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Equivariant de Rham torsions

By JEAN-MICHEL BISMUT and SEBASTIAN GOETTE*

Abstract

The purpose of this paper is to give an explicit local formula for the
difference of two natural versions of equivariant analytic torsion in de Rham
theory. This difference is the sum of the integral of a Chern-Simons current and
of a new invariant, the V-invariant of an odd dimensional manifold equipped
with an action of a compact Lie group. The V-invariant localizes on the critical
manifolds of invariant Morse-Bott functions.

The results in this paper are shown to be compatible with results of Bunke,
and also our with previous results on analytic torsion forms.
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Introduction

In a previous paper [BGol], we have established a comparison formula for
two natural versions of the holomorphic equivariant analytic torsion. This com-
parison formula is related to a similar formula obtained in [Go] for n-invariants.
In this paper, we establish a corresponding formula, where we compare two
natural versions of equivariant analytic torsion in de Rham theory. On one
hand the classical equivariant version [LoRo| of the Ray-Singer analytic tor-
sion [RS] appears. On the other hand, we construct an adequately normalized
version of the infinitesimal equivariant torsion, by imitating the construction
of the Chern analytic torsion forms of [BGo2|, which are themselves a renor-
malized version of the analytic torsion forms of Bismut-Lott [BLo|. Our equiv-
ariant infinitesimal torsion is a renormalized version of the torsion suggested
by Lott [Lo].

The difference of these two torsions is expressed as the integral of local
quantities. One of these is an apparently new invariant of odd-dimensional
manifolds equipped with the action of a Lie group. This invariant localizes
naturally on the critical manifolds of an invariant Morse-Bott function.

Now, we will explain our results in more detail. Let X be a compact
manifold, and let (F, VF) be a flat vector bundle on X. Let (Q (X, F) ,dX)
be the de Rham complex of F-valued smooth differential forms on X, and let
N be the number operator of ' (X, F'). Let H (X, F) be the cohomology of
(Q' (X, F) ,dX). Let ¢7X, g* be metrics on TX, F. Let d** be the adjoint of

dX with respect to the obvious Ly Hermitian product on (X, F).

Let G be a compact Lie group acting on X, whose action lifts to F,
and which preserves V¥, ¢g7X ¢¥. Then G acts on (Q (X, F) ,dX> and on
H (X,F). If g € G, set

(0.1) Vg (gTX, VF,gF) (s) = —Trs [Ng (DX’Q)S} )

Then 9, (gTX,VF,gF) (s) extends to a meromorphic function of s € C,

which is holomorphic at 0. The quantity %199 (gTX ,VE gf ) (0), introduced
in [LoRo], is called the equivariant analytic torsion or the equivariant de Rham
torsion. It extends the classical Ray-Singer analytic torsion. Using this ana-
lytic torsion, an equivariant Ray-Singer metric on the equivariant determinant
of H' (X, F) was defined in [BZ2]. In [BZ2], anomaly formulas were established
for || |[x,(r)> and the result of Lott-Rothenberg [LoRo] comparing equivariant
Reidemeister and Ray-Singer metrics for unitarily flat vector bundles was ex-
tended to arbitrary flat vector bundles. The results of [BZ2] were the obvious
extension to the equivariant case of the results of [BZ1], where the theorems
of Cheeger [C] and Miiller [Miil, 2] were extended to arbitrary flat vector
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bundles. Also Bunke [Bul] showed that for equivariant unitarily flat vector
bundles, the equivariant analytic torsion can be determined by counting the
cells of a G — CW decomposition of X, up to a locally constant function on G.

Let m : M — S be a submersion with compact fibre X, and let (F, VF> be
a flat vector bundle on M. Then H (X, F) is a vector bundle on S, equipped
with a flat connection V# (X:F) In this situation, Bismut and Lott [BLo]
proved a Riemann-Roch Grothendieck formula. Namely, by [BLo|, if h (z)
is an odd holomorphic function, one can construct odd cohomology classes
h (VF ) on M. Let e (T X) be the Euler class of TX. Then the Riemann-Roch

formula of [BLo] takes the form,
(0.2) h (VD) = / e(TX)h (V") in H*Y (S, R).
X

In [BLo], equation (0.2) was refined at the level of differential forms. Namely,
a Chern-Weil formalism was developed to represent the classes h (VF ) by ex-

plicit closed differential forms h (VF gt ) Let TH M be a horizontal subbundle
of TM. With h(z) = ze”", an even differential form 7;, (THM, g’ VF,gF)
was constructed on S, such that

(03) T, (T"M, g™, V7, 4F) :/

Xe(TX,vTX)h(vF,gF)

2

_ (vH'(X,F)7gf'(X,F)) _

In (0.3), VX is a Euclidean connection on (TX gt ) associated naturally
to (TH M, gTx ), e (TX ,VTX ) is the Chern-Weil representative of the FEuler

class e (T'X), and gg (XF) s the metric on H (X, F) obtained by identification
with the corresponding fibrewise harmonic forms.

In [BGo2], the results of [BLo| were extended to an equivariant situation.
Namely we assume that GG acts as before on M, F', and besides that it preserves
the fibres X. Also we assume, as we may, that all the above objects, like TH M
are G-invariant. If g € G, let M, be the fixed-point manifold of g, which
fibres on S with fibre X;. In [BGo2], we defined on M, obvious equivariant

analogues hy (VF) by (vF, gF) of h (VF) h (vF, gF). With h(z) = ze®”,
we constructed in [BGo2| even forms 7}, 4 (TH M, gTx v gF >, which are such
that

(0.4)  dT g (THM, g™, V", g") :/
XQ

— hy (VD) g )

e (TXy, V%) hy (VF,4")

Lo
Also, in [BGo2], we obtained what we claimed to be the ‘right’
normalization of the analytic torsion forms ’271(THM, gtX vl g" ) and



96 JEAN-MICHEL BISMUT AND SEBASTIAN GOETTE

Thy (T HpL gt XV, gF ), the Chern analytic torsion forms. They were denoted
T (THM, gTX VF, gF) and g, (THM, gTX VF, gF). If chg (vF , gF) is
the odd secondary Chern form obtained in [BLo, Prop. 1.14] and in [BGo2,
§2.7], then (0.4) is replaced by

(05)  dTany (TM, g™, V7, ") = /X e (TXy, V7¥0) chy (V7 g7)

— ch? (VH'(X,F)jng'(XvF)) .

In [Lo], Lott suggested the construction of an equivariant infinitesimal
torsion by imitating the construction of the forms 7j , (TH M, gTX VFE gF )
Indeed when the structure group of the fibration 7 : M — S is the compact Lie
group G, the torsion forms 7, (T Hpp X WE, gF ) appear as formal power
series on g. If g is the Lie algebra of G, the argument K should then be replaced
by —©/2im, where © is the curvature of a connection on the corresponding
G-bundle.

One purpose of this paper is to make the above construction of Lott nonin-
finitesimal. Namely, if g € G, if Z (g) C G is the centralizer of g, and if 3 (g) is
its Lie algebra, we construct in Section 2.7 an equivariant infinitesimal analytic
torsion 7oy g K (gTX ,VE gF ), which is a real-analytic function of K € 3(g) on
a neighbourhood of 0. This torsion is obtained by normalizing a corresponding
Thyg THM, gTX,VF,gF>. An important property of 7, 4 x (gTX,VF,gF),
established in (2.119) is that

10
TX oF _ 19 TX wF F
(0.6) Tango (675, V", g )—Qasﬁg(g V767 (0).
The second main purpose of this paper is to give a local formula for
,Zz:h,g,K (gTX’ VF’ gF) - ,Tch,geK,O (gTXa vpv gF> .

One can indeed conjecture that such a formula may hold, in view of the
anomaly formulas of [BZ2| and Section 2, which show that the variation of
this difference with respect to g7, g¥" is computable locally.

A similar program was followed in [BGol] for the holomorphic torsion
where the corresponding difference was expressed as the integral of a natural
equivariant Bott-Chern current, and as an exotic genus I (6,6, z). Compati-
bility to the immersion results for Quillen metrics [Q2] and their equivariant

analogues [BL], [B11] were key tests of the validity of the formula of [BGol].
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In the context of flat vector bundles on real manifolds, much less is known.
In particular, there is no natural theory of cycles, which would be a geometric
counterpart for the Riemann-Roch-Grothendieck formula of [BLo]. The com-
parison formula for the two versions of equivariant de Rham torsion is then «a
priori more mysterious.

On the other hand, as explained in [BGol], the comparison formula for
holomorphic torsion is one of the ways one can understand the true, if elusive,
nature of holomorphic torsion. A similar expectation could then be justified
in the context of de Rham torsion.

Also Bunke [Bu2| showed that for odd-dimensional oriented manifolds
equipped with the trivial flat vector bundle, up to a locally constant term,
Lott’s equivariant torsion for the trivial vector bundle can be computed by
counting cells of a G — CW decomposition. The similarity of this last result
with Bunke’s previous results [Bul] on classical equivariant torsion suggests
that the two torsions should be related by an explicit formula.

Take g € G, Ky € 3(g), and assume that K = zKj, with z € R*. The
main result of this paper takes the following form:

THEOREM 0.1. For z € R*, if |z| is small enough, the following identity
holds:

(07)  Tangx (975,97, 9") = Tanger o (6", V", 97)
= /X K (TXg, vTXg) Fy (Xg,gTXg) ch? (vF,gF)
T [g] Vi (X,)

Let us briefly describe the objects which appear in the right-hand side
of (0.7). The first term is a contribution of the even-dimensional components

of the fixed point manifold X, under g. The form eg (TXQ,VTX-‘/> is the

equivariant Euler form of T'X, the current Fy (Xg, gTXg) is of Chern-Simons
type on X . This first term represents the ‘predictable’ part of the formula,
given what is known by the anomaly formulas.

The second term is much more mysterious. Only the odd-dimensional
components of X, contribute to Vi (X), which is a locally computable diffeo-
morphism invariant of X, equipped with the action of K € 3 (g). The fact that
it is an invariant makes it is impossible to guess from the anomaly formulas.

Still, the results of [BGo2] gave us grounds to believe that such a term
had to appear. In [BGo2], when the fibres X of the fibration 7 : M — §
carry a Morse-Smale vector field, we expressed the de Rham torsion forms
%h,g,K (gTX, VFa gF
an exotic genus J (0, ). The results of [BGo2] led us to establish some natural

) in terms of corresponding combinatorial objects, and of

properties of the term Vi (X,), or should have, even if we had no idea how it
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should appear. The results of [BGo2] play the same role in the present paper
as the immersion formulas of [BL], [B11] in [BGol].

In fact, a third purpose of this paper is to construct the V-invariants from
scratch, without any reference to torsion. This program is carried through in
Section 3. In the context of equivariant fibrations with odd-dimensional fibres,
the V-invariants are even cohomology classes on the base of the fibration. In
Section 4, we show that the V-invariants localize on the critical fibrations
associated to fibrewise Morse-Bott functions, and we study their behaviour
with respect to multifibrations. In the formulas involving fibrewise Morse-
Bott functions, a genus J? (x) appears, which is directly related to the genus
J (8,z) of [BGo2]. These two properties are indeed critical to demonstrate
the compatibility of formula (0.7) to the results of [BGo2] on analytic torsion
forms, and also to the results of [Ma] on the functoriality of analytic torsion
forms.

A remarkable feature of formula (0.7) is that it shows that
Tehg K (gTX L VE gF ) is indeed the correct normalization of the infinitesimal
torsion. In Theorem 5.13, we also give an extension of Theorem 0.1 to the case
where X is the generic fibre of an equivariant fibration, so that (0.7), instead
of being an equality of complex numbers is now an equality of classes of forms
on the base S of the fibration.

Also, we show that our results lead to a refinement of Bunke’s results
[Bul], [Bu2] in arbitrary dimensions.

Now we describe the main techniques which are used in this paper. As
in previous work on related subjects [BLo], [B11], [BZ1, 2], [BGol], our main
result is obtained by integrating a closed form on a domain, and by pushing
the boundaries of the domain to infinity. However, while in the above refer-
ences, the considered domains were 2-dimensional, here the dimension of the
domain is 3. This reflects the fact that the forms ch® (VF ,gF ) are Chern-
Simons forms, which are obtained by integration along a 1-dimensional path
of connections, while torsion forms are obtained by a transgression mechanism
above the forms ch® (VF gF ), and in fact are obtained by integration over a
domain of dimension 2.

Local index theory in the context of families [B3], [BeGeV] plays an im-
portant role. In particular the Getzler rescaling [Ge] is used in the whole paper.
As in [BZ1, 2], two kinds of Clifford variables appear in the analysis, and they
are rescaled in different and subtly interrelated ways. Also, we use the Berezin
integration formalism of Mathai-Quillen [MQ)], which plays a prominent role
in our local index computations.

Let us also point out that (0.7) only holds for small |z|. This fact is
reflected in the analysis. In [BGol], a similar difficulty appeared in the context
of holomorphic torsion. In the present paper, we have used arguments taken
from [BGol] every time the difficulties were formally identical.
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Finally, finite propagation speed of solutions of hyperbolic equations plays
an important role, to establish that certain estimates can be localized.

This paper is organized as follows. In Section 1, we construct the classical
equivariant de Rham torsion, and the corresponding equivariant Ray-Singer
metric on det (H" (X, F)). In Section 2, we define the Chern equivariant in-
finitesimal torsion, in relation to the Chern equivariant analytic torsion forms
of [BGo2]. In Section 3, we define the V-invariants attached to equivariant
fibrations. Their construction uses mysterious identities verified by the curva-
ture tensor of a natural connection on T'X. In Section 4, we give a localization
formula for the V-invariants with respect to fibrewise Morse-Bott functions,
and we evaluate the V-invariants of multifibrations. In Section 5, we state the
main result of this paper, in a form equivalent to Theorem 0.1, and we verify
that this result is compatible with other known results on analytic torsion and
analytic torsion forms, in particular with the results of Bunke [Bul, 2] where
various torsions are evaluated for G — CW complexes, with the results of Ma
[Ma] on the behaviour of analytic torsion forms with respect to multifibrations,
and with our own previous results in [BGo2].

Sections 6-12 are devoted to the proof of Theorem 0.1. In Section 6, we
introduce a fundamental closed 2-form on part of R3. In Section 7, using five
intermediate results, whose proof is delayed to the next sections, we establish
Theorem 0.1.

Sections 8-12 are devoted to the proof of these five intermediate results.
They contain the bulk of the mainly analytic and algebraic arguments in the
proof. Section 8 only contains short elementary arguments. In Sections 9-
11, we essentially establish convergence results of global quantities to locally
computable expressions. While the local algebraic arguments are specific to
the situation which is considered here, the analytic arguments and the required
estimates are taken from [BGol], with minor changes.

Section 12 contains the bulk of the strictly analytic arguments. Its purpose
is to establish a uniform estimate in a range of parameters not covered by
[BGol]. The estimates in Section 12 are in fact the ones which are needed to
establish the corresponding estimates in the proofs in Sections 9-11, so that
our paper is indeed self-contained.

In the whole paper, we use the superconnection formalism of Quillen [Q1].
If A is a Zy-graded algebra, if A, B € A, [A, B] denotes the supercommutator
of A and B, i.e.

(0.8) [A,B] = AB — (—1)deeAdesB g4

The results contained in this paper were announced in [BGo3|.
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1. The classical equivariant de Rham torsion

The purpose of this section is to recall the main properties of the classical
equivariant analytic torsion in de Rham theory, and of the corresponding Ray-
Singer equivariant metrics.

This section is organized as follows. In 1.1 and 1.2, we introduce the basic
conventions on Clifford algebras and Berezin integrals, which will be used in
the whole paper. In 1.3, we construct the equivariant Ray-Singer metrics using
the equivariant Ray-Singer analytic torsion, whose non equivariant form was
introduced in [RS]. In 1.4, we recall a simple formula for the Ray-Singer
analytic torsion established in [BLo]. Finally, in 1.5, we recall the anomaly
formulas of [BZ2] for Ray-Singer metrics.

1.1. Real vector spaces and Clifford algebras. Let V be a finite dimen-
sional real Euclidean vector space of dimension n. We denote by () the scalar
product on V. We identify V' and V* by the scalar product ( ). Let ¢(V) be
the Clifford algebra of V, i.e. the algebra spanned over R by 1, X € V and
the relations for X,Y,

(1.1) XY +YX=-2(X,Y).
If A€V, let A* correspond to A € V. Set
(1.2) c(A) = A" A\ —iy, ¢(A) = A" A +ig.

The operators ¢ (A) and ¢(A) act naturally as odd operators on A (V*). If
A, BinV,

(1.3)

[c(A),c(B)] = =2(A,B), [¢(4),é(B)] =2(A,B), [c(A),¢(B)]=0.

¢
Then (1.3) says that A — ¢(A) and A — i¢(A) give two supercommuting
representations of the Clifford algebra ¢ (V).

Also ¢ (V) acts naturally on itself by multiplication on the left and on
the right, and these two actions commute. They will be denoted respectively
by ¢ and ¢". Classically, there is a Z-graded isomorphism of vector spaces
c¢(V) >~ A(V*). Let 7 be the operator on A (V*), which is 1 on A®V* (V*), —1
on A° (V*). Then one verifies easily that under the above isomorphism, if
AeV,
(1.4) c(A) = (A), ¢(A)=71c"(A).
In the sequel, we will often use the notation ¢ (V) and ¢ (V) for the algebras
generated respectively by the ¢ (A) and by the ¢ (A).

If H € End(V), then H acts naturally as a derivation on A(V*). Let

e1,...,en be an orthonormal basis of V. Then one verifies easily that if H is
antisymmetric,

(15) Hlaw) = 3 (Hen 65) (elei)eles) = 2(e) € ey)).
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If S € End (A (V*)), its supertrace Trs [S] is given by
(1.6) Trg [S] = Tr [75].
Now we state a simple result established in [BZ1, Prop. 4.9].

PROPOSITION 1.1. Among the monomials in the c(e;),c(ej), up to per-
mutation, c(e1) ¢ (e1)...c(en)C(en) is the only one whose supertrace does not
vanish. It is given by the formula

(1.7) Trs[c(e1)c(er)...clen)C(en)] = (—2)".

1.2. The Berezin integral. Let E and V be real finite dimensional vector
spaces of dimension n and m. Let g¥ be a Euclidean metric on E. We will
often identify F and E* by the metric ¢g¥. Let ey,---,e, be an orthonormal
basis of E, and let e!,---,e” be the corresponding dual basis of E*.

Let A" (E*) be the exterior algebra of E*. It will be convenient to introduce
another copy A’ (E*) of this exterior algebra. If e € E* we will denote by é
the corresponding element in A" (E*).

Suppose temgorarﬂy that FE is oriented and that e, -, e, is an oriented

basis of E. Let [P be the linear map from A" (V") ® A" (E*) into A (V*), such
that if « € A (V*),3 € A(E*),

~

B
(1.8) / af =0 if degf < dim F,

B
/ agt A AT = (1) D2

More generally, let o(E) be the orientation line of E. Then [? defines a
linear map from A" (V*) @ A" (E*) into A" (V*) & o (E), which is called a Berezin
integral.

Let A be an antisymmetric endomorphism of E. We identify A with the
element of A (E*),

(1.9) A=< Y (e, Aej)e’ nel,

1<ij<n

By definition, the Pfaffian Pf {%} of % is given by

(1.10) /B exp (—A/27) = Pt [;] .

™

Then Pf {%} lies in o(E). Moreover Pf {%} vanishes if n is odd.
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1.3. FEquivariant Ray-Singer metrics. Let X be a compact manifold of
dimension n. Let F' be a complex vector bundle on X, equipped with a flat
connection V. Let H (X, F) be the cohomology of the sheaf of locally flat
sections of F.

Let G be a compact Lie group, and let g be its Lie algebra. We assume
that G acts on the left on X, and that this action lifts to F, and preserves V'
Then G acts on H" (X, F).

Let (Q (X,F),d*) be the de Rham complex of smooth sections of
A (T*X)® F on X. Then

(1.11) H(Q (X,F),d*)~H (X,F).
Clearly G acts on (2 (X, F),d¥X) by the formula
(1.12) (95)(x) = gus(g™ ).

Then (1.11) is an identity of G-spaces.
We define the Lefschetz number x4 (F') and the derived Lefschetz number

Xg (F) by
(1.13)
n
Xg (F) = > (=)' T [g] -y (F) =3 (1) T I [g]
i=0 i=0
Take g € G. Let X, be the fixed point set of g in X. Then X is a totally

geodesic submanifold of X. Let e (7' X,) be the Euler class of TX,. Then the
Lefschetz fixed point formula asserts that

(1.14) X (F) = [ e(TX,) T [g).

g

Let ¢7X, g™ be smooth G-invariant metrics on TX, E. Let dvy be

the corresponding volume form on X. Let () AT X)EF be the corresponding
Hermitian product on A" (T*X)® F. If 5,5’ € Q (X, F), put

dvx
(1.15) (s,8) :/X<3a5/>A'(T*X)®F(2ﬂ.)dimX'

Then (1.15) is a G-invariant Hermitian product on Q (X, F'). We denote by
g*¥ 5F) the corresponding Hermitian metric on Q (X, F).
Let d** be the formal adjoint of dX with respect to (1.15). Put

(1.16) DX = d* 4 a%~.
Then DX is a first order elliptic operator. By Hodge theory,
(1.17) ker DX ~ H (X, F).

Also DX commutes with G, so that G acts on ker DX. Then (1.17) is an iden-
tification of G-spaces. Also ker DX inherits a G-invariant Hermitian product
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from the Hermitian product (1.15) on © (X, F). Let gfz-(X’F)
sponding Hermitian metric on H* (X, F).

Let G be the set of equivalence classes of irreducible representations of G.
IfWw e CA}, let xw be the character of GG associated to W. Then we have the
isotypical decomposition

be the corre-

(1.18) H (X,F) =&, _gHoma(W,H (X,F)) @ W,

which is orthogonal with respect to gZ (X, F)

CIfEW e G, put
(1.19) A (F) = det(Homg(W, H' (X, F)) @ W).
Then Ay (F') is a complex line. Set

(1.20) A (F) =@y caiw (F).

Let | [y, (#) be the metric induced by gi(X’F) on A\ (F).

Definition 1.2. Set

B Xw
(1.21) log (\ |AG(F)) - eralog(! \Aw(m)rk(W).

The symbol | |5, ) will be called an equivariant Ly metric on Ag (F).

Let ker(D¥)L be the orthogonal vector space to ker(DX) in Q (X, F).
Then D*? acts as an invertible operator on ker(DX)L. Let (D%?)~! denote
the inverse of DX+2 acting on ker(D¥)*.

Let N be the number operator of Q (X, F'), i.e. N acts by multiplication
by k on QF(X, F). By standard heat equation methods [Gi], [BeGeV], there
exists £ with 2¢ € N* such that as t — 0, for any k € N,

(L22)  Tr[Ngexp(—tD¥?| =S5 +. o+ aypt' 4.

oot a1t apth + o(tF).

Definition 1.3. For g € G,s € C,Re(s) > ¢, put
(1.23) 999", VT, g")(s) = —Trs[Ng(D*?)~°].

By (1.22), 94(g7%, VT, g¥)(s) extends to a meromorphic function of s €
C, which is holomorphic at s = 0. In particular, g € G +— %0g(gTX, VE, ¢)(0)
€ C is a central function. When g = 1, it was introduced by Ray and Singer
[RS]. This function is called the Ray-Singer equivariant analytic torsion.

Definition 1.4. For g € G, put

10

(1.24) 10g (|| [1,r)) (9) =108 (| Ira(r) (9) + 5 5-0alg", V7.9 0).
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The symbol || ||,z will be called an equivariant Ray-Singer metric on
A (F).

1.4. A formula for the Ray-Singer equivariant torsion. Put

1
(1.25) AX = (¥ 4 dY), BX =2 (@5 —a*).
Then

(1.26) DX?% = 4AX? = _4BX2,

Let VX be the Levi-Civita connection on TX, let VA (T"X) be the cor-
responding connection on A" (T*X).

Put o
(1.27) w (VF,gF) = <gF> vEgr.

Then w (VF,gF) is a 1-form on X with values in self-adjoint elements in
End (F), which is such that

(1.28) vFw (VF,gF) S (VF,gF) .
Let V% be the connection on F,

1
(1.29) v =V 4 2w (vF,¢").

Then one verifies easily that V% is unitary, and that its curvature R is
given by

1
Fu_ ' 2(oF F

(1.30) R = —w (v g )

Also, by (1.28), (1.29),

(1.31) v (v, 6") = 0.

Let VA (T"X)8 Fu he the connection on A’ (T*X) & F induced by VA (T°X)
and VI,

Let eq,...,e, be an orthonormal basis of TX. Then by [BZ1, proof of
Proposition 4.12], we have the easy formulas,

1 (T NS 1.
(1.32) AX = Se(e) VTR - Za (e w (VF,9") (e,
1 e ra 1
BX = —ic(ei)Vé (I"X)@ Fu Zc(ei)w (VF,gF) ().
Set
(1.33) h(z) = ze® .

Definition 1.5. Put

(1.34) hy (¥, g F)) = T, [ggh’ (BX)] .
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For ¢t > 0, set
gTx

Q(X,F) . . . .
Let g, be the corresponding Hermitian metric on " (X, F'). Then
(1.36) gtﬁ'(X,F) = {N=1/252 (XF),
Let B be the corresponding BX. Clearly

1
X X X
(1.37) B = (d td ) ,
so that
(1.38) BX? = tBX2,
By (1.34), (1.38),
Al 3X  QXF) _ ﬁ / X

(1.39) h) (d o )—Trs [2gh (\/ZB )]

Now we have the result of [BLo, Th. 3.2], [BGo2, Th. 3.30].

THEOREM 1.6. Ast — 0,

- 1
(1.40) ny (¢, g7 ) = L dim Xy (F)W (0) + O (V).
Ast — o0,
: 1
(1.41) ny (¢, 6 OO0 = D ()W (0)+ 0 (1/V7)

Definition 1.7. Set

+oo Q(X,F 1
(1.42) T, (gTX,VF,g )Z—/O [hg (dX,gt ( )) - QX; (F) ' (0)

1 1, " dt
_ <Z dim X (F) = 5x, (F)> h (Z\/E/2)] -
Now we have the result established in [BLo, Th. 3.29], [BGo2, Rem. 3.36].

THEOREM 1.8. The following identity holds:

(1.43) Ty (gTX’vF’gF) _ %% <gTX7vF’gF) (0).

1.5. Anomaly formulas for equivariant Ray-Singer metrics. Let QX be
the vector space of smooth forms on X, let QX0 c QX be the subspace of
exact smooth forms on M.

Let VTX be the Levi-Civita connection on (TX LgTX ) Since X, is totally

geodesic, VIX induces the Levi-Civita connection V7¥s on TX,. Let R™Xs be
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the curvature of VI¥Xs. Let e (TXg, VTXH) be the Euler form of T'X, which

one associates to the Euclidean connection V7¥s using Chern-Weil theory.
Then

(1.44) e (TX,, V") = Pi l

RTX-"
2 ] '

Observe that if ny = dim X is odd, then
(1.45) e (TX,,V"¥0) =0.

Also Tr [gw (VF,gF) /2} is a closed 1-form on X,.

TX ¢'F' be another couple of G-invariant metrics on TX, F. One

denotes with a superscript ’ the objects we just constructed, which are asso-
ciated to this new couple of metrics. Let € (TX,, VI¥s, V’TX9> € QXs/Q¥Xs0
be the corresponding Chern-Simons class, so that

Let now g

(1.46) de (TXg, VT, V’TXQ) =e (TXg, V’TXH> —e (TXg, VTXQ) .
Observe that
(1.47) dlog (det (g'F/gF)1/2> =Tr {w (VF,g’F) /2} —Tr {w (VF,gF) /2} .

More generally, by splitting F'| x, as an orthogonal direct sum of vector bundles
indexed by the locally constant distinct eigenvalues of ¢ Flx,» We obtain easily

a smooth function
1/2
log (det (97/9") ) (9)

on X, which is such that
(1.48)
dlog <det (g'F/gF) 1/2) (g)=Tr {gw (VF,g’F> /2} —Tr {gw (VF,gF) /2} .

We now state the anomaly formula for equivariant Ray-Singer metrics,
which was established in [BZ2, Th. 0.1] (we also refer to [W] for another proof
of this formula).

THEOREM 1.9. The following identity holds:

(1.49)
log (Hb‘ﬂ) (9)= /X e (TXga VTXg) log (det (g/F/gF) 1/2> )

I e () ,
+ /X 5(TX9,VTX9,V’TX9)Tr [gw (vF gF ) /2].
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2. The Chern equivariant infinitesimal analytic torsion

The purpose of this section is to construct the Chern equivariant infinites-
imal analytic torsion forms. Their construction is at least formally related to
the construction of corresponding torsion forms in complex geometry [BGol].
It is imitated from the Chern normalization of the analytic torsion forms in de
Rham theory which was given in [BGo2].

This section is organized as follows. In 2.1, we describe in some detail the
Lie derivative operator Lg acting on Q (X, F). In 2.2, we make the funda-
mental assumption that the action of G on F' is flat. In 2.3, we recall simple
results on Lefschetz and Kirillov-like formulas for the equivariant Euler charac-
teristic x4 (F'). In 2.4, we briefly recall the heat equation proof given in [B2] of
Kirillov-like formulas. In 2.5, and following [BGo2|, we define the equivariant
analytic torsion forms associated to a fibration with compact structure group.
In 2.6, we construct the equivariant infinitesimal analytic torsion, and in 2.7,
we obtain the corresponding Chern analogue. Finally in Section 2.8, we briefly
establish anomaly formulas for the associated Ray-Singer metrics.

We make the same assumptions as in Section 1, and we use the corre-
sponding notation.

2.1. The infinitesimal action of G. If K € g, let K* be the corresponding
vector field on X. If K, K’ € g, then
(2.1) KX KN = K K

Definition 2.1. If K € g, set
(2.2) mTX (K) = VIX KX,

The vector field KX is Killing. Therefore m”X (K) is a skew-adjoint
section of End(7T'X ), which is also the vertical part with respect to VX of the
lift KTX of KX to TX. We identify m”X (K) with its action on A" (T*X).
By (1.5),

(2.3) mT (K) = % (VIXEX ¢) (c(ex) ele;) —E(en) Ele))

Recall that VA (T"X) is the connection on A" (T*X) induced by VX, Then
VA(T"X) acts on the standard de Rham complex (Q (X) ,dX). Since VI¥ is
torsion-free, the Lie derivative operator Lx is given by

(2.4) L = Vall™X) _ X (K.

Let F' be a complex vector bundle on X as in Section 1.3, equipped with
a flat connection V¥, and a Hermitian metric g¥". Recall that the action of G
on X lifts to F' and preserves VI and ¢g. Let K* be the vector field induced
by the action of K on F. Let m!(K) € End(F) be the vertical part of K
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with respect to the G-invariant flat connection V¥ in F. Then m% (K) is a
section of End(F"), and the action Lg of K on smooth sections of F' is given
by

(2.5) Lg = Vix —m" (K).

Let VA (T"X)®F be the connection on A’ (T*X) ® F which is induced by VI¥

and VF. Then VA T8 F acts on O (X, F). The Lie derivative operator L
also acts on Q (X, F'). More precisely

(2.6) Lx = VANTXEF _ (0 TX (gy _ (K.
Moreover since the connections VX and V! are G-invariant, by [BeGeV,
Chap. 7],
(2.7) VIXmMTX (K) +igx RTX =0,
VEmF (K)=o.
The metric g gives an identification of F" and F*. Under this identifica-
tion, the flat connection V¥ is given by

(2.8) v =+ w (V")

Then applying the second identity in (2.7) to F,

(2.9) VEmP () = = |w (VF, ") ,m"™ (K)].
Since the metric g% is G-invariant,

(2.10) w(VF,g") (KY) = = (m" () + m"™ (K)).

By (2.9), (2.10),

(2.11) Vixm™ = — [m" (K), m"* (K)].

Also since w (VF,gF> (KX> is KX-invariant,
(212) VEiw (vF,gF) (KX) = [mF (K),w (VF,gF) (KX)] ,

which fits with (2.7), (2.10), (2.11).
Recall that the unitary connection V% on F was defined in (1.29) by the
formula

1
Fu _ = Fx F
(2.13) v _2(v + V).
Equivalently, using (2.8), we get
1
(2.14) v = w (Vv".4").

By (1.30), its curvature R is given by

(2.15) RF = —iuﬂ (v".4").
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Clearly the connection V7% is still G-invariant. From (2.7), (2.9), we get

(2.16) VEmE (K) = 1 [ (V7,67) " ()]

vt (K):—% {w (VFng) ,mb (K)}

Needless to say, since V" is unitary, the two equations in (2.16) are equivalent.
Let m™* (K) € End (F) be the vertical part of K with respect to the

connection V7. Recall that VA (T"¥)®Fu i5 the connection on A (T*X)RF
induced by VIX and V. Instead of (2.4), we now have

(2.17) Ly = VAT OB Ee _TX (o) P (k)
Comparing (2.6), (2.14), (2.17), we get
1
Fu _ = F F X F
(2.18) m (K)—Qw(v ") (KX) +m ().

Using (2.10) and (2.18), we obtain

(2.19) P (K) = % (m” (1) = m™* ().

Note that, as it should be, m** (K) takes its values in skew adjoint sections
of End (F'). Also since V" is G-invariant, as in (2.7), we get

(2.20) VEUm P (K) 4+ igex R = 0.
One verifies easily that (2.20) also follows from (2.15), (2.16), (2.18).

2.2. A fundamental assumption. In the sequel, we make the fundamental
assumption that for any K € g,

(2.21) m? (K) = 0.
By (2.10), we find that
(2.22) w(VF,g") (K¥) =0
By (2.21), we get the identity of operators acting on Q" (X, F),
(2.23) Ly = [dX,z‘KX} :

By (2.23), we find that if Gy C G is the connected component of the identity,
then Gg acts trivially on H (X, F).
Also by (2.17), (2.19), (2.21), we get

(2.24) L = VT 0ok _ ) TX (K,
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2.3. Lefschetz and Kirillov formulas. Recall that by (1.13),
(2.25) X (F) = Tr T [g].
The McKean-Singer heat equation formula [MKeS] asserts that for any ¢ > 0,
(2.26) Xg (F) = Try[g exp(—tD¥?)].
By making t — 0 in (2.26), and using local index theory [ABoP], [Gi], [B1],
[BeGeV, Chapter 6], one obtains the Lefschetz formula of (1.14),

(227) X (F) = [ e(Tx,) 1 [g].

Let (€ (X),d) be the standard de Rham complex on X, equipped with
the de Rham operator d. Now we follow Berline-Vergne [BeV], with the only
difference that 27¢ in [BeV] has been changed here into 27. Set

(2.28) dg = d* — 2migx.
Clearly,

(2.29) d3 = —2rLg.
Also,

(2.30) [Lx,dg] = 0.

By (2.29), (2.30), the operator dx acts on the set of smooth K¥-invariant
forms, and its square vanishes. The cohomology groups of dx are related to
the equivariant cohomology of X.

Put
(2.31) RIX = RTX —27m™¥ (K).

Then R¥X is called the equivariant curvature of VIX. With a similar defi-
nition, since R = 0,m’ (K) = 0, the equivariant curvature of V¥ vanishes
identically. Finally, using (2.19) and (2.21), we find that the equivariant cur-
vature Rf(’u of VI is given by

(2.32) R = R,

Take g € G. Let Z(g) C G be the centralizer of g, and let 3(g) be its Lie
algebra. Then
(2.33) 3(9) ={K €g,9.K =K}

In the sequel, we always take g € G, K € 3(g). Put
(2.34) Xi ={z e X, K¥X(z) = 0}.

Then X, which is the fixed point set of the group generated by K, is a totally
geodesic submanifold of X. Set

(2.35) Xg,K :XgﬂXK.
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Then X, k is a totally geodesic submanifold of X. More precisely, if Ko € 3(g)
and, for z € R*, K = zK,, for z small enough,
(2.36) Xgx = Xger.

Since K € 3 (g), the vector field K¥ is g-invariant. In particular K~ |x, €
TX,. So KX|X9 is the Killing vector field K*s on Xg4. Since X, is totally
geodesic, m™¥ (K) | x, preserves T'X,. More precisely,

(2.37) m"™* (K) |rx, =m"™ (K).
The equivariant curvature R;QXQ of VT4 is given by
(2.38) R = RTX — 27m™% (K).

Definition 2.2. For K € 3(g), set

RTXg
(2.39) ex (TXg,VTXg):Pf[ K 1

2T

Then ex (TXg, VTX-‘?) is a smooth form on X,. It is called the equivariant

Euler form of (TXQ,VTXQ). Moreover by [BeV], [BeGeV, Th. 7.7],
(2.40) dierc (TXy, V¥0) = 0.

The form ex (TXg, VTX9> defines an equivariant cohomology class ex (T'X,).

This class does not depend on the metric g7*s or the connection V7 s,
Observe that the function Tr!" [g] is constant on Xy4. Counting degrees,
we get

(2.41) /X ex (TX,) TeF [g) = /X e(TX,)TF [g].

Then the localization formulas of Duistermaat-Heckman [DuH], Berline-Vergne
[BeV], or, more simply, the fact that X, i is the zero set of K X x, show that

(2.42) /X ex (TX,) Trl [g] = /X e (TX,x) Tl [g].

g g9, K

Recall that m’ (K) = 0, so that, on X, r,
(2.43) ! [geX | = Tr"[g].

From the Lefschetz fixed point formula in (2.27), and from (2.41)—(2.43), we
recover a form of the Kirillov formulas as in Berline-Vergne [BeV]. Namely,

(24) xgor (F) = [ e(TXqu) T[], xgor (F) = [ e(TX,) T [g],

Xoer (F) = /X ex (TX,)Tr" [g].

g
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On the other hand, we saw after (2.23) that the action of ge® on H (X, F)
coincides with the action of g. In particular,

(2.45) Xgex (F) = xq (F).
Clearly ((2.44), (2.45) are compatible.

2.4. The heat equation proof of the Kirillov formulas. First observe that
by (2.15), (2.32) and by proceeding as in [BLo, Prop. 1.3], [BGo2, Prop. 1.6],
we have the identity of forms on X,

Fu
(2.46) Tr lgexp <_RQ—I7(T>] =Trf [g].

Now, we will briefly explain the direct heat equation proof of the last
equation in (2.44),

(2.47) Xeex (F) = /X ex (TX,) TeF [g]
This proof is a special case of the results in [B2] providing us with an analogue

of the heat equation proof of the Atiyah-Bott-Lefschetz formulas outlined in
(2.26), (2.27).

Definition 2.3. For t > 0, put

(2.48) Cry = % <\/EDX + CU\;?) .

A first trivial step in the heat equation proof of (2.47) is an obvious ex-
tension of the McKean-Singer formula,

(2.49) Xge¥ (F) = Trs[gexp(—Lk — C%(,t)}

For ¢ = 1, we then showed in [B2] that for |K| small enough, ‘fantastic
cancellations’ still occur as ¢ — 0 in the local supertrace of the operator
gexp(—Lg — C’Iz(vt), so that the limit of this local supertrace exists, and is
given by the integrand in the right-hand side of (2.47). For this last step, we
also need equation (2.46). We thus get a direct proof of (2.47) in the case
g = 1. The case of a general g is treated as in [BGol, Th. 7.9].

2.5. Analytic de Rham torsion forms and compact Lie groups. In this
Section, we recall the construction in [BLo] and in [BGo2] of the equivari-
ant analytic torsion forms and of their Chern normalized version, when the
structure group of the given fibration is compact.
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Let S be a smooth manifold. Let p : PZE)S be a Z (g) principal bundle

over S. We equip this principal bundle with a connection. Let 6 be the
connection form on P, and let © be its curvature. Then © is a 2-form with
values in the vector bundle P X 7, g.

Put

(2.50) M=P XZ(g) X.

Then 7 : M5S is a fibration with compact fibre X. Also g acts fibrewise
on M. Clearly Z (g) acts on X,. Then if My C M is the fixed point set by g
in M, then

(251) Mg =P XZ(g) Xg.

The connection on P induces a connection on M; i.e., we have a splitting
(2.52) T™™ =THM e TX,
and this splitting is g-invariant. Using (2.52), we get the isomorphism
(2.53) A (T*M) ~7*A (T*S) @A (T*X).

Also observe that the given connection on M induces a corresponding connec-
tion on Mj.

Let PTX : TM — TX be the obvious projection with respect to the
splitting (2.52). If U € TS, let U¥ € THM be the horizontal lift of U. If
UV eTS, put
(2.54) ™, v)=-PTX[U" v

One verifies easily that T is a tensor.

PROPOSITION 2.4. The tensor TH is a 2-form on S with values in Killing
vector fields along the fibres X. More precisely,

(2.55) T = 0¥,
Proof. Equation (2.55) follows from (2.54). O

The vector bundle P Xz, F' is a vector bundle on M. We still denote
it by F. Then F' is a Hermitian vector bundle on M. Since the connection
VT is G-invariant, the vector bundle F on M is equipped with a connection,
which we still denote by V. Since m (K) = 0, one verifies easily that V¥ is
still flat. The form w (VF o ) on X is G-invariant, and so it descends to a
1-form along the fibres of X with values in End (F'), which we still denote by
w (VF,gF>. We identify w (VF,gF) with the corresponding vertical 1-form

on M. This form w (VF gt ) is just the obvious analogue for M of the form
w (VF,gF> on X, with respect to the flat connection V. Similarly Z (g) acts
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on (X, F). Therefore Q (X, F') descends to a vector bundle on S, given by
P X 75 ¥ (X, F). The metric g*¥ (5F) descends to a Hermitian metric on the
vector bundle Q" (X, F).

The connection on P induces a Hermitian connection V¥ %5F) on Q' (X, F).

The operator d¥ being Z (g)-invariant descends to an operator acting
on the vector bundle Q (X, F). Therefore (Q (X, F) ,dX) is a complex of
infinite-dimensional vector bundles on S.

Let Q (S, Q (X, F)) be the space of smooth sections of A" (T*S) ® Q' (X, F)
on S. Using (2.53), we have the isomorphism

(2.56) QO (S, Q (X, F)) ~Q (M, F).

Via (2.56), the operators dX, VEXF) Gn act naturally on (M, F). Let a1
be the de Rham operator acting on ' (M, F'). One verifies easily that

(2.57) dM =X + VEEE)
Then
(2.58) M2 = 0.

As explained in [BLo, §3 (b)], [BGo2, §3.2], by (2.58), d™ can be considered
as a flat superconnection A" on Q' (X, F).

Recall that TX and TX* are identified by the metric g?*. Then the
operators d** and TH A also act on Q (X, F). Let A” be the adjoint of the
superconnection A’ with respect to TH M, ¢ “F) in the sense of [BLo, §1 (d)],
[BGo2, §1.3]. Then by [BLo, Prop. 3.7], [BGo2, Prop. 3.8],

(2.59) A" = @Xr g XE)x i A
Then A” is also a flat superconnection on Q' (X, F').
Now, we use the formalism of [BLo, §1 (e)], [BGo2, §1.5]. Namely, set
1 1
(2.60) A:§(A”—|—A’), B:§(A”—A’).

Then A is a g-invariant superconnection on ' (X, F'), and B is a smooth g-
invariant section of (A" (7*S)®End (Q (X, F)))Odd
A" are flat, by [BLo, Prop. 1.2], [BGo2, Prop. 1.5],

(2.61) B*=—-A? [A,B]=0,
[A’,Bﬂ =0, [A”,Bz] =0, [A, Bﬂ — 0.

. Moreover, since A’ and

The operator DX defined in (1.16) still acts on Q (X, F). Let eq,...,en
be an orthonormal basis of TX. Using (2.57), (2.59), (2.60), we get special
cases of formulas established in [BLo, Th. 3.14],

_lox eowr) L (o
(262) A= D% +V —5C(T ),

5o —%E(ei) (VA'(T*X@F,U + <TH, ei>) + ic (e;)w (VF,QF) (€;) .
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As explained in [BLo, Rem. 3.10], the superconnection A is a special case of
the Levi-Civita superconnection of [B3].

For t > 0, we define the metric g/X as in (1.35). Also, we use the
same notation as in Section 1. Let A} be the adjoint of A’ with respect to
THM, g? X One verifies easily that

(2.63) Al = 7N AN,

or equivalently that

(2.64) Al = g% v KF) TTH A

Set . X

(2.65) Ay =5 (AF + A7), By = (A) - 4).
For t > 0, set

(2.66) Cl = tN2AEN2, O = N2 AMN/2,

Then Cj is a flat superconnection on Q (X, F), and C/ is its adjoint with
respect to ¢ (5F) | Set

1 1

(2.67) Cr=3 (cr+cl, D; = (cr—c).
By (2.66), we get

(2.68) Cy =tV AN, D, = tN?BN/2,

Of course, all the objects which we just defined are G-invariant. By (2.57),
(2.64),

(2.69) Ol = VidX + v &R | T

Cl = VitdX* + v 7
Also, by (2.62), (2.68),
(2.70)
: 1
Cy = %\/ZDX + VEXE) _ (),

2—\/%0
_ge(a) (vé\i~(T*X)@F,u + <TH/t, €z>) + %C(ei)w (VF,QF) (e;) .

Using (2.55), one verifies easily that
(2.71) \ALKCSUPIEIE,
By (2.48), (2.70), and (2.71), we get
(2.72) C}=-Lo+C?%g,.

Dy =
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Let o : A (T*X) — A (T*X) be given by
(2.73) po = (2m) 482

Again, with respect to [BLo|] and [BGo2], we replace 27i by 27.
Let h (x) be an odd holomorphic function. Put

(2.74) hg (VF g ) = V2rpTi [gh (w (vF g ) /2)} .

We first view hg (VF,gF) as an odd form on X,. By [BLo, Ths. 1.8 and
1.11], [BGo2, Th. 1.8], we know that this form is closed on X, and that its
cohomology class hg (VF ) does not depend on ¢g". By (2.22), we get

(2.75) ixxhy (VF,7) = 0.

From (2.75), we obtain
(2.76) dichy (V" 4") =0.

On the other hand, we may also view F' as a flat vector bundle on M. We
saw before that w (VF, gF2 can also be viewed as a form on M, which is in fact
the obvious analogue of the corresponding form on X. The same arguments
as before show that h (VF gt ) can also be considered as a form on M, and
that this form is still closed on M. Observe that this fact can also be derived
from the fact that this form is Z (g)-invariant , that it is closed along the fibres
X, and that (2.75) holds.

Moreover Z (g) acts on H (X, F) and the connected component of the
identity Z (g), acts trivially on H'(X, F'). Therefore H'(X, F') descends to the
Z-graded flat vector bundle on S,

P X Z(g) H(X,F),

which we still denote by H (X, F). Let V# (X:F) be the corresponding flat
connection on H (X, F'). As in (1.17),

(2.77) ker DX ~ H' (X, F).

Also G acts on ker DX, and (2.77) is an identification of G-spaces. So we find

that the metric gfz'(X’F) descends to a flat metric on H (X, F'). In particular,
(2.78) w (VIR g0 —,

so that ‘

(2.79) hy (VD) gl E)) g,

In [BLo, Th. 3.17 |, [BGo2, Th. 3.25], it was shown in a much more general
context that

(280)  hy (V7)) = /X e_o/on (TX,) by (VF) in B2 (5,C).
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Now we show how to reconcile (2.79) and (2.80) in this special case. In fact,
by (2.40) and (2.76),

(2.81) dicex (TX,, VT¥0) =0, dichy (V¥ 9") =0.
Using the localization formula of [DuH], [BeV], we get

(2.82)

J;

Since deg h (VF,gF) > 1, we get

o (1 ) (77) - |

e (TXg 50, VI¥or ) by (97, 67) .

g9

(2.83) /X e(TX )y (v¥) =o.

From (2.83), we find that the right-hand side of (2.80) vanishes identically,
which fits with (2.79).
We still define ¢ : A" (T*S) — A (T*S) as in (2.73). As in (1.33), we now
set
(2.84) h(x) =xe*.
Definition 2.5. For t > 0, set

(2.85)
h (A’ Q(X,F)) _ \/— Al (X F)\ N -,
g Ay ) = V2r¢Trs [gh (B)], hy (A g ) = ¢Trg Egh (B)| .

Then by [BLo, Ths. 3.16 and and 3.20] and by [BGo2, Ths. 3.24 and 3.29],
the forms hy (A’, gQ'(X’F)) and h;\ (A’, gQ'(X’F)) are respectively odd and even.

THEOREM 2.6. The form hgy (A’,gQ(X’F)> vanishes identically. Moreover
the form hy) (A’,gﬂ'(XvF)) is closed, and is given by

Noo(_ 1o (oraxsra [ ©OF
2h < 2c(ez) (V o G

(2:86) hp (A, g% ) =T,

Proof. By (2.62), B is an odd endomorphism. Therefore h(B) is also
odd, and so hy (A’,gQ'(X’F)) vanishes. Equation (2.86) follows from (2.55),
(2.62) and (2.85). Finally, by Chern-Weil theory, it is clear that the form
hy (A’,gQ'(X’F)) is closed. O
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Remark 2.7. In a more general context, in [BLo, Th. 3.20], [BGo2, Th. 3.29],
it is shown that

(A1, 5
t

0 .
(2.87) 5l (4, g7 ) =

Here, (2.87) is a trivial consequence of Theorem 2.6.

In [BLo, Th. 3.21] and in [BGo2, Th. 3.30], it was shown that as t — 0,

: n
(2.88) my (497 ) = 2y (1) + 0 (V)
and that as t — o0,
: 1
(2:89) ny (A" ) = Sxp (1) + 0 (1/VE).

Now, we follow [BLo, §3 (j)] and [BGo2, §3.12].

Definition 2.8. Set
(2.90)
“+oo . 1
Ty (T M, g™ V7 gF) :—/0 lhg (4, g ) - 5 Xo (F) 1 (0)

(G ®) - 34 @) (Nm)] 2

By (2.88), (2.89), the even form 7}, 4 (THM, g'x, vr, gF) is well defined.
It is called an equivariant analytic torsion form.

THEOREM 2.9. The form Ty 4 (THM, g™, VF,gF) 1s closed, and its co-

homology class does not depend on g7~ g¥', or on the choice of the connection

on P.

Proof. By Theorem 2.6, it is clear that the form 7j, , (THM, gt X, vl gf
is closed. The fact that its cohomology class does not depend on the data is
obvious by functoriality. O

Remark 2.10. In the more general context of [BLo] and [BGo2], the even
form 7y 4 (TH M, gTx vl g" ) is in general not closed.

For s € R, € AP (T*S), set
(2.91) Yoo = 572,

Note that if p is even, s is unambiguously defined, and that if p is odd,
Ysa/y/s is also well defined.
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If o € A (T%9), put

1
(2.92) Qo = /0 Vas(1—s)0ds.
If a € A% (T*S), then
_ ),
(2.93) Qo = o 1)!4 a.

Now, we define the Chern equivariant analytic torsion forms as in [BGo2,
Def. 3.46].

Definition 2.11. Set
(294) Ty (T7M, g™, V", ¢") = QT4 (T M, g™, V" g").

2.6. The equivariant infinitesimal analytic torsion forms. We make the
same assumptions as in Sections 2.2-2.4. In particular, we only work with a
single manifold X. Also we use the notation of the previous sections.

Let KX’ be the 1-form dual to KX via the metric g”7X.

Definition 2.12. For K € 3(g), put

(2.95) he=d% —igx, o= dX* £ KX\,
1 1
Ar =35 (Ak + Ak) Bi = 5 (Ak — Ak)

Since Ly is skew-adjoint, we get easily,
(2.96) AZ = — L, A2 = —Lg.
From (2.96), we deduce that

(2.97) [Li, A] =0, (L, Ak] =0,
[Ly,Ar]|=0, [Lk,Bk]=0.
Using (2.96), (2.97), we get
2 1 1 / " 2 1 1 / "
(2.98) A :—gLK‘Fz[ T Akl BK:_§LK_Z[ T Akl
[ lKaB%(} :O’ [ ,I/(vB%(:| 207 [AK7BK]:O'

In particular, from (2.98),
(2.99) A% + B} = —Lg.
Also by (1.2), (1.25), (2.95),

(2.100)  Ag =AX + %c (&), Bx = BX + %E(KX) .
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When replacing the metric g7* by the metric g/ X = ¢7X /t, we obtain
the analogues of A%, Ak, By, which are denoted A’I’w, Ak ¢, Bit. Then

(2.101) o=t VAR

Similarly, set

(2.102) Cles = tN AN, Cley =t N2ALAN2,
Put

(2.103)  Cxy = % (Chat Cha) Diy = % (Chu = Cice) -
Then by (2.101)-(2.103),

(2.104) Crp =tV 2 Ay t=N/2, Dy =tV 2By =N/,
Equivalently,

1
_ X X _ X I~ X
(2.105) Ckp = VtA~ + K ) Dgy=VtB +—2ﬁc<K )

e
2Vt
Also our definition for C; fits with (2.48).
As in (2.84), we use the notation h (z) = ze®".
Definition 2.13. Put
(2.106)
: : N
hy (Aje,g™ CO0) = Tuafgh (Bi)), B (a0 7)) = Tu [g 5 0 (B
By (2.104),
(2107) by (Al g ") = Ty gh (Brcs)) = Trs [9h (Dicy)]
: N N
hy ( /K7g? (X’F)) = Try [ggh/ (BK,t)} = Trg {g;h' (DK,t):| .
THEOREM 2.14. Fort > 0,K € 3(g), the following identity holds:
(2.108) hy (Al g% 1)) = 0.

There exist 3 > 0,C > 0 such that if K € 3(g) is such that |[K| < 3, for
t €]0,1],

: n
(2.109) by (A g ) = By ()| < VA,
and fort > 1,
A ’ Q(X,F) . ’ g
(2.110) hy (Ao ) = S, ()] < =
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Proof. By (2.100), B is an odd endomorphism. Therefore h (Bg) is also
odd, so that hg (A’K,gQ'(X’F)) vanishes.
By proceeding as in [BGol, proof of Theorem 7.9] and in [BGo2, Th. 3.30],

we get (2.109). Also, by proceeding as in [BGol, proof of Th. 7.1], we get
(2.110). O

Definition 2.15. For K € 3(g), with |K| small enough, set
(2.111)

T (67.97.07) = = | +°O [hﬁ (A1 o ) = Lx, (F) I (0)
- (- o) (i) |

The quantity 7j, ¢ (gTX ,VE gF ) will be called the equivariant infinites-
imal analytic torsion. Comparing with (1.42), (1.43), we get

(2.112)

%g (gTX’vFgF) _ 7717970 (gTX’vF’gF) _ %% (gTvaF’gF) (0).

Also using Theorem 2.14, we find that for | K| small enough, 7}, 4 i (gTX, v, gF>
depends analytically on K.
By (2.86), with the notation in (2.90),

(2113) Ty (TM, g™,V g7) = Ty _62n (6%, V7. 07).

Definition 2.16. For K € 3(g) and |K| small enough, set

(2.114)
10g (I 1o i) (92 ) = log (| sa(r)) (96™) + Tng i (67, V7, 6") .
The symbol || H;G( ) Will be called an equivariant infinitesimal Ray-Singer

metric. Observe that since e acts trivially on H' (X, F), we can rewrite (2.114)
in the form

(2:115) Tog (Il [xo(my.0) (9 ) =108 (| sy (9) + Thg i (67,7, 6").

Using (1.24), Theorem 1.8, (2.113), (2.114), we get

(2.116) 10g (|l Il ) (@) =108 (Il xe (i) (9:0)
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2.7. The Chern equivariant infinitesimal analytic torsion. Now, by imi-
tating the constructions of [BGo2, Chs. 2 and 3], we will modify our definition
of the infinitesimal torsion. If f (K) is an analytic function of K € 3 (g) defined
on a neighbourhood of 0, set

(2.117) Qf (K) _/Olf(zls(l—s)K)ds.
Then Qf (K) is still analytic near 0.

Definition 2.17. For K € 3(g), and |K| small enough, set
(2.118) Tong i (67, V", 0") = QThg i (6", V", 4").

Then 7 gk (gTX,VF,gF) still depends analytically on K. It will be
called the Chern equivariant infinitesimal analytic torsion. By (2.112),

(2.119) Tig (67, V",6") = Tango (67, V7, g").
Using the notation in (2.94) and by (2.113), we get
(2120)  Tang (THM, g™, V", g") = Ty —0/2x (6, V5, 9") .

Definition 2.18. For K € 3(g) and |K| small enough, set

(2.121)
10g (1| llng (mycn) (9 ) =1og (I hvam ) (9") + Tangac (6", V7, 97) -
The symbol || [|,(p)n Will be called a Chern equivariant infinitesimal

Ray-Singer metric.
Observe that (2.116),

(2122) 108 (|| o) (@) =108 (Il g yen) (9:0)

2.8. Anomaly formulas for Chern equivariant infinitesimal Ray-Singer
metrics. If f(x) is a holomorphic function, set

(2.123) 1 1
Ff(x) :a:/O f (45(1 —s)m2> ds, Qf (x) :/0 f(4s(1—s)z)ds.

Then Ff (z) is an odd holomorphic function. In the sequel, Fee' (z) denotes
the function F'f (x), with f (z) = e”.
By following [BGo2, §2.7], set

(2.124) chg (VF, ") = (Fe), (VF,g").
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Then chy (VF g ) is a closed odd differential form. It was obtained in [BGo2]

as a Chern-Simons class associated to the Chern character. Let ¢'7X, ¢'f be

another couple of G-invariant metrics on T X, F. We denote with a super-
script / the objects considered before, which are associated to this new couple
of metrics.

Let ex (TXg, \VARS V’TXH,) be the Chern-Simons class of forms on X
such that

(2.125) déx (TXg, vTXs V’TXQ) —ex (TXg, V’TXQ) —ex (TXg, VTXQ) .

The class ex (TXg,VTXg,V’TX9,> is defined modulo the dg of a smooth
K-invariant form.

Let £ € [0,1] — g{ be a smooth family of G-invariant metrics on F', such
that g0" = g¥', gf = ¢’F'. As in [BGo2, Def. 1.10], we define a form on X, by
the formula

_ 1
(2.126) Iy (vF,gf):/ T
0

oz (o) Bh (o (V7. F) /2)] .
Then by [BGo2, Th. 1.11], the class of the form Eg (VF,gf) in Q%o /QXs0
does not depend on the path £ — gf , and moreover

(2.127) dh, (vF,gf) = h, (vF,g’F) — hy (vF,gF) .

Also, observe that by (2.22),

(2.128) ixxhy (V7. 0f) =0.

From (2.127), (2.128), we get

(2.129) dichg (VF,gf) = h, (VF,g’F) — hy (VF,gF) .

A similar construction is given in [BGo2, §2.7] for the class ch®. Namely,
set

(2.130)
1
3° (vF F
chg(V , g ):/0 ©Trg

Then, by [BGo2, Th. 2.39],

s (o) L (P (w (VF.F) /2)] .

(2.131) dal; (A’,gf) =ch® (A’,glE) — ch® (A’,gg) ,

E}vl; (A',gf) :Q?Lg (A',gZE) .
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THEOREM 2.19. For K € 3(g), and | K| small enough, the following iden-
tity holds,
(2.132)

7 K —
o (n reian 9 >) [ e (T, 9T a5 (Vo)
| e (7),en (9, K) *

+/Xg K (TXg, vTXs V’TXQ) ch? (vF,g’F) .

Proof.  First, we claim that if, in (2.132), we replace | | m)n by

G )
| lIxg(r),n and chy by hg, with h (z) still given by (2.84), the corresponding
identity holds. In fact, its proof is very similar to [BLo, Th. 3.24], [BGo2,
Th. 3.34]. Then we claim that when applying the operator @ to both sides
of this identity, we get (2.132). This is of course clear for the left-hand side.
Moreover if m = dim X, if A is a (m, m) antisymmetric matrix, if a € R, then

(2.133) Pf [aA] = o/?Pf [A].
Using (2.133), we find easily that if s € [0, 1],

(2.134) /X easa—si (TXg, VI50) by (Y, gf)
= /X €K (TX97 VTXg) Yas(1-s)hg (VF,gf) ;

/ €4s(1—s)K (TXg, v, V’TX-“') ch® (VF,gF)

Xq

- /X ex (TXg, VTXH) V2

w (VF, gF
Try gM exp (43 (1—s)w? (VF,gF> /4) .

By (2.123), (2.124), (2.131), we conclude that when applying the operator @ to
the right-hand side of the previously described identity, we get the right-hand
side of (2.132). The proof of our theorem is completed. O

3. Equivariant fibrations and the classes Vi (M/S5)

In this section, we construct currents which are naturally attached to an
equivariant fibration. In particular, we produce the V-invariants which are
attached to a G-equivariant fibration. If g is the Lie algebra of G and if K € g,
the V-invariants are even cohomology classes on the base of the fibration, which
depend explicitly on K. One of the key properties of these invariants will be
established in Section 4.
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This section is organized as follows. In 3.1, we construct Chern-Simons
equivariant currents F (X LgTX ), which refine on the localization formulas of
Duistermaat-Heckman [DuH], Berline-Vergne [BeV]. In 3.2, we recall various
properties of the Mathai-Quillen equivariant Thom forms [MQ)], which are ob-
tained via the Berezin integration formalism of Section 1.2. In 3.3, we construct
a current Yg (K X TXx,vrX ) which refines on the equivariant Chern-Gauss-

Bonnet formula for KX. In 3.4, we give a comparison formula, which relates
the currents Fi (X, gTX) and ¢ (KX, TX, VTX). In 3.5, we construct cur-

rents Y (V f,TX,vrX ), which refine the equivariant Chern-Gauss-Bonnet

formula for the gradient field V f, when f is a K *-invariant Morse-Bott func-
tion. In 3.6, we give a formula which relates the currents ¢ (K X TXx,vrX )

and Y (V f,TX,vTX ) These formulas are simpler versions of the intersec-
tion formulas with excess of [BS8, 9].

In Section 3.7, we consider a proper submersion 7 : M — S, such that G
acts along the fibres X, which are equipped with a G-invariant metric g7~.
We establish various hidden symmetry properties for the curvature of a natural
connection on T'X. These symmetry properties are related in a fundamental
way to the Levi-Civita superconnection introduced in [B3] to establish the
local families index theorem. In 3.8, we construct an odd closed form dx
on S. Using the symmetry properties just described, we show this form is
closed. In 3.9, by scaling the metric ¢g”*, we prove that the forms dx are
exact. By a Chern-Simons transgression argument, we obtain the invariants

Vie (M/S, TH M, gTX )

3.1. A Chern-Simons equivariant current. We make the same assump-
tions as in Sections 1 and 2.1. Take K € g. Set

(3.1) Xy = {z € X, k¥ (2) = 0}.

Then X[ is totally geodesic in X. We identify the normal bundle Ny, ,x with
the orthogonal bundle to TXg in TX|x, with respect to g?*|x,.. Then the
connection V7¥|x, on T X preserves the orthogonal splitting

(3.2) TX|x, = TXk @& Nx,/x-

In particular V7% induces the Levi-Civita connection VIX« on T X, and a
Euclidean connection V¥*x/x on Nx, /x- Let RTXx RNxx/x be the curva-
tures of VI Xx VNxk/x Note that K~ acts naturally on Nx,./x as the re-
striction m™Nxx/x (K) of m™™X (K)|x, to Nx,/x- Then mNxk/x (K) is parallel
with respect to VNxx/X  antisymmetric and invertible. In particular, N Xi/X
is even-dimensional. The corresponding equivariant curvature of VVxx/x ig
given by

(3.3) R/ = RNxwerx — ommNxw/x (K |
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The associated equivariant Euler form ex (N Xi /X VNXK/X> is just

2T

RNXK/X
(34) eK (NXK/X’VNXK/X) = Pf l K ] .

Also ex (NXK/X, VNXK/X> is invertible.

Definition 3.1. Let Pj X, be theset of K X_invariant currents on X whose
wave front set is included in N /x- Let PI){(’% be the set of K*-invariant
K A K

currents a, such that there exists a KX-invariant current b € Py x, for which
a=d Kb.

Note that if a € Pi)é’?(w
(3.5) dga = 0.

Let KX’ be the 1-form on X which is dual to KX by the metric g7¥.
Observe that

2
(3.6) AKX = o |[K¥|" 4 dK ™.
Also, since 7% is K*-invariant,
(3.7) 3K~ = 0.

Definition 3.2. For t > 0, set

X

K
X _ X/ X X/
(3.8) ag,=exp (dKK /47rt) , Br+ = 1p P (dKK /47rt) :

Recall that if s € R,a € A (T*X), ¥sa was as defined in (2.91). Now we
have the result of [B7, Proposition 5|, [B8, Th. 2.3].

THEOREM 3.3. The forms a%t,ﬁ[{t are KX-invariant. The following
identity holds:

(3.9) dgog, = 0.
Moreover
) B
(3.10) aaét = dg—=.
Finally, if z € R*,
1
(3.11) algs = T/Jl/z@f,t/zza i = 75¢1/z5§,t/z2-

Proof. Equation (3.9) follows from (3.7). Equations (3.10) and (3.11) are
trivial. O
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Observe that that Nx, ,x is naturally oriented by the condition
(3.12) Pf [mNxx (K)| > 0.
Let o (TX),0(TXk) be the orientation bundles of TX,T X . The argument

we just gave shows that
(3.13) o(TX)|x, =0(TXk).

By [B4, Th. 1.3], [B8, Th. 2.5 and Rem. 2.6], there are currents p1,...,px-- .,
whose support is included in Xk, such that if 1 is a smooth form on X with
values in o (T'X), for k > 1, as t — 0,

k
(3.14) / na%t = d + Z/ np;jt! +o (tk) .
X ) ox

N
Xk eK (NXK/X’V XK /X

By (3.8), (3.14), since KX vanishes on X, we deduce that as t — 0,

(315) [ ns =0

However, inspection of the proofs in [B4, 8] shows very easily that using the
fact that the Gaussian integral of a linear function vanishes, or the fact that
Ny, /x is even-dimensional, instead of (3.15), we find that as t — 0,

(3.16) /X B =O(t).
Also, by (3.8), as t — 400,
(3.17) [ ns =0
Definition 3.4. Let Fg (X, gTX) be the current on X,
+oo 3%
(3.18) Fx (X, gTX) = / Bict gy
0 t

Let dx, be the current of integration on the submanifold X

THEOREM 3.5. The odd current Fy (X, gTX) lies in PI)({XK. Moreover

5 K
If 2 € R,
(3.20) P (X.67) = S P (X))

Proof. By proceeding as in [B8, Th. 2.5], we find that Fy (X, gTX) €
PI)((,XK- By (3.10), (3.14), we get (3.19). By (3.11), we get (3.20). O
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3.2. The equivariant Mathai- Quillen Thom forms. In this section, we use
the Berezin integration formalism of Section 1.2 appliedto V =TX,E=TX.
In particular, A (T*X ) denotes another copy of A" (T*X). Also, most of the
time, we will identify 7X and T*X by the metric g7 X.

Let eq,---, e, be an orthonormal basis of TX and let el,---,e™ be the
corresponding dual basis of 7*X. Defining REX as in (2.31), set

. 1
(3.21) RiX =3 (en, RiXer) @ n e
Then REX is a section of A (T*X)® A (T*X).
Let s be a KX-invariant section of TX. By (2.4),

(3.22) Vits =mT™ (K)s.
Definition 3.6. Let Af s be the section of A" (T*X) ® A" (T*X) such that

2

: 1
(3.23) Ak = RIS + VX5 + )%,

2

The connection VX acts as a differential operator on smooth sections of
A (T*X)® A (T*X). Set

(3.24) VIX = vTX —omigx.

The interior multiplication i; acts naturally on A (T*X), and also as a deriva-
tion of the graded algebra A" (T*X) ® A" (T*X). Now we establish an extension
of a result established in [MQ, §6] and in [BeGeV, Lemma 1.51 and Props. 1.53
and 1.54].

THEOREM 3.7. For T > 0, the following identities hold:

0A 5
(325) [VEX + VTis, Ay | =0, g_,Tm = |VEX 4 VT, ﬁ .
Proof. If we replace REX by RTX and VEX by VX, our identities are
exactly the ones established in the above references. Using (2.7), (3.22), we
get the first identity in (3.25). Also, we observe that in the right-hand side of
the second identity, we may as well replace V}}X by VTX. The second identity
now follows from (3.23). O

Definition 3.8. Let ax s and bk s be the forms on T'X,

B B &
(3.26) K, = / exp (—Aks/2m), brs= iexp (—Aks/2m).
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In particular, we deduce from (3.26) that
(3.27) degbgs <n—1.

More precisely, the component of top degree n — 1 in by 5 is just bo s.
For K = 0, the following result was proved in Mathai-Quillen [MQ,
Th. 6.4], and in [BZ1, Th. 3.4].

THEOREM 3.9. The forms ak s, by s are KX-invariant. The forms aK.s
are even, and are such that

(3.28) dixar,s = 0.
The forms by s are odd. Moreover, for T'> 0,
(3.29) aK,\/Ts‘TZO =€K (TX, VTX) 5
8 bK,\/Ts
8_TCLK’\/TS == —dKT, T > 0.

Finally, for z € R*,

1
n/2 n/2
(3.30) Ooree = 220105 yr bapyme =2 %wl/sz,ﬁs-

Proof. By the first identity in (3.25), we get (3.28). Using (1.10), we
get the first identity in (3.29). The second identity of (3.29) follows from the
second identity in (3.25). The identity (3.30) is trivial. O

3.3. Conwvergence of the Mathai- Quillen currents associated to K~X. Now
we will use the notation of Section 3.2, with s = KX.

Let dx, be the current of integration on Xx. We state a convergence
result for the currents a KAJTEX be JTKx» which was partially proved in (B9,
Th. 3.3].

THEOREM 3.10. There is a constant C' > 0 such that for any smooth form
wonX, forT >1,

(3.31) ‘/TXH(GK’\/TKX —€(TXK,VTXK> 5XK>

< C
= ﬁ HMHCI(X) )

NbK,ﬁKX

< C
- <77 leller(rx) -

Proof. Observe the exact sequence
(3.32) 0— Nx,./x = TX|x, = TXg — 0.

In (3.32), the map Nx, /x — TX|x, is just dKX|x, , and the second map is
the orthogonal projection T X |x,, — T Xk. In fact T X is just the orthogonal
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bundle to Ny, /x in TX|x,, and VTXx is the orthogonal projection of V7 X|xx
on TXg. By proceeding as in [B6, proof of Theorem 5.1] or in [B9, proof
of Theorem 1.7], we get the first identity in (3.31). Using the fact that the
integral of a linear function with respect to the Gaussian distribution vanishes,
we also get the second identity in (3.31). O

Remark 3.11. A more precise statement than (3.31) is that the conver-
gence estimates also hold microlocally in Pfé x,+ The proof is the same as
in [B9].

Definition 3.12. Put

oo dT
(3.33) b (KX, 7X, V%) :/O by Ticx 7

THEOREM 3.13. The current ¥ (KX,TX, VTX> lies in PI)({XK' More-

over,

(3.34)  divk (KX,TX, VTX) = ex (TX, VTX) —e (TXK, VTXK) Sx
Also, if z € R¥,

(3.35) .k (zKX TX,vTX ) = (sgn2)" 2"y b5 (KX TX, VX ) .

K*

Proof. By Remark 3.11, the fact that ¢ (KX TX,VTX ) lies in P _ can

be proved as in [B8, Ths. 2.5 and 2.12]. Also, by (3.29), (3.31), we get (3.34).
Finally (3.35) follows from (3.30). O

Remark 3.14. By using (3.27), we find that ¥y (KX TX, VTX) is
of degree < m — 1. More precisely, the component of top degree n — 1 of
YK (KX,TX, VTX> is just the current 1 (KX,TX, VTX) which is obtained
as in (3.33), by replacing by yTrx bY by y7ex- In particular, instead of (3.34),

the current ¢ (K X TXx, vrX ) is such that

(3.36)  dy (KX,TX, VTX) —e (TX, VTX) —e (TXK, VTXK) .

3.4. Comparison of the currents Fg (X, gTX) and Vi (KX,TX7 VTX).

Let i : Xx — X be the obvious embedding. Then by (3.2), we have the
identity

(337) e (TX,VTX) = ¢ (TXk, VI¥) exc (Ny, x, VVo/x)

Using (3.19) and (3.37), we get
(3.38)

dxex (TX, VTX) Fy (TX, VTX) =ex (TX, VTX) s (TXK, VTXK) Sx s
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i.e. the current ep (T X, vix ) Fy (TX ,VTX ) verifies the same equation as

the current ¢ i gKX, TX, VTX) in (3.34). In view of (3.5), an explanation for
this result is as follows.

THEOREM 3.15. The following identity holds:
(3:39) ex (TX,VTX) Fic (TX,VTX) = g (K5, 7X,V7Y) € P,

Proof. Observe that the forms bgx 7 vanish identically on Xx. We claim
that by proceeding as in [B8, proof of Th. 3.2], (3.39) follows easily. In fact the
results of [B8] refer to Bott-Chern currents on complex manifolds (which solve
a current equation with respect to an equivariant version of the 99 operator),
while here, we only deal with equivariant Chern-Simons type objects. Note
that the manifold X g intersects itself non-transversally, with an excess normal
bundle Nx, /x. The only important point is to understand why this excess
normal bundle does not contribute to the final formula. However this follows
easily from the fact that this contribution can be expressed as the integral
along the fibre Ny, ,x of a form which is odd with respect to Z € Nx, /x, so
that it vanishes identically. Details are left to the reader. O

Remark 3.16. It follows from Theorem 3.15 that if X is odd-dimensional,
(3.40) Vi (KX TX,VTX ) e PyL.

Also observe that equations (3.20), (3.35) and (3.39) are compatible. In par-
ticular, if n is odd and if z < 0, there is no sign discrepancy because of (3.40).

3.5. Conwvergence of the Mathai- Quillen currents associated to a gradient
vector field. Let now f : X — R be a smooth K*X-invariant function. Let
V f be the gradient field of f with respect to g7 X. Then Vf is a K*X-invariant
section of T'X.

We will assume that f is a Morse-Bott function. Let B be the set of
critical points of f, i.e. the vanishing locus of V f. Then B is a smooth compact
submanifold of X.

Clearly, the Hessian VX V._f defines a symmetric quadratic form on T'X.
We identify the normal bundle Ng,x to the orthogonal bundle to 7B in TX |
with respect to g7X. It follows that VIXV f|p : Np,x — Np/x is invertible
and self-adjoint.

Let ¢”P be the metric induced by g% on TB. Let VB be the corre-
sponding Levi-Civita connection on TB. Equivalently, VZ? is the orthogonal
projection of V|5 on TB.

By (3.22), on X,

(3.41) mIX (K)Vf =0.
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By (3.41), it follows that V f|x, € T Xk, i.e. Vf|x, is the gradient field for
the function f|x, : Xx — R with respect to the metric g7 Xx.

Since K¥|p is a Killing vector field on B, it follows that its vanishing
locus Bg = BN Xk is a smooth submanifold of B. Therefore By is a smooth
submanifold of Xx. Also Xx and B intersect orthogonally along Bg. It
follows from the above that f|x, is a Morse-Bott function on Xg, whose
critical manifold is just B

Let ind (f) be the locally constant function on B with values in Z, which
is the index of the quadratic form VIXVf on Np/x, i.e. the number of its
negative eigenvalues. We define in the same way the function ind (f|x,) on
Xg. Observe that since Vf is K*-invariant and N X /X 18 even-dimensional,
we have the equality of Z-valued functions on By,

(3.42) (_1)ind(f\x;() — (_1)ind(f)\BK .

We define the spaces of K*X-invariant currents Pfé B,P;é’g on B as in
Definition 3.1, by simply replacing X by B.

THEOREM 3.17. There is a constant C' > 0 such that for any smooth form
won X, forT >1,

ind(f) B C
(3.43)‘/}(,$(aKﬁW—(_1) ex (TB,V )53)‘§ﬁ||u||cl(x),
C
/XMbK,\/TVf Sﬁ”ﬂ”m(xy

Proof. Instead of (3.32), we have the exact sequence of vector bundles
on B,
(3.44) 0—>NB/X—>TX|B—>TB—>O.

The map Np/x — TX is now VXV f|p, and the map TX|g — TB is the
orthogonal projection. In fact the image of Np,x by VIXVf|p is just the
orthogonal bundle to T'B in T'X|p, so that in turn, TB can be identified to
the orthogonal bundle to this image. The orthogonal projection of the connec-
tion VIXls on T'B is just the Levi-Civita connection V7B, By procedures in
[B6, proof of Th. 5.1] or in [B9, proof of Th. 3.3], our Theorem follows. O

Remark 3.18. A more precise statement than (3.31) is that the conver-
gence estimates also hold microlocally in Pfé - The proof is the same as in
[B6, BY.

Definition 3.19. Put

oo dT
(3.45) bie (VA TX, V7Y = /O S
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THEOREM 3.20. The current g (Vf, TX, VTX) lies in PI)((,B- Moreover

(3.46)  dxvk (v £,TX, vTx) —ex (TX, VTx)
(1)) ¢ (TB, VTB) 5B

Proof. By Remark 3.18, the fact that ¢ (Vf, TX, VTX> lies in PféB can
be proved as in [B8, Th. 2.5]. Also, by (3.29), (3.43), we get (3.46). O

By the same method, we can define the current ¥ (Vf|XK,TXK, VTXK)

on X, which lies in Pg}f, and is such that
(3.47) dip (Vf|XK,TXK, VTXK) — e (TXK, VTXK)
— (—1)md(xa) ¢ (TBK, VTBK) 0B, -
Note that 1 (Vf|XK,TXK, VTXK) is of degree dim T'X ;¢ — 1.
3.6. Comparison of the currents (KX, > and Y (Vf,-). Using (3.34),
(3.42), (3.46) and (3.47), we get

(348) dc [ (K, TX,VTY) 4 (Ve TXre, VI 3, |
= ex (TX, VTX) — (=1) ¢ (TBK, VTBK> Sp,,
dic [vic (V1,TX,97Y) + (=)™ g (K15, 7B, VTF) 5]
=ex (TX, VTX) — (=1) ¢ (TBK, VTBK> Sn,..

Let P[)(( XxUB be the set of K¥X-invariant currents on X whose wave front
set is included in Ny /x T Ng /X0 let Pl)é’é)(KU g be the set of K X_invariant cur-
rents a such that there is a KX-invariant current b € PI)(( x.up With

k] K
a = de.
A refinement for (3.48) is as follows.

THEOREM 3.21. The following identity holds:
(3:49) v (KX, TX, V) 4 (V. TX 1, V) 0,
= v (V£,7X, V")
+ (=)D e (KX|5, 7B, V") 6 in P, 5/ PR

Proof. The principle of the proof of our theorem is the same as the proof
of [B9, Th. 2.8]. O
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Remark 3.22. Clearly, we can combine Theorems 3.15 and 3.21.

3.7. A proper submersion. Let m : M — S be a submersion of smooth
manifolds, with compact fibre X of dimension n. Let T X C T'M be the tangent
bundle to the fibres X.

Let G be a compact Lie group acting on M along the fibres of X, that is
if g€ G, mg =m. Then G acts on TM and on TX C TM. Let THM c TM
be a G-invariant horizontal subbundle, so that

(3.50) TM=TiM e TX.

Observe that since G is compact, such a TH M always exists. Let PTX : TM —
TX be the projection associated to the splitting (3.50). Observe that

(3.51) THM ~ 7*TS.

Let ¢”X be a G-invariant Euclidean metric on TX. In the sequel, we
identify TX and T*X by the metric g7 .
By [B3],<T H\p gTx ) determine a Euclidean connection V¥ on TX. Let

g7 be an Euclidean metric on T'S. We equip T'M with the G-invariant metric
g™ = ¢TS50 ¢"TX . Let VIML be the Levi-Civita connection on (TM g™ )

Then the connection VI¥ on TX is given by

(3.52) vTX = pTXyTM.L

and is independent of ¢g7°. Let V7™ be the connection on TM,
(3.53) VM — oy TS g vTX,

Let T be the torsion of VI'M. Put

(3.54) S =vIML _gTM,

Then S is a 1-form on M with values in antisymmetric elements of End (T'M).

Classically, if A, B,C € T M,

(3.55) S(A)B—S(B)A+T (A B) =0,
2(S(A)B,C) + (T (A, B),C) + (T (C,A),B) — (T (B,C), A) = 0.

By [B3, Th. 1.9], we know that
e The connection V¥ preserves the metric g7 ~.

e The connection V¥ and the tensors 7 and (S (-), -, -) do not depend on
Ts
g'e.

e The tensor T takes its values in T'X, and vanishes on T'X x T'X.

e For any A€ TM, S (A) maps TX into T M.
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e Forany A, B THM, S(A)B e TX.
e IfAcTHM, S(A)A=0.
From (3.55), we find that if A€ THM, B,C € TX,
(3.56) (T (A,B),C) = (T (A,C),B)=—{(S(B)C,A).

By construction, all the above objects are G-invariant. If U € T'S, let U ¢
TH M be the horizontal lift of U in TH M. If U is a vector field on T'S, let Lya
be the Lie derivative operator associated to the vector field U¥. One verifies
easily that Ly#= acts on the tensor algebra of T'X, and that this action defines
a corresponding tensor in U € T'S. Now, we recall a simple result stated in
[B12, Th. 1.1].

THEOREM 3.23. The connection VX on (TX, gTX) 1s characterized by
the following two properties:

e On each fibre X, it restricts to the Levi- Civita connection.

e I[fUETS,
1 -1

(3.57) Vid = Lon + 5 (9")  Long™.
Moreover, if U,V are smooth sections of TS,
(3.58) T (Ut Vi) = —PTX [U" v,
and if U e TS, AeTX,

1 -1
(3.59) T (UH ,A) =3 (gTX) LyngTX A.

In the sequel, SPTXS and VTX S are considered as sections of A% (T*X)®
End (T'M). The following identity was established in [B3, Th. 4.14], [B5,
Th. 2.3].

PROPOSITION 3.24. If A, A’ € TX,B,B' € TM, then
(3.60) <RTX (A, A") PTX B, PTXB’> T <SPTXS (A, 4) B, B’>
+((VT¥S) (A, 4) B,B') = (R™ (B, B') A, A").
We will now denote by d* the fibrewise de Rham operator acting on
smooth sections of A" (T*X) along the fibres TX. We denote by V¥ the

restriction of the connection VIX to the fibres X, which acts on sections of
A (T*X) ® TX. Observe that VX increases the degree in the exterior al-
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gebra A" (T*X) by 1. Its curvature, RT¥, is a smooth section of A2 (T*X) ®
End (TX). Also VTX acts naturally on smooth sections of A (T*X)
® A (T*X)® A (T*S) along the fibres.

Let eq, ..., e, be an orthonormal basis of TX and let e', ..., e" be the cor-
responding dual basis of T*X, let f1,. .., fm be a basis of TS and let f1,... f™
be the corresponding dual basis of T*S.

Definition 3.25. Set
1

(3.61) TH == (T (£ 45) ey Ao n g2,

TozfaAéiAT(ff,ei).

Then TH and dXTH are sections of A2 (T*S)® A (T*X). Also T° is a
section of A (T*S) @A (T*X)®TX. Recall that we identify TX and T*X
by the metric g”X. Then T° can be viewed as the smooth section of A" (T*S) ®
AN (T*X)®T*X,

(3.62) T0:<T (ff,ei>,ej>f°‘/\é\i/\ej.
By the above, VIXT0 is well defined. Also the operator io acts on

A (T*S) QA (T*X) RN (T*X)
by interior multiplication in the variable e; acting on A" (T*X), and exterior
product by f¢ acting on A" (T*S), and by exterior product by €’ acting on
A (T*X). In particular, i7o increases the degree in A" (7% X) by 1. Set

(3.63) ’TO = (1°,1°).

‘2
Equivalently,
2
n .
_Z Z <T‘(f£’,€i),6j>fa/\/€\Z y
j=1 11<§i§n

where the square in the right-hand side of (3.64) is taken in A" (T*S) ® A" (T*X).
Then {T0|2 is a section of A% (T*S)® A? (T*X).

(3.64) ’TO‘Q -

THEOREM 3.26. The following identity holds:

(3.65) % <ei, RTXej> einel = % <ei, ETXej> et Nel
FUIXTO 4 1o - LT,

Moreover,

(3.66) (VIX o) % (ei, RTXe;) el ned = 0.
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Proof. Observe first that when only vertical Grassmann variables e’ are
considered, (3.65) is a trivial consequence of the well-known symmetry of the
fibrewise Levi-Civita curvature, a form of identity (3.60).

Also we know that if A € TM, S (A) maps TX into T#M. By (3.56), if
AeTX,BeTS,

(3.67) PTXg(4)B" =T (BY, 4).

By (3.67), and the fact that S (-) takes its values in antisymmetric elements of
End (T M), we find that if A, A’ € TX, B, B' € TS,
(3.68)
((sPTXS) (4, 4) B", B
= (S(4) PT¥ 5 (4) BY, BH) — (§(A') PTX 5 (4) BY, B™)
= (PTX5(A) B, PTXg (4) B™) — (PTX$ (&) B, PT¥ 5 (4) B)
— <T (BH,A) T (B’H,A’)> - <T (BH,A’) T (B’H,A)>.
From (3.68), we deduce that
1

(3.69) Z< 2 SPTXS (eise5) f)ET AT A FOAfO = % \Tof.

By (3.55), if A€ TX,B,B € TS,

(3.70) <S (A) BH,B’H> = é <T (BH,B’H) ,A>.
Therefore,
(3.71) % (F8,9TXS (eivey) fHYE NET o A fP = —%JXfH.

Using (3.67), we find that if Be TS, A, A", B' € TX,
(3.72) <V_TXS (A, A" BH, B’> - <VTXT (BH, ) (A, 4 ,B’>
From (3.72), we get
1 ) . ~
(3.73) 5 (F8,9TXS (eires) en) € AET A f*NeF = VTHTO,
By (3.60), (3.68)-(3.73), we get (3.65) in full generality. Clearly,
(3.74) (@_TX + iTo) dXTH = gX27H =
Also, by (3.25), we get
~ 1 ~ . . ~ 1 2
TX i N (2o BTX,\ gi A i TX70 . L]0 _
(3.75) (V] +zT)(2 (e, BT ej) e Nl +VI¥T +2‘T ‘ ) 0.

By (3.74), (3.75), we get (3.66). The proof of our theorem is completed. [
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Remark 3.27. Identity (3.66) was proved in [BGo2, Ths. 6.11 and 6.12],
by a method closely related to the arguments used in our proof. Moreover, all
the above objects are G-invariant.

Recall that g is the Lie algebra of G. If K € g, let KX be the corresponding
vector field on M. We use the notation K% instead of K™, because KX is a
section of T'X, the tangent bundle to the fibres X. Let KX’ € T*X be dual
to KX by ¢7X. We identify K~ to a vertical 1-form on M, i.e. to a 1-form
which vanishes on T M. Then equations (3.6) and (3.7) still hold.

Recall that V7 restricts to the Levi-Civita connection along the fibres X.
Let mTX (K) be the restriction of VIXKX to TX. Then m”X (K) is an
antisymmetric section of End (T'X). Also the group G acts on TX. By (2.31),
the equivariant curvature R}QX is still given by

(3.76) RIX = RTX —27m™™X (K).
Take K € g. Let f: M — R be a KX-invariant smooth function, so that

(3.77) igxdf = 0.
From (3.77), we get
(3.78) dgdf = 0.

Let Vf € TX be the fibrewise gradient field of f with respect to the metric
TX
g . Set

(3.79) d"f =[OV u f.

Recall that R is the curvature of the fibrewise connection V7X. As in
(2.31), set
(3.80) RIX = R™ —27rm™ (K).
As in (3.21), set

) 1 ~TX ] . S

(3.81) RIX = 3 <ek,RF"I;Xel> e né, Ry = 3 <ei, R:'I;Xej> e Nel.
Then REX € A (T*M) & A (T*X), and f’zf(X e A (T*X)® A (T*X).

Set
(3.82) VI =V —omigx, VX =V —ormi .
Then, as in (2.7),
(3.83) VIXRTX o 9TXR, —o.

ProprosITION 3.28. The following identities hold:
(3.84)

VIXKX = (V¥ tip) K, VIXVF = — (VI tige) VS — d¥a f.



EQUIVARIANT DE RAHM TORSIONS 99

Proof. By definition,
(3.85)  VINKX = (VIXKY ¢j) el nod + (VX KY e:) fo ne.
Since KX is a fibrewise Killing vector field,
(3.86) (VIXEX,¢j) = = (VIXKX e;).
Also, since TH M is KX-invariant, by (3.57), (3.59),
TX 10X H X
(3.87) ViXK :T<a,K )
Using (3.56), (3.87), we get
(3:88) (VIXKY,er) fone’ = (T (i1, K¥) es) f* n&*
= <T ( f,eZ') ,KX> fa /\/6\7; = iToKX.

By (3.85)—(3.88), we get the first identity in (3.84).
Also the form df is closed, so that if U, V' are smooth sections of T'M,

(3.89) UV V) =V(Vf,U) = (Vf,[UV])=0.
Using the fact that 7T is the torsion of the connection V™ | we get the second
identity in (3.84). The proof of our proposition is completed. O

3.8. An odd closed form on S. We make the same assumptions and use
the same notation as in Section 3.7. In particular the metric g% is given
on TX. This in turn determines the identification T'X ~ T*X, and also the

Berezin integral [Z.

Definition 3.29. Set
B .
(3.90) k= / exp (dKKX’/47r) / exp (—R%}X /271'),
X

~

B _
5K:\/27r/ exp (dKKX'/47r>/ KX’ exp (—R%X/Z/T).
X

Then vk, dx are differential forms on S.

In the sequel, we will often interchange the roles of the e and of the e?.
Namely, we consider now the ' as standard differential forms on the fibres X.
Then [y denotes the integral along the fibres X of smooth forms generated by
the e’. Also | B will denote Berezin integration with respect to the variables e’.

Recall that d is the de Rham operator along the fibres X, which increases
the degree in A" (T*X) by 1. Set

(3.91) d = d* —2mi .
Let x (X) be the Euler characteristic of X.
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THEOREM 3.30. The form vk is even and vanishes if dim X is odd, the
form 0k is odd and vanishes if dim X is even. Moreover, the following identi-
ties hold,

(3.92) vk :/;exp <—c/l\XK/27r ([?}/ — fﬁ/Zw) /2)
/B exp (— (gT;{q% + (@TX I z[/(;) 70 4 % ‘TOF)/%—),
b= —VBR [ R¥exp (< (R~ 7727 2)

/B exp (— <JA.%T;((/27T + (@TX 1 Zf(}) 70 4 % ‘T0’2>/2ﬂ'>.
Also,

(3.93) vk = x (X), dog = 0.

Proof. Observe that if dim X is odd, [ B exp (—R%}X / 27r> vanishes identi-
cally, so that vx also vanishes. So we may now assume as well that dim X is
even. Let dX be the standard de Rham operator along the fibre X. Since T is
the torsion of the connection V7™ defined in (3.53), by (3.56) and (3.87), we
get

(3.94) dKY =VIXKY 1irkX
=dX KX ¢ <T( f,KX) e> JaN
+<T( 56) ,KX>f“ Ael+ <TH,KX>
— X KX +2<T (faH,KX> e> FfENE <TH,KX>.
We rewrite (3.94) in the form,
(3.95) AKY = KX i (—21° 4+ TH) |
Since KX is a Killing vector field,
(3.96) dXKX’:<mTX (K) ei,ej>ei/\ej,
X KX/ = <mTX (K) e, ej> elned.

By (3.65), (3.90), (3.95), (3.96), we get (3.92).

Since the torsion tensor T is G-invariant,
. - 2 ~
(3.97) LTH =0, (VTX T zl?}) 70 = RT% , T°.
By (3.7) and (3.97), we get

(3.98) @3 g (KX = TH [27) = 0.
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Comparing with (3.23), (3.26), we discover that the Berezin integral with
respect to the standard Grassmann variables e’

/B exp(— (éz/% + (VI i) 10+ % ‘T0‘2>/27r>

is an extension of the Berezin integrals asr considered in (3.26). In fact in
(3.26) we assumed that 3 is a smooth section of TX. Here T is a smooth even
section of A (T*X)®A (T*S) @ TX (recall that here we ultimately integrate
on X in the hatted Grassmann variables). By (3.25), (3.97), or by (3.65),
(3.66), (3.97), we get

(3.99) (VTX n Z;’(7<+T0> <]A'{Z§/2W + (@TX + zﬁ(> 70 4 % ’TO‘Q) =0.

By (3.99), we obtain
(3.100)

c?fK/Q,r /B exp(— <}A£f</27r + <§TX + ZE}> T° + % ‘T0’2> /27T> =0.

By (3.92), (3.98), (3.100), we find that vk is now a standard integral on
the fibre X of a hatted differential form which is d_g/s,-closed. Since

exp (~@ e (K% =17 j27) [2) =1

is c?_(K/Q -exact, we get

(3.101) ’YK—// eXp< (R K2 (@TXHI@)T%L%‘TO(Z)/QW).

By the same argument as in (3.25), (3.29), we can now deform TV to 0, while
leaving vk unchanged. So we get

r B ~TX
(3.102) VK :/ / exp (—RK/QW/%T).
X
Equivalently, R
(3.103) Vi = / e_K/om (TX,@TX).
X

By (2.44), (2.45), (3.103), we get the first identity in (3.93).

For the same reason as before, the Berezin integral [ KX/ exp (—R%;X/Qﬂ)
vanishes if dim X is even. Therefore the form dx vanishes if dim X is even. So
we may as well assume that dim X is odd. The proof of the second identity in
(3.92) is the same as before. By (3.9), (3.83), we get

B — :
(3.104) dég = \/27T/Xexp (dKKX'/47r>/ VIX KX exp (—R}F(X/Qw) .
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Proceeding as in (3.94)—(3.96), using the first equation in (3.84) and (3.104),
and we get

(3.105) daK:—\/%/;exp (-J{K/% (1?)?/ - ﬁ/zn) /2>
B
L™ i) 1

o ~ 1 2
TX TX ; 0 0
exp(—(R_K/%—i- (VX i) 10+ 5 |T°) )/%).
By (3.99), (3.105), we obtain
(3.106)

d(5K:—\/27r/ exp <—CP_CK/27r (KX/_ﬁ/27T) /2> J)_(K/QW
X

B KX RTX (@TX -A) 70 - Lo /o
exp| —( R o + +igx) T+ 5 [T ) for).
By (3.98), (3.106), we get the second identity in (3.93). The proof of our
theorem is completed. O

Remark 3.31. From Theorem 3.30, we find in particular that the coho-
mology class of the closed form dx does not depend on the metric g7 .

3.9. The V-invariant. We still fix the metric g7X on TX. For t > 0,
we will now construct the form &g associated to the metric g7 = g7 /t.

Observe that in (3.90), the Berezin integral [ B depends explicitly on the choice
of the metric g7 X. When replacing g7X by g{ %, we should in principle redefine

the Berezin integral [ B, i.e. introduce a t-dependent Berezin integration ftB.
However, for convenience, we will instead keep our definition of the Berezin

integral fixed, i.e. independent of t. Therefore [ B will still refer to the Berezin
integral associated to the metric g7 .

PRroPOSITION 3.32. Fort > 0, the following identity holds:

Vor X/ B KX STX
(3.107) x4 =2 /X exp (di K /art) / N (—REY /).

Proof. Our identity follows from an obvious computation which is left to
the reader. O]

Definition 3.33. For t > 0, set

KX/
(3.108) exs = v2m /
’ x 4t

o~

exp (dKKX//47Tt) /B K—\/); exp (-R%X/Qw) :
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Observe that by (3.8), we can rewrite (3.107), (3.108) in the form,

(3.109) 6K7t:\/ﬂ/)(al{7t /E (-R%X/Qﬂ'),
gK’t:_\/%~/X ,6[(7,5 /B (—R%X/Qﬂ') .

Recall that if s € R, the operator v acting on A" (7%S) is as defined in
(2.91).

THEOREM 3.34. For t > 0, if dim X is even, the forms 0x; and ek
vanish. If dim X is odd, the forms 0k ¢ are odd, and the forms e are even.

The forms dx 4 are closed on S, and their cohomology class does not depend
ont > 0. More precisely,

0 €Kt
11 = —d—=
(3.110) 8t5m d
If z € R¥,
sgn z 1
(3.111) T NG ——1/.0K 1/, E2t = m%/zem/zz-

Proof. By Theorem 3.30, we know that if dim X is even, dx; vanishes.
The same argument holds for ex ;. As seen in Remark 3.31, the cohomology
class of 0 ; does not depend on ¢.

Now we replace M by M = M x R*, and S by S =8 x R’. Let
7 : M — S be the obvious projection with fibre X. Over S x {t}, we equip
TX with the metric g7 /t. Set THM = THM @ TRY. We can then use the
formalism of Sections 3.7 and 3.8 applied to this new fibration. In particular,
we observe that the curvature tensor RTX ig just the pull-back to M of RTX.
Let KX/, dk be the obvious analogues of KX’ dg. One verifies easily that

dt
(3.112) AKX = dp KX jt — S KX
t2
From the above, we get
dt
(3.113) 5K:5Kt_75Kt

By Theorem 3.30, the form g is closed on S. Equation (3.110) is now obvious.
By using in particular (3.11) and (3.30), equation (3.111) follows easily.
The proof of our theorem is completed. O

In the sequel, we will write that ast — 0, 0 = O (\/Z) if for any compact
subset A of S and for m € N, there exists C' > 0 such that for ¢t €]0, 1], the
sup of 0k ¢ and its derivatives of order lower than m are dominated by C NG
Similar notation will be used when ¢t — +o0.
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THEOREM 3.35. Ast — 0,

(3.114) oe =0 (VE),  exi=0(Vi).
Ast — o0,
(3.115) e =0 (1/\/5) . exs=0 (1/753/2) .

In particular, the cohomology class of the closed forms i+ vanishes.

Proof. By proceeding as in [B8, proof of Theorem 1.3] or in [B9, proof of
Th. 1.7], and using the fact that the integral of a linear function with respect
to a Gaussian density vanishes, we find that as ¢ — 0, there is the convergence
of currents on M,

~

B X1
Vit

By using the microlocal estimates similar to the ones given in [B8, eq. (2.18)],
we see that the convergence in (3.116) holds microlocally in the space of cur-

(3.116) exp (di K™ [4rt) exp (—REY /27) — 0.

rents whose wave front set is included in N]’\}K M with bounds on the mi-
crolocal seminorms in the left-hand side of (3.116) of the type C+/t. Since
™T*S N N]T4£/M = {0}, using [H6, Th. 8.2.1~3], we get the first identity in
(3.114). Let 0k + be the analogue of dx over S = S x R’ , where the generic
element of R is now denoted s. One verifies easily that

~ ds
(3.117) Okt = 0K, st — 5 EKust-

We can now apply the first identity in (3.114) to gKﬂf, to get the second identity.
From (3.107), (3.108), we get (3.115).

Finally recall that the cohomology class of the forms dx ; does not depend
ont > 0. From (3.114) or (3.115), we deduce that this cohomology class
vanishes. The proof of our theorem is completed. O

Recall that the operator ) acting on differential forms was defined in
(2.92).

Definition 3.36. Put

dt

Ta

Vie (M/S, TH M, gTX ) = QU (M/s, TH M, gTX ) .

+oo
(3.118) Uk (M/S, T M, ™) = /0 Ky

By (3.114), (3.115), the forms
Ur (M/S, "M, g™, Vic (M/S,T7M/S,g"™)

on S are well defined.
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Note that in degree 0, U (M/s, THM, gTX) and Vi (M/S, THM, gTX)

coincide. In the sequel, we will state all our results on the form
VK (M/Sv THMv gTX) )
even if they also hold for Uy (M/S, THM, gTX )

THEOREM 3.37. The even form Vi (M/S, THM, gTX) 1s closed. It van-

ishes if dim X is even. Also, its cohomology class does not depend on THM
and on g7 X. Finally, if z € R*,

(3.119) Vig (M/S, THM, gTX> = éwl/ZVK (M/S, TH M, gTX) .

Proof. The first part of our theorem is a trivial consequence of Theo-
rems 3.34 and 3.35. By functoriality, the second part of our theorem follows
tautologically. Finally, using (3.111), we get (3.119). O

Remark 3.38. From the above result, it follows in particular that if dim X
is odd, Vl({o) (TH M, g™x ) is an invariant of (X KX ) In the sequel, we will
denote by Vi (M/S) the cohomology class of Vi (M /S, TH M, g"™¥).

Let now 7’ : M’ — S’ be another submersion with compact fibre X',
which has the same properties as the submersion 7 : M — S. We still assume
that G acts on M’ and preserves the fibres X’. More generally, we suppose
that data similar to those just considered are attached to this new submersion.
In particular we can define the even cohomology class Vi (M'/S’) on S’

Set M" = M x M', S = S x §'. Tt is then clear that the projection
7"+ M" — S” has the same properties as m : M — S. Again, we denote with
a superscript ” the objects natural to this new projection.

THEOREM 3.39. The following identity holds:
(3.120)
Ve (M")S") = x (X) Vg (M'/S") + x (X") Vig (M/S) in HV" (S x S R).

Proof. Using (3.93) in Theorem 3.30 and proceeding as in (3.113), we get

~

KX/ B .
(3.121) \/271'/ = exp (dKKX’/47rt)/ exp (—Rﬂx/zﬁ) — 0.
x 4mt

A similar identity holds for the objects attached to M’. Using (3.93), (3.118)
and (3.121), we obtain (3.120). O
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4. Morse-Bott functions, multifibrations and the class Vi (M/S5)

The purpose of this section is to establish two important properties of
the cohomology classes Vi (M/S) which we constructed in Section 3. More
precisely, we show that if f : M — R is a fibrewise K X-invariant Morse-Bott
function, then Vi (M/S) can be expressed in terms of the corresponding V-
invariants of the fibration defined by the critical points of f along the fibres.
Also we study the V-invariant of equivariant multifibrations.

This section is organized as follows. In 4.1 we evaluate the V-invariants
of a Zo-graded Euclidean vector bundle, equipped with an obvious quadratic
fibrewise Morse function. This computation will be used at the final stage of
the proof of the comparison formula for Morse-Bott fibrations. In 4.2, we state
the comparison formula. In 4.3, 4.4 and 4.5, we derive various consequences of
our formula. In particular, we study the behaviour of the V-invariants under
equivariant surgery.

Sections 4.6-4.10 are devoted to the proof of our formula. In 4.6, we show
how to couple KX and Vf in order to extend the forms dx of 3.8. In 4.7, we
consider a contour integral in R%r. Our main formula will be established by
taking the contour to infinity. In 4.8, we make natural simplifying assumptions
on the considered metrics. In 4.9, and following [B§], we establish three inter-
mediate results. In 4.10, we compute the asymptotics of the contour integral,
as the boundary tends to infinity, and we obtain the comparison formula for
Morse-Bott fibrations.

Finally, in Section 4.11, we give a formula for the V-invariant of multifi-
brations.

4.1. The case of a vector bundle. Let V be a smooth manifold, and let
E = E, ® E_ be a real Zy-graded vector bundle on V. Let g = ¢g&+ @ g%~
be a Euclidean metric on £ = E; @ E_, such that F; and E_ are mutually
orthogonal in E. Let V¥ = VF+ @ VF- be a Euclidean connection on E =
E, @® E_, which preserves the splitting, and let R¥ = RF+ @ RF- be its
curvature.

Let £ be the total space of E. Then the connection V¥ induces a hori-
zontal subbundle THE of TE, so that

(4.1) TE =THEDE.

Recall that G is a compact Lie group and g is its Lie algebra. Take
K € g. Let m¥ (K) be an antisymmetric invertible parallel section of End (E),
which preserves the splitting £ = E, @ E_. Then E; and E_ are of even
dimension. Let Z = (Z1, Z_) be the generic element of E = E, @ E_. Clearly,
K =m¥ (K) Z is a fibrewise Killing vector field along the fibres E.
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Let g% : £ — R be given by

(12) 0 (7,2 = 5 (12,1~ |2.7).

Then ¢¥ is a KP-invariant function on &, which is parallel with respect to VZ.
Let e1,...,e, be an orthonormal basis of F, and let e!,... e" be the
corresponding dual basis. The splitting (4.1) enables us to consider €', ..., e"
can be considered as vertical 1-forms on £.
Now we will use the formalism of Sections 3.7-3.9 in this situation, with
KPF replacing K¥. In particular, let K" be the 1-form on £ which is dual to
K*. We have the easy formula,

(4.3)
iK™ = = (e;,m® (K)e;) e Nl + (RPZ,m" (K) Z) - 27 |m” (K) 2)2

Now we apply the formalism of Section 3.7 to the fibration 7 : £ — V, with
fibre X = E. The connection V7% attached to (THE, gE) is just 7*VF.

Definition 4.1. Put

(4.4) ck = exp (dKKE'/47T> .
Then cf( is an even form on &, such that

(4.5) dgck =0.

As in (2.31), (3.3), set

(4.6) RE = RF —27mP (K).

As in (3.81), set

(4.7) RE — % (en, REes) e N

Now we define Af( JTvgs 8 in (3.23), namely:

. — T 2
E Ee E 1| .E
(4.8) AL froge = BE A+ VIVEVGE + 5 ve"| .
Equivalently,
4.9 AE = RE+VTVE (27 -77) + Lz
( . ) KNTVgE — K . + — 2 .

Definition 4.2. For T > 0, put

(4.10) dfr =2r / VIVE exp (—A? JTve / 271') :
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THEOREM 4.3. The following identity of differential forms on V holds:

/CEdE _ VT Ty —m"? (K)
g T 22 | (m# (K) RE + T) J2n)°

(4.11)

In particular, the form [g c?}dlE{’T 1s closed, and its cohomology class does not
depend on g% or VE.

Proof. Let 7 € End (FE) be the involution defining the Zo-grading of F,

i.e. 7==x1on E4+. Then
(4.12) V¥ (2)=712Z.

Using (4.12), we get

(4.13) [Ecﬁd}ﬁ}j_—%[\/%/licﬁ <Z,mE (K)ek> <Z, ‘i—ffe,>

B
/ exp (— (A?ﬁqu — 27be* A @l) /2%)1

If « is a differential form on £, we can write « in the form

b=0

(4.14) a= Zeil AoNeETay

with Qi .6, € A (T*V) Set
(4.15) oM =g p.
From (4.3), (4.13), we get

ﬁ —-1/2

(27_‘_)dim E

(4.16) /E Fdf = det[ (K) R + T

< K) ey, (mE RK+T)/27T>_1T61>
il el

—27Tb€k/\€l+ﬁV.E(Z—Z)>/2ﬂ'>]

<ez, ej>ei/\ej +R1E<

DO | =

max

b=0
Set

(4.17) SE = <ei,mE(K)ej>e'/\ej

1

2
—1

+ <ek, RE — 8n?om” (K) (mE (K)RE + T) Tel> ek e

N =
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Then we rewrite (4.16) in the form

VT
(4.18) /E Rl = 5 det [m” (K) R + T

anpns [ [ e (- (3 + vEVE (2 - 7)) /)

One has the easy formula,

110 (i | "o (- (5 V702 (75 7)) )]

—-1/2

max

b=0

mP2 (K) 1/2

mE (K)RE +T
From (4.16), (4.19), we get (4.11). The proof is completed. O

= det [mE (K)RE + T — 87°%br

Definition 4.4. Set

oo ar

(4.20) Hy (B, g%, V") = / { / c}b}dgT} =
0 E

By Theorem 4.3, the form Hg (E P VE ) is even, closed, and its coho-

mology class does not depend on g or VZ.

Definition 4.5. For § € C*,x € C,|z| < |6], put

@21) 10 (x) = ﬁ (1 - %”)3/2, 7 (z) = ﬁ (1 - %) o

Recall that the operator @) was defined in (2.92) and in (2.117). We also
define a related operator @ as follows. If f (z) is an analytic function defined
on a neighbourhood of 0 € C, set

1

(4.22) Qf (x) = / F(4s (1= ) ) ds.
0

The next result was established in [BGo2, Prop. 4.34].

PRrOPOSITION 4.6. The following identity holds:

(4.23) QI’(z) = J%(z).
Definition 4.7. Set
—imE RE
(121 i (5. 5%) = | (7)),

Tie (E VE) = Tr, lrimE(K) (-R—Eﬂ .
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Then Zg (E, VE) s JK (E, VE) are closed even forms on V. We denote
by Ik (F), Jk (E) the corresponding cohomology classes.

THEOREM 4.8. The following identities hold:

(4.25) Hy (E,gE, VE) =Tk (E VE) ,
QHg (E,gE,VE> =Tk (E, VE> .

Proof. Clearly, for y > 0,

too 1 dT
(4.26) / L
o y+TVT Sy
so that

+o0 1 dr 7
4.27 / — ==
(4.27) o (y+T)VT 232

By (4.11), (4.20), (4.27), we get the first identity in (4.11). Using now (4.23),
we obtain the second identity in (4.25). The proof is complete. O

Remark 4.9. The function I? (x) appeared in an entirely different context
in [BGo2, Definition 4.28], in the evaluation of the analytic torsion forms as-
sociated to a Zy-graded vector bundle. This is one of the striking elements of
evidence demonstrating that the results of [BGo2| are just infinite-dimensional
versions of the results which are obtained in this section in a finite-dimensional
context.

4.2. Morse-Bott functions and the class Vi (M/S). We make the same
assumptions as in Sections 3.7-3.9, and we use the corresponding notation.
Let K € g. Let f : M — R be a K¥-invariant Morse-Bott function. Let
Vf € TX be the fibrewise gradient vector field of f associated to the metric
g%, We assume that the zero set B of V£ is a smooth submanifold of M,
which intersects the fibres X transversally, i.e. which fibres on S, with fibre
B CX.

Since f is KX-invariant, the manifold B is itself K *-invariant. In partic-
ular KX|g € TB. It follows from the above that the even cohomology classes
Vi (M/S),Vk (B/S) on S are well-defined.

Let My C M,Bg C B be the zero sets of KX, KX|g. Then My, B are
smooth submanifolds of M, B, which fibre on S, with compact fibres Xg, By,
which are compact submanifolds of X, B. As we saw in Section 3.5, Xx and B
intersect orthogonally along B, and f|ur, : Mg — R is also a K*X-invariant
function, which is fibrewise Morse-Bott, and its fibrewise critical set is Bg.
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Let ind (f) be the fibrewise index of f along the fibres B, i.e. the index
of the quadratic form VXV f on N /x- Then ind (f) is a locally constant
function on B with values in Z. By (3.42), we have the identity on By,

(4.28) (—1)ind(flc) = (Z1)ind(Dlesc
Let N be the excess normal bundle which is defined by the exact sequence
(4.29) 0— Np,/xx ® Np./p — Np,x = N = 0.

Equivalently, if we identify Np, x to the orthogonal bundle to T'B in T'X|g,

then m”X (K)|g, acts naturally on Ng,x. Now, we have the orthogonal
splitting
(4.30) NB/X’BK = NBK/XK ®N.

In (4.30), N, /x, is just the kernel of mTX (K), and N its orthogonal. In par-
ticular, m”X (K) acts as an antisymmetric invertible parallel endomorphism
of N, so that N is of even dimension. Since Vf is K~-invariant, one verifies
easily that VI XV_f|g, , which acts on Np/x|By, preserves the splitting (4.30).
Let

(4.31) N =N*@ N*

be the corresponding splitting of N into its stable and unstable part; i.e., the
vector bundles N* and N are the direct sums of the vector subspaces of N
associated to positive and negative eigenvalues of VI XV_f|g, . Observe that
as a Zo-graded vector bundle on By, N verifies the assumptions which were
verified by F in Section 4.1.

THEOREM 4.10. The following identity holds,
(4.32) Vi (M/S)=(-1)"" Vi (B/S)
_ /B (~1)"0) e (TBi) T (N) in HY" (S, R).

Proof. This identity will be proved in Sections 4.6—4.10. O

Remark 4.11. One verifies easily that our theorem is compatible with
Theorem 3.39. Taking into account the fact that Vi (M/S) vanishes if X is
even-dimensional, one verifies that (4.32) is unchanged when we change f into

—f, especially because Jx (Kf ) is changed into —Jx ( ) Also if B is a finite

covering of S, i.e. if B is a finite subset of X, then B = Bg. Therefore, (4.32)
takes the form,

(4.33) Vi (M/S)=-Y (1) jK< m) in Ho" (S, R) .

zeB



112 JEAN-MICHEL BISMUT AND SEBASTIAN GOETTE

4.3. Equivariant surgery and the invariant Vi (M/S). We make the same
assumptions as in Section 4.2. Also we assume that for every fibre X, a € R
is a non critical value of f|x. Set

(4.34) M, = f~ {a}.

Then the projection 7’ : M, — S is a submersion with compact fibre X, C X.
Also

Put
(4.36) Bs,=Bnf!(a,+), Bu=Bnf'(]-o0,a.

Then Bs ., B, fibre on S with fibre Bs,, B<,.

Observe that g = (f —a)? is also a fibrewise Morse-Bott function, and
that its fibrewise critical set is just B U M,.

Now we will assume that X is even-dimensional, so that X, is odd-
dimensional. By applying Theorem 4.10 to the functions f and g, we get
(4.37)

(1™ Vie (B/8) - [
Bk
(=1 Vic Bia/S) + (1) VoD Vi (Ba/S) + Vi (Ma/5)

- /BK (~1)") ¢ (TBg) T (W)

+ (~1)m Nerx =D ¢ (TBy) i (N) = 0 in H" (9, R) .

B<a,K

(_1)ind(f) e (TBK) jK (N) =0 in H" (S, R),

By (4.37), and the fact that only the components of B., whose fibres B, are
odd-dimensional contribute to Vi (B-,), we obtain

(4.38) Vic (My/S) =2 (=1)"U v (BLo/S)
_9 (_1)ind(f)/ ¢ (TBeax) Jx (ﬁ) )

Bea,x

Let now a, b be two noncritical values of f, with a < b. Set
(4.39) Bl = BN (ob).

PROPOSITION 4.12. The following identity holds:
(4.40)

Vic (My/8) = Vic (Ma/§) =2 (=1)") Ve (B /S)
—2)™ [ e (TBuyi) Tk (V).

Bya b, K

Proof. This is an obvious consequence of (4.38). O
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4.4. The Vi-invariant of unit sphere bundles. Let E be a real vector
bundle on S, let ¢¥ be a Euclidean metric on E, and let V¥ be a Euclidean
connection on F. We assume that the Lie group G acts fibrewise on E by par-
allel automorphisms. In particular if K € g, let m” (K) be the corresponding
antisymmetric parallel section of End (F).

Set S to be the unit sphere bundle in E, and let £ be the total space
of SE. Then G still acts on €. In particular, the class Vi () € H®*" (S, R) is
well-defined. Let E° = kerm® (K), and let E+ be the orthogonal subbundle
to B in E. Then E™ is a trivially Zs-graded vector bundle on S, on which
m¥ (K) acts as a parallel invertible antisymmetric operator.

THEOREM 4.13. The following identity holds:
(4.41) Vic (€/8) = = (2= x (8*)) I (B*).

Proof. By Theorem 3.37, we may and we will assume that E is even-
dimensional, so that y (SE> = 0. Let SE®R be the unit sphere bundle in

E @R, and let £ be the total space of SEOR, If (z,t) € SFOR set
(4.42) f(z,t)=t.

Then f is a G-invariant fibrewise Morse function, whose fibrewise critical set
consist of (0,1),(0,—1). Now we use (4.38) and (4.42). O

Remark 4.14. If F is instead odd-dimensional, one verifies that when ap-
plying Theorem 4.10 to the function f(z,t) = t, we obtain a formula for
Vi (£'/S) which is a special case of (4.41).

In the case where dim E = 2, formula (4.41) can be obtained by an inter-
esting direct computation. Note that in this direct computation, the — sign in
(4.41) comes from the fact that for n =1, in (1.8), (—1)"" /2 = _1.

4.5. The case of symplectic manifolds. In this section, we assume that X
is a compact manifold of even dimension 2m, and that w is a symplectic form
on X.

We assume that the compact Lie group G acts on X and preserves the
symplectic form w. Suppose that there is a moment map p : X — g* associated
to the action of G on X. Namely, i is an equivariant map such that for K € g,
the function (u, K) is a Hamiltonian for K¥; i.e.,

(4.43) d{p, K) —2migxw = 0.

Let TR X be the tangent bundle of X. Let ¢’*X be a G-invariant metric
on Tr X, and let J be an almost complex structure on Tr X, such that if
UV eTX,

(4.44) w(U,V)=(U,JV).
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Let TX C TR X ®r C be the i eigenbundle of J. Then T'X is a complex vector
bundle on X, equipped with a Hermitian metric ¢7X. Also G acts naturally
on TX. Let VX be a G-invariant unitary connection on 7X, and let R7X be
its curvature. If K € g, we define the equivariant curvature RLX as in (4.6).

If A is an (m,m) matrix, put

0

(4.45) Cmax (A) = det (A), o (A) = % det (A + ) |p=0-

Take K € g. Put
(4.46)

K (TX, vTX ) = Cmax (—Ric/2im), i (TX, vTX ) = . (—Ry/2ir).

We denote by ¢k (T'X),c (T'X) the corresponding equivariant cohomology
classes on X. Degree considerations show that

(4.47) /X e (TX) = 0.

Here X is a compact symplectic almost complex submanifold. The com-
plex structure J acts on the normal bundle to Xk. Let Nx,  x denote the
corresponding i eigenbundle. We identify Ny, ,x with the orthogonal vector

bundle to TXg in TX|x,. We define cpax (NXK/X) as in (4.46) and the
sentence which follows.

Using (4.47) and the localization formulas of Duistermaat-Heckman [DuH]
and Berline-Vergne [BeV], we deduce from (4.47) that

e (TX)
(4.48) /X ) m =0.

Let TR X i be the real tangent bundle to X . Again, by degree considerations,
equation (4.48) is easily seen to be equivalent to

cx (NXK/X)
(4.49) /X e (TaXy) () 0

Now observe that the function f = (u, K) is KX-invariant. Also it is a
Morse-Bott function, and its critical set B is just Xg. Also its index on Xg
is always even. Now we use Theorem 4.10 applied to the trivial fibration with
a single fibre X. Since X and X are even dimensional, their corresponding
Vi-invariants vanish. So by (4.32), we get

(4.50) / e (ToXr) Ji (NXK / XR) = 0.

K

It is now an easy exercise to verify that (4.49) and (4.50) are equivalent.

4.6. Coupling of KXand of Vf. Now, we construct the objects which
will permit us to establish Theorem 4.10.
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As in (3.23), set
. — 1
(4.51) ALY, :R£X+V.TXVf+§|Vf|2.

Definition 4.15. Put

B
(152) cwr = [ o (axk ' /am) ["exp (<35, [2r).
B __
5K,vf:\/27r/xexp (dKKX//47T>/ KX exp (—A?{Vf/%r) )

Also, define |T° — Vf|2 by a trivial modification of (3.63), (3.64).

THEOREM 4.16. The form vi vy is even, and the form 0 vy is odd. The
following identities hold:

(4.53)

~

VRNV = (—1)n/XeXp (—c?_(K/QW (I?}’ —TH jor — dHf/w) /2)

/Bexp<— (;?T)fi/zﬂ + (V¥ i) (T°-vF) + % 0 - fo)/zn),

drvr=(—1)" \/27r/ KX/ exp (_J)—(K/Qﬂ' (I?)\(’ - fﬁ/Qﬂ - dHf/T() /2)
X

B ~TX . 1 2
TX | ; _ 0 _ Lo
/ exp<—(R_K/27r+ (V"X i) (10 = V1) + 5 |10 - V| )/%).
Moreover,
(4.54) Yrvr = X(X), dog vy =0.

Proof. By the second equation in (3.84), the proof of (4.53) is a trivial
modification of the proof of (3.92) in Theorem 3.30. Instead of (3.99), we now
have

459 (T bigggy) (R + (97 i) (12 90)

+%’TO—Vf’2> —0.

By (4.55), we get the analogue of (3.100). The proof of the first equation in
(4.54) continues as in the proof of Theorem 3.30. Also using (3.77), we can
rewrite the first equation in (3.84) in the form

(4.56) VINEX = (V¥ i e o f) KX

The obvious analogue of (3.106) then holds. The proof of the second identity
in (4.54) continues as in Theorem 3.30. O
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Now we replace M by M* = M x R} x R4, S by §* = § x R} x Ry.
Let #* : M* — S* be the obvious projection with fibre X. Clearly G still acts
fibrewise on M*. Let f*: M* — R be given by

(4.57) £ (2, 6,T) = (@) fx).

Then f* is a KX-invariant function on M*.

Also over S x {t} x R, we equip TX with the metric g”X /t. The corre-
sponding metric g7 ** on TX is G-invariant. Let TH M* be the obvious lift of
THM. The associated connection V7%* is given by

o 1 )
4. TXx TX 4 gt < —) AT ——.
(4.58) Vi EVI A o g) TG

As before, all Berezin integrals will be expressed with respect to the fixed given
metric g7 ¥

Let 5;(,Vf* be the analogue of i vy. Then 6;(,Vf* is a closed odd form
on S*.

THEOREM 4.17. The following identity holds:

(4.59) O vy —\/_/ exp((dKKX/ dK—2X/> /47r>

t
B KX' dT —
e (e 57 77) /7).
Proof. Clearly,

(4.60) KX = KX/t
Therefore

dt
(4.61) di KX = dg KX [t — K

Also, taking into account our conventions on Berezin integration, we find that
KX’ should now be KX'/\/t. By (4.58), the contribution of R\ to the
Berezin integral is the same as before. Also, with the previous conventions,

(469 VIXTTRE = (VI e (- o) T ) VTS

Vi ot
Equivalently

_ 4T —
(4.63) VIXAGTXx fx = JTVIXVf + ——VF.

2T

Equation (4.59) follows from the above considerations. O
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We define a%t, ﬁ%t as in (3.8). By (4.59), one finds easily that there is a
smooth odd form rg ;7 on S such that

(4.64)
BKX/
O v = \/7/ oth/ exp( AK\/TVf/QTr>

—i—f[(/ 5Kt/BKX/exp< A?{\/TW/%)>%
b Ty

4.7. A contour integral. Take 0 < e <1 < A < 400, 0 < Ty < +00. Let
I' = T'c a1, be the oriented contour indicated in Figure 4.1. This contour is
made of oriented pieces I'1,...,I'4y. Let A be the interior of I.

+ 1 rdtdT.

THEOREM 4.18. The following identity of even forms holds on S:
(4.65) / Sicg = —d / Sic v
T A

Proof. Since the form 6} ¢ . is odd and closed, equation (4.65) follows
from Stokes formula. O

Let P° be the vector space of smooth forms on S, let P59 ¢ PS be the
vector space of smooth exact forms on S.
Put

(4.66) I = / i fe-
Y
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By (4.65), we find that

4
(4.67) > I} =0in P/P%0.
k=1

4.8. Some simplifying assumptions. Recall that the function f: M — R
is fibrewise Morse-Bott. We identify Np,x to the orthogonal bundle to T'B
in TX|p. Using the families form of the Morse lemma, there is an orthogonal
splitting of the normal bundle Np,x into

(4.68) Np/x = Np/x ® Ng)x,

and a fibrewise G-equivariant identification of a neighbourhood of the zero-
section of Np,x with a tubular neighbourhood of B in X, such that if z €
B,Z =(Zy,Z-) € Np/x 4, for |Z] small enough,

(4.69) F@2) =@+ (128~ 12-F).

The vector bundles N /X and Ng /x are called the stable and unstable parts
of NB/X .

Let THB C TB be a horizontal bundle on B. Let V¥5/x be a Euclidean
connection on Np,x, which preserves the orthogonal splitting (4.68). We may
and we will assume that near B, TH M is just the obvious horizontal lift of
THB with respect to the connection VV#/X. Observe that the given metric
¢g"B on TB and the metric ¢¥#/% induce a metric on the total space of Np /X
so that the horizontal bundle with respect to V2/x is orthogonal to the fibres
Np,x. Using a partition of unity, we will assume that near B, the metric g™
is just this metric.

Let VIB be the Euclidean connection on TB which is associated to
(TH B,gTB) as in Section 3.7. Similarly V¥ denotes the Euclidean con-

nection on T'X associated to (TH M, gTx ) Then one verifies easily that

(4.70) VIX|g = VIB @ vNerx,

In particular, the fibres B are totally geodesic in the fibres X.

In the sequel, we assume that the above simplifying assumptions are in
force.

As before, we identify the normal bundles to X in X, to Xk in By
... with the orthogonal bundles to the corresponding tangent bundles. By (4.29),

(4.71) N:NB/X‘BKHNXK/X‘B;C

By (4.30), the normal bundle Ng, ,x splits orthogonally as

(4.72) Np,/x = Np,/x. ® Np,. /5 ®N.
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Then m”™ (K) |, acts on Np, /x and preserves the splitting (4.72). It acts
as the zero map on Np, /x, and as an invertible antisymmetric map on Np, /p
and on N. Moreover recall that the connection VX preserves T'B and T X .
Therefore the connection V¥ induces a corresponding connection on N Bi/X>

which preserves the splitting (4.72). As in (4.30),
(4.73) Np/x|Bx = Np,/x, ®N.

Using (4.68), (4.69) and the fact that f is K¥ invariant, we deduce that the
splitting (4.69) of Np,x induces corresponding orthogonal splittings,

(4.74) Niesxx = Nbox, ® Nbox,  N=N°@N“
Let gNo/x Np,x — R be given by
(4.75) (2,2 = 5 (124~ 12 P).
Now we use the notation in (4.4) and (4.10). Namely, set
(4.76)
c%X’(/ﬂBK =exp (d NXK/X‘ KNXK/XlBK’/éLw) :

Np/x B/X
NB/XlBK \/_/ KNB/X|B \/Tv—qexp (_AN /X 1B /27‘(‘) .

K’ﬁquB/X By

N .
Then CKXK/X|BK is a smooth form on the total space of NXK/X|BK, and

N :
dKng/ﬂBK is a smooth form on the total space of Ng/x|B,

Let p1 : Np,./x — Nx,/x|Bx P2 : Np,/x — Np/x|B, be the obvious
orthogonal projections.

4.9. Three intermediate results.

THEOREM 4.19. There exists C > 0 such that for any t €)0,1],T €
[0,1/1],

(4.77) BKX/ T— A 1/2
am exp( WX /27| < C (14 T))

Proof. Up to irrelevant modifications, the proof of this result is essentially
the same as the proof of [B8, Th. 3.8], which was given in [BS8, §3 h)]. O

THEOREM 4.20. For T > 0, the following identity holds:

(4.78) hm\/7/ aKt/B K Zfe p< Aﬁx\/_Vf/zﬂ)

N N
:/ e(TBK,VBK)/ pTcKXK/XIBK oy B/X‘BK
By Np,/x
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Proof. The proof is essentially the same as the proof of [B8, Th. 3.9, §3],
which was given in [BS8, §3 i)]. O

THEOREM 4.21. There exists C > 0 such that for any t €10,1] and any
T2>1,

BKX/ C

Proof. The proof of our Theorem is the same as the proof of [B8, Th. 3.10],
which was given in [B8, §3 )]. O

4.10. A proof of Theorem 4.10. Now we will study the asymptotics of
the I,g as A — +o00,Ty — +00,e — 0.

1) The term I. Clearly,

(4.80) I{’_/ {\/_/ ﬁm/ R e AKffmvf/%)}%

a) A — +oo. Clearly, as A — +o0,

+o00 B KX’ dt
(4.81) I?—>Ill—/ {\/ /5“/ = exp AKfme/Qw)}?

B Ty — +00. As in the proof of Theorem 3.17, as Ty — |00,
(4.82) -
19— 1} = (=1)nd) /+oo V2 / ﬁK exp( R%B/%r) @

1 1 t \/— n

v) € = 0. By (3.114) in Theorem 3.35, as ¢ — 0,
(4.83)

1} = 1} = (- /+°O{f /o, fexp( %B/%)}%

§) Evaluation of I5.

PROPOSITION 4.22. The following identity holds:
(4.84) B =~ ()" v (B/S, 1"B,¢"") .

Proof. This follows from (3.109), (3.118) and (4.83). O
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2) The term I9. We have the obvious identity,
T° B KX’ \V4 dT
(4.85) IS:—/ {\/ / aKA/ fexp( AT \/—Vf/27r)}—

a) A — +oo. Clearly, as A — +o0,

3

(4.86) D —o0.
3) The term 1. We have the obvious,

0_ TX dt

(4.87) 19 / V2 / 5Kt/ LS. (—REY /2r) -

a)A—>+oo. ASA—>+OO

(4.88) Iy — I3 = /+ {\/_/ ﬂKt/ exp RTX/QW)} Cit

B) Ty — +oo. As Ty — +oo, I} remains constant and equal to I3.

v) € — 0. Using again an integration along the fibre version of (3.16), we
find that as e — 0,

(4.89) Ig—>I§’—/+ {\/_/ 5}(:5/ eXp RTX/QW)}O?.

PROPOSITION 4.23. The following identity holds:
(4.90) 1§ = ~Ux (M/S, T M, g"™).

Proof. This follows from (3.109), (3.118) and (4.89). O

4) The term I3. Clearly,

(4.91) L(f—/ {\/_/ aKafB KX/V exp( AKfo/2W>}2d%.

a) A — +oo. The term I remains constant and equal to I}.

B) Ty — +oo. Using (3.43) in Theorem 3.17, we find that as Ty — +o0,
(4.92)

Ii_)lz_/-&- {\/_/ aKE/BKX/erXp< Avaf/Qﬂ)}2§T'
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v) € — 0. Set
(4.93)

S Lo [ e )
/ {\/_/ aKE/BKX/ TV_feXp<_AK7\/T—/EVf/2W)}d_,

T
Jg_/+ {\/_/ aKs/B KX/ Zv_fexp< AK,\/T_/EW/QF)}CZTT‘

Then
(4.94) 7 =J+J3+ J5.

By proceeding as in the proof of (3.14), we find that as € — 0,
(4.95) J) — 0.

Also by Theorem 4.19, there exists C' > 0 such that for € €]0,1],T € [e, 1],
(4.96)

B X1
a K ZV_f exp (—A /2T
Ke K,\/T/eVf

By Theorem 4.20 and (4.96), we find that as ¢ — 0,
(4.97)
1 ar
JO Jl :/ / TB VTBK / * NXK/X|BK *dNB/X‘BK el
27 0 Bke( K ) NBK/Xplc Pt r
Finally, by Theorems 4.20 and 4.21, as € — 0,
(4.98)

+o00 T
J;(J,) — J?} = / {/ e (TBK,VTBK) / pTCNXK/XBKp;dJJYB/XhBK} -
1 B Np,./x

y (4.94)-(4.98), we find that as ¢ — 0,
(4.99)

+oo B/X|B dT
IZ — Iz = / / e (TBK,VTBK)/ pTCNXK/X‘BszdJJY /x|Bg o
0 Bk Npg/x T

§) Evaluation of I3.

<C(e+T)"* < T2

THEOREM 4.24. The following identity holds:

(4.100) I;Z’:/B (-1 e (TBk, V'Px) 1 (N VN>
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Proof. Using the fact that the connection VV5/x|5x preserves the splitting
in (4.72), we get

(4.101) /N pTC%XK/XlBKPSd[]ZJZfX'BK
Bi /X
B
= N / exp <_AK,\/TVqNBK/XK /27‘(‘)
B /XK

B I

Np,./B / SNB,. /B / N 3N
c exp (—R 27 _Crdy .
/NBK/B K { p( K / )} N KeK T

Now one has the easy formula,
B
(4.102) /N ) / exp (= Ay rgg o /27)

_ (_1)ind(f\MK)/ Moo {/B o (_RQBK/B/%)} L

Npy /B

~

K/XK

So by (4.101)—(4.102), we obtain

*NXKXBK*NBXBK ind( f|a N ;N
(4.103) /N ppces P B _ /]v (—1ymd(/] K)C%d;gj,
By /X

Using (4.28), Theorem 4.3, (4.20), Theorem 4.8, (4.99), (4.101)—(4.103), we get
(4.100). The proof of our Theorem is completed. O

Using (4.67) and the results of Section 4.10, we get
(4.104) B+ 3413 =0in P°/P%°,

By Propositions 4.22, 4.23 and Theorem 4.24, we get the analogue of (4.32)
for Ux (M/S). By applying the operator Q on both sides, we finally get
Theorem 4.10.

4.11. Multifibrations and the invariant Vi (M/S). Let now 7’ : P — S
be another submersion with compact fibre Y, which has the same properties
as the fibration 7 : M — S. In particular, G still acts on P along the fibres Y.
To this fibration, we associate objects similar to the ones we constructed for
7:M— S. If K €g,let K¥Y € TY be the corresponding fibrewise vector field
on P.

Let p: M — P be a G-equivariant submersion with compact fibre Z, such
that
(4.105) T =7p.

In particular p induces a fibrewise submersion p : X — Y with compact fibre Z.
Observe that Pg is a smooth submanifold of P, and n’ : Pk — S is a
submersion with compact fibre Yx. Put

(4.106) MP =p~t(Pg).
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Then p : MP% — Py is a submersion with compact fibre Z. Also KX/«
€ TZ. In the sequel, on MP% we set

(4.107) K% = KXy .

In the above situation, given K € g, we can construct Vi (M/S), Vi (P/S)
€ H*" (8, R), and Vi (M7 /Pic) € H*" (P, R).

THEOREM 4.25. The following identity holds:

(4.108)
Vie (M/S) = x (Z) Vi (P/S) + /Y e (TYi) Vic (M7 /Py) in HY" (S,R).

Proof. Clearly G maps TX,TZ,TY into themselves. Let ¢’Y,¢"% be
G-invariant metrics on TY,TZ. Let TX = THX & TZ be a G-invariant
orthogonal splitting of TX. We lift the metric g”7¥ on TY to a metric gTHX
on THX. For T > 1, let g%X be the G-invariant metricon TX = THX ¢ TZ,

. g7?
(4.109) X =g X et
T
In the sequel we will use the notation ¢7X = gI‘FX .
Let TH P be a G-invariant horizontal bundle on P. Then p;! (TH P) is a

G-invariant subbundle of 7'M, which maps onto T'S. Let TH M c p;* (TH P)
be a G-invariant horizontal subbundle of T'M for the projection w. Then
THM @ THX is a horizontal bundle associated to the projection p : M — P.
Clearly G acts as the identity on THM ~ 7*TS. Let {THX)K C THX | prrx
be the obvious lift of TY. Clearly,

(4.110) T M| yew @ (THX)  TMPx,

In particular TH M | v @ (T Hx )K is a horizontal bundle associated to the
projection p : MPx — Pp.

For T > 1, let V%X be the connection on T'X which is associated to
(TH M, g%X ), and let R%}XT be the corresponding equivariant curvature.

If K € g, set

(4.111) KX = kN0 L XV RS c Py gXV e 17,

Then KXH is the lift in THX of K¥ € TY. In the sequel, we identify
TX,TZ,TY to their duals by the metrics g7, g7, g7%. Also we will consider
Berezin integrals on TX,TZ, or TY with respect to the fixed metrics g7, g7%
or g7V, With these conventions, KXH" = p* K’ In the sequel we will often

write K'Y instead of p*KY".
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Clearly, if R%X is the curvature of V%X , then
(4.112) Ry = R — 27V X KX,

Recall that we use the Berezin integration formalism with respect to the
fixed metric g% = ¢gfX. Let e1,...,e, be an orthonormal basis of TY,
let €41, - - -, e, be an orthonormal basis of TZ. With our conventions,

(4.113)

. 1 o
TX H pTX H\ i A o
RK,T == Z <€i y RK,Tej > e Nel
1<i,j<m
1 TX  \ =i o oj 1 TX  \ i o oj
+§ Z ei,RKyTej e " Ne +ﬁ Z ei,RKTej e Ne’.
m+1<i,j<n 1sism

m+1<j<n

We replace M by M* = M x R} xR, S by §* = 5 x R} x R. Over
Sx{t}x{T}, we equip TX with the metric 5% /t. Let §% be the corresponding
odd closed form on S* which is defined as in (4.59) with f = 0. One then
verifies easily the equality,

(4.114)
5t =2 / exp (<dK - %) (KXV/T+ KY) jamt — dT KXY /47rtT2>
X

/g (ﬁ, KXH

VT Vi

Let ' be the oriented contour indicated in Figure 4.2, and let A be its
interior. As in (4.65), we get

(4.115) /5; _ —d/ 5.
T A

) exp (—R?(T/%r) .
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As in (4.66), set

(4.116) = &.
I'e
By (4.115),
4
(4.117) > I} =0in P/P%0.
k=1

Now we briefly study the asymptotics of the I,g as A — +oo,
Ty — 400,e — 0.

1) The term I?. Clearly,

(4.118)
KX,VI KX’H’>

A
0o_ X,Vi Y
Iy = /E {\/QW/XGXP (dK (K /To+ K )/47rt) (47”5T0 + ypn

B (kv o ] "
+ e —RTX. /2 —.
/ (ﬁ Vi ) (AR ”>}t
As A — +oo, I? converges to Ill, where A in (4.118) is simply replaced by

+00.
As Ty — 400, one verifies easily that the G-invariant connection V%X

converges to a G-invariant connection VZX on TX, which has the following
two properties:

e The connection V:;FOX preserves T'Z. More precisely its restriction to T2
is just the connection V7# associated to the projection p : M — P, to
the horizontal bundle T# X @ TH M and to the metric g4 on TZ.

e The projection of VEOX on TH X with respect to the splitting 7X =
THX @ TZ is the pull back to T X of the connection VY associated
to (THP, gTY).

From the above, one then finds easily that for ¢ > 0, as Ty — 400,

B(Exv  oXE .
(4.119) / ( )eXP(—R?(TO/%)

Vi VR
— ex (TZ, VTZ) p* /l§ IT(/? exp (7R%Y/27T) :

By (4.118), (4.119) and dominated convergence, as Ty — +00,

(4.120) I > 12 = —x(2) / +m{\/ﬂ /Y exp (di K" /4xt)

KY' (B KY/ Ty dt
4_71't Wexp (_RK /27'(') 7
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By (3.114), as € — 0, I{ converges to I?, which is given by the right-hand
side of (4.120), where ¢ is replaced by 0. Comparing with (3.118), we get

(4.121) I} = —x(2) Uk (P/S, T P,g" ).

2) The term I3. Clearly,

o_ [T X,V Y/ KV

B ([ gXVi X H x
As A — +oo,
(4.123) D —o0.

3) The term I{. We have the obvious equality

(4.124) I??:/EA{\/%/Xﬂ%t/E%eXp (R;{X/zﬁ)}%.

As A — +oo, by (3.115), I{ converges to I3, which is obtained by making
A = 400 in (4.124). Also I3 does not depend on Ty and remains equal to I3.
Finally as ¢ — 0, by (3.114), 12 converges to I3, where in (4.124), ¢ is now
made equal to 0. Comparing with (3.118), we get

(4.125) 1§ = Ug (M/S, 7" M, ™) .

4) The term I9. We have the obvious identity

(4.126) I9 = —/ITO{\/%/X exp (dK (KXﬂV//T+Ky/> /47r5)

KX,V/
AmeT

B [?)-(,\V/ ﬁ(,\H/ i dT
— 2 —.
/ ( T + e )exp( Rir/ W)} T

As A — +oo, I remains constant and equal to I}. As Ty — oo, the argu-
ments used after (4.118) show that I} converges to IZ, which is equal to the
right-hand side of (4.126), with Ty replaced by +oo.

Clearly

(4.127) I3 :/W{\/ﬁ/x exp (dK (KX7V//T_'_KY//E> /47T)

KX’V/
47T

B [ gXVI RKXH o dT
/ (\/T + e )exp(—RKT/e/Qﬂ)}?.
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By proceeding as in the proof of (3.114), one verifies easily that given
T>0,ase — 0,

KX,V/
X,V Y/
(4.128) /X exp (dic (KXV'/T + KY'[2) /4r) T
B m/ ﬁ{/ Iy
/ ( VT Ve )eXp(‘RK,T/e/%)
TY, MFPk B Zl ST Z
— . (TYK \% /ﬁ \/_exp( Ry /27r).

By proceeding as in the proof of (3.114), we find that there exists C' > 0
such that if 0 <t < 1,7 > 1,

X,V
47t

B ﬂ,\\// T — .
\| = KXGH —REX./2
/ ( Vi TV ) eXp( wr/ W)

By (4.128), and by (4.129) which is used with ¢ replaced by T', and T replaced
by T'/e, we find that as e — 0,

(4.129) /X exp (dic (KXY + TKXM) Jant)

< OVt

KX’V/
4T

B (gXVi KX dT
/ v e ) e (CRke )
1 P
- / {\/271 e(TYK,VTYK) / BT
0 Yi z

B K7 dT
/ Wi exp ( /2%)} T

Also, we find easily that there exists C' > 0 such that for ¢t €]0,1],7 > 1,

(4.130) /1{\/%/)( exp (dK (KX,V//T + KY//&) /47r)

KX’V/
47T

5 (FXv  EXE
/ ( VT TV )exp( Binl2r)| <

(4.131) ‘/X exp (dic (KXVYT + KY'f1) far)

<<
T
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By (4.128), (4.131), as & — 0,

(4.132) /;roo{\/%/x exp (dK (KXvV’/T + KY’/E) /471-)

B [ gXVI  KXH , dT
/ ( + ) exp (—Rﬂfgp/g/%r) }?

KX’V/
47T

VT Ve
“+o0 P §
—>/ {\/ﬂ e(TYK,VTYK)/ ﬁ%TK/
1 Y Z
K2 dT

STZ
— — 2m) p —.
\/_exp< Ry / )} T
Using (3.118), (4.127), (4.130), (4.132), as ¢ — 0,

(4.133) I3 — I} = /

e (TYK, VTYK) Uk (MPK /Py, THMPx g7 ) .

By (4.117), and by the above results, we get
(4.134) I+ I3+ =0in PS/P50,

By (4.121), (4.123), (4.133), (4.134), we get the analogue of (4.108) from
Uk (M/S). By applying the operator Q on both sides, we finally get The-
orem 4.25. O

We make the same assumptions as in Section 3.7. Suppose that G acts
freely on M. Then 7' : M/G — S is a submersion with compact fibre X/G.

PROPOSITION 4.26.

(4.135) Vi (M/S) = /X o€ (TX/G) Vi (M/(M[G)) in H (S,R).

Proof. We will use Theorem 4.25, with P = M/G. Since G acts trivially
on M/G,
(4.136) Vi (M/G)/S) =0.

One can instead observe that x (G) = 0, so that using (4.108), we get (4.135).
O

4.12. V-invariants and symplectic cuts. We make the same assumptions
as in Section 4.5, with G = S*, so that g = R. Then the moment map p takes
its value in R. Also, since there is no risk of confusion, 7'X will denote the
ordinary real tangent bundle on X. Other tangent bundles will be denoted in
the same way.

As observed in Section 4.5, if K € R*, p is a Morse-Bott function on X
whose critical set B is just X, which is even-dimensional.
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Assume that 0 is a regular value of y, and put Xo = x~! {0}. In the sequel
we write Vi (Xo) instead of Vi (Xo/pt). Put Xg o = Xx N p~t(]0, +oo[).
By (4.40), we get

(4.137) Vic (Xo) = 2//X e (TXk) T (NXK/X).

Clearly S' acts locally freely on Xj. Assume that this action is free. By
combining (4.135) and (4.137), we get
(4.138)

e (TXo/S") Vi (Xo/(Xo0/S")) =2
Jo . ¢ (T%0/8") Vi (Xo/ (X078
Degree considerations show that (4.138) is equivalent to

(4.139) Vi (S') x (Xo/8") =2

e (TXx) Tk (NXK/X) :

Xr,>0

e (TXk) Tk (NXK/X) .

XrK,>0

We claim that (4.138) follows directly from the arguments of Section 4.5.
In fact, using a symplectic cut argument, we can compactify the open symplec-
tic manifold X< into a compact symplectic manifold Y, equipped an action
of S' and a moment map s, whose restriction to X~ coincides with the given
ones. The fibre Y, o = p;' {0} is fixed by S! and coincides with X/S'. The
normal bundle Ny, | /y, is the two-dimensional vector bundle associated to the
circle bundle X — Xo/S*.

By Theorem 4.13,

(4.140) /X o (TXO/Sl) Vi (Xo/(Xo/S1)>

=-2 , e (TYy) Ik (NYO/Y,R) :

Using (4.50) and (4.140), and taking into account that 0 is the minimum of
pi4 on Yy, so that Ny, v =Ny -, we recover (4.138).

5. A comparison formula for the equivariant torsions

In this section, which contains the main result of this paper, we give a for-
mula comparing the equivariant classical and infinitesimal equivariant analytic
torsions in de Rham theory. This formula is an analogue of a corresponding
formula in [BGol, Th. 5.1] for the holomorphic torsions. Also we show that our
formula is compatible to our previous results in [BGo2], and also with results
of Bunke [Bul, Bu2].

This section is organized as follows. In 5.1, we state our main result.
In 5.2, we recall the definition in [BGo2] of the genus J (0, z), and relate this
genus to the function J? (x). In Section 5.3, we show the compatibility of our
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main result with the results of [BZ2] and [BGo2], in relation with invariant
Morse functions. In 5.4, we consider the case of Morse-Bott functions. Then
we show that our results refine results of Bunke [Bul, 2|. Finally in Section 5.5,
we state without proof the obvious extension of our comparison formula to the
case of analytic torsion forms, our main result being the degree 0 part of this
more general equality.

In this section, we make the same assumptions and we use the same nota-
tion as in Sections 2.2, 2.3, 2.6, and 2.8. In particular we assume that equation
(2.21) holds.

5.1. The main result. For convenience, we state again the main result of
this paper, already given in Theorem 0.1. Here we take g € G, Ky € 3(g). If
z € R*, we take K = zKj. Note that by (1.24), (2.119), (2.121), for |z| small
enough,

G1) g (H gy wo)

| ||,\G(F) (ge™)

= Tang (97 V7, 0") = Tonger o (67,97, 9") .

THEOREM 5.1. For z € R*, if |z| is small enough, the following identity
holds:

(5.2)
Zh,g,K (QTX) VF? 9F> - Zh,geK,O (gTXa VF’ gF>

- /X exc (TXg, V%) Fie (TXg, 9" ) e (97, 67) + e 9] Vic (X,)

Remark 5.2. Using (3.38), one verifies easily that Theorem 5.1 is compat-
ible with the anomaly formulas of Theorems 1.9 and 2.19. Also observe that
the first term in the right-hand side of (5.2) vanishes on the odd-dimensional
components of X,, and that the second term vanishes on the even-dimensional
components of X,.

5.2. The genus J (0, x).

Definition 5.3. For y € R, s € C,Re(s) > 1, set

400 400 -
(5.3) ((y,8) =Y = (:%y)’ n(y,s) = Smn(%y)
n=1 n=1

n
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Then ((y, s) and n(y, s) are the real and imaginary parts of the Lerch series
L(y,s) = >0 enny introduced in [Le]. If y ¢ 27Z, s — ((y, s) extends to a
holomorphic function on C, if y € 27Z, s — ((y, s) extends to a meromorphic
function on C with a simple pole at s = 1. Also s — 7(y, s) extends to a

holomorphic function on C. Moreover

(5.4) €(0,8) = ¢(s), n(0,s) = 0.

Definition 5.4. For § € R*, © € C, |z| < [2n] if § € 27Z, |z| <
infrez |0 + 2kn| if 0 ¢ 27Z, put

1 ¢
(5.5) J(0,2) = 3 Z%( -p —+ ZN p,

By [BGo2, Ths. 4.29, 4.30 and 4.35], the series in (5.5) converges.
Recall that the function J? () was defined in Definition 4.5. In the sequel,

S (A (@) - T ()
keZ

denotes a sum over k € Z, with the convention that if 2km + 0 or if 2k=w
vanish, then J2*™+9 (z) or J2¥7 (0) is replaced by 0. The following results were
established in [BGo2, Ths. 4.35 and 4.38].

THEOREM 5.5. The following identity holds:

(5.6) J(0,2) = <J2’”+9 — J*7(0)).
keZ

If0 e R\ 27Z,0' e R,z € C, if |¢/|,|z| are small enough,

(5.7) J(O+6,z)=J(0,z+i0).

Also for 0 €] — 27, 2n[\{0}, for x € C,|z| < infyez |0’ + 2kn|, then
(5.8) J(0,z) =T (0,2 +i0)+J" (2).

Put
(5.9) 0J(0,2) = J(6,2) — J(0,0).

Take g € G. Let V be a manifold. We assume that Z (g) acts on V', and
that V is fixed by g.

Let E = E4 @ E_ be a real Zs-graded vector bundle on V, which is
equipped with a Euclidean metric g% = ¢+ @ ¢g¥-, and a unitary connection
VP = VP @ VE-. Let RF = RF+ @ RP- be the curvature of V¥,
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We assume that g € G acts on F as an even unitary parallel automorphism
of E. We also assume that the action of Z (g) on V lifts to an even unitary
action on F, which commutes with g, and preserves the connection V¥. If
K € 3(g), let m¥ (K) € End®® (E) be the vertical component of the ac-
tion of K with respect to VZ. Then m” (K) is an antisymmetric section of
End®*" (E), which commutes with g. Since V¥ is Z (g)-invariant, as in (2.7),
we get

(5.10) VEmE (K) +ixvRE = 0.
As in (2.31), (3.3), the equivariant curvature RY is given by
(5.11) RE = R — 27mP (K).

If —1 is not an eigenvalue of g, there is B € End®**" (E), which is anti-
symmetric, parallel, which commutes with m? (K) and is such that

(5.12) glg = €P.
Suppose that the action of g on E is given by —1. In this case, we write
(5.13) g=¢e".

By the above, we can always write ¢g|g in the form (5.12), with B € End®"" (E)
®Rr C, which commutes with m® (K).
Put

(5.14) “Jyxc (B, VF) = Tus [°F (=iB, R /27)] .
By [BeV], [BeGeV, Th. 7.7,

(5.15) diJy (B, V7) = 0.

Let Jy i (E) be the equivariant cohomology class of Jy x (E, VE) on V.

If K =0, we will write instead OJg (E), which is an ordinary cohomology class
onV.

5.3. Equivariant infinitesimal Ray-Singer metrics and Morse functions.
We make the same assumptions as in Section 2. In particular ¢, g*" denote
G-invariant metrics on TX, F.

Let f : X — R be a G-invariant Morse function. Let A% be a G-invariant
metric on TX, and let Vf be the gradient field on f with respect to h7X. We
will assume that Y = —V f is a Morse-Smale vector field [Sm1, 2]; i.e., the
stable and unstable cells for Y intersect transversally. Let B be the critical
set of f, i.e. the finite set of zeroes of Y. Then G acts on B. In particular, if
K € g, KX vanishes on B.
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If z € B, let 0¥ be the orientation line of TW}'. Let (C" (W*", F'),0) be the
Thom-Smale complex with coefficients in F', which is associated to the vector
field Y. Then

(5.16) CW“F)=@P FRed, C W F)= @ Foo

zeB z€B
ind(f)(z)=i

A detailed description of the chain map 0 is given in [BZ1, §1 c)] and [BGo2,
Ch. 5.1]. Let us just mention here that, if x € B, 0 maps F, ® o¥ into the
direct sum of Fy ® oy, with  connected to y along integral curves of —Y, so
that f (y) > f (x). The main point is that there is a canonical isomorphism,

(5.17) H (C'(W", F),d) ~ H'(X, F).

Clearly G acts naturally on (C* (W*", F'),0) and on H' (X, F'). Then (5.17)
is an isomorphism of Z-graded G vector spaces. By (2.21), the connected
component of the identity Go C G acts trivially on C* (W*", F'). Using (5.17),
this last result fits with the fact that, as we saw in Section 2, G acts trivially
on H' (X, F). Since G is compact, G/G) is a finite group.

Then G/Gy acts on (C"(W*, F),0) and on H (X, F) and (5.17) is an
isomorphism of Z-graded G /Gy vector spaces.

Let CT/EO be the set of equivalence classes of irreducible representations
of G/Gy. f w € G//Eo, let x, be the character of G/Gy associated to w. As
in (1.19), if w € CT/EJ, set

(5.18) Ay (C" (W™, F)) = det (HomG/GO (w,C" (W",F)) ® w) .

Put

(5.19) Aaja, (C (W F)) = @ Ao (C (W, F)) .

wEGf/—(To

Let | |5, (c-(w,ry) be the metric induced by g"'|B on Ay, (C" (W, F)).

Definition 5.6. Set

(5.20) 1og(y yAg/GO(C_(Wu,F))) - ZAlog(l ’)\W(C’(W“,F))) ;f{—q;
weG/Go

Similarly, we can define A\, (H (X, F')), Aq/q, (H (X, F)) as in (5.18)—(5.20).
By [KnMu], we have canonical isomorphisms,
(5.21)

Mo (H' (X, F)) = M (C (W F)) s Agga, (H (X, F)) = Agjq, (C (W', F)).

Recall that A\g (F') was defined in (1.20). Note that in general, the sum in
the right-hand side of (1.20) contains an infinite number of terms. However,
if W € G does not appear in H (X, F), the corresponding Hermitian line
Aw (F') is canonically trivial. Since G/Gy is a finite group, the analogue of
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(5.19) for A\g/q, (H' (X, F)) contains only a finite number of terms. Since
the representation of G on H (X, F') factors through G/Gg, up to irrelevant
canonically trivial terms,

(5.22) Aa (F) =~ Agja, (H (X, F)).

Definition 5.7. Let log (H HYC{(F)) be obtained from log (| |/\G/GO(C.(WM’F))>

via the canonical isomorphisms (5.21) and (5.22).

Observe that TX|p splits naturally as
(5.23) TX|p=TX*|p®TX"B.

In (5.23), TX®|p, TX"|p are the tangent spaces to the stable (ascending) and
unstable (descending) cells. In the sequel TX|p is considered as a Zs-graded
vector bundle.

Let B, = BN X,. If g € G, g preserves the splitting in (5.23). Now we
state a result directly related to in [BGo2, Th. 7.4]. This result was established
by Lott-Rothenberg in [LoRo] for K = 0, when g is flat, and in [BZ2, Th. 0.2]
in the case where K = 0 and g% is arbitrary.

THEOREM 5.8. For K € 3(g) and | K| small enough, the following identity
holds:

(5.24)

| sy en (9 K)
log | —e D = [ e (VF.g7) v (Vflx, T, 970)
11X ) (@) X,

O (I TR ()0, i (1)
TEB,

Proof. In [BGo2, §7], a proof of our theorem is given in a families setting,
i.e. in a more general context than in Section 2.5. To establish (5.24), which
is an equality of complex numbers, one can either adapt the methods of the
proof given in [BGo2], or observe from the results there that (5.24) holds as
an equality of power series in the variable z, when replacing K by zKj. Using
analyticity in the variable z, we get (5.24) in full generality. Details are left to
the reader. O

Remark 5.9. Observe that in the right-hand side of (5.24), only the com-
ponent of degree 0 of OngK (T, X) appears, so that, with the notation in (5.14),

(5.25) “Jgic (T.X) = Ty [0 (=iB,m” (K))|.
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Now we will explain the compatibility of Theorems 5.1 and 5.8. For
z € R*, K = zKj and |z| small enough, X .« = X, . Also since the critical
points of f are isolated, B C X, so that B; = Bg.x. Note that by (2.21),
(2.74), (2.124), we have the equality of forms on X g,
(5.26) ch® (VF g ) = ch (vF g ) :

geX
By (2.122), Theorem 5.8 and (5.26), for |z| small enough,
(5.27)

I g (. (9 K)
log G > _ _/ ch® VF,gF w vf ngX ,vTXg
( I H)\G(F) (gef) X, g( ) K( |x g )

+ o chy (VF’gF) Y (Vf‘Xg,K,TngK, VTX_Q,K)

+ Z (_l)ind(f)(ai) Ter®0; [g] (OJg,K (TIX) 0 4K 0 (TIX>) )
TEB,

By (4.24) and (5.7)—(5.9),

(5:28) Y (-~ DO o] (O, g (1,X) = Oger o (TX) )
TEB,

- (—1)ndD@) T Fago [g] 7,0 (NXQ,K/XQ>-
T€EB,

We claim that (5.27) and (5.28) are equivalent to (5.2) in Theorem 5.1.
Recall that by (2.76),
(5.29) dicehy (V7 7) = 0.

e Using Theorems 3.15 and 3.21 and (5.29), we find that the first terms
in the right-hand sides of (5.2) and (5.27) coincide. This is clear for
the connected components of X, which are even-dimensional. In this
case, the corresponding X, i is also even-dimensional, the currents

Vi (Vf1x, TXy, VT ) and 0 (Vf|x, o, TXg 1, VX0 ) are odd, and
so they anticommute with ch; (VF N ) If the considered connected
component of X is odd dimensional, the contribution of this component
to the first term in the right-hand side of (5.2) vanishes. Again, by The-

orems 3.15 and 3.21, this is also the case for the corresponding terms in
the right-hand side of (5.27).

e By Theorem 4.10,

(5.30) Vic (X,) = — Z (_1)ind(f|Xg)(fB) Tre (NXQ,K/Xg) .
T€B,



EQUIVARIANT DE RAHM TORSIONS 137

Also if z € By,
(5.31) Tro [g] = det T=X" [g].

Using (5.31), one deduces easily that if v € By,
(5‘32) (_1)ind(f)(m) Ty [g] _ (_1)ind(f|xg)(m) ‘

By (5.28)-(5.32), we find that the last terms in the right-hand sides of (5.2)
and (5.27) also correspond.

We have then proved the compatibility of Theorem 5.1 to the results of
[BZ2] and [BGo2].

5.4. FEquivariant torsions and Morse-Bott functions. Let f : X — R be
a G-invariant Morse-Bott function. Let B be the critical set of f. Then B is a
union of disjoint connected compact submanifolds of X, and GG acts on B. Let
Np/x be the normal bundle to B in X. We identify Np,x to the orthogonal
vector bundle to TB in TX|p. Let ¢g'B, g™V5/x be the metrics on T'B, Np/x
induced by ¢’* on TB, Ng /x- Then G acts on TX,TB, Ng,x and preserves
the corresponding metrics.

If x € B, then d?f (z) is a nondegenerate quadratic form on Np/x - The
vector bundle Np,x splits orthogonally as

In (5.33), NE x» N, x are the direct sums of the eigenbundles of d?f which
are associated to positive and negative eigenvalues with respect to the metric
gNe/x . Since f is G-invariant, the splitting (5.33) of Np/x is also G-invariant.

Let o (NE/X) be the orientation bundle of NE/X. Then o (NE/X) is a

Zs-line bundle. In the sequel we will consider o (NE / X) as a complex Hermi-

tian flat line bundle. In particular F|g ® o (Ng, / X) is a complex vector bundle

F|B®0(N;/X)

on B, equipped with a Hermitian metric g and a flat connection

VF|B®0(N§/X).

Clearly, f is locally constant on B. Let By,...,B; be the connected
components of B. A trivial perturbation argument shows that we may assume
that f takes the value p on B,,.

For p € N, set
(5.34) Up=f"tp—1/2,+o0l.

Then the U, define a decreasing filtration on the complex (Q (X,F),d¥ ), SO
that FPQ (X, F) is the set of s € ' (X, F)) whose support is included in U,,.
Let (E,,d,),r > 0, be the corresponding spectral sequence. Using Morse-Bott
theory, one finds easily that

(5.35) EP? = Hrta=md0 (B, Flp, @0 (Ng v )) -
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In particular, for r > 1, the (E,, d,) are finite-dimensional Z-graded complexes.
In (5.35), E; is Z-graded by p + gq. Moreover,

(5.36) Es ~GrH (X, F).

Clearly G acts on the spectral sequence (E,, d,),r > 0. Using the argument we
gave after (2.23), and also (5.35), we find that Go, the connected component
of the identity in G, acts trivially on the (E,,d,),r > 1.

Now, we proceed as in Sections 1.3 and 5.3. For r > 1, we define the
direct sums of lines Ag /¢, (Er) as in (5.19). By the obvious analogue of (5.21),
for » > 1, we have the canonical isomorphism,

(5.37) Ac/a, (Br) = Ag/a, (Erq1) -

Also classically, we have the canonical isomorphism,

(5.38) Acja, (H (X, F)) ~ Ag/q, (Gr H (X, F)).

By (5.36)-(5.38), we conclude there is a canonical isomorphism,

(5.39) Aca, (B1) = Ag/c, (H (X, F)).
Moreover, by (5.35),

q (71)ind(f)

(5.40) Ag/go (El) = ®/\G/GO (H (prF|B ®o (NE/X)>)
p=1

Recall that gf?- XF) denotes the Ly metric on H (X, F) which was de-

fined in Section 1.3. This metric is associated to the metrics g7x, g%, Let

H'(B,F|p&0(NE _ . o
ng( l@o(N x)) be the Ly metric on H (B,F\B ® o (NE/XD which is as-

sociated to the metrics g7 B, gFlB@O(Ng/X). Let g% be the corresponding metric

on F) via the canonical isomorphism in (5.35). Note that the E"? are mutually
orthogonal with respect to g.

Since FEj is the cohomology of the complex (FE1,d;), by identifying Es to
the harmonic elements in E;, Fy inherits a metric g®>. By recursion, the E,
inherit metrics g“r. Let | | Xejay (E,) De the corresponding metric on Ac/c, (Ey).

Let d’ be the adjoint of d, with respect to g©. Set
(5.41) D, =d, +d;.

As in Section 1.3, D? acts as an invertible operator on the vector space E}H

C E, orthogonal to E, 11 ~ ker D, in E,.. Let (D?)_1 denote the corresponding
inverse. Let NN, be the operator defining the Z-grading of E,. If g € G/Gy, as
in (1.23), set

(5.42) 0y (B (5) = ~Tre [ Nog (D2)
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PROPOSITION 5.10. For g € G, the following identity holds:

| ey (B 10
4 log [ ——2——= Yy (E :
(5.43) og<|| =3 5 0y () (0)
AG/GO(EOO) r>1
Proof. By [BGS, Prop. 1.5], for r > 1, we get
‘ ‘)\ (Er) 10
5.44 log | —=% __~ | = - 9,(E,) (0),
( ) g<| ’)\G/GO (ET+1) 2 0s 9( )( )
from which our proposition follows. O

We take g € G, Ky € 3(g) and K = zKj, with z € R*. If g € G, we still
denote by g its image in G/Go. Clearly, f|x, is a Morse-Bott function on X,.

We define 1 (v flx,, TGy, VT Xs) as in Definition 3.19. When K = 0, this

current will be denoted ¥ (V f|x,, TG, VT¥0)
In the sequel, we make the assumption that if g € G,z € By, then g acts
as the identity on Np X Equivalently, we assume that for any g € G,z € By,

(5.45) Nx,/xa N Npjxz C Np/x o

Observe that we did not make this assumption in Section 5.3.

Finally note that, in the sequel, TX,TB and Np,x will be considered
as ordinary vector bundles, i.e. as even vector bundles. In other words, any
possible Zs-grading will be forgotten.

Now we establish a result, which refines results of Bunke [Bul, 2].

THEOREM 5.11. For z € R, with |z| small enough,
(5.46) Tangu (47, V".g")
_ (_1)ind(f) Teng i (gTB, VF\;;@O(NE/X)7gF|B®O(N§/X))
(I
| xeyeo(BY)

[ 5 5 o (51 7, 57

+/ md TI‘FIB@O( B/x) [g] ex (TBg)OJ%K (NB/X> .
FEquivalently, for z € R with |z| small enough,
(5.47) Tong i (gTX ,VE g" )
. (_Uind(f) ,Tch,g,K (gTB’ VF|B®O(N§/X)’gF‘B®O(N§/X)>

+log (' |AG/G°(H'(X’F))> (9)
| D)oy (B1)
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_ o(gF F TX,
- /chhg (V0" v (Y flx, TX,, VIX)
+ /X TeF [g) exc (TX,) T, (TX)

- /B (_1)1nd(f) TrF‘B@O(NE/X) [g] ex (TBg) OJg,K (TB) .

g

Proof. First we will prove (5.46) with z = 0. Note that in the right-
hand side of (5.46) , since the degree of 1 (Vf|Xg,TXg,VTXa) is equal to

dim X; — 1, we may as well replace chy (VF,gF) by Trc[w (VF,gF) /2} By
using the anomaly formulas in Theorems 1.9 and 2.19, and also the equation of
currents (3.34), one verifies easily that given g € G, we only need to establish
(5.46) with z = 0 for one given set of g-invariant metrics g7, g%".

Assume that g € G is of finite order. Let I' C G be the finite group
generated by g. By use of a result of Ilman [I] as in [BZ2, Th. 1.10], there is a
I-invariant Morse function f’: B — R such that if B’ C B is the finite set of
critical points of f', if x € By, g acts as the identity on T}/ B’.

Using geodesic coordinates, for € > 0 small enough, we can identify an e-
neighbourhood of B in Np,x to a tubular neighbourhood U. of B in X, and this
G-equivariantly. Let 7 be the obvious projection U. — B. Let v : R — [0, 1]
be such that

(5.48) v(s)=11if |s| <e/4,
=0if |s|] >¢e/2.

Then the function Z € Ng,x — 7 (|Z]) can be considered as a smooth function
on X with support in U /. For A € RY, put

(5.49) I=Ff+M(2]) f o

One verifies easily that for |\| small enough, f) is a T-invariant Morse function
on M, whose critical set coincides with B’. We fix such a A, and set f = f.
By using an obvious notation, if x € B’, we have

If x € B, let o be the orientation line of T, X™.

The restriction to B of the 1-form df vanishes on Ny /x- It follows from
our assumptions that if ¢’ € I',z € By, then ¢’ acts as the identity on T;'X.

By [BZ2, Th. 1.10], there exists a [-invariant metric ¢’/ ® on T'B, which
coincides with g7® near B’, which is such that Y’ = —V f’| € TB verifies the
Smale transversality conditions. We extend the metric ¢’’? to a I'-invariant
metric ¢’7X on T X, such that Ng /x is still orthogonal to T'B, and the restric-
tion of ¢'7¥ to Np/x coincides with gNe/x . In particular the splitting (5.33)
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of Np,x is still orthogonal with respect to g'TX. Let Vf be the gradient of f
with respect to ¢’7X. Put
(5.51) Y =-Vf.

It follows from the above that Y|g =Y’, so that Y|z € TB. Also one verifies
that it is possible to choose ¢’7X so that Y f is negative on X \ B.

Take p € N, and let ,2’ € B,. We claim that the stable and unstable
cells for Y in X which are centered at x and z’ intersect transversally. This
is so because since f is constant on B, and since Y f < 0 on X \ B, the
intersection can only occur on B. Since the corresponding stable and unstable
cells for Y’ are transverse in B, we have established our claim.

By proceeding as in [Mi, Ths. 4.4 and 5.2] and in [BZ2, Lemma 1.7 and
Th. 1.8], we can modify the metric ¢’ X away from B so that Y itself verifies
the Smale transversality conditions. To establish (5.46) with z = 0, we may as
well replace the G-invariant metric g% by the I'-invariant metric g’7X.

Let (C" (W", F),0) be the Thom-Smale complex associated to the vector
field Y as in Section 5.3. Then I acts naturally on (C" (W™, F'),d). As we saw
in Section 5.3, the chain map d maps F; ® oy into a direct sum of Fy ® oy,
where x connects to y by an integral curve of —Y. Since Y f < 0, it follows
that f (y) > f ().

Put
(5.52) FPC (W™, F)= P F.®o0d.

zeB’
flx)zp—1/2

It follows from the above considerations that F'is a filtration on (C" (W' F') , 9).
Let (E/,d.) be the corresponding spectral sequence.

T

Recall that Y|p € TB. Then (E{,d}) is just the Thom-Smale complex
(¢ (W™, Fls®0(Ng/x)).0)
of the connected components of B, which is associated to the gradient field Y,

so that
(5.53) B = et D (W, Flp, ® 0 (Nj x)) -

By (5.35) and (5.53), we get

Recall that by a result of Laudenbach [BZ1, Appendix], if near B’ the
metric ¢’7X is flat in coordinates where f can be written quadratically, there is
a canonical quasi-isomorphism P, from (Q (X,F),d* ) into (C" (W' F),0).
The map Py is a map of Z-graded filtered complexes. By (5.54), a classical
result of homological algebra [CaE, Ch. XIII, Th. 3.2] shows that (5.54) extends
to a canonical isomorphism,

(5.55) E, ~ E/ forr > 1.
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We can always perturb the metric ¢’ % in a small way so that the above
assumption holds. Since the complex (C*(W",F),0) is unchanged, (5.55)
holds for any g € G.

We define Ar (F) = Ar (H' (X, F)) as in (1.20). Also Ar (E1) can be de-
fined as in (5.40). We will now apply [BZ2, Th. 0.2] to the manifolds X and B.
This is just Theorem 5.8 with K = 0. Observe that in (5.24), TX|p is consid-
ered as a Zo-graded vector bundle, the Zs-grading being defined as in (5.23).
However, observe that by (5.9),

(5.56) 97(0,0) = 0.

Moreover, by our fundamental assumption, if x € B;, then T, X" is fixed by g.
Therefore,

(5.57) 0, (T*X) = 0.

Equivalently, to evaluate °J,(7,X), we may as well forget about the
Zs-grading of T, X; i.e., we can consider T, X as trivially Zs-graded. The
same considerations apply to T, B.

Thus, by using (5.24), we obtain

(5.58) log : :Ar (g):_/Xg chg (V7 g") ¢ (V|x, TX,, V75

+ D0 (F)PDE TS [g) 0 (T, X)
z€B,

o (H ngf(/El)) (9) = _/B (-1 )md( ) Ty0 o(NE/x) lg] ch; (VF,gF)

A :

¢ (VF15, TBy, VT8 ) + 37 (—1) )@ 0k (610 (T, B).
zEB)

By (5.39), we have a canonical isomorphism,

We claim that under this isomorphism,

V
(5.60) | HAF = HAF B)

Note that equation (5.60) is a result on finite-dimensional filtered complexes.
A proof of (5.59) was given in [BL, §2] in a more difficult context. The proof
given in [BL] refers to complex manifolds, but can be used as such by taking
the manifold X in [BL] to be a point.
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From (1.24), (1.43), (2.119) and (5.58), one deduces easily that, by still
considering Np,x as trivially Zs-graded,

(5.61)
Teng0 (ngijng) _ (_1)ind(f) Tong0 (QTB7VF\B®0(N;;/X)’gF|B®o(Ng,/X))

gL

| e
_ 7/ ch? (VF,gF) (VﬂXg»TXg’vTX‘q)

N / 1) 10N x) [g] chg (Vg7 ) 0 (V'] T By, V5

b3 ()T T [0, (N ).

z€B,

The following identities, which are valid respectively on B; and By, are the
obvious analogues of (5.32),

(5.62) (— 1)md( ) yo(T=B*) [g] = (_1)ind(f/|Bg) ’
(_1)ind(f) TI‘O( B/X) [g] _ (_1)ind(f|xg) .

Now, by proceeding as in [B8, proof of Theorem 3.2], and using (5.62), we get
(5.63) - / e (V7 gF) o (VFlx, . TXp, V%)
+ [, OOl gl (V5. ) 0 (Vs T8, V1)
=— | ch2(VE, ¢") o (Velx,, TX,, VX,
[ 0577 (517, 57%)
Using (5.62) again, we find that

(5.60) Y (~)MD@ T 10 (N v L)
T€B)

_ Z (_1)ind(f/|Bg)(m) (_1)ind(f) TI'Fm@O(NE/X,z) [g] OJg (NB/X,ac> )
zEB

By (5.64), we obtain
(565) Z (_1)ind (f)(x) Ter®O;L [g] OJg (NB/X,:L‘)

T€B)

_ /B (_l)ind(f) TI.F|B®0(N}§/X) [g] e (TBQ)OJQ (NB/X) )

g9
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By (5.61)—(5.65), we get (5.46) when ¢ is of finite order. More generally,
let ¢ € G, and let G’ C G be the closed Lie subgroup generated by g. Then
G’ keeps X, fixed. Also G’ is an extension of a torus by a finite group. In
particular, elements of finite order are dense in G’. If ¢’ € G’ of finite order is
close enough to g in G, its fixed point set X, coincides with X,;. Now (5.46)
holds for ¢’. Also one verifies easily that since X, = X, as ¢’ — g, both sides
of (5.46) converge to the corresponding expression with ¢’ = g. Therefore we
have established (5.46) for all g € G when z = 0.

Now we will prove (5.46) for z € R, with |z| small enough. By (5.46), we
may as well assume that z € R*. If |2| is small enough, then Xg.x = X, g =
Xy r, Let i : Xy g — X, be the obvious embedding. Using Theorem 5.1,
(5.46) applied to get, and also (5.26), we get

(5.66)
Ten,g,K (QTX, v, QF)

_ (_1)ind(f) Tehg K (gTB’ VF‘B®0(NE/X)7gF|B®0(N§/X)>

H)\GG H (X,F
—i—log( ERURE SR

| Irejaq (B

== [ 5 (V70" (Vo T X, V%)
n /X exc (TXy, V') Fic (TX,, g™ ) b (V7 g)
B /Bg (—1)ind(f) (Vi x) lg] exc (TBQ7VTBQ> Fre (TBg,ng) ch (vF’gF)
+ T [g] Vic (3,) = (—1) ™D T ooVl (g vie (B,)

+ / (_1)1nd(f) TrF‘B®O(N}§/X) [g] e (TBg,K) OJgeK (NB/X> )
BgyK

Using Theorems 3.15, 3.21, (5.29) and (5.62) and proceeding as in Remark
5.9, we obtain

(5.67)
—/X e (VF.07) 0 (Ve T e, V7%
+ /X exc (TXy, V') Fic (TX,, g™0) b (V7 g)
— [ (O Ve g e (TB,, VT5) Fic (TB,,9™) cb (V7. ")

g

) o (70,57
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Let N be the subbundle of N B,/X,|B,~ Where K acts as an invertible
operator. Using our main assumptlon we ﬁnd using the notation in (4.30),
with respect to X, that N = N*; ie., N is trivially Zo-graded. By applying
Theorem 4.10 to X, and using (5.62), we get

(5.68)  TF [g] Vi (X,) — (=1)0 TeFleee(Ni ) (g1 vie (By)
=~ [ (O TN g e (TB, i) i (V).
BgK

Using (5.7) and (5.8) in Theorem 5.5, on By i, we obtain

(5.69) OJger (N ) = Tic (N) =g i (N ) -
By (5.66)—(5.69), we see that

(570) %h,g,K (.gTXa vF’gF)

— (—1)MD T g g (T8, TN ), gFle@e(NE )

’ ‘)\G G H X,F

| |)\G/G0(E1)

_ _/ ch? (VF,QF) VK (Vf|X TX,, VT )

+/ 1nd 1y Flp®o(Np, ) 9] e(TBgJ()OJg,K (NB/X) .

Finally, by using the localization formulas in equivariant cohomology of [BeV],
we get

(5.71) /B (1) TPV %) [g) e (TBy 1)° g i (N )
= / md TI‘FlB@O( B/X) [g] CK (TBg) OJgJ( (NB/X) .

By (5.70) and (5.71), we get (5.46).
Also observe that

(5.72) “Joi (Npjx ) =y (TX|5) = “Jy i (TB).

Finally, using (3.46) and (5.62), we get

(5.73) /B (— 1)) Ty Fle®o(Ne x) (0] e (TB,) O, i (TX)

g

/ TeF [g] ex (TX,) i (TX).

By (5.46), (5.72), (5.73), we get (5.47). The proof of our theorem is completed.
O
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Remark 5.12. Inspection of the proof shows that in (5.46), the vector
bundle Np,x could be treated as well as a Zy-graded vector bundle. The fact
is that here, Np /X does not contribute to the integral in the right-hand side
in (5.46).

Observe that a special case of (5.46) in Theorem 5.11 was already estab-
lished in infinitesimal form in [BGo2, Th. 16.3], in the context of unit sphere
bundles.

If one subtracts (5.46) from (5.46) at K =0, we get an identity in which

the term
| ‘AG el H (X,F
10g< /o( (X, )) (g)
| |)‘G/G0(E1)

has disappeared. One can give a direct proof of such an identity, which is valid
if f is an arbitrary Morse-Bott function, which does not necessarily verify
the assumptions given after (5.33). To prove this more general statement,
one needs to combine the techniques of [BL] with the techniques of [BZ1, 2],
[BGo2]. Needless to say, for this more general case, Ng /x has to be treated as
a Zo-graded vector bundle.

If n (K) is a function 3 (g) — C, put

(5.74) n(K)* = n(K)—n(0).

Let us now suppose the assumptions of Theorem 5.11 to be in force, i.e. that
(5.45) holds. Assume temporarily that g is flat. By (5.47), we get

(>0)
(5.75) [Tch,g,K (QTX»VF,QF) - /X T [g] exc (TXg) Ty i (TXg)]
_ [(_1)md(f) Tobg i (gTB’ vF|B®o(N§/X) : gF|B®o(Ng/X))

(>0)
. /B (71)1nd(f) TrF|B®0(N}§/X) [g] ex (TBg) OJg,K (TBg)] )

g

Now in [Bu2], Bunke considers the case where X is odd-dimensional and
oriented. Assume that X is a G-space of the G-homotopy type of a G — CW

complex in the sense of Liick [Lii]. In [Bu2|, the author proves that if g = 1,

>0
the germ of the analytic K € g — Ten 1,1 (gTX, VF, gF)( ) can be expressed

as the sum of universal contributions of strata G/H defining the G — CW
structure, independently of the way the strata are embedded in X. Note that
the G/H should be thought of as being the critical manifold of a G-invariant
Morse-Bott function verifying the assumptions of Theorem 5.11. Also, in [Bu2],
Bunke does not use the ch normalization of infinitesimal torsion, but instead
Lott’s normalization [Lo].
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Equation (5.75), which is valid in full generality, explains Bunke’s result
in [Bu2]. Indeed if X is odd-dimensional, the integral in the left-hand side
of (5.75) vanishes identically. As to the right-hand side, it is a sum of terms
correcting the infinitesimal torsion of the strata by the integrals

(>0)

l/B (~1)=) TeF 1o @o(N5 ) l9) exc (TBy) °Jy,i (TBy)

In [Bu2, Remark, p. 401], Bunke observes that his main result is not valid
in even dimensions. Equation (5.75) again explains why this is so, since the
integral in the left-hand side of (5.75) no longer vanishes. Equation (5.75) was
used in [BGo2, Ch. 16] to evaluate the torsion of odd-dimensional unit sphere
bundles.

In a previous paper, Bunke [Bul] has established a corresponding result for
the equivariant Reidemeister torsion in the sense of Lott-Rothenberg [LoRo],
valid when g% is flat. By [LoRo], [BZ2, Th. 0.1], equation (5.47) refines this
result of Bunke as well. In fact, by (5.58), when ¢ is of finite order, the
correction to Zep g0 (gTX ,VE gf ) in the left-hand side (5.75) is exactly the
one needed to recover the equivariant Reidemeister torsion.

5.5. An extension of Theorem 5.1 to equivariant analytic torsion forms.
We now make the same assumptions as in Section 3.7. In particular 7 : M — S
is a submersion with compact fibre X, so that G acts on M and preserves the
fibres X. Let T M C TM be a horizontal bundle as in (3.50).

Let F be a complex vector bundle on M, let V¥ be a flat connection on F.
As before, we assume that the action of G lifts to F', and that the fundamental
assumption in (2.21) still holds. Let g be a G-invariant Hermitian metric
on F.

Let H (X, F) be the fibrewise cohomology of X with coefficients in F|x.
Let gZ(X’F) be the Lo metric on H (X, F') one constructs via fibrewise Hodge
theory as in Section 1.3 on H (X, F)

Take g € G. As explained in Section 2.5, in [BGo2, §3.17], analytic torsion
forms 73, 4 THM, g7x VF, gF) on S were defined. These are even forms on S,
which are such that

(5.76) dTan, (T M, g™, V", ") = /
Xg

—ch (VIR g T,

Take now g € G, K € 3(g). For |K| small enough, by proceeding as in

e (TXg, vTXa) ch? (VF, gF)

[BGo2, §3] and in Section 2.5, we construct even forms
Tigx (T M, g™, ", ")

as in (2.90), which depend analytically on K € 3 (g) near K = 0.
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Then we combine the two definitions of the operator @) in (2.92) and in
(2.117). Namely, if f (K) is an even form on S which is analytic in K € g, we
set

1
(5.77) QF (1) = [ nsanf (s (1 = 5) K) ds.
As in [BGo2, Def. 3.46], and in (2.94), we set
(5.78) Tang i (T"M, g™, V", g") = QT g ic (T M, g™, V", g").

We can then prove that the obvious analogue of [BGo2, Th. 3.47] holds.
Namely,

(5.79) dTangx (TH M, g™x VF gF>
— /X €K (TXQ’VTXQ) Ch; (VF79F) _ Ch; (vHA(XjF)ng(X,F)) |

Let P° be the vector space of smooth forms on S, let P59 ¢ P be the
subspace of exact smooth forms on S.

We state, without a proof, the following extension of Theorem 5.1 in
arbitrary degree. Although we have chosen not to prove this result, we hope
that inspection of [BGo2] and of the present paper gives all the necessary tools
for proceeding to establish it.

THEOREM 5.13. The following identity holds:
(580) 7;h,g,f( (THM7 gTX7 VFa gF> - ,Z-ch,geK,O (THM7 gTX7 VF7gF)
_ TX, TX,\ 10 (OF F
_/XgeK (TX,, V7% Fre (TX,, V7% ) b (V7 g7)
+ Telxo [g) Vie (M, /S) in PY /P50,

Remark 5.14. By proceeding as in Section 5.3, one can check easily that
Theorem 5.80 is still compatible with the results of [BGo2, §7], use now of
Theorem 4.10 in arbitrary degree.

We claim that Theorem 5.13 is compatible with the known functoriality
results on the behaviour of analytic torsion forms under composition of two
projections. Such a result has been obtained by Ma [Ma] for the ordinary
analytic torsion forms. However the techniques of Ma can be applied also to
the equivariant analytic torsion forms, and to their infinitesimal version.

On P,, g acts along the fibres Z of p. Let x4 (Z, F|z) be the Lefschetz
number of the fibre Z, which was defined in (1.13). Then by (1.14),

(5.81) Xg (Z,F) = Te"la [g] x (X,) .

Using (5.81), Theorem 4.25 is ensures the compatibility of Theorem 5.13 to
the results of [Ma].
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5.6. The asymptotics of the equivariant torsion forms. We make the same
assumptions as in Section 5.5. By Theorems 3.5, 3.37 and 5.13, we find that
for z € R*, and |z| small enough,

(5:82) Tanger (T"M, 9" V5, g") = Topgeero o (T M, g™, V" g")

1
_ TX, TX,\ * o F F
_%/Z/Xg ex, (TX,, V%) Fi, (TX,,V )\/szchg (VF.9")
1
+ Trtlxs [g] m% 1.V, (My/S) in P°/P0.

Equation (5.82) is interesting. In fact, as 2 — 0, Tep ¢ 2k, (THM, g™, VF,gF)
converges to Zep g0 (TH M, g"x Vv gF ) Therefore (5.82) gives us the asymp-

totic expansion of Zgy ge-x0 o (THM, gtx vF, gF) as z € R*, z — 0.
In particular, if S is a point, i.e. if the assumptions of Section 5.1 are
verified, as z — 0,

(5:83) Tangerro 0 (97, V7, g")

1
= ——TeFlx [g] Vi, (X))

E

—/Xy ex, (TXg,VTX9> Fx, (TXg,vTXg)Tr 5

(7]

+Tngo (975, V5. 9") + 0 (2).

Also by (2.75), (2.76) and by Theorem 3.15,

(5.84) / ex, (TXg, vTXg) F, (TXg, vTXg) Tr

9

2

2

(7]

:/ VK (Kg(g,TXg,VTX-q) Tr

g

Using Remark 3.14, we get

w (VF’ gF)

(5.85) / VK, (Kg(g,TXg, vTXg) Tr
X, 2

— /ng/; (Kgfg,TXg,vTXg) Tr 5
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By (5.83)—(5.85), we find that as z — 0,

(5.86)

1
Zlh»gezKO,O (gTX7 vFa gF) - —MTI"FH_Q [g] VKo (Xg)

—/X W (KS(Q,TXg,VTXQ) Tr

g

+7-ch,g,0 (ngv VF79F) + 0O (Z) :

2

(7))

Incidentally, note that if X is even-dimensional, Vi, (X4) = 0, and that if X,
is odd-dimensional, the integral in the right-hand side of (5.87) vanishes.

6. A fundamental closed form

In this section, we construct a closed form k4 x on ]0,1[xR% x R. In
Section 7, by integrating this form on the boundary of a well chosen three-
dimensional domain, we will establish Theorem 5.1. Also we prove here an
important Lichnerowicz formula.

This section is organized as follows. In 6.1 and 6.2, using the local families
index formalism of [B3], we obtain a closed Chern character form k4 x on
10, 1[xR% x R . This form is expressed in terms of a differential operator L.
In Section 6.3, we give a fundamental Lichnerowicz formula for Ly + £. In
Section 6.4, we introduce a simple rescaling of the variable ¢t € R

We make the same assumptions and we use the same notation as in Sec-
tion 5. Also, in the sequel, we fix g € G, and K € 3(g).

6.1. A fundamental superconnection. Let M be the set of smooth G-
invariant metrics on T'X. Set

(6.1) M =10,1[xM x R x X, S =10,1[xM x R.

The generic point of S will be denoted (s,gTX,u). Let ¢ : M — S be the
obvious projection. Clearly, the vector bundle T'X is equipped with the tau-
tological G-invariant metric g7~. Also, we fix a G-invariant metric g* on F.

Then Q (X, F) can be considered as a trivial vector bundle on S. It is
equipped with the trivial connection V¥ (X5F) gver S. Also the operator dX
acts fibrewise on Q' (X, F).

Definition 6.1. Set
(6.2) A = d¥ —wigx + VEE),

Then A’ is a superconnection on ' (X, F).
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Let ¢ (F) be the fibrewise Hermitian product on Q (X, F) defined in
(1.15). Let d** be the fibrewise adjoint of d¥ with respect to ¢** %), Set

-1
(6.3) gTX _ <gTX) dMgTX'
Then ¢7X is a 1-form on M with values in self-adjoint sections of End (7X).
Also ¢7X acts as a derivation on A" (T*X). If e1,...,e, is an orthonormal

basis of TX with respect to g7, the action gTX|AA(T*X) of 7% on A (T*X)
is given by

(6.4) gTX’A'(T*X) = - <9'TX€¢, ej> €' Nie, .

Set B
(6.5) G XF) = (gQ (X,F)) Mg (X.F),
One verifies easily that

o . 1/

(6.6) §* ) = "X ex) + P (QTX) :
Equivalently, )
(6.7) gt or) = 5 <QTX€i, ej> c(e;)c(ej).

X, F),x (X,F)

Then the adjoint connection V¢ ( to the connection V¢ is given by

Recall that TX and T*X are identified by the metric g7%. Let A” be the
superconnection on Q' (X, F') given by

(69) JZII _ dX’* +’LLKX/ /\+VQ(X,F),*
Definition 6.2. Let A be the superconnection on Q' (X, F),
(6.10) A=(1—s)A +sA".

Recall that the operators Ak, Bx were defined in (2.95). The curvature
~ ~ ~\ even
A? of A is a section of (A' (T*S) ® End (0 (X, F)))

THEOREM 6.3. The following identity holds:
~ _ )

+ 2ds (BuK + gQ'(X’F)/2) + du (— (1—s)igx + sKX’A) :

Proof. By (6.10), we get
(6.12) A= (1-5) A% 4 sA” —s(1—s) (A~ X) 4 ds (A" 7).
Using (2.96), we get
(6.13) A? = —uLy — duigx, A" = —uLg + duK™' A .
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Using (2.95), (6.2), (6.8) and (6.9), we also have
(6.14) A" — A = 2By + ¢ XD,

By (6.12)—(6.14), we get (6.11). The proof of our theorem is completed. O

Definition 6.4. Set
(6.15) ng,k = Trs {g exp (—LK - ﬁzﬂ .

(0)

Then 7y i is an even form on S. Let N,k be its component of degree 0.
THEOREM 6.5. The form ng i is closed on S. Moreover
0
(6.16) ok = Xq (F).

Proof. The first part of our Theorem follows from [B3, Th. 2.6]. Also, by
(2.45), (2.49), (2.105) and (6.11), we get (6.16). O

6.2. Scaling the metric g7X. Set
6.17 M =1]0,1[xR} xR x X, S =10,1[xR* x R.
+ +

Let m: M — S be the obvious projection. In the sequel, (s,t,u) denotes the
generic element of S.
Now we fix once and for all G-invariant metrics g%, g¥ on TX, F. As in

(1.35), set
TX

(6.18) ¥ =1

Let ¢ : R} — M be the embedding ¢ — g X. Then i extends to the obvious
embeddings M — M, S — S.
Set

(6.19) Kg K =1 1g,K-

By Theorem 6.5, k4 i is an even closed form on S, and also
0

(6.20) Rk = Xo (F)

Let eq, ..., e, be an orthonormal basis of T X. Recall that NV is the number
operator of A" (T*X)® F. Set

(6.21) N=N-
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One verifies easily that

— 1
(6.22) N = 3¢ (e;)c(e;) .
Definition 6.6. Put
(6.23) L=tV A2 N/2,
Then
(6.24) kg = Trs[gexp(—Lig — L)].

PRrOPOSITION 6.7. The following identity holds:

Ndt
(6.25) L=-uLg —4s(1—s)t (BuK/t T 2t3/2>

Ndt du X/ ,

Proof. Observe that

dt
(6.26) gt = —
By (6.7), (6.22), (6.26),
, Ndt
6.27 oV (XF) T
(6.27) i*g ;
Our proposition is now a trivial consequence of Theorem 6.3. O
6.3. A Lichnerowicz formula. In the sequel, eq,...,e, denotes a locally

defined smooth orthonormal basis of T"X. We use the notation

(6.28) VA (T*X)® Fu,2 _ ZVA (T*X)® Fu,2 vA'(T*X)@F,u

"TXe,
21 vei i

The operator in (6.28) does not depend on the choice of the smooth basis. A

similar notation will be used for other connections than VA (I"X )& F o,
Let H be the scalar curvature of X. Put

(6.29) c (w (VF,gF» =c(e)w (VF,gF) (e:),
&(w (V")) =e(e)w (V9 9") (e,

o (970 = 2 (o (707 )

=1
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THEOREM 6.8. The following identity holds:

(6.30)
LK+£:—8(1—8)t<Vé\i'(T*X)‘§F’“—%(u+%) <KX,eZ->
N ds 2
+c(€’)2_\/f_c(el)—2s(1—s)\/¥>
1—u 2 s(l—s)t
LA (1-u(2s—1))|K¥| e

1—u dt ds
s (e () e (1Y) )
o (7701)) V3 o () T

2 2t

8

Proof. By (1.32) and (2.100), we get
_ L (oA (T X)8 Fu X 1 F F
(6.31) Bk = —5¢ (€5) (Vei - <K ,el>) + 1€ (w (V . g )) .
Using (1.3), (1.30), (6.31) and Lichnerowicz’s formula, we get

(6.32) —B%{ — _% (vé\i‘(T*X)®F,u B <KX,eZ->)2 N %

+— (en BT (er,e5) 1Y e (e) e e;) E(ex) E(e)
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By (1.31),
(633) vé’(T*X)@F,uw (VF,QF) (ej) _ vé\j'(T*X)@ F,uw (VF,QF) (ez) )

By (1.3), (2.3), (2.24), (6.32), (6.33), we obtain
(6.34)
(1—u)Lg —4s(1—s)tBlg

. _ 2
=-—s(l—s)t (VQ‘(T*X)M’“ 1 <u+ Lo )) <KX,ei>)

t 2s5(1—s
s(1—s 1—u 2 s(l—3s)t
+ % ((“er) _“2> ‘KX}QJF%H
+ @ (e B (eivej)er) c(ei) e e) Eer) € ()

+4s(1- s>t<312 (—cles)eley) + (e eley) w? (VF,67) (eiey)

1 2 1, .
+ 16 ’w (VF,gF)) —gc(ei)c(ej)vg’ w (VF,gF) (ej)>.
By Proposition 6.7 and by (6.34), we find that (6.30) holds in degree 0 with

respect to the Grassmann variables ds, dt, du.
Clearly,

1
X/ A (] — &) irn — — X o (X
(635)  sEXA—(1-s)igx = (¢ (K¥) + (25— e (KY)).
By Proposition 6.7 and by (6.35), (6.30) holds also for the terms containing du.

By (6.31), the term of degree 1 containing ds in the right-hand side of (6.30)
is given by

¢ (T*X)® Fu 1 1—-u R
(6.36) ds (—\/fc(ei) Vé\i (T"X)® Fu N (u n m) - (KX)
_ﬁ/c\<[(){) + gc (w (VF’gF))> = QdS\/ZBuK/t-

By Proposition 6.7 and by (6.36), (6.30) holds for the term of degree 1 con-
taining ds. Using (1.32), we find that the term of degree 1 containing dt in the
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right-hand side of (6.30) is given by

s(1—s) (T x)@Fu S(1—3s) 1—u

1—wu s(l—s)
+2t3/QC<KX) — %c (w (VF,QF))>

AX U

=2s(1—s)dt (W ~ 572° (KX)> .

Moreover, in the right-hand side of (6.25), the term of degree 1 containing dt
is given by

N AX U ¥
(6.38) —4s (1 —s)t lBuK/t, Wdt] =25 (1 —s)dt (W ~ a° (K )) :

which coincides with (6.37). Therefore (6.30) also holds for this term. Fi-
nally, in the right-hand side of (6.30), the term containing dsdt is given by
c(e;) ¢ (e;) dsdt/2t = Ndsdt/t, which is equal to the corresponding term in the
right-hand side of (6.25).

The proof of our theorem is completed. O

6.4. A rescaling of the t-coordinate. Set
(6.39) t'=s(1-s)t.

Then

dt'  dt ds d
(6.40) _ 4,8 v

t t+s 1—s

Let d be the de Rham operator acting in the s, t, u variables.

PROPOSITION 6.9. The following identities hold:

(6.41) <1 s t>ﬁ/2¢*(1_s)g/(1s t)ﬁ/z

— s —s
2 N /
O g (4 T (g )
Vid N wigx +(1—s)(d s\ i) )

N/2 —N/2
s ~ s

33 A//
<l—st> e (1—8t>

2 N /at’ d
— VP £ Z_uKX A s <d+ 5 (— — 2—S>> .
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In particular,

(6.42) B 2
N2 N2 _
( i t> A <1 i t> 7 S Gl SR

1—s —s N
2 N /
5 X/ N dt
+WUK A +d + 5 <(28 — 1) 7 — 4d8>

Proof. Clearly,
(6.43)

s N/2 -N/2 v (1= 8)2 ‘
(1—st) (1—ys) ( —usz)( > =\Vtd —Tuz;{x,
N/2 2

<1 s t> (dX* U X1 ( > \/?dX’*JFi—/uKX//\’
— s
s N/2 —N/2 N [dt ds
t d =d— —(—+2 .
(=) (=) > (7 +4s)
From (6.41), (6.43), we get (6.42). O

THEOREM 6.10. The following identity holds:
(6.44)
TV 1 1-—
Lg+L= —t’(Vé(T X)@ Fu _ 7 <s(1 —s)u+ 5 u) <KX,ei>

s(l1—s) dt 1 N ?
+ 2/t c(ei)?_Q s(l—s)t’c(ei)d8>
+14_T“ (1-u(2s—1)%) ’KX’2
ds
M.W_s( (k) Yy (Kx)gs(l_s))
VHtds vs(l—s)t'd
- (w (v.97)) (o (vFg")) T

N
~ (e (K%)= e (K)) s- 0

t/

<ek,RTX (€i7ej)€l>c(ei)c(63) (ex) €(er)
41 1 (VIXEX ) (w1 e efeg) + (1—u(2s — 1)) een) e (ey))

OO

+4t/<312 (—c(ei)c(e) + E(ei)E(ej))uﬂ (VF’gF) (es €5)

+E ‘w (VFng)‘Q - %c(ei)é\(ej) Vﬁ:’“w (VF,gF) (ej)>.
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Proof. This is a trivial consequence of Theorem 6.8. O

Remark 6.11. A most remarkable aspect of formula (6.44) is that if one
makes ds = 0, the obtained formula extends by continuity at s =0 and s = 1,
and that the terms containing dt or du then vanish identically. This fact will
play a crucial role in Section 7.

7. A proof of the comparison formula

In this section, we establish the main result result of this paper, stated
in the Theorem 5.1. The idea is to integrate the form kg4 g of Section 6.2 on
an adequately chosen 2-dimensional polyhedral domain in R?, which is then
‘pushed’ to infinity. This strategy is closely related to the strategy used in [BL],
[B11], [BGol] in the context of holomorphic torsion, and in [BZ1, 2], [BGo2]
for de Rham torsion. The main difference is that in the above references, the
polyhedron was just 1-dimensional.

This section is organized as follows. In 7.1, we show that the form sy x
can be continued to s = 0 and s = 1. In 7.2, we construct the polyhedron T,
which depends on two parameters a, A with 0 < a < 1 < A < +00, on which
the integral of x4 x vanishes identically. So we get an identity written in the
form E%:l I,g = 0. In 7.3, we state five intermediate results, whose proof
is delayed to Sections 8-12. In 7.4, we study the asymptotics of the I,g as
A — 4o00,a — 0, by using the above results. Finally in 7.5, we obtain an
identity, which is shown to be equivalent to Theorem 5.1.

Here, we make the same assumptions and use the same notation as in
Sections 5 and 7. Again, we fix g € G and K € 3(g).

7.1. An extension of the form kg . Put

t/
(7.1) t'=s(1—s)t, u=1-——.

v
In the sequel, (s,v,t') denotes the generic element of R3. Also we give to R?
its natural orientation. Let j be the embedding of the affine hyperplanes s = 0
and s = 1 into R3.

Clearly, the form kg g is well defined for (s,v,t') €]0,1[xR x R%.

THEOREM 7.1. The form kg i extends to a closed smooth form on R X
R x RY. Moreover,
(2

(7.2) FRC =0,

Proof. Clearly, we only need to establish our theorem for the component
of degree 2, since H;?K is necessarily a constant (which, by (6.20), is equal to

Xg ().
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m"

Figure 7.1

We first consider the component of k4 x which contains the 2-form dt'du,

i.e. which is obtained from Iié?}( by making ds = 0. By (6.40),

dt dt' ds N ds

t ot s 1l-—s

Observe that in (6.44), v/s (1 — s) is a factor of both dt/t and du. This guar-
antees that the component of /43;?;( which contains dt'du extends to a smooth
form on R x R x R}, and that its restriction vanishes on s =0 or s = 1.

(2)

Now we consider the components of Ky K which contain either dsdt’ or

(7.3)

dsdu. These components are unchanged by the rescaling

ds — /s (1 —8)ds,dt — dt'/y/s(1 —s),du — du/\/s (1 — s).

One verifies easily that under this rescaling, the right-hand side of (6.44) still
extends into a smooth function of its parameters.

Finally since the form kg i is closed on its domain of definition, i.e. for
s €]0, 1[, by analyticity in the variable s, it is still closed for s € R. The proof
of our theorem is completed. O

7.2. An application of Stokes’s formula.  Take a, A € R such that
0<a<1<A<+o00. Let I' =Ty 4 be the oriented polyhedron indicated in
Figure 7.1. The polyhedron I' has five oriented faces I'y,...,I's. To avoid any
ambiguity, we mention that I'y is the face with v = A, and I's the face with
t'=w.

Set
(7.4) I} = /F Kgr, 1 <j<3.

k
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THEOREM 7.2. The following identity holds:

3
(7.5) Z I =
k=1
Proof. Since the form kg4 g is closed,
(7.6) / P—
r
By Theorem 7.1, for k =4 and k = 5,
(7.7) / kg ik = 0.
T

From (7.6), (7.7), we get (7.5). The proof of our theorem is completed. O

In the sequel, we will make A — +00,a — 0 in this order in the identity
(7.5), and we will ultimately obtain Theorem 5.1.

7.3. Five intermediate results.  In the sequel, we fix Ky € 3(g). For
z € R*, put K = zK,.

If a € A (R?), let al® € R,a% € A (R?),...,a%% ¢ A2 (R3)... be
the real multiples of 1,ds,...,dsdt ... such that

(7.8) a=aO fad 4 padd 4

Similarly for 0 < j < 3, o) denotes the component of a in AJ (R?).
For t > 0, we define the form oé"t, B;{(gt on X, as in (3.8).

Definition 7.3. For h € R,v € R, set
TX,\ 2Xs
(1.9) ma=2 [ e (120,975 55

Q (vF, gF>
2

Tr | g

)

exp (hw2 (VF,gF) /271')

nv:ﬁ/ Tl [g ﬁKU/Q/ KXo exp( R%X'q/ZW),
ohﬂ,:—/ aKU/24\/_Tr {gw (VF,g )exp (th (VF,gF) /27‘(’)}

/ KXo exp RﬂXg/%r) .

Observe that if e,/ is the invariant of X, associated to KXo as in
(3.109), then

1
(7.10) ny = ——=Te"0 [g] (v/2)* 2 e .

V2
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Moreover, if X, is odd-dimensional, my, ,, vanishes, and if X is even-dimensional,
n, and oy, vanish.
By (3.114), (7.10), for v €]0, 1],

(7.11) ny = O (vg) ,
and moreover, n, is uniformly bounded on R;. Using (3.14), for bounded
h € R, for v € [0,1],
(7.12) onw = 0O (v),
and oy, remains uniformly bounded for v € R.
In the sequel, we will use the notation

_ 4o
C4s(1—s)v+ (2s—1)%a
Observe that there exist C' > 0,C” > 0 such that for (s,v) €]0,1[x[a, 1],

(7.13)

2
. <w<(Cinfl Y UL
(7.14) Cv_w_Clnf{S(l_s),a}

Note that w depends explicitly on a. We will often write
w=w(a,s,v).

Let i, : [0,1] x R — [0,1] x R% be given by i4 (s,v) = (s,av). Let jg,Jj; :
[0,1] x Ry — [0,1] x R4 be given by j, (s,v) = (Vas,Vav),jl (s,v) =
(1 —+/as, /av). In the sequel, k, will denote either j, or j..

If  is a smooth form on R3, v;—, denotes its restriction to the hyperplane
(' = a). So Yp—q is a form on this hyperplane.

Recall that x, (F), xj (F') were defined in (1.13).

THEOREM 7.4. There exist C > 0, > 0 such that for z € R,|z| < S,
"e[l,4o00[,s €[0,1],u € [0,1],

C
< —

(7.15) NG

OTolgexp (~Lic = D + (X, (F) = 5y (F) ) st
C

‘Trs [gexp (—Lk — E)]deu‘ <

3

THEOREM 7.5. Forz € R* and |z| small enough, for any (s,v) €]0, 1[xR¥,
as a — 0,

dsdv
(7.16) Trg [gexp (—Li — L)]iLy = Ma(1-s)0/s(1-5)——

For z € R* and |z| small enough, there exists C > 0 such that for a €
10,1], (5,v) € [0,1] x [1, o],

C
t'=aqa S ﬁ.

(7.17) ‘Trs lgexp (—Lx — £)\2.
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THEOREM 7.6. For z € R* and |z| small enough, as a — 0,
dsdv

(7.18) kX Trs[gexp (—Li — ,C)]g?ia — 2n4vz/4sv+1?.

THEOREM 7.7. For z € R* and |z| small enough, as a — 0,
(7.19) i*Trg [gexp (—Lg — £)]\2, — 0.
In the next theorem, we emphasize that w still depends explicitly on a.

THEOREM 7.8. For z € R* and |z| small enough, there exist C > 0,
v € 10,1/2] such that for (s,v) €10,1[x [a, 1],

Trg[gexp (—Lg — £)}(2)

t'=a

(7.20)

mUUJUJ w O’U’UJ’UJ
—(44—(1—#(23—1)2)\/52—34‘(23—1)\/5 1/)2’ )dsdv

(

v
of2) 8
v v

In particular, for z € R*, and |z| small enough, given € € 10,1/2][, there exist
C > 0,7 €]0,1] such that for a €]0,1],(s,v) € [e,1 — €] x [a, 1],
C

< ;(a/v)”.

(2 dsdv

(721) Try [g exXp (_LK - E)]t/ia = Ms(1—s),0/s(1—s) v

Remark 7.9. Theorem 7.4 will be proved in Section 8, Theorem 7.5 in
Section 9, Theorem 7.6 in Section 10, Theorem 7.7 in Section 11, and Theorem
7.8 in Section 12.

We claim that (7.20) in Theorem 7.8 implies (7.16) in Theorem 7.5, and
also Theorem 7.6. In fact, as a — 0,

(7.22) My Jow = Mis(1—s),0/s(1—s) >
Van, /v —0,
Va2l o,
Vam g (a,aswav) w(an/asnan) ~ 0
(1 + (2V/as — 1)2) Mo (ar/as,/av) — 2Mv2/(dsv+1))
(2vas — 1) \/ao\/av/w(a,\/as,\/ﬁv),w(a,\/as,\/av) —0,

from which the above implications follow immediately. Also, by (3.14), (3.16),
(3.114), (7.10),

(7'23) Moy jw(a,s,av),w(a,s,av) 0,
Nw(a,s,av) /a3/2 —0,

Ozw/w(a,s,av),w(a,s,a’u)/\/a — 0.
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By (7.20) in Theorem 7.8 and by (7.23), we deduce that given (s,v) €]0,1[x
[1,400[, as a — 0, i:Trs[gexp (—Lx — L)] remains uniformly bounded. Of
course, Theorem 7.7 says that as a — 0, these forms converge to 0.

Also (7.21) is an easy consequence of (7.20). In fact, take e € |0,1/2[, and
assume that a €]0,1],(s,v) € [e,1 —¢] X [a,1]. By (7.14), v/w,w/v and w
remain uniformly bounded. Using (7.20), (7.11), (7.12), we get (7.21).

Let us point out that we have chosen to present the proofs of Theorems 7.5
and 7.6 before proving Theorem 7.8, because their proofs are easier, and also
to introduce more naturally the various tools which are needed in the proof of
Theorem 7.8. Finally note that (7.21) is not explicitly used later in the paper,
and is only given for completeness.

7.4. The asymptotics of the I,S. Now we study the Ilg.. It will be understood
in the sequel that in all our statements, z € R* will be such that |z| is small
enough.

1) The term I9. We orient the plane containing I'y by the 2-form dsdt’.
As a part of I', I'; inherits the opposite orientation. Therefore,

(7.24) I? =— /(m,) oo Trg[gexp (—Lg — L)]

u=1—t//A

+ (R (0) =W (W))(X; (F) = 5 <F>) dif”']

o (1) Y () - hah).

a) A — +00. When integrating the form Trg [gexp (—Lx — £)] in the right-
hand side of (7.24), du should be replaced by —dt'/A. Using Theorem 7.4 and
dominated convergence, we find that as A — +o0,

n

2 (F)) log (4)

(7.25) I — (x; (F) — 5

— Il =— As,t’)e[o‘l]x[a,+oo[ [Trs [gexp (—Lix — L)]

u=1

+ (1) =1 (V7)) (3 (F) = 5 (7)) d““']

2 ¥
+ [/al (n (©) — ' (iv¥)) dt—f,
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By Proposition 6.7,
(7.26)

J— 2 nNT
Ndt Ndt
(LK + L) |u:1 = —4¢ (Bs(lt,s)K + QtT/2> + 2d8\/¥ <B¥K + 2t3/2> .

By (7.26), and the fact that supertraces vanish on supercommutators,

(7.27)

2
Trs [gexp (—Lg — L)]Z‘ff/ = Tr, lg exp ((2\/75_’35(1,3)[{ + Ny/s(1— 8)%) )
an\1" ds
2Vt Bsa-s N 1—s)— —_—.
(\/— cn g+ \/s( s)tﬂ T

Now, using (7.3), we observe that, in (7.27), dt/t can be replaced by dt'/t'. By
making the transformation

— dt’
ds — s(l—s)ds,dt H\/ﬁ,

from (7.27), we get

: '\
7.28) Trglgexp(—Lg — L ds:dt =Trg |gh 2Vt¥Biaoo o + N ds
u=1 =K

2
=Tr, {Ngh/ (2\/75_’3%K)} dt—flds.

By (7.25), (7.28), we obtain
(7.29)

I = /01 ds{/joo [Trs [gﬁh’ (\/ZB@KH

a

_ (h/ (0) —n' (i\/Z/Q)) (X'g (F) — gxg (F))] %}

([ -1 ) 2 ) % e

a t
n

(X ()= 50 (P)).
B3) a — 0. By Theorem 2.14, as a — 0,
1 —+o00 -
(7.30) Il - 2= /0 ds{ /0 [Trs [gNh’ (\/%343%,5) K)}

- () -1 (ii2)) (x, () - S <F>)] @}

t
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+ </01 (' (0) — 1’ (i\/%/Q))%
_ /:OO B (i\/l_t/Q) % +2log (2)> (x'g (F) - %xg (F)> :

7) Evaluation of I?.

THEOREM 7.10. The following identity holds:

(131 1} = 2T (75, 97.6) + 2 -1 () (3 () - Gy (P)).

Proof. A trivial computation shows that
(7.32)
/01 (# (ivt/2) = 1 (0)) % + :OO W (ivi/2) % =T/ (1) +2(log (2) — 1).
Moreover, by proceeding as in the proof of (2.49), one finds that
(7.33) Trs [gh (VEBuoa )| = xy (F).

Our theorem now follows from (2.111), (2.117), (2.118) and from (7.30), (7.32),
and (7.33). O

2) The term I9. We still orient T'y by the form dsdt’. As a part of T', T'y
inherits precisely this orientation. Then

(7.34) 9= /(s,tqem,wﬂ [Trs [gexp (—Li — L)]

u=0

+ (W ()= n (iV¥)) (x’g (F) - 5X <F>) d“”j”']

[0 -n (V) (6 - o).

v

a) A — +oo. By Proposition 6.7,

__ 2 __
Ndt Ndt
_ / X X
(7.35)  Llu=o = —4t (B + 2753/2) +2dsv/i (B + 2t3/2> .
By proceeding as in (7.26)—(7.28), we get

, _ '
(7.36) Trs[gexp (—Lx — £)]%% |0 = Ty [geK N (2\/§BX )] = ds.

t/



166 JEAN-MICHEL BISMUT AND SEBASTIAN GOETTE

Using Theorem 1.6 or Theorem 7.4, and also (7.34), (7.36), we see that as
A — 00,
n

(7.37) I§+(X;(F) 5

/+OO
4a

Xo <F>) log (4) — I3

Trg [geKNh’ <\/¥BX)}

— (W ) ¥ (ivi/2)) (X'g (F)~ ", (F))] a

t
([ ro—w(ve) §- [Tw () T)
(3 (F) = 32 ().
B) a — 0. By Theorem 2.14, as a — 0,
(7.38)

- == [ o (Vi)

— (W ()= n (ivi/2)) (X’g (F) = 5 (F)) %
_ </01 (7 ) -1 (ivi/2)) % - /:OO W (ivi/2) % +2log (2))
(4 () =5 (P).
7) Evaluation of I3.
THEOREM 7.11. The following identity holds:
(739) I = 2Ty gor o (675, VF,0F) + (' (1) — 2) <x; (F) - gxg (F)) .

Proof.  Our identity follows from (1.39), (1.42), from (7.32) and from
(7.38). O

3) The term I{. We orient I's by the the 2-form dsdv. As a part of T', T'3

inherits the opposite orientation. Then

0o_ Y S
(7.40) B--/ e T l9 0P (~Lic = £)].

t'=a

a) A — +oo. As A — 400, using (6.44), we find easily that

(7.41) L —1I= *ﬁ oy Tslgexp (—Lx — L)].

t'=a
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B) a — 0. Set

(7.42)
dsdv

J1:—/ My fww ="
(s,v)€[0,1] % [a,1] v
(1+ @5 —1?)ny Vadsdy

’U3
adsdv
ng—/ Ov/w,w\/_—27
(5,0)€[0,1]x[a,1] v

Jy=— /M)G[M]X[Lm[ Trg[gexp (—Lx — L)],

=a

Jy =

B /(s,v)e[(),l] x[a,1]

) (Trs lgexp (~Li — £)]

a

_ (L”/w’“’ + (1 + (25 — 1)2) Vany (25 —1) M) de"")’

v 3 v?2

so that
(7.43) LB=J+J+ J3+Jy+ Js

For s €10, 1], put w = W(a,s,s(1—s)v)s i.e.

40?2
v+ (25 —1)%a/ (s (1 —s))*

We will often write W = W, s (v). Clearly,

(7.44) W=

dsdv

Ms(1—s)v/ww

(7.45) T = — /
(s,v)€[0,1]x[a/s(1—5),1/s(1—s5)]

Observe that given a €]0,1],s € ]0,1[, the map v — W, s (v) is strictly
increasing, and is one-to-one from R into itself. Let v, s be the corresponding
inverse map. By (7.44), we get

e, (2s —1)%a dv
(7.46) Was <1+ 4(3(1_5))2v+(23—1)2a> v

By (7.46), we deduce that there exists a smooth function ke : R — [0, 1]
such that

(7.47)

d dw
v - ka,s (@) iU7
v w

and moreover, as a — 0,

(7.48) kqs — 1 on RY.
By (7.45), (7.47), we get

(7.49) J /1 {/m,s(l/s(l—s)) - )dw}d
‘ o ms —-Ss _a s(w)/w,w™a,s w)—- S.
0 | Sz .(a/si—sy A7 as(w)/
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Observe that by (7.14), s (1 — s) 94 (w) /w remains uniformly bounded.
Also by (3.16) and (3.17), for bounded h € R,
(7.50) mpw =0 (w),w €]0,1], My = O (1/w),w > 1.

By the above considerations, we can use dominated convergence in the integral
in the right-hand side of (7.49). Then we find that as a — 0,

1 1/s(1—s)
(751) Jp — Jll = _/ {/ mS(l—S),U@} ds.
0 0 v
Also,
2 dsdv
(7.52) Jo = -2 <1 + (2\/53 - 1) ) nw(a,\/as,\/av) v3

(s,v)€[0,1/2v/a]x[Va,1/v/a]
Clearly, if W' = w (a, \/as, \/av),
4 2
(7.53) w = Y .
4s (1 —+/as)v+ (2y/as — 1)

In the sequel, we will also write W' = wy, ¢ (v).

Given a €]0,1],s € ]0,1/2y/a[, the map v — wy, ¢ (v) is strictly increasing,
and is one-to-one from Ry into itself. Let 55175 be the corresponding inverse
map. As in (7.46), we get

dw,, (2v/as —1)* ) dv
(7.54) w, (1 - 4s (1 — as)v+ (2yas—1)*) v’

a,s
By (7.54), there exists a smooth function k;, ¢ (w') with values in [0, 1] such
that

dv ., dw
(7.55) — =k, @)
By (7.52), (7.55), we obtain
(7.56)

/
Jo=—2 (1+ (2vas —1)?) 2 W) s,
(s:w)€0,1/2valx[@, . (va).@, . (1/va) w o, (w)
By (7.53),
2\/as — 1)°

(7.57) v? — 5 (1 — Vas)Wv — %m’ =0.

From (7.57), we deduce that there exists C' > 0, such that for s € [0,1/2+/a],
w >0, if v =10, (w),

(7.58) v>C (sw+ (1—2vas) Vw).
By (7.58), we deduce that there is C’ > 0 such that if s € [0,1/2+/a],w > 16a,
(7.59) v>C (sw+Vw).
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Also,

(7.60) /‘*‘OO ds 1
. 0 (sw+w)® w?

By the statement containing (7.11), we find that n,,/w®/? is integrable on
R’ . Since k] ; takes its values in [0,1], it follows from (7.52) and from the
above that the dominated convergence theorem can be used on the piece of
the integral (7.56) defining J5 such that w > 16a.

Moreover, using (7.58) again, we find that there exists C' > 0 such that
for w > 0,

1/2va 1 C
(7.61) /0 E;%s @) ds < ToR
By (7.11), (7.61),
k! o (w
(7.62) / (1+ (2vas —1)*) "—w_g‘g( ) dsdu| < Cva.
(s,w)€[0,1/2+/a]x[0,16q] w v, (w)
It follows from the above that as a — 0,
dsdv
7.63 Jo — Ji = —4 N2 /syt — -
(7.63) 2 2 (sw)eR3 402 [Asv+17 3
By the statement containing (7.12) and by (7.42), we get
(7.64) FARE: \/‘_;wdsdv.
(s,v)€[0,1]X[a,1] Y
Moreover,
dsd
(7.65) / \/C_;wdsdv <C Vadsdy
(s,v)€[0,1]X[a,1] Y (s,v)€[0,1]x[a,1] SV + a
<C Vadsdv
T J(sw)eloa]x[1,1/a] SU+1
1/a d
:C\/E/ log(v—i—l)%)
1
By (7.64), (7.65), we find that as a — 0,
(7.66) Jz — 0.
By (7.16), (7.17) in Theorem 7.5, as a — 0,
dsdv
7.67 J—>J1:—/ Mis(1—s) v/s(1—s
( ) 4 4 (s,0)€[0,1]x[1,+00[ (1=8).0/s(1=s) (%
Clearly,

1 +o0 d
(7.68) Jl = —/ {/ ms(l_s)ﬂ,—”} ds.
0 1/s(1—s) v
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Also
(7.69) Js=— / (z'ZTrS [gexp (—Lx — L)}ﬁ?ia
(s,w)€[0,1]%x[1,1/a]

_(mav/waws(;l}?}),wa,s(av) + (1 + (25 — 1)2) n;))a/,;(:;)

Vav?

By (7.20) in Theorem 7.8, for (s,v) € [0,1] x [1,1/a], the integrand in the
right-hand side of (7.69) is dominated by

+(2s—1) Oav/w""s(av)’w""s(w))dsdv) :

v
(7.70) C (%) M“T(Q‘w)
Moreover (av) A
(771) wa;)?av " 4s (1—s)v+ (25 —1)%
For s near 1/2, there is C’ > 0 such that if v > 1,
(7.72) A <<

48(1—8)U+(2$—1)2 T v

Also if € € ]0,1/2[, there exists C” > 0 such that if (s,v) € ([0,e] U [l — &, 1]) x
[1, +o00],

4 C//
(7.73) L < ‘
4s(1—s)v+(2s—1)2  s(l—s)v+1
Moreover
1

e / ————————(1/v)" dsdv
| : (s,0)€([0,e]Ull—e,1]) x[1,400[ S (1 —s)v + 1 (1/v)

<C ! (1/v)7 dsdv

(s,0)€[0,e] X [1,400] SV + 1
¢ L (/o) dsdo

(5,0)€[0,ev] X [1,4-00[ S+ 1

< c’/ (1 +log (v)) (1/0)"+! dv < +o0.
vE[l,+oo[

Equations (7.70)—(7.74) show that we can use the dominated convergence the-
orem in the integral which appears in the right-hand side of (7.69).
So using (7.19) in Theorem 7.7, (7.23) and (7.69), we find that as a — 0,

(7.75) Js — J = 0.
By (7.43), (7.51), (7.63), (7.66)(7.68), (7.75), we find that as a — 0,
(7.76) L —I2=Jl+J5+ Jj.
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7) Evaluation of I3.

THEOREM 7.12. The following identity holds:
7.77 1222/ ex (TX,, V%) Fr (X,, g7 %) che (VF, g7
(7.77) 3 X, K( g ) K( 99 ) 9( g )

+ 2Tl [g) Vi (X,) -

Proof. By (7.51), (7.68),
dsd
(7.78) JL 4 gt =— / Mig(1—s) e
(5,0)€[0,1] X [0,-+ 0] v

By (3.18), (2.123), (2.124), (7.9), (7.78),
(7.79) J+J)} = 2/X exc (TX, VI50) Fic (X, g™%0) ch (V7 6") .

Let ¢ : R} — R be a continuous function with compact support. Then,
by making first the change of variables 4sv — s, and then 202/ (s +1) — v,
we get

dsdv
7.80 / ey 220
(7.80) (o) R Yav2/(450+1) 3

B 1 /+oo ds /-i-oowd—v_i +oo¢d—v
- 2\/5 0 (8+ 1)3/2 0 UU5/2 - \/i 0 Uv5/2'
By (3.109), (3.118), (7.10), (7.63) and (7.80), we get

(7.81) J3 = 2Tefxe [g] Vie (X))
By (7.76), (7.79) and (7.81), we get (7.77). The proof of our theorem is
completed. O
7.5. A proof of Theorem 5.1. Using (7.5), (7.25), (7.37), (7.41), we get
3
(7.82) d I =o.
k=1
By (7.30), (7.38), (7.76),
3
(7.83) Y Ip=o.
k=1
By Theorems 7.10-7.12 and by (7.83), we obtain
(784) _Zh,g,K (gTX7 vFv gF) + Zh,geK,O (gTX7 VF’ gF)

+/Xg exc (TXg, V1% ) Fic (X, 97 ) by (V6"

T [g] Ve (X,) = 0.

Using (1.24), (1.43), (2.121) and (7.84), we get (5.2). The proof of Theo-
rem 5.1 is completed. O
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8. A proof of Theorem 7.4

We use the notation in Section 6. Set

1) B=VE (¥ +d¥)+ %{ (s2uk™ A — (1= )% uiex)

N
+d+§ ((2s — 1) dt’ — 4ds) .

Observe that E is obtained from the right-hand side of (6.42) by replacing dt’
by t'dt’. By (6.23), (6.24), (6.42), (8.1), we get

)

’ dsdt’
(8.2) t'Trg [gexp (=L — £)]%% =Tr, {g exp (—LK - EQ)}

Trs [gexp (—Lg — £)]%™ = Tr, [g exp (—LK - Ez)}deu .

By (1.17),
(8.3) ker (@¥ +d%*) = H'(X, F),
Also
~ 2
(8.4) (d +3 ((2s —1)dt' — 4ds)> = Ndsdt'.

Moreover the connection d + % ((2s — 1) dt’ — 4ds) restricts to a connection on
H (X, F). Using (8.1), (8.3), (8.4) and proceeding as in [BGol, Th. 7.1], we
find that there exist C' > 0,3 > 0 such that for z € R,|z| < 3,¢ € [1,+o0],
s €10,1],u € [0,1],

_ — C
o\l _m H(XF) [ K _ / o
(8.5) ‘TrS [gexp( Ly —FE )} Tr [ge exp ( Ndsdt )” < N
By using in particular the argument after (2.23), we get
(8.6)
Tr A (OF) [geK exp (—Ndsdt’)} = Xq (F) — <X; (F) — gxg (F)) dsdt’.

By (8.2), (8.5), we get (7.15). The proof of Theorem 7.4 is completed. O

9. A proof of Theorem 7.5

The purpose of this section is to establish Theorem 7.5, and in particular
to evaluate the limit as a — 0 of Trg[gexp (—Lx — E)]E,zia We organize it as
follows. In 9.1, we establish a Lichnerowicz formula for a suitable modification
of the operator Lxg + £. In Section 9.2, we describe a natural coordinate
system near X,. In 9.3, given x € X, we locally replace X by T.X, and we

compute the limit as @ — 0 of the operators L + L after a Getzler rescaling.
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In 9.5, we evaluate the fundamental solution for the limit operator, and certain
corresponding supertraces. Finally in Sections 9.6 and 9.7, we complete the
proof of Theorem 7.5.

We have kept strictly analytic arguments to a minimum, since they are
essentially the same as in [BGol, §7]. For more details, we refer to the more
difficult Section 12 in the present paper.

Using the notation of Sections 5, 6, and 7, we take Ky € 3(g) and K =
zKjy, with z € R.

9.1. A Lichnerowicz formula. In the sequel, the operator L + £ will be
written in the coordinates (s, v,t’).

Definition 9.1. Given a € ]0,1], let N® be the operator obtained from

Lk + £ by making ¢ = a, by replacing ds, dv by /s (1 — s)ds,dv//s (1 — s).

PROPOSITION 9.2. The following identity holds:

(9.1)
N“——a(Vé(T*X)@F’“ - 2 (s (I-5)(1—=a/v)+ %) <KX,eZ»>
2
+(2s—1) ;(egds - Z%ds)z + (45(1 —5)+ (25 — 1) %) @
+%H+g (—@s=1)e(KY)+e(KY))ds

—vac (w (VF,gF)> ds/2+ (2s — 1) \/Eﬁ(w (VF,gF>) ds/2
—Va (c (KX) +(23—1)E(KX))dv/2v2

—i—% <ek, RT™ (ei,¢;) el> c(e;)c(ej)c(ex)c(e)

L1 <v£XKX, €j> (—EC(ez‘) c(e5)

i o (97, 07)] = etenete) Vv (V7 6F) W)-

Proof. This is a trivial consequence of (6.44) in Theorem 6.10, of (7.1)
and of the fact that if ' = a, by (7.3),

dt 2s—1
9.2 — = ——ds. O
(92) t s(l-s) §
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Clearly
(9.3) Trg [gexp (—Lg — £)]2% = Trg [gexp (—N)]| @,

so that to establish Theorem 7.5, we may as well replace Lg + £ in (7.16),
(7.17) by N°.

9.2. A trivialization near X,. If z € X, a0 > 0, let BX (x, ) be the open
ball of centre z and radius . Similarly, B7*% (0, ) denotes the open ball of
centre 0 and radius « in T, X.

Let ax be the injectivity radius of X. Take x € X,. Then the exponential
map Z € T, X,|Z| < ax/2 — exp,(Z) € X identifies BT=X(0,ax/2) and
BX(z,ax/2).

We identify the normal bundle Ny ,x with the orthogonal bundle to 7'X,
inTX ‘ X,-

Given € > 0, let U be the e-neighbourhood of X, in Nx ,x. There exist
g0 € ]0,ax /32| such that if € € ]0, 16¢¢], the map (z, Z) € Nx /x — exp (Z)
is a diffeomorphism of U/ on the tubular neighbourhood V; of X, in X. In the
sequel, we identify . and V.. This identification is g-equivariant.

In the sequel, A" (R?) denotes the exterior algebra of R?. Here A! (R?) is
spanned by ds, dv.

Definition 9.3. Let 1vA (I"X)8 FEA (R*).ua he the connection on A’ (T*X)
®F @A (R?) over X,
(9.4) lvA’(T*X)® F&A (R?)ua _ vA-(T*X)@F,u
1
! (s(l _ s (1—a/v)+

a

a

o) KX+ (25 - 1) el 4o €0 4

NN

Note that in (9.4), the dependence of Ly A (T X)BFEA (R wa o (s,v) is
not explicitly written. Also 1WA (I"X JEF®A (R?)u0 can also be considered as
a superconnection on A (T*X)® F in the sense of Quillen [Q1]. Recall that
RF was obtained in (1.30). By (1.5), the curvature LyA (T X)BFEA (R?)u.a.2

of the connection VA (I"X)@ FON (R*),u.a ig given by

. « e A 2 4 1 -~ ~
(05) VAT OBFEN o2 L (RIXe 0 (e(e)eleg) - 2len)(ey)

1 a
RFv — — < 1—s)(1- —) dK™.
FRI 2 (5 (1= 5) (1= afo) + o
In the sequel, if x € X, Z € T, X, |Z| < ax /2, we trivialize
A (T°X) 8 FE A (R?)

by parallel transport along h € [0,1] — hZ € X with respect to the connection

LA (T X)BF A (R?) a1y particular, if B is a smooth section of T'X, by (1.3),
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we get

(9.6) yNITREFENEINa By~ o (VIVB) + = LB, ds,

1A OB FEN (R wag :E<VTXB) n % (B,-) ds.

Recall that ¢(TX) and ¢(TX) inherit a Z-grading from the grading of
A (T*X). The bundle of algebras (c(TX)®¢(TX)®End(F)), ® A (R?) is
then naturally Z-graded by the sum of the gradings on ¢ (7TX),¢(TX) and
A (T*X).

Let DA (T"X)® FE A (R?) he the connection form for
in the above trivialization. Using (9.6), as in [B12, proof of Th. 11.11], we find
easily that in the above trivialization, IpA (T X)BFB A (R?) ig of length < 2 in
the algebra (c(7TX)®¢(TX)®End (F) ® A (R?)),. By [ABoP, Prop. 3.7,

LA (T X)8 FR A (R?),ua

S(T* XV FR A (R2 1 S(T* XV FR A (R2
(9.7) IpA (T X)@ FR A (R?) _ §1vA (T*X)® F® A" (R?),u,a,2 (Z,) +O(]Z\2),

and O (\Z\z) has length < 2.

9.3. Replacing X by T, X. Let v(s) be a smooth even function from R
into [0, 1] such that

(9.8) v(s)=11if |s| <1/2,

=0if |s| > 1.
IfZeT, X, put

\Z!>

9.9 Z) = — .
99) o2 = (o
Then
(9.10) p(Z)=11if |Z] < 2ey,

For x € X, let H, be the vector space of smooth sections of

(A' (T*X)®F® A (R2))x

over T, X. Let ATX be the standard Laplacian on the fibres of TX.

Definition 9.4. Let N;?( be the differential operator,

(9.11) Ny == (1= p*(2)) adTX 4 p? (2) N“.
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9.4. The Getzler rescaling.  Let Op, be the set of scalar differential
operators acting on H,. Then

(9.12) NYg € Bnd (A (T°X) 8 FO A (RQ))m & Op,.
For t > 0, let H, : H, — H, be the linear map
(9.13) H.h(Z) = WZ/\/a).
Definition 9.5. Let N> & be the differential operator acting on Hy,
(9.14) NZ% = H;'N,% H,.
Then
(9.15) N2 € (c(TX)®e(TX) & End (F)& A (R2>)x ® Op,.

Z,

Put m = dim X,. Let ey,...,e, be an orthonormal basis of T, X, let
€m+1;---, €n be an orthonormal basis of Nx ,x ., so that e1,...,e, is an
orthonormal basis of T, X. For a > 0,U € T, X, set
(9.16) co (U)=1/2/aU* N —1/a/2iy.

Definition 9.6. Let N 3.0 7 be the operator obtained from N % by replacing
c(ej) by cq (e5) for 1 < <'m, while leaving the c(ej) unchanged form+1<
J<n.

In the sequel, forms like w (VF 9" ) or RTX will always be restricted
to X,.

Definition 9.7. Let
N3 e (A' (T"X) ©2(TXg) §End (A (N, /x))

®End (F)® A (R2)> ®Op,

be given by

(9.17) N37E{ = (vel +5 <R25(1 s)K/27rZ ei>>2 + Q ‘KX ’2

Z,

KXo (25 -1 dv) dK X!
— ds+ — | —
V2 20

v v?
(5 <R2s(1 s)/27rKZ) - W) ds

+% <ekszs(1 s)K/27rel> (ex)C(er) — %wz (VFagF) .
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We will write that a family of differential operators on T, X converges if
its coefficients converge together with their derivatives uniformly over compact

subsets of T, X.

THEOREM 9.8. For (s,v) € [0,1] x R}, as a — 0,
3, 3,0
(9.18) N34 - N9,

Proof. We use equation (9.1) for N®. By (9.5), (9.7) and proceeding as in
[BeGeV, Ch. 10], [B12, §11.5], [BGol, §7.7], we find easily that as a — 0, in
the given trivialization,

(9.19) —a (VQ'(T*X)@F’“ - % <s (1—=s)(1—a/v)+ %) <KX, ei>

. 2
+ (25— 1) ;i;_;)ds - 62(6\/%)d3>

L (vei T % <jo((1_s)K/2WZ, ei>)2.
Observe that since m” ¥ (K) = VIX KX is antisymmetric,
(9.20) (VE¥KX (Vaz),z) =0,
By (9.6), (9.20), we find that in the considered trivialization,
(921) ¢(KY) (Vaz)=c(kY) + Vac(VE KX (2))
+(25 = 1) (K¥ (2),Z) ds
+01 (a|21”) + O (a|2[?) ds,
¢(KX) (Vaz)=e (K™ (2)) + Vae (VE KX ()
+ (KX (2),2) ds + 01 (a|2]) + Oo (a] Z]) ds.

In (9.21), the lower scripts 1 or 0 indicate the length in ¢ (7, X) or ¢ (T, X).

Let [A]Z be the expression obtained from A by doing the Getzler rescalings
indicated in Definition 9.6. Recalling that K| x, is the vector field K Xa C
TX,, by (9.21), we get
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(922)  [Vac(K¥) (\/az)}zz VEEY A 40 (Va (14 12]+2)))
[Vae (k%) (vaz)], =0 (va(1 +121).

KU eT, X, Z €T, X,|Z| <4eg, let U (Z) be the parallel transport of
U along the geodesic h € [0,1] — hZ € X with respect to the Levi-Civita
connection V7. By (9.6), we get

023  Vale(U) (vaz) =vaur n+0 (va(1+12P)).

(rU) (Va2)]>=2(U) + (U, 2) ds + O (Va|Z]) .

By (9.1) and by the above considerations, we get (9.18). The proof of our
theorem is completed. O

Remark 9.9. Incidentally, observe that had we not used (9.20), the es-
timate in the right-hand side of (9.21) would have been Og (\/E|Z|2) ds or

Oy (\/5 |Z ]2) ds. This estimate would have been quite sufficient in the present
proof, but the stronger estimate (9.21) will be needed in equation (11.7), in
our proof of Theorem 11.5.

9.5. The heat kernel associated to Ni’?(. Let dvrx be the volume form on
the fibres of TX with respect to the metric g7 X. Set

3.0 30 o
(9.24) Noyg =Nyxg —¢ (Rgs)((l—s)K/%rZ) ds.

Recall that Ky € 3(g) is fixed and that K = zKj, with z € R*. For
z € R* and |z| small enough, let P>, (Z, Z’),?iﬁ( (2,2"),Z,Z" € T, X be
the smooth kernel associated to exp (—Nf’?{) , €XPp (—Wi’f}() with respect to

dorx (2') ] (2m)V2.

In fact, observe that the operator IV ij’ ’%,Ni’g{ are not lower bounded, so
that the above heat kernels are not well defined. An easy way out is to make
z € iR, and extend the corresponding heat kernel by analytic continuation.
Details are left to the reader. For an extensive discussion, which will be much
more relevant in Section 12, we refer to the introduction of [BGol] and to
[BGol, §7.13].

PROPOSITION 9.10. For z € R,and |z| small enough, the following iden-
tity holds:
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(9.25)

3,0 RgXl K/2
Py (2,2) = 2772 |det | — U2/
sinh <R23(173)K/27r)

exp<_1< Rg;)((l K/m Z>
4 tanh <R25(1 S)K/Qﬂ')

TX
B 1< R25(1 K/2r Z’>
4\ tanh (R25(1 s)K/27r)

R TX
+ % < 28(1XS)K/27T eR‘ZS(l—S)/Qﬂ'sz Z/>>
sinh (R25(1 s)K/Qﬂ)

s(1 2 dKXe  KXd' 1251 dv
exp(—T‘K‘ 5+ \/§< . ds—l—ﬁ)

1
€xp (—§<ekszs(1 s)K/27rel> (ex)C (€Z)>

exp (%wQ (VF,gF> + Mds) .

V2

1/2

Proof. The proof follows from (9.17) and from Mehler’s formula as in
[B10, eq. (4.48)]. O

Clearly g acts as a parallel isometry of Nx_,x, with no eigenvalue equal
to 1. If no eigenvalue of g is equal to —1, there is a locally constant B €
End (N X,/ X), which is antisymmetric and invertible, and which is such that

(9-26) 9Nk, x =€

If the eigenbundle N )}1 /X associated to the eigenvalue —1 is not reduced to 0,
we can still find a locally constant B € End (N X,/ X) ® C, which is invertible,
which preserves N X,/X and its orthogonal Ny 1/LX, which acts by multiplication

by im on NX /X0 and like a real antisymmetric matrix on NX 7x 80 that (9.26)

still holds. We may extend B to a section of End (T'X|x,) acting as 0 on T X,
so that (9.26) holds on T'X|x, .

PROPOSITION 9.11. For z € R and |z| small enough, the following iden-
tity holds:
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(9.27)
RTX 1/2
( -1z Z) — 9n/2 [det ( 23(1;)1{/% )
sinh (R2s(1 s)K/27r)
exp ( 23 - S)K/% sinh (Rgsﬁ_s)l(/% - B/Q) sinh (B/2) Z, Z>)
Slnh 25 1— s)K/27r)
(1- KX/ KX /96 1 d
exp< 8 ‘KX’ + \/§ ( Sv d8+v_;}>>
1
exp 5 €k7R23 1— s)K/27rel> (ex) € (er)
w(VF gF)
F F <7’
ex1o<2 (V 79>+ NG ds | .
Proof. Our identity follows from Proposition 9.10. 0

Definition 9.12. Let Trg be the functional defined on ¢(TXy), with values
in 0 (T'X4), which vanishes on all monomials in the ¢ (e;) whose length is < m,
and is such that

(9.28) Trs [e(e1) ... 2 (em)] = (—1)™mF1/2,

In the sequel, we use the Berezin integration formalism of Section 1.2,
with V = TX,, FE = TX,. Equivalently we use the notation of Section 3.2,
with X replaced by X,.

PRrROPOSITION 9.13. The following identities hold:

(9.29) Trs [exp (—% <ek,R§S)((1 S)K/2W€z> (ex) (e l))]

. TX, 2
~ et sinh (RQS(I—S)K/27r> /B exp (_RTXg )
RTXg 2s(1—s)K/2m

2s(1—-s)K /2w

TrSA‘(N;‘g/X) {gexp <—% <ek,RiV§{1/§)K/2w€l> (ex) € (e l)ﬂ
— [det <4sinh (R;Vs’((ff;)[(/% - B/2) sinh(B/2)>}1/2 .

Proof. The first identity in (9.29) follows from results of Mathai-Quillen [MQ)].
The second identity in (9.29) follows from [BGo2, Prop. 4.9]. O
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Ifoaoe A (T*X,), o™ denotes the component of « of maximal degree m.

THEOREM 9.14. The following identity holds:
(9.30)

. dony . (Z
om/2 [ /N » Tr, [QPiﬁ( (g’IZ, Z)} 71”(\; 71';" /(2 )

~|dsdv,max
TX,\ 3Xg
= —{26[( (jq’)(gaV )ﬁKﬂ)/Zs(l—s)

w (VF’ gF
2

TrFlx

g
v

) exp (S (1 - 8) w2 (VF,gF>) /277-] }maxdgdv.

Proof. By (9.27), (9.29), we get

(9.31)
o dvy (2)
gm/2 / T, [gPS (9712, 2 Xg/X
o T 9P (o7'2.2)| = e
1 s(1—5)| 2 dKX KX (23—1 dv)
- - 2 YK ds + —
e (T g (e

/1§ exp <—RQT:((f_s)K/2w> T [g eXP(%WQ (VF, 9F>

By (9.31), we obtain

(9.32)
o . d’l} (Z) de’U
m/2 3,0 1 Nx,/x
) [ [, TP (v 2.2)] Tt
1 s(1—5) | xi2 dKX'\ KX
= G exp <—U ’K ’ + 2 2

/Eexp <_R§s)((lg—s)K/27r) %Tr {gw (VF,gF) exp (%wQ (VF,gF))] dsdv.

. i — i i 1 I~ <
In (9.32), we now make the rescaling e’ — /2s (1 — s)e’,e* — Tme 1<

i < m. Such a rescaling does not change the term of maximal degree in (9.32).
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From (9.32), we obtain

(9.33)
o dv (Z) dsdv,max
m/2 30 (471 TNy /x 7
| [ Tl (i z2))
1-— 2 1-— KX
= {exp (—78< 3) ’KX‘ +78( S)dKX/> —
v 2mv 2mv
B .
/ exp (—RKXQ/QW)
Trtlxs {gw (VF gF) exp (s (1—s)w? (VF,gF) /27r)}}
dsdv
1—
MR
which is just (9.30). The proof of our theorem is completed. O

9.6. A proof of equation (7.16).  Using the trivializations indicated in
Section 9.2, and the fixed point techniques in local index theory in [BGol, §7],
and also Theorem 9.14, we find easily that for z € R, and |z| small enough, as
a— 0,

(9.34) Trs[gexp (—Lxk — £)]§,2la

o [ T farth (0 22)] M

More precisely, we use the known fact [BZ1, Prop. 4.9] that among the mono-
mialsin c(e;),¢(e;),1 <i < m, up to permutation, c (e1)c(e1)...c(em)C(em)
is the only monomial whose supertrace on A" (T*X,) is nonzero, and moreover

(9.35) Trs[e(er)c(er)...c(em)c(em)] = (—=2)™.

When the Getzler rescaling indicated in (9.16) is done, comparison with (9.35)
shows that there is an extra factor 2/2 which should be incorporated in the
final computation.

If ZeTX, put
(9.36) 1(Z)=-Z.

‘| dsdv,max

Then the operator I~V i’%[ is obtained from N 5% by changing

c (Rg:s)((l—s)K/%rZ) ds
into

—E(R%;)((l_s)K/%Z) ds.
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It follows that ng’?( (—Z,—Z") is obtained from PE’?{ (Z,Z") by changing ds,
w (VF,gF> into ;ds, —w (VF,gF>. This shows tlr;at in the integral on the
right-hand side of (9.34), ¢ (Rgs)((lis)K/%Z) ds does not contribute to the com-
putation, i.e. we may replace Pj”% by ?i:(l)(-

By (7.9), (9.30) and (9.34), we find that for z € R, and |z| small enough,

as a — 0,

dsdv
(937) Try [9 exXp (_LK - ﬁ)]gia — Mg(1—s),v/5(1—s) v

i.e. we have established (7.16).

9.7. A proof of equation (7.17). Let N be the operator obtained from

N by replacing dv by v2dv. By (9.3),
— dsdv
(9.38) v?Trg [gexp (—Lx — £)]§/2ia = Try {g exp (—Na)]

By (9.1), we deduce easily that for a € ]0,1], (s,v) € [0,1] x [1, 400,

Trg {g exp (—Na)} dede

t'=a

t'=a

remains uniformly bounded. A similar argument was given in [BGol, §8.14].
We find that for z € R and |z| small enough, there exists C' > 0 such that for
a €]0,1],(s,v) € [0,1] x [1,+o0],

dsdv

(9.39) <cC.

. s ()]

By (9.38), (9.39), we get (7.17). The proof of Theorem 7.5 is complete.

t'=a

10. A proof of Theorem 7.6

The purpose of this section is to establish Theorem 7.6, i.e. to evaluate
the limit as a — 0 of k}Trg [gexp (—Lg — E)]g?ia The strategy is very similar
to the one we followed in Section 9.

This Section is organized as follows. In 10.1, we introduce a rescaled
version of the operator N% In 10.2, we introduce a new Getzler rescaling,
and evaluate the limit as a — 0 of this rescaled operator. Also, we compute
the fundamental solution for the limit operator. Finally, in 10.3, we establish
Theorem 7.6.

As in Section 9, we have kept the strictly analytic arguments to a min-
imum, since they are the same as in [BGol, §7]. For more details, we refer
again to Section 12 of the present paper.

We use the notation of Sections 6, 7 and 9. Also we take Ky € 3(g) and
K = zKy, with z € R*.
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10.1. The operator N*. The operator N* was defined in Definition 9.1.
As we saw in Section 7.3,

(10.1) o (5,v) = (v/as, Vav)
Under j, the variables ds, dv are scaled into /ads, v/adv.

Definition 10.1. Let N* be the operator obtained from j:N® by the
transformation (ds, dv) — ( 1/4ds,a1/4dv).

By (9.3),
(10.2) JoTrs [gexp (—Lg — /J)]g,la = Trg [gexp (—Na’)]dev.

By (9.1), we get

(10.3)
N — —a(Vé\;(T*X@F’u _ % (s (1—Vas) (1 —va/v) + %) <KX’ei>

~r 2
+ (2/as — 1) (1/21d ;éfﬁds>

X2

+ZH+%4 (- (2vas — 1) e (K¥) +¢(KY)) ds
—a®/*c (w (VF,gF)) ds/2+ (2v/as — 1) a3/46(w (VF,gF)) ds/2
—al/t (c (KX) + (2Vas — 1) E(KX)) dv /20*

+§ <ek,RTX(6i,€j)€l>C( i) c(ej)c(ex)c(er)

+i <v£XKX,ej> (—?C(ei)c(ej)

+4a(312 (—e(ed) eleg) + 26 2(en) w? (V7,6 (erve)
+% ‘w (VF,gF)r — %c(ei)ﬁ(ej) vEuy (VFagF) (%‘))-

10.2. A new Getzler rescaling. Now we use the notation of Section 9.2.
Recall that the connection VA (77 X)® F A (R?):1.0 ywas defined in Definition 9.4.
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Definition 10.2. Let Ly A (T X)8 FE A (R?).0/ be the connection on the
vector bundle

A (T*X) & F& A (R?),

over X, which is obtained from j:! VA (7" X)BFEA (R?)

1/4d3.

% by the rescaling ds —

y (9.5),
(10.4) tvA (T*X)® F® A (R?),u,a1,2

— % <RTXei, €j> (c(e;)c(ej) —c(ei)cley))

1
R (s (1= Vas) (1 va/o) +
Then we use the trivializations corresponding to the trivializations in Sec-
tion 9.2, except that the connection VA (T"X)8 F& A (R?) w0
by the connection VA (1" X)® F&A (R?),u.ar,

Recall that the function p (Z) was defined in (9.10).

1
_ KX,.
21}) d

is now replaced

1,ar

Definition 10.3. Let N, be the differential operator,
(10.5) Ny == (1= p*(2)) aATX + p* (Z) N
We still define H, as in (9.13).

Definition 10.4. Let N 2% be the differential operator acting on Hy,
(10.6) N2 = H, 'N# H,.

We take the orthonormal basis (eq,...,e,) of T, X as in Section 9.2.

Also, we introduce another copy of A" (7T%X,), which we denote by
AN (T*Xy). For b>0,U € T, X, set

(10.7) e (U) = \/2/8U° A —\/b/2i, & (U) = \/2/60% A+ /b/2i.

We define R?(g as in (3.21).

Definition 10.5. Let N, K be the operator obtained from N by re-
placing c(ej),c(e;) by ¢ s (ej) ¢/ (ej) for 1 < j < m, while leavmg the
c(ej),c(ej) unchanged for m +1 < j < n.

Definition 10.6. Let
NZ§ e (A (T*X,) &
@ End (A

A (T X,)
(N%,/x)) @End (F) & A (R2>)x®0px
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be given by
451} + 1
30 ATX | X, X,y X,/
(10.8) N} =-A K ‘ +\/_v (KX + KX ds
1 X, X dv  dKXd
— E(K K )?_ 21} 2R14 +1K/2
THEOREM 10.7. Asa — 0,

(10.9) N2 — N2

Proof. We use equation (10.3) for N“. By (9.7), (10.4), and by proceeding
as in [BGol, §7.7], we find that as a — 0, in the given trivialization,

|
(1010 ~a VTR = (50 Va1 V) + ) (%)
o 2
+ (2v/as — 1) (1/31d ;C(:;ids> AT,

The other terms in the right-hand side of (10.3) can be dealt with as in the proof
of Theorem 9.8. Observe that, since the variables ¢ (e;) always appear with a
power of a which is at least a'/4, there are no exotic asymptotic expansions
like the second one for ¢(7U) (v/aZ) in (9.23). The proof of our theorem is
completed. O

Let Pi’?(/ (Z,Z') be the smooth kernel associated to the operator

exp (—N;’%’) with respect to the volume dvrx (Z')/ (2#)"/2. We now have
the following trivial identity.

ProprosiTIiON 10.8. The following identity holds:
(10.11)

P (572.2) = e (<o 1) 2] 14)

4sv+ 1
exp<— svt ‘KX‘ + AKX ’/%-2314 e

42 K/2m

—% (KX + KXY ds + ﬁ (Ko — KX) dv/v2>.

Let Trg : A (T*X,) ® A (T*X4) — R be the functional which vanishes in
the monomials in the e?, €%, 1 < i < m of length < 2m, and is such that
(10.12) Tr, |elel .. emem| = (=2)™.

As in Section 9.5, we use the Berezin integration formalism of Section 3.2,
with X replaced by X,.
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ProprosITION 10.9. The following identity holds:

(10.13)
= dsdv,max
B_— dUNX X (Z) ’
Tre |gP2Y (9712, 2) | —eX 2 =
UN/ ey ) (2m)"
Xq/ ) max d d
[2\/7/ Tl [g K 20 ( 43v+1)/ KXQ’exp< Rng/Qﬂ'>] ng.
v

Proof. By Proposition 10.8, we get

(10.14) VN /Trs P 12,2)]M

dsdv,max
(2m)"/? 1

Xg/

4sv +1 2 K
- _ Flx, _ X, X,
lTr [g] exp ( 102 ‘K ‘ +dK /87rv> N

B_— . P dsdo
KXo exp (—R{fﬁlK/Zﬂ)] e

In (10.14), we now make the rescaling
"= ((4sv+1) /U)1/2 el et — ((451} + 1/11)_1/2> et

and find that (10.14) is equivalent to (10.13). The proof of our proposition is
completed. O

10.3. A proof of equation (7.18). Using the trivializations indicated in
Section 9.2 and the standard fixed point techniques in local index theory as in
[BGol, §7], by (7.9), (10.2) and by Proposition 10.9, we find that for z € R*
and |z| small enough, as a — 0,

dsdv
(1015) TI'S [g exXp (_LK - £)]?’Sdz - 2n4v2/4sv+1 3 5
i.e., we have established (7.18) for k, = jq.

By replacing j, by j., we also get (7.18) for k, = j.. The proof of
Theorem 7.6 is completed. O

11. A proof of Theorem 7.7

The purpose of this section is to prove Theorem 7.7, i.e. to show that the

(2)

limit as a — 0 of Trs [gexp (—Lx — £)];;Z, vanishes.
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This section is organized as follows. In 11.1, we describe a coordinate
system near X, i, and we introduce an adequate Getzler rescaling. Also, we
compute the limit as a — 0 of the rescaled form of the operator Lx + L.
In 11.2, we compute the fundamental solution for the limit operator. Finally,
in 11.3, we prove Theorem 7.7.

Again, the analytic arguments have been kept to a minimum, since they
are essentially the same as in [BGo2, §9].

We use the notation of Sections 9 and 10. In particular, we still assume
that Ko € 3 (¢) and that K = 2Ky, with z € R*.

11.1. A change of coordinates and a Getzler rescaling. We take ¢q
as in Section 9.2. Take yo € Xyx. If Z € T, X,|Z| < 4ep, we iden-
tify Z to expig (Z) € X. Similarly, we identify (A" (T*X)® F® A (R?)), to
(A (T*X)RFR A (R2))y0 by parallel transport with respect to the connection

Ly A (T X)8 FE A (R?)ua along the curve h € [0,1] — hZ € X.
Definition 11.1. Let N;Oa;é be the differential operator,
(11.1) Ny= = (1= p2(2)) adTX + p? (2) iy N°.
We still define H, : H,, — H,, as in (9.13).
Definition 11.2. Let NyQ;aI/é be the differential operator acting on H,,,

(11.2) N} = Hy ' N2 H,.

a

We identify the normal bundle Ny, , /x, to the orthogonal bundle to
TXgr in TXy|x,,. Let er,...e, be an orthonormal basis of Ty, X, r, let
€¢+1,---,6m be an orthonormal basis of Nx . /x, .., let emi1,...,€, be an
orthonormal basis of Nx ,x ,,- Recall that when U € T, Xy, ¢, (U) and ¢, (U)
are as defined in (10.7).

Definition 11.3. Let N;’;allé be the operator obtained from Nyzoa[/é by re-

placing c(e;),¢(ej) by ¢ 5 (éj),ﬁ\/a (ej) for 1 < j < ¢, while leaving the
c(ej),c(ej) unchanged for 41 < j < n.
In the sequel, the tensors are evaluated at 1.
Definition 11.4. Let
Nk € (N (T X i) & K (T" Xy i)
@End (A" (Ng, .,x) ©F) &N (R?)) &0p,

be given by
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(11.3)
1 2
3,01 TX 17X
N3O _ (vei - (s(l —s)(1—1/v) + %> (V'K e>>

25 —1)%\ 1 9
+ (48(1—8)+¥>—’V§XKX‘

—2s(1—s) <1 - %) ¢(VEYKY) ds
- (c (VEXKX) + (25 — 1)E(V:§XKX)) dv/20v* 4+ 2RTXox
§

) <V£XKX761>

(+1<ij<n
1 25— 1)\ .,
(—;c(ei) c(ej) + <4s (1—-s)+ %) c(ei)c (ej)>.
THEOREM 11.5. For (s,v) € [0,1] x R,
3, 3,0
(11.4) N, %% — NJg.

Proof. We use again equation (9.1) for N% By (9.5), (9.7), since KX
vanishes on X, x, we find as a — 0,

(11.5) — a<vg<T*X>@F®A'<R2> = (= 1/0)+1/20) (KX, &)
a

o 2
+(2s—1) 62(6\/%)d8— 2%(13)

— — (Vei —(s(1—=s)(1—=1/v)+1/20) <V§XKX,6¢>)2.
Moreover, as a — 0,
& (vaz)|
a

(11.6) N ‘v;XKXf.

By using the same notation as in the proof of Theorem 9.8, we deduce from
(9.21) that as a — 0,

¢ (KX>_ °

(11.7) NG :C(VEXKX)+O(CL1/4’Z’2)+O(\/5’Z‘2>7
:E(KX): ’

2| et o i) o vanzr).
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We now use the notation which we introduced after equation (9.22). Since
h € [0,1] — hZ is a geodesic in X, Z is parallel with respect to VTX along
this geodesic. By (9.6),

(11.8) (ei) + (2s — 1) (Z,¢e;) ds,

c c
c(re;) (VaZ) =¢(e;) + (Z, ;) ds.
From (11.8), we find that for 1 <i </,

V2 ql/4

(11.9) [c (Te;) (\/_Z)] = ¢ eln— NG ——1ie, + (25 — 1) (Z, e;) ds,
1/4
[E\/ET (&) (\/EZ)E = 1£/4€’ N+—= \/§ o +{Z,ei)ds.

Also, by the first equation in (2.7), we find that for 1 <i,j < n,
(11.10) (VIXKX (vaZ),7e;) = (VEXKX (3) ;) + O (a|2]).
Moreover if 1 <i < /,1<j <mn,

(11.11) (VEXKX () ) = 0.

By (11.9)—(11.11), we find that as a — 0,

3

(1L12) & (e B (Vaz) (ene)) ) efei) eles) Eer) (e
= 2RTXox (yo) + O (a'1?),

a

(11.13) E <V2XKX (VaZ) ,€j>c(€i)c(ej):|3
_! > (VESE (o) e5) c(ei) eley)

+1<i,j<n

—% (25 = 1) ¢ (VEYKY) ds + 0 (Va|2]*),

E <v£XKX (VaZ) ,ej>5(6i)5(€j)
:i 3 <V£XKX (yo),6j>5(€i)5(€j)

£+1<6,5<n

a

3

a

—15<V§XKX) ds+ 0 (Va|Z*).

From (11.5)—(11.12), we get (11.4). The proof of our theorem is completed. [
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11.2 The heat kernel associated to the operator N;;O;é.

Definition 11.6. Let ‘)"(2;0'[/( be the operator,

(114) 0B — - (vel. _ (5 (1—s)(1—1/v)+ %) <V§XKX7ei>>2

(2s =1\ 1 |orx ox
+ (43(1—5)+T ﬂ\vz K|

1 1
1+1<i,5<n

12
+ (43 (I—-s)+ u) c(e;) E(ej)>.

(Y

Observe that ‘31200/[’( is obtained from the operator N;OOI/Q by making
ds =0,dv =0 and RTXsx = (.
Recall that Ky € 3 (g) is fixed and that K = zKj, with z € R*.

Definition 11.7. For z € R*, and |z| small enough, let ‘}32;0/['{ (2,2, Z,

VARS Nx, . /x be the smooth kernel associated to the operator exp (—%2;0/1/{)
with respect to the volume duy, . (Z')/ (27r)dimNX9vK/X/2.

Observe that the operator mfmo}’( is not self-adjoint. As explained at length
in the introduction to [BGol] and also in [BGol, §7.13], for z € R* and |z| small
enough, one can still make sense of the smooth kernel ‘,]3500/[2 (Z,7'"), either by
using analyticity in the variable z, or by using a truncation procedure.

Put
(11.15) C=-2(s(1—s)(1—1/v) +1/20) VIX KX,
H=—(4s(1=s)+ (25— 1)° /v) % (V.TXKX)Q,
Q=2s(1—-s)(1—1/v) VIXKX,
Then
(11.16) e

PROPOSITION 11.8. For z € R*, and for |z| small enough, the following
identity holds:

(11.17)
1/2
30m (1 _ o—dimNx, ,./x/2 Q
i e) e )

sinh (

exp (- <% sinh ((C — B+ Q) /2)sinh (—C + B+ Q) /2) Z, Z>>
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exp <—i > <VZ:XKX,ej> (—%c (e;) c(ej) + (45 (I—-s)+ M)

E(el) 5(6])> ) .

Proof. This identity follows from Mehler’s formula. A proof is given in
[B10, egs. (4.49) and (4.50)]. O

PROPOSITION 11.9. For z € R* and for |z| small enough, the following
identity holds:

(11.18) Trs <N’*(9*K/X) [g exp <—i > <VeTiXKXa 6j>

2
(—%c(ei) c(ej) + (48 (1—s)+ M) 5(%)&%’)))]

v

= [det (4sinh ((C' — B + Q) /2))sinh (-C + B + Q) /2)]'/%.
Proof. Observe that
(11.19) C’+Q=—%VTXKX,
-C+Q= (43(1 —s)+ M) vIX KX,

By [BGo2, Prop. 4.9], by proceeding as in Proposition 9.13, using the obvious
analogue of (9.35) for Ny, , /x, and by (11.19), we get (11.18). O

PROPOSITION 11.10. For z € R* and |z| small enough, the following
identity holds:

A (N)*<g K/x) 3,001 -1 drUng,K/x (Z) .
(1120) /]\/X x TrS [me,K (g Z7 Z):| (27r)dimNXg.K/X/2 =1
Proof. This is a consequence of Propositions 11.8 and 11.9. O

Definition 11.11. For z € R* and |z| small enough, let P;O’OIIQ (2,2, Z,
Z' € Ty, X be the smooth kernel associated to the operator exp (—N;;O}é) with
respect to dvrx (Z2') / (2m)"/2.

Here, we will not compute the kernel P;()Ollé (Z, Z") explicitly. However, we
will prove the following result.
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THEOREM 11.12. For z € R* and |z| small enough, the following identity
holds:

(11.21)

/NXQYK/X /B TI‘SAV (N;(g,K/X) [gP;(;?[,é (g_lZ, Z)}dsdv % .

Proof. Let ﬁ;}o,}/( be obtained from Njool/é by making RTXsx = 0. Let

Ti%/ (2,2'), Z,Z" € Nx, ,./x be the smooth kernel associated to exp (—ﬁf;f}’()

and the volume form duy, (Z")/ (27r)dimNXg,K/x/2.
We will use the Berezin integration formalism of Sections 3.2 and 3.3, with
X replaced by X, . By (11.3), we have the obvious

(11.22)
D (e - dors, o (7)
/NXg,K/x/ TrSA (N Y ) [gP;(;?[’é (g 1z Z)}dsdv%
) [ mt ) (2

d’Ung’K/x (Z)
(27) 4 Ny xerx /2

Recall that we identify Nx ,x to the orthogonal bundle to T'X; in TX|x,.
We will use the same conventions for other normal bundles. Let N be the
orthogonal bundle to Nx_, /x, @® Nx, . /x, in Nx, ,/x. Then we have the
orthogonal splitting,

(1123) NXQ,K/X = NXQ,K/XK 69]\'f-Xg,K/-Xg @j\?

The vector bundles in (11.23) are stable under the action of g or of VI¥ K| .

By using the involution I : Z — —Z on each of the corresponding eigen-
bundles of g and VIX KX| X, x> and also Proposition 11.10, one finds easily
that the integral appearing in the right-hand side of (11.22) can be expressed
as the sum of the integrals of the kernels associated to the operators ﬁ;’oo;/(
corresponding to the three vector bundles which appear in the right-hand side
of (11.23).

Since V.TXKX\XQYK vanishes on Ny , /x,, the contribution of Nx , /x,
vanishes identically. Also since VX K| X, x acts as an antisymmetric invert-
ible operator on Ny ., /x, and on N , it follows that these vector bundles are
even dimensional, and that the corresponding —1 eigenbundle of g in N is also
even dimensional. In particular, g acts as the identity mapping on Ny, , /x,

and as an orientation preserving map on N. Therefore there is a real antisym-
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metric endomorphism B = B, € End (ﬁ ) such that
Yo

= 6B.

(11.24) 9l5,

Of course, we can extend B to an antisymmetric section of End(Nx, ./ XqEBN )yos

which vanishes on Nx , /x, .., 0 that
. _ B
(11.25) N
Let e1,..., e, be an orthonormal basis of N. From (11.25), we get
1 ~ ~
QL26) gl (o) =o (3 (Besses) (clei) ees) — 2(en ) )

From (11.26), we deduce that g is even in the variables ¢ (e;) and also in the
variables ¢ (e;).
It follows from the above that when evaluating

TrsA' (N;gﬂk/xg@ﬁ*) [gﬁf,;?}’( (g‘lZ, Z)}dsdv7

only odd monomials in the c(e;) and the ¢(e;) contribute to the supertrace.
However, since Ny, , /x, @ N is even-dimensional, by the obvious analogue of
(9.35), the supertrace of such monomials vanishes. The proof of our theorem
is completed. O

11.3. A proof of Theorem 7.7. By proceeding as in [BGol, §9], we find
that for z € R* and |z| small enough, as a — 0,

(11.27)
i [gexp (— L — D),
B A (N* ) dsdv dvN (Z)
R Tr, Xg,K/X por _lZ, 7 Xg.x/X )
/Xg,K / [g WK (g )] (27r>n/2

Using (11.21) in Theorem 11.12 and (11.27), we get (7.19). The proof of
Theorem 7.7 is complete.

12. A proof of Theorem 7.8

The purpose of this section is to establish Theorem 7.8, i.e. to obtain the
asymptotics of Trg[gexp (—Lx — L£)] as a — 0 in the range (s,v) € [0,1] X
[a,1]. The main difficulty is to obtain a precise estimate on the remainder. As
explained in Remark 7.9, our theorem is stronger than Theorems 7.5 and 7.6,
which were established in Sections 9 and 10.



EQUIVARIANT DE RAHM TORSIONS 195

In this section, we provide the full analytic machinery, which allows us to
use the techniques developed in [BL], and more especially in [BGol, §9], where
a similar problem was considered, in a holomorphic context. We still use the
Getzler rescaling techniques introduced in Sections 9-11. However, since our
range of parameters covers the cases which were considered in these sections,
our proof incorporates the techniques which are used there.

Let us describe here a few features of the proof:

e The Clifford variables of type ¢ and ¢ are both rescaled.

e The cases w € ]|0,1] and w > 1 are handled with different techniques.

2
In particular when w is ‘small’, the term ‘K X ‘ Jw forces localization
near X, . This phenomenon has to be explicitly taken care of in our
estimates.

e Recall that w does depend on a. Still, when a — 0, the idea will be to
‘freeze’ w while taking the limit as a — 0 of all the other terms, in order
to establish the appropriate estimates.

This section is organized as follows. In 12.1, we use finite propagation
speed to show that our estimates can be localized near X,. In 12.2, we intro-
duce a new Grassmann variable ds, and a new operator N, which is obtained
from N¢ by a trivial rescaling.

Sections 12.3-12.7 are devoted to the difficult case w € ]0,1]. In 12.3,
we consider a coordinate system near X, x and a corresponding trivialization,
which depends explicitly on the choice of Zy € Ny, . /x,y,, and we introduce
Getzler rescalings on the Clifford variables ¢ and ¢. In 12.4, we define a family
of norms adapted to the problem which is considered here, in particular with
respect to the Getzler rescaling on both kinds of Clifford variables. In 12.5, we
show that the rescaled operators N\?}’%ZO verify uniform estimates with respect
togthese rﬁrgrr;s. In 12.6, we prove a key estimate for a differglglc; operator
N \/%Zo - N Jwz,» one critical feature being that the operator N w7, While
being a ‘local’ operator, still depends on a. In 12.7, we prove Theorem 7.8
when w € 0, 1]. Finally, in Section 12.8, we consider the case w > 1.

In the whole section, we assume that (s,v) €]0,1[x[a, 1]. Also, we use the
notation of Sections 7-11.

12.1. Finite propagation speed and localization.

Definition 12.1. Let A® be the operator obtained from the operator aN®
by replacing ds, dv by a®/2ds, Vadv.

Let | |, | |; be natural norms on the Sobolev spaces of order 0, 1 of sections
of F& A" (R?).
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THEOREM 12.2. Given 8 > 0, there exist C1 > 0,Cy > 0,C%(8) > 0,
C3(B8) > 0, C5 > 0,C4 > 0,C5(8) > 0 such that if K € g,|K| < ,a € ]0,1],
ifs,s € O (X, FRA (R?)),

(121)  Re(A%s,s)>Cra’lsff — (Caa® +CL(B)) Isf3
[Im(A%s, s)| <a (C3(B) + C3a) |s|]slo,
[(A%s, ') < Ca(als|y + C5(B)Islo)(als'[1 + C5(8)[s']o)-
Moreover, as 8 — 0, C%(3),C5(8),C5(3) — 0.

Proof. The key fact is that, by (9.1), all the coefficients of the operator A*
remain uniformly bounded for a € ]0,1]. The proof of (12.1) is then similar to
the proof of [BGol, Th. 7.11]. O

Remark 12.3. Observe that in [BGol, Th. 7.11], the term C%a does not
appear.

Recall that ay is the injectivity radius of X. Let a € |0, %¢]. The precise
value of o will be fixed later. The constants C' > 0,C’ > 0... may depend on
the choice of a.

Let f: R — [0, 1] be a smooth even function such that

(12.2) f(s)=1for |s| < %
=0 for |s| > a.
Set
(123) g(s) =1 - £(5).
Definition 12.4. For a > 0,b € C, put
+00 d
(12.4) Fa(b):/_oO exp(isb) exp (—82/4) f(\/as)\/%,
+o0
Go(b) = [m exp(isb) exp (—82/4) g(vas) \;lj_w
Then Fy(b), G4(b) are even holomorphic functions of b such that
(12.5) exp(—b%) = Fo(b) + G4(b).
Moreover F, and G, both lie in the Schwartz space S(R).
Put oo J
(12.6) 1,(b) :/ exp (isb/a) exp (—82/4CL) g(s) °
S 4ma
Then

(12.7) L(b) = Ga (b//a)
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By (12.2), (12.6), we find that given m, m’ € N, there exist C > 0,C’ > 0
such that if a € ]0,1],b € C, |Im(b)| < £,

(12.8) la|™ 1) (b)] < C exp(—C'/a).

Clearly, there exist uniquely defined holomorphic functions F, (b), Gy (b), 1,(b)
such that

(129)  Fa(b) = Fa(t?),  Ga(b) =Ga(t?),  La(b) = L(b?).
By (12.5), (12.7),
(12.10) exp(—a) = Fi(b) + Gq(b),

For ¢ > 0, set
Im (\)?
(12.11) Ve CRe(y) > T 2l
4c?
Im()\)Z 2
FC:{/\eC,Re(/\): i

Then V., I'; are the image of {\ € C,|Im (\)| <c},{A € C,|Im(\)| =c} by
the map A — A2
By (12.8), we find that if A € V,, /5, then

(12.12) AT (A)] < Cexp(—C'/a).
By (12.10),
(12.13) exp (=N = F, (N%) + I, (aN?).

If H is a Hilbert space and if A € £ (H) is trace class, set
(12.14) Al = Tr (A" 4)/?].
Then ||A||; is a norm on the vector space of trace class operators.

THEOREM 12.5. There exist 3 > 0,C > 0,C" > 0 such that if K € g,
K| < B,a € ]0,1],

(12.15) I, (A%

< Cexp(—C'/a).

Proof. By Theorem 12.2, the proof of our theorem is the same as the proof
of [BGol, Th. 7.15]. In fact, for ¢ € N, let I, ,(\) be the holomorphic function
on C, which is characterized by the following two properties:

(12.16) Jim T q(2) =0,

0y -
G =TI,()\).
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By (12.12), (12.16), if X € Vg,
(12.17) ™ T0q(N)] < Cexp(—C'/a).

We claim that, by Theorem 12.2, we can use the same methods as in [BGol,
§7.3] to establish our theorem. Still, as explained in Remark 12.3, the estimates
in (12.1) contain the extra constant C4a with respect to the corresponding in
[BGol, Th. 7.11]. Still inspection of the proof of the simple estimates [BGol,
equations (7.56)—(7.60)] shows immediately that replacing C5 () in [BGol] by
Cs (B) + Cha is irrelevant.

We can then proceed as in [BGol, Th. 7.15], and find that for 5 > 0 and
a € ]0,1] small enough,

1

T ay _ _— T _qa\—¢q
(12.18) T = 5 [ T =AY

Using (12.18) and proceeding as in [BGol], we get (12.15). The proof of our
theorem is completed. O

By (9.3), (12.13), (12.15), we find that to establish (7.20) in Theorem 7.8,
~ dsd

we may as well replace Trg [gexp (—Lg — N“)]g,zia by Trg {gFa (N“)} " This
will be done systematically in the sequel. ~

Let F, (N®) (x,2") be the smooth kernel associated to the operator F, (N%)
with respect to the volume dvx (') / (277)"/ 2. Then the kernel associated to
the operator gF, (N%) is just gF, (N?) (g~ 'x,2'). Moreover,
dsdv dvy (gj)

(27_[_)71/2 '

(12.19) Trq {gﬁ‘a (N“)}dev = /X Trg [gﬁa (N®) (gilm,a:)}
By (12.4),

(12.20) F,(N?) = 2/0+oo cos (S\/W) exp (—32/4> I (Vas) ds

T

The principal symbol of the differential operator N® is equal to a | ]2. Also
f (y/as) vanishes for |\/as| > a.

Using finite propagation speed for solutions of hyperbolic equations [ChP,
§7.8], [T, §4.4], we find that given z € X, F,(N%)(z,.) vanishes on
X \ BX (z,a), and depends only on the restriction of the operator N® to
the ball BX(z,a). Therefore, we have shown that the proof of (7.20) can be
made local on X. Moreover gﬁ’a (g_la:, x) vanishes if dX(g~!

Now we explain our choice of a. We use the notation of Section 9.2,
where g9 was defined. We will assume that a € ]0,g¢] is small enough so
that if z € X,d* (¢ 'z,7) < a, then x € V.,. By (12.19) and by the above
considerations, it follows that for 5 > 0 small enough, for K € 3 (g) such that
|K| < 3, our proof of (7.20) has been localized on the eg-neighbourhood Vs,
of X,.

x,T) > .
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12.2. A new Grassmann variable ds. Recall that w was defined in (7.13).

Note that

a v a
12.21 1-— 1-— — = — 4 —,
(1221) s(—s)(1—a/o)+ 5 =2+

Let ds be another odd Grassmann variable, which anticommutes with the
other odd Grassmann or Clifford variables.

Definition 12.6. Let N® be the operator,
(12.22)

N — _a<v£'(T*X)@F,u_ 1 (EJrg) KX e >
: 4v
X

oS- Ho) Wi

+ H+ /v( 28—12>C<KX/\/_)d8

— Vac (w (VF,gF)> ds/2 + (2s — 1) \/ac (w (VF,gF)> ds/2

gl (e (K4V) + 25 - D2 (1))

+ §<ek7RTX (ei,ej)ez>0(€i)0(€g) (ex) C(er)

+ i <V£XKX,ej> (—%c(ei) c(ej) + %’c\(ei)é(ej))

+ 4a<312 (—c(ei)clej) +cle)e (6]))002 (vF’gF) (i, ¢5)

- e ) = et 5B (97, ).

Definition 12.7. Set

(12.23) E; = Trg [gﬁa (Na)}dev %, E, = Trg [gﬁ’a (/\/’a)}_ —.

Let Ea|_ . be obtained from Es by replacing ds by ds.

ProproSITION 12.8. The following identity holds:
~ o dsdv
(12.24) Tr, [gFu (N7 = By + Balgr_y,.
~ dsdv
Proof. First, we observe that Trg {gFa (N “)} is unchanged if we replace

dv/v by dv/v —(2s — 1) ds. Using (12.21), and comparing equations (9.1) and
(12.22), we complete the proof. O
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12.3 A local coordinate system and a Getzler rescaling. In Sections 12.3—
12.7, we will assume that (s,v) € [0,1] x [a, 1] are such that w € ]0,1]. The
much easier case where w € [1,4o00[ will be dealt with in Section 12.8.

If z € X, we still define H, as in Section 9.3, except that A" (R?) is now
replaced by A" (R?).

Since X is totally geodesic in X, the Levi-Civita connection VX induces
a Euclidean connection VV*s/X on the normal bundle N X,/X-

Take yo € Xy . If Z € Ty, Xy, | Z| < 4eo, we identify Z as expy (Z) € X,.
We trivialize Nx, ,x along the geodesic h € [0,1] — hZ € X, by parallel
transport with respect to the connection V¥*s/x. Then (Z,Z') € Ty, X, X
Nx, /Xy — expiip;(og(z) (Z") € X,|Z|,|Z'| < 4ep defines a coordinate system
near 1.

If Zo € Nx,,/x,u0 %0l < €0, we trivialize TX along the geodesic
h € [0,1] — hZy € X, by parallel transport with respect to V. Then
Z € TyX,|Z| < 4eg — exp)Z(0 (Z) € X is a coordinate system near Zy € Xj.
By an abuse of notation, we will often write Zy + Z instead of exp)Z(O (Z).

Now we fix Zg € Nx, ,./x, 40 120 < €0, and take Z € T, X, [Z]| < 4dey.
The curve h € [0,1] — expy (hZ) lies in B;\ (0,5¢0). Moreover we identify

. * SIS A 2
TrizX, (N (T"X)BFOA (R ))ZO+Z
with
. ” ~ o~ 2
TXy, (M (T*X)EFEA (R ))Z

by parallel transport with respect to the connections

vIX 1gh (T*X)® F& A (R2),ua
b

along this curve.

When Zy € Nx, ,./x,.yo varies, we identify

g:Y0

T2 X, (N (T"X) & F& A (RZ))ZO

with
Ty, X, (A (T"X) & F& A (RQ))yO

by parallel transport with respect to the connections V7, vATX )& Fu

the curve h € [0,1] — hZy € X,.
We may and we will assume that e¢ is small enough so that if |Zy],
|Z| < 4ep, then

1 3
(12.25) 59;))( < ggo)iz < §Q£X-

along

We fix Zy € Nx, . /x,.y0> |Z0| < €0. The considered trivializations depend

explicitly on Zy. Therefore the action of the operator N depends explicitly
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on Zg. We denote by N7 the action of this operator centred at Zp, i.e. N
acts on a section h by the formula,

(12.26) 8 h(Z)=Nh(Zo+ 2).

In (12.26), the operator acts on Hy,. Also Hy, is identified with H,,, so that

ultimately, N7 acts on Hy,.

Recall that p (Z) was defined in (9.10), and that H, was defined in (9.13).

Definition 12.9. Put
(12.27) Ny == (1= p%(2)) ad™ 4 p (2) N,
Let ./\/goa = Ha_lj\/%;“Ha be the operator obtained from Néoa as in (9.14).
Let (e1,...,ep), (€r+1,---,€m), (€m+1,-..,€n) be orthonormal bases of
Ty Xg.xs Nx, /X, 00 VX, /X,y We denote with an upper index the corre-

sponding dual basis.
We use the notation in (10.7).

Definition 12.10. Let /\/'g;a be the operator obtained from /\/ﬁf by
e replacing c(e;) by ¢4y (i) for 1 <i <m.
e replacing ¢ (e;) by ¢, (e;) for 1 < i < L.
e replacing ¢ (e;) by ¢,/ (€i) for £+1 <7 <m.
e keeping c(e;) and ¢ (e;) unchanged for m +1 <i < n.

We denote by F, (N gna) (Z,Z") the kernel associated to the operator

F, (/\/'Za) with respect to dvrx (Z') / (2m)"2.

_Inthesequel, I, 1 ’... denote collections of distinct indices takenin 1,...,m,
el,el’” denote the corresponding wedge products of the e?,é% in A" (T *X,) and
in A (T*X,4). We use the same notation for products of the associated annihi-
lation operators.

Clearly,

(12.28) Fy (N3") (2,2) = Y. ¢! nelie i Q1Y (2,7,
Ql1(2,2') € (Bnd (A (N3, )x) B F) & A (R3))yo.
Let F, (Ngf)max (Z,Z") be the operator which appears in (12.28) after
eEAL ANEMABI AL ANE™,

with no annihilation operator.
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If z € X, in the coordinate system Z € T, X,|Z| < 4e9 — expy (Z),
there is a smooth function £, (Z) with values in R such that

(12.29) dvx (Z) =K, (Z)dvrx (Z),
and
(12.30) K. (0)=1

PROPOSITION 12.11. For yo € Xgk,Z0 € Nx, ,./x
Nx,/xyo 12| < €0/\/a, the following identity holds:

|Zo| < €0,Z €

g,Y0?

(12.31)
a(”—m)/2T‘rs [gﬁ‘a (Na) (g_l (Z07 \/EZ) ’ (ZO’ \/EZ)>} kEyO,ZO) (\/EZ)

: 2TrsAl (N}g/x) [gﬁa (Ng;a) (gilz’ Z)}max'

_ m(m+1)/2
=1 ey

Proof. This is a trivial consequence of (9.35). O

12.4. A family of norms. As indicated in Section 12.3, we will assume
that (s,v) € [0,1] x [a, 1] are such that w € ]0,1].
For0<p</,0<qg<m—1/, set

(12.32) AP:9) (T*Xg)y0 = AP (Ty*ng’K) ® A7 (N;(Q,K/Xg,yo) .

The various A®9 (T Xg),, are mutually orthogonal in A" (T"X,). Also

A" (R?) denote the forms in A° (R?) which have partial degree r in the Grass-
mann variable ds, and 7’ in the Grassmann variables ds, dv.
Let I, be the vector space of smooth sections of

(M (T X)) &R (T"X) B A (Ng, ) x) ©FEA (R3))y0
on Ty, X; let Ié’;’p,’q/’r’w) be the vector space of smooth sections of
(A7 (T X)) AP (T X)) & A (N, )5 ) B FEA™ (RY)) .

on T, X. Let 120, Ig(fs’p 140 b the corresponding vector spaces of square-

integrable sections.

Definition 12.12. For a € 10,1}, (s,v) € [0,1] x [a,1], yo € Xy K, Z0 €
Nx, /X, w00 1 20|l < €0/v/w, if h € Ig;’pI’ql’r’rl) has compact support, set

(1233) 0 = [ IR(2F (140121 p (Vaz/2)" "

Yo

v+ (Jareiz+1z) otvazm)
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2m—t—q')
(14 fawfo121p (vaz/2)
(1+ (121 +120l) p (Vaz/2)* ™ dvrx (2).

J. ,? ”/,‘77'"/ 70
TP 00w

Then (12.33) defines a Hermitian product ( ) e

equip Igo with the direct sum of these Hermitian products.
Using (7.14), we find that the coefficients /v, \/a/v and \/aw/v are uni-
formly bounded.

a,s,v,%0,0 on

PROPOSITION 12.13. For 1 < i < m, when acting on (Iy0,| |a,s7U,Zo,0>7
the following family of operators have uniformly bounded norm:

(12.34) 1|ﬁZ|§4EO\/%ca/U ()5 1) az|<ie, Va2l cao (€1).
Similarly, for 1 <1i < £, the family of operators
(12.35) 1|ﬁZ|§4EO\/5aJ (i), 1‘ﬁz‘§480\/a|2|a, (e;),

1 vaz|eiea VO 20180 () 1| jagfcacJav w1 2180 (e2)

and for £+ 1 < i < m, the family of operators

(12.36) 1\\/52\950 Mev/w (), 1‘\/EZ’§450\/E 4 Co/w (),

are uniformly bounded. Finally the operators

(12.37) 1]\/62]3450‘15’ 1’ﬁ2’§460 |Z| ds,
1]\/6213450%7 1‘\/EZ‘§460|Z0’E’ 1]\/62]3450\/7/7}‘Z|£’

1\\/EZ\§4sodv7 1\\/EZ\§450|Z0’dU7 1’\/EZ’§460\/6L/U‘Z| dv.

are also uniformly bounded.

Proof. By (9.10), if |\/aZ| < 4eyp, then p(y/aZ/2) = 1. Then the uniform
bounds on the family (12.34) follow from the next uniform bounds under the
given conditions on s,v, Zy, Z:

L <, _VvlZ] <C,
14+ v|Z| 14+ v|Z|

La+velz) <c %!Z!(HﬁIZI)SC-

The uniform bounds on the family (12.35) follow from the next uniform bounds,
where (7.14) is used,

(12.38)
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(12.39)
1 <c Vva/vl|Z| <c
1+ +/ajv|Z| +|Z| 1+ /ajv|Z| +|Z|

o(1+Verizi+izl) <c. vaviz) (14 a1z + 1)) <

| Zo| <c vajwl|Z| <0
14+ a/v|Z|+ | Z| 1+ /ajv|Z| +|Z|

A (1+\/a/U\Z| + \zoy) <, \Jajw|Z] (1+,/a/v2\ + yzo|> <c
The bounds in (12.36) follow from the next bounds, where (7.14) is used again:

;<C —Vaw/v’Z‘<C
1+ Vaw/v|Z] ~ 1+ Vaw/v|Z) —

(1 awppizt) s oozl (14 awjol2]) <c.

Finally the fact that the operators in (12.37) have uniformly bounded norm is
trivial. The proof of our proposition is complete. O

(12.40)

Definition 12.14. For a € ]0,1],(s,v) € [0,1] x [a,1], yo € XgK,Z0 €
Nx, «/X.yo> |Z0] < €0/v/w, if h € I, has compact support, set

(12.41)

1 2
B2 szt = 1MLz + |0 (VaZ) |[KX (Vizo + vaz)| b

a,s,v,%0,0

n
2
+ Z |V€ih|a,s,v,Zo,O '
i=1

Let (I, , | |¢,1) be the Hilbert closure of the above vector space with respect to
|

a,5,0,20,1- Then (I?IJO,| la,s,0,70,1) is densely embedded in (Igo,| |la,s,0,70,0) With
norm smaller than 1. We identify 120 to its antidual by the Hermitian product
(a,s,0,20,0- Let (1;01, | |a,5,0,25,—1) be the antidual of (I;O, | |a,5,0,20,1). Then I;C)l
embeds into Iéo, and the norm of the embedding is < 1.

12.5. Uniform estimates on the operators N\?}%Zo' If Zo € Nx, ./x

9,907
|Zo| < e0,Z € Ty, X, | Z| < 4eg, if U € Ty, X, let 72U (Z) be the parallel trans-
port of U along the curve h — 2tZy,0 < h < 1/2,h — expy ((2h —1)Z2),1/2 <
h <1 with respect to vTX,

Recall that k = zKy. Now we have an analogue of [BGol, Th. 8.18].
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THEOREM 12.15. There exist constants C1 > 0,...,C4y > 0 such that
if a € [0,1],if (s,v) € [0,1] x [a,1] are such that w € ]0,1], if n € N,
Yo € XQJ(,ZO S NXg,K/ngyO”ZO| < 80/\/6, if z € R,’Z’ <1, if h,h/ S Iy0
have compact support in {Z € Ty, X,|Z| < n}, then

(12.42)

3, 2
Re <N\/%Zoh’ h/>a,s,v,Zo,0 =G ‘h|a,s,v Zo,1 - (1 t ‘nz‘ ) ‘ ‘“ 5,0,20,0 7

3,a /
‘ <N\/_ZU >0«,37U720,0 S 03 (1 + |nz|) |h|a757U1Z011 a)s’U:Z(hO )
3,a / 2
‘<N\/azﬂh, >CL,S;7.)7ZO70 S 04 (1 + |nz| ) |h|a787v7Z071 a,s,v,ZO,l ’

Proof. Recall that Z is parallel along the geodesic h € [0,1] — Zy+hZ. By
(9.6), we find that in the trivialization indicated in Section 12.3, if U € T, X,
(12.43) ¢ (r%U) (Vaz) =c(U) + (25 = 1) (U, Z) ds,

¢(r?U) (Vaz)=e(U) + (U, Z) ds.

In particular the right-hand side of (12.43) does not depend on a.
Observe that by (7.14), if a, s, v are taken as indicated,

v/w+ a/4v

remains uniformly bounded. Then using Proposition 12.13, (12.43) and by
proceeding as in [BL, Th. 11.26], [BGol, Ths. 7.31 and 8.18|, we find easily

that the term which is part of NV’ \/ﬁz ,

_a<veAi-<T*X>@F,u_ (25 (1)

X
), _ete) ', [T
2s —1 ds — d H
+(2s )2\[3 ova® T T
fits with the estimates in (12.42).
Using again Proposition 12.13, we find that the contribution of the terms

—ac (w (VF,gF)) ds/2+ (2s — 1) \/Eé(w (VF,gF)) ds

is also harmless for our estimates.

Recall that w € ]0,1]. By Proposition 12.13, the operators \/a/vc, ., (€;) ,
1 <0 <4, ey (e),1 <i < 4,3/vey, (), £+ 1 < i< m remain uniformly
bounded. Using again (12.43), we find that the term

a

g (ew BT (e eg) er) e ei) e (eg) e (ex) 2(er)
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in N7* is also harmless for our estimates. The same argument applies to
L e clen 4 ale)eleN w? (VE. oF) (e er
4a Ty (—c(ei)c(ej)+c(e)clej))w (V7,97 ) (ei,€5)

B b))

Now, we will consider the other remaining terms in the right-hand side
of (12.22). Using (12.34) in Proposition 12.13 and the definition of the norm
1 in (12.41) , the term

~ e (K% V) do

is easily dealt with. Moreover,
(12.44) ME(KX/ﬂ> = Z <KX,TZ°ei> \/CL/UU)/C\(TZOQ').
1<i<n

By (12.37) in Proposition 12.13 and by (12.43), the contribution of the i,
m + 1 <1 <mn in the right-hand side of (12.44) is harmless. Also, by (7.14),

‘ ‘a,s,v,Zg,

(12.45) a/v < Cv/w.

By (12.36), (12.37) in Proposition 12.13, (12.43) and (12.45), the same holds
for the contribution of the 7, £ + 1 < 7 < m is also harmless. Also one verifies
easily that if 1 <17 </,

(KX (2o + 2),7%¢:(2))
and its first derivatives in the variables Zy, Z vanish at (0,0), so that
(1246) (KX, rV%e) (Vizo+aZ) = O ([Vuzol +|vazl*).
By (12.46), if 1 <1i </, we get

(1247) Jajvw (KX (VoZo ++/aZ) , 7/%%¢; (Vaz) )& (rV"%e; (Vaz))
= \Jaw/v2V/v | Zo| & (Ve MZ)) (1Za])

+\/ = |21 (1Y% e; (Va ( yzy)
w
by

By (7.14), (12.35), (12.37) in Proposition 12.13, by (12.43), by (12.44)—(12.47),
we deduce that the term

lMa KX/\/E 1+(25—1)2 ds — (25 — 1) dv
2

in the right-hand side of (12.22) is compatible with (12.42).



EQUIVARIANT DE RAHM TORSIONS 207

Using (12.34) in Proposition 12.13 and (12.43), we see that the term
1 a
1 <V6TiXKX, ej> € (e;) c(ej)
is still harmless.

The final term to be considered is

1 v
1 <V£XKX, ej> P (ei)c(ej) .

By (7.14), by (12.36), (12.37) in Proposition 12.13 and by (12.43), (12.45), the
case where £ + 1 <i,j < n is easily dealt with. Also, using (2.7), we find that
for 1 <i </,

(1248) VI, (an KX (VwZo+az) =0 (w|Zof® +a|Z?).

By Proposition 12.13 and by (12.43), (12.48), we find that the contribution of
the ¢, 7 such that 1 <14 or j </ is also harmless. The proof of Theorem 12.15
is complete. O

12.6. An estimate on the difference of two operators. Now we take
x € Xy4. In the sequel, the tensors which we will consider are evaluated at .
By imitating (9.17), set

(12.49) 2

KXo
N == (Ve 5 (BB ysan o) 2, \T

KX AKX [ w (VF,g")
_ \/md’l) — % + (C (R2(v/w)/27rKZ> — T ds

n %\/gE(KX/\/E) ((1+ (25— 1)) @5 — (25 — 1) )

* % <ek’ R2T(§/w)1</27r€l> c(ex)c(e) — %uﬂ (VFng) '

As the notation emphasizes, the operator N g:]a/ depends on a, through w, but
also because y/a appears explicitly in the right-hand side of (12.49).

Definition 12.16. Let Nzg be the operator obtained from the operator
N 30“}( by replacing e’ by /vel,1 < i < m, by replacing ¢(e;) by ¢, (e;) for
1<i< ¢, by €,/ (i) for £4+1 < i < m, while leaving the ¢ (e;) unchanged for
m+1<i<n.

Let N :;00 be the operator obtained from N Zl by making a = 0, including in
w, which was defined in (7.13). By Theorem 9.8, we know that as a — 0,
(12.50) Npt S N

Now we establish an analogue of [BGol, Th. 8.24].
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THEOREM 12.17. There exist C > 0,7 € N such that for a € ]0,1], if
(s,v) € [0,1] x [a,1] are such that w € ]0,1], if z € R*|z] < 1,n € N,
Yo € Xgk,20 € Nx, /X001 20| < €0/v/w, if the support of s € 1, is included
in {Z € Ty, X,|Z| < n}, then

(12.51) (Vo2 = NTes) s

VwZo a,s,v,209,—1
r a 2
<C(+n )\/;(1+|Z0| ) Is

Proof. We need to show that if s, s’ € I, have compact support,

(12.52) ‘<(N\3/%Zo - N%Zo) 5 S,>a,s,v,Zo,0

a
<C(1+n") \/; (1 + |Zo|2) |S|a7'u,s,Zg,1 |s/|a,v,s,Zo,1 :

We use again the Lichnerowicz formula for N in (12.22). The first term in
the right-hand side of (12.22) does not raise any difficulty with respect to the
corresponding term in [BL, Th. 11.35] and of [BGol, Th. 8.24].

Clearly

a,v,s,%0,1 °

(253 o (|K* Wz +vaz)| - [k (vizo)|)

- % (KX (Vwzy ++/aZ) - KX (VuZy),
KX (VwZy +aZ) + KX(\/EZo)> :

By (12.53), since KX vanishes on X, k, so that if (Zp,Z) = (0,0), then
KX(JwZy+ /aZ) = 0, we get

(‘KX(\/EZO + x/EZ)\2 - ‘KX(\/EZO)D
= ~0(|vVaz| (VaZol +|vaz)))

0 (Vo/w|2| |20 + (aw) |2

By (7.14), there is C' > 0 such that w > Ca, and so, by (12.54), we deduce
that for |Z| < n,
(12.55)

’ (\KX (Vo +az)| — KX (Vuzo) !2)‘ < C\/g (1+0%) (1 + ).

1
w

1
12.54 —
(12:54) -

1
w
2
Using (7.14), (12.55), we find that the term ]KX | /w in the right-hand side
of (12.22) is also compatible with (12.51).
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By Proposition 12.13, the term
—+ac (w (VF,gF)) ds/2+ (2s — 1) \/aﬁ(w (VF,gF)) ds/2
can be dealt with easily. Using (7.14), (12.34), (12.37) in Proposition 12.13

and (12.43), the term
Ly X
5 a/ve (K /\/w) dv

can also be easily dealt with.
We still write

Vajue (KX /)

asin (12.44). The same arguments as above and (12.36), (12.37) in Proposition
12.13 allow us to control easily the contribution of the terms with /+1 <7 < n.
Moreover, for 1 <i < ¢, as we saw after (12.45),

(KX (2o + 2) , 7% (2))

and its first derivatives in the variables (Zy, Z) vanish at (0,0). Therefore, for
1<i<{,

(12.56) (KX (VwZy +/aZ) , vV (vaZ) er) = (KX (VwZo) , 7V %e; )|

< CValz| (Vazo| + |Vaz)).

Using (12.35), (12.37) in Proposition 12.13 again and (12.43), (12.56), we find
that in (12.44), the i such that 1 < ¢ < ¢ are also harmless.
By (2.7), we get

(12.57) <vf§moej (vaz) KX (VwZy + VaZz) ,7V"%e;, (\/az)>

(T 0K (V0 20) .70 (0))
— 0(ValZ)) O (Vi | 2] +va|2)).
Using Proposition 12.13 and (12.57), we see that the term
1 a v
HVIEY ) (<Sele) ) + eeete)

can also be dealt with. The remaining terms in the right-hand side of (12.22)
are handled easily.
The proof of our theorem is completed. O

Remark 12.18. Now we briefly explain why the terms containing
Va/ve (K X/ \/E) have been included in (12.49), although they vanish identi-
cally for a = 0. In fact, observe that
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(12.58) \a/vey (e;) = » é\z —y/a/2ig for 1 <i </,

2 4
\ a/vCy s (€1) = anéz —/a/2wig for £+ 1 <i < m.

Equation (12.58) makes clear that, if the terms /a/vc (KX/\/U) had not been

included, in the right-hand side of (12.51), \/a/v should have been replaced by
at least v/a/v, which is not even bounded.

12.7. A proof of (7.20) when w € ]0,1]. Put

(12.59)
my, = {(27T)m/2 2ex (TXW Vi ) By’ /2
1 [y T o i (5707 2 }m

n, = {<27T)m/2 VaTef b [g) 51@/2/ K eXp( Rffxg/%)} ’

Ohp = _{(277)mﬂ O‘ﬁ /2 4\/_ [gw (VF’ gF) exp (hw (VF’gF)) /27T]

/ KXo/ exp R[T(Xg/27r>} .

The above forms are the normalized integrands for my, ,, ny, 0p, in (7.9).
Let k (x, Z) be the smooth function on U.,, such that

(12.60) dvx (z,2) =k (2, Z) dvx, (z) duny, ,« (Z) .

THEOREM 12.19. There exist ¢ € |0,1],y € ]0,1] such that for p € N,
there is C > 0 such that if z € R*,|z| < ¢,a € ]0,1], if (s,v) € [0,1] x [a, 1] are

such that w € 10,1], if yo € Xk, 20 € Nx, . /x, 0 |Z0| < \/_, then
(12.61)
w(m—f)/? (/ZENX xRy Trs [gﬁa (Na) (g_l (y07 \/EZ(L Z) )
1Z1<eq

dsdv
(y07ﬂZOaZ)>] k (yo, vVwZo, )%

_ <\/gmv/w,w (yo, VwZp) + (25 — 1) \/a/vwoy/w,w (Yo, \/EZO)> dsdv) |

(L+1Zo)™ a7
=0T 2P (3)
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‘w(mf)/2 (/ZGNX eny, s [gﬁa (N) <91 (o, Vw2, Z)
|Z]|<eq
dUng/x (2)

dsdv
<y0,mzo,z>)] b o VitZo. 2) 7

~(1+@2s-1)%) U—\/Enw£dv

(L+12Z)™ (a)”
<y ()

Proof. We start from Proposition 12.11 and use Theorems 12.15 and 12.17.
We will now briefly explain how to use similar results established by Bismut-
Goette [BGol] in a holomorphic context. In fact the above results are the
strict analogues of [BGol, Prop. 8.11, Th. 8.18 and 8.24 |.

Since X is a compact manifold, there exists a finite family of smooth
functions f1,..., fr : X — [0, 1] which have the following properties:

o Xy = ﬁ {l‘ S X,fj(:E) = 0.}
j=1

e On Xk, dfy,...,df; span Nx_, /x.
Let Q4 50,7, be the family of operators

(12.62)
Qa,s,v,Zo = {Veia 1< < 2&

—p(Vaz) f; (ViZo+VaZ) 1 < j< v}
Vw

Then commutator estimates similar to the estimates in [BL, Prop. 11.29] and
[BGol, Prop. 8.22] can easily be proved, along the lines of the proof of The-
orems 12.15 and12.17. By proceeding as in [BGol, §8.6-8.11], we obtain in
particular the analogue of [BGol, eq. (8.76)], so that given p € N, there exist
C > 0,C" > 0 such that if all the variables are taken as before,

1209) (R (k) e () (17'22)
n y4
iy <%)1/4( +1) %exp (—C’|ZI2) ‘

We use the notation in (9.28). By (9.30) in Theorem 9.14 and by (10.13)
in Proposition 10.9,

(12.64) d (2) dsdv,max
)

v
= (\/gmw/v,w (y()a ZO) + (25 - 1) \V a/vwov/w,w) dsdv,
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2m/2 / Tr\ |:geXp< NS a/> (g—lz Z)] dUNXg/X (Z) %d’v,max
Nx,/x ° ’ (27T)(n_m)/2
= (1 + (25 — 1)2) va, v
vw
Using (12.63), (12.64) and proceeding as in [BGol, §8.11], we get (12.61). The
proof of our theorem is completed. O

THEOREM 12.20. There exist ¢ > 0,r € N,C > 0, € ]0,1/2] such that
if a € 10,1, (s,v) € [0,1] x [a,1] are such that w € ]0,1], if z € R%,|z| < ¢,
then
(12.65)

{ Na dedv <,/ My 0 + (28—1)\/mov/ww>dsdv
gC(“Y,
v

v

~ dsd
|z|" | Trs {gFa (Na)] - (14 (25 —1))? inwdsdv
Proof. By Theorem 12.19, the proof of our theorem is the same as the
proof of [BGol, Th. 8.29]. The idea is essentially that the ‘hard’ estimate of
Theorem 12.19 near X, i can be trivially extended near X,, but away from
Xy K- O

Remark 12.21. By (7.14), (12.23), (12.24) and by (12.65), under the con-
ditions of Theorem 12.20, we get

dsdv
(12.66) |2|" |

Trg [gjiz(ﬁJa)

—<M+(1+(2s—1)2)\/57;—;”+(2s—1)f ”Z}ww>d dv

v

;
sc(f) =.
v v

Using the argument which was given after Theorem 12.5 and (12.66), we find
that (7.20) was established when w € 10, 1].

12.8. A proof of (7.20) when w > 1. Now, we will assume that (s,v) €
[0,1] x [a,1] are such that w > 1. Our estimates will now be much simpler,
since the fact that KX vanishes on Xx will not play any role.

Our starting point is still equation (12.24). In Section 12.3, we replace
Zy € Nx, ,./x, by an arbitrary z € X,;. Otherwise, we use the same trivializa-
tions as in this section. We define the operator NV*¢ as in Definition 12.9.
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Let (e1,...,€m) be an orthonormal basis of T, X, and let eyy1,...,em
be an orthonormal basis of Nx ,x .. We still define the operator N9 as in
Definition 12.10, with the obvious modification that if 1 < ¢ < m, ¢(e;) is
replaced by ¢, (e;); i.e., w does not appear any more.

Then the obvious analogue of equation (12.31) holds, with w replaced
by 1. Let now IEP""" be the vector space of smooth sections of

AP (T X)) & N (T*X,) & A (N, ) B A (RP).

We use other notation similar to the notation of Section 12.4. Instead of
(12.33), if h € I2P"™"" has compact support, set

oawo= [ WP (L4 VEIZ]p (Vaz/2)) "
T. X

(1+ /21210 (valzl 2)

(1+12] p (Vaz/2))* ™ dvrx (2) .

Then an analogue of Proposition 12.13 still holds. Namely the operators
in (12.34) are still uniformly bounded. Also the first row of operators in (12.35)
is now uniformly bounded, and here 1 < ¢ < m. The fact that the operators
1]\/5Z]§4€o\/m‘z| Gy (€i),1 < i < m, are uniformly bounded follows from
the above.

It is then easy to proceed as in Section 12.7 and to establish (12.66) also
in the case where w > 1.

(12.67)  |h

) 2(m—p’'+1—7")

Remark 12.22. Tt should be pointed out that when w > 1, in the right-
hand side of (12.22), we could have replaced ¢ (KX/\/E) and E(KX/\/E> by

c (KX) ,E(KX), while replacing v/w/v%/? in our formula for E; in (12.23) by
1/ v3/2. This is because when w > 1, we have the trivial

(12.68) 1/0%% < w [v®/2.
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