer D is called a fundamental discriminant if it is square-free and
1 (mod 4) or it is four times a square-free integer that is 2 or 3 (mod 4). Asymptotically,
6/π2 ≈ 61% of all discriminants are fundamental.
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3. Relations with ideal classes in quadratic orders

The integral orbits of the six spaces discussed in the previous section each
have natural interpretations in terms of quadratic orders.

3.1. The parametrization of quadratic rings. In the first four papers of
this series, we will be interested in studying commutative rings R with unit
whose underlying additive group is Zn for n = 2, 3, 4, and 5; such rings are
called quadratic, cubic, quartic, and quintic rings respectively.6 The proto-
typical example of such a ring is, of course, an order in a number field of
degree at most 5. To any such ring of rank n we may attach the trace function
Tr : R → Z, which assigns to an element α ∈ R the trace of the endomorphism
R ×α−→R. The discriminant Disc(R) of such a ring R is then defined as the
determinant det(Tr(αiαj)) ∈ Z, where {αi} is any Z-basis of R.

It is a classical fact, due to Stickelberger, that a ring having finite rank as
a Z-module must have discriminant congruent to 0 or 1 (mod 4). In the case
of rank 2, this is easy to see: such a ring must have Z-basis of the form 〈1, τ〉,
where τ satisfies a quadratic τ2 + rτ +s = 0 with r, s ∈ Z. The discriminant of
this ring is then computed to be r2−4s, which is congruent to 0 or 1 modulo 4.

Conversely, given any integer D ≡ 0 or 1 (mod 4) there is a unique
quadratic ring S(D) having discriminant D (up to isomorphism), given by

S(D) =


Z[x]/(x2) if D = 0,

Z · (1, 1) +
√

D(Z ⊕ Z) if D ≥ 1 is a square,
Z[(D +

√
D)/2] otherwise;

(13)

explicitly, S(D) has Z-basis 〈1, τ〉 where multiplication is determined by the
law

τ2 =
D

4
or τ2 =

D − 1
4

+ τ(14)

in accordance with whether D ≡ 0 (mod 4) or D ≡ 1 (mod 4).7

Therefore, if we denote by D the set of elements of Z that are congruent
to 0 or 1 (mod 4), we may say that isomorphism classes of quadratic rings are
parametrized by D.

There is a slight problem with this latter parametrization, however, in
that all quadratic rings have two automorphisms, whereas, at least as stated,
corresponding elements of D do not. As a result, the above construction

6In subsequent articles, we will turn our attention to noncommutative rings.
7This case distinction, which will persist throughout the paper, could be avoided by

writing S(D) as Z + Zτ where τ is the root of τ2 − Dτ + D2−D
4

= 0, or of any quadratic
τ2 + rτ + s = 0 with r2 − 4s = D; but then one would also have the variables r, s, or D in
all the formulas, so we have preferred instead to fix the choice r ∈ {0, 1}.
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parametrizes quadratic rings up to isomorphism, but this isomorphism is not
canonical. One natural way to rectify this situation is to eliminate the extra
automorphism by considering not quadratic rings, but oriented quadratic rings,
i.e., quadratic rings S in which a specific choice of isomorphism
π̄ : S/Z → Z has been made.8 Alternatively, a quadratic ring S = S(D)
is oriented once a specific choice of

√
D is made; in this case, the correspond-

ing map π̄ : S/Z → Z is obtained as follows. One observes that the choice of√
D determines a natural projection π : S → Z, given by the formula

π(x) = Tr(x/
√

D) =
x − x′
√

D
,

where we have used x′ to denote the image of x under the nontrivial auto-
morphism of the underlying unoriented quadratic ring. The map π evidently
has kernel Z, and so π : S → Z descends to an isomorphism π̄ : S/Z → Z as
desired.

Since an oriented quadratic ring does not have any automorphisms, any
two oriented quadratic rings of the same discriminant are canonically isomor-
phic. Thus it will be convenient to assume all quadratic rings to be oriented,
and we will use the notation S(D) to denote the unique oriented quadratic
ring of discriminant D. We may now state an improved version of the above
parametrization as follows:

Theorem 8. There is a one-to-one correspondence between the set of el-
ements of D and the set of isomorphism classes of oriented quadratic rings, by
the association

D ↔ S(D) ,

where D = Disc(S(D)).

A further important feature of oriented quadratic rings is that one may
speak of oriented bases. If S is any oriented quadratic ring, then a basis 〈1, τ〉
of S is positively oriented if π(τ) > 0. A basis 〈α, β〉 of any given rank 2
submodule of K = S⊗Q has positive orientation if the change-of-basis matrix
taking the positively oriented basis 〈1, τ〉 to 〈α, β〉 has positive determinant
(alternatively, if π(α′β) > 0). In general, a Z-basis 〈α1, β1, α2, β2, . . . , αn, βn〉
of a rank 2n submodule of Kn has positive orientation if it can be obtained as
a transformation of the Q-basis

〈(1, 0, . . . , 0), (τ, 0, . . . , 0), (0, 1, . . . , 0), (0, τ, . . . , 0), . . .

. . . , (0, 0, . . . , 1), (0, 0, . . . , τ)〉

8Note that S/Z ∼= ∧2S via the map x �→ 1 ∧ x; hence an orientation of S may also be
viewed as a choice of Z-module isomorphism π̄ : ∧2S → Z.
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of Kn by a matrix of positive determinant. Any other basis is said to be
negatively oriented.

Finally, we say that a quadratic ring is nondegenerate if its discriminant
is nonzero, i.e., if it is not isomorphic to the (degenerate) quadratic ring S(0).
Similarly, we say that an element v ∈ L—where L is any one of the six spaces
(Sym2Z2)∗, Z2⊗Z2⊗Z2, Sym3Z2, Z2⊗Sym2Z2, Z2⊗∧2Z4, or ∧3Z6 introduced
in Section 2—is nondegenerate if its discriminant Disc(v) is nonzero. In the
forthcoming sections, we show that the orbits of nondegenerate elements in
these six spaces may be completely classified in terms of certain special types
of ideal classes in nondegenerate quadratic rings. We begin by recalling briefly
the classical case of binary quadratic forms.

3.2. The case of binary quadratic forms. As is well-known, the group
Cl

(
(Sym2Z2)∗; D

)
is almost, but not quite the same as, the ideal class group

of the unique quadratic order S of discriminant D. To make up for the slight
discrepancy, it is necessary to introduce the notion of narrow class group,
which may be defined as the group Cl+(S) of oriented ideal classes. More
precisely, an oriented ideal is a pair (I, ε), where I is any (fractional) ideal of S

in K = S ⊗ Q having rank 2 as a Z-module, and ε = ±1 gives the orientation
of I. Multiplication of oriented ideals is defined componentwise, and the norm
of an oriented ideal (I, ε) is defined to be ε·|L/I|·|L/S|−1, where L is any lattice
in K containing both S and I. For an element κ ∈ K, the product κ · (I, ε)
is defined to be the ideal (κ I, sgn(N(κ))ε). Two oriented ideals (I1, ε1) and
(I2, ε2) are said to be in the same oriented ideal class if (I1, ε1) = κ · (I2, ε2)
for some invertible κ ∈ K.

With these notions, the narrow class group can then be defined as the
group of invertible oriented ideals modulo multiplication by invertible scalars
κ ∈ K (equivalently, modulo the subgroup consisting of invertible principal
oriented ideals ((κ), sgn(N(κ)))). The elements of this group are thus the
invertible oriented ideal classes. In practice, we shall denote an oriented ideal
(I, ε) simply by I, with the orientation ε = ε(I) on I being understood.9

We may now state the precise relation between equivalence classes of bi-
nary quadratic forms and ideal classes of quadratic orders.

Theorem 9. There is a canonical bijection between the set of nondegen-
erate SL2(Z)-orbits on the space (Sym2Z2)∗ of integer -valued binary quadratic
forms, and the set of isomorphism classes of pairs (S, I), where S is a nonde-
generate oriented quadratic ring and I is a (not necessarily invertible) oriented

9Traditionally, the narrow class group is considered only for quadratic orders S of positive
discriminant, and is defined as the group of invertible ideals of S modulo the subgroup of
invertible principal ideals that are generated by elements of positive norm. We prefer our
definition here since it gives the correct notion also when D < 0.
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ideal class of S. Under this bijection, the discriminant of a binary quadratic
form equals the discriminant of the corresponding quadratic ring.

Restricting the above result to the set of primitive quadratic forms, and
noting that, in the above bijection, primitive binary quadratic forms corre-
spond to invertible ideal classes, we obtain the following group isomorphism.

Theorem 10. The bijection of Theorem 9 restricts to a correspondence

Cl
(
(Sym2Z2)∗; D

)
↔ Cl+(S(D)),

which is an isomorphism of groups.

We remark—although it will not be used in this paper—that the usual (as
opposed to narrow) ideal class group may be obtained as the set of GL2(Z)-
(rather than SL2(Z)-) equivalence classes of primitive binary quadratic forms,
except that we must then let an element α ∈ GL2(Z) act on a form Q by
Q 	→ 1

det(α) · αQ.

Theorem 9 is known in the indefinite case, while the general definite case
follows easily from the known case of positive definite quadratic forms. We
will give proofs of Theorems 9 and 10 in a more general context in the next
section.

3.3. The case of 2 × 2 × 2 cubes. We now turn to the general case of
2× 2× 2 cubes. Before stating the result, we make some definitions. Let S be
the quadratic ring of discriminant D, and let K = S ⊗Q be the corresponding
quadratic algebra over Q. We say that a triple (I1, I2, I3) of oriented ideals
of S is balanced if I1I2I3 ⊆ S and N(I1)N(I2)N(I3) = 1. Also, we define
two balanced triples (I1, I2, I3) and (I ′1, I

′
2, I

′
3) of ideals of S to be equivalent

if I1 = κ1I
′
1, I2 = κ2I

′
2, I3 = κ3I

′
3 for some elements κ1, κ2, κ3 ∈ K. (In

particular, we must have N(κ1κ2κ3) = 1.) For example, if S is Dedekind, then
an equivalence class of balanced triples means simply a triple of narrow ideal
classes whose product is the principal class. Our main result on 2×2×2 cubes
is then as follows:

Theorem 11. There is a canonical bijection between the set of nondegen-
erate Γ-orbits on the space Z2⊗Z2⊗Z2 of 2×2×2 integer cubes, and the set of
isomorphism classes of pairs (S, (I1, I2, I3)), where S is a nondegenerate ori-
ented quadratic ring and (I1, I2, I3) is an equivalence class of balanced triples
of oriented ideals of S. Under this bijection, the discriminant of an integer
cube equals the discriminant of the corresponding quadratic ring.

Proof. For a balanced triple (I1, I2, I3) of ideals of an oriented quadratic
order S = S(D) as in the theorem, we first show how to construct a correspond-
ing 2× 2× 2 cube. In accordance with whether D = Disc(S) is congruent to 0
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or 1 (mod 4), let 〈1, τ〉 be a positively oriented basis of S such that τ2− D
4 = 0

or τ2 − τ + 1−D
4 = 0 respectively. Let 〈α1, α2〉, 〈β1, β2〉, and 〈γ1, γ2〉 denote

Z-bases of the ideals I1, I2, and I3 respectively, where the basis for each Ij is
chosen to be oriented the same as or different than 〈1, τ〉 in accordance with
whether ε(Ij) = +1 or −1. Since by hypothesis the product I1I2I3 is contained
in S, we may write

αiβjγk = cijk + aijkτ(15)

for some set of sixteen integers aijk and cijk (1 ≤ i, j, k ≤ 2). Then A = (aijk)
is our desired 2 × 2 × 2 cube. In terms of the projection map π : S → Z
discussed in Section 3.1, we have aijk = π(αiβjγk), or in more coordinate-free
terms, A ∈ Z2 ⊗ Z2 ⊗ Z2 represents the trilinear mapping I1 × I2 × I3 → Z
given by the formula (x, y, z) 	→ π(xyz).

It is clear from construction that changing 〈α1, α2〉, 〈β1, β2〉, 〈γ1, γ2〉 to
some other set of (appropriately oriented) bases for I1, I2, I3, via an element
T ∈ Γ, would simply transform A into an equivalent cube via that same el-
ement T . Hence the Γ-equivalence class of A is independent of our choice of
bases for I1, I2, and I3. Furthermore, it is clear that if the balanced triple
(I1, I2, I3) is replaced by an equivalent triple, our cube A does not change.
Hence we have a well-defined map from balanced triples of ideal classes in a
quadratic ring to Γ-orbits in Z2 ⊗ Z2 ⊗ Z2.

It remains to show that this mapping (S, (I1, I2, I3)) → A is in fact a
bijection; that is, we wish to show that for any given cube A there is exactly
one pair (S, (I1, I2, I3)) up to equivalence that yields the element A via the
above map.

To this end, let us fix a cube A = (aijk), and consider the system (15),
which currently consists mostly of indeterminates. We show that all these
indeterminates are in fact essentially determined by A.

First, we claim that the ring S is determined by A, for which it suffices
to show that Disc(S) is determined. To see this, we observe that the system
of equations (15) implies the following identity:

Disc(A) = N(I1)2N(I2)2N(I3)2 · Disc(S).(16)

This identity may be proven as follows. Suppose S = S(D) = Z + Zτ with τ

chosen as before (with D an indeterminate). Let us begin by considering the
simplest case, with I1 = I2 = I3 = S, α1 = β1 = γ1 = 1, and α2 = β2 = γ2 = τ .
In this case, the cube A = (aijk) in (15) is none other than the identity cube
Aid,D given by (3). For this cube, we have Disc(A) = D = Disc(S), proving
the identity in this special case.

Now suppose I1 is changed to a general fractional S-ideal having Z-basis
〈α1, β1〉. Then there is a transformation T ∈ SL2(Q) taking the old basis 〈1, τ〉
to the new basis 〈α1, β1〉, and so the new A in (15) is obtained by transforming
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Aid,D by T × {e} × {e} ∈ Γ. The quadratic form QA
2 (or QA

3 ) is thus seen to
multiply by a factor of det(T ) = N(I1), so that the discriminant of A becomes
multiplied by a factor of N(I1)2. In a similar manner, if I2 and I3 are also
changed to general S-ideals, this will introduce factors of N(I2)2 and N(I3)2

in (16), thus proving the identity for general I1, I2, I3.
Now by assumption we have N(I1)N(I2)N(I3) = 1, so that

Disc(A) = Disc(S),(17)

and hence S is indeed determined by A to be S(Disc(A)).
Next, by the associativity and commutativity of S, we must have

αiβjγk · αi′βj′γk′ = αi′βjγk · αiβj′γk′ = αiβj′γk · αi′βjγk′ = αiβjγk′ · αi′βj′γk

(18)

for all 1 ≤ i, i′, j, j′, k, k′ ≤ 2. Expanding out these identities using (15), and
then equating all coefficients of 1 and τ , yield 18 (linear and quadratic) equa-
tions in the eight variables cijk in terms of the aijk. We find that this system,
together with the condition N(I1)N(I2)N(I3) > 0, has a unique solution, given
by

cijk = (i′−i)(j′−j)(k′−k)

·
[
ai′jkaij′kaijk′ + 1

2aijk(aijkai′j′k′−ai′jkaij′k′−aij′kai′jk′−aijk′ai′j′k)
]

− 1
2 aijk ε

with {i, i′}={j, j′}={k, k′}={1, 2}, and where ε = 0 or 1 in accordance with
whether D ≡ 0 (mod 4) or D ≡ 1 (mod 4). A quick congruence check shows
that the solutions for the cijk are necessarily integral! Therefore, the cijk’s in
(15) are also uniquely determined by the cube A.

We must still determine the existence of αi, βj , γk ∈ S yielding the desired
aijk and cijk’s in (15). It is clear that the pair (α1, α2) (similarly (β1, β2),
(γ1, γ2)) is uniquely determined—up to a nonzero scaling factor in K—by the
equations (15). For example, given any fixed 1 ≤ j, k ≤ 2 for which c1jk +a1jkτ

and c2jk + a2jkτ are invertible in K, we have

α1βjγk(c2jk + a2jkτ) = α2βjγk(c1jk + a1jkτ),(19)

so the ratio α1 : α2 is determined, and we may let, e.g., α1 = c1jk + a1jkτ and
α2 = c2jk +a2jkτ . That this ratio α1 : α2 as determined by (19) is independent
of j, k (up to a constant factor) follows from the associative laws (18) that
have been forced upon the system (15). The pair (β1, β2) can be similarly
determined up to scalars in K, and then (γ1, γ2) is completely determined by
(α1, α2) and (β1, β2). Hence the triple (I1, I2, I3) is completely determined up
to equivalence.

Thus we must show only that the Z-modules I1 = 〈α1, α2〉, I2 = 〈β1, β2〉,
I3 = 〈γ1, γ2〉 as determined above actually form ideals of S. In fact, it is



236 MANJUL BHARGAVA

possible to determine the precise S-module structures of I1, I2, I3. Let Q1,
Q2, Q3 be the three quadratic forms associated to A as in Section 2.1, where
we write Qi = pix

2 + qixy + riy
2. Then a short calculation using explicit

expressions for αi, βj , γk as above shows that

τ · α1 = q1+ε
2 · α1 + p1 · α2,

−τ · α2 = r1 · α1 + q1−ε
2 · α2

(20)

where again ε = 0 or 1 in accordance with whether D ≡ 0 or 1 (mod 4),
and where the module structures of I2 = 〈β1, β2〉 and I3 = 〈γ1, γ2〉 are given
analogously in terms of the forms Q2 and Q3 respectively. In particular, we
conclude that I1, I2, I3 are indeed ideals of S.

We have now determined all the indeterminates in (15), having started
only with the value of the cube A. It follows that there is exactly one pair
(S, (I1, I2, I3)) up to equivalence that yields the cube A under the mapping
(S, (I1, I2, I3)) → A; this completes the proof.

Note that the above discussion makes the bijection of Theorem 11 very
precise. Given a quadratic ring S and a balanced triple (I1, I2, I3) of ideals in S,
the corresponding cube A = (aijk) is obtained from equations (15). Conversely,
given a cube A ∈ Z2 ⊗Z2 ⊗Z2, the ring S is determined by (17); bases for the
ideal classes I1, I2, I3 in S are obtained from (15), and the S-module structures
of I1, I2, and I3 are given by (20).

Let us define a balanced triple (I1, I2, I3) of ideals of S to be projective if
I1, I2, I3 are projective as S-modules. Then there is a natural group law on
the set of equivalence classes of projective balanced triples of ideals of a ring
S. Namely, for any two such balanced triples (I1, I2, I3) and (I ′1, I

′
2, I

′
3), define

their composition to be the (balanced) triple (I1I
′
1, I2I

′
2, I3I

′
3). This group of

equivalence classes of projective balanced triples is naturally isomorphic to
Cl+(S) × Cl+(S), via the map (I1, I2, I3) → (I1, I2).

Restricting Theorem 11 to the set of projective elements of C2, and noting
that projective cubes give rise to balanced triples of projective ideals, yields
the following group isomorphism.

Theorem 12. The bijection of Theorem 11 restricts to a correspondence

Cl(Z2 ⊗ Z2 ⊗ Z2; D) ↔ Cl+(S(D)) × Cl+(S(D))

which is an isomorphism of groups.

That primitive binary quadratic forms and projective ideal classes are
in one-to-one correspondence (the case of Gauss) is of course recovered as a
special case. Indeed, a short calculation shows that the norm forms of I1, I2, I3

as given by Theorem 11 are simply QA
1 , QA

2 , QA
3 , which are the three quadratic

forms associated to A. Thus we have also proved Theorems 1, 2, 9, and 10.
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3.4. The case of binary cubic forms. In this section, we obtain the
analogue of Theorem 11 for binary cubic forms.

Theorem 13. There is a canonical bijection between the set of nonde-
generate SL2(Z)-orbits on the space Sym3Z2 of binary cubic forms, and the set
of equivalence classes of triples (S, I, δ), where S is a nondegenerate oriented
quadratic ring, I is an ideal of S, and δ is an invertible element of S ⊗Q such
that I3 ⊆ δ ·S and N(I)3 = N(δ). (Here two triples (S, I, δ) and (S′, I ′, δ′) are
equivalent if there is an isomorphism φ : S → S′ and an element κ ∈ S′ ⊗ Q
such that I ′ = κφ(I) and δ′ = κ3φ(δ).) Under this bijection, the discrimi-
nant of a binary cubic form is equal to the discriminant of the corresponding
quadratic ring.

Proof. Given a triple (S, I, δ) as in the theorem, we first show how to
construct the corresponding binary cubic form C(x, y). Let S = Z + Zτ as
before, and let I = Zα + Zβ with 〈α, β〉 positively oriented. In analogy with
(15), we may write

α3 = δ ( c0 + a0τ ),
α2β = δ ( c1 + a1τ ),
αβ2 = δ ( c2 + a2τ ),
β3 = δ ( c3 + a3τ ),

(21)

for some eight integers ai and ci. Then C(x, y) = a0x
3+3a1x

2y+3a2xy2+a3y
3

is our desired binary cubic form.
In terms of the map π : S → Z discussed in Section 3.1, C(x, y) =

π
(
(αx+βy)3

)
, so we can give a basis-free description of C as the map ξ 	→ π(ξ3)

from I to Z. From this it is clear that changing 〈α, β〉 to some other basis for I,
via an element T ∈ SL2(Z), simply changes C(x, y) (via the natural SL2(Z)-
action on Sym3Z2) by that same element T . Hence the SL2(Z)-equivalence
class of C(x, y) is independent of our choice of basis for I. Conversely, any bi-
nary cubic form SL2(Z)-equivalent to C(x, y) can be obtained from (S, I, δ) in
the manner described above simply by changing the basis for I appropriately.
Finally, it is clear that triples equivalent to (S, I, δ) yield the identical cubic
forms C(x, y) under the above map.

It remains to show that this map from the set of equivalence classes of
triples (S, I, δ) to the set of equivalence classes of binary cubic forms C(x, y)
is in fact a bijection.

To this end, fix a binary cubic form C(x, y), and consider the system (21),
which again consists mostly of indeterminates. We show that these indetermi-
nates are essentially determined by the form C(x, y).

First, the ring S is completely determined. To see this, we use the system
of equations (21) to obtain the identity

Disc(C) = N(I)6N(δ)−2 · Disc(S),
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just as (16) was obtained from (15). By assumption N(δ) = N(I)3, so

Disc(C) = Disc(S).(22)

Thus Disc(S), and hence the ring S itself, is determined by the binary cubic
form C.

The associativity and commutativity of S implies (α2β)2 = α3 · αβ2 and
(αβ2)2 = α2β · β3. Expanding these identities using (21), we obtain two linear
and two quadratic equations in c0, c1, c2, c3. Assuming the basis 〈α, β〉 of I

has positive orientation, we find that this system of four equations for the ci

has exactly one solution, given by

c0 = 1
2(2a3

1 − 3a0a1a2 + a2
0a3 − ε a0),

c1 = 1
2(a2

1a2 − 2a0a
2
2 + a0a1a3 − ε a1),

c2 = −1
2(a1a

2
2 − 2a2

1a3 + a0a2a3 + ε a2),

c3 = −1
2(2a3

2 − 3a1a2a3 + a0a
2
3 + ε a3),

where as usual ε = 0 or 1 in accordance with whether D ≡ 0 or 1 modulo 4.
(Again, the solutions for the {ci} are necessarily integral.) Thus the ci’s in
(21) are also uniquely determined by the binary cubic form C.

An examination of the system (21) shows that we must have

α : β = (c1 + a1τ) : (c2 + a2τ)(23)

in S, and hence α and β are uniquely determined up to a scalar factor in S⊗Q.
Once α and β are fixed, the system (21) then determines δ uniquely, and if
α, β are each multiplied by an element κ ∈ S ⊗ Q, then δ scales by a factor of
κ3. Thus we have produced the unique triple up to equivalence that yields the
form C under the mapping (S, I, δ) → C.

To see that this object (S, I, δ) is a valid triple in the sense of Theorem 13,
we must only check that I, currently given as a Z-module, is actually an ideal
of S. In fact, using (23) one can calculate the module structure of I explicitly
in terms of C; it is given by (20), where α1 = α, α2 = β, and

p1 = a2
1 − a0a2, q1 = a0a3 − a1a2, r1 = a2

2 − a1a3.(24)

This completes the proof.

The above discussion gives very precise information about the bijection
of Theorem 13. Given a triple (S, I, δ), the corresponding cubic form C(x, y)
is obtained from equations (21). Conversely, given a cubic form C(x, y) ∈
Sym3Z2, the ring S is determined by (22); a basis for the ideal class I is
obtained from (23), and the S-module structure of I is given by (20) and (24).

Restricting Theorem 13 to the set of classes of projective binary cubic
forms now yields the following group isomorphism; here, we use Cl3(S(D)) to
denote the group of ideal classes having order dividing 3 in Cl(S(D)).
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Corollary 14. Let S(D) denote the quadratic ring of discriminant D.
Then there is a natural surjective group homomorphism

Cl(Sym3Z2; D) � Cl3(S(D))

which sends a binary cubic form C to the S(D)-module I, where (S(D), I, δ) is
a triple corresponding to C as in Theorem 13. Moreover, the cardinality of the
kernel of this homomorphism is |U/U3|, where U denotes the group of units in
S(D).

The special case where D corresponds to the ring of integers in a quadratic
number field deserves special mention.

Corollary 15. Suppose D is the discriminant of a quadratic number
field K. Then there is a natural surjective homomorphism

Cl(Sym3Z2; D) � Cl3(K),

where Cl3(K) denotes the exponent 3-part of the ideal class group of the ring
of integers in K. The cardinality of the kernel is equal to{

1 if D < −3; and
3 if D ≥ −3.

This last result was stated by Eisenstein [4], except that his assertion
omitted the factor of 3 in the case of positive D, a mistake which was corrected
by Arndt and Cayley later in the 19th century.

3.5. The case of pairs of binary quadratic forms. Just as the case of binary
cubic forms was obtained by imposing a threefold symmetry on balanced triples
(I1, I2, I3) of a quadratic ring S, the case of pairs of binary quadratic forms can
be handled by imposing a twofold symmetry. The method of proof is similar;
we simply state the result.

Theorem 16. There is a canonical bijection between the set of nonde-
generate SL2(Z) × SL2(Z)-orbits on the space Z2 ⊗ Sym2Z2, and the set of
isomorphism classes of pairs (S, (I1, I2, I3)), where S is a nondegenerate ori-
ented quadratic ring and (I1, I2, I3) is an equivalence class of balanced triples
of oriented ideals of S such that I2 = I3. Under this bijection, the discrim-
inant of a pair of binary quadratic forms is equal to the discriminant of the
corresponding quadratic ring.

The map taking a projective balanced triple (I1, I3, I3) to the third ideal
I3 corresponds to the isomorphism of groups stated at the end of Section 2.5.
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3.6. The case of pairs of quaternary alternating 2-forms. The two spaces
of Section 2 resulting from the “fusion” process, namely Z2 ⊗∧2Z4 and ∧3Z6,
turn out to correspond to modules of higher rank. Let S again be an oriented
quadratic ring and K = S ⊗Q the corresponding quadratic Q-algebra. A rank
n ideal of S is an S-submodule of Kn having rank 2n as a Z-module. Two rank
n ideals are said to be in the same rank n ideal class if they are isomorphic as
S-modules (equivalently, if there exists an element λ ∈ GLn(K) mapping one
to the other).10 As in Section 3.2, we speak also of oriented (or narrow) rank
n ideals. As in the case of rank 1, the norm of an oriented rank n ideal M is
defined to be the usual norm |L/M | · |L/S|−1 times the orientation ε(M) = ±1
of M , where L denotes any lattice in Kn containing both Sn and M .

There is a canonical map, denoted “det”, from (Kn)n to K, given by
taking the determinant. For a rank n ideal M ⊆ Kn of S, we use Det(M)
to denote the ideal in S generated by all elements of the form det(x1, . . . , xn)
where x1, . . . , xn ∈ M . For example, if M is a decomposable rank n ideal,
i.e., if M ∼= I1 ⊕ · · · ⊕ In ⊆ Kn for some ideals I1, . . . , In in S, then Det(M)
is simply the product ideal I1 · · · In. It is known that, up to a scalar factor in
K, the function Det depends only on the S-module structure of M and not on
the particular embedding of M into Kn.

Let us call a k-tuple of oriented S-ideals M1, . . . , Mk, of ranks n1, . . . , nk

respectively, balanced if Det(M1) · · ·Det(Mk) ⊆ S and N(M1) · · ·N(Mk) = 1.
Furthermore, two such balanced k-tuples (M1, . . . , Mk) and (M ′

1, . . . , M ′
k) are

said to be equivalent if there exist elements λ1, . . . , λk in GLn1(K), . . . ,
GLnk

(K) respectively such that M ′
1 = λ1M1, . . . , M ′

k = λkMk. (In partic-
ular, we must have N(det(λ1) · · ·det(λk)) = 1.) Note that these definitions of
balanced and equivalent naturally extend those given in Section 3.3 for triples
of rank 1 ideals.

Armed with these notions, we may present our theorem regarding the
space of pairs of quaternary alternating 2-forms:

Theorem 17. There is a canonical bijection between the set of nondegen-
erate SL2(Z)×SL4(Z)-orbits on the space Z2⊗∧2Z4, and the set of isomorphism
classes of pairs (S, (I, M)), where S is a nondegenerate oriented quadratic ring
and (I, M) is an equivalence class of balanced pairs of oriented ideals of S

having ranks 1 and 2 respectively. Under this bijection, the discriminant of
a pair of quaternary alternating 2-forms is equal to the discriminant of the
corresponding quadratic ring.

Proof. Given a pair (S, (I, M)) as in the theorem, we first show how to
construct a corresponding pair of quaternary alternating 2-forms. Let 〈1, τ〉 be

10As is the custom, ideals and ideal classes are implied to be rank 1 unless explicitly stated
otherwise.
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a Z-basis for S as before, and suppose 〈α1, α2〉 and 〈β1, β2, β3, β4〉 are appro-
priately oriented Z-bases for the oriented S-ideals I and M respectively. By
hypothesis, we may write

αi det(βj , βk) = c
(i)
jk + a

(i)
jk τ(25)

for some set of 24 constants {c(i)
jk } and {a(i)

jk } such that

c
(i)
jk = −c

(i)
kj and a

(i)
jk = −a

(i)
kj

for all i ∈ {1, 2} and j, k ∈ {1,2,3,4}. Then the set of constants F = {a(i)
jk } ∈

Z2 ⊗ ∧2Z4 is our desired pair of quaternary alternating 2-forms.
By construction, it is clear that changing the bases for I and M by an

element T ∈ SL2(Z)×SL4(Z) simply changes F by that same element T . Thus
the SL2(Z) × SL4(Z)-equivalence class of F is well-defined.

We wish to show that the mapping (S, (I, M)) → F is in fact a bijection.
To this end, let us fix an element F ∈ Z2 ⊗ ∧2Z4, and consider the system
(25), which currently consists mostly of indeterminates. We show again that
essentially all constants in the system are uniquely determined by F .

First we claim the ring S is determined by F . This follows by deriving
the following identity:

Disc(F ) = N(I)2N(M)2 · Disc(S).

Since N(I)N(M) = 1, we conclude that

Disc(F ) = Disc(S)(26)

and hence S = S(Disc(F )) is indeed determined by F .
To show that the constants c

(i)
jk are determined, we require the following

determinental identity, which states that

det(v1, v3) · det(v2, v4) = det(v1, v2) · det(v3, v4) + det(v1, v4) · det(v2, v3)

for any four vectors v1, v2, v3, v4 in the coordinate plane (this is a special case
of the classical “Plücker relations”). As this identity holds over any ring, we
may write

αidet(βk, βm) · αjdet(β�, γn) = αi′det(βk, β�) · αj′det(βm, γn)(27)

+αi′′det(βk, βn) · αj′′det(β�, γm)

for i, j ∈ {1, 2} and k, �, m, n ∈ {1, 2, 3, 4}, and (i′, j′) and (i′′, j′′) are any
ordered pairs each equal to (i, j) or (j, i). This leads to 94 linear and quadratic
equations in the c

(i)
jk ’s, in terms of the a

(i)
jk ’s. This system, together with the

condition N(I)N(M) > 0, turns out to have a unique solution, given by

c
(i)
jk = (i − i′)

[
a

(i′)
jk Pfaff(Fi)

−1
2 a

(i)
jk

(
Pfaff(F1 + F2)−Pfaff(F1)−Pfaff(F2)

)]
− 1

2 a
(i)
jk ε
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where {i, i′}= {1, 2}, and ε = 0 or 1 in accordance with whether D ≡ 0 or 1
(mod 4). Thus the (integers) c

(i)
jk in (25) are also uniquely determined by A.

We claim that the Z-modules I and M are now determined. First, we
observe that the ratio α1 : α2 is uniquely determined by

α1 : α2 = (c(1)
jk + a

(1)
jk τ) : (c(2)

jk + a
(2)
jk τ),(28)

for j, k ∈ {1, 2, 3, 4}; these equalities are implied by the system (25). That the
ratio on the right side of (28) is independent of j, k follows from the relations
(27) that have been imposed on the system. Hence α1, α2 are uniquely deter-
mined up to a scalar factor in K. (For example, if c

(i)
12 + a

(i)
12 τ are independent

over K for i = 1, 2, we may simply set αi = c
(i)
12 + a

(i)
12 τ for i = 1, 2.) Once we

have chosen α1, α2 ∈ S with the required ratio, the values of det(βj , βk) are
completely determined by the system (25). Moreover, because of the relations
(27) that have been imposed on the system, these values of det(βj , βk) satisfy
the Plücker relations required of them; hence the values of β1, β2, β3, β4 are
uniquely determined as elements in K2 up to a factor of SL2(K). An explicit
embedding M ↪→ K ⊕K can easily be computed in terms of the constants c

(i)
jk

and a
(i)
jk if desired.

It remains only to verify that the Z-modules I = 〈α1, α2〉 and M =
〈β1, β2, β3, β4〉 are in fact modules over S. Using an explicit embedding I ↪→ S,
or otherwise, one finds the S-module structure of I is given by (20), where the
constants p1, q1, r1 are defined by

−Pfaff(F1x − F2y) = p1x
2 + q1xy + r1y

2.(29)

Similarly, if we write

τ · βi =
4∑

j=1

tijβj ,

then the module structure of M is given by

tij =
(

i j k �
1 2 3 4

)(
a

(1)
i� a

(2)
ik − a

(1)
ik a

(2)
i�

)
(30)

for {i, j, k, �} = {1, 2, 3, 4}, and

tii = 1
2

∑
j,k,�

k<�

(
i j k �
1 2 3 4

)(
a

(1)
k� a

(2)
ij − a

(1)
ij a

(2)
k�

)
+ 1

2 ε(31)

where
(

i j k �
1 2 3 4

)
denotes the sign of the permutation (i, j, k, �) of (1, 2, 3, 4), and

ε = 0 or 1 in accordance with whether D ≡ 0 or 1 (mod 4). As all structural
coefficients tij are seen to be integral, this completes the proof.
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Again, the proof gives very precise information on the bijection of The-
orem 17. Given a pair (S, (I, M)), the corresponding pair of 4 × 4 skew-
symmetric matrices is obtained from equations (25). Conversely, given an
element {a(i)

jk } ∈ Z2 ⊗ ∧2Z4, the ring S is determined by (26), while explicit
embeddings of I ↪→ S and M ↪→ K ⊕K may be obtained using (28) and (25).
Finally, the module structures of I and M are given by equations (20), (29),
(30), and (31) respectively.

It is interesting to consider the map

id ⊗ ∧2,2 : Z2 ⊗ Z2 ⊗ Z2 → Z2 ⊗ ∧2Z4

of Section 2.6 in light of Theorems 11 and 17. We find that it corresponds to
the map

(S, (I1, I2, I3)) → (S, (I1, I2 ⊕ I3)),(32)

which takes balanced triples of ideal classes of S to balanced pairs of ideal
classes of S having ranks 1 and 2 respectively. In other words, the fusion
operation of Section 2.6 literally fuses together the ideals I2 and I3 by direct
sum.

On the other hand, it is a theorem of H. Bass [1] that if R is a ring in
which every ideal is generated by two elements, then every torsion-free module
over R is a direct sum of rank 1 modules. In particular, any torsion-free
module M over a quadratic order S is a direct sum of ideal classes of rank 1.
Hence the map given by (32) is actually surjective onto the set of eligible pairs
(S, (I, M)). We have proved the surjectivity assertion of Section 2.6: every
element of F ∈ Z2 ⊗ ∧2Z4 is integrally equivalent to id ⊗ ∧2,2(A) for some
cube A.

Let us now restrict Theorem 17 to the projective classes in Z2 ⊗ ∧2Z4.
Such classes correspond to pairs (S, (I, M)) in which I and M are projective
S-modules satisfying I · Det(M) = S. The cancellation theorem of Serre [8]
states that a projective module of rank k over a dimension 1 ring S is uniquely
determined by its determinant. It follows in view of Serre’s theorem that
any projective pair (S, (I, M)) is of the form (S, (I, S ⊕ I−1)), and hence the
mapping

Cl(Z2 ⊗ ∧2Z4; D) → Cl(S(D)),

sending (S(D), I, M) to (S(D), I), is an isomorphism of groups. Alternatively,
the map

Cl(Z2 ⊗ ∧2Z4; D) → Cl
(
(Sym2Z2)∗; D

)
,

which sends a pair (F1, F2) of alternating 4×4 matrices to the binary quadratic
form −Pfaff(F1x − F2y), yields an isomorphism of groups. This proves Theo-
rems 5 and 6.
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3.7. The case of senary alternating 3-forms. Finally, we obtain the ana-
logue of Theorem 17 for the space ∧3Z6. We show that fusing together the
three ideals I1, I2, I3 in Theorem 11 leads to the parametrization of certain
rank three modules over quadratic orders.

Theorem 18. There is a canonical bijection between the set of nondegen-
erate SL6(Z)-orbits on the space ∧3Z6, and the set of isomorphism classes of
pairs (S, M), where S is a nondegenerate oriented quadratic ring and M is an
equivalence class of balanced ideals of S having rank 3. Under this bijection,
the discriminant of a senary alternating 3-form is equal to the discriminant of
the corresponding quadratic ring.

Proof. Given a pair (S, M) as in the theorem, we first show how to con-
struct a corresponding senary alternating 3-form. Let again 〈1, τ〉 be a Z-basis
for S, and suppose 〈α1, α2, α3, α4, α5, α6〉 is a positively oriented Z-basis for
the S-module M . By the hypothesis that M is balanced, we may write

det(αi, αj , αk) = cijk + aijkτ(33)

for some set of 40 integers {cijk} and {aijk} satisfying

cijk =−cjik = −cikj = −ckji

and
aijk =−ajik = −aikj = −akji

for all i, j, k ∈ {1, 2, 3, 4, 5, 6}. The set of constants E = {aijk}1≤i,j,k≤6 ∈ ∧3Z6

is then our desired senary alternating 3-form.
It is clear that changing the chosen Z-basis of M via an element T ∈

SL6(Z) simply changes E by that same element T . Hence the SL6(Z)-equiva-
lence class of E is well-defined.

We wish to show that the mapping (S, M) → E is in fact a bijection. To
this end, let us fix an element E ∈ ∧3Z6, and consider the system (33), which
consists mostly of indeterminates. We show that all constants in the system
are essentially determined by E.

First the ring S is determined by E. This follows by first deriving the
following identity:

Disc(E) = N(M)2 · Disc(S).

Since N(M) = 1, it follows that

Disc(E) = Disc(S)(34)

and hence S = S(Disc(E)) is indeed determined by E.
To proceed further, we require the following three-dimensional analogue

of the determinantal identity of Section 3.6; we have

det(v1, v2, v3) · det(v4, v5, v6) + det(v1, v2, v5) · det(v3, v4, v6)

= det(v1, v2, v4) · det(v3, v5, v6) + det(v1, v2, v6) · det(v3, v4, v5)
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for any six vectors v1, v2, v3, v4, v5, v6 in three-space (this, again, is a special
case of the Plücker relations). As this identity holds over any ring, we may
write

det(αi, αj , αk) · det(α�, αm, αn) + det(αi, αj , αm) · det(αk, α�, αn)(35)

= det(αi, αj , α�) · det(αk, αm, αn) + det(αi, αj , αn) · det(αk, α�, αm)

for all i, j, k, �, m, n ∈ {1, 2, 3, 4, 5, 6}. This leads to a system of 135 nontrivial
linear and quadratic equations for the cijk’s in terms of the aijk’s. This system,
together with the condition that the basis α1, . . . , α6 is positively oriented, has
a unique solution given by

cijk =
∑
s,t,u

(
i j k s t u
1 2 3 4 5 6

)
aijsajktaiku

− 1
2 aijk

∑
s,t,u,v,w,x

|{i,j,k}∩{s,t,u}|≥2
s<t<u, v<w<x

(
s t u v w x
1 2 3 4 5 6

)
astuavwx − 1

2 aijk ε

where
(
i j k � m n
1 2 3 4 5 6

)
denotes the sign of the permutation (i, j, k, �, m, n) of (1, 2, 3, 4,

5, 6), and ε = 0 or 1 in accordance with whether D ≡ 0 or 1 (mod 4). Thus
the (integers) cijk in (33) are also uniquely determined by E.

We claim that the Z-module M is now determined. Indeed, the values
of all determinants det(αi, αj , αk) are determined by (33). Moreover, these
determinants satisfy the Plücker relations required of them as a result of (35).
It follows that the values of α1, . . . , α6 are uniquely determined as elements of
K3 up to a factor in SL3(K). An explicit embedding M ↪→ K ⊕ K ⊕ K can
easily be computed in terms of the constants cijk and aijk if desired.

It remains only to verify that the Z-module M = 〈α1, . . . , α6〉 is in fact a
module over S. If we write

τ · αi =
6∑

j=1

tijαj ,

then using an explicit embedding M ↪→ K3 as above, or otherwise, one finds

tij =
∑

k,�,m,n
k<�, m<n

k<m

(
i j k � m n
1 2 3 4 5 6

)
aik�aimn

(36)

for i �= j, and

tii = −1
2

∑
j,k,�,m,n

j<k, �<m<n

(
i j k � m n
1 2 3 4 5 6

)
aijka�mn + 1

2 ε,
(37)

where again ε ∈ {0, 1} with D ≡ ε (mod 4). As all values of tij are seen to be
integers, this completes the proof.
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The proof makes the bijection of Theorem 18 very precise. Given a pair
(S, M), the corresponding senary alternating 3-form is obtained from equa-
tions (33). Conversely, given an element {aijk} ∈ ∧3Z6, the ring S is deter-
mined by (34), an explicit embedding of M ↪→ K3 may be obtained from (33),
and the S-module structure of M is determined by equations (36) and (37).

Let us re-examine the natural “fusion” map

∧2,2,2 : Z2 ⊗ Z2 ⊗ Z2 → ∧3Z6

of Section 2.7. In terms of Theorems 11 and 18, it corresponds to the map

(S, (I1, I2, I3)) → (S, I1 ⊕ I2 ⊕ I3),(38)

which sends balanced triples of ideal classes of S to a single balanced ideal
class of rank 3. Thus, the triple-fusion operation ∧2,2,2 of Section 2.7 literally
fuses together all three rank 1 ideal classes I1, I2, I3 into a single rank 3 ideal
class M .

On the other hand, if follows again from Bass’s theorem [1] that any rank 3
ideal class over a quadratic ring S is a direct sum of rank 1 ideal classes. Hence
the map (38) is actually surjective onto the set of all pairs (S, M). Therefore,
we have proved the surjectivity assertion of Section 2.7: every element of ∧3Z6

is integrally equivalent to ∧2,2,2(A) for some cube A.
Last but not least, let us restrict Theorem 18 to the set of projective classes

in ∧3Z6 of discriminant D. By Serre’s theorem, any projective pair (S, M)
must actually take the form (S, S ⊕S ⊕S); hence Cl(∧3Z6; D) consists of only
one element. If, moreover, S is a maximal order (i.e., if D is a fundamental
discriminant), then any torsion-free module over S is projective, and so all pairs
(S, M) are projective. We conclude that if D is a fundamental discriminant,
then up to integer equivalence, there is exactly one element of ∧3Z6 having
discriminant D. We have proven Theorem 7.

4. Higher composition laws and exceptional groups

The composition laws we have presented in Sections 2 and 3 turn out to
be closely related to certain exceptional Lie groups. To be precise, let G be
a Lie group and P be a maximal parabolic of G. Write P = LU , where L is
the Levi factor and U is the unipotent radical at P . Then the group L acts
naturally (by conjugation) on the abelianized unipotent radical W = U/[U, U ].
For appropriate choices of G and P , we find that we obtain precisely the spaces
W underlying our composition laws.

For example, the first case we considered in Section 2 was the space of
2 × 2 × 2 cubes. Let G denote the exceptional Lie group of type D4, and let
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P denote the maximal parabolic corresponding to the central vertex of D4:

When this central vertex is removed, what remains are three isolated vertices,
and hence the Levi L at P is L = SL2 × SL2 × SL2. In addition, a calculation
shows that W , the abelianized unipotent radical at P , is precisely the space of
2 × 2 × 2 cubes.

As we discovered in Section 3, the three factors of SL2 in L act on the bases
of three ideals I1, I2, and I3 respectively in some quadratic order S (where the
three ideals sum to zero). This suggests that we ought to label the vertices of
the Dynkin diagram of D4 in the following manner:

I1 S

I3

I2

In particular, we see that the outer automorphisms of D4 act by permuting
the triple (I1, I2, I3) of ideals in S.

Next, let us see what happens when we impose certain symmetry and
skew-symmetry conditions, as we did in Sections 2 and 3. First, we would like
to impose the symmetry condition that identifies I2 with I3, so that I2 = I3.
On the level of Dynkin diagrams, then, we perform the identification

I1 S

I3

I2

to yield

I1 S I2 = I3

and we have obtained the Dynkin diagram B3. Thus the composition law
corresponding to pairs of binary quadratic forms, as discussed in Sections 2.5
and 3.5, arises from the group B3, where the parabolic P corresponds again to
the central vertex.
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If, instead of identifying them, we fuse together the ideals I2 and I3 by
direct sum, this corresponds at the level of Dynkin diagrams to fusing the
vertices labelled I2 and I3 in the diagram of D4 with an additional vertex; this
yields:

I1 S

I3

I2

and we have obtained the Dynkin diagram D5. Hence the composition law on
pairs of quaternary alternating 2-forms, as discussed in Sections 2.6 and 3.6,
arises in this sense from the group D5, where P again is the maximal parabolic
corresponding to the (circled) vertex labelled S.

Let us now identify all three ideals I1, I2, I3. This corresponds, on the
level of Dynkin diagrams, to the triple identification

I1 S

I3

I2

S I1 = I2 = I3

yielding the Dynkin diagram G2. Thus the composition law on binary cubic
forms, discussed in Sections 2.4 and 3.4, arises in this sense from the Lie
group G2.

Finally, if we fuse together all three ideals I1, I2, I3 by direct sum, this
means we take all the outer vertices of the Dynkin diagram D4 and fuse them
together with vertices in between, to obtain

I1 S

I3

I2

S
I2

I1

I3

and this is the Dynkin diagram E6. That is, the composition of alternating
3-forms in six variables, discussed in Sections 2.7 and 3.7, is related in this way
to the exceptional Lie group E6.

Our discussion above shows, in sum, that quadratic composition stems
essentially from the triply-symmetric Dynkin diagram of the Lie group D4,
together with its parabolic subgroup corresponding to the central vertex.
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Are there a Lie group and parabolic that might lead to cubic composition
laws? The answer, remarkably, is yes. This question (and its answer) will be
treated fully in the next article.

Appendix: Equivalence of the cube law and Gauss composition

The most elementary way to see the equivalence of the Cube Law and
Gauss composition is probably via the definition of Gauss composition due
to Dirichlet [3]. In this appendix, we show how Dirichlet composition can be
derived in a very natural and simple manner from the Cube Law.

Suppose we have a projective cube

a b

c d

e f

g h
��

��

��

��

.
(39)

Since the cube is projective, the greatest common divisor of its entries is 1.
Therefore, by applying elements of Γ = SL2(Z) × SL2(Z) × SL2(Z), we may
obtain an entry “1” in the (1, 1, 1) position; that is, we may find an equivalent
cube with a = 1 in (39). This “1” entry can then be used to clear out the three
adjacent entries in the cube, i.e., we may arrange for b = c = e = 0. Thus we
see that any projective cube can be transformed by an element of Γ to some
cube of the form

1 0

0 d

0 f

g h
��

��

��

��

.
(40)

Let us write down the three quadratic forms Q1, Q2, Q3 associated to the cube
(40). We have

Q1 = −dx2 + hxy + fgy2

Q2 = −gx2 + hxy + dfy2

Q3 = −fx2 + hxy + dgy2.

(41)
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Now the Cube Law declares that [Q1] + [Q2] = −[Q3], and therefore

[−dx2 + hxy + fgy2] + [−gx2 + hxy + dfy2] = [dgx2 + hxy − fy2].

This is precisely Dirichlet composition.
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