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Equivariant de Rham torsions

By Jean-Michel Bismut and Sebastian Goette*

Abstract

The purpose of this paper is to give an explicit local formula for the
difference of two natural versions of equivariant analytic torsion in de Rham
theory. This difference is the sum of the integral of a Chern-Simons current and
of a new invariant, the V -invariant of an odd dimensional manifold equipped
with an action of a compact Lie group. The V -invariant localizes on the critical
manifolds of invariant Morse-Bott functions.

The results in this paper are shown to be compatible with results of Bunke,
and also our with previous results on analytic torsion forms.
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Introduction

In a previous paper [BGo1], we have established a comparison formula for
two natural versions of the holomorphic equivariant analytic torsion. This com-
parison formula is related to a similar formula obtained in [Go] for η-invariants.
In this paper, we establish a corresponding formula, where we compare two
natural versions of equivariant analytic torsion in de Rham theory. On one
hand the classical equivariant version [LoRo] of the Ray-Singer analytic tor-
sion [RS] appears. On the other hand, we construct an adequately normalized
version of the infinitesimal equivariant torsion, by imitating the construction
of the Chern analytic torsion forms of [BGo2], which are themselves a renor-
malized version of the analytic torsion forms of Bismut-Lott [BLo]. Our equiv-
ariant infinitesimal torsion is a renormalized version of the torsion suggested
by Lott [Lo].

The difference of these two torsions is expressed as the integral of local
quantities. One of these is an apparently new invariant of odd-dimensional
manifolds equipped with the action of a Lie group. This invariant localizes
naturally on the critical manifolds of an invariant Morse-Bott function.

Now, we will explain our results in more detail. Let X be a compact
manifold, and let

(
F,∇F

)
be a flat vector bundle on X. Let

(
Ω· (X, F ) , dX

)
be the de Rham complex of F -valued smooth differential forms on X, and let
N be the number operator of Ω· (X, F ). Let H ·(X, F ) be the cohomology of(
Ω· (X, F ) , dX

)
. Let gTX , gF be metrics on TX, F . Let dX,∗ be the adjoint of

dX with respect to the obvious L2 Hermitian product on Ω· (X, F ).
Let G be a compact Lie group acting on X, whose action lifts to F ,

and which preserves ∇F , gTX , gF . Then G acts on
(
Ω· (X, F ) , dX

)
and on

H ·(X, F ). If g ∈ G, set

ϑg

(
gTX ,∇F , gF

)
(s) = −Trs

[
Ng

(
DX,2

)−s
]
.(0.1)

Then ϑg

(
gTX ,∇F , gF

)
(s) extends to a meromorphic function of s ∈ C,

which is holomorphic at 0. The quantity ∂
∂sϑg

(
gTX ,∇F , gF

)
(0), introduced

in [LoRo], is called the equivariant analytic torsion or the equivariant de Rham
torsion. It extends the classical Ray-Singer analytic torsion. Using this ana-
lytic torsion, an equivariant Ray-Singer metric on the equivariant determinant
of H ·(X, F ) was defined in [BZ2]. In [BZ2], anomaly formulas were established
for ‖ ‖λG(F ), and the result of Lott-Rothenberg [LoRo] comparing equivariant
Reidemeister and Ray-Singer metrics for unitarily flat vector bundles was ex-
tended to arbitrary flat vector bundles. The results of [BZ2] were the obvious
extension to the equivariant case of the results of [BZ1], where the theorems
of Cheeger [C] and Müller [Mü1, 2] were extended to arbitrary flat vector
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bundles. Also Bunke [Bu1] showed that for equivariant unitarily flat vector
bundles, the equivariant analytic torsion can be determined by counting the
cells of a G−CW decomposition of X, up to a locally constant function on G.

Let π : M → S be a submersion with compact fibre X, and let
(
F,∇F

)
be

a flat vector bundle on M . Then H ·(X, F ) is a vector bundle on S, equipped
with a flat connection ∇H·(X,F ). In this situation, Bismut and Lott [BLo]
proved a Riemann-Roch Grothendieck formula. Namely, by [BLo], if h (x)
is an odd holomorphic function, one can construct odd cohomology classes
h

(
∇F

)
on M . Let e (TX) be the Euler class of TX. Then the Riemann-Roch

formula of [BLo] takes the form,

h
(
∇H·(X,F )

)
=

∫
X

e (TX) h
(
∇F

)
in Hodd (S,R) .(0.2)

In [BLo], equation (0.2) was refined at the level of differential forms. Namely,
a Chern-Weil formalism was developed to represent the classes h

(
∇F

)
by ex-

plicit closed differential forms h
(
∇F , gF

)
. Let THM be a horizontal subbundle

of TM . With h (x) = xex2
, an even differential form Th

(
THM, gTX ,∇F , gF

)
was constructed on S, such that

dTh

(
THM, gTX ,∇F , gF

)
=

∫
X

e
(
TX,∇TX

)
h

(
∇F , gF

)
(0.3)

− h
(
∇H·(X,F ), g

H·(X,F )
L2

)
.

In (0.3), ∇TX is a Euclidean connection on
(
TX, gTX

)
associated naturally

to
(
THM, gTX

)
, e

(
TX,∇TX

)
is the Chern-Weil representative of the Euler

class e (TX), and g
H·(X,F )
L2

is the metric on H ·(X, F ) obtained by identification
with the corresponding fibrewise harmonic forms.

In [BGo2], the results of [BLo] were extended to an equivariant situation.
Namely we assume that G acts as before on M, F , and besides that it preserves
the fibres X. Also we assume, as we may, that all the above objects, like THM

are G-invariant. If g ∈ G, let Mg be the fixed-point manifold of g, which
fibres on S with fibre Xg. In [BGo2], we defined on Mg obvious equivariant
analogues hg

(
∇F

)
, hg

(
∇F , gF

)
of h

(
∇F

)
, h

(
∇F , gF

)
. With h (x) = xex2

,

we constructed in [BGo2] even forms Th,g

(
THM, gTX ,∇F , gF

)
, which are such

that

dTh,g

(
THM, gTX ,∇F , gF

)
=

∫
Xg

e
(
TXg,∇TXg

)
hg

(
∇F , gF

)
(0.4)

− hg

(
∇H·(X,F ), g

H·(X,F )
L2

)
.

Also, in [BGo2], we obtained what we claimed to be the ‘right’
normalization of the analytic torsion forms Th

(
THM, gTX ,∇F , gF

)
and
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Th,g

(
THM, gTX∇F , gF

)
, the Chern analytic torsion forms. They were denoted

Tch

(
THM, gTX ,∇F , gF

)
and Tch,g

(
THM, gTX ,∇F , gF

)
. If ch◦

g

(
∇F , gF

)
is

the odd secondary Chern form obtained in [BLo, Prop. 1.14] and in [BGo2,
§2.7], then (0.4) is replaced by

dTch,g

(
THM, gTX ,∇F , gF

)
=

∫
Xg

e
(
TXg,∇TXg

)
ch◦

g

(
∇F , gF

)
(0.5)

− ch◦
g

(
∇H·(X,F ), g

H·(X,F )
L2

)
.

In [Lo], Lott suggested the construction of an equivariant infinitesimal
torsion by imitating the construction of the forms Th,g

(
THM, gTX ,∇F , gF

)
.

Indeed when the structure group of the fibration π : M → S is the compact Lie
group G, the torsion forms Th

(
THM, gTX ,∇F , gF

)
appear as formal power

series on g. If g is the Lie algebra of G, the argument K should then be replaced
by −Θ/2iπ, where Θ is the curvature of a connection on the corresponding
G-bundle.

One purpose of this paper is to make the above construction of Lott nonin-
finitesimal. Namely, if g ∈ G, if Z (g) ⊂ G is the centralizer of g, and if z (g) is
its Lie algebra, we construct in Section 2.7 an equivariant infinitesimal analytic
torsion Tch,g,K

(
gTX ,∇F , gF

)
, which is a real-analytic function of K ∈ z (g) on

a neighbourhood of 0. This torsion is obtained by normalizing a corresponding
Th,g

(
THM, gTX ,∇F , gF

)
. An important property of Tch,g,K

(
gTX ,∇F , gF

)
,

established in (2.119) is that

Tch,g,0

(
gTX ,∇F , gF

)
=

1
2

∂

∂s
ϑg

(
gTX ,∇F , gF

)
(0) .(0.6)

The second main purpose of this paper is to give a local formula for

Tch,g,K

(
gTX ,∇F , gF

)
− Tch,geK ,0

(
gTX ,∇F , gF

)
.

One can indeed conjecture that such a formula may hold, in view of the
anomaly formulas of [BZ2] and Section 2, which show that the variation of
this difference with respect to gTX , gF is computable locally.

A similar program was followed in [BGo1] for the holomorphic torsion
where the corresponding difference was expressed as the integral of a natural
equivariant Bott-Chern current, and as an exotic genus I (θ, θ′, x). Compati-
bility to the immersion results for Quillen metrics [Q2] and their equivariant
analogues [BL], [B11] were key tests of the validity of the formula of [BGo1].
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In the context of flat vector bundles on real manifolds, much less is known.
In particular, there is no natural theory of cycles, which would be a geometric
counterpart for the Riemann-Roch-Grothendieck formula of [BLo]. The com-
parison formula for the two versions of equivariant de Rham torsion is then a
priori more mysterious.

On the other hand, as explained in [BGo1], the comparison formula for
holomorphic torsion is one of the ways one can understand the true, if elusive,
nature of holomorphic torsion. A similar expectation could then be justified
in the context of de Rham torsion.

Also Bunke [Bu2] showed that for odd-dimensional oriented manifolds
equipped with the trivial flat vector bundle, up to a locally constant term,
Lott’s equivariant torsion for the trivial vector bundle can be computed by
counting cells of a G − CW decomposition. The similarity of this last result
with Bunke’s previous results [Bu1] on classical equivariant torsion suggests
that the two torsions should be related by an explicit formula.

Take g ∈ G, K0 ∈ z (g), and assume that K = zK0, with z ∈ R∗. The
main result of this paper takes the following form:

Theorem 0.1. For z ∈ R∗, if |z| is small enough, the following identity
holds:

Tch,g,K

(
gTX ,∇F , gF

)
− Tch,geK ,0

(
gTX ,∇F , gF

)
(0.7)

=
∫

Xg

eK

(
TXg,∇TXg

)
FK

(
Xg, g

TXg

)
ch◦

g

(
∇F , gF

)
+ TrF |Xg [g]VK (Xg) .

Let us briefly describe the objects which appear in the right-hand side
of (0.7). The first term is a contribution of the even-dimensional components
of the fixed point manifold Xg under g. The form eK

(
TXg,∇TXg

)
is the

equivariant Euler form of TXg, the current FK

(
Xg, g

TXg

)
is of Chern-Simons

type on Xg. This first term represents the ‘predictable’ part of the formula,
given what is known by the anomaly formulas.

The second term is much more mysterious. Only the odd-dimensional
components of Xg contribute to VK (Xg), which is a locally computable diffeo-
morphism invariant of Xg equipped with the action of K ∈ z (g). The fact that
it is an invariant makes it is impossible to guess from the anomaly formulas.

Still, the results of [BGo2] gave us grounds to believe that such a term
had to appear. In [BGo2], when the fibres X of the fibration π : M → S

carry a Morse-Smale vector field, we expressed the de Rham torsion forms
Tch,g,K

(
gTX ,∇F , gF

)
in terms of corresponding combinatorial objects, and of

an exotic genus J (θ, x). The results of [BGo2] led us to establish some natural
properties of the term VK (Xg), or should have, even if we had no idea how it
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should appear. The results of [BGo2] play the same role in the present paper
as the immersion formulas of [BL], [B11] in [BGo1].

In fact, a third purpose of this paper is to construct the V -invariants from
scratch, without any reference to torsion. This program is carried through in
Section 3. In the context of equivariant fibrations with odd-dimensional fibres,
the V -invariants are even cohomology classes on the base of the fibration. In
Section 4, we show that the V -invariants localize on the critical fibrations
associated to fibrewise Morse-Bott functions, and we study their behaviour
with respect to multifibrations. In the formulas involving fibrewise Morse-
Bott functions, a genus Jθ (x) appears, which is directly related to the genus
J (θ, x) of [BGo2]. These two properties are indeed critical to demonstrate
the compatibility of formula (0.7) to the results of [BGo2] on analytic torsion
forms, and also to the results of [Ma] on the functoriality of analytic torsion
forms.

A remarkable feature of formula (0.7) is that it shows that
Tch,g,K

(
gTX ,∇F , gF

)
is indeed the correct normalization of the infinitesimal

torsion. In Theorem 5.13, we also give an extension of Theorem 0.1 to the case
where X is the generic fibre of an equivariant fibration, so that (0.7), instead
of being an equality of complex numbers is now an equality of classes of forms
on the base S of the fibration.

Also, we show that our results lead to a refinement of Bunke’s results
[Bu1], [Bu2] in arbitrary dimensions.

Now we describe the main techniques which are used in this paper. As
in previous work on related subjects [BLo], [B11], [BZ1, 2], [BGo1], our main
result is obtained by integrating a closed form on a domain, and by pushing
the boundaries of the domain to infinity. However, while in the above refer-
ences, the considered domains were 2-dimensional, here the dimension of the
domain is 3. This reflects the fact that the forms ch◦

(
∇F , gF

)
are Chern-

Simons forms, which are obtained by integration along a 1-dimensional path
of connections, while torsion forms are obtained by a transgression mechanism
above the forms ch◦

(
∇F , gF

)
, and in fact are obtained by integration over a

domain of dimension 2.
Local index theory in the context of families [B3], [BeGeV] plays an im-

portant role. In particular the Getzler rescaling [Ge] is used in the whole paper.
As in [BZ1, 2], two kinds of Clifford variables appear in the analysis, and they
are rescaled in different and subtly interrelated ways. Also, we use the Berezin
integration formalism of Mathai-Quillen [MQ], which plays a prominent role
in our local index computations.

Let us also point out that (0.7) only holds for small |z|. This fact is
reflected in the analysis. In [BGo1], a similar difficulty appeared in the context
of holomorphic torsion. In the present paper, we have used arguments taken
from [BGo1] every time the difficulties were formally identical.
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Finally, finite propagation speed of solutions of hyperbolic equations plays
an important role, to establish that certain estimates can be localized.

This paper is organized as follows. In Section 1, we construct the classical
equivariant de Rham torsion, and the corresponding equivariant Ray-Singer
metric on det (H · (X, F )). In Section 2, we define the Chern equivariant in-
finitesimal torsion, in relation to the Chern equivariant analytic torsion forms
of [BGo2]. In Section 3, we define the V -invariants attached to equivariant
fibrations. Their construction uses mysterious identities verified by the curva-
ture tensor of a natural connection on TX. In Section 4, we give a localization
formula for the V -invariants with respect to fibrewise Morse-Bott functions,
and we evaluate the V -invariants of multifibrations. In Section 5, we state the
main result of this paper, in a form equivalent to Theorem 0.1, and we verify
that this result is compatible with other known results on analytic torsion and
analytic torsion forms, in particular with the results of Bunke [Bu1, 2] where
various torsions are evaluated for G − CW complexes, with the results of Ma
[Ma] on the behaviour of analytic torsion forms with respect to multifibrations,
and with our own previous results in [BGo2].

Sections 6–12 are devoted to the proof of Theorem 0.1. In Section 6, we
introduce a fundamental closed 2-form on part of R3. In Section 7, using five
intermediate results, whose proof is delayed to the next sections, we establish
Theorem 0.1.

Sections 8–12 are devoted to the proof of these five intermediate results.
They contain the bulk of the mainly analytic and algebraic arguments in the
proof. Section 8 only contains short elementary arguments. In Sections 9–
11, we essentially establish convergence results of global quantities to locally
computable expressions. While the local algebraic arguments are specific to
the situation which is considered here, the analytic arguments and the required
estimates are taken from [BGo1], with minor changes.

Section 12 contains the bulk of the strictly analytic arguments. Its purpose
is to establish a uniform estimate in a range of parameters not covered by
[BGo1]. The estimates in Section 12 are in fact the ones which are needed to
establish the corresponding estimates in the proofs in Sections 9–11, so that
our paper is indeed self-contained.

In the whole paper, we use the superconnection formalism of Quillen [Q1].
If A is a Z2-graded algebra, if A, B ∈ A, [A, B] denotes the supercommutator
of A and B, i.e.

[A, B] = AB − (−1)degAdegB BA.(0.8)

The results contained in this paper were announced in [BGo3].
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1. The classical equivariant de Rham torsion

The purpose of this section is to recall the main properties of the classical
equivariant analytic torsion in de Rham theory, and of the corresponding Ray-
Singer equivariant metrics.

This section is organized as follows. In 1.1 and 1.2, we introduce the basic
conventions on Clifford algebras and Berezin integrals, which will be used in
the whole paper. In 1.3, we construct the equivariant Ray-Singer metrics using
the equivariant Ray-Singer analytic torsion, whose non equivariant form was
introduced in [RS]. In 1.4, we recall a simple formula for the Ray-Singer
analytic torsion established in [BLo]. Finally, in 1.5, we recall the anomaly
formulas of [BZ2] for Ray-Singer metrics.

1.1. Real vector spaces and Clifford algebras. Let V be a finite dimen-
sional real Euclidean vector space of dimension n. We denote by 〈 〉 the scalar
product on V . We identify V and V ∗ by the scalar product 〈 〉. Let c(V ) be
the Clifford algebra of V , i.e. the algebra spanned over R by 1, X ∈ V and
the relations for X, Y ,

XY + Y X = −2〈X, Y 〉.(1.1)

If A ∈ V , let A∗ correspond to A ∈ V . Set

c (A) = A∗ ∧ −iA, ĉ (A) = A∗ ∧ +iA.(1.2)

The operators c (A) and ĉ (A) act naturally as odd operators on Λ (V ∗). If
A, B in V ,
(1.3)

[c (A) , c (B)] = −2 〈A, B〉 , [ĉ (A) , ĉ (B)] = 2 〈A, B〉 , [c (A) , ĉ (B)] = 0.

Then (1.3) says that A → c (A) and A → iĉ (A) give two supercommuting
representations of the Clifford algebra c (V ).

Also c (V ) acts naturally on itself by multiplication on the left and on
the right, and these two actions commute. They will be denoted respectively
by cl and cr. Classically, there is a Z-graded isomorphism of vector spaces
c (V ) 	 Λ (V ∗). Let τ be the operator on Λ (V ∗), which is 1 on Λeven (V ∗), −1
on Λodd (V ∗). Then one verifies easily that under the above isomorphism, if
A ∈ V ,

c (A) = cl (A) , ĉ (A) = τcr (A) .(1.4)

In the sequel, we will often use the notation c (V ) and ĉ (V ) for the algebras
generated respectively by the c (A) and by the ĉ (A).

If H ∈ End(V ), then H acts naturally as a derivation on Λ(V ∗). Let
e1, . . . , en be an orthonormal basis of V . Then one verifies easily that if H is
antisymmetric,

H|Λ(V ∗) =
1
4
〈Hei, ej〉 (c(ei)c(ej) − ĉ (ei) ĉ (ej)) .(1.5)
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If S ∈ End (Λ (V ∗)), its supertrace Trs [S] is given by

Trs [S] = Tr [τS] .(1.6)

Now we state a simple result established in [BZ1, Prop. 4.9].

Proposition 1.1. Among the monomials in the c (ei) , ĉ (ej), up to per-
mutation, c (e1) ĉ (e1) . . . c (en) ĉ (en) is the only one whose supertrace does not
vanish. It is given by the formula

Trs [c (e1) ĉ (e1) . . . c (en) ĉ (en)] = (−2)n .(1.7)

1.2. The Berezin integral. Let E and V be real finite dimensional vector
spaces of dimension n and m. Let gE be a Euclidean metric on E. We will
often identify E and E∗ by the metric gE . Let e1, · · · , en be an orthonormal
basis of E, and let e1, · · · , en be the corresponding dual basis of E∗.

Let Λ· (E∗) be the exterior algebra of E∗. It will be convenient to introduce
another copy Λ̂· (E∗) of this exterior algebra. If e ∈ E∗, we will denote by ê

the corresponding element in Λ̂· (E∗).
Suppose temporarily that E is oriented and that e1, · · · , en is an oriented

basis of E. Let
∫ B̂ be the linear map from Λ· (V ∗) ⊗̂ Λ̂· (E∗) into Λ (V ∗), such

that if α ∈ Λ (V ∗) , β ∈ Λ̂ (E∗),

∫ B̂

αβ = 0 if degβ < dimE,(1.8) ∫ B̂

αê1 ∧ · · · ∧ ên = (−1)n(n+1)/2 α.

More generally, let o(E) be the orientation line of E. Then
∫ B̂ defines a

linear map from Λ· (V ∗) ⊗̂ Λ̂· (E∗) into Λ· (V ∗) ⊗̂ o (E), which is called a Berezin
integral.

Let A be an antisymmetric endomorphism of E. We identify A with the
element of Λ (E∗),

A =
1
2

∑
1≤i,j≤n

〈ei, Aej〉 ê i ∧ ê j .(1.9)

By definition, the Pfaffian Pf
[

A
2π

]
of A

2π is given by

∫ B̂

exp (−A/2π) = Pf
[

A

2π

]
.(1.10)

Then Pf
[

A
2π

]
lies in o(E). Moreover Pf

[
A
2π

]
vanishes if n is odd.



62 JEAN-MICHEL BISMUT AND SEBASTIAN GOETTE

1.3. Equivariant Ray-Singer metrics. Let X be a compact manifold of
dimension n. Let F be a complex vector bundle on X, equipped with a flat
connection ∇F . Let H · (X, F ) be the cohomology of the sheaf of locally flat
sections of F .

Let G be a compact Lie group, and let g be its Lie algebra. We assume
that G acts on the left on X, and that this action lifts to F , and preserves ∇F .
Then G acts on H · (X, F ).

Let (Ω· (X, F ) , dX) be the de Rham complex of smooth sections of
Λ· (T ∗X) ⊗̂F on X. Then

H ·(Ω· (X, F ) , dX) 	 H · (X, F ) .(1.11)

Clearly G acts on (Ω· (X, F ) , dX) by the formula

(gs)(x) = g∗s(g−1x).(1.12)

Then (1.11) is an identity of G-spaces.
We define the Lefschetz number χg (F ) and the derived Lefschetz number

χ′
g (F ) by

(1.13)

χg (F ) =
n∑

i=0

(−1)i TrHi(X,F |X) [g] , χ′
g (F ) =

n∑
i=0

(−1)i iTrHi(X,F |X) [g] .

Take g ∈ G. Let Xg be the fixed point set of g in X. Then Xg is a totally
geodesic submanifold of X. Let e (TXg) be the Euler class of TXg. Then the
Lefschetz fixed point formula asserts that

χg (F ) =
∫

Xg

e (TXg) TrF [g] .(1.14)

Let gTX , gF be smooth G-invariant metrics on TX, E. Let dvX be
the corresponding volume form on X. Let 〈 〉Λ·(T ∗X)⊗̂F be the corresponding
Hermitian product on Λ· (T ∗X) ⊗̂F . If s, s′ ∈ Ω· (X, F ), put

〈s, s′〉 =
∫

X
〈s, s′〉Λ·(T ∗X)⊗̂F

dvX

(2π)dim X
.(1.15)

Then (1.15) is a G-invariant Hermitian product on Ω· (X, F ). We denote by
gΩ·(X,F ) the corresponding Hermitian metric on Ω· (X, F ).

Let dX,∗ be the formal adjoint of dX with respect to (1.15). Put

DX = dX + dX,∗.(1.16)

Then DX is a first order elliptic operator. By Hodge theory,

kerDX 	 H · (X, F ) .(1.17)

Also DX commutes with G, so that G acts on ker DX . Then (1.17) is an iden-
tification of G-spaces. Also ker DX inherits a G-invariant Hermitian product
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from the Hermitian product (1.15) on Ω· (X, F ). Let g
H·(X,F )
L2

be the corre-
sponding Hermitian metric on H · (X, F ).

Let Ĝ be the set of equivalence classes of irreducible representations of G.
If W ∈ Ĝ, let χW be the character of G associated to W . Then we have the
isotypical decomposition

H · (X, F ) = ⊕
W∈Ĝ

HomG(W, H · (X, F )) ⊗ W,(1.18)

which is orthogonal with respect to g
H·(X,F )
L2

. If W ∈ Ĝ, put

λW (F ) = det(HomG(W, H · (X, F )) ⊗ W ).(1.19)

Then λW (F ) is a complex line. Set

λG (F ) = ⊕
W∈Ĝ

λW (F ) .(1.20)

Let | |λW (F ) be the metric induced by g
H·(X,F )
L2

on λW (F ).

Definition 1.2. Set

log
(
| |λG(F )

)
=

∑
W∈Ĝ

log(| |λW (F ))
χW

rk(W )
.(1.21)

The symbol | |λG(F ) will be called an equivariant L2 metric on λG (F ).
Let ker(DX)⊥ be the orthogonal vector space to ker(DX) in Ω· (X, F ).

Then DX,2 acts as an invertible operator on ker(DX)⊥. Let (DX,2)−1 denote
the inverse of DX,2 acting on ker(DX)⊥.

Let N be the number operator of Ω· (X, F ), i.e. N acts by multiplication
by k on Ωk(X, F ). By standard heat equation methods [Gi], [BeGeV], there
exists � with 2� ∈ N∗ such that as t → 0, for any k ∈ N,

Trs[Ng exp(−tDX,2] =
a�

t�
+ . . . a0 + a1/2t

1/2 + . . .(1.22)

. . . + ak−1/2t
k−1/2 + akt

k + o(tk).

Definition 1.3. For g ∈ G, s ∈ C,Re(s) > �, put

ϑg(gTX ,∇F , gF )(s) = −Trs[Ng(DX,2)−s].(1.23)

By (1.22), ϑg(gTX ,∇F , gF )(s) extends to a meromorphic function of s ∈
C, which is holomorphic at s = 0. In particular, g ∈ G �→ ∂

∂sϑg(gTX ,∇F , gF )(0)
∈ C is a central function. When g = 1, it was introduced by Ray and Singer
[RS]. This function is called the Ray-Singer equivariant analytic torsion.

Definition 1.4. For g ∈ G, put

log
(
‖ ‖λG(F )

)
(g) = log

(
| |λG(F )

)
(g) +

1
2

∂

∂s
ϑg(gTX ,∇F , gF )(0).(1.24)
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The symbol ‖ ‖λG(F ) will be called an equivariant Ray-Singer metric on
λG (F ).

1.4. A formula for the Ray-Singer equivariant torsion. Put

AX = 1
2

(
dX,∗ + dX

)
, BX =

1
2

(
dX,∗ − dX

)
.(1.25)

Then
DX,2 = 4AX,2 = −4BX,2.(1.26)

Let ∇TX be the Levi-Civita connection on TX, let ∇Λ·(T ∗X) be the cor-
responding connection on Λ· (T ∗X).

Put
ω

(
∇F , gF

)
=

(
gF

)−1
∇F gF .(1.27)

Then ω
(
∇F , gF

)
is a 1-form on X with values in self-adjoint elements in

End (F ), which is such that

∇F ω
(
∇F , gF

)
= −ω2

(
∇F , gF

)
.(1.28)

Let ∇F,u be the connection on F ,

∇F,u = ∇F +
1
2
ω

(
∇F , gF

)
.(1.29)

Then one verifies easily that ∇F,u is unitary, and that its curvature RF,u is
given by

RF,u = −1
4
ω2

(
∇F , gF

)
.(1.30)

Also, by (1.28), (1.29),
∇F,uω

(
∇F , gF

)
= 0.(1.31)

Let ∇Λ·(T ∗X)⊗̂F,u be the connection on Λ· (T ∗X) ⊗̂F induced by ∇Λ·(T ∗X)

and ∇F,u.
Let e1, . . . , en be an orthonormal basis of TX. Then by [BZ1, proof of

Proposition 4.12], we have the easy formulas,

AX =
1
2
c (ei)∇Λ·(T ∗X)⊗̂F,u

ei
− 1

4
ĉ (ei)ω

(
∇F , gF

)
(ei) ,(1.32)

BX = −1
2
ĉ (ei)∇Λ·(T ∗X)⊗̂F,u

ei
+

1
4
c (ei) ω

(
∇F , gF

)
(ei) .

Set
h (x) = xex2

.(1.33)

Definition 1.5. Put

h∧
g

(
dX , gΩ·(X,F )

)
= Trs

[
N

2
gh′

(
BX

)]
.(1.34)
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For t > 0, set

gTX
t =

gTX

t
.(1.35)

Let g
Ω·(X,F )
t be the corresponding Hermitian metric on Ω· (X, F ). Then

g
Ω·(X,F )
t = tN−n/2gΩ·(X,F ).(1.36)

Let BX
t be the corresponding BX . Clearly

BX
t =

1
2

(
dX − tdX,∗

)
,(1.37)

so that
BX,2

t = tBX,2.(1.38)

By (1.34), (1.38),

h∧
g

(
dX , g

Ω·(X,F )
t

)
= Trs

[
N

2
gh′

(√
tBX

)]
.(1.39)

Now we have the result of [BLo, Th. 3.2], [BGo2, Th. 3.30].

Theorem 1.6. As t → 0,

h∧
g

(
dX , g

Ω·(X,F )
t

)
=

1
4

dim Xχg (F )h′ (0) + O
(√

t
)

.(1.40)

As t → +∞,

h∧
g

(
dX , g

Ω·(X,F )
t

)
=

1
2
χ′

g (F )h′ (0) + O
(
1/

√
t
)

.(1.41)

Definition 1.7. Set

Th,g

(
gTX ,∇F , gF

)
=−

∫ +∞

0

[
h∧

g

(
dX , g

Ω·(X,F )
t

)
− 1

2
χ′

g (F )h′ (0)(1.42)

−
(

1
4

dim Xχg (F ) − 1
2
χ′

g (F )
)

h′
(
i
√

t/2
)]

dt

t
.

Now we have the result established in [BLo, Th. 3.29], [BGo2, Rem. 3.36].

Theorem 1.8. The following identity holds:

Th,g

(
gTX ,∇F , gF

)
=

1
2

∂ϑg

∂s

(
gTX ,∇F , gF

)
(0) .(1.43)

1.5. Anomaly formulas for equivariant Ray-Singer metrics. Let QX be
the vector space of smooth forms on X, let QX,0 ⊂ QX be the subspace of
exact smooth forms on M .

Let ∇TX be the Levi-Civita connection on
(
TX, gTX

)
. Since Xg is totally

geodesic, ∇TX induces the Levi-Civita connection ∇TXg on TXg. Let RTXg be
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the curvature of ∇TXg . Let e
(
TXg,∇TXg

)
be the Euler form of TXg which

one associates to the Euclidean connection ∇TXg using Chern-Weil theory.
Then

e
(
TXg,∇TXg

)
= Pf

[
RTXg

2π

]
.(1.44)

Observe that if ng = dimXg is odd, then

e
(
TXg,∇TXg

)
= 0.(1.45)

Also Tr
[
gω

(
∇F , gF

)
/2

]
is a closed 1-form on Xg.

Let now g′TX , g′F be another couple of G-invariant metrics on TX, F . One
denotes with a superscript ′ the objects we just constructed, which are asso-
ciated to this new couple of metrics. Let ẽ

(
TXg,∇TXg ,∇′TXg

)
∈ QXg/QXg,0

be the corresponding Chern-Simons class, so that

dẽ
(
TXg,∇TXg ,∇′TXg

)
= e

(
TXg,∇′TXg

)
− e

(
TXg,∇TXg

)
.(1.46)

Observe that

d log
(

det
(
g′F /gF

)1/2
)

= Tr
[
ω

(
∇F , g′F

)
/2

]
− Tr

[
ω

(
∇F , gF

)
/2

]
.(1.47)

More generally, by splitting F |Xg
as an orthogonal direct sum of vector bundles

indexed by the locally constant distinct eigenvalues of g|F |Xg
, we obtain easily

a smooth function

log
(

det
(
g′F /gF

)1/2
)

(g)

on Xg, which is such that

(1.48)

d log
(

det
(
g′F /gF

)1/2
)

(g) = Tr
[
gω

(
∇F , g′F

)
/2

]
− Tr

[
gω

(
∇F , gF

)
/2

]
.

We now state the anomaly formula for equivariant Ray-Singer metrics,
which was established in [BZ2, Th. 0.1] (we also refer to [W] for another proof
of this formula).

Theorem 1.9. The following identity holds:

(1.49)

log

(‖ ‖′λG(F )

‖ ‖λG(F )

)
(g) =

∫
Xg

e
(
TXg,∇TXg

)
log

(
det

(
g′F /gF

)1/2
)

(g)

+
∫

Xg

ẽ
(
TXg,∇TXg ,∇′TXg

)
Tr

[
gω

(
∇F , g′F

)
/2

]
.
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2. The Chern equivariant infinitesimal analytic torsion

The purpose of this section is to construct the Chern equivariant infinites-
imal analytic torsion forms. Their construction is at least formally related to
the construction of corresponding torsion forms in complex geometry [BGo1].
It is imitated from the Chern normalization of the analytic torsion forms in de
Rham theory which was given in [BGo2].

This section is organized as follows. In 2.1, we describe in some detail the
Lie derivative operator LK acting on Ω· (X, F ). In 2.2, we make the funda-
mental assumption that the action of G on F is flat. In 2.3, we recall simple
results on Lefschetz and Kirillov-like formulas for the equivariant Euler charac-
teristic χg (F ). In 2.4, we briefly recall the heat equation proof given in [B2] of
Kirillov-like formulas. In 2.5, and following [BGo2], we define the equivariant
analytic torsion forms associated to a fibration with compact structure group.
In 2.6, we construct the equivariant infinitesimal analytic torsion, and in 2.7,
we obtain the corresponding Chern analogue. Finally in Section 2.8, we briefly
establish anomaly formulas for the associated Ray-Singer metrics.

We make the same assumptions as in Section 1, and we use the corre-
sponding notation.

2.1. The infinitesimal action of G. If K ∈ g, let KX be the corresponding
vector field on X. If K, K ′ ∈ g, then

[KX , K
′X ] = −[K, K ′]X .(2.1)

Definition 2.1. If K ∈ g, set

mTX (K) = ∇TX
· KX .(2.2)

The vector field KX is Killing. Therefore mTX (K) is a skew-adjoint
section of End(TX), which is also the vertical part with respect to ∇TX of the
lift KTX of KX to TX. We identify mTX (K) with its action on Λ· (T ∗X).
By (1.5),

mTX (K) =
1
4

〈
∇TX

ei
KX , ej

〉
(c (ei) c (ej) − ĉ (ei) ĉ (ej)) .(2.3)

Recall that ∇Λ·(T ∗X) is the connection on Λ· (T ∗X) induced by ∇TX . Then
∇Λ·(T ∗X) acts on the standard de Rham complex

(
Ω· (X) , dX

)
. Since ∇TX is

torsion-free, the Lie derivative operator LK is given by

LK = ∇Λ·(T ∗X)
KX − mTX (K) .(2.4)

Let F be a complex vector bundle on X as in Section 1.3, equipped with
a flat connection ∇F , and a Hermitian metric gF . Recall that the action of G

on X lifts to F and preserves ∇F and gF . Let KF be the vector field induced
by the action of K on F . Let mF (K) ∈ End(F ) be the vertical part of KF
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with respect to the G-invariant flat connection ∇F in F . Then mF (K) is a
section of End(F ), and the action LK of K on smooth sections of F is given
by

LK = ∇F
KX − mF (K) .(2.5)

Let ∇Λ·(T ∗X)⊗̂F be the connection on Λ· (T ∗X) ⊗̂F which is induced by ∇TX

and ∇F . Then ∇Λ·(T ∗X)⊗̂F acts on Ω· (X, F ). The Lie derivative operator LK

also acts on Ω· (X, F ). More precisely

LK = ∇Λ·(T ∗X)⊗̂F − mTX (K) − mF (K) .(2.6)

Moreover since the connections ∇TX and ∇F are G-invariant, by [BeGeV,
Chap. 7],

∇TX
· mTX (K) + iKX RTX = 0,(2.7)

∇F
· mF (K) = 0.

The metric gF gives an identification of F and F
∗. Under this identifica-

tion, the flat connection ∇F
∗

is given by

∇F
∗

= ∇F + ω
(
∇F , gF

)
.(2.8)

Then applying the second identity in (2.7) to F
∗,

∇F
· mF,∗ (K) = −

[
ω

(
∇F , gF

)
, mF,∗ (K)

]
.(2.9)

Since the metric gF is G-invariant,

ω
(
∇F , gF

) (
KX

)
= −

(
mF (K) + mF,∗ (K)

)
.(2.10)

By (2.9), (2.10),
∇F

KX mF,∗ = −
[
mF (K) , mF,∗ (K)

]
.(2.11)

Also since ω
(
∇F , gF

) (
KX

)
is KX -invariant,

∇F
KX ω

(
∇F , gF

) (
KX

)
=

[
mF (K) , ω

(
∇F , gF

) (
KX

)]
,(2.12)

which fits with (2.7), (2.10), (2.11).
Recall that the unitary connection ∇F,u on F was defined in (1.29) by the

formula
∇F,u =

1
2

(
∇F,∗ + ∇F

)
.(2.13)

Equivalently, using (2.8), we get

∇F,u = ∇F +
1
2
ω

(
∇F , gF

)
.(2.14)

By (1.30), its curvature RF,u is given by

RF,u = −1
4
ω2

(
∇F , gF

)
.(2.15)
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Clearly the connection ∇F,u is still G-invariant. From (2.7), (2.9), we get

∇F,u
· mF (K) =

1
2

[
ω

(
∇F , gF

)
, mF (K)

]
,(2.16)

∇F,u
· mF,∗ (K) =−1

2

[
ω

(
∇F , gF

)
, mF,∗ (K)

]
.

Needless to say, since ∇F,u is unitary, the two equations in (2.16) are equivalent.
Let mF,u (K) ∈ End (F ) be the vertical part of KF with respect to the

connection ∇F,u. Recall that ∇Λ·(T ∗X)⊗̂F,u is the connection on Λ· (T ∗X) ⊗̂F

induced by ∇TX and ∇F,u. Instead of (2.4), we now have

LK = ∇Λ·(T ∗X)⊗̂F,u
KX − mTX (K) − mF,u (K) .(2.17)

Comparing (2.6), (2.14), (2.17), we get

mF,u (K) =
1
2
ω

(
∇F , gF

) (
KX

)
+ mF (K) .(2.18)

Using (2.10) and (2.18), we obtain

mF,u (K) =
1
2

(
mF (K) − mF,∗ (K)

)
.(2.19)

Note that, as it should be, mF,u (K) takes its values in skew adjoint sections
of End (F ). Also since ∇F,u is G-invariant, as in (2.7), we get

∇F,umF,u (K) + iKX RF,u = 0.(2.20)

One verifies easily that (2.20) also follows from (2.15), (2.16), (2.18).

2.2. A fundamental assumption. In the sequel, we make the fundamental
assumption that for any K ∈ g,

mF (K) = 0.(2.21)

By (2.10), we find that

ω
(
∇F , gF

) (
KX

)
= 0.(2.22)

By (2.21), we get the identity of operators acting on Ω· (X, F ),

LK =
[
dX , iKX

]
.(2.23)

By (2.23), we find that if G0 ⊂ G is the connected component of the identity,
then G0 acts trivially on H ·(X, F ).

Also by (2.17), (2.19), (2.21), we get

LK = ∇Λ·(T ∗X)⊗̂F,u
KX − mTX (K) .(2.24)
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2.3. Lefschetz and Kirillov formulas. Recall that by (1.13),

χg (F ) = TrsH
·(X,F ) [g] .(2.25)

The McKean-Singer heat equation formula [MKeS] asserts that for any t > 0,

χg (F ) = Trs[g exp(−tDX,2)].(2.26)

By making t → 0 in (2.26), and using local index theory [ABoP], [Gi], [B1],
[BeGeV, Chapter 6], one obtains the Lefschetz formula of (1.14),

χg (F ) =
∫

Xg

e (TXg) TrF [g] .(2.27)

Let (Ω· (X) , d) be the standard de Rham complex on X, equipped with
the de Rham operator d. Now we follow Berline-Vergne [BeV], with the only
difference that 2πi in [BeV] has been changed here into 2π. Set

dK = dX − 2πiKX .(2.28)

Clearly,
d2

K = −2πLK .(2.29)

Also,
[LK , dK ] = 0.(2.30)

By (2.29), (2.30), the operator dK acts on the set of smooth KX -invariant
forms, and its square vanishes. The cohomology groups of dK are related to
the equivariant cohomology of X.

Put
RTX

K = RTX − 2πmTX (K) .(2.31)

Then RTX
K is called the equivariant curvature of ∇TX . With a similar defi-

nition, since RF = 0, mF (K) = 0, the equivariant curvature of ∇F vanishes
identically. Finally, using (2.19) and (2.21), we find that the equivariant cur-
vature RF,u

K of ∇F,u is given by

RF,u
K = RF,u.(2.32)

Take g ∈ G. Let Z(g) ⊂ G be the centralizer of g, and let z(g) be its Lie
algebra. Then

z(g) = {K ∈ g, g.K = K}.(2.33)

In the sequel, we always take g ∈ G, K ∈ z(g). Put

XK = {x ∈ X, KX(x) = 0}.(2.34)

Then XK , which is the fixed point set of the group generated by K, is a totally
geodesic submanifold of X. Set

Xg,K = Xg ∩ XK .(2.35)
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Then Xg,K is a totally geodesic submanifold of X. More precisely, if K0 ∈ z(g)
and, for z ∈ R∗, K = zKo, for z small enough,

Xg,K = XgeK .(2.36)

Since K ∈ z (g), the vector field KX is g-invariant. In particular KX |Xg
∈

TXg. So KX |Xg
is the Killing vector field KXg on Xg. Since Xg is totally

geodesic, mTX (K) |Xg
preserves TXg. More precisely,

mTX (K) |TXg
= mTXg (K) .(2.37)

The equivariant curvature R
TXg

K of ∇TXg is given by

R
TXg

K = RTXg − 2πmTXg (K) .(2.38)

Definition 2.2. For K ∈ z (g), set

eK

(
TXg,∇TXg

)
= Pf

[
R

TXg

K

2π

]
.(2.39)

Then eK

(
TXg,∇TXg

)
is a smooth form on Xg. It is called the equivariant

Euler form of
(
TXg,∇TXg

)
. Moreover by [BeV], [BeGeV, Th. 7.7],

dKeK

(
TXg,∇TXg

)
= 0.(2.40)

The form eK

(
TXg,∇TXg

)
defines an equivariant cohomology class eK (TXg).

This class does not depend on the metric gTXg or the connection ∇TXg .
Observe that the function TrF [g] is constant on Xg. Counting degrees,

we get ∫
Xg

eK (TXg) TrF [g] =
∫

Xg

e (TXg) TrF [g] .(2.41)

Then the localization formulas of Duistermaat-Heckman [DuH], Berline-Vergne
[BeV], or, more simply, the fact that Xg,K is the zero set of KX |Xg

show that∫
Xg

eK (TXg) TrF [g] =
∫

Xg,K

e (TXg,K) TrF [g] .(2.42)

Recall that mF (K) = 0, so that, on Xg,K ,

TrF
[
geK

]
= TrF [g] .(2.43)

From the Lefschetz fixed point formula in (2.27), and from (2.41)–(2.43), we
recover a form of the Kirillov formulas as in Berline-Vergne [BeV]. Namely,

χgeK (F ) =
∫

Xg,K

e (TXg,K) TrF [g] , χgeK (F ) =
∫

Xg

e (TXg) TrF [g] ,(2.44)

χgeK (F ) =
∫

Xg

eK (TXg) TrF [g] .
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On the other hand, we saw after (2.23) that the action of geK on H · (X, F )
coincides with the action of g. In particular,

χgeK (F ) = χg (F ) .(2.45)

Clearly ((2.44), (2.45) are compatible.

2.4. The heat equation proof of the Kirillov formulas. First observe that
by (2.15), (2.32) and by proceeding as in [BLo, Prop. 1.3], [BGo2, Prop. 1.6],
we have the identity of forms on Xg,

Tr

[
g exp

(
−RF,u

K

2π

)]
= TrF [g] .(2.46)

Now, we will briefly explain the direct heat equation proof of the last
equation in (2.44),

χgeK (F ) =
∫

Xg

eK (TXg) TrF [g] .(2.47)

This proof is a special case of the results in [B2] providing us with an analogue
of the heat equation proof of the Atiyah-Bott-Lefschetz formulas outlined in
(2.26), (2.27).

Definition 2.3. For t > 0, put

CK,t =
1
2

(√
tDX +

c(KX)√
t

)
.(2.48)

A first trivial step in the heat equation proof of (2.47) is an obvious ex-
tension of the McKean-Singer formula,

χgeK (F ) = Trs[g exp(−LK − C2
K,t)].(2.49)

For g = 1, we then showed in [B2] that for |K| small enough, ‘fantastic
cancellations’ still occur as t → 0 in the local supertrace of the operator
g exp(−LK − C2

K,t), so that the limit of this local supertrace exists, and is
given by the integrand in the right-hand side of (2.47). For this last step, we
also need equation (2.46). We thus get a direct proof of (2.47) in the case
g = 1. The case of a general g is treated as in [BGo1, Th. 7.9].

2.5. Analytic de Rham torsion forms and compact Lie groups. In this
Section, we recall the construction in [BLo] and in [BGo2] of the equivari-
ant analytic torsion forms and of their Chern normalized version, when the
structure group of the given fibration is compact.
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Let S be a smooth manifold. Let p : P
Z(g)→ S be a Z (g) principal bundle

over S. We equip this principal bundle with a connection. Let θ be the
connection form on P , and let Θ be its curvature. Then Θ is a 2-form with
values in the vector bundle P ×Z(g) g.

Put
M = P ×Z(g) X.(2.50)

Then π : M
X→S is a fibration with compact fibre X. Also g acts fibrewise

on M . Clearly Z (g) acts on Xg. Then if Mg ⊂ M is the fixed point set by g

in M , then
Mg = P ×Z(g) Xg.(2.51)

The connection on P induces a connection on M ; i.e., we have a splitting

TM = THM ⊕ TX,(2.52)

and this splitting is g-invariant. Using (2.52), we get the isomorphism

Λ· (T ∗M) 	 π∗Λ· (T ∗S) ⊗̂Λ· (T ∗X) .(2.53)

Also observe that the given connection on M induces a corresponding connec-
tion on Mg.

Let P TX : TM → TX be the obvious projection with respect to the
splitting (2.52). If U ∈ TS, let UH ∈ THM be the horizontal lift of U . If
U, V ∈ TS, put

TH(U, V ) = −P TX [UH , V H ].(2.54)

One verifies easily that TH is a tensor.

Proposition 2.4. The tensor TH is a 2-form on S with values in Killing
vector fields along the fibres X. More precisely,

TH = ΘX .(2.55)

Proof. Equation (2.55) follows from (2.54).

The vector bundle P ×Z(g) F is a vector bundle on M . We still denote
it by F . Then F is a Hermitian vector bundle on M . Since the connection
∇F is G-invariant, the vector bundle F on M is equipped with a connection,
which we still denote by ∇F . Since mF (K) = 0, one verifies easily that ∇F is
still flat. The form ω

(
∇F , gF

)
on X is G-invariant, and so it descends to a

1-form along the fibres of X with values in End (F ), which we still denote by
ω

(
∇F , gF

)
. We identify ω

(
∇F , gF

)
with the corresponding vertical 1-form

on M . This form ω
(
∇F , gF

)
is just the obvious analogue for M of the form

ω
(
∇F , gF

)
on X, with respect to the flat connection ∇F . Similarly Z (g) acts
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on Ω· (X, F ). Therefore Ω· (X, F ) descends to a vector bundle on S, given by
P ×Z(g) Ω· (X, F ). The metric gΩ·(X,F ) descends to a Hermitian metric on the
vector bundle Ω· (X, F ).

The connection on P induces a Hermitian connection ∇Ω·(X,F ) on Ω· (X, F ).
The operator dX being Z (g)-invariant descends to an operator acting

on the vector bundle Ω· (X, F ). Therefore
(
Ω· (X, F ) , dX

)
is a complex of

infinite-dimensional vector bundles on S.
Let Ω· (S, Ω· (X, F )) be the space of smooth sections of Λ· (T ∗S) ⊗̂Ω· (X, F )

on S. Using (2.53), we have the isomorphism

Ω· (S, Ω· (X, F )) 	 Ω· (M, F ) .(2.56)

Via (2.56), the operators dX ,∇Ω·(X,F ), iT H act naturally on Ω· (M, F ). Let dM

be the de Rham operator acting on Ω· (M, F ). One verifies easily that

dM = dX + ∇Ω·(X,F ) + iT H .(2.57)

Then
dM,2 = 0.(2.58)

As explained in [BLo, §3 (b)], [BGo2, §3.2], by (2.58), dM can be considered
as a flat superconnection A′ on Ω· (X, F ).

Recall that TX and TX∗ are identified by the metric gTX . Then the
operators dX,∗ and TH∧ also act on Ω· (X, F ). Let A′′ be the adjoint of the
superconnection A′ with respect to THM, gΩ·(X,F ) in the sense of [BLo, §1 (d)],
[BGo2, §1.3]. Then by [BLo, Prop. 3.7], [BGo2, Prop. 3.8],

A′′ = dX,∗ + ∇Ω·(X,F ),∗ − TH ∧ .(2.59)

Then A′′ is also a flat superconnection on Ω· (X, F ).
Now, we use the formalism of [BLo, §1 (e)], [BGo2, §1.5]. Namely, set

A =
1
2

(
A′′ + A′) , B =

1
2

(
A′′ − A′) .(2.60)

Then A is a g-invariant superconnection on Ω· (X, F ), and B is a smooth g-
invariant section of

(
Λ· (T ∗S) ⊗̂End (Ω· (X, F ))

)odd. Moreover, since A′ and
A′′ are flat, by [BLo, Prop. 1.2], [BGo2, Prop. 1.5],

B2 =−A2, [A, B] = 0,(2.61) [
A′, B2

]
= 0,

[
A′′, B2

]
= 0,

[
A, B2

]
= 0.

The operator DX defined in (1.16) still acts on Ω· (X, F ). Let e1, . . . , en

be an orthonormal basis of TX. Using (2.57), (2.59), (2.60), we get special
cases of formulas established in [BLo, Th. 3.14],

A =
1
2
DX + ∇Ω·(X,F ) − 1

2
c
(
TH

)
,(2.62)

B =−1
2
ĉ (ei)

(
∇Λ·(T ∗X)⊗̂F,u +

〈
TH , ei

〉)
+

1
4
c (ei)ω

(
∇F , gF

)
(ei) .
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As explained in [BLo, Rem. 3.10], the superconnection A is a special case of
the Levi-Civita superconnection of [B3].

For t > 0, we define the metric gTX
t as in (1.35). Also, we use the

same notation as in Section 1. Let A′′
t be the adjoint of A′ with respect to

THM, g
Ω·(X,F )
t . One verifies easily that

A′′
t = t−NA′′tN ,(2.63)

or equivalently that

A′′
t = tdX,∗ + ∇Ω·(X,F ),∗ − TH

t
∧ .(2.64)

Set
At =

1
2

(
A′′

t + A′) , Bt =
1
2

(
A′′

t − A′) .(2.65)

For t > 0, set

C ′
t = tN/2A′t−N/2, C ′′

t = t−N/2A′′tN/2.(2.66)

Then C ′
t is a flat superconnection on Ω· (X, F ), and C ′′

t is its adjoint with
respect to gΩ·(X,F ). Set

Ct =
1
2

(
C ′′

t + C ′
t

)
, Dt =

1
2

(
C ′′

t − C ′
t

)
.(2.67)

By (2.66), we get

Ct = tN/2Att
−N/2, Dt = tN/2Btt

−N/2.(2.68)

Of course, all the objects which we just defined are G-invariant. By (2.57),
(2.64),

C ′
t =

√
tdX + ∇Ω·(X,F )

· +
iT H√

t
,(2.69)

C ′′
t =

√
tdX,∗ + ∇Ω·(X,F )

· − TH∧√
t

.

Also, by (2.62), (2.68),

(2.70)

Ct =
1
2

√
tDX + ∇Ω·(X,F ) − 1

2
√

t
c
(
TH

)
,

Dt =−
√

t

2
ĉ (ei)

(
∇Λ·(T ∗X)⊗̂F,u

ei
+

〈
TH/t, ei

〉)
+

√
t

4
c (ei)ω

(
∇F , gF

)
(ei) .

Using (2.55), one verifies easily that

∇Ω·(X,F ),2 = −LΘ.(2.71)

By (2.48), (2.70), and (2.71), we get

C2
t = −LΘ + C2

−Θ,t.(2.72)
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Let ϕ : Λ· (T ∗X) → Λ· (T ∗X) be given by

ϕα = (2π)−deg(α)/2 α.(2.73)

Again, with respect to [BLo] and [BGo2], we replace 2πi by 2π.
Let h (x) be an odd holomorphic function. Put

hg

(
∇F , gF

)
=

√
2πϕTrF

[
gh

(
ω

(
∇F , gF

)
/2

)]
.(2.74)

We first view hg

(
∇F , gF

)
as an odd form on Xg. By [BLo, Ths. 1.8 and

1.11], [BGo2, Th. 1.8], we know that this form is closed on Xg, and that its
cohomology class hg

(
∇F

)
does not depend on gF . By (2.22), we get

iKX hg

(
∇F , gF

)
= 0.(2.75)

From (2.75), we obtain
dKhg

(
∇F , gF

)
= 0.(2.76)

On the other hand, we may also view F as a flat vector bundle on M . We
saw before that ω

(
∇F , gF

)
can also be viewed as a form on M , which is in fact

the obvious analogue of the corresponding form on X. The same arguments
as before show that hg

(
∇F , gF

)
can also be considered as a form on Mg, and

that this form is still closed on Mg. Observe that this fact can also be derived
from the fact that this form is Z (g)-invariant , that it is closed along the fibres
Xg and that (2.75) holds.

Moreover Z (g) acts on H ·(X, F ) and the connected component of the
identity Z (g)0 acts trivially on H ·(X, F ). Therefore H ·(X, F ) descends to the
Z-graded flat vector bundle on S,

P ×Z(g) H ·(X, F ),

which we still denote by H ·(X, F ). Let ∇H·(X,F ) be the corresponding flat
connection on H ·(X, F ). As in (1.17),

kerDX 	 H ·(X, F ).(2.77)

Also G acts on ker DX , and (2.77) is an identification of G-spaces. So we find
that the metric g

H·(X,F )
L2

descends to a flat metric on H ·(X, F ). In particular,

ω
(
∇H·(X,F ), g

H·(X,F )
L2

)
= 0,(2.78)

so that
hg

(
∇H·(X,F ), g

H·(X,F )
L2

)
= 0.(2.79)

In [BLo, Th. 3.17 ], [BGo2, Th. 3.25], it was shown in a much more general
context that

hg

(
∇H·(X,F )

)
=

∫
Xg

e−Θ/2π (TXg) hg

(
∇F

)
in Hodd (S,C) .(2.80)
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Now we show how to reconcile (2.79) and (2.80) in this special case. In fact,
by (2.40) and (2.76),

dKeK

(
TXg,∇TXg

)
= 0, dKhg

(
∇F , gF

)
= 0.(2.81)

Using the localization formula of [DuH], [BeV], we get

(2.82)∫
Xg

eK

(
TXg,∇TXg

)
hg

(
∇F , gF

)
=

∫
Xg,K

e
(
TXg,K ,∇TXg,K

)
hg

(
∇F , gF

)
.

Since deg hg

(
∇F , gF

)
≥ 1, we get∫

Xg,K

e (TXg,K)hg

(
∇F

)
= 0.(2.83)

From (2.83), we find that the right-hand side of (2.80) vanishes identically,
which fits with (2.79).

We still define ϕ : Λ· (T ∗S) → Λ· (T ∗S) as in (2.73). As in (1.33), we now
set

h (x) = xex2
.(2.84)

Definition 2.5. For t > 0, set

(2.85)

hg

(
A′, gΩ·(X,F )

)
=

√
2πϕTrs [gh (B)] , h∧

g

(
A′, gΩ·(X,F )

)
= ϕTrs

[
N

2
gh′ (B)

]
.

Then by [BLo, Ths. 3.16 and and 3.20] and by [BGo2, Ths. 3.24 and 3.29],
the forms hg

(
A′, gΩ·(X,F )

)
and h∧

g

(
A′, gΩ·(X,F )

)
are respectively odd and even.

Theorem 2.6. The form hg

(
A′, gΩ·(X,F )

)
vanishes identically. Moreover

the form h∧
g

(
A′, gΩ·(X,F )

)
is closed, and is given by

h∧
g

(
A′, gΩ·(X,F )

)
= Trs

[
N

2
h′

(
−1

2
ĉ (ei)

(
∇Λ·(T ∗X)⊗̂F,u

〈
ΘX

2π
, ei

〉)
(2.86)

+
1
4
c (ei)ω

(
∇F , gF

)
(ei)

)]
.

Proof. By (2.62), B is an odd endomorphism. Therefore h (B) is also
odd, and so hg

(
A′, gΩ·(X,F )

)
vanishes. Equation (2.86) follows from (2.55),

(2.62) and (2.85). Finally, by Chern-Weil theory, it is clear that the form
h∧

g

(
A′, gΩ·(X,F )

)
is closed.
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Remark 2.7. In a more general context, in [BLo, Th. 3.20], [BGo2, Th. 3.29],
it is shown that

∂

∂t
hg

(
A′, gΩ·(X,F )

t

)
= d

h∧
g

(
A′, gΩ·(X,F )

t

)
t

.(2.87)

Here, (2.87) is a trivial consequence of Theorem 2.6.

In [BLo, Th. 3.21] and in [BGo2, Th. 3.30], it was shown that as t → 0,

h∧
g

(
A′, gΩ·(X,F )

t

)
=

n

4
χg (F ) + O

(√
t
)

,(2.88)

and that as t → +∞,

h∧
g

(
A′, gΩ·(X,F )

t

)
=

1
2
χ′

g (F ) + O
(
1/

√
t
)

.(2.89)

Now, we follow [BLo, §3 (j)] and [BGo2, §3.12].

Definition 2.8. Set

(2.90)

Th,g

(
THM, gTX ,∇F , gF

)
=−

∫ +∞

0

[
h∧

g

(
A′, gΩ·(X,F )

t

)
− 1

2
χ′

g (F )h′ (0)

−
(

n

4
χg (F ) − 1

2
χ′

g (F )
)

h′
(
i
√

t/2
)]

dt

t
.

By (2.88), (2.89), the even form Th,g

(
THM, gTX ,∇F , gF

)
is well defined.

It is called an equivariant analytic torsion form.

Theorem 2.9. The form Th,g

(
THM, gTX ,∇F , gF

)
is closed, and its co-

homology class does not depend on gTX , gF , or on the choice of the connection
on P .

Proof. By Theorem 2.6, it is clear that the form Th,g

(
THM, gTX ,∇F , gF

)
is closed. The fact that its cohomology class does not depend on the data is
obvious by functoriality.

Remark 2.10. In the more general context of [BLo] and [BGo2], the even
form Th,g

(
THM, gTX ,∇F , gF

)
is in general not closed.

For s ∈ R, α ∈ Λp (T ∗S), set

ψsα = sp/2α.(2.91)

Note that if p is even, ψsα is unambiguously defined, and that if p is odd,
ψsα/

√
s is also well defined.
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If α ∈ Λ· (T ∗S), put

Qα =
∫ 1

0
ψ4s(1−s)αds.(2.92)

If α ∈ Λ2p (T ∗S), then

Qα =
(p!)2

(2p + 1)!
4pα.(2.93)

Now, we define the Chern equivariant analytic torsion forms as in [BGo2,
Def. 3.46].

Definition 2.11. Set

Tch,g

(
THM, gTX ,∇F , gF

)
= QTh,g

(
THM, gTX ,∇F , gF

)
.(2.94)

2.6. The equivariant infinitesimal analytic torsion forms. We make the
same assumptions as in Sections 2.2–2.4. In particular, we only work with a
single manifold X. Also we use the notation of the previous sections.

Let KX′ be the 1-form dual to KX via the metric gTX .

Definition 2.12. For K ∈ z (g), put

A′
K = dX − iKX , A′′

K = dX,∗ + KX′∧,(2.95)

AK =
1
2

(
A′′

K + A′
K

)
, BK =

1
2

(
A′′

K − A′
K

)
.

Since LK is skew-adjoint, we get easily,

A′2
K = −LK , A′′2

K = −LK .(2.96)

From (2.96), we deduce that[
LK , A′

K

]
= 0,

[
LK , A′′

K

]
= 0,(2.97)

[LK , AK ] = 0, [LK , BK ] = 0.

Using (2.96), (2.97), we get

A2
K = −1

2
LK +

1
4

[
A′

K , A′′
K

]
, B2

K = −1
2
LK − 1

4
[
A′

K , A′′
K

]
,(2.98) [

A′
K , B2

K

]
= 0,

[
A′′

K , B2
K

]
= 0, [AK , BK ] = 0.

In particular, from (2.98),

A2
K + B2

K = −LK .(2.99)

Also by (1.2), (1.25), (2.95),

AK = AX +
1
2
c
(
KX

)
, BK = BX +

1
2
ĉ
(
KX

)
.(2.100)
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When replacing the metric gTX by the metric gTX
t = gTX/t, we obtain

the analogues of A′′
K , AK , BK , which are denoted A′′

K,t, AK,t, BK,t. Then

A′′
K,t = t−NA′′

KtN .(2.101)

Similarly, set

C ′
K,t = tN/2A′

Kt−N/2, C ′′
K,t = t−N/2A′′

KtN/2.(2.102)

Put

CK,t =
1
2

(
C ′′

K,t + C ′
K,t

)
, DK,t =

1
2

(
C ′′

K,t − C ′
K,t

)
.(2.103)

Then by (2.101)–(2.103),

CK,t = tN/2AK,tt
−N/2, DK,t = tN/2BK,tt

−N/2.(2.104)

Equivalently,

CK,t =
√

tAX +
1

2
√

t
c
(
KX

)
, DK,t =

√
tBX +

1
2
√

t
ĉ
(
KX

)
.(2.105)

Also our definition for CK,t fits with (2.48).
As in (2.84), we use the notation h (x) = xex2

.

Definition 2.13. Put

(2.106)

hg

(
A′

K , gΩ·(X,F )
)

= Trs [gh (BK)] , h∧
g

(
A′

K , gΩ·(X,F )
)

= Trs
[
g
N

2
h′ (BK)

]
.

By (2.104),

hg

(
A′

K , g
Ω·(X,F )
t

)
= Trs [gh (BK,t)] = Trs [gh (DK,t)] ,(2.107)

h∧
g

(
A′

K , g
Ω·(X,F )
t

)
= Trs

[
g
N

2
h′ (BK,t)

]
= Trs

[
g
N

2
h′ (DK,t)

]
.

Theorem 2.14. For t > 0, K ∈ z (g), the following identity holds:

hg

(
A′

K , gΩ·(X,F )
)

= 0.(2.108)

There exist β > 0, C > 0 such that if K ∈ z (g) is such that |K| ≤ β, for
t ∈ ]0, 1], ∣∣∣∣h∧

g

(
A′

K , g
Ω·(X,F )
t

)
− n

4
χg (F )

∣∣∣∣ ≤ C
√

t,(2.109)

and for t ≥ 1, ∣∣∣∣h∧
g

(
A′

K , g
Ω·(X,F )
t

)
− 1

2
χ′

g (F )
∣∣∣∣ ≤ C ′

√
t
.(2.110)
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Proof. By (2.100), BK is an odd endomorphism. Therefore h (BK) is also
odd, so that hg

(
A′

K , gΩ·(X,F )
)

vanishes.
By proceeding as in [BGo1, proof of Theorem 7.9] and in [BGo2, Th. 3.30],

we get (2.109). Also, by proceeding as in [BGo1, proof of Th. 7.1], we get
(2.110).

Definition 2.15. For K ∈ z (g), with |K| small enough, set

(2.111)

Th,g,K

(
gTX ,∇F , gF

)
= −

∫ +∞

0

[
h∧

g

(
A′

K , g
Ω·(X,F )
t

)
− 1

2
χ′

g (F )h′ (0)

−
(

n

4
χg (F ) − 1

2
χ′

g (F )
)

h′
(
i
√

t/2
)]

dt

t
.

The quantity Th,g,K

(
gTX ,∇F , gF

)
will be called the equivariant infinites-

imal analytic torsion. Comparing with (1.42), (1.43), we get

(2.112)

Th,g

(
gTX ,∇F , gF

)
= Th,g,0

(
gTX ,∇F , gF

)
=

1
2

∂ϑg

∂s

(
gTX ,∇F , gF

)
(0) .

Also using Theorem 2.14, we find that for |K| small enough, Th,g,K

(
gTX ,∇F , gF

)
depends analytically on K.

By (2.86), with the notation in (2.90),

Th,g

(
THM, gTX ,∇F , gF

)
= Th,g,−Θ/2π

(
gTX ,∇F , gF

)
.(2.113)

Definition 2.16. For K ∈ z (g) and |K| small enough, set

(2.114)

log
(
‖ ‖λ̃G(F ),h

)
(g, K) = log

(
| |λG(F )

)
(geK) + Th,g,K

(
gTX ,∇F , gF

)
.

The symbol ‖ ‖λ̃G(F ) will be called an equivariant infinitesimal Ray-Singer
metric. Observe that since eK acts trivially on H ·(X, F ), we can rewrite (2.114)
in the form

log
(
‖ ‖λ̃G(F ),h

)
(g, K) = log

(
| |λG(F )

)
(g) + Th,g,K

(
gTX ,∇F , gF

)
.(2.115)

Using (1.24), Theorem 1.8, (2.113), (2.114), we get

log
(
‖ ‖λG(F )

)
(g) = log

(
‖ ‖λ̃G(F ),h

)
(g, 0) .(2.116)
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2.7. The Chern equivariant infinitesimal analytic torsion. Now, by imi-
tating the constructions of [BGo2, Chs. 2 and 3], we will modify our definition
of the infinitesimal torsion. If f (K) is an analytic function of K ∈ z (g) defined
on a neighbourhood of 0, set

Qf (K) =
∫ 1

0
f (4s (1 − s)K) ds.(2.117)

Then Qf (K) is still analytic near 0.

Definition 2.17. For K ∈ z (g), and |K| small enough, set

Tch,g,K

(
gTX ,∇F , gF

)
= QTh,g,K

(
gTX ,∇F , gF

)
.(2.118)

Then Tch,g,K

(
gTX ,∇F , gF

)
still depends analytically on K. It will be

called the Chern equivariant infinitesimal analytic torsion. By (2.112),

Th,g

(
gTX ,∇F , gF

)
= Tch,g,0

(
gTX ,∇F , gF

)
.(2.119)

Using the notation in (2.94) and by (2.113), we get

Tch,g

(
THM, gTX ,∇F , gF

)
= Tch,g,−Θ/2π

(
gTX ,∇F , gF

)
.(2.120)

Definition 2.18. For K ∈ z (g) and |K| small enough, set

(2.121)

log
(
‖ ‖λ̃G(F ),ch

)
(g, K) = log

(
| |λG(F )

)
(geK) + Tch,g,K

(
gTX ,∇F , gF

)
.

The symbol ‖ ‖λG(F ),ch will be called a Chern equivariant infinitesimal
Ray-Singer metric.

Observe that (2.116),

log
(
‖ ‖λG(F )

)
(g) = log

(
‖ ‖λ̃G(F ),ch

)
(g, 0) .(2.122)

2.8. Anomaly formulas for Chern equivariant infinitesimal Ray-Singer
metrics. If f (x) is a holomorphic function, set

(2.123)

Ff (x) = x

∫ 1

0
f ′

(
4s (1 − s)x2

)
ds, Qf (x) =

∫ 1

0
f (4s (1 − s)x) ds.

Then Ff (x) is an odd holomorphic function. In the sequel, Fe· (x) denotes
the function Ff (x), with f (x) = ex.

By following [BGo2, §2.7], set

ch◦
g

(
∇F , gF

)
= (Fe·)g

(
∇F , gF

)
.(2.124)
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Then ch◦
g

(
∇F , gF

)
is a closed odd differential form. It was obtained in [BGo2]

as a Chern-Simons class associated to the Chern character. Let g′TX , g′F be
another couple of G-invariant metrics on TX, F . We denote with a super-
script ′ the objects considered before, which are associated to this new couple
of metrics.

Let ẽK

(
TXg,∇TXg ,∇ ′TXg ,

)
be the Chern-Simons class of forms on Xg

such that

dK ẽK

(
TXg,∇TXg ,∇ ′TXg

)
= eK

(
TXg,∇ ′TXg

)
− eK

(
TXg,∇TXg

)
.(2.125)

The class ẽK

(
TXg,∇TXg ,∇ ′TXg ,

)
is defined modulo the dK of a smooth

K-invariant form.
Let � ∈ [0, 1] → gF

� be a smooth family of G-invariant metrics on F , such
that gF

0 = gF , gF
1 = g′F . As in [BGo2, Def. 1.10], we define a form on Xg by

the formula

h̃g

(
∇F , gF

�

)
=

∫ 1

0
ϕTrs

[
g
1
2

(
gF
�

)−1 ∂gF
�

∂�
h

(
ω

(
∇F , gF

�

)
/2

)]
d�.(2.126)

Then by [BGo2, Th. 1.11], the class of the form h̃g

(
∇F , gF

�

)
in QXg/QXg,0

does not depend on the path � → gF
� , and moreover

dh̃g

(
∇F , gF

�

)
= hg

(
∇F , g′F

)
− hg

(
∇F , gF

)
.(2.127)

Also, observe that by (2.22),

iKX h̃g

(
∇F , gF

�

)
= 0.(2.128)

From (2.127), (2.128), we get

dK h̃g

(
∇F , gF

�

)
= hg

(
∇F , g′F

)
− hg

(
∇F , gF

)
.(2.129)

A similar construction is given in [BGo2, §2.7] for the class ch◦. Namely,
set

(2.130)

c̃h
◦
g

(
∇F , gF

)
=

∫ 1

0
ϕTrs

[
g
1
2

(
gF
�

)−1 ∂gF
�

∂�
(Fe·)′

(
ω

(
∇F , gF

�

)
/2

)]
d�.

Then, by [BGo2, Th. 2.39],

d c̃h
◦
g

(
A′, gE

�

)
= ch◦

(
A′, gE

1

)
− ch◦

(
A′, gE

0

)
,(2.131)

c̃h
◦
g

(
A′, gE

�

)
= Qh̃g

(
A′, gE

�

)
.
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Theorem 2.19. For K ∈ z (g), and |K| small enough, the following iden-
tity holds,
(2.132)

log

‖ ‖′λ̃G(F ),ch (g, K)

‖ ‖λ̃G(F ),ch (g, K)

 =
∫

Xg

eK

(
TXg,∇TXg

)
c̃h◦

g

(
∇F , gF

�

)
+

∫
Xg

ẽK

(
TXg,∇TXg ,∇′TXg

)
ch◦

g

(
∇F , g′F

)
.

Proof. First, we claim that if, in (2.132), we replace ‖ ‖λG(F ),ch by
‖ ‖λG(F ),h and ch◦

g by hg, with h (x) still given by (2.84), the corresponding
identity holds. In fact, its proof is very similar to [BLo, Th. 3.24], [BGo2,
Th. 3.34]. Then we claim that when applying the operator Q to both sides
of this identity, we get (2.132). This is of course clear for the left-hand side.
Moreover if m = dimXg, if A is a (m, m) antisymmetric matrix, if a ∈ R, then

Pf [aA] = am/2Pf [A] .(2.133)

Using (2.133), we find easily that if s ∈ [0, 1],∫
Xg

e4s(1−s)K

(
TXg,∇TXg

)
h̃g

(
∇F , gF

�

)
(2.134)

=
∫

Xg

eK

(
TXg,∇TXg

)
ψ4s(1−s)h̃g

(
∇F , gF

�

)
,∫

Xg

ẽ4s(1−s)K

(
TXg,∇TXg ,∇′TXg

)
ch◦

(
∇F , gF

)
=

∫
Xg

ẽK

(
TXg,∇TXg

)√
2πϕ

Trs

g
ω

(
∇F , gF

)
2

exp
(
4s (1 − s) ω2

(
∇F , gF

)
/4

) .

By (2.123), (2.124), (2.131), we conclude that when applying the operator Q to
the right-hand side of the previously described identity, we get the right-hand
side of (2.132). The proof of our theorem is completed.

3. Equivariant fibrations and the classes VK (M/S)

In this section, we construct currents which are naturally attached to an
equivariant fibration. In particular, we produce the V -invariants which are
attached to a G-equivariant fibration. If g is the Lie algebra of G and if K ∈ g,
the V -invariants are even cohomology classes on the base of the fibration, which
depend explicitly on K. One of the key properties of these invariants will be
established in Section 4.
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This section is organized as follows. In 3.1, we construct Chern-Simons
equivariant currents FK

(
X, gTX

)
, which refine on the localization formulas of

Duistermaat-Heckman [DuH], Berline-Vergne [BeV]. In 3.2, we recall various
properties of the Mathai-Quillen equivariant Thom forms [MQ], which are ob-
tained via the Berezin integration formalism of Section 1.2. In 3.3, we construct
a current ψK

(
KX , TX,∇TX

)
which refines on the equivariant Chern-Gauss-

Bonnet formula for KX . In 3.4, we give a comparison formula, which relates
the currents FK

(
X, gTX

)
and ψK

(
KX , TX,∇TX

)
. In 3.5, we construct cur-

rents ψK

(
∇f, TX,∇TX

)
, which refine the equivariant Chern-Gauss-Bonnet

formula for the gradient field ∇f , when f is a KX -invariant Morse-Bott func-
tion. In 3.6, we give a formula which relates the currents ψK

(
KX , TX,∇TX

)
and ψK

(
∇f, TX,∇TX

)
. These formulas are simpler versions of the intersec-

tion formulas with excess of [B8, 9].
In Section 3.7, we consider a proper submersion π : M → S, such that G

acts along the fibres X, which are equipped with a G-invariant metric gTX .
We establish various hidden symmetry properties for the curvature of a natural
connection on TX. These symmetry properties are related in a fundamental
way to the Levi-Civita superconnection introduced in [B3] to establish the
local families index theorem. In 3.8, we construct an odd closed form δK

on S. Using the symmetry properties just described, we show this form is
closed. In 3.9, by scaling the metric gTX , we prove that the forms δK are
exact. By a Chern-Simons transgression argument, we obtain the invariants
VK

(
M/S, THM, gTX

)
.

3.1. A Chern-Simons equivariant current. We make the same assump-
tions as in Sections 1 and 2.1. Take K ∈ g. Set

XK =
{
x ∈ X, KX (x) = 0

}
.(3.1)

Then XK is totally geodesic in X. We identify the normal bundle NXK/X with
the orthogonal bundle to TXK in TX|XK

with respect to gTX |XK
. Then the

connection ∇TX |XK
on TXK preserves the orthogonal splitting

TX|XK
= TXK ⊕ NXK/X .(3.2)

In particular ∇TX induces the Levi-Civita connection ∇TXK on TXK , and a
Euclidean connection ∇NXK /X on NXK/X . Let RTXK , RNXK /X be the curva-
tures of ∇TXK ,∇NXK /X . Note that KX acts naturally on NXK/X as the re-
striction mNXK /X (K) of mTX (K) |XK

to NXK/X . Then mNXK /X (K) is parallel
with respect to ∇NXK /X , antisymmetric and invertible. In particular, NXK/X

is even-dimensional. The corresponding equivariant curvature of ∇NXK /X is
given by

R
NXK /X

K = RNXK /X − 2πmNXK /X (K) .(3.3)
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The associated equivariant Euler form eK

(
NXK/X ,∇NXK /X

)
is just

eK

(
NXK/X ,∇NXK /X

)
= Pf

[
R

NXK /X

K

2π

]
.(3.4)

Also eK

(
NXK/X ,∇NXK /X

)
is invertible.

Definition 3.1. Let PX
K,XK

be the set of KX -invariant currents on X whose
wave front set is included in N∗

XK/X . Let PX,0
K,XK

be the set of KX -invariant
currents a, such that there exists a KX -invariant current b ∈ PX

K,XK
for which

a = dKb.

Note that if a ∈ PX,0
K,XK

,
dKa = 0.(3.5)

Let KX′ be the 1-form on X which is dual to KX by the metric gTX .
Observe that

dKKX′ = −2π
∣∣∣KX

∣∣∣2 + dKX′.(3.6)

Also, since gTX is KX -invariant,

d2
KKX′ = 0.(3.7)

Definition 3.2. For t > 0, set

αX
K,t = exp

(
dKKX′/4πt

)
, βX

K,t = −KX′

4πt
exp

(
dKKX′/4πt

)
.(3.8)

Recall that if s ∈ R, a ∈ Λ (T ∗X), ψsα was as defined in (2.91). Now we
have the result of [B7, Proposition 5], [B8, Th. 2.3].

Theorem 3.3. The forms αX
K,t, β

X
K,t are KX -invariant. The following

identity holds:
dKαX

K,t = 0.(3.9)

Moreover
∂

∂t
αX

K,t = dK

βX
K,t

t
.(3.10)

Finally, if z ∈ R∗,

αX
zK,t = ψ1/zα

X
K,t/z2 , βX

zK,t =
1√
z
ψ1/zβ

X
K,t/z2 .(3.11)

Proof. Equation (3.9) follows from (3.7). Equations (3.10) and (3.11) are
trivial.
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Observe that that NXK/X is naturally oriented by the condition

Pf
[
mNXK /X (K)

]
> 0.(3.12)

Let o (TX) , o (TXK) be the orientation bundles of TX, TXK . The argument
we just gave shows that

o (TX) |XK
= o (TXK) .(3.13)

By [B4, Th. 1.3], [B8, Th. 2.5 and Rem. 2.6], there are currents ρ1, . . . , ρk . . .,
whose support is included in XK , such that if η is a smooth form on X with
values in o (TX), for k ≥ 1, as t → 0,∫

X
ηαX

K,t =
∫

XK

η

eK

(
NXK/X ,∇NXK /X

) +
k∑

j=1

∫
X

ηρjt
j + o

(
tk

)
.(3.14)

By (3.8), (3.14), since KX vanishes on XK , we deduce that as t → 0,∫
X

ηβX
K,t = O (1) .(3.15)

However, inspection of the proofs in [B4, 8] shows very easily that using the
fact that the Gaussian integral of a linear function vanishes, or the fact that
NXK/X is even-dimensional, instead of (3.15), we find that as t → 0,∫

X
ηβX

K,t = O (t) .(3.16)

Also, by (3.8), as t → +∞, ∫
X

ηβX
K,t = O (1/t) .(3.17)

Definition 3.4. Let FK

(
X, gTX

)
be the current on X,

FK

(
X, gTX

)
=

∫ +∞

0

βX
K,t

t
dt.(3.18)

Let δXK
be the current of integration on the submanifold XK .

Theorem 3.5. The odd current FK

(
X, gTX

)
lies in PX

K,XK
. Moreover

dKFK

(
X, gTX

)
= 1 − δXK

eK

(
NXK/X ,∇NXK /X

) .(3.19)

If z ∈ R∗,

FzK

(
X, gTX

)
=

1√
z
ψ1/zFK

(
X, gTX

)
.(3.20)

Proof. By proceeding as in [B8, Th. 2.5], we find that FK

(
X, gTX

)
∈

PX
K,XK

. By (3.10), (3.14), we get (3.19). By (3.11), we get (3.20).
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3.2. The equivariant Mathai -Quillen Thom forms. In this section, we use
the Berezin integration formalism of Section 1.2 applied to V = TX, E = TX.
In particular, Λ̂· (T ∗X) denotes another copy of Λ· (T ∗X). Also, most of the
time, we will identify TX and T ∗X by the metric gTX .

Let e1, · · · , en be an orthonormal basis of TX and let e1, · · · , en be the
corresponding dual basis of T ∗X. Defining RTX

K as in (2.31), set

ṘTX
K =

1
2

〈
ek, R

TX
K el

〉
êk ∧ êl.(3.21)

Then ṘTX
K is a section of Λ· (T ∗X) ⊗̂ Λ̂· (T ∗X).

Let s be a KX -invariant section of TX. By (2.4),

∇TX
KX s = mTX (K) s.(3.22)

Definition 3.6. Let AK,s be the section of Λ· (T ∗X) ⊗̂ Λ̂· (T ∗X) such that

AK,s = ṘTX
K + ∇TX

· ŝ +
1
2
|s|2 .(3.23)

The connection ∇TX acts as a differential operator on smooth sections of
Λ· (T ∗X) ⊗̂ Λ̂· (T ∗X). Set

∇TX
K = ∇TX − 2πiKX .(3.24)

The interior multiplication iŝ acts naturally on Λ̂· (T ∗X), and also as a deriva-
tion of the graded algebra Λ· (T ∗X) ⊗̂ Λ̂· (T ∗X). Now we establish an extension
of a result established in [MQ, §6] and in [BeGeV, Lemma 1.51 and Props. 1.53
and 1.54].

Theorem 3.7. For T > 0, the following identities hold :

[
∇TX

K +
√

Tiŝ, AK,
√

Ts

]
= 0,

∂AK,
√

Ts

∂T
=

[
∇TX

K +
√

Tiŝ,
ŝ

2
√

T

]
.(3.25)

Proof. If we replace RTX
K by RTX and ∇TX

K by ∇TX , our identities are
exactly the ones established in the above references. Using (2.7), (3.22), we
get the first identity in (3.25). Also, we observe that in the right-hand side of
the second identity, we may as well replace ∇TX

K by ∇TX . The second identity
now follows from (3.23).

Definition 3.8. Let aK,s and bK,s be the forms on TX,

aK,s =
∫ B̂

exp (−AK,s/2π) , bK,s =
∫ B̂ ŝ

4π
exp (−AK,s/2π) .(3.26)
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In particular, we deduce from (3.26) that

deg bK,s ≤ n − 1.(3.27)

More precisely, the component of top degree n − 1 in bK,s is just b0,s.
For K = 0, the following result was proved in Mathai-Quillen [MQ,

Th. 6.4], and in [BZ1, Th. 3.4].

Theorem 3.9. The forms aK,s, bK,s are KX -invariant. The forms aK,s

are even, and are such that
dKaK,s = 0.(3.28)

The forms bK,s are odd. Moreover, for T ≥ 0,

aK,
√

Ts|T=0 = eK

(
TX,∇TX

)
,(3.29)

∂

∂T
aK,

√
Ts =−dK

bK,
√

Ts

T
, T > 0.

Finally, for z ∈ R∗,

azK,
√

Ts = zn/2ψ1/zaK,
√

Ts, bzK,
√

Ts = zn/2 1√
z
ψ1/zbK,

√
Ts.(3.30)

Proof. By the first identity in (3.25), we get (3.28). Using (1.10), we
get the first identity in (3.29). The second identity of (3.29) follows from the
second identity in (3.25). The identity (3.30) is trivial.

3.3. Convergence of the Mathai -Quillen currents associated to KX . Now
we will use the notation of Section 3.2, with s = KX .

Let δXK
be the current of integration on XK . We state a convergence

result for the currents aK,
√

TKX , bK,
√

TKX , which was partially proved in [B9,
Th. 3.3].

Theorem 3.10. There is a constant C > 0 such that for any smooth form
µ on X, for T ≥ 1,∣∣∣∣∫

TX
µ

(
aK,

√
TKX − e

(
TXK ,∇TXK

)
δXK

)∣∣∣∣ ≤ C√
T
‖µ‖C1(X) ,(3.31)

∣∣∣∣∫
TX

µbK,
√

TKX

∣∣∣∣ ≤ C√
T
‖µ‖C1(TX) .

Proof. Observe the exact sequence

0 → NXK/X → TX|XK
→ TXK → 0.(3.32)

In (3.32), the map NXK/X → TX|XK
is just dKX |XK

, and the second map is
the orthogonal projection TX|XK

→ TXK . In fact TXK is just the orthogonal
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bundle to NXK/X in TX|XK
, and ∇TXK is the orthogonal projection of ∇TX|XK

on TXK . By proceeding as in [B6, proof of Theorem 5.1] or in [B9, proof
of Theorem 1.7], we get the first identity in (3.31). Using the fact that the
integral of a linear function with respect to the Gaussian distribution vanishes,
we also get the second identity in (3.31).

Remark 3.11. A more precise statement than (3.31) is that the conver-
gence estimates also hold microlocally in PX

K,XK
. The proof is the same as

in [B9].

Definition 3.12. Put

ψK

(
KX , TX,∇TX

)
=

∫ +∞

0
bK,

√
TKX

dT

T
.(3.33)

Theorem 3.13. The current ψK

(
KX , TX,∇TX

)
lies in PX

K,XK
. More-

over,

dKψK

(
KX , TX,∇TX

)
= eK

(
TX,∇TX

)
− e

(
TXK ,∇TXK

)
δXK

.(3.34)

Also, if z ∈ R∗,

ψzK

(
zKX , TX,∇TX

)
= (sgn z)n zn/2ψ1/zψK

(
KX , TX,∇TX

)
.(3.35)

Proof. By Remark 3.11, the fact that ψK

(
KX , TX,∇TX

)
lies in PX

XK
can

be proved as in [B8, Ths. 2.5 and 2.12]. Also, by (3.29), (3.31), we get (3.34).
Finally (3.35) follows from (3.30).

Remark 3.14. By using (3.27), we find that ψK

(
KX , TX,∇TX

)
is

of degree ≤ n − 1. More precisely, the component of top degree n − 1 of
ψK

(
KX , TX,∇TX

)
is just the current ψ

(
KX , TX,∇TX

)
which is obtained

as in (3.33), by replacing bK,
√

TKX by b0,
√

TKX . In particular, instead of (3.34),

the current ψ
(
KX , TX,∇TX

)
is such that

dψ
(
KX , TX,∇TX

)
= e

(
TX,∇TX

)
− e

(
TXK ,∇TXK

)
.(3.36)

3.4. Comparison of the currents FK

(
X, gTX

)
and ψK

(
KX , TX,∇TX

)
.

Let i : XK → X be the obvious embedding. Then by (3.2), we have the
identity

i∗eK

(
TX,∇TX

)
= e

(
TXK ,∇TXK

)
eK

(
NXK/X ,∇NXK /X

)
.(3.37)

Using (3.19) and (3.37), we get
(3.38)

dKeK

(
TX,∇TX

)
FK

(
TX,∇TX

)
= eK

(
TX,∇TX

)
− e

(
TXK ,∇TXK

)
δXK

,
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i.e. the current eK

(
TX,∇TX

)
FK

(
TX,∇TX

)
verifies the same equation as

the current ψK

(
KX , TX,∇TX

)
in (3.34). In view of (3.5), an explanation for

this result is as follows.

Theorem 3.15. The following identity holds:

eK

(
TX,∇TX

)
FK

(
TX,∇TX

)
− ψK

(
KX , TX,∇TX

)
∈ PX,0

K,XK
.(3.39)

Proof. Observe that the forms bKX ,T vanish identically on XK . We claim
that by proceeding as in [B8, proof of Th. 3.2], (3.39) follows easily. In fact the
results of [B8] refer to Bott-Chern currents on complex manifolds (which solve
a current equation with respect to an equivariant version of the ∂∂ operator),
while here, we only deal with equivariant Chern-Simons type objects. Note
that the manifold XK intersects itself non-transversally, with an excess normal
bundle NXK/X . The only important point is to understand why this excess
normal bundle does not contribute to the final formula. However this follows
easily from the fact that this contribution can be expressed as the integral
along the fibre NXK/X of a form which is odd with respect to Z ∈ NXK/X , so
that it vanishes identically. Details are left to the reader.

Remark 3.16. It follows from Theorem 3.15 that if X is odd-dimensional,

ψK

(
KX , TX,∇TX

)
∈ PX,0

XK
.(3.40)

Also observe that equations (3.20), (3.35) and (3.39) are compatible. In par-
ticular, if n is odd and if z < 0, there is no sign discrepancy because of (3.40).

3.5. Convergence of the Mathai -Quillen currents associated to a gradient
vector field. Let now f : X → R be a smooth KX -invariant function. Let
∇f be the gradient field of f with respect to gTX . Then ∇f is a KX -invariant
section of TX.

We will assume that f is a Morse-Bott function. Let B be the set of
critical points of f , i.e. the vanishing locus of ∇f . Then B is a smooth compact
submanifold of X.

Clearly, the Hessian ∇TX∇·f defines a symmetric quadratic form on TX.
We identify the normal bundle NB/X to the orthogonal bundle to TB in TX|B
with respect to gTX . It follows that ∇TX∇f |B : NB/X → NB/X is invertible
and self-adjoint.

Let gTB be the metric induced by gTX on TB. Let ∇TB be the corre-
sponding Levi-Civita connection on TB. Equivalently, ∇TB is the orthogonal
projection of ∇TX |B on TB.

By (3.22), on XK ,
mTX (K)∇f = 0.(3.41)
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By (3.41), it follows that ∇f |XK
∈ TXK , i.e. ∇f |XK

is the gradient field for
the function f |XK

: XK → R with respect to the metric gTXK .
Since KX |B is a Killing vector field on B, it follows that its vanishing

locus BK = B ∩XK is a smooth submanifold of B. Therefore BK is a smooth
submanifold of XK . Also XK and B intersect orthogonally along BK . It
follows from the above that f |XK

is a Morse-Bott function on XK , whose
critical manifold is just BK .

Let ind (f) be the locally constant function on B with values in Z, which
is the index of the quadratic form ∇TX∇f on NB/X , i.e. the number of its
negative eigenvalues. We define in the same way the function ind (f |XK

) on
XK . Observe that since ∇f is KX -invariant and NXK/X is even-dimensional,
we have the equality of Z-valued functions on BK ,

(−1)ind(f |XK ) = (−1)ind(f)|BK .(3.42)

We define the spaces of KX -invariant currents PX
K,B, PX,0

K,B on B as in
Definition 3.1, by simply replacing XK by B.

Theorem 3.17. There is a constant C > 0 such that for any smooth form
µ on X, for T ≥ 1,∣∣∣∣∫

X
µ

(
aK,

√
T∇f − (−1)ind(f) eK

(
TB,∇TB

)
δB

)∣∣∣∣ ≤ C√
T
‖µ‖C1(X) ,(3.43) ∣∣∣∣∫

X
µbK,

√
T∇f

∣∣∣∣ ≤ C√
T
‖µ‖C1(X) .

Proof. Instead of (3.32), we have the exact sequence of vector bundles
on B,

0 → NB/X → TX|B → TB → 0.(3.44)

The map NB/X → TX is now ∇TX∇f |B, and the map TX|B → TB is the
orthogonal projection. In fact the image of NB/X by ∇TX∇f |B is just the
orthogonal bundle to TB in TX|B, so that in turn, TB can be identified to
the orthogonal bundle to this image. The orthogonal projection of the connec-
tion ∇TX|B on TB is just the Levi-Civita connection ∇TB. By procedures in
[B6, proof of Th. 5.1] or in [B9, proof of Th. 3.3], our Theorem follows.

Remark 3.18. A more precise statement than (3.31) is that the conver-
gence estimates also hold microlocally in PX

K,B. The proof is the same as in
[B6, B9].

Definition 3.19. Put

ψK

(
∇f, TX,∇TX

)
=

∫ +∞

0
bK,

√
T∇f

dT

T
.(3.45)
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Theorem 3.20. The current ψK

(
∇f, TX,∇TX

)
lies in PX

K,B. Moreover

dKψK

(
∇f, TX,∇TX

)
= eK

(
TX,∇TX

)
(3.46)

− (−1)ind(f) eK

(
TB,∇TB

)
δB.

Proof. By Remark 3.18, the fact that ψK

(
∇f, TX,∇TX

)
lies in PX

K,B can
be proved as in [B8, Th. 2.5]. Also, by (3.29), (3.43), we get (3.46).

By the same method, we can define the current ψ
(
∇f |XK

, TXK ,∇TXK

)
on XK , which lies in PXK

BK
, and is such that

dψ
(
∇f |XK

, TXK ,∇TXK

)
= e

(
TXK ,∇TXK

)
(3.47)

− (−1)ind(f |XK ) e
(
TBK ,∇TBK

)
δBK

.

Note that ψ
(
∇f |XK

, TXK ,∇TXK

)
is of degree dim TXK − 1.

3.6. Comparison of the currents ψK

(
KX , ·

)
and ψK (∇f, ·). Using (3.34),

(3.42), (3.46) and (3.47), we get

dK

[
ψK

(
KX , TX,∇TX

)
+ ψ

(
∇f |XK

, TXK ,∇TXK

)
δXK

]
(3.48)

= eK

(
TX,∇TX

)
− (−1)ind(f) e

(
TBK ,∇TBK

)
δBK

,

dK

[
ψK

(
∇f, TX,∇TX

)
+ (−1)ind(f) ψK

(
KX |B, TB,∇TB

)
δB

]
= eK

(
TX,∇TX

)
− (−1)ind(f) e

(
TBK ,∇TBK

)
δBK

.

Let PX
K,XK∪B be the set of KX -invariant currents on X whose wave front

set is included in N∗
XK/X +N∗

B/X , let PX,0
K,XK∪B be the set of KX -invariant cur-

rents a such that there is a KX -invariant current b ∈ PX
K,XK∪B with

a = dKb.
A refinement for (3.48) is as follows.

Theorem 3.21. The following identity holds:

ψK

(
KX , TX,∇TX

)
+ ψ

(
∇f |XK

, TXK ,∇TXK

)
δXK

(3.49)

= ψK

(
∇f, TX,∇TX

)
+ (−1)ind(f) ψK

(
KX |B, TB,∇TB

)
δB in PX

XK∪B/PX,0
XK∪B.

Proof. The principle of the proof of our theorem is the same as the proof
of [B9, Th. 2.8].
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Remark 3.22. Clearly, we can combine Theorems 3.15 and 3.21.

3.7. A proper submersion. Let π : M → S be a submersion of smooth
manifolds, with compact fibre X of dimension n. Let TX ⊂ TM be the tangent
bundle to the fibres X.

Let G be a compact Lie group acting on M along the fibres of X, that is
if g ∈ G, πg = π. Then G acts on TM and on TX ⊂ TM . Let THM ⊂ TM

be a G-invariant horizontal subbundle, so that

TM = THM ⊕ TX.(3.50)

Observe that since G is compact, such a THM always exists. Let P TX : TM →
TX be the projection associated to the splitting (3.50). Observe that

THM 	 π∗TS.(3.51)

Let gTX be a G-invariant Euclidean metric on TX. In the sequel, we
identify TX and T ∗X by the metric gTX .

By [B3],
(
THM, gTX

)
determine a Euclidean connection ∇TX on TX. Let

gTS be an Euclidean metric on TS. We equip TM with the G-invariant metric
gTM = π∗gTS⊕gTX . Let ∇TM,L be the Levi-Civita connection on

(
TM, gTM

)
.

Then the connection ∇TX on TX is given by

∇TX = P TX∇TM,L,(3.52)

and is independent of gTS . Let ∇TM be the connection on TM ,

∇TM = π∗∇TS ⊕∇TX .(3.53)

Let T be the torsion of ∇TM . Put

S = ∇TM,L −∇TM .(3.54)

Then S is a 1-form on M with values in antisymmetric elements of End (TM).
Classically, if A, B, C ∈ TM ,

S (A)B − S (B)A + T (A, B) = 0,(3.55)

2 〈S (A) B, C〉 + 〈T (A, B) , C〉 + 〈T (C, A) , B〉 − 〈T (B, C) , A〉 = 0.

By [B3, Th. 1.9], we know that

• The connection ∇TX preserves the metric gTX .

• The connection ∇TX and the tensors T and 〈S (·) , ·, ·〉 do not depend on
gTS .

• The tensor T takes its values in TX, and vanishes on TX × TX.

• For any A ∈ TM , S (A) maps TX into THM .
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• For any A, B ∈ THM , S (A)B ∈ TX.

• If A ∈ THM , S (A) A = 0.

From (3.55), we find that if A ∈ THM , B, C ∈ TX,

〈T (A, B) , C〉 = 〈T (A, C) , B〉 = −〈S (B) C, A〉 .(3.56)

By construction, all the above objects are G-invariant. If U ∈ TS, let UH ∈
THM be the horizontal lift of U in THM . If U is a vector field on TS, let LUH

be the Lie derivative operator associated to the vector field UH . One verifies
easily that LUH acts on the tensor algebra of TX, and that this action defines
a corresponding tensor in U ∈ TS. Now, we recall a simple result stated in
[B12, Th. 1.1].

Theorem 3.23. The connection ∇TX on
(
TX, gTX

)
is characterized by

the following two properties:

• On each fibre X, it restricts to the Levi-Civita connection.

• If U ∈ TS,

∇TX
UH = LUH +

1
2

(
gTX

)−1
LUH gTX .(3.57)

Moreover, if U, V are smooth sections of TS,

T
(
UH , V H

)
= −P TX

[
UH , V H

]
,(3.58)

and if U ∈ TS, A ∈ TX,

T
(
UH , A

)
=

1
2

(
gTX

)−1
LUH gTXA.(3.59)

In the sequel, SP TXS and ∇TX
· S are considered as sections of Λ2 (T ∗X)⊗

End (TM). The following identity was established in [B3, Th. 4.14], [B5,
Th. 2.3].

Proposition 3.24. If A, A′ ∈ TX, B, B′ ∈ TM , then〈
RTX (

A, A′) P TXB, P TXB′
〉

+
〈
SP TXS

(
A, A′) B, B′

〉
(3.60)

+
〈(

∇TX
. S

) (
A, A′) B, B′

〉
=

〈
RTX (

B, B′) A, A′
〉

.

We will now denote by d̂X the fibrewise de Rham operator acting on
smooth sections of Λ̂· (T ∗X) along the fibres TX. We denote by ∇̂TX the
restriction of the connection ∇TX to the fibres X, which acts on sections of
Λ̂· (T ∗X) ⊗ TX. Observe that ∇̂TX increases the degree in the exterior al-
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gebra Λ̂· (T ∗X) by 1. Its curvature, R̂TX , is a smooth section of Λ̂2 (T ∗X) ⊗
End (TX). Also ∇̂TX acts naturally on smooth sections of Λ̂· (T ∗X)
⊗̂ Λ· (T ∗X) ⊗̂Λ· (T ∗S) along the fibres.

Let e1, . . . , en be an orthonormal basis of TX and let e1, . . . , en be the cor-
responding dual basis of T ∗X, let f1, . . . , fm be a basis of TS and let f1, . . . , fm

be the corresponding dual basis of T ∗S.

Definition 3.25. Set

T̂H =
1
2

〈
T

(
fH

α , fH
β

)
, ei

〉
ê i ∧ fα ∧ fβ,(3.61)

T 0 = fα ∧ ê i ∧ T
(
fH

α , ei

)
.

Then T̂H and d̂X T̂H are sections of Λ2 (T ∗S) ⊗̂ Λ̂· (T ∗X). Also T 0 is a
section of Λ· (T ∗S) ⊗̂ Λ̂· (T ∗X) ⊗̂TX. Recall that we identify TX and T ∗X
by the metric gTX . Then T 0 can be viewed as the smooth section of Λ· (T ∗S) ⊗̂
Λ̂· (T ∗X) ⊗̂T ∗X,

T 0 =
〈
T

(
fH

α , ei

)
, ej

〉
fα ∧ ê i ∧ ej .(3.62)

By the above, ∇̂TX
· T 0 is well defined. Also the operator iT 0 acts on

Λ· (T ∗S) ⊗̂Λ· (T ∗X) ⊗̂ Λ̂· (T ∗X)

by interior multiplication in the variable ej acting on Λ· (T ∗X), and exterior
product by fα acting on Λ· (T ∗S), and by exterior product by ê i acting on
Λ̂· (T ∗X). In particular, iT 0 increases the degree in Λ̂· (T ∗X) by 1. Set∣∣∣T 0

∣∣∣2 =
〈
T 0, T 0

〉
.(3.63)

Equivalently,

∣∣∣T 0
∣∣∣2 =

n∑
j=1

 ∑
1≤i≤n

1≤α≤m

〈
T

(
fH

α , ei

)
, ej

〉
fα ∧ ê i


2

,(3.64)

where the square in the right-hand side of (3.64) is taken in Λ· (T ∗S) ⊗̂ Λ̂· (T ∗X).
Then

∣∣T 0
∣∣2 is a section of Λ2 (T ∗S) ⊗̂ Λ̂2 (T ∗X).

Theorem 3.26. The following identity holds:
1
2

〈
ei, R

TXej

〉
ê i ∧ ê j =

1
2

〈
ei, R̂

TXej

〉
ei ∧ ej(3.65)

+∇̂TX
· T 0 +

1
2

∣∣∣T 0
∣∣∣2 − 1

2
d̂X T̂H .

Moreover, (
∇̂TX

· + iT 0

) 1
2

〈
ei, R

TXej

〉
ê i ∧ ê j = 0.(3.66)
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Proof. Observe first that when only vertical Grassmann variables ei are
considered, (3.65) is a trivial consequence of the well-known symmetry of the
fibrewise Levi-Civita curvature, a form of identity (3.60).

Also we know that if A ∈ TM , S (A) maps TX into THM . By (3.56), if
A ∈ TX, B ∈ TS,

P TXS (A)BH = T
(
BH , A

)
.(3.67)

By (3.67), and the fact that S (·) takes its values in antisymmetric elements of
End (TM), we find that if A, A′ ∈ TX, B, B′ ∈ TS,

(3.68)〈(
SP TXS

) (
A, A′) BH , B′H

〉
=

〈
S (A)P TXS

(
A′) BH , B′H

〉
−

〈
S

(
A′) P TXS (A)BH , B′H

〉
=

〈
P TXS (A) BH , P TXS

(
A′) B′H

〉
−

〈
P TXS

(
A′) BH , P TXS (A)B′H

〉
=

〈
T

(
BH , A

)
, T

(
B′H , A′

)〉
−

〈
T

(
BH , A′

)
, T

(
B′H , A

)〉
.

From (3.68), we deduce that

1
4

〈
fH

α , SP TXS (ei, ej) fH
β

〉
ê i ∧ ê j ∧ fα ∧ fβ =

1
2

∣∣∣T 0
∣∣∣2 .(3.69)

By (3.55), if A ∈ TX, B, B′ ∈ TS,〈
S (A)BH , B′H

〉
=

1
2

〈
T

(
BH , B′H

)
, A

〉
.(3.70)

Therefore,

1
4

〈
fH

α ,∇TX
· S (ei, ej) fH

β

〉
ê i ∧ ê jfα ∧ fβ = −1

2
d̂X T̂H .(3.71)

Using (3.67), we find that if B ∈ TS, A, A′, B′ ∈ TX,〈
∇TX

· S
(
A, A′) BH , B′

〉
=

〈
∇TX

· T
(
BH , ·

) (
A, A′) , B′

〉
(3.72)

From (3.72), we get

1
2

〈
fH

α ,∇TXS (ei, ej) ek

〉
ê i ∧ ê j ∧ fα ∧ ek = ∇̂TX

· T 0.(3.73)

By (3.60), (3.68)-(3.73), we get (3.65) in full generality. Clearly,(
∇̂TX

· + iT 0

)
d̂X T̂H = d̂X,2T̂H = 0.(3.74)

Also, by (3.25), we get(
∇̂TX

· + iT 0

) (
1
2

〈
ei, R̂

TXej

〉
ei ∧ ej + ∇̂TX

· T 0 +
1
2

∣∣∣T 0
∣∣∣2) = 0.(3.75)

By (3.74), (3.75), we get (3.66). The proof of our theorem is completed.
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Remark 3.27. Identity (3.66) was proved in [BGo2, Ths. 6.11 and 6.12],
by a method closely related to the arguments used in our proof. Moreover, all
the above objects are G-invariant.

Recall that g is the Lie algebra of G. If K ∈ g, let KX be the corresponding
vector field on M . We use the notation KX instead of KM , because KX is a
section of TX, the tangent bundle to the fibres X. Let KX′ ∈ T ∗X be dual
to KX by gTX . We identify KX′ to a vertical 1-form on M , i.e. to a 1-form
which vanishes on THM . Then equations (3.6) and (3.7) still hold.

Recall that ∇TX restricts to the Levi-Civita connection along the fibres X.
Let mTX (K) be the restriction of ∇TX

· KX to TX. Then mTX (K) is an
antisymmetric section of End (TX). Also the group G acts on TX. By (2.31),
the equivariant curvature RTX

K is still given by

RTX
K = RTX − 2πmTX (K) .(3.76)

Take K ∈ g. Let f : M → R be a KX -invariant smooth function, so that

iKX df = 0.(3.77)

From (3.77), we get
dKdf = 0.(3.78)

Let ∇f ∈ TX be the fibrewise gradient field of f with respect to the metric
gTX . Set

dHf = fα∇fH
α

f.(3.79)

Recall that R̂TX is the curvature of the fibrewise connection ∇̂TX . As in
(2.31), set

R̂TX
K = R̂TX − 2πmTX (K) .(3.80)

As in (3.21), set

ṘTX
K =

1
2

〈
ek, R

TX
K el

〉
êk ∧ êl,

̂̇
R

TX

K =
1
2

〈
ei, R̂

TX
K ej

〉
ei ∧ ej .(3.81)

Then ṘTX
K ∈ Λ· (T ∗M) ⊗̂ Λ̂ (T ∗X), and ̂̇

R
TX

K ∈ Λ̂· (T ∗X) ⊗̂Λ· (T ∗X).

Set
∇TX

K = ∇TX − 2πiKX , ∇̂TX
K = ∇̂TX − 2πi

K̂X
.(3.82)

Then, as in (2.7),

∇TX
K ṘTX

K = 0, ∇̂TX
K

̂̇
R

TX

K = 0.(3.83)

Proposition 3.28. The following identities hold :
(3.84)

∇TX
· K̂X =

(
∇̂TX

· + iT 0

)
KX , ∇TX

· ∇̂f = −
(
∇̂TX

· + iT 0

)
∇f − d̂XdHf.
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Proof. By definition,

∇TX
· K̂X =

〈
∇TX

ei
KX , ej

〉
ei ∧ ê j +

〈
∇TX

fH
α

KX , ei

〉
fα ∧ ê i.(3.85)

Since KX is a fibrewise Killing vector field,〈
∇TX

ei
KX , ej

〉
= −

〈
∇TX

ej
KX , ei

〉
.(3.86)

Also, since THM is KX -invariant, by (3.57), (3.59),

∇TX
fH

α
KX = T

(
fH

α , KX
)

.(3.87)

Using (3.56), (3.87), we get〈
∇TX

fH
α

KX , ei

〉
fα ∧ ê i =

〈
T

(
fH

α , KX
)

, ei

〉
fα ∧ ê i(3.88)

=
〈
T

(
fH

α , ei

)
, KX

〉
fα ∧ ê i = iT 0KX .

By (3.85)–(3.88), we get the first identity in (3.84).
Also the form df is closed, so that if U, V are smooth sections of TM ,

U 〈∇f, V 〉 − V 〈∇f, U〉 − 〈∇f, [U, V ]〉 = 0.(3.89)

Using the fact that T is the torsion of the connection ∇TM , we get the second
identity in (3.84). The proof of our proposition is completed.

3.8. An odd closed form on S. We make the same assumptions and use
the same notation as in Section 3.7. In particular the metric gTX is given
on TX. This in turn determines the identification TX 	 T ∗X, and also the
Berezin integral

∫ B̂.

Definition 3.29. Set

γK =
∫

X
exp

(
dKKX′/4π

) ∫ B̂

exp
(
−ṘTX

K /2π
)

,(3.90)

δK =
√

2π

∫
X

exp
(
dKKX′/4π

) ∫ B̂

K̂X′ exp
(
−ṘTX

K /2π
)

.

Then γK , δK are differential forms on S.
In the sequel, we will often interchange the roles of the ei and of the ê i.

Namely, we consider now the ê i as standard differential forms on the fibres X.
Then

∫̂
X denotes the integral along the fibres X of smooth forms generated by

the ê i. Also
∫ B will denote Berezin integration with respect to the variables ei.

Recall that d̂X is the de Rham operator along the fibres X, which increases
the degree in Λ̂· (T ∗X) by 1. Set

d̂X
K = d̂X − 2πi

K̂X
.(3.91)

Let χ (X) be the Euler characteristic of X.



100 JEAN-MICHEL BISMUT AND SEBASTIAN GOETTE

Theorem 3.30. The form γK is even and vanishes if dimX is odd, the
form δK is odd and vanishes if dimX is even. Moreover, the following identi-
ties hold,

γK =
∫̂

X
exp

(
−d̂X

−K/2π

(
K̂X′ − T̂H/2π

) /
2
)

(3.92) ∫ B

exp

(
−

(̂̇
R

TX

−K/2π +
(
∇̂TX + i

K̂X

)
T 0 +

1
2

∣∣∣T 0
∣∣∣2)/

2π

)
,

δK =−
√

2π

∫̂
X

K̂X′ exp
(
−d̂X

−K/2π

(
K̂X′ − T̂H/2π

)
/2

)
∫ B

exp

(
−

(̂̇
R

TX

−K/2π +
(
∇̂TX + i

K̂X

)
T 0 +

1
2

∣∣∣T 0
∣∣∣2)/

2π

)
.

Also,
γK = χ (X) , dδK = 0.(3.93)

Proof. Observe that if dimX is odd,
∫ B̂ exp

(
−ṘTX

K /2π
)

vanishes identi-
cally, so that γK also vanishes. So we may now assume as well that dim X is
even. Let dX be the standard de Rham operator along the fibre X. Since T is
the torsion of the connection ∇TM defined in (3.53), by (3.56) and (3.87), we
get

dKX′ =∇TX
· KX′ + iT KX′(3.94)

= dXKX′ +
〈
T

(
fH

α , KX
)

, ei

〉
fα ∧ ei

+
〈
T

(
fH

α , ei

)
, KX

〉
fα ∧ ei +

〈
TH , KX

〉
= dXKX′ + 2

〈
T

(
fH

α , KX
)

, ei

〉
fα ∧ ei +

〈
TH , KX

〉
.

We rewrite (3.94) in the form,

dKX′ = dXKX′ + i
K̂X

(
−2T 0 + T̂H

)
.(3.95)

Since KX is a Killing vector field,

dXKX′ =
〈
mTX (K) ei, ej

〉
ei ∧ ej ,(3.96)

d̂XK̂X′ =
〈
mTX (K) ei, ej

〉
ê i ∧ ê j .

By (3.65), (3.90), (3.95), (3.96), we get (3.92).
Since the torsion tensor T is G-invariant,

L
K̂X

T̂H = 0,
(
∇̂TX + i

K̂X

)2
T 0 = R̂TX

−K/2πT 0.(3.97)

By (3.7) and (3.97), we get

d̂X,2
−K/2π

(
K̂X′ − T̂H/2π

)
= 0.(3.98)
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Comparing with (3.23), (3.26), we discover that the Berezin integral with
respect to the standard Grassmann variables ei∫ B

exp

(
−

(̂̇
R

TX

−K/2π +
(
∇̂TX + i

K̂X

)
T 0 +

1
2

∣∣∣T 0
∣∣∣2)/

2π

)
is an extension of the Berezin integrals as,T considered in (3.26). In fact in
(3.26) we assumed that ŝ is a smooth section of T̂X. Here T 0 is a smooth even
section of Λ̂ (T ∗X) ⊗̂Λ· (T ∗S) ⊗̂TX (recall that here we ultimately integrate
on X in the hatted Grassmann variables). By (3.25), (3.97), or by (3.65),
(3.66), (3.97), we get(

∇̂TX + i
K̂X+T 0

) ( ̂̇
R

TX

−K/2π +
(
∇̂TX + i

K̂X

)
T 0 +

1
2

∣∣∣T 0
∣∣∣2) = 0.(3.99)

By (3.99), we obtain

(3.100)

d̂X
−K/2π

∫ B

exp

(
−

(̂̇
R

TX

−K/2π +
(
∇̂TX + i

K̂X

)
T 0 +

1
2

∣∣∣T 0
∣∣∣2)/

2π

)
= 0.

By (3.92), (3.98), (3.100), we find that γK is now a standard integral on
the fibre X of a hatted differential form which is d̂−K/2π-closed. Since

exp
(
−d̂X

−K/2π

(
K̂X′ − T̂H/2π

) /
2
)
− 1

is d̂X
−K/2π-exact, we get

γK =
∫̂

X

∫ B

exp

(
−

(̂̇
R

TX

−K/2π +
(
∇̂TX + i

K̂X

)
T 0 +

1
2

∣∣∣T 0
∣∣∣2)/

2π

)
.(3.101)

By the same argument as in (3.25), (3.29), we can now deform T 0 to 0, while
leaving γK unchanged. So we get

γK =
∫̂

X

∫ B

exp
(
− ̂̇

R
TX

−K/2π/2π

)
.(3.102)

Equivalently,

γK =
∫̂

X
e−K/2π

(
TX, ∇̂TX

)
.(3.103)

By (2.44), (2.45), (3.103), we get the first identity in (3.93).

For the same reason as before, the Berezin integral
∫ B̂ K̂X′ exp

(
−ṘTX

K /2π
)

vanishes if dimX is even. Therefore the form δK vanishes if dimX is even. So
we may as well assume that dim X is odd. The proof of the second identity in
(3.92) is the same as before. By (3.9), (3.83), we get

dδK =
√

2π

∫
X

exp
(
dKKX′/4π

) ∫ B̂

∇TX
· K̂X′ exp

(
−ṘTX

K /2π
)

.(3.104)
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Proceeding as in (3.94)–(3.96), using the first equation in (3.84) and (3.104),
and we get

dδK =−
√

2π

∫̂
X

exp
(
−d̂X

−K/2π

(
K̂X′ − T̂H/2π

) /
2
)

(3.105) ∫ B [(
∇̂TX + i

K̂X+T 0

)
KX′

]
exp

(
−

(
̂ṘTX
−K/2π +

(
∇̂TX + i

K̂X

)
T 0 +

1
2

∣∣∣T 0
∣∣∣2)/

2π

)
.

By (3.99), (3.105), we obtain

(3.106)

dδK =−
√

2π

∫̂
X

exp
(
−d̂X

−K/2π

(
KX′ − T̂H/2π

) /
2
)

d̂X
−K/2π∫ B

KX′ exp

(
−

(
̂ṘTX
−K/2π +

(
∇̂TX + i

K̂X

)
T 0 +

1
2

∣∣∣T 0
∣∣∣2)/

2π

)
.

By (3.98), (3.106), we get the second identity in (3.93). The proof of our
theorem is completed.

Remark 3.31. From Theorem 3.30, we find in particular that the coho-
mology class of the closed form δK does not depend on the metric gTX .

3.9. The V -invariant. We still fix the metric gTX on TX. For t > 0,
we will now construct the form δK,t associated to the metric gTX

t = gTX/t.

Observe that in (3.90), the Berezin integral
∫ B̂ depends explicitly on the choice

of the metric gTX . When replacing gTX by gTX
t , we should in principle redefine

the Berezin integral
∫ B̂, i.e. introduce a t-dependent Berezin integration

∫ B̂
t .

However, for convenience, we will instead keep our definition of the Berezin
integral fixed, i.e. independent of t. Therefore

∫ B̂ will still refer to the Berezin
integral associated to the metric gTX .

Proposition 3.32. For t > 0, the following identity holds:

δK,t =
√

2π

∫
X

exp
(
dKKX′/4πt

) ∫ B̂ K̂X′
√

t
exp

(
−ṘTX

K /2π
)

.(3.107)

Proof. Our identity follows from an obvious computation which is left to
the reader.

Definition 3.33. For t > 0, set

εK,t =
√

2π

∫
X

KX′

4πt
exp

(
dKKX′/4πt

) ∫ B̂ K̂X

√
t

exp
(
−ṘTX

K /2π
)

.(3.108)
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Observe that by (3.8), we can rewrite (3.107), (3.108) in the form,

δK,t =
√

2π

∫
X

αK,t

∫ B̂ K̂X′
√

t
exp

(
−ṘTX

K /2π
)

,(3.109)

εK,t =−
√

2π

∫
X

βK,t

∫ B̂ K̂X′
√

t
exp

(
−ṘTX

K /2π
)

.

Recall that if s ∈ R∗
+, the operator ψs acting on Λ· (T ∗S) is as defined in

(2.91).

Theorem 3.34. For t > 0, if dimX is even, the forms δK,t and εK,t

vanish. If dimX is odd, the forms δK,t are odd, and the forms εK,t are even.
The forms δK,t are closed on S, and their cohomology class does not depend

on t > 0. More precisely,
∂

∂t
δK,t = −d

εK,t

t
.(3.110)

If z ∈ R∗,

δzK,t =
sgn z√

z
ψ1/zδK,t/z2 , εzK,t =

1
|z|ψ1/zεK,t/z2 .(3.111)

Proof. By Theorem 3.30, we know that if dimX is even, δK,t vanishes.
The same argument holds for εK,t. As seen in Remark 3.31, the cohomology
class of δK,t does not depend on t.

Now we replace M by M̃ = M × R∗
+, and S by S̃ = S × R∗

+. Let
π̃ : M̃ → S̃ be the obvious projection with fibre X. Over S × {t}, we equip
TX with the metric gTX/t. Set THM̃ = THM ⊕ TR∗

+. We can then use the
formalism of Sections 3.7 and 3.8 applied to this new fibration. In particular,
we observe that the curvature tensor R̃TX is just the pull-back to M̃ of RTX .
Let K̃X′, d̃K be the obvious analogues of KX′, dK . One verifies easily that

d̃KK̃X′ = dKKX′/t − dt

t2
KX′.(3.112)

From the above, we get

δ̃K = δK,t −
dt

t
εK,t.(3.113)

By Theorem 3.30, the form δ̃K is closed on S̃. Equation (3.110) is now obvious.
By using in particular (3.11) and (3.30), equation (3.111) follows easily.

The proof of our theorem is completed.

In the sequel, we will write that as t → 0, δK,t = O
(√

t
)

if for any compact
subset A of S and for m ∈ N, there exists C > 0 such that for t ∈ ]0, 1], the
sup of δK,t and its derivatives of order lower than m are dominated by C

√
t.

Similar notation will be used when t → +∞.
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Theorem 3.35. As t → 0,

δK,t = O
(√

t
)

, εK,t = O
(√

t
)

.(3.114)

As t → +∞,
δK,t = O

(
1/

√
t
)

, εK,t = O
(
1/t3/2

)
.(3.115)

In particular, the cohomology class of the closed forms δK,t vanishes.

Proof. By proceeding as in [B8, proof of Theorem 1.3] or in [B9, proof of
Th. 1.7], and using the fact that the integral of a linear function with respect
to a Gaussian density vanishes, we find that as t → 0, there is the convergence
of currents on M ,

exp
(
dKKX′/4πt

) ∫ B̂ K̂X′
√

t
exp

(
−ṘTX

K /2π
)
→ 0.(3.116)

By using the microlocal estimates similar to the ones given in [B8, eq. (2.18)],
we see that the convergence in (3.116) holds microlocally in the space of cur-
rents whose wave front set is included in N∗

MK/M , with bounds on the mi-
crolocal seminorms in the left-hand side of (3.116) of the type C

√
t. Since

π∗T ∗S ∩ N∗
MK/M = {0}, using [Hö, Th. 8.2.13], we get the first identity in

(3.114). Let δ̃K,t be the analogue of δK over S̃ = S × R∗
+, where the generic

element of R∗
+ is now denoted s. One verifies easily that

δ̃K,t = δK,st −
ds

s
εK,st.(3.117)

We can now apply the first identity in (3.114) to δ̃K,t, to get the second identity.
From (3.107), (3.108), we get (3.115).

Finally recall that the cohomology class of the forms δK,t does not depend
on t > 0. From (3.114) or (3.115), we deduce that this cohomology class
vanishes. The proof of our theorem is completed.

Recall that the operator Q acting on differential forms was defined in
(2.92).

Definition 3.36. Put

UK

(
M/S, THM, gTX

)
=

∫ +∞

0
εK,t

dt

t
,(3.118)

VK

(
M/S, THM, gTX

)
=QUK

(
M/S, THM, gTX

)
.

By (3.114), (3.115), the forms

UK

(
M/S, THM, gTX

)
, VK

(
M/S, THM/S, gTX

)
on S are well defined.
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Note that in degree 0, UK

(
M/S, THM, gTX

)
and VK

(
M/S, THM, gTX

)
coincide. In the sequel, we will state all our results on the form

VK

(
M/S, THM, gTX

)
,

even if they also hold for UK

(
M/S, THM, gTX

)
.

Theorem 3.37. The even form VK

(
M/S, THM, gTX

)
is closed. It van-

ishes if dimX is even. Also, its cohomology class does not depend on THM

and on gTX . Finally, if z ∈ R∗,

VzK

(
M/S, THM, gTX

)
=

1
|z|ψ1/zVK

(
M/S, THM, gTX

)
.(3.119)

Proof. The first part of our theorem is a trivial consequence of Theo-
rems 3.34 and 3.35. By functoriality, the second part of our theorem follows
tautologically. Finally, using (3.111), we get (3.119).

Remark 3.38. From the above result, it follows in particular that if dimX

is odd, V
(0)
K

(
THM, gTX

)
is an invariant of

(
X, KX

)
. In the sequel, we will

denote by VK (M/S) the cohomology class of VK(M/S, THM, gTX).

Let now π′ : M ′ → S′ be another submersion with compact fibre X ′,
which has the same properties as the submersion π : M → S. We still assume
that G acts on M ′ and preserves the fibres X ′. More generally, we suppose
that data similar to those just considered are attached to this new submersion.
In particular we can define the even cohomology class VK (M ′/S′) on S′.

Set M ′′ = M × M ′, S′′ = S × S′. It is then clear that the projection
π′′ : M ′′ → S′′ has the same properties as π : M → S. Again, we denote with
a superscript ′′ the objects natural to this new projection.

Theorem 3.39. The following identity holds:

(3.120)

VK

(
M ′′/S′′) = χ (X)VK

(
M ′/S′) + χ

(
X ′) VK (M/S) in Heven (

S × S′,R
)
.

Proof. Using (3.93) in Theorem 3.30 and proceeding as in (3.113), we get

√
2π

∫
X

KX′

4πt
exp

(
dKKX′/4πt

) ∫ B̂

exp
(
−ṘTX

K /2π
)

= 0.(3.121)

A similar identity holds for the objects attached to M ′. Using (3.93), (3.118)
and (3.121), we obtain (3.120).



106 JEAN-MICHEL BISMUT AND SEBASTIAN GOETTE

4. Morse-Bott functions, multifibrations and the class VK (M/S)

The purpose of this section is to establish two important properties of
the cohomology classes VK (M/S) which we constructed in Section 3. More
precisely, we show that if f : M → R is a fibrewise KX -invariant Morse-Bott
function, then VK (M/S) can be expressed in terms of the corresponding V -
invariants of the fibration defined by the critical points of f along the fibres.
Also we study the V -invariant of equivariant multifibrations.

This section is organized as follows. In 4.1 we evaluate the V -invariants
of a Z2-graded Euclidean vector bundle, equipped with an obvious quadratic
fibrewise Morse function. This computation will be used at the final stage of
the proof of the comparison formula for Morse-Bott fibrations. In 4.2, we state
the comparison formula. In 4.3, 4.4 and 4.5, we derive various consequences of
our formula. In particular, we study the behaviour of the V -invariants under
equivariant surgery.

Sections 4.6–4.10 are devoted to the proof of our formula. In 4.6, we show
how to couple KX and ∇f in order to extend the forms δK of 3.8. In 4.7, we
consider a contour integral in R2

+. Our main formula will be established by
taking the contour to infinity. In 4.8, we make natural simplifying assumptions
on the considered metrics. In 4.9, and following [B8], we establish three inter-
mediate results. In 4.10, we compute the asymptotics of the contour integral,
as the boundary tends to infinity, and we obtain the comparison formula for
Morse-Bott fibrations.

Finally, in Section 4.11, we give a formula for the V -invariant of multifi-
brations.

4.1. The case of a vector bundle. Let V be a smooth manifold, and let
E = E+ ⊕ E− be a real Z2-graded vector bundle on V . Let gE = gE+ ⊕ gE−

be a Euclidean metric on E = E+ ⊕ E−, such that E+ and E− are mutually
orthogonal in E. Let ∇E = ∇E+ ⊕ ∇E− be a Euclidean connection on E =
E+ ⊕ E−, which preserves the splitting, and let RE = RE+ ⊕ RE− be its
curvature.

Let E be the total space of E. Then the connection ∇E induces a hori-
zontal subbundle THE of TE , so that

TE = THE ⊕ E.(4.1)

Recall that G is a compact Lie group and g is its Lie algebra. Take
K ∈ g. Let mE (K) be an antisymmetric invertible parallel section of End (E),
which preserves the splitting E = E+ ⊕ E−. Then E+ and E− are of even
dimension. Let Z = (Z+, Z−) be the generic element of E = E+⊕E−. Clearly,
KE = mE (K) Z is a fibrewise Killing vector field along the fibres E.
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Let qE : E → R be given by

qE (Z+, Z−) =
1
2

(
|Z+|2 − |Z−|2

)
.(4.2)

Then qE is a KE-invariant function on E , which is parallel with respect to ∇E .
Let e1, . . . , en be an orthonormal basis of E, and let e1, . . . , en be the

corresponding dual basis. The splitting (4.1) enables us to consider e1, . . . , en

can be considered as vertical 1-forms on E .
Now we will use the formalism of Sections 3.7–3.9 in this situation, with

KE replacing KX . In particular, let KE′ be the 1-form on E which is dual to
KE . We have the easy formula,

(4.3)

dKKE′ = −
〈
ei, m

E (K) ej

〉
ei ∧ ej +

〈
REZ, mE (K)Z

〉
− 2π

∣∣∣mE (K)Z
∣∣∣2 .

Now we apply the formalism of Section 3.7 to the fibration π : E → V , with
fibre X = E. The connection ∇TX attached to

(
THE , gE

)
is just π∗∇E .

Definition 4.1. Put

cE
K = exp

(
dKKE′/4π

)
.(4.4)

Then cE
K is an even form on E , such that

dKcE
K = 0.(4.5)

As in (2.31), (3.3), set
RE

K = RE − 2πmE (K) .(4.6)

As in (3.81), set

ṘE
K =

1
2

〈
ek, R

E
Kel

〉
êk ∧ êl.(4.7)

Now we define AE
K,

√
T∇qE

as in (3.23), namely:

AE
K,

√
T∇qE = ṘE

K +
√

T∇E
· ∇̂qE +

T

2

∣∣∣∇qE
∣∣∣2 .(4.8)

Equivalently,

AE
K,

√
T∇qE = ṘE

K +
√

T∇E
·

(
Ẑ+ − Ẑ−

)
+

T

2
|Z|2 .(4.9)

Definition 4.2. For T ≥ 0, put

dE
K,T =

√
2π

∫ B̂

K̂E

√
T ∇̂qE

4π
exp

(
−AE

K,
√

T∇qE

/
2π

)
.(4.10)
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Theorem 4.3. The following identity of differential forms on V holds:∫
E

cE
KdE

K,T =
√

T

2
√

2π
Trs

[
−mE,2 (K)((

mE (K)RE
K + T

)
/2π

)2

]
.(4.11)

In particular, the form
∫
E cE

KdE
K,T is closed, and its cohomology class does not

depend on gE or ∇E.

Proof. Let τ ∈ End (E) be the involution defining the Z2-grading of E,
i.e. τ = ±1 on E±. Then

∇qE (Z) = τZ.(4.12)

Using (4.12), we get∫
E

cE
KdE

K,T =− ∂

∂b

[√
2π

∫
E

cE
K

〈
Z, mE (K) ek

〉 〈
Z,

√
T

4π
τel

〉
(4.13)

∫ B̂

exp
(
−

(
AE

K,
√

T∇qE − 2πbêk ∧ êl
) /

2π

)]
b=0

.

If α is a differential form on E , we can write α in the form

α =
∑

ei1 ∧ . . . ∧ eipαi1...ip
,(4.14)

with αi1...ip
∈ Λ· (T ∗V ). Set

αmax = α1,...,n.(4.15)

From (4.3), (4.13), we get∫
E

cE
KdE

K,T =−
√

T

2
√

2π
det

[
mE (K)RE

K + T
]−1/2

(2π)dim E(4.16) 〈
mE (K) ek,

((
mE (K)RE

K + T
) /

2π

)−1

τel

〉
∂

∂b

[∫ B̂

exp

(
−

(1
2

〈
ei, m

E (K) ej

〉
ei ∧ ej + ṘE

K

− 2πbêk ∧ êl +
√

T∇E
·

(
Ẑ+ − Ẑ−

))/
2π

)]max

b=0

.

Set

ṠE
b =

1
2

〈
ei, m

E (K) ej

〉
ei ∧ ej(4.17)

+
1
2

〈
ek, R

E
K − 8π2bmE (K)

(
mE (K) RE

K + T
)−1

τel

〉
êk ∧ êl.
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Then we rewrite (4.16) in the form∫
E

cE
KdE

K,T =
√

T

2
√

2π
det

[
mE (K)RE

K + T
]−1/2

(4.18)

(2π)dim E

[
∂

∂b

∫ B̂

exp
(
−

(
ṠE

b +
√

T∇E
·

(
Ẑ+ − Ẑ−

)) /
2π

)]max

b=0

.

One has the easy formula,

(2π)dim E

[∫ B̂

exp
(
−

(
ṠE

b +
√

T∇E
·

(
Ẑ+ − Ẑ−

)) /
2π

)]max

(4.19)

= det

[
mE (K)RE

K + T − 8π2bτ
mE,2 (K)

mE (K) RE
K + T

]1/2

.

From (4.16), (4.19), we get (4.11). The proof is completed.

Definition 4.4. Set

HK

(
E, gE ,∇E

)
=

∫ +∞

0

{∫
E

cE
KdE

K,T

}
dT

T
.(4.20)

By Theorem 4.3, the form HK

(
E, gE ,∇E

)
is even, closed, and its coho-

mology class does not depend on gE or ∇E .

Definition 4.5. For θ ∈ C∗, x ∈ C, |x| < |θ|, put

Iθ (x) =
π

4 |θ|

(
1 − ix

θ

)−3/2

, Jθ (x) =
π

4 |θ|

(
1 − ix

θ

)−1

.(4.21)

Recall that the operator Q was defined in (2.92) and in (2.117). We also
define a related operator Q as follows. If f (x) is an analytic function defined
on a neighbourhood of 0 ∈ C, set

Qf (x) =
∫ 1

0
f (4s (1 − s)x) ds.(4.22)

The next result was established in [BGo2, Prop. 4.34].

Proposition 4.6. The following identity holds:

QIθ(x) = Jθ(x).(4.23)

Definition 4.7. Set

IK

(
E,∇E

)
= Trs

[
I−imE(K)

(
−RE

2π

)]
,(4.24)

JK

(
E,∇E

)
= Trs

[
J−imE(K)

(
−RE

2π

)]
.
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Then IK

(
E,∇E

)
,JK

(
E,∇E

)
are closed even forms on V . We denote

by IK (E) ,JK (E) the corresponding cohomology classes.

Theorem 4.8. The following identities hold :

HK

(
E, gE ,∇E

)
= IK

(
E,∇E

)
,(4.25)

QHK

(
E, gE ,∇E

)
=JK

(
E,∇E

)
.

Proof. Clearly, for y > 0,∫ +∞

0

1
y + T

dT√
T

=
π√
y
,(4.26)

so that ∫ +∞

0

1
(y + T )2

dT√
T

=
π

2y3/2
.(4.27)

By (4.11), (4.20), (4.27), we get the first identity in (4.11). Using now (4.23),
we obtain the second identity in (4.25). The proof is complete.

Remark 4.9. The function Iθ (x) appeared in an entirely different context
in [BGo2, Definition 4.28], in the evaluation of the analytic torsion forms as-
sociated to a Z2-graded vector bundle. This is one of the striking elements of
evidence demonstrating that the results of [BGo2] are just infinite-dimensional
versions of the results which are obtained in this section in a finite-dimensional
context.

4.2. Morse-Bott functions and the class VK (M/S). We make the same
assumptions as in Sections 3.7–3.9, and we use the corresponding notation.
Let K ∈ g. Let f : M → R be a KX -invariant Morse-Bott function. Let
∇f ∈ TX be the fibrewise gradient vector field of f associated to the metric
gTX . We assume that the zero set B of ∇f is a smooth submanifold of M ,
which intersects the fibres X transversally, i.e. which fibres on S, with fibre
B ⊂ X.

Since f is KX -invariant, the manifold B is itself KX -invariant. In partic-
ular KX |B ∈ TB. It follows from the above that the even cohomology classes
VK (M/S) , VK (B/S) on S are well-defined.

Let MK ⊂ M,BK ⊂ B be the zero sets of KX , KX |B. Then MK ,BK are
smooth submanifolds of M,B, which fibre on S, with compact fibres XK , BK ,
which are compact submanifolds of X, B. As we saw in Section 3.5, XK and B

intersect orthogonally along BK , and f |MK
: MK → R is also a KX -invariant

function, which is fibrewise Morse-Bott, and its fibrewise critical set is BK .
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Let ind (f) be the fibrewise index of f along the fibres B, i.e. the index
of the quadratic form ∇TX

· ∇f on NB/X . Then ind (f) is a locally constant
function on B with values in Z. By (3.42), we have the identity on BK ,

(−1)ind(f |MK ) = (−1)ind(f)|BK .(4.28)

Let Ñ be the excess normal bundle which is defined by the exact sequence

0 → NBK/XK
⊕ NBK/B → NBK/X → Ñ → 0.(4.29)

Equivalently, if we identify NB/X to the orthogonal bundle to TB in TX|B,
then mTX (K) |BK

acts naturally on NB/X . Now, we have the orthogonal
splitting

NB/X |BK
= NBK/XK

⊕ Ñ .(4.30)

In (4.30), NBK/XK
is just the kernel of mTX (K), and Ñ its orthogonal. In par-

ticular, mTX (K) acts as an antisymmetric invertible parallel endomorphism
of Ñ , so that Ñ is of even dimension. Since ∇f is KX -invariant, one verifies
easily that ∇TX∇·f |BK

, which acts on NB/X |BK
, preserves the splitting (4.30).

Let
Ñ = Ñ s ⊕ Ñu(4.31)

be the corresponding splitting of Ñ into its stable and unstable part; i.e., the
vector bundles Ñ s and Ñu are the direct sums of the vector subspaces of Ñ

associated to positive and negative eigenvalues of ∇TX∇·f |BK
. Observe that

as a Z2-graded vector bundle on BK , Ñ verifies the assumptions which were
verified by E in Section 4.1.

Theorem 4.10. The following identity holds,

VK (M/S) = (−1)ind(f) VK (B/S)(4.32)

−
∫

BK

(−1)ind(f) e (TBK)JK

(
Ñ

)
in Heven (S,R) .

Proof. This identity will be proved in Sections 4.6–4.10.

Remark 4.11. One verifies easily that our theorem is compatible with
Theorem 3.39. Taking into account the fact that VK (M/S) vanishes if X is
even-dimensional, one verifies that (4.32) is unchanged when we change f into
−f , especially because JK

(
Ñ

)
is changed into −JK

(
Ñ

)
. Also if B is a finite

covering of S, i.e. if B is a finite subset of X, then B = BK . Therefore, (4.32)
takes the form,

VK (M/S) = −
∑
x∈B

(−1)ind(f)(x) JK

(
Ñx

)
in Heven (S,R) .(4.33)
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4.3. Equivariant surgery and the invariant VK (M/S). We make the same
assumptions as in Section 4.2. Also we assume that for every fibre X, a ∈ R
is a non critical value of f |X . Set

Ma = f−1 {a} .(4.34)

Then the projection π′ : Ma → S is a submersion with compact fibre Xa ⊂ X.
Also

Ma ∩ B = ∅.(4.35)

Put
B>a = B ∩ f−1 (]a,+∞[) , B<a = B ∩ f−1 (] −∞, a[) .(4.36)

Then B>a,B<a fibre on S with fibre B>a, B<a.
Observe that g = (f − a)2 is also a fibrewise Morse-Bott function, and

that its fibrewise critical set is just B ∪ Ma.
Now we will assume that X is even-dimensional, so that Xa is odd-

dimensional. By applying Theorem 4.10 to the functions f and g, we get
(4.37)

(−1)ind(f) VK (B/S) −
∫

BK

(−1)ind(f) e (TBK)JK

(
Ñ

)
= 0 in Heven (S,R) ,

(−1)ind(f) VK (B>a/S) + (−1)dim NB/X−ind(f) VK (B<a/S) + VK (Ma/S)

−
∫

B>a,K

(−1)ind(f) e (TBK)JK

(
Ñ

)
+

∫
B<a,K

(−1)dim NB/X−ind(f) e (TBK)JK

(
Ñ

)
= 0 in Heven (S,R) .

By (4.37), and the fact that only the components of B<a whose fibres B<a are
odd-dimensional contribute to VK (B<a), we obtain

VK (Ma/S) = 2 (−1)ind(f) VK (B<a/S)(4.38)

−2 (−1)ind(f)
∫

B<a,K

e (TB<a,K)JK

(
Ñ

)
.

Let now a, b be two noncritical values of f , with a < b. Set

B]a,b[ = B ∩ f−1 (]a, b[) .(4.39)

Proposition 4.12. The following identity holds:
(4.40)

VK (Mb/S) − VK (Ma/S) = 2 (−1)ind(f) VK

(
B]a,b[/S

)
− 2 (−1)ind(f)

∫
B]a,b[,K

e
(
TB]a,b[,K

)
JK

(
Ñ

)
.

Proof. This is an obvious consequence of (4.38).
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4.4. The VK-invariant of unit sphere bundles. Let E be a real vector
bundle on S, let gE be a Euclidean metric on E, and let ∇E be a Euclidean
connection on E. We assume that the Lie group G acts fibrewise on E by par-
allel automorphisms. In particular if K ∈ g, let mE (K) be the corresponding
antisymmetric parallel section of End (E).

Set SE to be the unit sphere bundle in E, and let E be the total space
of SE . Then G still acts on E . In particular, the class VK (E) ∈ Heven (S,R) is
well-defined. Let E0 = kermE (K), and let E⊥ be the orthogonal subbundle
to E0 in E. Then E⊥ is a trivially Z2-graded vector bundle on S, on which
mE (K) acts as a parallel invertible antisymmetric operator.

Theorem 4.13. The following identity holds:

VK (E/S) = −
(
2 − χ

(
SE

))
JK

(
E⊥

)
.(4.41)

Proof. By Theorem 3.37, we may and we will assume that E is even-
dimensional, so that χ

(
SE

)
= 0. Let SE⊕R be the unit sphere bundle in

E ⊕ R, and let E ′ be the total space of SE⊕R. If (x, t) ∈ SE⊕R, set

f (x, t) = t.(4.42)

Then f is a G-invariant fibrewise Morse function, whose fibrewise critical set
consist of (0, 1) , (0,−1). Now we use (4.38) and (4.42).

Remark 4.14. If E is instead odd-dimensional, one verifies that when ap-
plying Theorem 4.10 to the function f (x, t) = t, we obtain a formula for
VK (E ′/S) which is a special case of (4.41).

In the case where dim E = 2, formula (4.41) can be obtained by an inter-
esting direct computation. Note that in this direct computation, the − sign in
(4.41) comes from the fact that for n = 1, in (1.8), (−1)n(n+1)/2 = −1.

4.5. The case of symplectic manifolds. In this section, we assume that X

is a compact manifold of even dimension 2m, and that ω is a symplectic form
on X.

We assume that the compact Lie group G acts on X and preserves the
symplectic form ω. Suppose that there is a moment map µ : X → g∗ associated
to the action of G on X. Namely, µ is an equivariant map such that for K ∈ g,
the function 〈µ, K〉 is a Hamiltonian for KX ; i.e.,

d 〈µ, K〉 − 2πiKX ω = 0.(4.43)

Let TRX be the tangent bundle of X. Let gTRX be a G-invariant metric
on TRX, and let J be an almost complex structure on TRX, such that if
U, V ∈ TX,

ω (U, V ) = 〈U, JV 〉 .(4.44)
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Let TX ⊂ TRX⊗RC be the i eigenbundle of J . Then TX is a complex vector
bundle on X, equipped with a Hermitian metric gTX . Also G acts naturally
on TX. Let ∇TX be a G-invariant unitary connection on TX, and let RTX be
its curvature. If K ∈ g, we define the equivariant curvature RTX

K as in (4.6).
If A is an (m, m) matrix, put

cmax (A) = det (A) , c′max (A) =
∂

∂b
det (A + b) |b=0.(4.45)

Take K ∈ g. Put
(4.46)

cK

(
TX,∇TX

)
= cmax (−RK/2iπ) , c′K

(
TX,∇TX

)
= c′max (−RK/2iπ) .

We denote by cK (TX) , c′K (TX) the corresponding equivariant cohomology
classes on X. Degree considerations show that∫

X
c′K (TX) = 0.(4.47)

Here XK is a compact symplectic almost complex submanifold. The com-
plex structure J acts on the normal bundle to XK . Let NXK/X denote the
corresponding i eigenbundle. We identify NXK/X with the orthogonal vector

bundle to TXK in TX|XK
. We define cmax

(
NXK/X

)
as in (4.46) and the

sentence which follows.
Using (4.47) and the localization formulas of Duistermaat-Heckman [DuH]

and Berline-Vergne [BeV], we deduce from (4.47) that∫
XK

c′K (TX)

cK

(
NXK/X

) = 0.(4.48)

Let TRXK be the real tangent bundle to XK . Again, by degree considerations,
equation (4.48) is easily seen to be equivalent to∫

XK

e (TRXK)
c′K

(
NXK/X

)
cK

(
NXK/X

) = 0.(4.49)

Now observe that the function f = 〈µ, K〉 is KX -invariant. Also it is a
Morse-Bott function, and its critical set B is just XK . Also its index on XK

is always even. Now we use Theorem 4.10 applied to the trivial fibration with
a single fibre X. Since X and XK are even dimensional, their corresponding
VK-invariants vanish. So by (4.32), we get∫

XK

e (TRXK)JK

(
NXK/X,R

)
= 0.(4.50)

It is now an easy exercise to verify that (4.49) and (4.50) are equivalent.

4.6. Coupling of KXand of ∇f . Now, we construct the objects which
will permit us to establish Theorem 4.10.
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As in (3.23), set

ATX
K,∇f = ṘTX

K + ∇TX
· ∇̂f +

1
2
|∇f |2 .(4.51)

Definition 4.15. Put

γK,∇f =
∫

X
exp

(
dKKX′/4π

) ∫ B̂

exp
(
−ATX

K,∇f

/
2π

)
,(4.52)

δK,∇f =
√

2π

∫
X

exp
(
dKKX′/4π

) ∫ B̂

K̂X′ exp
(
−ATX

K,∇f

/
2π

)
.

Also, define
∣∣T 0 −∇f

∣∣2 by a trivial modification of (3.63), (3.64).

Theorem 4.16. The form γK,∇f is even, and the form δK,∇f is odd. The
following identities hold :

(4.53)

γK,∇f = (−1)n
∫̂

X
exp

(
−d̂X

−K/2π

(
K̂X′ − T̂H/2π − dHf/π

) /
2
)

∫ B

exp

(
−

(̂̇
R

TX

−K/2π +
(
∇̂TX + i

K̂X

) (
T 0 −∇f

)
+

1
2

∣∣∣T 0 −∇f
∣∣∣2)/

2π

)
,

δK,∇f = (−1)n
√

2π

∫̂
X

K̂X′ exp
(
−d̂X

−K/2π

(
K̂X′ − T̂H/2π − dHf/π

)
/2

)
∫ B

exp

(
−

(̂̇
R

TX

−K/2π +
(
∇̂TX + i

K̂X

) (
T 0 −∇f

)
+

1
2

∣∣∣T 0 −∇f
∣∣∣2)/2π

)
.

Moreover,
γK,∇f = χ (X) , dδK,∇f = 0.(4.54)

Proof. By the second equation in (3.84), the proof of (4.53) is a trivial
modification of the proof of (3.92) in Theorem 3.30. Instead of (3.99), we now
have (

∇̂TX + i
K̂X+T 0−∇f

) (̂̇
R

TX

−K/2π +
(
∇̂TX + i

K̂X

) (
T 0 −∇f

)
(4.55)

+
1
2

∣∣∣T 0 −∇f
∣∣∣2) = 0.

By (4.55), we get the analogue of (3.100). The proof of the first equation in
(4.54) continues as in the proof of Theorem 3.30. Also using (3.77), we can
rewrite the first equation in (3.84) in the form

∇TX
· K̂X =

(
∇̂TX

· + i
K̂X+T 0−∇f

)
KX .(4.56)

The obvious analogue of (3.106) then holds. The proof of the second identity
in (4.54) continues as in Theorem 3.30.
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Now we replace M by M∗ = M × R∗
+ × R+, S by S∗ = S × R∗

+ × R+.
Let π∗ : M∗ → S∗ be the obvious projection with fibre X. Clearly G still acts
fibrewise on M∗. Let f∗ : M∗ → R be given by

f∗ (x, t, T ) =

√
T

t

 f (x) .(4.57)

Then f∗ is a KX -invariant function on M∗.
Also over S × {t} × R, we equip TX with the metric gTX/t. The corre-

sponding metric gTX,∗ on TX is G-invariant. Let THM∗ be the obvious lift of
THM . The associated connection ∇TX,∗ is given by

∇TX,∗ = ∇TX + dt

(
∂

∂t
− 1

2t

)
+ dT

∂

∂T
.(4.58)

As before, all Berezin integrals will be expressed with respect to the fixed given
metric gTX .

Let δ∗K,∇f∗ be the analogue of δK,∇f . Then δ∗K,∇f∗ is a closed odd form
on S∗.

Theorem 4.17. The following identity holds:

δ∗K,∇f∗ =
√

2π

∫
X

exp

((
dK

KX′

t
− dt

KX′

t2

)
/4π

)
(4.59)

∫ B̂ K̂X′
√

t
exp

(
−

(
ATX

K,
√

T∇f
+

dT

2
√

T
∇̂f

) /
2π

)
.

Proof. Clearly,
KX,′,∗ = KX′/t.(4.60)

Therefore

d∗KKX,′,∗ = dKKX′/t − dt

t2
KX′.(4.61)

Also, taking into account our conventions on Berezin integration, we find that
K̂X′ should now be K̂X′/

√
t. By (4.58), the contribution of RTX,∗

K to the
Berezin integral is the same as before. Also, with the previous conventions,

∇TX,∗
·

̂∇TX,∗f∗ =
1√
t

(
∇TX + dt

(
∂

∂t
− 1

2t

)
+ dT

∂

∂T

)√
tT ∇̂f.(4.62)

Equivalently

∇TX,∗
·

̂∇TX,∗f∗ =
√

T∇TX∇̂f +
dT

2
√

T
∇̂f.(4.63)

Equation (4.59) follows from the above considerations.
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t

A

T0 T0

Γ3

Γ4

Γ2

Γ1

ε

∆

Figure 4.1

We define αM
K,t, β

M
K,t as in (3.8). By (4.59), one finds easily that there is a

smooth odd form rK,t,T on S such that

(4.64)

δ∗K,∇f∗ =
√

2π

∫
X

αM
K,t

∫ B̂ K̂X′
√

t
exp

(
−ATX

K,
√

T∇f

/
2π

)

+
√

2π

[(∫
X

βM
K,t

∫ B̂ K̂X′
√

t
exp

(
−ATX

K,
√

T∇f

/
2π

))
dt

t

+

(∫
X

αM
K,t

∫ B̂ K̂X′
√

t

∇̂f

4π
√

T
exp

(
−ATX

K,
√

T∇f

/
2π

))
dT

]
+ rK,t,T dtdT.

4.7. A contour integral. Take 0 < ε < 1 < A < +∞, 0 < T0 < +∞. Let
Γ = Γε,A,T0 be the oriented contour indicated in Figure 4.1. This contour is
made of oriented pieces Γ1, . . . ,Γ4. Let ∆ be the interior of Γ.

Theorem 4.18. The following identity of even forms holds on S:∫
Γ

δ∗K,∇f∗ = −d

∫
∆

δ∗K,∇f∗ .(4.65)

Proof. Since the form δ∗K,∇f∗ is odd and closed, equation (4.65) follows
from Stokes formula.

Let PS be the vector space of smooth forms on S, let PS,0 ⊂ PS be the
vector space of smooth exact forms on S.

Put

I0
k =

∫
Γk

δ∗K,∇f∗ .(4.66)
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By (4.65), we find that
4∑

k=1

I0
k = 0 in PS/PS,0.(4.67)

4.8. Some simplifying assumptions. Recall that the function f : M → R
is fibrewise Morse-Bott. We identify NB/X to the orthogonal bundle to TB

in TX|B. Using the families form of the Morse lemma, there is an orthogonal
splitting of the normal bundle NB/X into

NB/X = N s
B/X ⊕ Nu

B/X ,(4.68)

and a fibrewise G-equivariant identification of a neighbourhood of the zero-
section of NB/X with a tubular neighbourhood of B in X, such that if x ∈
B, Z = (Z+, Z−) ∈ NB/X,x, for |Z| small enough,

f (x, Z) = f (x) +
1
2

(
|Z+|2 − |Z−|2

)
.(4.69)

The vector bundles N s
B/X and Nu

B/X are called the stable and unstable parts
of NB/X .

Let THB ⊂ TB be a horizontal bundle on B. Let ∇NB/X be a Euclidean
connection on NB/X , which preserves the orthogonal splitting (4.68). We may
and we will assume that near B, THM is just the obvious horizontal lift of
THB with respect to the connection ∇NB/X . Observe that the given metric
gTB on TB and the metric gNB/X induce a metric on the total space of NB/X ,
so that the horizontal bundle with respect to ∇NB/X is orthogonal to the fibres
NB/X . Using a partition of unity, we will assume that near B, the metric gTX

is just this metric.
Let ∇TB be the Euclidean connection on TB which is associated to(

THB, gTB
)

as in Section 3.7. Similarly ∇TX denotes the Euclidean con-

nection on TX associated to
(
THM, gTX

)
. Then one verifies easily that

∇TX |B = ∇TB ⊕∇NB/X .(4.70)

In particular, the fibres B are totally geodesic in the fibres X.
In the sequel, we assume that the above simplifying assumptions are in

force.
As before, we identify the normal bundles to XK in X, to XK in BK

. . . with the orthogonal bundles to the corresponding tangent bundles. By (4.29),

Ñ = NB/X |BK
∩ NXK/X |BK

.(4.71)

By (4.30), the normal bundle NBK/X splits orthogonally as

NBK/X = NBK/XK
⊕ NBK/B ⊕ Ñ .(4.72)
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Then mTX (K) |BK
acts on NBK/X and preserves the splitting (4.72). It acts

as the zero map on NBK/XK
and as an invertible antisymmetric map on NBK/B

and on Ñ . Moreover recall that the connection ∇TX preserves TB and TXK .
Therefore the connection ∇TX induces a corresponding connection on NBK/X ,
which preserves the splitting (4.72). As in (4.30),

NB/X |BK
= NBK/XK

⊕ Ñ .(4.73)

Using (4.68), (4.69) and the fact that f is KX invariant, we deduce that the
splitting (4.69) of NB/X induces corresponding orthogonal splittings,

NBK/XK
= N s

BK/XK
⊕ Nu

BK/XK
, Ñ = Ñ s ⊕ Ñu.(4.74)

Let qNB/X : NB/X → R be given by

qNB/X (Z+, Z−) =
1
2

(
|Z+|2 − |Z−|2

)
.(4.75)

Now we use the notation in (4.4) and (4.10). Namely, set
(4.76)

c
NXK /X |BK

K = exp
(
d

K
NXK /X |BK

KNXK /X |BK
′/4π

)
,

d
NB/X |BK

K,T =
√

2π

∫ B̂

K̂NB/X |BK

√
T ∇̂qNB/X

4π
exp

(
−A

NB/X |BK

K,
√

T∇q
NB/X |BK

/2π
)

.

Then c
NXK /X |BK

K is a smooth form on the total space of NXK/X |BK
, and

d
NB/X |BK

K,T is a smooth form on the total space of NB/X |BK
.

Let p1 : NBK/X → NXK/X |BK
, p2 : NBK/X → NB/X |BK

be the obvious
orthogonal projections.

4.9. Three intermediate results.

Theorem 4.19. There exists C > 0 such that for any t ∈ ]0, 1], T ∈
[0, 1/t], ∣∣∣∣∣

∫
X

αM
K,t

∫ B̂ K̂X′
√

t

√
T
∇̂f

4π
exp

(
−ATX

K,
√

T∇f
/2π

)∣∣∣∣∣ ≤ C (t (1 + T ))1/2 .(4.77)

Proof. Up to irrelevant modifications, the proof of this result is essentially
the same as the proof of [B8, Th. 3.8], which was given in [B8, §3 h)].

Theorem 4.20. For T > 0, the following identity holds:

lim
t→0

√
2π

∫
X

αM
K,t

∫ B̂ K̂X′
√

t

√
T

t

∇̂f

4π
exp

(
−ATX

K,
√

T/t∇f
/2π

)
(4.78)

=
∫

BK

e
(
TBK ,∇BK

) ∫
NBK /X

p∗1c
NXK /X |BK

K p∗2d
NB/X |BK

K,T .
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Proof. The proof is essentially the same as the proof of [B8, Th. 3.9, §3],
which was given in [B8, §3 i)].

Theorem 4.21. There exists C > 0 such that for any t ∈ ]0, 1] and any
T ≥ 1, ∣∣∣∣∣∣

∫
X

αM
K,t

∫ B̂ K̂X′
√

t

√
T

t

∇̂f

4π
exp

(
−A

K,
√

T/t∇f
/2π

)∣∣∣∣∣∣ ≤ C√
T

.(4.79)

Proof. The proof of our Theorem is the same as the proof of [B8, Th. 3.10],
which was given in [B8, §3 )].

4.10. A proof of Theorem 4.10. Now we will study the asymptotics of
the I0

k as A → +∞, T0 → +∞, ε → 0.

1) The term I0
1 . Clearly,

I0
1 =

∫ A

ε

{√
2π

∫
X

βM
K,t

∫ B̂ K̂X′
√

t
exp

(
−ATX

K,
√

T0∇f
/2π

)}
dt

t
.(4.80)

α) A → +∞. Clearly, as A → +∞,

I0
1 → I1

1 =
∫ +∞

ε

{√
2π

∫
X

βM
K,t

∫ B̂ K̂X′
√

t
exp

(
−ATX

K,
√

T0∇f
/2π

)}
dt

t
.(4.81)

β T0 → +∞. As in the proof of Theorem 3.17, as T0 → |∞,

(4.82)

I0
1 → I1

1 = (−1)ind(f)
∫ +∞

ε

{√
2π

∫
B

βB
K,t

∫ B̂ K̂X′
√

t
exp

(
−RTB

K /2π
)}

dt

t
.

γ) ε → 0. By (3.114) in Theorem 3.35, as ε → 0,

(4.83)

I2
1 → I3

1 = (−1)ind(f)
∫ +∞

0

{√
2π

∫
B

βB
K,t

∫ B̂ K̂X′
√

t
exp

(
−RTB

K /2π
)}

dt

t
.

δ) Evaluation of I3
1 .

Proposition 4.22. The following identity holds:

I3
1 = − (−1)ind(f) UK

(
B/S, THB, gTB

)
.(4.84)

Proof. This follows from (3.109), (3.118) and (4.83).
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2) The term I0
2 . We have the obvious identity,

I0
2 = −

∫ T 0

0

{√
2π

∫
X

αM
K,A

∫ B̂ K̂X′
√

A

∇̂f

4π
exp

(
−ATX

K,
√

T∇f
/2π

)}
dT√

T
.(4.85)

α) A → +∞. Clearly, as A → +∞,

I0
2 → 0.(4.86)

3) The term I0
3 . We have the obvious,

I0
3 = −

∫ A

ε

{√
2π

∫
X

βM
K,t

∫ B̂ K̂X′
√

t
exp

(
−ṘTX

K /2π
)}

dt

t
.(4.87)

α) A → +∞. As A → +∞,

I0
3 → I1

3 = −
∫ +∞

ε

{√
2π

∫
X

βM
K,t

∫ B̂ K̂X′
√

t
exp

(
−ṘTX

K /2π
)}

dt

t
.(4.88)

β) T0 → +∞. As T0 → +∞, I3
1 remains constant and equal to I2

3 .

γ) ε → 0. Using again an integration along the fibre version of (3.16), we
find that as ε → 0,

I2
3 → I3

3 =
∫ +∞

0

{√
2π

∫
X

βM
K,t

∫ B̂ K̂X′
√

t
exp

(
−RTX

K /2π
)}

dt

t
.(4.89)

Proposition 4.23. The following identity holds:

I3
3 = −UK

(
M/S, THM, gTX

)
.(4.90)

Proof. This follows from (3.109), (3.118) and (4.89).

4) The term I0
4 . Clearly,

I0
4 =

∫ T0

0

{√
2π

∫
X

αM
K,ε

∫ B̂ K̂X′
√

ε

∇̂f

2π
exp

(
−ATX

K,
√

T∇f
/2π

)}
dT

2
√

T
.(4.91)

α) A → +∞. The term I0
4 remains constant and equal to I1

4 .

β) T0 → +∞. Using (3.43) in Theorem 3.17, we find that as T0 → +∞,

(4.92)

I1
4 → I2

4 =
∫ +∞

0

{√
2π

∫
X

αM
K,ε

∫ B̂ K̂X′
√

ε

∇̂f

2π
exp

(
−ATX

K,
√

T∇f
/2π

)}
dT

2
√

T
.
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γ) ε → 0. Set

(4.93)

J0
1 =

∫ 1

0

{√
2π

∫
X

αM
K,ε

∫ B̂ K̂X′
√

ε

√
T ∇̂f

4π
exp

(
−ATX

K,
√

T∇f
/2π

)}
dT

T
,

J0
2 =

∫ 1

ε

√
2π

∫
X

αM
K,ε

∫ B̂ K̂X′
√

ε

√
T

ε

∇̂f

4π
exp

(
−A

K,
√

T/ε∇f
/2π

) dT

T
,

J0
3 =

∫ +∞

1

√
2π

∫
X

αM
K,ε

∫ B̂ K̂X′
√

ε

√
T

ε

∇̂f

4π
exp

(
−A

K,
√

T/ε∇f
/2π

) dT

T
.

Then
I2
4 = J0

1 + J0
2 + J0

3 .(4.94)

By proceeding as in the proof of (3.14), we find that as ε → 0,

J0
1 → 0.(4.95)

Also by Theorem 4.19, there exists C > 0 such that for ε ∈ ]0, 1], T ∈ [ε, 1],
(4.96)∣∣∣∣∣∣

∫
X

αM
K,ε

∫ B̂ K̂X′
√

ε

√
T

ε

∇̂f

4π
exp

(
−A

K,
√

T/ε∇f
/2π

)∣∣∣∣∣∣ ≤ C (ε + T )1/2 ≤ CT 1/2.

By Theorem 4.20 and (4.96), we find that as ε → 0,

(4.97)

J0
2 → J1

2 =
∫ 1

0

{∫
BK

e
(
TBK ,∇TBK

) ∫
NBK /X

p∗1c
NXK /X |BK p∗2d

NB/X |BK

T

}
dT

T
.

Finally, by Theorems 4.20 and 4.21, as ε → 0,

(4.98)

J0
3 → J1

3 =
∫ +∞

1

{∫
BK

e
(
TBK ,∇TBK

) ∫
NBK /X

p∗1c
NXK /X |BK p∗2d

NB/X |BK

T

}
dT

T
.

By (4.94)–(4.98), we find that as ε → 0,

(4.99)

I2
4 → I3

4 =
∫ +∞

0

{∫
BK

e
(
TBK ,∇TBK

) ∫
NBK /X

p∗1c
NXK /X |BK p∗2d

NB/X |BK

T

}
dT

T
.

δ) Evaluation of I3
4 .

Theorem 4.24. The following identity holds:

I3
4 =

∫
BK

(−1)ind(f) e
(
TBK ,∇TBK

)
IK

(
Ñ ,∇Ñ

)
.(4.100)
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Proof. Using the fact that the connection ∇NB/X |BK preserves the splitting
in (4.72), we get∫

NBK /X

p∗1c
NXK /X |BK

K p∗2d
NB/X |BK

K,T(4.101)

=
∫

NBK /XK

{∫ B̂

exp
(
−A

K,
√

T∇q
NBK /XK

/2π
)}

∫
NBK /B

c
NBK /B

K

{∫ B̂

exp
(
−Ṙ

NBK /B

K /2π
)} ∫

Ñ
cÑ
KdÑ

K,T .

Now one has the easy formula,∫
NBK /XK

{∫ B̂

exp
(
−A

K,
√

T∇q
NBK /XK

/2π
)}

(4.102)

= (−1)ind(f |MK )
∫

NBK /B

c
NBK /B

K

{∫ B̂

exp
(
−Ṙ

NBK /B

K /2π
)}

= 1.

So by (4.101)–(4.102), we obtain∫
NBK /X

p∗1c
NXK /X |BK

K p∗2d
NB/X |BK

K,T =
∫

Ñ
(−1)ind(f |MK ) cÑ

KdÑ
K,T .(4.103)

Using (4.28), Theorem 4.3, (4.20), Theorem 4.8, (4.99), (4.101)–(4.103), we get
(4.100). The proof of our Theorem is completed.

Using (4.67) and the results of Section 4.10, we get

I3
1 + I3

3 + I3
4 = 0 in PS/PS,0.(4.104)

By Propositions 4.22, 4.23 and Theorem 4.24, we get the analogue of (4.32)
for UK (M/S). By applying the operator Q on both sides, we finally get
Theorem 4.10.

4.11. Multifibrations and the invariant VK (M/S). Let now π′ : P → S

be another submersion with compact fibre Y , which has the same properties
as the fibration π : M → S. In particular, G still acts on P along the fibres Y .
To this fibration, we associate objects similar to the ones we constructed for
π : M → S. If K ∈ g, let KY ∈ TY be the corresponding fibrewise vector field
on P .

Let p : M → P be a G-equivariant submersion with compact fibre Z, such
that

π = π′p.(4.105)

In particular p induces a fibrewise submersion p : X → Y with compact fibre Z.
Observe that PK is a smooth submanifold of P , and π′ : PK → S is a

submersion with compact fibre YK . Put

MPK = p−1 (PK) .(4.106)
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Then p : MPK → PK is a submersion with compact fibre Z. Also KX |MPK

∈ TZ. In the sequel, on MPK , we set

KZ = KX |MPK .(4.107)

In the above situation, given K ∈ g, we can construct VK (M/S) , VK (P/S)
∈ Heven (S,R), and VK

(
MPK /PK

)
∈ Heven (PK ,R).

Theorem 4.25. The following identity holds:

(4.108)

VK (M/S) = χ (Z) VK (P/S) +
∫

YK

e (TYK)VK

(
MPK /PK

)
in Heven (S,R) .

Proof. Clearly G maps TX, TZ, TY into themselves. Let gTY , gTZ be
G-invariant metrics on TY, TZ. Let TX = THX ⊕ TZ be a G-invariant
orthogonal splitting of TX. We lift the metric gTY on TY to a metric gT HX

on THX. For T ≥ 1, let gTX
T be the G-invariant metric on TX = THX ⊕ TZ,

gTX
T = gT HX ⊕ gTZ

T
.(4.109)

In the sequel we will use the notation gTX = gTX
1 .

Let THP be a G-invariant horizontal bundle on P . Then p−1
∗

(
THP

)
is a

G-invariant subbundle of TM , which maps onto TS. Let THM ⊂ p−1
∗

(
THP

)
be a G-invariant horizontal subbundle of TM for the projection π. Then
THM ⊕ THX is a horizontal bundle associated to the projection p : M → P .
Clearly G acts as the identity on THM 	 π∗TS. Let

(
THX

)
K

⊂ THX|MPK

be the obvious lift of TYK . Clearly,

THM |MPK ⊕
(
THX

)
K

⊂ TMPK .(4.110)

In particular THM |MPK ⊕
(
THX

)
K

is a horizontal bundle associated to the

projection p : MPK → PK .
For T ≥ 1, let ∇TX

T be the connection on TX which is associated to(
THM, gTX

T

)
, and let RTX

K,T be the corresponding equivariant curvature.
If K ∈ g, set

KX = KX,H + KX,V , KX,H ∈ THX, KX,V ∈ TZ.(4.111)

Then KX,H is the lift in THX of KY ∈ TY . In the sequel, we identify
TX, TZ, TY to their duals by the metrics gTX , gTY , gTZ . Also we will consider
Berezin integrals on TX, TZ, or TY with respect to the fixed metrics gTX , gTZ

or gTY . With these conventions, KX,H′ = p∗KY ′. In the sequel we will often
write KY ′ instead of p∗KY ′.
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t

A

T0 T0

Γ3

Γ4

Γ2

Γ1

ε

1

∆

Figure 4.2

Clearly, if RTX
T is the curvature of ∇TX

T , then

RTX
K,T = RTX

T − 2π∇TX
T,· KX .(4.112)

Recall that we use the Berezin integration formalism with respect to the
fixed metric gTX = gTX

1 . Let e1, . . . , em be an orthonormal basis of TY ,
let em+1, . . . , en be an orthonormal basis of TZ. With our conventions,

(4.113)

ṘTX
K,T =

1
2

∑
1≤i,j≤m

〈
eH
i , RTX

K,T eH
j

〉
ê i ∧ ê j

+
1
2

∑
m+1≤i,j≤n

〈
ei, R

TX
K,T ej

〉
ê i ∧ ê j +

1√
T

∑
1≤i≤m

m+1≤j≤n

〈
ei, R

TX
K,T ej

〉
ê i ∧ ê j .

We replace M by M∗ = M × R∗
+ × R, S by S∗ = S × R∗

+ × R. Over
S×{t}×{T}, we equip TX with the metric gTX

T /t. Let δ∗K be the corresponding
odd closed form on S∗ which is defined as in (4.59) with f = 0. One then
verifies easily the equality,

(4.114)

δ∗K =
√

2π

∫
X

exp
((

dK − dt

t

) (
KX,V ′/T + KY ′

)
/4πt − dTKX,V ′/4πtT 2

)
∫ B̂

K̂X,V ′
√

tT
+

K̂X,H′
√

t

 exp
(
−ṘTX

K,T /2π
)

.

Let Γ be the oriented contour indicated in Figure 4.2, and let ∆ be its
interior. As in (4.65), we get ∫

Γ
δ∗K = −d

∫
∆

δ∗K .(4.115)
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As in (4.66), set

I0
k =

∫
Γk

δ∗K .(4.116)

By (4.115),
4∑

k=1

I0
k = 0 in PS/PS,0.(4.117)

Now we briefly study the asymptotics of the I0
k as A → +∞,

T0 → +∞, ε → 0.

1) The term I0
1 . Clearly,

(4.118)

I0
1 =−

∫ A

ε

{√
2π

∫
X

exp
(
dK

(
KX,V ′/T0 + KY ′

)
/4πt

) (
KX,V ′

4πtT0
+

KX,H′

4πt

)
∫ B̂

K̂X,V ′
√

tT0
+

K̂X,H′
√

t

 exp
(
−ṘTX

K,T0
/2π

)}
dt

t
.

As A → +∞, I0
1 converges to I1

1 , where A in (4.118) is simply replaced by
+∞.

As T0 → +∞, one verifies easily that the G-invariant connection ∇TX
T0

converges to a G-invariant connection ∇TX
∞ on TX, which has the following

two properties:

• The connection ∇TX
∞ preserves TZ. More precisely its restriction to TZ

is just the connection ∇TZ associated to the projection p : M → P , to
the horizontal bundle THX ⊕ THM and to the metric gTZ on TZ.

• The projection of ∇TX
∞ on THX with respect to the splitting TX =

THX ⊕ TZ is the pull back to THX of the connection ∇TY associated
to

(
THP, gTY

)
.

From the above, one then finds easily that for t > 0, as T0 → +∞,∫ B̂
K̂X,V ′

√
tT0

+
K̂X,H′
√

t

 exp
(
−ṘTX

K,T0
/2π

)
(4.119)

→ eK

(
TZ,∇TZ

)
p∗

∫ B̂ K̂Y ′
√

t
exp

(
−ṘTY

K /2π
)

.

By (4.118), (4.119) and dominated convergence, as T0 → +∞,

I1
1 → I2

1 = −χ (Z)
∫ +∞

ε

{√
2π

∫
Y

exp
(
dKKY ′/4πt

)
(4.120)

KY ′

4πt

∫ B̂ K̂Y ′
√

t
exp

(
−ṘTY

K /2π
)}

dt

t
.
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By (3.114), as ε → 0, I1
1 converges to I2

1 , which is given by the right-hand
side of (4.120), where ε is replaced by 0. Comparing with (3.118), we get

I3
1 = −χ (Z)UK

(
P/S, THP, gTY

)
.(4.121)

2) The term I0
2 . Clearly,

I0
2 =

∫ T0

1

{∫
X

exp
(
dK

(
KX,V ′/T + KY ′

)
/4πA

) KX,V ′

4πAT 2
(4.122)

∫ B̂
K̂X,V ′

√
AT

+
K̂X,H′
√

A

 exp
(
−ṘTX

K,T /2π
)}

dT.

As A → +∞,
I0
2 → 0.(4.123)

3) The term I0
3 . We have the obvious equality

I0
3 =

∫ A

ε

{√
2π

∫
X

βM
K,t

∫ B̂ K̂X′
√

t
exp

(
−ṘTX

K /2π
)}

dt

t
.(4.124)

As A → +∞, by (3.115), I0
3 converges to I1

3 , which is obtained by making
A = +∞ in (4.124). Also I1

3 does not depend on T0 and remains equal to I2
3 .

Finally as ε → 0, by (3.114), I2
3 converges to I3

3 , where in (4.124), ε is now
made equal to 0. Comparing with (3.118), we get

I3
3 = UK

(
M/S, THM, gTX

)
.(4.125)

4) The term I0
4 . We have the obvious identity

I0
4 = −

∫ T0

1

{√
2π

∫
X

exp
(
dK

(
KX,V ′/T + KY ′

)
/4πε

) KX,V ′

4πεT
(4.126)

∫ B̂
K̂X,V ′

√
εT

+
K̂X,H′
√

ε

 exp
(
−ṘTX

K,T /2π
)}

dT

T
.

As A → +∞, I0
4 remains constant and equal to I1

4 . As T0 → +∞, the argu-
ments used after (4.118) show that I1

4 converges to I2
4 , which is equal to the

right-hand side of (4.126), with T0 replaced by +∞.
Clearly

I2
4 =

∫ +∞

ε

{√
2π

∫
X

exp
(
dK

(
KX,V ′/T + KY ′/ε

)
/4π

) KX,V ′

4πT
(4.127)

∫ B̂
K̂X,V ′

√
T

+
K̂X,H′
√

ε

 exp
(
−ṘTX

K,T/ε/2π
)}

dT

T
.
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By proceeding as in the proof of (3.114), one verifies easily that given
T > 0, as ε → 0,∫

X
exp

(
dK

(
KX,V ′/T + KY ′/ε

)
/4π

) KX,V ′

4πT
(4.128)

∫ B̂
K̂X,V ′

√
T

+
K̂X,H′
√

ε

 exp
(
−ṘTX

K,T/ε/2π
)

→
∫

YK

e
(
TYK ,∇TYK

) ∫
Z

βMPK

K,T

∫ B̂ K̂Z′
√

T
exp

(
−ṘTZ

K /2π
)

.

By proceeding as in the proof of (3.114), we find that there exists C > 0
such that if 0 < t ≤ 1, T ≥ 1,∣∣∣∣∣

∫
X

exp
(
dK

(
KX,V ′ + TKX,H′

)
/4πt

) KX,V ′

4πt
(4.129)

∫ B̂
K̂X,V ′

√
t

+

√
T

t
K̂X,H′

 exp
(
−ṘTX

K,T /2π
)∣∣∣∣∣ ≤ C

√
t.

By (4.128), and by (4.129) which is used with t replaced by T , and T replaced
by T/ε, we find that as ε → 0,

∫ 1

ε

{√
2π

∫
X

exp
(
dK

(
KX,V ′/T + KY ′/ε

)
/4π

) KX,V ′

4πT
(4.130)

∫ B̂
K̂X,V ′

√
T

+
K̂X,H′
√

ε

 exp
(
−ṘTX

K,T/ε/2π
)}

dT

T

→
∫ 1

0

{√
2π

∫
YK

e
(
TYK ,∇TYK

) ∫
Z

βMPK

K,T

∫ B̂ K̂Z′
√

T
exp

(
−ṘTZ

K /2π
)}

dT

T
.

Also, we find easily that there exists C > 0 such that for t ∈ ]0, 1], T ≥ 1,∣∣∣∣∣
∫

X
exp

(
dK

(
KX,V ′/T + KY ′/t

)
/4π

) KX,V ′

4πT
(4.131)

∫ B̂
K̂X,V ′

√
T

+
K̂X,H′
√

t

 exp
(
−ṘTX

K,T/t/2π
)∣∣∣∣∣ ≤ C

T
.
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By (4.128), (4.131), as ε → 0,∫ +∞

1

{√
2π

∫
X

exp
(
dK

(
KX,V ′/T + KY ′/ε

)
/4π

) KX,V ′

4πT
(4.132)

∫ B̂
K̂X,V ′

√
T

+
K̂X,H′
√

ε

 exp
(
−ṘTX

K,T/ε/2π
)}

dT

T

→
∫ +∞

1

{√
2π

∫
YK

e
(
TYK ,∇TYK

) ∫
Z

βMPK

K,T

∫ B̂

K̂Z′
√

T
exp

(
−ṘTZ

K /2π
)}

dT

T
.

Using (3.118), (4.127), (4.130), (4.132), as ε → 0,

I2
4 → I3

4 =
∫

YK

e
(
TYK ,∇TYK

)
UK

(
MPK /PK , THMPK , gTZ

)
.(4.133)

By (4.117), and by the above results, we get

I3
1 + I3

3 + I3
4 = 0 in PS/PS,0.(4.134)

By (4.121), (4.123), (4.133), (4.134), we get the analogue of (4.108) from
UK (M/S). By applying the operator Q on both sides, we finally get The-
orem 4.25.

We make the same assumptions as in Section 3.7. Suppose that G acts
freely on M . Then π′ : M/G → S is a submersion with compact fibre X/G.

Proposition 4.26.

VK (M/S) =
∫

X/G
e (TX/G)VK (M/(M/G)) in Heven (S,R) .(4.135)

Proof. We will use Theorem 4.25, with P = M/G. Since G acts trivially
on M/G,

VK ((M/G) /S) = 0.(4.136)

One can instead observe that χ (G) = 0, so that using (4.108), we get (4.135).

4.12. V -invariants and symplectic cuts. We make the same assumptions
as in Section 4.5, with G = S1, so that g = R. Then the moment map µ takes
its value in R. Also, since there is no risk of confusion, TX will denote the
ordinary real tangent bundle on X. Other tangent bundles will be denoted in
the same way.

As observed in Section 4.5, if K ∈ R∗, µ is a Morse-Bott function on X

whose critical set B is just XK , which is even-dimensional.
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Assume that 0 is a regular value of µ, and put X0 = µ−1 {0}. In the sequel
we write VK (X0) instead of VK (X0/pt). Put XK,>0 = XK ∩ µ−1 (]0,+∞[).
By (4.40), we get

VK (X0) = 2
∫ ∫

XK,>0

e (TXK)JK

(
NXK/X

)
.(4.137)

Clearly S1 acts locally freely on X0. Assume that this action is free. By
combining (4.135) and (4.137), we get
(4.138)∫

X0/S1
e

(
TX0/S1

)
VK

(
X0/

(
X0/S1

))
= 2

∫
XK,>0

e (TXK)JK

(
NXK/X

)
.

Degree considerations show that (4.138) is equivalent to

VK

(
S1

)
χ

(
X0/S1

)
= 2

∫
XK,>0

e (TXK)JK

(
NXK/X

)
.(4.139)

We claim that (4.138) follows directly from the arguments of Section 4.5.
In fact, using a symplectic cut argument, we can compactify the open symplec-
tic manifold X>0 into a compact symplectic manifold Y+, equipped an action
of S1 and a moment map µ+, whose restriction to X>0 coincides with the given
ones. The fibre Y+,0 = µ−1

+ {0} is fixed by S1 and coincides with X0/S1. The
normal bundle NY+,0/Y+

is the two-dimensional vector bundle associated to the
circle bundle X0 → X0/S1.

By Theorem 4.13,∫
X0/S1

e
(
TX0/S1

)
VK

(
X0/

(
X0/S1

))
(4.140)

= −2
∫

Y0

e (TY0)JK

(
NY0/Y,R

)
.

Using (4.50) and (4.140), and taking into account that 0 is the minimum of
µ+ on Y+, so that NY+,0/Y = N s

Y+,0/Y+
, we recover (4.138).

5. A comparison formula for the equivariant torsions

In this section, which contains the main result of this paper, we give a for-
mula comparing the equivariant classical and infinitesimal equivariant analytic
torsions in de Rham theory. This formula is an analogue of a corresponding
formula in [BGo1, Th. 5.1] for the holomorphic torsions. Also we show that our
formula is compatible to our previous results in [BGo2], and also with results
of Bunke [Bu1, Bu2].

This section is organized as follows. In 5.1, we state our main result.
In 5.2, we recall the definition in [BGo2] of the genus J (θ, x), and relate this
genus to the function Jθ (x). In Section 5.3, we show the compatibility of our
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main result with the results of [BZ2] and [BGo2], in relation with invariant
Morse functions. In 5.4, we consider the case of Morse-Bott functions. Then
we show that our results refine results of Bunke [Bu1, 2]. Finally in Section 5.5,
we state without proof the obvious extension of our comparison formula to the
case of analytic torsion forms, our main result being the degree 0 part of this
more general equality.

In this section, we make the same assumptions and we use the same nota-
tion as in Sections 2.2, 2.3, 2.6, and 2.8. In particular we assume that equation
(2.21) holds.

5.1. The main result. For convenience, we state again the main result of
this paper, already given in Theorem 0.1. Here we take g ∈ G, K0 ∈ z(g). If
z ∈ R∗, we take K = zK0. Note that by (1.24), (2.119), (2.121), for |z| small
enough,

log

‖ ‖λ̃G(F ),ch (g, K)

‖ ‖λG(F ) (geK)

(5.1)

= Tch,g,K

(
gTX ,∇F , gF

)
− Tch,geK ,0

(
gTX ,∇F , gF

)
.

Theorem 5.1. For z ∈ R∗, if |z| is small enough, the following identity
holds:
(5.2)

Tch,g,K

(
gTX ,∇F , gF

)
− Tch,geK ,0

(
gTX ,∇F , gF

)
=

∫
Xg

eK

(
TXg,∇TXg

)
FK

(
TXg, g

TXg

)
ch◦

g

(
∇F , gF

)
+ TrF |Xg [g]VK (Xg) .

Remark 5.2. Using (3.38), one verifies easily that Theorem 5.1 is compat-
ible with the anomaly formulas of Theorems 1.9 and 2.19. Also observe that
the first term in the right-hand side of (5.2) vanishes on the odd-dimensional
components of Xg, and that the second term vanishes on the even-dimensional
components of Xg.

5.2. The genus J (θ, x).

Definition 5.3. For y ∈ R, s ∈ C,Re(s) > 1, set

ζ(y, s) =
+∞∑
n=1

cos (ny)
ns

, η(y, s) =
+∞∑
n=1

sin (ny)
ns

.(5.3)
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Then ζ(y, s) and η(y, s) are the real and imaginary parts of the Lerch series
L(y, s) =

∑+∞
n=1

einy

ns introduced in [Le]. If y /∈ 2πZ, s �→ ζ(y, s) extends to a
holomorphic function on C, if y ∈ 2πZ, s �→ ζ(y, s) extends to a meromorphic
function on C with a simple pole at s = 1. Also s �→ η(y, s) extends to a
holomorphic function on C. Moreover

ζ(0, s) = ζ(s), η(0, s) = 0.(5.4)

Definition 5.4. For θ ∈ R∗, x ∈ C, |x| < |2π| if θ ∈ 2πZ, |x| <

infk∈Z |θ + 2kπ| if θ /∈ 2πZ, put

J (θ, x) =
1
2

 ∑
p∈N

p even

∂ζ

∂s
(θ,−p)

xp

p!
+ i

∑
p∈N

p odd

∂η

∂s
(θ,−p)

xp

p!

 .(5.5)

By [BGo2, Ths. 4.29, 4.30 and 4.35], the series in (5.5) converges.
Recall that the function Jθ (x) was defined in Definition 4.5. In the sequel,∑

k∈Z

′ (
J2kπ+θ (x) − J2kπ (0)

)
denotes a sum over k ∈ Z, with the convention that if 2kπ + θ or if 2kπ

vanish, then J2kπ+θ (x) or J2kπ (0) is replaced by 0. The following results were
established in [BGo2, Ths. 4.35 and 4.38].

Theorem 5.5. The following identity holds:

J (θ, x) − J (0, 0) =
∑
k∈Z

′ (
J2kπ+θ (x) − J2kπ (0)

)
.(5.6)

If θ ∈ R \ 2πZ, θ′ ∈ R, x ∈ C, if |θ′| , |x| are small enough,

J
(
θ + θ′, x

)
= J

(
θ, x + iθ′

)
.(5.7)

Also for θ′ ∈] − 2π, 2π[\{0}, for x ∈ C, |x| < infk∈Z |θ′ + 2kπ|, then

J
(
θ′, x

)
= J

(
0, x + iθ′

)
+ Jθ′

(x) .(5.8)

Put
0J (θ, x) = J (θ, x) − J (0, 0) .(5.9)

Take g ∈ G. Let V be a manifold. We assume that Z (g) acts on V , and
that V is fixed by g.

Let E = E+ ⊕ E− be a real Z2-graded vector bundle on V , which is
equipped with a Euclidean metric gE = gE+ ⊕ gE− , and a unitary connection
∇E = ∇E+ ⊕∇E− . Let RE = RE+ ⊕ RE− be the curvature of ∇E .



EQUIVARIANT DE RAHM TORSIONS 133

We assume that g ∈ G acts on E as an even unitary parallel automorphism
of E. We also assume that the action of Z (g) on V lifts to an even unitary
action on E, which commutes with g, and preserves the connection ∇E . If
K ∈ z (g), let mE (K) ∈ Endeven (E) be the vertical component of the ac-
tion of K with respect to ∇E . Then mE (K) is an antisymmetric section of
Endeven (E), which commutes with g. Since ∇E is Z (g)-invariant, as in (2.7),
we get

∇E
· mE (K) + iKV RE = 0.(5.10)

As in (2.31), (3.3), the equivariant curvature RE
K is given by

RE
K = RE − 2πmE (K) .(5.11)

If −1 is not an eigenvalue of g, there is B ∈ Endeven (E), which is anti-
symmetric, parallel, which commutes with mE (K) and is such that

g|E = eB.(5.12)

Suppose that the action of g on E is given by −1. In this case, we write

g = eiπ.(5.13)

By the above, we can always write g|E in the form (5.12), with B ∈ Endeven (E)
⊗R C, which commutes with mE (K).

Put
0Jg,K

(
E,∇E

)
= Trs

[
0J

(
−iB,−RE

K/2π
)]

.(5.14)

By [BeV], [BeGeV, Th. 7.7],

dK
0Jg,K

(
E,∇E

)
= 0.(5.15)

Let Jg,K (E) be the equivariant cohomology class of Jg,K

(
E,∇E

)
on V .

If K = 0, we will write instead 0Jg (E), which is an ordinary cohomology class
on V .

5.3. Equivariant infinitesimal Ray-Singer metrics and Morse functions.
We make the same assumptions as in Section 2. In particular gTX , gF denote
G-invariant metrics on TX, F .

Let f : X → R be a G-invariant Morse function. Let hTX be a G-invariant
metric on TX, and let ∇f be the gradient field on f with respect to hTX . We
will assume that Y = −∇f is a Morse-Smale vector field [Sm1, 2]; i.e., the
stable and unstable cells for Y intersect transversally. Let B be the critical
set of f , i.e. the finite set of zeroes of Y . Then G acts on B. In particular, if
K ∈ g, KX vanishes on B.
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If x ∈ B, let ou
x be the orientation line of TW u

x . Let (C · (W u, F ) , ∂) be the
Thom-Smale complex with coefficients in F , which is associated to the vector
field Y . Then

C · (W u, F ) =
⊕
x∈B

Fx ⊗ ou
x, Ci (W u, F ) =

⊕
x∈B

ind(f)(x)=i

Fx ⊗ ou
x.(5.16)

A detailed description of the chain map ∂ is given in [BZ1, §1 c)] and [BGo2,
Ch. 5.1]. Let us just mention here that, if x ∈ B, ∂ maps Fx ⊗ ou

x into the
direct sum of Fy ⊗ ou

y , with x connected to y along integral curves of −Y , so
that f (y) > f (x). The main point is that there is a canonical isomorphism,

H ·(C ·(W u, F ), ∂) 	 H ·(X, F ).(5.17)

Clearly G acts naturally on (C · (W u, F ) , ∂) and on H ·(X, F ). Then (5.17)
is an isomorphism of Z-graded G vector spaces. By (2.21), the connected
component of the identity G0 ⊂ G acts trivially on C · (W u, F ). Using (5.17),
this last result fits with the fact that, as we saw in Section 2, G0 acts trivially
on H ·(X, F ). Since G is compact, G/G0 is a finite group.

Then G/G0 acts on (C · (W u, F ) , ∂) and on H ·(X, F ) and (5.17) is an
isomorphism of Z-graded G/G0 vector spaces.

Let Ĝ/G0 be the set of equivalence classes of irreducible representations
of G/G0. If w ∈ Ĝ/G0, let χw be the character of G/G0 associated to w. As
in (1.19), if w ∈ Ĝ/G0, set

λw (C · (W u, F )) = det
(
HomG/G0

(w, C · (W u, F )) ⊗ w
)

.(5.18)

Put
λG/G0

(C · (W u, F )) = ⊕
w∈Ĝ/G0

λw (C · (W u, F )) .(5.19)

Let | |λw(C·(W u,F )) be the metric induced by gF |B on λw (C · (W u, F )).

Definition 5.6. Set

log
(
| |λG/G0 (C·(W u,F ))

)
=

∑
w∈Ĝ/G0

log
(
| |λw(C·(W u,F ))

) χw

rkw
.(5.20)

Similarly, we can define λw (H ·(X, F )) , λG/G0
(H ·(X, F )) as in (5.18)–(5.20).

By [KnMu], we have canonical isomorphisms,
(5.21)

λw (H ·(X, F )) 	 λw (C · (W u, F )) , λG/G0
(H ·(X, F )) 	 λG/G0

(C · (W u, F )) .

Recall that λG (F ) was defined in (1.20). Note that in general, the sum in
the right-hand side of (1.20) contains an infinite number of terms. However,
if W ∈ Ĝ does not appear in H ·(X, F ), the corresponding Hermitian line
λW (F ) is canonically trivial. Since G/G0 is a finite group, the analogue of
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(5.19) for λG/G0
(H ·(X, F )) contains only a finite number of terms. Since

the representation of G on H ·(X, F ) factors through G/G0, up to irrelevant
canonically trivial terms,

λG (F ) 	 λG/G0
(H ·(X, F )) .(5.22)

Definition 5.7. Let log
(
‖ ‖∇f

λG(F )

)
be obtained from log

(
| |λG/G0 (C·(W u,F ))

)
via the canonical isomorphisms (5.21) and (5.22).

Observe that TX|B splits naturally as

TX|B = TXs|B ⊕ TXu|B.(5.23)

In (5.23), TXs|B, TXu|B are the tangent spaces to the stable (ascending) and
unstable (descending) cells. In the sequel TX|B is considered as a Z2-graded
vector bundle.

Let Bg = B ∩ Xg. If g ∈ G, g preserves the splitting in (5.23). Now we
state a result directly related to in [BGo2, Th. 7.4]. This result was established
by Lott-Rothenberg in [LoRo] for K = 0, when gF is flat, and in [BZ2, Th. 0.2]
in the case where K = 0 and gF is arbitrary.

Theorem 5.8. For K ∈ z (g) and |K| small enough, the following identity
holds:

(5.24)

log

‖ ‖λ̃G(F ),ch (g, K)

‖ ‖∇f
λG(F ) (g)

 =−
∫

Xg

ch◦
g

(
∇F , gF

)
ψK

(
∇f |Xg

, TXg,∇TXg

)
+

∑
x∈Bg

(−1)ind(f)(x) TrFx⊗ou
x [g] 0Jg,K (TxX) .

Proof. In [BGo2, §7], a proof of our theorem is given in a families setting,
i.e. in a more general context than in Section 2.5. To establish (5.24), which
is an equality of complex numbers, one can either adapt the methods of the
proof given in [BGo2], or observe from the results there that (5.24) holds as
an equality of power series in the variable z, when replacing K by zK0. Using
analyticity in the variable z, we get (5.24) in full generality. Details are left to
the reader.

Remark 5.9. Observe that in the right-hand side of (5.24), only the com-
ponent of degree 0 of 0Jg,K (TxX) appears, so that, with the notation in (5.14),

0Jg,K (TxX) = Trs
[
0J

(
−iB, mE (K)

)]
.(5.25)
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Now we will explain the compatibility of Theorems 5.1 and 5.8. For
z ∈ R∗, K = zK0 and |z| small enough, XgeK = Xg,K . Also since the critical
points of f are isolated, B ⊂ XK , so that Bg = BgeK . Note that by (2.21),
(2.74), (2.124), we have the equality of forms on Xg,K ,

ch◦
geK

(
∇F , gF

)
= ch◦

g

(
∇F , gF

)
.(5.26)

By (2.122), Theorem 5.8 and (5.26), for |z| small enough,

(5.27)

log

‖ ‖λ̃G(F ),ch (g, K)

‖ ‖λG(F ) (geK)

 = −
∫

Xg

ch◦
g

(
∇F , gF

)
ψK

(
∇f |Xg

, TXg,∇TXg

)

+
∫

Xg,K

ch◦
g

(
∇F , gF

)
ψ

(
∇f |Xg,K

, TXg,K ,∇TXg,K

)
+

∑
x∈Bg

(−1)ind(f)(x) TrFx⊗ou
x [g]

(
0Jg,K (TxX) − 0JgeK ,0 (TxX)

)
.

By (4.24) and (5.7)–(5.9),∑
x∈Bg

(−1)ind f(x) TrFx⊗ou
x [g]

(
0Jg,K (TxX) − 0JgeK ,0 (TxX)

)
(5.28)

= −
∑

x∈Bg

(−1)ind(f)(x) TrFx⊗ou
x [g]JK

(
NXg,K/Xg

)
.

We claim that (5.27) and (5.28) are equivalent to (5.2) in Theorem 5.1.
Recall that by (2.76),

dKch◦
g

(
∇F , gF

)
= 0.(5.29)

• Using Theorems 3.15 and 3.21 and (5.29), we find that the first terms
in the right-hand sides of (5.2) and (5.27) coincide. This is clear for
the connected components of Xg which are even-dimensional. In this
case, the corresponding Xg,K is also even-dimensional, the currents
ψK

(
∇f |Xg

, TXg,∇TXg

)
and ψ

(
∇f |Xg,K

, TXg,K ,∇TXg,K

)
are odd, and

so they anticommute with ch◦
g

(
∇F , gF

)
. If the considered connected

component of Xg is odd dimensional, the contribution of this component
to the first term in the right-hand side of (5.2) vanishes. Again, by The-
orems 3.15 and 3.21, this is also the case for the corresponding terms in
the right-hand side of (5.27).

• By Theorem 4.10,

VK (Xg) = −
∑

x∈Bg

(−1)ind(f |Xg)(x) JK

(
NXg,K/Xg

)
.(5.30)
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Also if x ∈ Bg,
Trou

x [g] = det TxXu

[g] .(5.31)

Using (5.31), one deduces easily that if x ∈ Bg,

(−1)ind(f)(x) Trou
x [g] = (−1)ind(f |Xg)(x) .(5.32)

By (5.28)–(5.32), we find that the last terms in the right-hand sides of (5.2)
and (5.27) also correspond.

We have then proved the compatibility of Theorem 5.1 to the results of
[BZ2] and [BGo2].

5.4. Equivariant torsions and Morse-Bott functions. Let f : X → R be
a G-invariant Morse-Bott function. Let B be the critical set of f . Then B is a
union of disjoint connected compact submanifolds of X, and G acts on B. Let
NB/X be the normal bundle to B in X. We identify NB/X to the orthogonal
vector bundle to TB in TX|B. Let gTB, gNB/X be the metrics on TB, NB/X

induced by gTX on TB, NB/X . Then G acts on TX, TB, NB/X and preserves
the corresponding metrics.

If x ∈ B, then d2f (x) is a nondegenerate quadratic form on NB/X,x. The
vector bundle NB/X splits orthogonally as

NB/X = N s
B/X ⊕ Nu

B/X .(5.33)

In (5.33), N s
B/X , Nu

B/X are the direct sums of the eigenbundles of d2f which
are associated to positive and negative eigenvalues with respect to the metric
gNB/X . Since f is G-invariant, the splitting (5.33) of NB/X is also G-invariant.

Let o
(
Nu

B/X

)
be the orientation bundle of Nu

B/X . Then o
(
Nu

B/X

)
is a

Z2-line bundle. In the sequel we will consider o
(
Nu

B/X

)
as a complex Hermi-

tian flat line bundle. In particular F |B ⊗o
(
Nu

B/X

)
is a complex vector bundle

on B, equipped with a Hermitian metric gF |B⊗o(Nu
B/X) and a flat connection

∇F |B⊗o(Nu
B/X).

Clearly, f is locally constant on B. Let B1, . . . , Bq be the connected
components of B. A trivial perturbation argument shows that we may assume
that f takes the value p on Bp.

For p ∈ N, set
Up = f−1[p − 1/2,+∞[.(5.34)

Then the Up define a decreasing filtration on the complex
(
Ω· (X, F ) , dX

)
, so

that F pΩ· (X, F ) is the set of s ∈ Ω· (X, F ) whose support is included in Up.
Let (Er, dr), r ≥ 0, be the corresponding spectral sequence. Using Morse-Bott
theory, one finds easily that

Ep,q
1 = Hp+q−ind(f)

(
Bp, F |Bp

⊗ o
(
Nu

B/X

))
.(5.35)
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In particular, for r ≥ 1, the (Er, dr) are finite-dimensional Z-graded complexes.
In (5.35), E1 is Z-graded by p + q. Moreover,

E∞ 	 GrH · (X, F ) .(5.36)

Clearly G acts on the spectral sequence (Er, dr) , r ≥ 0. Using the argument we
gave after (2.23), and also (5.35), we find that G0, the connected component
of the identity in G, acts trivially on the (Er, dr) , r ≥ 1.

Now, we proceed as in Sections 1.3 and 5.3. For r ≥ 1, we define the
direct sums of lines λG/G0

(Er) as in (5.19). By the obvious analogue of (5.21),
for r ≥ 1, we have the canonical isomorphism,

λG/G0
(Er) 	 λG/G0

(Er+1) .(5.37)

Also classically, we have the canonical isomorphism,

λG/G0
(H · (X, F )) 	 λG/G0

(Gr H · (X, F )) .(5.38)

By (5.36)–(5.38), we conclude there is a canonical isomorphism,

λG/G0
(E1) 	 λG/G0

(H · (X, F )) .(5.39)

Moreover, by (5.35),

λG/G0
(E1) =

q⊗
p=1

λG/G0

(
H ·

(
Bp, F |B ⊗ o

(
Nu

B/X

)))(−1)ind(f)

.(5.40)

Recall that g
H·(X,F )
L2

denotes the L2 metric on H ·(X, F ) which was de-
fined in Section 1.3. This metric is associated to the metrics gTX , gF . Let

g
H·(B,F |B⊗o(Nu

B/X))
L2

be the L2 metric on H ·
(
B, F |B ⊗ o

(
Nu

B/X

))
which is as-

sociated to the metrics gTB, gF |B⊗o(Nu
B/X). Let gE1 be the corresponding metric

on E1 via the canonical isomorphism in (5.35). Note that the Ep,q
1 are mutually

orthogonal with respect to gE1 .
Since E2 is the cohomology of the complex (E1, d1), by identifying E2 to

the harmonic elements in E1, E2 inherits a metric gE2 . By recursion, the Er

inherit metrics gEr . Let | |λG/G0 (Er) be the corresponding metric on λG/G0
(Er).

Let d∗r be the adjoint of dr with respect to gEr . Set

Dr = dr + d∗r .(5.41)

As in Section 1.3, D2
r acts as an invertible operator on the vector space E⊥

r+1

⊂ Er orthogonal to Er+1 	 ker Dr in Er. Let
(
D2

r

)−1 denote the corresponding
inverse. Let Nr be the operator defining the Z-grading of Er. If g ∈ G/G0, as
in (1.23), set

ϑg (Er) (s) = −Trs
[
Nrg

(
D2

r

)−s
]
.(5.42)
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Proposition 5.10. For g ∈ G, the following identity holds:

log

( | |λG/G0 (E1)

| |λG/G0 (E∞)

)
=

∑
r≥1

1
2

∂

∂s
ϑg (Er) (0) .(5.43)

Proof. By [BGS, Prop. 1.5], for r ≥ 1, we get

log

( | |λG/G0
(Er)

| |λG/G0
(Er+1)

)
=

1
2

∂

∂s
ϑg (Er) (0) ,(5.44)

from which our proposition follows.

We take g ∈ G, K0 ∈ z (g) and K = zK0, with z ∈ R∗. If g ∈ G, we still
denote by g its image in G/G0. Clearly, f |Xg

is a Morse-Bott function on Xg.
We define ψK

(
∇f |Xg

, TGg,∇TXg

)
as in Definition 3.19. When K = 0, this

current will be denoted ψ
(
∇f |Xg

, TGg,∇TXg

)
.

In the sequel, we make the assumption that if g ∈ G, x ∈ Bg, then g acts
as the identity on Nu

B/X,x. Equivalently, we assume that for any g ∈ G, x ∈ Bg,

NXg/X,x ∩ NB/X,x ⊂ N s
B/X,x.(5.45)

Observe that we did not make this assumption in Section 5.3.
Finally note that, in the sequel, TX, TB and NB/X will be considered

as ordinary vector bundles, i.e. as even vector bundles. In other words, any
possible Z2-grading will be forgotten.

Now we establish a result, which refines results of Bunke [Bu1, 2].

Theorem 5.11. For z ∈ R, with |z| small enough,

Tch,g,K

(
gTX ,∇F , gF

)
(5.46)

− (−1)ind(f) Tch,g,K

(
gTB,∇F |B⊗o(Nu

B/X), gF |B⊗o(Nu
B/X)

)
+ log

( | |λG/G0 (H·(X,F ))

| |λG/G0 (E1)

)
(g)

= −
∫

Xg

ch◦
g

(
∇F , gF

)
ψK

(
∇f |Xg

, TXg,∇TXg

)
+

∫
Bg

(−1)ind(f) TrF |B⊗o(Nu
B/X) [g] eK (TBg) 0Jg,K

(
NB/X

)
.

Equivalently, for z ∈ R with |z| small enough,

Tch,g,K

(
gTX ,∇F , gF

)
(5.47)

− (−1)ind(f) Tch,g,K

(
gTB,∇F |B⊗o(Nu

B/X), gF |B⊗o(Nu
B/X)

)
+ log

( | |λG/G0 (H·(X,F ))

| |λG/G0 (E1)

)
(g)
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= −
∫

Xg

ch◦
g

(
∇F , gF

)
ψK

(
∇f |Xg

, TXg,∇TXg

)
+

∫
Xg

TrF [g] eK (TXg) 0Jg,K (TX)

−
∫

Bg

(−1)ind(f) TrF |B⊗o(Nu
B/X) [g] eK (TBg) 0Jg,K (TB) .

Proof. First we will prove (5.46) with z = 0. Note that in the right-
hand side of (5.46) , since the degree of ψ

(
∇f |Xg

, TXg,∇TXg

)
is equal to

dimXg − 1, we may as well replace ch◦
g

(
∇F , gF

)
by Tr

[
ω

(
∇F , gF

)
/2

]
. By

using the anomaly formulas in Theorems 1.9 and 2.19, and also the equation of
currents (3.34), one verifies easily that given g ∈ G, we only need to establish
(5.46) with z = 0 for one given set of g-invariant metrics gTX , gF .

Assume that g ∈ G is of finite order. Let Γ ⊂ G be the finite group
generated by g. By use of a result of Ilman [I] as in [BZ2, Th. 1.10], there is a
Γ-invariant Morse function f ′ : B → R such that if B′ ⊂ B is the finite set of
critical points of f ′, if x ∈ B′

g, g acts as the identity on T u
x B′.

Using geodesic coordinates, for ε > 0 small enough, we can identify an ε-
neighbourhood of B in NB/X to a tubular neighbourhood Uε of B in X, and this
G-equivariantly. Let π be the obvious projection Uε → B. Let γ : R → [0, 1]
be such that

γ (s) = 1 if |s| ≤ ε/4,(5.48)

= 0 if |s| ≥ ε/2.

Then the function Z ∈ NB/X → γ (|Z|) can be considered as a smooth function
on X with support in Uε/2. For λ ∈ R∗

+, put

fλ = f + λγ (|Z|) f ′ ◦ π.(5.49)

One verifies easily that for |λ| small enough, fλ is a Γ-invariant Morse function
on M , whose critical set coincides with B′. We fix such a λ, and set f = fλ.
By using an obvious notation, if x ∈ B′, we have

TxXs = TxBs ⊕ N s
B/X,x, TxXu = TxBu ⊕ Nu

B/X,x.(5.50)

If x ∈ B′, let ou
x be the orientation line of TxXu.

The restriction to B of the 1-form df vanishes on NB/X . It follows from
our assumptions that if g′ ∈ Γ, x ∈ B′

g′ , then g′ acts as the identity on T u
x X.

By [BZ2, Th. 1.10], there exists a Γ-invariant metric g′TB on TB, which
coincides with gTB near B′, which is such that Y ′ = −∇f ′| ∈ TB verifies the
Smale transversality conditions. We extend the metric g′TB to a Γ-invariant
metric g′TX on TX, such that NB/X is still orthogonal to TB, and the restric-
tion of g′TX to NB/X coincides with gNB/X . In particular the splitting (5.33)
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of NB/X is still orthogonal with respect to g′TX . Let ∇f be the gradient of f

with respect to g′TX . Put
Y = −∇f.(5.51)

It follows from the above that Y |B = Y ′, so that Y |B ∈ TB. Also one verifies
that it is possible to choose g′TX so that Y f is negative on X \ B.

Take p ∈ N, and let x, x′ ∈ Bp. We claim that the stable and unstable
cells for Y in X which are centered at x and x′ intersect transversally. This
is so because since f is constant on Bp, and since Y f < 0 on X \ B, the
intersection can only occur on B. Since the corresponding stable and unstable
cells for Y ′ are transverse in B, we have established our claim.

By proceeding as in [Mi, Ths. 4.4 and 5.2] and in [BZ2, Lemma 1.7 and
Th. 1.8], we can modify the metric g′TX away from B so that Y itself verifies
the Smale transversality conditions. To establish (5.46) with z = 0, we may as
well replace the G-invariant metric gTX by the Γ-invariant metric g′TX .

Let (C · (W u, F ) , ∂) be the Thom-Smale complex associated to the vector
field Y as in Section 5.3. Then Γ acts naturally on (C · (W u, F ) , ∂). As we saw
in Section 5.3, the chain map ∂ maps Fx ⊗ ou

x into a direct sum of Fy ⊗ ou
y ,

where x connects to y by an integral curve of −Y . Since Y f ≤ 0, it follows
that f (y) ≥ f (x).

Put
F pC · (W ′u, F

)
=

⊕
x∈B′

f(x)≥p−1/2

Fx ⊗ ou
x.(5.52)

It follows from the above considerations that F is a filtration on (C · (W ′u, F ) , ∂).
Let (E′

r, d
′
r) be the corresponding spectral sequence.

Recall that Y |B ∈ TB. Then (E′
0, d

′
0) is just the Thom-Smale complex(

C ·
(
W ′u, F |B ⊗ o

(
Nu

B/X

))
, ∂

)
of the connected components of B, which is associated to the gradient field Y ′,
so that

E
′(p,q)
0 = Cp+q−ind(f)

(
W ′u|Bp

, F |Bp
⊗ o

(
Nu

Bp/X

))
.(5.53)

By (5.35) and (5.53), we get
E1 	 E′

1.(5.54)

Recall that by a result of Laudenbach [BZ1, Appendix], if near B′ the
metric g′TX is flat in coordinates where f can be written quadratically, there is
a canonical quasi-isomorphism P∞ from

(
Ω· (X, F ) , dX

)
into (C · (W ′u, F ) , ∂).

The map P∞ is a map of Z-graded filtered complexes. By (5.54), a classical
result of homological algebra [CaE, Ch. XIII, Th. 3.2] shows that (5.54) extends
to a canonical isomorphism,

Er 	 E′
r for r ≥ 1.(5.55)
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We can always perturb the metric g′TX in a small way so that the above
assumption holds. Since the complex (C · (W u, F ) , ∂) is unchanged, (5.55)
holds for any g ∈ G.

We define λΓ (F ) = λΓ (H ·(X, F )) as in (1.20). Also λΓ (E1) can be de-
fined as in (5.40). We will now apply [BZ2, Th. 0.2] to the manifolds X and B.
This is just Theorem 5.8 with K = 0. Observe that in (5.24), TX|B is consid-
ered as a Z2-graded vector bundle, the Z2-grading being defined as in (5.23).
However, observe that by (5.9),

0J (0, 0) = 0.(5.56)

Moreover, by our fundamental assumption, if x ∈ B′
g, then TxXu is fixed by g.

Therefore,
0Jg (T u

x X) = 0.(5.57)

Equivalently, to evaluate 0Jg (TxX), we may as well forget about the
Z2-grading of TxX; i.e., we can consider TxX as trivially Z2-graded. The
same considerations apply to TxB.

Thus, by using (5.24), we obtain

log

‖ ‖λΓ(F )

‖ ‖∇f
λΓ(F )

 (g) =−
∫

Xg

ch◦
g

(
∇F , gF

)
ψ

(
∇f |Xg

, TXg,∇TXg

)
(5.58)

+
∑

x∈B′
g

(−1)ind(f)(x) TrFx⊗ou
x [g] 0Jg (TxX) ,

log

‖ ‖λΓ(E1)

‖ ‖∇f ′

λΓ(E1)

 (g) = −
∫

Bg

(−1)ind(f) Tro(Nu
B/X) [g] ch◦

g

(
∇F , gF

)
ψ

(
∇f ′|Bg

, TBg,∇TBg

)
+

∑
x∈B′

g

(−1)ind(f)(x) TrFx⊗ou
x [g] 0Jg (TxB) .

By (5.39), we have a canonical isomorphism,

λΓ (F ) 	 λΓ (E1) .(5.59)

We claim that under this isomorphism,

‖ ‖∇f
λΓ(F ) = ‖ ‖∇f ′

λΓ(E1)
.(5.60)

Note that equation (5.60) is a result on finite-dimensional filtered complexes.
A proof of (5.59) was given in [BL, §2] in a more difficult context. The proof
given in [BL] refers to complex manifolds, but can be used as such by taking
the manifold X in [BL] to be a point.
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From (1.24), (1.43), (2.119) and (5.58), one deduces easily that, by still
considering NB/X as trivially Z2-graded,

(5.61)

Tch,g,0

(
gTX ,∇F , gF

)
− (−1)ind(f) Tch,g,0

(
gTB,∇F |B⊗o(Nu

B/X), gF |B⊗o(Nu
B/X)

)
+ log

( | |λΓ(H·(X,F ))

| |λΓ(E1)

)
(g)

= −
∫

Xg

ch◦
g

(
∇F , gF

)
ψ

(
∇f |Xg

, TXg,∇TXg

)
+

∫
Bg

(−1)ind(f) Tro(Nu
B/X) [g] ch◦

g

(
∇F , gF

)
ψ

(
∇f ′|Bg

, TBg,∇TBg

)
+

∑
x∈B′

g

(−1)indf(x) TrFx⊗ou
x [g] 0Jg

(
NB/X,x

)
.

The following identities, which are valid respectively on B′
g and Bg, are the

obvious analogues of (5.32),

(−1)ind(f ′) Tro(TxBu) [g] = (−1)ind(f ′|Bg) ,(5.62)

(−1)ind(f) Tro(Nu
B/X) [g] = (−1)ind(f |Xg) .

Now, by proceeding as in [B8, proof of Theorem 3.2], and using (5.62), we get

−
∫

Xg

ch◦
g

(
∇F , gF

)
ψ

(
∇f |Xg

, TXg,∇TXg

)
(5.63)

+
∫

Bg

(−1)ind(f) Tro(Nu
B/X) [g] ch◦

g

(
∇F , gF

)
ψ

(
∇f ′|Bg

, TBg,∇TBg

)
=−

∫
Xg

ch◦
g

(
∇F , gF

)
ψ

(
∇f |Xg

, TXg,∇TXg

)
.

Using (5.62) again, we find that∑
x∈B′

g

(−1)ind(f)(x) TrFx⊗ou
x [g] 0Jg

(
NB/X,x

)
(5.64)

=
∑

x∈B′
g

(−1)ind(f ′|Bg)(x) (−1)ind(f) TrFx⊗o(Nu
B/X,x) [g] 0Jg

(
NB/X,x

)
.

By (5.64), we obtain∑
x∈B′

g

(−1)ind (f)(x) TrFx⊗ou
x [g] 0Jg

(
NB/X,x

)
(5.65)

=
∫

Bg

(−1)ind(f) TrF |B⊗o(Nu
B/X) [g] e (TBg) 0Jg

(
NB/X

)
.
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By (5.61)–(5.65), we get (5.46) when g is of finite order. More generally,
let g ∈ G, and let G′ ⊂ G be the closed Lie subgroup generated by g. Then
G′ keeps Xg fixed. Also G′ is an extension of a torus by a finite group. In
particular, elements of finite order are dense in G′. If g′ ∈ G′ of finite order is
close enough to g in G, its fixed point set Xg′ coincides with Xg. Now (5.46)
holds for g′. Also one verifies easily that since Xg′ = Xg, as g′ → g, both sides
of (5.46) converge to the corresponding expression with g′ = g. Therefore we
have established (5.46) for all g ∈ G when z = 0.

Now we will prove (5.46) for z ∈ R, with |z| small enough. By (5.46), we
may as well assume that z ∈ R∗. If |z| is small enough, then XgeK = Xg,K =
Xg,K0 . Let i : Xg,K → Xg be the obvious embedding. Using Theorem 5.1,
(5.46) applied to geK , and also (5.26), we get

(5.66)

Tch,g,K

(
gTX ,∇F , gF

)
− (−1)ind(f) Tch,g,K

(
gTB,∇F |B⊗o(Nu

B/X), gF |B⊗o(Nu
B/X)

)
+ log

( | |λG/G0 (H·(X,F ))

| |λG/G0 (E1)

)
(g)

= −
∫

Xg,K

ch◦
g

(
∇F , gF

)
ψ

(
∇f |Xg,K

, TXg,K ,∇TXg,K

)
+

∫
Xg

eK

(
TXg,∇TXg

)
FK

(
TXg, g

TXg

)
ch◦

g

(
∇F , gF

)
−

∫
Bg

(−1)ind(f) Tro(Nu
B/X) [g] eK

(
TBg,∇TBg

)
FK

(
TBg, g

Bg

)
ch◦

g

(
∇F , gF

)
+ TrF |Xg [g]VK (Xg) − (−1)ind(f) TrF |B⊗o(Nu

B/X)|Bg [g]VK (Bg)

+
∫

Bg,K

(−1)ind(f) TrF |B⊗o(Nu
B/X) [g] e (TBg,K) 0JgeK

(
NB/X

)
.

Using Theorems 3.15, 3.21, (5.29) and (5.62) and proceeding as in Remark
5.9, we obtain

(5.67)

−
∫

Xg,K

ch◦
g

(
∇F , gF

)
ψ

(
∇f |Xg,K

, TXg,K ,∇TXg,K

)
+

∫
Xg

eK

(
TXg,∇TXg

)
FK

(
TXg, g

TXg

)
ch◦

g

(
∇F , gF

)
−

∫
Bg

(−1)ind(f) Tro(Nu
B/X) [g] eK

(
TBg,∇TBg

)
FK

(
TBg, g

Bg

)
ch◦

g

(
∇F , gF

)
= −

∫
Xg

ch◦
g

(
∇F , gF

)
ψK

(
∇f |Xg

, TXg,∇TXg

)
.
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Let Ñ be the subbundle of NBg/Xg
|Bg,K

where K acts as an invertible
operator. Using our main assumption, we find, using the notation in (4.30),
with respect to Xg, that Ñ = Ñ s; i.e., Ñ is trivially Z2-graded. By applying
Theorem 4.10 to Xg and using (5.62), we get

TrF [g]VK (Xg) − (−1)ind(f) TrF |B⊗o(Nu
B/X) [g]VK (Bg)(5.68)

= −
∫

Bg,K

(−1)ind(f) TrF |B⊗o(Nu
B/X) [g] e (TBg,K)JK

(
Ñ

)
.

Using (5.7) and (5.8) in Theorem 5.5, on Bg,K , we obtain

0JgeK

(
NB/X

)
− JK

(
Ñ

)
= 0Jg,K

(
NB/X

)
.(5.69)

By (5.66)–(5.69), we see that

Tch,g,K

(
gTX ,∇F , gF

)
(5.70)

− (−1)ind(f) Tch,g,K

(
gTB,∇F |B⊗o(Nu

B/X), gF |B⊗o(Nu
B/X)

)
+ log

( | |λG/G0 (H·(X,F ))

| |λG/G0 (E1)

)
(g)

= −
∫

Xg

ch◦
g

(
∇F , gF

)
ψK

(
∇f |Xg

, TXg,∇TXg

)
+

∫
Bg,K

(−1)ind(f) TrF |B⊗o(Nu
B/X) [g] e (TBg,K) 0Jg,K

(
NB/X

)
.

Finally, by using the localization formulas in equivariant cohomology of [BeV],
we get ∫

Bg,K

(−1)ind(f) TrF |B⊗o(Nu
B/X) [g] e (TBg,K)0 Jg,K

(
NB/X

)
(5.71)

=
∫

Bg

(−1)ind(f) TrF |B⊗o(Nu
B/X) [g] eK (TBg) 0Jg,K

(
NB/X

)
.

By (5.70) and (5.71), we get (5.46).
Also observe that

0Jg,K

(
NB/X

)
= 0Jg,K (TX|B) − 0Jg,K (TB) .(5.72)

Finally, using (3.46) and (5.62), we get∫
Bg

(−1)ind(f) TrF |B⊗o(Nu
B/X) [g] eK (TBg) 0Jg,K (TX)(5.73)

=
∫

Xg

TrF [g] eK (TXg) 0Jg,K (TX) .

By (5.46), (5.72), (5.73), we get (5.47). The proof of our theorem is completed.
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Remark 5.12. Inspection of the proof shows that in (5.46), the vector
bundle NB/X could be treated as well as a Z2-graded vector bundle. The fact
is that here, Nu

B/X does not contribute to the integral in the right-hand side
in (5.46).

Observe that a special case of (5.46) in Theorem 5.11 was already estab-
lished in infinitesimal form in [BGo2, Th. 16.3], in the context of unit sphere
bundles.

If one subtracts (5.46) from (5.46) at K = 0 , we get an identity in which
the term

log

( | |λG/G0 (H·(X,F ))

| |λG/G0 (E1)

)
(g)

has disappeared. One can give a direct proof of such an identity, which is valid
if f is an arbitrary Morse-Bott function, which does not necessarily verify
the assumptions given after (5.33). To prove this more general statement,
one needs to combine the techniques of [BL] with the techniques of [BZ1, 2],
[BGo2]. Needless to say, for this more general case, NB/X has to be treated as
a Z2-graded vector bundle.

If n (K) is a function z (g) → C, put

n (K)(>0) = n (K) − n (0) .(5.74)

Let us now suppose the assumptions of Theorem 5.11 to be in force, i.e. that
(5.45) holds. Assume temporarily that gF is flat. By (5.47), we get[

Tch,g,K

(
gTX ,∇F , gF

)
−

∫
Xg

TrF [g] eK (TXg) 0Jg,K (TXg)

](>0)

(5.75)

=

[
(−1)ind(f) Tch,g,K

(
gTB,∇F |B⊗o(Nu

B/X), gF |B⊗o(Nu
B/X)

)

−
∫

Bg

(−1)ind(f) TrF |B⊗o(Nu
B/X) [g] eK (TBg) 0Jg,K (TBg)

](>0)

.

Now in [Bu2], Bunke considers the case where X is odd-dimensional and
oriented. Assume that X is a G-space of the G-homotopy type of a G − CW
complex in the sense of Lück [Lü]. In [Bu2], the author proves that if g = 1,

the germ of the analytic K ∈ g → Tch,1,K

(
gTX ,∇F, gF

)(>0)
can be expressed

as the sum of universal contributions of strata G/H defining the G − CW
structure, independently of the way the strata are embedded in X. Note that
the G/H should be thought of as being the critical manifold of a G-invariant
Morse-Bott function verifying the assumptions of Theorem 5.11. Also, in [Bu2],
Bunke does not use the ch normalization of infinitesimal torsion, but instead
Lott’s normalization [Lo].



EQUIVARIANT DE RAHM TORSIONS 147

Equation (5.75), which is valid in full generality, explains Bunke’s result
in [Bu2]. Indeed if X is odd-dimensional, the integral in the left-hand side
of (5.75) vanishes identically. As to the right-hand side, it is a sum of terms
correcting the infinitesimal torsion of the strata by the integrals[∫

Bg

(−1)ind(f) TrF |B⊗o(Nu
B/X) [g] eK (TBg) 0Jg,K (TBg)

](>0)

.

In [Bu2, Remark, p. 401], Bunke observes that his main result is not valid
in even dimensions. Equation (5.75) again explains why this is so, since the
integral in the left-hand side of (5.75) no longer vanishes. Equation (5.75) was
used in [BGo2, Ch. 16] to evaluate the torsion of odd-dimensional unit sphere
bundles.

In a previous paper, Bunke [Bu1] has established a corresponding result for
the equivariant Reidemeister torsion in the sense of Lott-Rothenberg [LoRo],
valid when gF is flat. By [LoRo], [BZ2, Th. 0.1], equation (5.47) refines this
result of Bunke as well. In fact, by (5.58), when g is of finite order, the
correction to Tch,g,0

(
gTX ,∇F , gF

)
in the left-hand side (5.75) is exactly the

one needed to recover the equivariant Reidemeister torsion.

5.5. An extension of Theorem 5.1 to equivariant analytic torsion forms.
We now make the same assumptions as in Section 3.7. In particular π : M → S

is a submersion with compact fibre X, so that G acts on M and preserves the
fibres X. Let THM ⊂ TM be a horizontal bundle as in (3.50).

Let F be a complex vector bundle on M , let ∇F be a flat connection on F .
As before, we assume that the action of G lifts to F , and that the fundamental
assumption in (2.21) still holds. Let gF be a G-invariant Hermitian metric
on F .

Let H ·(X, F ) be the fibrewise cohomology of X with coefficients in F |X .
Let g

H·(X,F )
L2

be the L2 metric on H ·(X, F ) one constructs via fibrewise Hodge
theory as in Section 1.3 on H ·(X, F )

Take g ∈ G. As explained in Section 2.5, in [BGo2, §3.17], analytic torsion
forms Th,g

(
THM, gTX ,∇F , gF

)
on S were defined. These are even forms on S,

which are such that

dTch,g

(
THM, gTX ,∇F , gF

)
=

∫
Xg

e
(
TXg,∇TXg

)
ch◦

g

(
∇F , gF

)
(5.76)

−ch◦
g

(
∇H·(X,F ), g

H·(X,F )
L2

)
.

Take now g ∈ G, K ∈ z (g). For |K| small enough, by proceeding as in
[BGo2, §3] and in Section 2.5, we construct even forms

Th,g,K

(
THM, gTX ,∇F , gF

)
as in (2.90), which depend analytically on K ∈ z (g) near K = 0.
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Then we combine the two definitions of the operator Q in (2.92) and in
(2.117). Namely, if f (K) is an even form on S which is analytic in K ∈ g, we
set

Qf (K) =
∫ 1

0
ψ4s(1−s)f (4s (1 − s)K) ds.(5.77)

As in [BGo2, Def. 3.46], and in (2.94), we set

Tch,g,K

(
THM, gTX ,∇F , gF

)
= QTh,g,K

(
THM, gTX ,∇F , gF

)
.(5.78)

We can then prove that the obvious analogue of [BGo2, Th. 3.47] holds.
Namely,

dTch,g,K

(
THM, gTX ,∇F , gF

)
(5.79)

=
∫

Xg

eK

(
TXg,∇TXg

)
ch◦

g

(
∇F , gF

)
− ch◦

g

(
∇H·(X,F ), g

H·(X,F )
L2

)
.

Let PS be the vector space of smooth forms on S, let PS,0 ⊂ PS be the
subspace of exact smooth forms on S.

We state, without a proof, the following extension of Theorem 5.1 in
arbitrary degree. Although we have chosen not to prove this result, we hope
that inspection of [BGo2] and of the present paper gives all the necessary tools
for proceeding to establish it.

Theorem 5.13. The following identity holds:

Tch,g,K

(
THM, gTX ,∇F , gF

)
− Tch,geK ,0

(
THM, gTX ,∇F , gF

)
(5.80)

=
∫

Xg

eK

(
TXg,∇TXg

)
FK

(
TXg,∇TXg

)
ch◦

g

(
∇F , gF

)
+ TrF |Xg [g]VK (Mg/S) in PS/PS,0.

Remark 5.14. By proceeding as in Section 5.3, one can check easily that
Theorem 5.80 is still compatible with the results of [BGo2, §7], use now of
Theorem 4.10 in arbitrary degree.

We claim that Theorem 5.13 is compatible with the known functoriality
results on the behaviour of analytic torsion forms under composition of two
projections. Such a result has been obtained by Ma [Ma] for the ordinary
analytic torsion forms. However the techniques of Ma can be applied also to
the equivariant analytic torsion forms, and to their infinitesimal version.

On Pg, g acts along the fibres Z of p. Let χg (Z, F |Z) be the Lefschetz
number of the fibre Z, which was defined in (1.13). Then by (1.14),

χg (Z, F ) = TrF |Mg [g]χ (Xg) .(5.81)

Using (5.81), Theorem 4.25 is ensures the compatibility of Theorem 5.13 to
the results of [Ma].
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5.6. The asymptotics of the equivariant torsion forms. We make the same
assumptions as in Section 5.5. By Theorems 3.5, 3.37 and 5.13, we find that
for z ∈ R∗, and |z| small enough,

Tch,g,zK0

(
THM, gTX ,∇F , gF

)
− Tch,gezK0 ,0

(
THM, gTX ,∇F , gF

)
(5.82)

= ψ1/z

∫
Xg

eK0

(
TXg,∇TXg

)
FK0

(
TXg,∇TXg

) 1√
z
ψzch◦

g

(
∇F , gF

)
+ TrF |Xg [g]

1
|z|ψ1/zVK0 (Mg/S) in PS/PS,0.

Equation (5.82) is interesting. In fact, as z → 0, Tch,g,zK0

(
THM, gTX ,∇F , gF

)
converges to Tch,g,0

(
THM, gTX ,∇F , gF

)
. Therefore (5.82) gives us the asymp-

totic expansion of Tch,gezK0 ,0

(
THM, gTX ,∇F , gF

)
as z ∈ R∗, z → 0.

In particular, if S is a point, i.e. if the assumptions of Section 5.1 are
verified, as z → 0,

Tch,gezK0 ,0

(
gTX ,∇F , gF

)
(5.83)

= − 1
|z|TrF |Xg [g]VK0 (Xg)

−
∫

Xg

eK0

(
TXg,∇TXg

)
FK0

(
TXg,∇TXg

)
Tr

ω
(
∇F , gF

)
2


+ Tch,g,0

(
gTX ,∇F , gF

)
+ O (z) .

Also by (2.75), (2.76) and by Theorem 3.15,

∫
Xg

eK0

(
TXg,∇TXg

)
FK0

(
TXg,∇TXg

)
Tr

ω
(
∇F , gF

)
2

(5.84)

=
∫

Xg

ψK0

(
K

Xg

0 , TXg,∇TXg

)
Tr

ω
(
∇F , gF

)
2

 .

Using Remark 3.14, we get

∫
Xg

ψK0

(
K

Xg

0 , TXg,∇TXg

)
Tr

ω
(
∇F , gF

)
2

(5.85)

=
∫

Xg

ψ
(
K

Xg

0 , TXg,∇TXg

)
Tr

ω
(
∇F , gF

)
2

 .
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By (5.83)–(5.85), we find that as z → 0,

(5.86)

Tch,gezK0 ,0

(
gTX ,∇F , gF

)
=− 1

|z|TrF |Xg [g]VK0 (Xg)

−
∫

Xg

ψ
(
K

Xg

0 , TXg,∇TXg

)
Tr

ω
(
∇F , gF

)
2


+Tch,g,0

(
gTX ,∇F , gF

)
+ O (z) .

Incidentally, note that if Xg is even-dimensional, VK0 (Xg) = 0, and that if Xg

is odd-dimensional, the integral in the right-hand side of (5.87) vanishes.

6. A fundamental closed form

In this section, we construct a closed form κg,K on ]0, 1[×R∗
+ × R. In

Section 7, by integrating this form on the boundary of a well chosen three-
dimensional domain, we will establish Theorem 5.1. Also we prove here an
important Lichnerowicz formula.

This section is organized as follows. In 6.1 and 6.2, using the local families
index formalism of [B3], we obtain a closed Chern character form κg,K on
]0, 1[×R∗

+ × R . This form is expressed in terms of a differential operator L.
In Section 6.3, we give a fundamental Lichnerowicz formula for LK + L. In
Section 6.4, we introduce a simple rescaling of the variable t ∈ R∗

+.
We make the same assumptions and we use the same notation as in Sec-

tion 5. Also, in the sequel, we fix g ∈ G, and K ∈ z (g).

6.1. A fundamental superconnection. Let M be the set of smooth G-
invariant metrics on TX. Set

M̃ = ]0, 1[×M× R × X, S̃ = ]0, 1[×M× R.(6.1)

The generic point of S̃ will be denoted
(
s, gTX , u

)
. Let q : M̃ → S̃ be the

obvious projection. Clearly, the vector bundle TX is equipped with the tau-
tological G-invariant metric g̃TX . Also, we fix a G-invariant metric gF on F .

Then Ω· (X, F ) can be considered as a trivial vector bundle on S̃. It is
equipped with the trivial connection ∇Ω·(X,F ) over S. Also the operator dX

acts fibrewise on Ω· (X, F ).

Definition 6.1. Set

Ã′ = dX − uiKX + ∇Ω·(X,F ).(6.2)

Then Ã′ is a superconnection on Ω· (X, F ).
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Let gΩ·(X,F ) be the fibrewise Hermitian product on Ω· (X, F ) defined in
(1.15). Let dX,∗ be the fibrewise adjoint of dX with respect to gΩ·(X,F ). Set

ġTX =
(
gTX

)−1
dMgTX .(6.3)

Then ġTX is a 1-form on M with values in self-adjoint sections of End (TX).
Also ġTX acts as a derivation on Λ· (T ∗X). If e1, . . . , en is an orthonormal
basis of TX with respect to gTX , the action ġTX |Λ·(T ∗X) of ġTX on Λ· (T ∗X)
is given by

ġTX |Λ·(T ∗X) = −
〈
ġTXei, ej

〉
ei ∧ iej

.(6.4)

Set
ġΩ·(X,F ) =

(
gΩ·(X,F )

)−1
dMgΩ·(X,F ).(6.5)

One verifies easily that

ġΩ·(X,F ) = ġTX |Λ·(T ∗X) +
1
2
Tr

(
ġTX

)
.(6.6)

Equivalently,

ġΩ·(X,F ) = −1
2

〈
ġTXei, ej

〉
c (ei) ĉ (ej) .(6.7)

Then the adjoint connection ∇Ω·(X,F ),∗ to the connection ∇Ω·(X,F ) is given by

∇Ω·(X,F ),∗ = ∇Ω·(X,F ) + ġΩ·(X,F ).(6.8)

Recall that TX and T ∗X are identified by the metric gTX . Let Ã′′ be the
superconnection on Ω· (X, F ) given by

Ã′′ = dX,∗ + uKX′ ∧ +∇Ω·(X,F ),∗.(6.9)

Definition 6.2. Let Ã be the superconnection on Ω· (X, F ),

Ã = (1 − s) Ã′ + sÃ′′.(6.10)

Recall that the operators AK , BK were defined in (2.95). The curvature
Ã2 of Ã is a section of

(
Λ·

(
T ∗S̃

)
⊗̂End (Ω· (X, F ))

)even
.

Theorem 6.3. The following identity holds:

Ã2 =−uLK − 4s (1 − s)
(
BuK + ġΩ·(X,F )/2

)2
(6.11)

+ 2ds
(
BuK + ġΩ·(X,F )/2

)
+ du

(
− (1 − s) iKX + sKX′∧

)
.

Proof. By (6.10), we get

Ã2 = (1 − s) Ã′2 + sÃ′′2 − s (1 − s)
(
Ã′′ − Ã′

)2
+ ds

(
Ã′′ − Ã′

)
.(6.12)

Using (2.96), we get

Ã′2 = −uLK − duiKX , Ã′′2 = −uLK + duKX′ ∧ .(6.13)
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Using (2.95), (6.2), (6.8) and (6.9), we also have

Ã′′ − Ã′ = 2BuK + ġΩ·(X,F ).(6.14)

By (6.12)–(6.14), we get (6.11). The proof of our theorem is completed.

Definition 6.4. Set

ηg,K = Trs
[
g exp

(
−LK − Ã2

)]
.(6.15)

Then ηg,K is an even form on S̃. Let η
(0)
g,K be its component of degree 0.

Theorem 6.5. The form ηg,K is closed on S̃. Moreover

η
(0)
g,K = χg (F ) .(6.16)

Proof. The first part of our Theorem follows from [B3, Th. 2.6]. Also, by
(2.45), (2.49), (2.105) and (6.11), we get (6.16).

6.2. Scaling the metric gTX . Set

M = ]0, 1[×R∗
+ × R × X, S = ]0, 1[×R∗

+ × R.(6.17)

Let π : M → S be the obvious projection. In the sequel, (s, t, u) denotes the
generic element of S.

Now we fix once and for all G-invariant metrics gTX , gF on TX, F . As in
(1.35), set

gTX
t =

gTX

t
.(6.18)

Let i : R∗
+ → M be the embedding t → gTX

t . Then i extends to the obvious
embeddings M → M̃, S → S̃.

Set

κg,K = i∗ηg,K .(6.19)

By Theorem 6.5, κg,K is an even closed form on S, and also

κ
(0)
g,K = χg (F ) .(6.20)

Let e1, . . . , en be an orthonormal basis of TX. Recall that N is the number
operator of Λ· (T ∗X) ⊗̂F . Set

N = N − n

2
.(6.21)
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One verifies easily that

N =
1
2
c (ei) ĉ (ei) .(6.22)

Definition 6.6. Put

L = tN/2i∗Ã2t−N/2.(6.23)

Then

κg,K = Trs [g exp (−LK − L)] .(6.24)

Proposition 6.7. The following identity holds:

L=−uLK − 4s (1 − s) t

(
BuK/t +

Ndt

2t3/2

)2

(6.25)

+2ds
√

t

(
BuK/t +

Ndt

2t3/2

)
+

du√
t

(
sKX′ ∧ − (1 − s) iKX

)
.

Proof. Observe that

i∗ġTX = −dt

t
.(6.26)

By (6.7), (6.22), (6.26),

i∗ġΩ·(X,F ) =
Ndt

t
.(6.27)

Our proposition is now a trivial consequence of Theorem 6.3.

6.3. A Lichnerowicz formula. In the sequel, e1, . . . , en denotes a locally
defined smooth orthonormal basis of TX. We use the notation

∇Λ·(T ∗X)⊗̂F,u,2
ei

=
n∑
1

∇Λ·(T ∗X)⊗̂F,u,2
ei

−∇Λ·(T ∗X)⊗̂F,u∑n

1
∇T X

ei
ei

.(6.28)

The operator in (6.28) does not depend on the choice of the smooth basis. A
similar notation will be used for other connections than ∇Λ·(T ∗X)⊗̂F,u.

Let H be the scalar curvature of X. Put

c
(
ω

(
∇F , gF

))
= c (ei)ω

(
∇F , gF

)
(ei) ,(6.29)

ĉ
(
ω

(
∇F , gF

))
= ĉ (ei)ω

(
∇F , gF

)
(ei) ,

∣∣∣ω (
∇F , gF

)∣∣∣2 =
n∑

i=1

(
ω

(
∇F , gF

)
(ei)

)2
.
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Theorem 6.8. The following identity holds:

(6.30)

LK + L=−s (1 − s) t

(
∇Λ·(T ∗X)⊗̂F,u

ei
− 1

t

(
u +

1 − u

2s (1 − s)

) 〈
KX , ei

〉

+ c (ei)
dt/t

2
√

t
− ĉ (ei)

ds

2s (1 − s)
√

t

)2

+
1 − u

4s (1 − s) t

(
1 − u (2s − 1)2

) ∣∣∣KX
∣∣∣2 +

s (1 − s) t

4
H

+
1 − u

2
√

t

(
−c

(
KX

) dt

t
+ ĉ

(
KX

) ds

s (1 − s)

)
−c

(
ω

(
∇F , gF

)) √
tds

2
+ ĉ

(
ω

(
∇F , gF

)) s (1 − s)
√

tdt

2t

−
(
c
(
KX

)
+ (2s − 1) ĉ

(
KX

)) du

2
√

t

+
s (1 − s) t

8

〈
ek, R

TX (ei, ej) el

〉
c (ei) c (ej) ĉ (ek) ĉ (el)

+
1
4

〈
∇TX

ei
KX , ej

〉
((u − 1) c (ei) c (ej)

+
(
1 − u (2s − 1)2

)
ĉ (ei) ĉ (ej)

)
+4s (1 − s) t

(
1
32

(−c (ei) c (ej) + ĉ (ei) ĉ (ej))ω2
(
∇F , gF

)
(ei, ej)

+
1
16

∣∣∣ω (
∇F , gF

)∣∣∣2 − 1
8
c (ei) ĉ (ej)∇F,u

ei
ω

(
∇F , gF

)
(ej)

)
.

Proof. By (1.32) and (2.100), we get

BK = −1
2
ĉ (ei)

(
∇Λ·(T ∗X)⊗̂F,u

ei
−

〈
KX , ei

〉)
+

1
4
c
(
ω

(
∇F , gF

))
.(6.31)

Using (1.3), (1.30), (6.31) and Lichnerowicz’s formula, we get

−B2
K = −1

4

(
∇Λ·(T ∗X)⊗̂F,u

ei
−

〈
KX , ei

〉)2
+

H

16
(6.32)

+
1
32

〈
ek, R

TX (ei, ej) el

〉
c (ei) c (ej) ĉ (ek) ĉ (el)

+
1
4

〈
∇TX

ei
KX , ej

〉
ĉ (ei) ĉ (ej)

+
1
32

(−c (ei) c (ej) + ĉ (ei) ĉ (ej))ω2
(
∇F , gF

)
(ei, ej)

+
1
16

∣∣∣ω (
∇F , gF

)∣∣∣2
+

1
8
ĉ (ei) c (ej)∇Λ·(T ∗X)⊗̂F,u

ei
ω

(
∇F , gF

)
(ej) .
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By (1.31),

∇Λ·(T ∗X)⊗̂F,u
ei

ω
(
∇F , gF

)
(ej) = ∇Λ·(T ∗X)⊗̂F,u

ej
ω

(
∇F , gF

)
(ei) .(6.33)

By (1.3), (2.3), (2.24), (6.32), (6.33), we obtain

(6.34)

(1 − u) LK − 4s (1 − s) tB2
uK/t

= −s (1 − s) t

(
∇Λ·(T ∗X)⊗̂F,u

ei
− 1

t

(
u +

1 − u

2s (1 − s)

) 〈
KX , ei

〉)2

+
s (1 − s)

t

((
u +

1 − u

2s (1 − s)

)2

− u2

) ∣∣∣KX
∣∣∣2 +

s (1 − s) t

4
H

+
s (1 − s) t

8

〈
ek, R

TX (ei, ej) el

〉
c (ei) c (ej) ĉ (ek) ĉ (el)

+
1
4

〈
∇TX

ei
KX , ej

〉 (
(u − 1) c (ei) c (ej) +

(
1 − u (2s − 1)2

)
ĉ (ei) ĉ (ej)

)
+ 4s (1 − s) t

(
1
32

(−c (ei) c (ej) + ĉ (ei) ĉ (ej))ω2
(
∇F , gF

)
(ei, ej)

+
1
16

∣∣∣ω (
∇F , gF

)∣∣∣2− 1
8
c (ei) ĉ (ej)∇F,u

ei
ω

(
∇F , gF

)
(ej)

)
.

By Proposition 6.7 and by (6.34), we find that (6.30) holds in degree 0 with
respect to the Grassmann variables ds, dt, du.

Clearly,

sKX′ ∧ − (1 − s) iKX =
1
2

(
c
(
KX

)
+ (2s − 1) ĉ

(
KX

))
.(6.35)

By Proposition 6.7 and by (6.35), (6.30) holds also for the terms containing du.
By (6.31), the term of degree 1 containing ds in the right-hand side of (6.30)
is given by

ds

(
−
√

tĉ (ei)∇Λ·(T ∗X)⊗̂F,u
ei

+
1√
t

(
u +

1 − u

2s (1 − s)

)
ĉ
(
KX

)
(6.36)

− 1 − u

2s (1 − s)
√

t
ĉ
(
KX

)
+

√
t

2
c
(
ω

(
∇F , gF

)))
= 2ds

√
tBuK/t.

By Proposition 6.7 and by (6.36), (6.30) holds for the term of degree 1 con-
taining ds. Using (1.32), we find that the term of degree 1 containing dt in the
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right-hand side of (6.30) is given by

dt

(
s (1 − s)√

t
c (ei)∇Λ·(T ∗X)⊗̂F,u

ei
− s (1 − s)

t3/2

(
u +

1 − u

2s (1 − s)

)
c
(
KX

)
(6.37)

+
1 − u

2t3/2
c
(
KX

)
− s (1 − s)

2
√

t
ĉ
(
ω

(
∇F , gF

)))

= 2s (1 − s) dt

(
AX

√
t
− u

2t3/2
c
(
KX

))
.

Moreover, in the right-hand side of (6.25), the term of degree 1 containing dt

is given by

−4s (1 − s) t

[
BuK/t,

N

2t3/2
dt

]
= 2s (1 − s) dt

(
AX

√
t
− u

2t3/2
c
(
KX

))
,(6.38)

which coincides with (6.37). Therefore (6.30) also holds for this term. Fi-
nally, in the right-hand side of (6.30), the term containing dsdt is given by
c (ei) ĉ (ei) dsdt/2t = Ndsdt/t, which is equal to the corresponding term in the
right-hand side of (6.25).

The proof of our theorem is completed.

6.4. A rescaling of the t-coordinate. Set

t′ = s (1 − s) t.(6.39)

Then
dt′

t′
=

dt

t
+

ds

s
− ds

1 − s
.(6.40)

Let d be the de Rham operator acting in the s, t, u variables.

Proposition 6.9. The following identities hold :(
s

1 − s
t

)N/2

i∗ (1 − s) Ã′
(

s

1 − s
t

)−N/2

(6.41)

=
√

t′dX − (1 − s)2√
t′

uiKX + (1 − s)

(
d − N

2

(
dt′

t′
+ 2

ds

1 − s

))
,

(
s

1 − s
t

)N/2

i∗sÃ′′
(

s

1 − s
t

)−N/2

=
√

t′dX,∗ +
s2

√
t′

uKX′ ∧ +s

(
d +

N

2

(
dt′

t′
− 2

ds

s

))
.
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In particular,

(6.42)(
s

1 − s
t

)N/2

i∗Ã
(

s

1 − s
t

)−N/2

=
√

t′dX − (1 − s)2√
t′

uiKX +
√

t′dX,∗

+
s2

√
t′

uKX′ ∧ +d +
N

2

(
(2s − 1)

dt′

t′
− 4ds

)
.

Proof. Clearly,

(6.43)(
s

1 − s
t

)N/2

(1 − s)
(
dX − uiKX

) (
s

1 − s
t

)−N/2

=
√

t′dX − (1 − s)2√
t′

uiKX ,

(
s

1 − s
t

)N/2

s

(
tdX,∗ +

u

t
KX′∧

) (
s

1 − s
t

)−N/2

=
√

t′dX,∗ +
s2u

t′
KX′∧,(

s

1 − s
t

)N/2

d

(
s

1 − s
t

)−N/2

= d − N

2

(
dt′

t′
+ 2

ds

1 − s

)
.

From (6.41), (6.43), we get (6.42).

Theorem 6.10. The following identity holds:

(6.44)

LK + L = −t′
(
∇Λ·(T ∗X)⊗̂F,u

ei
− 1

t′

(
s (1 − s)u +

1 − u

2

) 〈
KX , ei

〉

+
√

s (1 − s)
2
√

t′
c (ei)

dt

t
− 1

2
√

s (1 − s) t′
ĉ (ei) ds

)2

+
1 − u

4t′

(
1 − u (2s − 1)2

) ∣∣∣KX
∣∣∣2

+
t′

4
H +

1 − u

2
√

t′

√
s (1 − s)

(
−c

(
KX

) dt

t
+ ĉ

(
KX

) ds

s (1 − s)

)
−c

(
ω

(
∇F , gF

)) √
t′ds

2
√

s (1 − s)
+ ĉ

(
ω

(
∇F , gF

)) √
s (1 − s) t′

2
dt

t

−
(
c
(
KX

)
+ (2s − 1) ĉ

(
KX

)) √
s (1 − s)

du

2
√

t′

+
t′

8

〈
ek, R

TX (ei, ej) el

〉
c (ei) c (ej) ĉ (ek) ĉ (el)

+
1
4

〈
∇TX

ei
KX , ej

〉 (
(u − 1) c (ei) c (ej) +

(
1 − u (2s − 1)2

)
ĉ (ei) ĉ (ej)

)
+4t′

(
1
32

(−c (ei) c (ej) + ĉ (ei) ĉ (ej))ω2
(
∇F , gF

)
(ei, ej)

+
1
16

∣∣∣ω (
∇F , gF

)∣∣∣2 − 1
8
c (ei) ĉ (ej)∇F,u

ei
ω

(
∇F , gF

)
(ej)

)
.
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Proof. This is a trivial consequence of Theorem 6.8.

Remark 6.11. A most remarkable aspect of formula (6.44) is that if one
makes ds = 0, the obtained formula extends by continuity at s = 0 and s = 1,
and that the terms containing dt or du then vanish identically. This fact will
play a crucial role in Section 7.

7. A proof of the comparison formula

In this section, we establish the main result result of this paper, stated
in the Theorem 5.1. The idea is to integrate the form κg,K of Section 6.2 on
an adequately chosen 2-dimensional polyhedral domain in R3, which is then
‘pushed’ to infinity. This strategy is closely related to the strategy used in [BL],
[B11], [BGo1] in the context of holomorphic torsion, and in [BZ1, 2], [BGo2]
for de Rham torsion. The main difference is that in the above references, the
polyhedron was just 1-dimensional.

This section is organized as follows. In 7.1, we show that the form κg,K

can be continued to s = 0 and s = 1. In 7.2, we construct the polyhedron Γ,
which depends on two parameters a, A with 0 < a < 1 < A < +∞, on which
the integral of κg,K vanishes identically. So we get an identity written in the
form

∑3
k=1 I0

k = 0. In 7.3, we state five intermediate results, whose proof
is delayed to Sections 8–12. In 7.4, we study the asymptotics of the I0

k as
A → +∞, a → 0, by using the above results. Finally in 7.5, we obtain an
identity, which is shown to be equivalent to Theorem 5.1.

Here, we make the same assumptions and use the same notation as in
Sections 5 and 7. Again, we fix g ∈ G and K ∈ z (g).

7.1. An extension of the form κg,K . Put

t′ = s (1 − s) t, u = 1 − t′

v
.(7.1)

In the sequel, (s, v, t′) denotes the generic element of R3. Also we give to R3

its natural orientation. Let j be the embedding of the affine hyperplanes s = 0
and s = 1 into R3.

Clearly, the form κg,K is well defined for (s, v, t′) ∈ ]0, 1[×R × R∗
+.

Theorem 7.1. The form κg,K extends to a closed smooth form on R ×
R × R∗

+. Moreover,
j∗κ(2)

g,K = 0.(7.2)

Proof. Clearly, we only need to establish our theorem for the component
of degree 2, since κ

(0)
g,K is necessarily a constant (which, by (6.20), is equal to

χg (F )).
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Figure 7.1

We first consider the component of κg,K which contains the 2-form dt′du,
i.e. which is obtained from κ

(2)
g,K by making ds = 0. By (6.40),

dt

t
=

dt′

t′
− ds

s
+

ds

1 − s
.(7.3)

Observe that in (6.44),
√

s (1 − s) is a factor of both dt/t and du. This guar-
antees that the component of κ

(2)
g,K which contains dt′du extends to a smooth

form on R × R × R∗
+, and that its restriction vanishes on s = 0 or s = 1.

Now we consider the components of κ
(2)
g,K which contain either dsdt′ or

dsdu. These components are unchanged by the rescaling

ds →
√

s (1 − s)ds, dt′ → dt′/
√

s (1 − s), du → du/
√

s (1 − s).

One verifies easily that under this rescaling, the right-hand side of (6.44) still
extends into a smooth function of its parameters.

Finally since the form κg,K is closed on its domain of definition, i.e. for
s ∈ ]0, 1[, by analyticity in the variable s, it is still closed for s ∈ R. The proof
of our theorem is completed.

7.2. An application of Stokes’s formula. Take a, A ∈ R∗
+ such that

0 < a < 1 ≤ A < +∞. Let Γ = Γa,A be the oriented polyhedron indicated in
Figure 7.1. The polyhedron Γ has five oriented faces Γ1, . . . ,Γ5. To avoid any
ambiguity, we mention that Γ1 is the face with v = A, and Γ2 the face with
t′ = v.

Set
I0
k =

∫
Γk

κg,K , 1 ≤ j ≤ 3.(7.4)
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Theorem 7.2. The following identity holds:
3∑

k=1

I0
k = 0.(7.5)

Proof. Since the form κg,K is closed,∫
Γ

κg,K = 0.(7.6)

By Theorem 7.1, for k = 4 and k = 5,∫
Γk

κg,K = 0.(7.7)

From (7.6), (7.7), we get (7.5). The proof of our theorem is completed.

In the sequel, we will make A → +∞, a → 0 in this order in the identity
(7.5), and we will ultimately obtain Theorem 5.1.

7.3. Five intermediate results. In the sequel, we fix K0 ∈ z (g). For
z ∈ R∗, put K = zK0.

If α ∈ Λ· (R3
)
, let α(0) ∈ R, αds ∈ Λ1

(
R3

)
, . . . , αdsdt′ ∈ Λ2

(
R3

)
. . . be

the real multiples of 1, ds, . . . , dsdt′ . . . such that

α = α(0) + αds + . . . + αdsdt′ + . . . .(7.8)

Similarly for 0 ≤ j ≤ 3, α(j) denotes the component of α in Λj
(
R3

)
.

For t > 0, we define the form α
Xg

K,t, β
Xg

K,t on Xg as in (3.8).

Definition 7.3. For h ∈ R, v ∈ R∗
+, set

mh,v =−2
∫

Xg

eK

(
TXg,∇TXg

)
β

Xg

K,v/2(7.9)

Tr

g
ω

(
∇F , gF

)
2

exp
(
hω2

(
∇F , gF

)
/2π

) ,

nv =
√

π

∫
Xg

TrF |Xg [g]
v

2
β

Xg

K,v/2

∫ B̂

K̂Xg′ exp
(
−Ṙ

TXg

K /2π
)

,

oh,v =−
∫

Xg

α
Xg

K,v/2

1
4
√

π
Tr

[
gω

(
∇F , gF

)
exp

(
hω2

(
∇F , gF

)
/2π

)]
∫ B̂

K̂Xg′ exp
(
−Ṙ

TXg

K /2π
)

.

Observe that if εK,v/2 is the invariant of Xg associated to KXg as in
(3.109), then

nv = − 1√
2
TrF |Xg [g] (v/2)3/2 εK,v/2.(7.10)
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Moreover, if Xg is odd-dimensional, mh,v vanishes, and if Xg is even-dimensional,
nv and oh,v vanish.

By (3.114), (7.10), for v ∈ ]0, 1],

nv = O
(
v2

)
,(7.11)

and moreover, nv is uniformly bounded on R+. Using (3.14), for bounded
h ∈ R, for v ∈ [0, 1],

oh,v = O (v) ,(7.12)

and oh,v remains uniformly bounded for v ∈ R+.
In the sequel, we will use the notation

w =
4v2

4s (1 − s) v + (2s − 1)2 a
.(7.13)

Observe that there exist C > 0, C ′ > 0 such that for (s, v) ∈ ]0, 1[×[a, 1],

Cv ≤ w ≤ C ′ inf

{
v

s (1 − s)
,
v2

a

}
.(7.14)

Note that w depends explicitly on a. We will often write

w = w (a, s, v) .

Let ia : [0, 1] × R∗
+ → [0, 1] × R∗

+ be given by ia (s, v) = (s, av). Let ja, j
′
a :

[0, 1] × R+ → [0, 1] × R+ be given by ja (s, v) = (
√

as,
√

av) , j′a (s, v) =
(1 −√

as,
√

av). In the sequel, ka will denote either ja or j′a.
If γ is a smooth form on R3, γt′=a denotes its restriction to the hyperplane

(t′ = a). So γt′=a is a form on this hyperplane.
Recall that χg (F ) , χ′

g (F ) were defined in (1.13).

Theorem 7.4. There exist C > 0, β > 0 such that for z ∈ R, |z| ≤ β,

t′ ∈ [1,+∞[, s ∈ [0, 1], u ∈ [0, 1],∣∣∣∣∣t′Trs [g exp (−LK − L)]dsdt′ +
(

χ′
g (F ) − n

2
χg (F )

)
dsdt′

∣∣∣∣∣ ≤ C√
t′

,(7.15)

∣∣∣Trs [g exp (−LK − L)]dsdu
∣∣∣ ≤ C√

t′
.

Theorem 7.5. For z ∈ R∗ and |z| small enough, for any (s, v) ∈ ]0, 1[×R∗
+,

as a → 0,

Trs [g exp (−LK − L)](2)t′=a → ms(1−s),v/s(1−s)
dsdv

v
.(7.16)

For z ∈ R∗ and |z| small enough, there exists C > 0 such that for a ∈
]0, 1], (s, v) ∈ [0, 1] × [1,+∞[,∣∣∣Trs [g exp (−LK − L)](2)t′=a

∣∣∣ ≤ C

v2
.(7.17)
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Theorem 7.6. For z ∈ R∗ and |z| small enough, as a → 0,

k∗
aTrs [g exp (−LK − L)](2)t′=a → 2n4v2/4sv+1

dsdv

v3
.(7.18)

Theorem 7.7. For z ∈ R∗ and |z| small enough, as a → 0,

i∗aTrs [g exp (−LK − L)](2)t′=a → 0.(7.19)

In the next theorem, we emphasize that w still depends explicitly on a.

Theorem 7.8. For z ∈ R∗ and |z| small enough, there exist C > 0,

γ ∈ ]0, 1/2] such that for (s, v) ∈ ]0, 1[× [a, 1],∣∣∣∣∣Trs [g exp (−LK − L)](2)t′=a(7.20)

−
(

mv/w,w

v
+

(
1 + (2s − 1)2

)√
a
nw

v3
+ (2s − 1)

√
a
ov/w,w

v2

)
dsdv

∣∣∣∣∣
≤ C

(
a

v

)γ w

v2
.

In particular, for z ∈ R∗, and |z| small enough, given ε ∈ ]0, 1/2[, there exist
C > 0, γ ∈ ]0, 1] such that for a ∈ ]0, 1], (s, v) ∈ [ε, 1 − ε] × [a, 1],∣∣∣∣Trs [g exp (−LK − L)](2)t′=a − ms(1−s),v/s(1−s)

dsdv

v

∣∣∣∣ ≤ C

v
(a/v)γ .(7.21)

Remark 7.9. Theorem 7.4 will be proved in Section 8, Theorem 7.5 in
Section 9, Theorem 7.6 in Section 10, Theorem 7.7 in Section 11, and Theorem
7.8 in Section 12.

We claim that (7.20) in Theorem 7.8 implies (7.16) in Theorem 7.5, and
also Theorem 7.6. In fact, as a → 0,

mv/w,w →ms(1−s),v/s(1−s),(7.22)
√

anw/v3 → 0,
√

a
ov/w,w

v2
→ 0,√

am√
av/w(a,

√
as,

√
av),w(a,

√
as,

√
av) → 0,(

1 +
(
2
√

as − 1
)2

)
nw(a,

√
as,

√
av) → 2n4v2/(4sv+1),(

2
√

as − 1
)√

ao√av/w(a,
√

as,
√

av),w(a,
√

as,
√

av) → 0,

from which the above implications follow immediately. Also, by (3.14), (3.16),
(3.114), (7.10),

mav/w(a,s,av),w(a,s,av) → 0,(7.23)

nw(a,s,av)/a3/2 → 0,

oav/w(a,s,av),w(a,s,av)/
√

a→ 0.
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By (7.20) in Theorem 7.8 and by (7.23), we deduce that given (s, v) ∈ ]0, 1[×
[1,+∞[, as a → 0, i∗aTrs [g exp (−LK − L)] remains uniformly bounded. Of
course, Theorem 7.7 says that as a → 0, these forms converge to 0.

Also (7.21) is an easy consequence of (7.20). In fact, take ε ∈ ]0, 1/2[, and
assume that a ∈ ]0, 1], (s, v) ∈ [ε, 1 − ε] × [a, 1]. By (7.14), v/w, w/v and w

remain uniformly bounded. Using (7.20), (7.11), (7.12), we get (7.21).
Let us point out that we have chosen to present the proofs of Theorems 7.5

and 7.6 before proving Theorem 7.8, because their proofs are easier, and also
to introduce more naturally the various tools which are needed in the proof of
Theorem 7.8. Finally note that (7.21) is not explicitly used later in the paper,
and is only given for completeness.

7.4. The asymptotics of the I0
k . Now we study the I0

k . It will be understood
in the sequel that in all our statements, z ∈ R∗ will be such that |z| is small
enough.

1) The term I0
1 . We orient the plane containing Γ1 by the 2-form dsdt′.

As a part of Γ, Γ1 inherits the opposite orientation. Therefore,

I0
1 =−

∫
(s,t′)∈[0,1]×[a,A]

u=1−t′/A

[
Trs [g exp (−LK − L)](7.24)

+
(
h′ (0) − h′

(
i
√

t′
))(

χ′
g (F ) − n

2
χg (F )

)
dsdt′

t′

]

+
∫ A

a

(
h′ (0) − h′

(
i
√

t′
)) dt′

t′

(
χ′

g (F ) − n

2
χg (F )

)
.

α) A → +∞. When integrating the form Trs [g exp (−LK − L)] in the right-
hand side of (7.24), du should be replaced by −dt′/A. Using Theorem 7.4 and
dominated convergence, we find that as A → +∞,

I0
1 −

(
χ′

g (F ) − n

2
χg (F )

)
log (A)(7.25)

→ I1
1 = −

∫
(s,t′)∈[0,1]×[a,+∞[

u=1

[
Trs [g exp (−LK − L)]

+
(
h′ (0) − h′

(
i
√

t′
)) (

χ′
g (F ) − n

2
χg (F )

)
dsdt′

t′

]

+
[∫ 1

a

(
h′ (0) − h′

(
i
√

t′
)) dt′

t′

−
∫ +∞

1
h′

(
i
√

t′
) dt′

t′

] (
χ′

g (F ) − n

2
χg (F )

)
.
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By Proposition 6.7,

(7.26)

(LK + L) |u=1 = −4t′
(

B s(1−s)
t′ K +

Ndt

2t3/2

)2

+ 2ds
√

t

(
B s(1−s)

t′ K +
Ndt

2t3/2

)
.

By (7.26), and the fact that supertraces vanish on supercommutators,

(7.27)

Trs [g exp (−LK − L)]dsdt′

u=1 = Trs

[
g exp

((
2
√

t′B s(1−s)
t′ K + N

√
s (1 − s)

dt

t

)2
)

(
2
√

t′B s(1−s)
t′ K + N

√
s (1 − s)

dt

t

)]dt′
ds√

s (1 − s)
.

Now, using (7.3), we observe that, in (7.27), dt/t can be replaced by dt′/t′. By
making the transformation

ds →
√

s (1 − s)ds, dt′ → dt′√
s (1 − s)

,

from (7.27), we get

Trs [g exp (−LK − L)]dsdt′

u=1 = Trs
[
gh

(
2
√

t′B s(1−s)
t′ K + N

dt′

t′

)]dt′

ds(7.28)

= Trs
[
Ngh′

(
2
√

t′B s(1−s)
t′ K

)] dt′

t′
ds.

By (7.25), (7.28), we obtain

(7.29)

I1
1 =

∫ 1

0
ds

{∫ +∞

4a

[
Trs

[
gNh′

(√
tB 4s(1−s)

t
K

)]
−

(
h′ (0) − h′

(
i
√

t/2
)) (

χ′
g (F ) − n

2
χg (F )

)]
dt

t

}

+
(∫ 1

4a

(
h′ (0) − h′

(
i
√

t/2
)) dt

t
−

∫ +∞

1
h′

(
i
√

t/2
) dt

t
+ 2 log (2)

)
(

χ′
g (F ) − n

2
χg (F )

)
.

β) a → 0. By Theorem 2.14, as a → 0,

I1
1 → I2

1 =
∫ 1

0
ds

{∫ +∞

0

[
Trs

[
gNh′

(√
tB 4s(1−s)

t
K

)]
(7.30)

−
(
h′ (0) − h′

(
i
√

t/2
)) (

χ′
g (F ) − n

2
χg (F )

)]
dt

t

}
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+
(∫ 1

0

(
h′ (0) − h′

(
i
√

t/2
)) dt

t

−
∫ +∞

1
h′

(
i
√

t/2
) dt

t
+ 2 log (2)

) (
χ′

g (F ) − n

2
χg (F )

)
.

γ) Evaluation of I2
1 .

Theorem 7.10. The following identity holds:

I2
1 = −2Tch,g,K

(
gTX ,∇F , gF

)
+

(
2 − Γ′ (1)

) (
χ′

g (F ) − n

2
χg (F )

)
.(7.31)

Proof. A trivial computation shows that

(7.32)∫ 1

0

(
h′

(
i
√

t/2
)
− h′ (0)

) dt

t
+

∫ +∞

1
h′

(
i
√

t/2
) dt

t
= Γ′ (1) + 2 (log (2) − 1) .

Moreover, by proceeding as in the proof of (2.49), one finds that

Trs
[
gh′

(√
tB 4s(1−s)

t
K

)]
= χg (F ) .(7.33)

Our theorem now follows from (2.111), (2.117), (2.118) and from (7.30), (7.32),
and (7.33).

2) The term I0
2 . We still orient Γ2 by the form dsdt′. As a part of Γ, Γ2

inherits precisely this orientation. Then

I0
2 =

∫
(s,t′)∈[0,1]×[a,A]

u=0

[
Trs [g exp (−LK − L)](7.34)

+
(
h′ (0) − h′

(
i
√

t′
)) (

χ′
g (F ) − n

2
χg (F )

)
dsdt′

t′

]

−
∫ A

a

(
h′ (0) − h′

(
i
√

t′
)) dt′

t′

(
χ′

g (F ) − n

2
χg (F )

)
.

α) A → +∞. By Proposition 6.7,

L|u=0 = −4t′
(

BX +
Ndt

2t3/2

)2

+ 2ds
√

t

(
BX +

Ndt

2t3/2

)
.(7.35)

By proceeding as in (7.26)–(7.28), we get

Trs [g exp (−LK − L)]dsdt′ |u=0 = Trs
[
geKNh′

(
2
√

t′BX
)] dt′

t′
ds.(7.36)
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Using Theorem 1.6 or Theorem 7.4, and also (7.34), (7.36), we see that as
A → +∞,

I0
2 +

(
χ′

g (F ) − n

2
χg (F )

)
log (A) → I1

2(7.37)

= −
∫ +∞

4a

[
Trs

[
geKNh′

(√
tBX

)]
−

(
h′ (0) − h′

(
i
√

t/2
)) (

χ′
g (F ) − n

2
χg (F )

)]
dt

t

−
(∫ 1

a

(
h′ (0) − h′

(
i
√

t
)) dt

t
−

∫ +∞

1
h′

(
i
√

t
) dt

t

)
(

χ′
g (F ) − n

2
χg (F )

)
.

β) a → 0. By Theorem 2.14, as a → 0,

(7.38)

I1
2 → I2

2 =−
∫ +∞

0

[
Trs

[
geKNh′

(√
tBX

)]
−

(
h′ (0) − h′

(
i
√

t/2
)) (

χ′
g (F ) − n

2
χg (F )

)]
dt

t

−
(∫ 1

0

(
h′ (0) − h′

(
i
√

t/2
)) dt

t
−

∫ +∞

1
h′

(
i
√

t/2
) dt

t
+ 2 log (2)

)
(

χ′
g (F ) − n

2
χg (F )

)
.

γ) Evaluation of I2
2 .

Theorem 7.11. The following identity holds:

I2
2 = 2Tch,geK ,0

(
gTX ,∇F , gF

)
+

(
Γ′ (1) − 2

) (
χ′

g (F ) − n

2
χg (F )

)
.(7.39)

Proof. Our identity follows from (1.39), (1.42), from (7.32) and from
(7.38).

3) The term I0
3 . We orient Γ3 by the the 2-form dsdv. As a part of Γ, Γ3

inherits the opposite orientation. Then

I0
3 = −

∫
(s,v)∈[0,1]×[a,A]

t′=a

Trs [g exp (−LK − L)] .(7.40)

α) A → +∞. As A → +∞, using (6.44), we find easily that

I0
3 → I1

3 = −
∫

(s,v)∈[0,1]×[a,+∞[
t′=a

Trs [g exp (−LK − L)] .(7.41)
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β) a → 0. Set

(7.42)

J1 =−
∫
(s,v)∈[0,1]×[a,1]

mv/w,w
dsdv

v
,

J2 =−
∫
(s,v)∈[0,1]×[a,1]

(
1 + (2s − 1)2

)
nw

√
adsdv

v3
,

J3 =−
∫
(s,v)∈[0,1]×[a,1]

ov/w,w

√
adsdv

v2
,

J4 =−
∫

(s,v)∈[0,1]×[1,+∞[
t′=a

Trs [g exp (−LK − L)] ,

J5 =−
∫

(s,v)∈[0,1]×[a,1]
t′=a

(
Trs [g exp (−LK − L)]

−
(

mv/w,w

v
+

(
1 + (2s − 1)2

) √
anw

v3
+ (2s − 1)

√
aov/w,w

v2

)
dsdv

)
,

so that
I1
3 = J1 + J2 + J3 + J4 + J5.(7.43)

For s ∈ ]0, 1[, put w = w(a,s,s(1−s)v), i.e.

w =
4v2

4v + (2s − 1)2 a/ (s (1 − s))2
.(7.44)

We will often write w = wa,s (v). Clearly,

J1 = −
∫
(s,v)∈[0,1]×[a/s(1−s),1/s(1−s)]

ms(1−s)v/w,w
dsdv

v
.(7.45)

Observe that given a ∈ ]0, 1], s ∈ ]0, 1[, the map v → wa,s (v) is strictly
increasing, and is one-to-one from R+ into itself. Let va,s be the corresponding
inverse map. By (7.44), we get

dwa,s

wa,s
=

(
1 +

(2s − 1)2 a

4 (s (1 − s))2 v + (2s − 1)2 a

)
dv

v
.(7.46)

By (7.46), we deduce that there exists a smooth function ka,s : R∗
+ → [0, 1]

such that
dv

v
= ka,s (w)

dw

w
,(7.47)

and moreover, as a → 0,
ka,s → 1 on R∗

+.(7.48)

By (7.45), (7.47), we get

J1 = −
∫ 1

0

{∫ wa,s(1/s(1−s))

wa,s(a/s(1−s))
ms(1−s)va,s(w)/w,wka,s (w)

dw

w

}
ds.(7.49)
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Observe that by (7.14), s (1 − s) va,s (w) /w remains uniformly bounded.
Also by (3.16) and (3.17), for bounded h ∈ R,

mh,w = O (w) , w ∈ ]0, 1], mh,w = O (1/w) , w ≥ 1.(7.50)

By the above considerations, we can use dominated convergence in the integral
in the right-hand side of (7.49). Then we find that as a → 0,

J1 → J1
1 = −

∫ 1

0

{∫ 1/s(1−s)

0
ms(1−s),v

dv

v

}
ds.(7.51)

Also,

J2 = −2
∫
(s,v)∈[0,1/2

√
a]×[

√
a,1/

√
a]

(
1 +

(
2
√

as − 1
)2

)
nw(a,

√
as,

√
av)

dsdv

v3
.(7.52)

Clearly, if w′ = w (a,
√

as,
√

av),

w′ =
4v2

4s (1 −√
as) v + (2

√
as − 1)2

.(7.53)

In the sequel, we will also write w′ = w′
a,s (v).

Given a ∈ ]0, 1], s ∈ ]0, 1/2
√

a[, the map v → w′
a,s (v) is strictly increasing,

and is one-to-one from R+ into itself. Let v
′
a,s be the corresponding inverse

map. As in (7.46), we get

dw′
a,s

w′
a,s

=

(
1 +

(2
√

as − 1)2

4s (1 −√
as) v + (2

√
as − 1)2

)
dv

v
.(7.54)

By (7.54), there exists a smooth function k′
a,s (w′) with values in [0, 1] such

that
dv

v
= k′

a,s

(
w′) dw′

w′ .(7.55)

By (7.52), (7.55), we obtain

(7.56)

J2 =−2
∫
(s,w)∈[0,1/2

√
a]×[w′

a,s(
√

a),w′
a,s(1/

√
a)

(
1 +

(
2
√

as − 1
)2

) nw

w

k′
a,s (w)

v
′2
a,s (w)

dsdw.

By (7.53),

v2 − s
(
1 −

√
as

)
w′v − (2

√
as − 1)2

4
w′ = 0.(7.57)

From (7.57), we deduce that there exists C > 0, such that for s ∈ [0, 1/2
√

a] ,
w ≥ 0, if v = v

′
a,s (w),

v ≥ C
(
sw +

(
1 − 2

√
as

)√
w

)
.(7.58)

By (7.58), we deduce that there is C ′ > 0 such that if s ∈ [0, 1/2
√

a] , w ≥ 16a,

v ≥ C ′ (sw +
√

w
)
.(7.59)
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Also, ∫ +∞

0

ds

(sw +
√

w)2
=

1
w3/2

.(7.60)

By the statement containing (7.11), we find that nw/w5/2 is integrable on
R∗

+. Since k′
a,s takes its values in [0, 1], it follows from (7.52) and from the

above that the dominated convergence theorem can be used on the piece of
the integral (7.56) defining J2 such that w ≥ 16a.

Moreover, using (7.58) again, we find that there exists C > 0 such that
for w > 0, ∫ 1/2

√
a

0

1
v
′2
a,s (w)

ds ≤ C

w3/2
.(7.61)

By (7.11), (7.61),∣∣∣∣∣
∫
(s,w)∈[0,1/2

√
a]×[0,16a]

(
1 +

(
2
√

as − 1
)2

) nw

w

k′
a,s (w)

v
′2
a,s (w)

dsdw

∣∣∣∣∣ ≤ C
√

a.(7.62)

It follows from the above that as a → 0,

J2 → J1
2 = −4

∫
(s,v)∈R∗2

+

n4v2/4sv+1
dsdv

v3
.(7.63)

By the statement containing (7.12) and by (7.42), we get

|J3| ≤ C

∫
(s,v)∈[0,1]×[a,1]

√
aw

v2
dsdv.(7.64)

Moreover, ∫
(s,v)∈[0,1]×[a,1]

√
aw

v2
dsdv≤C

∫
(s,v)∈[0,1]×[a,1]

√
adsdv

sv + a
(7.65)

≤C

∫
(s,v)∈[0,1]×[1,1/a]

√
adsdv

sv + 1

=C
√

a

∫ 1/a

1
log (v + 1)

dv

v
.

By (7.64), (7.65), we find that as a → 0,

J3 → 0.(7.66)

By (7.16), (7.17) in Theorem 7.5, as a → 0,

J4 → J1
4 = −

∫
(s,v)∈[0,1]×[1,+∞[

ms(1−s),v/s(1−s)
dsdv

v
.(7.67)

Clearly,

J1
4 = −

∫ 1

0

{∫ +∞

1/s(1−s)
ms(1−s),v

dv

v

}
ds.(7.68)
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Also

J5 =−
∫
(s,v)∈[0,1]×[1,1/a]

(
i∗aTrs [g exp (−LK − L)](2)t′=a(7.69)

−
(mav/wa,s(av),wa,s(av)

v
+

(
1 + (2s − 1)2

) nwa,s(av)

a3/2v3

+ (2s − 1)
oav/wa,s(av),wa,s(av)√

av2

)
dsdv

)
.

By (7.20) in Theorem 7.8, for (s, v) ∈ [0, 1] × [1, 1/a], the integrand in the
right-hand side of (7.69) is dominated by

C

(
1
v

)γ wa,s (av)
av2

.(7.70)

Moreover
wa,s (av)

av2
=

4
4s (1 − s) v + (2s − 1)2

.(7.71)

For s near 1/2, there is C ′ > 0 such that if v ≥ 1,

4
4s (1 − s) v + (2s − 1)2

≤ C ′

v
.(7.72)

Also if ε ∈ ]0, 1/2[, there exists C ′′ > 0 such that if (s, v) ∈ ([0, ε] ∪ [1 − ε, 1])×
[1,+∞[,

4
4s (1 − s) v + (2s − 1)2

≤ C ′′

s (1 − s) v + 1
.(7.73)

Moreover ∫
(s,v)∈([0,ε]∪[1−ε,1])×[1,+∞[

1
s (1 − s) v + 1

(1/v)γ dsdv(7.74)

≤ C

∫
(s,v)∈[0,ε]×[1,+∞[

1
sv + 1

(1/v)γ dsdv

≤ C

∫
(s,v)∈[0,εv]×[1,+∞[

1
s + 1

(1/v)γ+1 dsdv

≤ C ′
∫

v∈[1,+∞[
(1 + log (v)) (1/v)γ+1 dv < +∞.

Equations (7.70)–(7.74) show that we can use the dominated convergence the-
orem in the integral which appears in the right-hand side of (7.69).

So using (7.19) in Theorem 7.7, (7.23) and (7.69), we find that as a → 0,

J5 → J1
5 = 0.(7.75)

By (7.43), (7.51), (7.63), (7.66)–(7.68), (7.75), we find that as a → 0,

I1
3 → I2

3 = J1
1 + J1

2 + J1
4 .(7.76)
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γ) Evaluation of I2
3 .

Theorem 7.12. The following identity holds:

I2
3 = 2

∫
Xg

eK

(
TXg,∇TXg

)
FK

(
Xg, g

TXg

)
ch◦

g

(
∇F , gF

)
(7.77)

+ 2TrF |Xg [g]VK (Xg) .

Proof. By (7.51), (7.68),

J1
1 + J1

4 = −
∫
(s,v)∈[0,1]×[0,+∞[

ms(1−s),v
dsdv

v
.(7.78)

By (3.18), (2.123), (2.124), (7.9), (7.78),

J1
1 + J1

4 = 2
∫

Xg

eK

(
TXg,∇TXg

)
FK

(
Xg, g

TXg

)
ch◦

g

(
∇F , gF

)
.(7.79)

Let ψ : R∗
+ → R be a continuous function with compact support. Then,

by making first the change of variables 4sv → s, and then 2v2/ (s + 1) → v,
we get ∫

(s,v)∈R∗
+×R∗

+

ψ2v2/(4sv+1)
dsdv

v3
(7.80)

=
1

2
√

2

∫ +∞

0

ds

(s + 1)3/2

∫ +∞

0
ψv

dv

v5/2
=

1√
2

∫ +∞

0
ψv

dv

v5/2
.

By (3.109), (3.118), (7.10), (7.63) and (7.80), we get

J1
2 = 2TrF |Xg [g]VK (Xg) .(7.81)

By (7.76), (7.79) and (7.81), we get (7.77). The proof of our theorem is
completed.

7.5. A proof of Theorem 5.1. Using (7.5), (7.25), (7.37), (7.41), we get
3∑

k=1

I1
k = 0.(7.82)

By (7.30), (7.38), (7.76),
3∑

k=1

I2
k = 0.(7.83)

By Theorems 7.10–7.12 and by (7.83), we obtain

−Tch,g,K

(
gTX ,∇F , gF

)
+ Tch,geK ,0

(
gTX ,∇F , gF

)
(7.84)

+
∫

Xg

eK

(
TXg,∇TXg

)
FK

(
Xg, g

TXg

)
ch◦

g

(
∇F , gF

)
+TrF |Xg [g]VK (Xg) = 0.

Using (1.24), (1.43), (2.121) and (7.84), we get (5.2). The proof of Theo-
rem 5.1 is completed.
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8. A proof of Theorem 7.4

We use the notation in Section 6. Set

E =
√

t′
(
dX + dX,∗

)
+

1√
t′

(
s2uKX′ ∧ − (1 − s)2 uiKX

)
(8.1)

+ d +
N

2
(
(2s − 1) dt′ − 4ds

)
.

Observe that E is obtained from the right-hand side of (6.42) by replacing dt′

by t′dt′. By (6.23), (6.24), (6.42), (8.1), we get

t′Trs [g exp (−LK − L)]dsdt′ = Trs
[
g exp

(
−LK − E2

)]dsdt′

,(8.2)

Trs [g exp (−LK − L)]dsdu = Trs
[
g exp

(
−LK − E2

)]dsdu
.

By (1.17),
ker

(
dX + dX,∗

)
	 H ·(X, F ).(8.3)

Also (
d +

N

2
(
(2s − 1) dt′ − 4ds

))2

= Ndsdt′.(8.4)

Moreover the connection d+ N
2 ((2s − 1) dt′ − 4ds) restricts to a connection on

H ·(X, F ). Using (8.1), (8.3), (8.4) and proceeding as in [BGo1, Th. 7.1], we
find that there exist C > 0, β > 0 such that for z ∈ R, |z| ≤ β, t′ ∈ [1,+∞[,
s ∈ [0, 1], u ∈ [0, 1],∣∣∣Trs

[
g exp

(
−LK − E2

)]
− TrsH

·(X,F )
[
geK exp

(
−Ndsdt′

)]∣∣∣ ≤ C√
t′

.(8.5)

By using in particular the argument after (2.23), we get

(8.6)

TrsH
·(X,F )

[
geK exp

(
−Ndsdt′

)]
= χg (F ) −

(
χ′

g (F ) − n

2
χg (F )

)
dsdt′.

By (8.2), (8.5), we get (7.15). The proof of Theorem 7.4 is completed.

9. A proof of Theorem 7.5

The purpose of this section is to establish Theorem 7.5, and in particular
to evaluate the limit as a → 0 of Trs [g exp (−LK − L)](2)t′=a. We organize it as
follows. In 9.1, we establish a Lichnerowicz formula for a suitable modification
of the operator LK + L. In Section 9.2, we describe a natural coordinate
system near Xg. In 9.3, given x ∈ Xg, we locally replace X by TxX, and we
compute the limit as a → 0 of the operators LK + L after a Getzler rescaling.
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In 9.5, we evaluate the fundamental solution for the limit operator, and certain
corresponding supertraces. Finally in Sections 9.6 and 9.7, we complete the
proof of Theorem 7.5.

We have kept strictly analytic arguments to a minimum, since they are
essentially the same as in [BGo1, §7]. For more details, we refer to the more
difficult Section 12 in the present paper.

Using the notation of Sections 5, 6, and 7, we take K0 ∈ z (g) and K =
zK0, with z ∈ R.

9.1. A Lichnerowicz formula. In the sequel, the operator LK +L will be
written in the coordinates (s, v, t′).

Definition 9.1. Given a ∈ ]0, 1], let Na be the operator obtained from
LK + L by making t′ = a, by replacing ds, dv by

√
s (1 − s)ds, dv/

√
s (1 − s).

Proposition 9.2. The following identity holds:

(9.1)

Na =−a

(
∇Λ·(T ∗X)⊗̂F,u

ei
− 1

a

(
s (1 − s) (1 − a/v) +

a

2v

) 〈
KX , ei

〉

+ (2s − 1)
c (ei)
2
√

a
ds − ĉ (ei)

2
√

a
ds

)2

+
(

4s (1 − s) + (2s − 1)2
a

v

) ∣∣∣KX
∣∣∣2

4v

+
a

4
H +

√
a

2v

(
− (2s − 1) c

(
KX

)
+ ĉ

(
KX

))
ds

−
√

ac
(
ω

(
∇F , gF

))
ds/2 + (2s − 1)

√
aĉ

(
ω

(
∇F , gF

))
ds/2

−
√

a
(
c
(
KX

)
+ (2s − 1) ĉ

(
KX

))
dv/2v2

+
a

8

〈
ek, R

TX (ei, ej) el

〉
c (ei) c (ej) ĉ (ek) ĉ (el)

+
1
4

〈
∇TX

ei
KX , ej

〉 (
−a

v
c (ei) c (ej)

+
(

4s (1 − s) + (2s − 1)2
a

v

)
ĉ (ei) ĉ (ej)

)
+4a

(
1
32

(−c (ei) c (ej) + ĉ (ei) ĉ (ej))ω2
(
∇F , gF

)
(ei, ej)

+
1
16

∣∣∣ω (
∇F , gF

)∣∣∣2 − 1
8
c (ei) ĉ (ej)∇F,u

ei
ω

(
∇F , gF

)
(ej)

)
.

Proof. This is a trivial consequence of (6.44) in Theorem 6.10, of (7.1)
and of the fact that if t′ = a, by (7.3),

dt

t
=

2s − 1
s (1 − s)

ds.(9.2)
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Clearly

Trs [g exp (−LK − L)]dsdv
t′=a = Trs [g exp (−Na)]dsdv ,(9.3)

so that to establish Theorem 7.5, we may as well replace LK + L in (7.16),
(7.17) by Na.

9.2. A trivialization near Xg. If x ∈ X, α > 0, let BX (x, α) be the open
ball of centre x and radius α. Similarly, BTxX (0, α) denotes the open ball of
centre 0 and radius α in TxX.

Let aX be the injectivity radius of X. Take x ∈ Xg. Then the exponential
map Z ∈ TxX, |Z| ≤ aX/2 → expx(Z) ∈ X identifies BTxX(0, aX/2) and
BX(x, aX/2).

We identify the normal bundle NXg/X with the orthogonal bundle to TXg

in TX|Xg
.

Given ε > 0, let Uε be the ε-neighbourhood of Xg in NXg/X . There exist
ε0 ∈ ]0, aX/32] such that if ε ∈ ]0, 16ε0], the map (x, Z) ∈ NXg/X → expX

x (Z)
is a diffeomorphism of Uε on the tubular neighbourhood Vε of Xg in X. In the
sequel, we identify Uε and Vε. This identification is g-equivariant.

In the sequel, Λ· (R2
)

denotes the exterior algebra of R2. Here Λ1
(
R2

)
is

spanned by ds, dv.

Definition 9.3. Let 1∇Λ·(T ∗X)⊗̂F ⊗̂Λ·(R2),u,a be the connection on Λ· (T ∗X)
⊗̂F ⊗̂Λ· (R2

)
over X,

1∇Λ·(T ∗X)⊗̂F ⊗̂Λ·(R2),u,a
· = ∇Λ·(T ∗X)⊗̂F,u

·(9.4)

−1
a

(
s (1 − s) (1 − a/v) +

a

2v

)
KX′ (·) + (2s − 1)

c (·)
2
√

a
ds − ĉ (·)

2
√

a
ds.

Note that in (9.4), the dependence of 1∇Λ·(T ∗X)⊗̂F ⊗̂Λ·(R2),u,a on (s, v) is
not explicitly written. Also 1∇Λ·(T ∗X)⊗̂F ⊗̂Λ·(R2),u,a can also be considered as
a superconnection on Λ (T ∗X) ⊗̂F in the sense of Quillen [Q1]. Recall that
RF,u was obtained in (1.30). By (1.5), the curvature 1∇Λ·(T ∗X)⊗̂F ⊗̂Λ·(R2),u,a,2

of the connection 1∇Λ·(T ∗X)⊗̂F ⊗̂Λ·(R2),u,a is given by

1∇Λ·(T ∗X)⊗̂F ⊗̂Λ·(R2),u,a,2 =
1
4

〈
RTXei, ej

〉
(c (ei) c (ej) − ĉ (ei) ĉ (ej))(9.5)

+RF,u − 1
a

(
s (1 − s) (1 − a/v) +

a

2v

)
dKX′.

In the sequel, if x ∈ Xg, Z ∈ TxX, |Z| ≤ aX/2, we trivialize

Λ· (T ∗X) ⊗̂F ⊗̂Λ·
(
R2

)
by parallel transport along h ∈ [0, 1] → hZ ∈ X with respect to the connection
1∇Λ·(T ∗X)⊗̂F ⊗̂Λ·(R2),u,a. In particular, if B is a smooth section of TX, by (1.3),
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we get

1∇Λ·(T ∗X)⊗̂F ⊗̂Λ·(R2),u,a
· c (B) = c

(
∇TX

· B
)

+
2s − 1√

a
〈B, ·〉 ds,(9.6)

1∇Λ·(T ∗X)⊗̂F ⊗̂Λ·(R2),u,a
· ĉ (B) = ĉ

(
∇TX

· B
)

+
1√
a
〈B, ·〉 ds.

Recall that c (TX) and ĉ (TX) inherit a Z-grading from the grading of
Λ· (T ∗X). The bundle of algebras

(
c (TX) ⊗̂ ĉ (TX) ⊗̂End (F )

)
x ⊗̂Λ

(
R2

)
is

then naturally Z-graded by the sum of the gradings on c (TX) , ĉ (TX) and
Λ· (T ∗X).

Let 1ΓΛ·(T ∗X)⊗̂F ⊗̂Λ·(R2) be the connection form for 1∇Λ·(T ∗X)⊗̂F ⊗̂Λ·(R2),u,a

in the above trivialization. Using (9.6), as in [B12, proof of Th. 11.11], we find
easily that in the above trivialization, 1ΓΛ·(T ∗X)⊗̂F ⊗̂Λ·(R2) is of length ≤ 2 in
the algebra

(
c (TX) ⊗̂ ĉ (TX) ⊗̂End (F ) ⊗̂Λ

(
R2

))
x. By [ABoP, Prop. 3.7],

1ΓΛ·(T ∗X)⊗̂F ⊗̂Λ·(R2) =
1
2

1∇Λ·(T ∗X)⊗̂F ⊗̂Λ·(R2),u,a,2 (Z, ·) + O
(
|Z|2

)
,(9.7)

and O
(
|Z|2

)
has length ≤ 2.

9.3. Replacing X by TxX. Let γ(s) be a smooth even function from R
into [0, 1] such that

γ(s) = 1 if |s| ≤ 1/2,(9.8)

= 0 if |s| ≥ 1.

If Z ∈ TxX, put

ρ(Z) = γ

( |Z|
4ε0

)
.(9.9)

Then

ρ(Z) = 1 if |Z| ≤ 2ε0,(9.10)

= 0 if |Z| ≥ 4ε0.

For x ∈ Xg, let Hx be the vector space of smooth sections of(
Λ· (T ∗X) ⊗̂F ⊗̂Λ·

(
R2

))
x

over TxX. Let ∆TX be the standard Laplacian on the fibres of TX.

Definition 9.4. Let N1,a
x,K be the differential operator,

N1,a
x,K = −

(
1 − ρ2 (Z)

)
a∆TX + ρ2 (Z) Na.(9.11)
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9.4. The Getzler rescaling. Let Opx be the set of scalar differential
operators acting on Hx. Then

N1,a
x,K ∈ End

(
Λ· (T ∗X) ⊗̂F ⊗̂Λ·

(
R2

))
x
⊗̂Opx.(9.12)

For t > 0, let Ha : Hx → Hx be the linear map

Hah(Z) = h(Z/
√

a).(9.13)

Definition 9.5. Let N2,a
x,K be the differential operator acting on Hx,

N2,a
x,K = H−1

a N1,a
x,KHa.(9.14)

Then

N2,a
x,K ∈

(
c (TX) ⊗̂ ĉ (TX) ⊗̂End (F ) ⊗̂Λ

(
R2

))
x
⊗̂Opx.(9.15)

Put m = dimXg. Let e1, . . . , em be an orthonormal basis of TxXg, let
em+1, . . . , en be an orthonormal basis of NXg/X,x, so that e1, . . . , en is an
orthonormal basis of TxX. For a > 0, U ∈ TxX, set

ca (U) =
√

2/aU∗ ∧ −
√

a/2iU .(9.16)

Definition 9.6. Let N3,a
x,K be the operator obtained from N2,a

x,K by replacing
c (ej) by ca (ej) for 1 ≤ j ≤ m, while leaving the c (ej) unchanged for m + 1 ≤
j ≤ n.

In the sequel, forms like ω
(
∇F , gF

)
or RTX will always be restricted

to Xg.

Definition 9.7. Let

N3,0
x,K ∈

(
Λ· (T ∗Xg) ⊗̂ ĉ (TXg) ⊗̂End

(
Λ·

(
N∗

Xg/X

))
⊗̂End (F ) ⊗̂Λ·

(
R2

))
x

⊗̂Opx

be given by

N3,0
x,K =−

(
∇ei

+
1
2

〈
RTX

2s(1−s)K/2πZ, ei

〉)2

+
s (1 − s)

v

∣∣∣KXg

∣∣∣2(9.17)

−KXg′
√

2

(
2s − 1

v
ds +

dv

v2

)
− dKXg′

2v

+

ĉ
(
RTX

2s(1−s)/2πKZ
)
−

ω
(
∇F , gF

)
√

2

 ds

+
1
2

〈
ek, R

TX
2s(1−s)K/2πel

〉
ĉ (ek) ĉ (el) −

1
2
ω2

(
∇F , gF

)
.
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We will write that a family of differential operators on TxX converges if
its coefficients converge together with their derivatives uniformly over compact
subsets of TxX.

Theorem 9.8. For (s, v) ∈ [0, 1] × R∗
+, as a → 0,

N3,a
x,K → N3,0

x,K .(9.18)

Proof. We use equation (9.1) for Na. By (9.5), (9.7) and proceeding as in
[BeGeV, Ch. 10], [B12, §11.5], [BGo1, §7.7], we find easily that as a → 0, in
the given trivialization,

−a

(
∇Λ·(T ∗X)⊗̂F,u

ei
− 1

a

(
s (1 − s) (1 − a/v) +

a

2v

) 〈
KX , ei

〉
(9.19)

+ (2s − 1)
c (ei)
2
√

a
ds − ĉ (ei)

2
√

a
ds

)2

→ −
(
∇ei

+
1
2

〈
RTX

2s(1−s)K/2πZ, ei

〉)2

.

Observe that since mTX (K) = ∇TX
· KX is antisymmetric,

〈
∇TX

Z KX (√
aZ

)
, Z

〉
= 0.(9.20)

By (9.6), (9.20), we find that in the considered trivialization,

c
(
KX

) (√
aZ

)
= c

(
KX

x

)
+

√
ac

(
∇TX

Z KX (x)
)

(9.21)

+ (2s − 1)
〈
KX (x) , Z

〉
ds

+O1

(
a |Z|2

)
+ O0

(
a |Z|3

)
ds,

ĉ
(
KX

) (√
aZ

)
= ĉ

(
KX (x)

)
+

√
aĉ

(
∇TX

Z KX (x)
)

+
〈
KX (x) , Z

〉
ds + Ô1

(
a |Z|2

)
+ Ô0

(
a |Z|3

)
ds.

In (9.21), the lower scripts 1 or 0 indicate the length in c (TxX) or ĉ (TxX).
Let [A]3a be the expression obtained from A by doing the Getzler rescalings

indicated in Definition 9.6. Recalling that KX |Xg
is the vector field KXg ⊂

TXg, by (9.21), we get
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ac

(
KX

) (√
aZ

)]3

a
=
√

2KXg′ ∧ +O
(√

a
(
1 + |Z| + |Z|2

))
,(9.22)

[√
aĉ

(
KX

) (√
aZ

)]3

a
=O

(√
a (1 + |Z|)

)
.

If U ∈ TxX, Z ∈ TxX, |Z| ≤ 4ε0, let τU (Z) be the parallel transport of
U along the geodesic h ∈ [0, 1] → hZ ∈ X with respect to the Levi-Civita
connection ∇TX . By (9.6), we get

√
a

[
c (τU)

(√
aZ

)]3
a =

√
2U∗ ∧ +O

(√
a

(
1 + |Z|2

))
,(9.23) [

ĉ (τU)
(√

aZ
)]3

a = ĉ (U) + 〈U, Z〉 ds + O
(√

a |Z|
)
.

By (9.1) and by the above considerations, we get (9.18). The proof of our
theorem is completed.

Remark 9.9. Incidentally, observe that had we not used (9.20), the es-
timate in the right-hand side of (9.21) would have been O0

(√
a |Z|2

)
ds or

Ô0

(√
a |Z|2

)
ds. This estimate would have been quite sufficient in the present

proof, but the stronger estimate (9.21) will be needed in equation (11.7), in
our proof of Theorem 11.5.

9.5. The heat kernel associated to N3,0
x,K . Let dvTX be the volume form on

the fibres of TX with respect to the metric gTX . Set

N
3,0
x,K = N3,0

x,K − ĉ
(
RTX

2s(1−s)K/2πZ
)

ds.(9.24)

Recall that K0 ∈ z (g) is fixed and that K = zK0, with z ∈ R∗. For
z ∈ R∗ and |z| small enough, let P 3,0

x,K (Z, Z ′) , P
3,0
x,K (Z, Z ′) , Z, Z ′ ∈ TxX be

the smooth kernel associated to exp
(
−N3,0

x,K

)
, exp

(
−N

3,0
x,K

)
with respect to

dvTX (Z ′) / (2π)n/2.
In fact, observe that the operator N3,0

x,K , N
3,0
x,K are not lower bounded, so

that the above heat kernels are not well defined. An easy way out is to make
z ∈ iR, and extend the corresponding heat kernel by analytic continuation.
Details are left to the reader. For an extensive discussion, which will be much
more relevant in Section 12, we refer to the introduction of [BGo1] and to
[BGo1, §7.13].

Proposition 9.10. For z ∈ R, and |z| small enough, the following iden-
tity holds:
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(9.25)

P
3,0
x,K

(
Z, Z ′) = 2−n/2

det

 RTX
2s(1−s)K/2π

sinh
(
RTX

2s(1−s)K/2π

)
1/2

exp

(
−1

4

〈
RTX

2s(1−s)K/2π

tanh
(
RTX

2s(1−s)K/2π

)Z, Z

〉

− 1
4

〈
RTX

2s(1−s)K/2π

tanh
(
RTX

2s(1−s)K/2π

)Z ′, Z ′
〉

+
1
2

〈
RTX

2s(1−s)K/2π

sinh
(
RTX

2s(1−s)K/2π

)eRT X
2s(1−s)/2πK Z, Z ′

〉)

exp

(
−s (1 − s)

v

∣∣∣KX
∣∣∣2 +

dKXg′

2v
+

KXg′
√

2

(
2s − 1

v
ds +

dv

v2

))

exp
(
−1

2

〈
ek, R

TX
2s(1−s)K/2πel

〉
ĉ (ek) ĉ (el)

)

exp

1
2
ω2

(
∇F , gF

)
+

ω
(
∇F , gF

)
√

2
ds

 .

Proof. The proof follows from (9.17) and from Mehler’s formula as in
[B10, eq. (4.48)].

Clearly g acts as a parallel isometry of NXg/X , with no eigenvalue equal
to 1. If no eigenvalue of g is equal to −1, there is a locally constant B ∈
End

(
NXg/X

)
, which is antisymmetric and invertible, and which is such that

g|NXg/X
= eB.(9.26)

If the eigenbundle N−1
Xg/X associated to the eigenvalue −1 is not reduced to 0,

we can still find a locally constant B ∈ End
(
NXg/X

)
⊗C, which is invertible,

which preserves N−1
Xg/X and its orthogonal N−1⊥

Xg/X , which acts by multiplication

by iπ on N−1
Xg/X , and like a real antisymmetric matrix on N−1⊥

Xg/X , so that (9.26)
still holds. We may extend B to a section of End

(
TX|Xg

)
acting as 0 on TXg,

so that (9.26) holds on TX|Xg
.

Proposition 9.11. For z ∈ R and |z| small enough, the following iden-
tity holds:
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(9.27)

P
3,0
x,K

(
g−1Z, Z

)
= 2−n/2

det

 RTX
2s(1−s)K/2π

sinh
(
RTX

2s(1−s)K/2π

)
1/2

exp

−
〈

RTX
2s(1−s)K/2π

sinh
(
RTX

2s(1−s)K/2π

) sinh
(
RTX

2s(1−s)K/2π − B/2
)

sinh (B/2) Z, Z

〉
exp

(
−s (1 − s)

v

∣∣∣KX
∣∣∣2 +

dKX′

2v
+

KX′
√

2

(
2s − 1

v
ds +

dv

v2

))

exp
(
−1

2

〈
ek, R

TX
2s(1−s)K/2πel

〉
ĉ (ek) ĉ (el)

)

exp

1
2
ω2

(
∇F , gF

)
+

ω
(
∇F , gF

)
√

2
ds

 .

Proof. Our identity follows from Proposition 9.10.

Definition 9.12. Let T̂rs be the functional defined on ĉ (TXg), with values
in o (TXg), which vanishes on all monomials in the ĉ (ei) whose length is < m,
and is such that

T̂rs [ĉ (e1) . . . ĉ (em)] = (−1)m(m+1)/2 .(9.28)

In the sequel, we use the Berezin integration formalism of Section 1.2,
with V = TXg, E = TXg. Equivalently we use the notation of Section 3.2,
with X replaced by Xg.

Proposition 9.13. The following identities hold :

T̂rs
[
exp

(
−1

2

〈
ek, R

TXg

2s(1−s)K/2πel

〉
ĉ (ek) ĉ (el)

)]
(9.29)

=

det

sinh
(
R

TXg

2s(1−s)K/2π

)
R

TXg

2s(1−s)K/2π

1/2 ∫ B̂

exp
(
−Ṙ

TXg

2s(1−s)K/2π

)
,

Trs
Λ·

(
N∗

Xg/X

) [
g exp

(
−1

2

〈
ek, R

NXg/X

2s(1−s)K/2πel

〉
ĉ (ek) ĉ (el)

)]
=

[
det

(
4 sinh

(
R

NXg/X

2s(1−s)K/2π − B/2
)

sinh (B/2)
)]1/2

.

Proof. The first identity in (9.29) follows from results of Mathai-Quillen [MQ].
The second identity in (9.29) follows from [BGo2, Prop. 4.9].
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If α ∈ Λ· (T ∗Xg), αmax denotes the component of α of maximal degree m.

Theorem 9.14. The following identity holds:

(9.30)

2m/2

[∫
NXg/X

T̂rs
[
gP

3,0
x,K

(
g−1Z, Z

)] dvNXg/X
(Z)

(2π)n/2

]dsdv,max

= −
{

2eK

(
TXg,∇TXg

)
β

Xg

K,v/2s(1−s)

TrF |Xg

g
ω

(
∇F , gF

)
2

exp
(
s (1 − s)ω2

(
∇F , gF

))
/2π

}max
dsdv

v
.

Proof. By (9.27), (9.29), we get

(9.31)

2m/2
∫

NXg/X

T̂rs
[
gP

3,0
x,K

(
g−1Z, Z

)] dvNXg/X
(Z)

(2π)n/2

=
1

(2π)m/2
exp

(
−s (1 − s)

v

∣∣∣KX
∣∣∣2 +

dKX′

2v
+

KX′
√

2

(
2s − 1

v
ds +

dv

v2

))
∫ B̂

exp
(
−Ṙ

TXg

2s(1−s)K/2π

)
TrF |Xg

[
g exp

(
1
2
ω2

(
∇F , gF

)

+
ω

(
∇F , gF

)
√

2
ds

)]
.

By (9.31), we obtain

(9.32)

2m/2

[∫
NXg/X

T̂rs
[
gP

3,0
x,K

(
g−1Z, Z

)] dvNXg/X
(Z)

(2π)n/2

]dsdv

=
1

(2π)m/2 exp

(
−s (1 − s)

v

∣∣∣KX
∣∣∣2 +

dKX′

2v

)
KX′

v2

∫ B̂

exp
(
−Ṙ

TXg

2s(1−s)K/2π

) 1
2
Tr

[
gω

(
∇F , gF

)
exp

(
1
2
ω2

(
∇F , gF

))]
dsdv.

In (9.32), we now make the rescaling ei →
√

2s (1 − s)ei, ê i → 1√
2s(1−s)

ê i, 1 ≤
i ≤ m. Such a rescaling does not change the term of maximal degree in (9.32).
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From (9.32), we obtain

(9.33)

2m/2

[∫
NXg/X

T̂rs
[
gP

3,0
x,K

(
g−1Z, Z

)] dvNXg/X
(Z)

(2π)n/2

]dsdv,max

=

{
exp

(
−s (1 − s)

v

∣∣∣KX
∣∣∣2 +

s (1 − s)
2πv

dKX′
)

KX′

2πv∫ B̂

exp
(
−Ṙ

TXg

K /2π
)

TrF |Xg

[
gω

(
∇F , gF

)
exp

(
s (1 − s) ω2

(
∇F , gF

)
/2π

)]}max

s (1 − s)
dsdv

v
,

which is just (9.30). The proof of our theorem is completed.

9.6. A proof of equation (7.16). Using the trivializations indicated in
Section 9.2, and the fixed point techniques in local index theory in [BGo1, §7],
and also Theorem 9.14, we find easily that for z ∈ R, and |z| small enough, as
a → 0,

Trs [g exp (−LK − L)](2)t′=a(9.34)

→ 2m/2
∫

Xg

[∫
NXg/X

T̂rs
[
gP 3,0

x,K

(
g−1Z, Z

)] dvNXg/X
(Z)

(2π)n/2

]dsdv,max

.

More precisely, we use the known fact [BZ1, Prop. 4.9] that among the mono-
mials in c (ei) , ĉ (ei) , 1 ≤ i ≤ m, up to permutation, c (e1) ĉ (e1) . . . c (em) ĉ (em)
is the only monomial whose supertrace on Λ· (T ∗Xg) is nonzero, and moreover

Trs [c (e1) ĉ (e1) . . . c (em) ĉ (em)] = (−2)m .(9.35)

When the Getzler rescaling indicated in (9.16) is done, comparison with (9.35)
shows that there is an extra factor 2m/2 which should be incorporated in the
final computation.

If Z ∈ TX, put
I (Z) = −Z.(9.36)

Then the operator I−1N3,0
x,KI is obtained from N3,0

x,K by changing

ĉ
(
RTX

2s(1−s)K/2πZ
)

ds

into
−ĉ

(
RTX

2s(1−s)K/2πZ
)

ds.
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It follows that P 3,0
x,K (−Z,−Z ′) is obtained from P 3,0

x,K (Z, Z ′) by changing ds,

ω
(
∇F , gF

)
into −ds,−ω

(
∇F , gF

)
. This shows that in the integral on the

right-hand side of (9.34), ĉ
(
RTX

2s(1−s)K/2πZ
)

ds does not contribute to the com-

putation, i.e. we may replace P 3,0
x,K by P

3,0
x,K .

By (7.9), (9.30) and (9.34), we find that for z ∈ R, and |z| small enough,
as a → 0,

Trs [g exp (−LK − L)](2)t′=a → ms(1−s),v/s(1−s)
dsdv

v
,(9.37)

i.e. we have established (7.16).

9.7. A proof of equation (7.17). Let N
a be the operator obtained from

Na by replacing dv by v2dv. By (9.3),

v2Trs [g exp (−LK − L)](2)t′=a = Trs
[
g exp

(
−N

a
)]dsdv

t′=a
.(9.38)

By (9.1), we deduce easily that for a ∈ ]0, 1], (s, v) ∈ [0, 1] × [1,+∞[,

Trs
[
g exp

(
−N

a
)]dsdv

t′=a

remains uniformly bounded. A similar argument was given in [BGo1, §8.14].
We find that for z ∈ R and |z| small enough, there exists C > 0 such that for
a ∈ ]0, 1], (s, v) ∈ [0, 1] × [1,+∞[,∣∣∣∣Trs

[
g exp

(
−N

a
)]dsdv

t′=a

∣∣∣∣ ≤ C.(9.39)

By (9.38), (9.39), we get (7.17). The proof of Theorem 7.5 is complete.

10. A proof of Theorem 7.6

The purpose of this section is to establish Theorem 7.6, i.e. to evaluate
the limit as a → 0 of k∗

aTrs [g exp (−LK − L)](2)
t′=a. The strategy is very similar

to the one we followed in Section 9.
This Section is organized as follows. In 10.1, we introduce a rescaled

version of the operator Na. In 10.2, we introduce a new Getzler rescaling,
and evaluate the limit as a → 0 of this rescaled operator. Also, we compute
the fundamental solution for the limit operator. Finally, in 10.3, we establish
Theorem 7.6.

As in Section 9, we have kept the strictly analytic arguments to a min-
imum, since they are the same as in [BGo1, §7]. For more details, we refer
again to Section 12 of the present paper.

We use the notation of Sections 6, 7 and 9. Also we take K0 ∈ z (g) and
K = zK0, with z ∈ R∗.
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10.1. The operator Na′. The operator Na was defined in Definition 9.1.
As we saw in Section 7.3,

ja (s, v) =
(√

as,
√

av
)
.(10.1)

Under j∗a, the variables ds, dv are scaled into
√

ads,
√

adv.

Definition 10.1. Let Na′ be the operator obtained from j∗aNa by the
transformation (ds, dv) →

(
a−1/4ds, a1/4dv

)
.

By (9.3),

j∗aTrs [g exp (−LK − L)](2)t′=a = Trs
[
g exp

(
−Na′)]dsdv

.(10.2)

By (9.1), we get

(10.3)

Na′ =−a

(
∇Λ·(T ∗X)⊗̂F,u

ei
− 1√

a

(
s

(
1 −

√
as

) (
1 −

√
a/v

)
+

1
2v

) 〈
KX , ei

〉

+
(
2
√

as − 1
) c (ei)

2a1/4
ds − ĉ (ei)

2a1/4
ds

)2

+
(

4s
(
1 −

√
as

)
+

(
2
√

as − 1
)2 1

v

) ∣∣∣KX
∣∣∣2

4v

+
a

4
H +

a1/4

2v

(
−

(
2
√

as − 1
)
c
(
KX

)
+ ĉ

(
KX

))
ds

−a3/4c
(
ω

(
∇F , gF

))
ds/2 +

(
2
√

as − 1
)
a3/4ĉ

(
ω

(
∇F , gF

))
ds/2

−a1/4
(
c
(
KX

)
+

(
2
√

as − 1
)
ĉ
(
KX

))
dv/2v2

+
a

8

〈
ek, R

TX (ei, ej) el

〉
c (ei) c (ej) ĉ (ek) ĉ (el)

+
1
4

〈
∇TX

ei
KX , ej

〉 (
−
√

a

v
c (ei) c (ej)

+
(

4s
(
1 −

√
as

)
+

(
2
√

as − 1
)2 1

v

)√
aĉ (ei) ĉ (ej)

)

+4a

(
1
32

(−c (ei) c (ej) + ĉ (ei) ĉ (ej))ω2
(
∇F , gF

)
(ei, ej)

+
1
16

∣∣∣ω (
∇F , gF

)∣∣∣2 − 1
8
c (ei) ĉ (ej)∇F,u

ei
ω

(
∇F , gF

)
(ej)

)
.

10.2. A new Getzler rescaling. Now we use the notation of Section 9.2.
Recall that the connection 1∇Λ·(T ∗X)⊗̂F ⊗̂Λ·(R2),u,a was defined in Definition 9.4.
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Definition 10.2. Let 1∇Λ·(T ∗X)⊗̂F ⊗̂Λ·(R2),u,a′ be the connection on the
vector bundle

Λ· (T ∗X) ⊗̂F ⊗̂Λ·
(
R2

)
,

over X, which is obtained from j∗a
1∇Λ·(T ∗X)⊗̂F ⊗̂Λ·(R2),u,a by the rescaling ds →

a−1/4ds.

By (9.5),

1∇Λ·(T ∗X)⊗̂F ⊗̂Λ·(R2),u,a′,2(10.4)

=
1
4

〈
RTXei, ej

〉
(c (ei) c (ej) − ĉ (ei) ĉ (ej))

+RF,u − 1√
a

(
s

(
1 −

√
as

) (
1 −

√
a/v

)
+

1
2v

)
dKX′.

Then we use the trivializations corresponding to the trivializations in Sec-
tion 9.2, except that the connection 1∇Λ·(T ∗X)⊗̂F ⊗̂Λ·(R2),u,a is now replaced
by the connection 1∇Λ·(T ∗X)⊗̂F ⊗̂Λ·(R2),u,a′.

Recall that the function ρ (Z) was defined in (9.10).

Definition 10.3. Let N1,a′
x,K be the differential operator,

N1,a′
x,K = −

(
1 − ρ2 (Z)

)
a∆TX + ρ2 (Z) Na′.(10.5)

We still define Ha as in (9.13).

Definition 10.4. Let N2,a′
x,K be the differential operator acting on Hx,

N2,a′
x,K = H−1

a N1,a′
x,KHa.(10.6)

We take the orthonormal basis (e1, . . . , en) of TxX as in Section 9.2.
Also, we introduce another copy of Λ· (T ∗Xg), which we denote by

Λ̂· (T ∗Xg). For b > 0, U ∈ TxXg, set

cb (U) =
√

2/bU∗ ∧ −
√

b/2iU , ĉb (U) =
√

2/bÛ∗ ∧ +
√

b/2i
Û
.(10.7)

We define Ṙ
TXg

K as in (3.21).

Definition 10.5. Let N3,a′
x,K be the operator obtained from N2,a′

x,K by re-
placing c (ej) , ĉ (ej) by c√a (ej) , ĉ√a (ej) for 1 ≤ j ≤ m, while leaving the
c (ej) , ĉ (ej) unchanged for m + 1 ≤ j ≤ n.

Definition 10.6. Let

N3,0′
x,K ∈

(
Λ· (T ∗Xg) ⊗̂ Λ̂· (T ∗Xg)

⊗̂End
(
Λ·

(
N∗

Xg/X

))
⊗̂End (F ) ⊗̂Λ·

(
R2

))
x
⊗̂Opx
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be given by

N3,0′
x,K =−∆TX +

4sv + 1
4v2

∣∣∣KXg

∣∣∣2 +
1√
2v

(
KXg′ + K̂Xg′

)
ds(10.8)

− 1√
2

(
KXg′ − K̂Xg′

) dv

v2
− dKXg′

2v
+ 2Ṙ

TXg
1
2

4sv+1
v

K/2π
.

Theorem 10.7. As a → 0,

N3,a′
x,K → N3,0′

x,K .(10.9)

Proof. We use equation (10.3) for Na′. By (9.7), (10.4), and by proceeding
as in [BGo1, §7.7], we find that as a → 0, in the given trivialization,

−a

(
∇Λ·(T ∗X)⊗̂F,u

ei
− 1√

a

(
s

(
1 −

√
as

) (
1 −

√
a/v

)
+

1
2v

) 〈
KX , ei

〉
(10.10)

+
(
2
√

as − 1
) c (ei)

2a1/4
ds − ĉ (ei)

2a1/4
ds

)2

→ −∆TX .

The other terms in the right-hand side of (10.3) can be dealt with as in the proof
of Theorem 9.8. Observe that, since the variables ĉ (ei) always appear with a
power of a which is at least a1/4, there are no exotic asymptotic expansions
like the second one for ĉ (τU) (

√
aZ) in (9.23). The proof of our theorem is

completed.

Let P 3,0′
x,K (Z, Z ′) be the smooth kernel associated to the operator

exp
(
−N3,0′

x,K

)
with respect to the volume dvTX (Z ′) / (2π)n/2. We now have

the following trivial identity.

Proposition 10.8. The following identity holds:

(10.11)

gP 3,0′
x,K

(
g−1Z, Z

)
=

1
2n/2

exp
(
−

∣∣∣(g−1 − 1
)

Z
∣∣∣2 /4

)
exp

(
−4sv + 1

4v2

∣∣∣KXg

∣∣∣2 + dKXg′/2v − 2Ṙ
TXg
1
2

4sv+1
v

K/2π

− 1√
2v

(
KXg′ + K̂Xg′

)
ds +

1√
2

(
KXg′ − K̂Xg′

)
dv/v2

)
.

Let T̂rs : Λ· (T ∗Xg) ⊗̂ Λ̂· (T ∗Xg) → R be the functional which vanishes in
the monomials in the ei, ê i, 1 ≤ i ≤ m of length < 2m, and is such that

T̂rs
[
e1ê1 . . . emêm

]
= (−2)m .(10.12)

As in Section 9.5, we use the Berezin integration formalism of Section 3.2,
with X replaced by Xg.
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Proposition 10.9. The following identity holds:

(10.13)[∫
NXg/X

∫ B̂

T̂rs
[
gP 3,0′

x,K

(
g−1Z, Z

)] dvNXg/X
(Z)

(2π)n/2

]dsdv,max

=

−
[
2
√

π

∫
Xg

TrF |Xg [g]
KXg′

4π
αK,2v2/(4sv+1)

∫ B̂

K̂Xg′ exp
(
−Ṙ

TXg

K /2π
)]max

dsdv

v3
.

Proof. By Proposition 10.8, we get[∫
NXg/X

∫ B̂

T̂rs
[
gP 3,0′

x,K

(
g−1Z, Z

)] dvNXg/X
(Z)

(2π)n/2

]dsdv,max

(10.14)

= −
[
TrF |Xg [g] exp

(
−4sv + 1

4v2

∣∣∣KXg

∣∣∣2 + dKXg′/8πv

)
KXg′

2
√

π

∫ B̂

K̂Xg′ exp
(
−Ṙ

TXg
4sv+1

v
K

/2π

)]max
dsdv

v3
.

In (10.14), we now make the rescaling

ei → ((4sv + 1) /v)1/2 ei, ê i →
(
(4sv + 1/v)−1/2

)
ê i,

and find that (10.14) is equivalent to (10.13). The proof of our proposition is
completed.

10.3. A proof of equation (7.18). Using the trivializations indicated in
Section 9.2 and the standard fixed point techniques in local index theory as in
[BGo1, §7], by (7.9), (10.2) and by Proposition 10.9, we find that for z ∈ R∗

and |z| small enough, as a → 0,

Trs [g exp (−LK − L)]dsdv
t′=a → 2n4v2/4sv+1

dsdv

v3
;(10.15)

i.e., we have established (7.18) for ka = ja.
By replacing ja by j′a, we also get (7.18) for ka = j′a. The proof of

Theorem 7.6 is completed.

11. A proof of Theorem 7.7

The purpose of this section is to prove Theorem 7.7, i.e. to show that the
limit as a → 0 of Trs [g exp (−LK − L)](2)t′=a vanishes.
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This section is organized as follows. In 11.1, we describe a coordinate
system near Xg,K , and we introduce an adequate Getzler rescaling. Also, we
compute the limit as a → 0 of the rescaled form of the operator LK + L.
In 11.2, we compute the fundamental solution for the limit operator. Finally,
in 11.3, we prove Theorem 7.7.

Again, the analytic arguments have been kept to a minimum, since they
are essentially the same as in [BGo2, §9].

We use the notation of Sections 9 and 10. In particular, we still assume
that K0 ∈ z (g) and that K = zK0, with z ∈ R∗.

11.1. A change of coordinates and a Getzler rescaling. We take ε0

as in Section 9.2. Take y0 ∈ Xg,K . If Z ∈ Ty0X, |Z| ≤ 4ε0, we iden-
tify Z to expX

y0
(Z) ∈ X. Similarly, we identify

(
Λ· (T ∗X) ⊗̂F ⊗̂Λ· (R2

))
Z to(

Λ· (T ∗X) ⊗̂F ⊗̂Λ· (R2
))

y0
by parallel transport with respect to the connection

1∇Λ·(T ∗X)⊗̂F ⊗̂Λ·(R2),u,a along the curve h ∈ [0, 1] → hZ ∈ X.

Definition 11.1. Let N1,a′′
y0,K

be the differential operator,

N1,a′′
y0,K

= −
(
1 − ρ2 (Z)

)
a∆TX + ρ2 (Z) i∗aN

a.(11.1)

We still define Ha : Hy0 → Hy0 as in (9.13).

Definition 11.2. Let N2,a′′
y0,K

be the differential operator acting on Hy0 ,

N2,a′′
y0,K

= H−1
a N2,a′′

y0,K
Ha.(11.2)

We identify the normal bundle NXg,K/Xg
to the orthogonal bundle to

TXg,K in TXg|Xg,K
. Let e1, . . . e� be an orthonormal basis of Ty0Xg,K , let

e�+1, . . . , em be an orthonormal basis of NXg,K/Xg,y0
, let em+1, . . . , en be an

orthonormal basis of NXg/X,y0
. Recall that when U ∈ Ty0Xg, cb (U) and ĉb (U)

are as defined in (10.7).

Definition 11.3. Let N3,a′′
y0,K

be the operator obtained from N2,a′′
y0,K

by re-
placing c (ej) , ĉ (ej) by c√a (ej) , ĉ√a (ej) for 1 ≤ j ≤ �, while leaving the
c (ej) , ĉ (ej) unchanged for � + 1 ≤ j ≤ n.

In the sequel, the tensors are evaluated at y0.

Definition 11.4. Let

N3,0′′
y0,K

∈
(
Λ· (T ∗Xg,K) ⊗̂ Λ̂· (T ∗Xg,K)

⊗̂End
(
Λ·

(
N∗

Xg,K/X

)
⊗̂F

)
⊗̂Λ·

(
R2

))
y0

⊗̂Opy0

be given by
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(11.3)

N3,0′′
y0,K

=−
(
∇ei

−
(

s (1 − s) (1 − 1/v) +
1
2v

) 〈
∇TX

Z KX , ei

〉)2

+

(
4s (1 − s) +

(2s − 1)2

v

)
1
4v

∣∣∣∇TX
Z KX

∣∣∣2
− 2s (1 − s)

(
1 − 1

v

)
ĉ
(
∇TX

Z KX
)

ds

−
(
c
(
∇TX

Z KX
)

+ (2s − 1) ĉ
(
∇TX

Z KX
))

dv/2v2 + 2ṘTXg,K

+
1
4

∑
�+1≤i,j≤n

〈
∇TX

ei
KX , ej

〉
(
−1

v
c (ei) c (ej) +

(
4s (1 − s) +

(2s − 1)2

v

)
ĉ (ei) ĉ (ej)

)
.

Theorem 11.5. For (s, v) ∈ [0, 1] × R∗
+,

N3,a′′
y0,K

→ N3,0′′
y0,K

.(11.4)

Proof. We use again equation (9.1) for Na. By (9.5), (9.7), since KX

vanishes on Xg,K , we find as a → 0,

− a

(
∇Λ·(T ∗X)⊗̂F ⊗̂Λ·(R2)

ei
− 1

a
(s (1 − s) (1 − 1/v) + 1/2v)

〈
KX , ei

〉
(11.5)

+ (2s − 1)
c (ei)
2
√

a
ds − ĉ (ei)

2
√

a
ds

)2

→ −
(
∇ei

− (s (1 − s) (1 − 1/v) + 1/2v)
〈
∇TX

Z KX , ei

〉)2
.

Moreover, as a → 0, ∣∣∣KX (
√

aZ)
∣∣∣2

a
→

∣∣∣∇TX
Z KX

∣∣∣2 .(11.6)

By using the same notation as in the proof of Theorem 9.8, we deduce from
(9.21) that as a → 0,c

(
KX

)
√

a

3

a

= c
(
∇TX

Z KX
)

+ O
(
a1/4 |Z|2

)
+ O

(√
a |Z|2

)
,(11.7)

 ĉ
(
KX

)
√

a

3

a

= ĉ
(
∇TX

Z KX
)

+ O
(
a1/4 |Z|2

)
+ O

(√
a |Z|2

)
.
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We now use the notation which we introduced after equation (9.22). Since
h ∈ [0, 1] → hZ is a geodesic in X, Z is parallel with respect to ∇TX along
this geodesic. By (9.6),

c (τei)
(√

aZ
)

= c (ei) + (2s − 1) 〈Z, ei〉 ds,(11.8)

ĉ (τei)
(√

aZ
)

= ĉ (ei) + 〈Z, ei〉 ds.

From (11.8), we find that for 1 ≤ i ≤ �,

[
c√a (τei)

(√
aZ

)]3

a
=

√
2

a1/4
ei ∧ −a1/4

√
2

iei
+ (2s − 1) 〈Z, ei〉 ds,(11.9)

[
ĉ√aτ (ei)

(√
aZ

)]3

a
=

√
2

a1/4
ê i ∧ +

a1/4

√
2

iêi
+ 〈Z, ei〉 ds.

Also, by the first equation in (2.7), we find that for 1 ≤ i, j ≤ n,〈
∇TX

τei
KX (√

aZ
)
, τej

〉
=

〈
∇TX

ei
KX (y0) , ej

〉
+ O

(
a |Z|2

)
.(11.10)

Moreover if 1 ≤ i ≤ �, 1 ≤ j ≤ n,〈
∇TX

ei
KX (y0) , ej

〉
= 0.(11.11)

By (11.9)–(11.11), we find that as a → 0,[
a

8

〈
ek, R

TX (√
aZ

)
(ei, ej) el

〉
c (ei) c (ej) ĉ (ek) ĉ (el)

]3

a
(11.12)

= 2ṘTXg,K (y0) + O
(
a1/2

)
,

[
1
4

〈
∇TX

ei
KX (√

aZ
)
, ej

〉
c (ei) c (ej)

]3

a
(11.13)

=
1
4

∑
�+1≤i,j≤n

〈
∇TX

ei
KX (y0) , ej

〉
c (ei) c (ej)

−1
2

(2s − 1) c
(
∇TX

Z KX
)

ds + O
(√

a |Z|2
)

,[
1
4

〈
∇TX

ei
KX (√

aZ
)
, ej

〉
ĉ (ei) ĉ (ej)

]3

a

=
1
4

∑
�+1≤i,j≤n

〈
∇TX

ei
KX (y0) , ej

〉
ĉ (ei) ĉ (ej)

−1
2
ĉ
(
∇TX

Z KX
)

ds + O
(√

a |Z|2
)

.

From (11.5)–(11.12), we get (11.4). The proof of our theorem is completed.
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11.2 The heat kernel associated to the operator N3,0′′
y0,K

.

Definition 11.6. Let N
3,0′′
y0,K

be the operator,

N
3,0′′
y0,K

= −
(
∇ei

−
(

s (1 − s) (1 − 1/v) +
1
2v

) 〈
∇TX

Z KX , ei

〉)2

(11.14)

+

(
4s (1 − s) +

(2s − 1)2

v

)
1
4v

∣∣∣∇TX
Z KX

∣∣∣2
+

1
4

∑
�+1≤i,j≤n

〈
∇TX

ei
KX , ej

〉 (
−1

v
c (ei) c (ej)

+

(
4s (1 − s) +

(2s − 1)2

v

)
ĉ (ei) ĉ (ej)

)
.

Observe that N
3,0′′
y0,K

is obtained from the operator N3,0′′
y0,K

by making
ds = 0, dv = 0 and ṘTXg,K = 0.

Recall that K0 ∈ z (g) is fixed and that K = zK0, with z ∈ R∗.

Definition 11.7. For z ∈ R∗, and |z| small enough, let P
3,0′′
y0,K

(Z, Z ′) , Z,

Z ′ ∈ NXg,K/X be the smooth kernel associated to the operator exp
(
−N

3,0′′
y0,K

)
with respect to the volume dvNXK /X

(Z ′) / (2π)dim NXg,K /X/2.

Observe that the operator N
3,0′′
y0,K

is not self-adjoint. As explained at length
in the introduction to [BGo1] and also in [BGo1, §7.13], for z ∈ R∗ and |z| small
enough, one can still make sense of the smooth kernel P

3,0′′
y0,K

(Z, Z ′), either by
using analyticity in the variable z, or by using a truncation procedure.

Put

C = −2 (s (1 − s) (1 − 1/v) + 1/2v)∇TX
· KX ,(11.15)

H = −
(
4s (1 − s) + (2s − 1)2 /v

) 1
v

(
∇TX

· KX
)2

,

Q = 2s (1 − s) (1 − 1/v)∇TX
· KX .

Then
C2 + H = Q2(11.16)

Proposition 11.8. For z ∈ R∗, and for |z| small enough, the following
identity holds:

(11.17)

gP
3,0′′
x,K

(
g−1Z, Z

)
= 2− dim NXg,K /X/2

[
det

(
Q

sinh (Q)

)]1/2

exp
(
−

〈
Q

sinh (Q)
sinh ((C − B + Q) /2) sinh ((−C + B + Q) /2) Z, Z

〉)
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exp

(
−1

4

∑ 〈
∇TX

ei
KX , ej

〉 (
−1

v
c (ei) c (ej) +

(
4s (1 − s) +

(2s − 1)2

v

)

ĉ (ei) ĉ (ej)

))
.

Proof. This identity follows from Mehler’s formula. A proof is given in
[B10, eqs. (4.49) and (4.50)].

Proposition 11.9. For z ∈ R∗ and for |z| small enough, the following
identity holds:

Trs
Λ·

(
N∗

Xg,K /X

)[
g exp

(
−1

4

∑ 〈
∇TX

ei
KX , ej

〉
(11.18) (

−1
v
c (ei) c (ej) +

(
4s (1 − s) +

(2s − 1)2

v

)
ĉ (ei) ĉ (ej)

))]
= [det (4 sinh ((C − B + Q) /2)) sinh ((−C + B + Q) /2)]1/2 .

Proof. Observe that

C + Q=−1
v
∇TXKX ,(11.19)

−C + Q=

(
4s (1 − s) +

(2s − 1)2

v

)
∇TX

· KX .

By [BGo2, Prop. 4.9], by proceeding as in Proposition 9.13, using the obvious
analogue of (9.35) for NXg,K/X , and by (11.19), we get (11.18).

Proposition 11.10. For z ∈ R∗ and |z| small enough, the following
identity holds:∫

NXg,K /X

Trs
Λ·

(
N∗

Xg,K /X

) [
gP

3,0′′
x,K

(
g−1Z, Z

)] dvNXg,K /X
(Z)

(2π)dim NXg,K /X/2
= 1.(11.20)

Proof. This is a consequence of Propositions 11.8 and 11.9.

Definition 11.11. For z ∈ R∗ and |z| small enough, let P 3,0′′
y0,K

(Z, Z ′) , Z,

Z ′ ∈ Ty0X be the smooth kernel associated to the operator exp
(
−N3,0′′

y0,K

)
with

respect to dvTX (Z ′) / (2π)n/2.

Here, we will not compute the kernel P 3,0′′
y0,K

(Z, Z ′) explicitly. However, we
will prove the following result.
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Theorem 11.12. For z ∈ R∗ and |z| small enough, the following identity
holds:

(11.21)∫
NXg,K /X

∫ B̂

Trs
Λ·

(
N∗

Xg,K /X

) [
gP 3,0′′

y0,K

(
g−1Z, Z

)]dsdv dvNXg,K /X
(Z)

(2π)n/2
= 0.

Proof. Let N
3,0′′
y0,K be obtained from N3,0′′

y0,K
by making ṘTXg,K = 0. Let

P
3,0′′
x,K (Z, Z ′), Z, Z ′ ∈ NXg,K/X be the smooth kernel associated to exp

(
−N

3,0′′
y0,K

)
and the volume form dvNXg,K /X

(Z ′) / (2π)dim NXg,K /X/2.
We will use the Berezin integration formalism of Sections 3.2 and 3.3, with

X replaced by Xg,K . By (11.3), we have the obvious

(11.22)∫
NXg,K /X

∫ B̂

Trs
Λ·

(
N∗

Xg,K /X

) [
gP 3,0′′

y0,K

(
g−1Z, Z

)]dsdv dvNXg,K /X
(Z)

(2π)n/2

= e
(
TXg,K ,∇TXg,K

) ∫
NXg,K /X

Trs
Λ·

(
N∗

Xg,K /X

) [
gP

3,0′′
x,K

(
g−1Z, Z

)]dsdv

dvNXg,K /X
(Z)

(2π)dim NXg,K /X/2
.

Recall that we identify NXg/X to the orthogonal bundle to TXg in TX|Xg
.

We will use the same conventions for other normal bundles. Let Ñ be the
orthogonal bundle to NXg,K/XK

⊕ NXg,K/Xg
in NXg,K/X . Then we have the

orthogonal splitting,

NXg,K/X = NXg,K/XK
⊕ NXg,K/Xg

⊕ Ñ .(11.23)

The vector bundles in (11.23) are stable under the action of g or of ∇TX
· KX |Xg,K

.
By using the involution I : Z → −Z on each of the corresponding eigen-

bundles of g and ∇TX
· KX |Xg,K

, and also Proposition 11.10, one finds easily
that the integral appearing in the right-hand side of (11.22) can be expressed
as the sum of the integrals of the kernels associated to the operators N

3,0′′
y0,K

corresponding to the three vector bundles which appear in the right-hand side
of (11.23).

Since ∇TX
· KX |Xg,K

vanishes on NXg,K/XK
, the contribution of NXg,K/XK

vanishes identically. Also since ∇TX
· KX |Xg,K

acts as an antisymmetric invert-
ible operator on NXg,K/Xg

and on Ñ , it follows that these vector bundles are
even dimensional, and that the corresponding −1 eigenbundle of g in Ñ is also
even dimensional. In particular, g acts as the identity mapping on NXg,K/Xg

and as an orientation preserving map on Ñ . Therefore there is a real antisym-
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metric endomorphism B = By0 ∈ End
(
Ñ

)
y0

such that

g|
Ñy0

= eB.(11.24)

Of course, we can extend B to an antisymmetric section of End(NXg,K/Xg
⊕Ñ)y0 ,

which vanishes on NXg,K/Xg,y0
, so that

g|
NXg,K /Xg,y0⊕Ñ,y0

= eB.(11.25)

Let e1, . . . , er be an orthonormal basis of Ñ . From (11.25), we get

g|
Λ·

(
N∗

Xg,K /Xg
⊕Ñ∗

) = exp
(

1
4
〈Bei, ej〉 (c (ei) c (ej) − ĉ (ei) ĉ (ej))

)
.(11.26)

From (11.26), we deduce that g is even in the variables c (ei) and also in the
variables ĉ (ei).

It follows from the above that when evaluating

Trs
Λ·

(
N∗

Xg,K /Xg
⊕Ñ∗

) [
gP

3,0′′
y0,K

(
g−1Z, Z

)]dsdv
,

only odd monomials in the c (ei) and the ĉ (ei) contribute to the supertrace.
However, since NXg,K/Xg

⊕ Ñ is even-dimensional, by the obvious analogue of
(9.35), the supertrace of such monomials vanishes. The proof of our theorem
is completed.

11.3. A proof of Theorem 7.7. By proceeding as in [BGo1, §9], we find
that for z ∈ R∗ and |z| small enough, as a → 0,

(11.27)

i∗aTrs [g exp (−LK − L)](2)t′=a

→
∫

Xg,K

∫ B̂

Trs
Λ·

(
N∗

Xg,K /X

) [
gP 3,0′′

·,K
(
g−1Z, Z

)]dsdv dvNXg,K /X
(Z)

(2π)n/2
.

Using (11.21) in Theorem 11.12 and (11.27), we get (7.19). The proof of
Theorem 7.7 is complete.

12. A proof of Theorem 7.8

The purpose of this section is to establish Theorem 7.8, i.e. to obtain the
asymptotics of Trs [g exp (−LK − L)] as a → 0 in the range (s, v) ∈ [0, 1] ×
[a, 1]. The main difficulty is to obtain a precise estimate on the remainder. As
explained in Remark 7.9, our theorem is stronger than Theorems 7.5 and 7.6,
which were established in Sections 9 and 10.
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In this section, we provide the full analytic machinery, which allows us to
use the techniques developed in [BL], and more especially in [BGo1, §9], where
a similar problem was considered, in a holomorphic context. We still use the
Getzler rescaling techniques introduced in Sections 9–11. However, since our
range of parameters covers the cases which were considered in these sections,
our proof incorporates the techniques which are used there.

Let us describe here a few features of the proof:

• The Clifford variables of type c and ĉ are both rescaled.

• The cases w ∈ ]0, 1] and w ≥ 1 are handled with different techniques.

In particular when w is ‘small’, the term
∣∣∣KX

∣∣∣2 /w forces localization
near Xg,K . This phenomenon has to be explicitly taken care of in our
estimates.

• Recall that w does depend on a. Still, when a → 0, the idea will be to
‘freeze’ w while taking the limit as a → 0 of all the other terms, in order
to establish the appropriate estimates.

This section is organized as follows. In 12.1, we use finite propagation
speed to show that our estimates can be localized near Xg. In 12.2, we intro-
duce a new Grassmann variable ds, and a new operator N a, which is obtained
from Na by a trivial rescaling.

Sections 12.3–12.7 are devoted to the difficult case w ∈ ]0, 1]. In 12.3,
we consider a coordinate system near Xg,K and a corresponding trivialization,
which depends explicitly on the choice of Z0 ∈ NXg,K/X,y0

, and we introduce
Getzler rescalings on the Clifford variables c and ĉ. In 12.4, we define a family
of norms adapted to the problem which is considered here, in particular with
respect to the Getzler rescaling on both kinds of Clifford variables. In 12.5, we
show that the rescaled operators N 3,a√

wZ0
verify uniform estimates with respect

to these norms. In 12.6, we prove a key estimate for a difference operator
N 3,a√

wZ0
− N 3,a√

wZ0
, one critical feature being that the operator N 3,a√

wZ0
, while

being a ‘local’ operator, still depends on a. In 12.7, we prove Theorem 7.8
when w ∈ ]0, 1]. Finally, in Section 12.8, we consider the case w ≥ 1.

In the whole section, we assume that (s, v) ∈ ]0, 1[×[a, 1]. Also, we use the
notation of Sections 7–11.

12.1. Finite propagation speed and localization.

Definition 12.1. Let Aa be the operator obtained from the operator aNa

by replacing ds, dv by a3/2ds,
√

adv.

Let | |0 , | |1 be natural norms on the Sobolev spaces of order 0, 1 of sections
of F ⊗̂Λ· (R2

)
.
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Theorem 12.2. Given β > 0, there exist C1 > 0, C2 > 0, C ′
2(β) > 0,

C3(β) > 0, C ′
3 > 0, C4 > 0, C5(β) > 0 such that if K ∈ g, |K| ≤ β, a ∈ ]0, 1],

if s, s′ ∈ Ω· (X, F ⊗̂Λ· (R2
))

,

Re〈Aas, s〉≥C1a
2|s|21 −

(
C2a

2 + C ′
2(β)

)
|s|20,(12.1)

|Im〈Aas, s〉| ≤ a
(
C3(β) + C ′

3a
)
|s|1|s|0,∣∣〈Aas, s′〉

∣∣≤C4(a|s|1 + C5(β)|s|0)(a|s′|1 + C5(β)|s′|0).

Moreover, as β → 0, C ′
2(β), C3(β), C5(β) → 0.

Proof. The key fact is that, by (9.1), all the coefficients of the operator Aa

remain uniformly bounded for a ∈ ]0, 1]. The proof of (12.1) is then similar to
the proof of [BGo1, Th. 7.11].

Remark 12.3. Observe that in [BGo1, Th. 7.11], the term C ′
3a does not

appear.

Recall that aX is the injectivity radius of X. Let α ∈ ]0, aX

8 ]. The precise
value of α will be fixed later. The constants C > 0, C ′ > 0 . . . may depend on
the choice of α.

Let f : R → [0, 1] be a smooth even function such that

f(s) = 1 for |s| ≤ α√
2
,(12.2)

= 0 for |s| ≥ α.

Set
g(s) = 1 − f(s).(12.3)

Definition 12.4. For a > 0, b ∈ C, put

Fa(b) =
∫ +∞

−∞
exp(isb) exp

(
−s2/4

)
f(
√

as)
ds√
4π

,(12.4)

Ga(b) =
∫ +∞

−∞
exp(isb) exp

(
−s2/4

)
g(
√

as)
ds√
4π

.

Then Fa(b), Ga(b) are even holomorphic functions of b such that

exp(−b2) = Fa(b) + Ga(b).(12.5)

Moreover Fa and Ga both lie in the Schwartz space S(R).
Put

Ia(b) =
∫ +∞

−∞
exp (isb/a) exp

(
−s2/4a

)
g(s)

ds√
4πa

.(12.6)

Then
Ia(b) = Ga

(
b/
√

a
)
.(12.7)
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By (12.2), (12.6), we find that given m, m′ ∈ N, there exist C > 0, C ′ > 0
such that if a ∈ ]0, 1], b ∈ C, |Im(b)| ≤ α

8 ,

|a|m|I(m′)
a (b)| ≤ C exp(−C ′/a).(12.8)

Clearly, there exist uniquely defined holomorphic functions F̃a(b), G̃a(b), Ĩa(b)
such that

Fa(b) = F̃a(b2), Ga(b) = G̃a(b2), Ia(b) = Ĩa(b2).(12.9)

By (12.5), (12.7),

exp(−a) = F̃a(b) + G̃a(b),(12.10)

Ĩa(b) = G̃a(b/a).

For c > 0, set

Vc =

{
λ ∈ C,Re (λ) ≥ Im (λ)2

4c2
− c2

}
,(12.11)

Γc =

{
λ ∈ C,Re (λ) =

Im (λ)2

4c2
− c2

}
.

Then Vc,Γc are the image of {λ ∈ C, |Im (λ)| ≤ c} , {λ ∈ C, |Im (λ)| = c} by
the map λ → λ2.

By (12.8), we find that if λ ∈ Vα/8, then

|λ|m|Ĩ(m′)
a (λ)| ≤ C exp(−C ′/a).(12.12)

By (12.10),
exp (−Na) = F̃a (Na) + Ĩa (aNa) .(12.13)

If H is a Hilbert space and if A ∈ L (H) is trace class, set

‖A‖1 = Tr
[
(A∗A)1/2

]
.(12.14)

Then ‖A‖1 is a norm on the vector space of trace class operators.

Theorem 12.5. There exist β > 0, C > 0, C ′ > 0 such that if K ∈ g,
|K| ≤ β, a ∈ ]0, 1], ∥∥∥Ĩa (Aa)

∥∥∥
1
≤ C exp

(
−C ′/a

)
.(12.15)

Proof. By Theorem 12.2, the proof of our theorem is the same as the proof
of [BGo1, Th. 7.15]. In fact, for q ∈ N, let Ĩa,q(λ) be the holomorphic function
on C, which is characterized by the following two properties:

lim
λ→+∞

Ĩa,q(λ) = 0,(12.16)

Ĩ
(q)
a,q (λ)

(q − 1)!
= Ĩa(λ).
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By (12.12), (12.16), if λ ∈ Vα/8,

|λ|m|Ĩa,q(λ)| ≤ C exp(−C ′/a).(12.17)

We claim that, by Theorem 12.2, we can use the same methods as in [BGo1,
§7.3] to establish our theorem. Still, as explained in Remark 12.3, the estimates
in (12.1) contain the extra constant C ′

3a with respect to the corresponding in
[BGo1, Th. 7.11]. Still inspection of the proof of the simple estimates [BGo1,
equations (7.56)–(7.60)] shows immediately that replacing C3 (β) in [BGo1] by
C3 (β) + C ′

3a is irrelevant.
We can then proceed as in [BGo1, Th. 7.15], and find that for β > 0 and

a ∈ ]0, 1] small enough,

Ĩa (Aa) =
1

2πi

∫
Γα/8

Ĩa,q (λ) (λ −Aa)−q dλ.(12.18)

Using (12.18) and proceeding as in [BGo1], we get (12.15). The proof of our
theorem is completed.

By (9.3), (12.13), (12.15), we find that to establish (7.20) in Theorem 7.8,

we may as well replace Trs [g exp (−LK − Na)](2)t′=a by Trs
[
gF̃a (Na)

]dsdv
. This

will be done systematically in the sequel.
Let F̃a (Na) (x, x′) be the smooth kernel associated to the operator F̃a (Na)

with respect to the volume dvX (x′) / (2π)n/2. Then the kernel associated to
the operator gF̃a (Na) is just gF̃a (Na)

(
g−1x, x′). Moreover,

Trs
[
gF̃a (Na)

]dsdv
=

∫
X

Trs
[
gF̃a (Na)

(
g−1x, x

)]dsdv dvX (x)

(2π)n/2
.(12.19)

By (12.4),

F̃a (Na) = 2
∫ +∞

0
cos

(
s
√

Na
)

exp
(
−s2/4

)
f

(√
as

) ds√
4π

.(12.20)

The principal symbol of the differential operator Na is equal to a |ξ|2. Also
f (

√
as) vanishes for |√as| ≥ α.
Using finite propagation speed for solutions of hyperbolic equations [ChP,

§7.8], [T, §4.4], we find that given x ∈ X, F̃a(Na)(x, .) vanishes on
X \ BX (x, α), and depends only on the restriction of the operator Na to
the ball BX(x, α). Therefore, we have shown that the proof of (7.20) can be
made local on X. Moreover gF̃a

(
g−1x, x

)
vanishes if dX(g−1x, x) ≥ α.

Now we explain our choice of α. We use the notation of Section 9.2,
where ε0 was defined. We will assume that α ∈ ]0, ε0] is small enough so
that if x ∈ X, dX(g−1x, x) ≤ α, then x ∈ Vε0 . By (12.19) and by the above
considerations, it follows that for β > 0 small enough, for K ∈ z (g) such that
|K| ≤ β, our proof of (7.20) has been localized on the ε0-neighbourhood Vε0

of Xg.
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12.2. A new Grassmann variable ds. Recall that w was defined in (7.13).
Note that

s (1 − s) (1 − a/v) +
a

2v
=

v

w
+

a

4v
.(12.21)

Let ds be another odd Grassmann variable, which anticommutes with the
other odd Grassmann or Clifford variables.

Definition 12.6. Let N a be the operator,

(12.22)

N a = −a

(
∇Λ·(T ∗X)⊗̂F,u

ei
− 1

a

(
v

w
+

a

4v

) 〈
KX , ei

〉

+ (2s − 1)
c (ei)
2
√

a
ds − ĉ (ei)

2
√

a
ds

)2

+

∣∣∣KX
∣∣∣2

w

+
a

4
H +

1
2

√
a/v

(
1 + (2s − 1)2

)
ĉ
(
KX/

√
w

)
ds

−
√

ac
(
ω

(
∇F , gF

))
ds/2 + (2s − 1)

√
aĉ

(
ω

(
∇F , gF

))
ds/2

− 1
2

√
a/v

(
c
(
KX/

√
w

)
+ (2s − 1) ĉ

(
KX/

√
w

))
dv

+
a

8

〈
ek, R

TX (ei, ej) el

〉
c (ei) c (ej) ĉ (ek) ĉ (el)

+
1
4

〈
∇TX

ei
KX , ej

〉 (
−a

v
c (ei) c (ej) +

4v

w
ĉ (ei) ĉ (ej)

)
+ 4a

(
1
32

(−c (ei) c (ej) + ĉ (ei) ĉ (ej))ω2
(
∇F , gF

)
(ei, ej)

+
1
16

∣∣∣ω (
∇F , gF

)∣∣∣2 − 1
8
c (ei) ĉ (ej)∇F,u

ei
ω

(
∇F , gF

)
(ej)

)
.

Definition 12.7. Set

E1 = Trs
[
gF̃a (N a)

]dsdv
√

w

v3/2
, E2 = Trs

[
gF̃a (N a)

]dsdv w

v2
.(12.23)

Let E2|ds=ds be obtained from E2 by replacing ds by ds.

Proposition 12.8. The following identity holds:

Trs
[
gF̃a (Na)

]dsdv
= E1 + E2|ds=ds.(12.24)

Proof. First, we observe that Trs
[
gF̃a (Na)

]dsdv
is unchanged if we replace

dv/v by dv/v − (2s − 1) ds. Using (12.21), and comparing equations (9.1) and
(12.22), we complete the proof.
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12.3 A local coordinate system and a Getzler rescaling. In Sections 12.3–
12.7, we will assume that (s, v) ∈ [0, 1] × [a, 1] are such that w ∈ ]0, 1]. The
much easier case where w ∈ [1,+∞[ will be dealt with in Section 12.8.

If x ∈ Xg, we still define Hx as in Section 9.3, except that Λ· (R2
)

is now
replaced by Λ· (R3

)
.

Since Xg is totally geodesic in X, the Levi-Civita connection ∇TX induces
a Euclidean connection ∇NXg/X on the normal bundle NXg/X .

Take y0 ∈ Xg,K . If Z ∈ Ty0Xg, |Z| ≤ 4ε0, we identify Z as expXg
y0 (Z) ∈ Xg.

We trivialize NXg/X along the geodesic h ∈ [0, 1] → hZ ∈ Xg by parallel
transport with respect to the connection ∇NXg/X . Then (Z, Z ′) ∈ Ty0Xg ×
NXg/X,y0

→ expX
exp

Xg
y0 (Z)

(Z ′) ∈ X, |Z| , |Z ′| ≤ 4ε0 defines a coordinate system
near y0.

If Z0 ∈ NXg,K/Xg,y0
, |Z0| ≤ ε0, we trivialize TX along the geodesic

h ∈ [0, 1] → hZ0 ∈ Xg by parallel transport with respect to ∇TX . Then
Z ∈ Ty0X, |Z| ≤ 4ε0 → expX

Z0
(Z) ∈ X is a coordinate system near Z0 ∈ Xg.

By an abuse of notation, we will often write Z0 + Z instead of expX
Z0

(Z).
Now we fix Z0 ∈ NXg,K/Xg,y0

, |Z0| ≤ ε0, and take Z ∈ Ty0X, |Z| ≤ 4ε0.
The curve h ∈ [0, 1] → expX

Z0
(hZ) lies in BX

y0
(0, 5ε0). Moreover we identify

TZ0+ZX,
(
Λ· (T ∗X) ⊗̂F ⊗̂Λ·

(
R2

))
Z0+Z

with
TXZ0 ,

(
Λ· (T ∗X) ⊗̂F ⊗̂Λ·

(
R2

))
Z0

by parallel transport with respect to the connections

∇TX , 1∇Λ·(T ∗X)⊗̂F ⊗̂Λ·(R2),u,a

along this curve.
When Z0 ∈ NXg,K/Xg,y0

varies, we identify

TZ0X,
(
Λ· (T ∗X) ⊗̂F ⊗̂Λ·

(
R2

))
Z0

with
Ty0X,

(
Λ· (T ∗X) ⊗̂F ⊗̂Λ·

(
R2

))
y0

by parallel transport with respect to the connections ∇TX ,∇Λ·(T ∗X)⊗̂F,u along
the curve h ∈ [0, 1] → hZ0 ∈ Xg.

We may and we will assume that ε0 is small enough so that if |Z0|,
|Z| ≤ 4ε0, then

1
2
gTX
y0

≤ gTX
Z0+Z ≤ 3

2
gTX
y0

.(12.25)

We fix Z0 ∈ NXg,K/Xg,y0
, |Z0| ≤ ε0. The considered trivializations depend

explicitly on Z0. Therefore the action of the operator N a depends explicitly
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on Z0. We denote by N a
Z0

the action of this operator centred at Z0, i.e. N a

acts on a section h by the formula,

N a
Z0

h (Z) = N ah (Z0 + Z) .(12.26)

In (12.26), the operator acts on HZ0 . Also HZ0 is identified with Hy0 , so that
ultimately, N a

Z0
acts on Hy0 .

Recall that ρ (Z) was defined in (9.10), and that Ha was defined in (9.13).

Definition 12.9. Put

N 1,a
Z0

= −
(
1 − ρ2 (Z)

)
a∆TX + ρ2 (Z)N a

Z0
.(12.27)

Let N 2,a
Z0

= H−1
a N 1,a

Z0
Ha be the operator obtained from N 1,a

Z0
as in (9.14).

Let (e1, . . . , e�), (e�+1, . . . , em), (em+1, . . . , en) be orthonormal bases of
Ty0Xg,K , NXg,K/Xg,y0

, NXg/X,y0
. We denote with an upper index the corre-

sponding dual basis.
We use the notation in (10.7).

Definition 12.10. Let N 3,a
Z0

be the operator obtained from N 2,a
Z0

by

• replacing c (ei) by ca/v (ei) for 1 ≤ i ≤ m.

• replacing ĉ (ei) by ĉv (ei) for 1 ≤ i ≤ �.

• replacing ĉ (ei) by ĉv/w (ei) for � + 1 ≤ i ≤ m.

• keeping c (ei) and ĉ (ei) unchanged for m + 1 ≤ i ≤ n.

We denote by F̃a

(
N 3,a

Z0

)
(Z, Z ′) the kernel associated to the operator

F̃a

(
N 3,a

Z0

)
with respect to dvTX (Z ′) / (2π)n/2.

In the sequel, I, I ′. . . denote collections of distinct indices taken in 1, . . . , m,
eI , êI′ denote the corresponding wedge products of the ei, ê i in Λ· (T ∗Xg) and
in Λ̂· (T ∗Xg). We use the same notation for products of the associated annihi-
lation operators.

Clearly,

F̃a

(
N 3,a

Z0

) (
Z, Z ′) =

∑
eI ∧ êI′ieJ

iêJ′
QJ,J ′

I,I′
(
Z, Z ′) ,(12.28)

QJ,J ′

I,I′
(
Z, Z ′) ∈

(
End

(
Λ·

(
N∗

Xg/X

)
⊗̂F

)
⊗̂Λ·

(
R3

))
y0

.

Let F̃a

(
N 3,a

Z0

)max
(Z, Z ′) be the operator which appears in (12.28) after

e1 ∧ . . . ∧ em ∧ ê1 ∧ . . . ∧ êm,

with no annihilation operator.
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If x ∈ Xg, in the coordinate system Z ∈ TxX, |Z| ≤ 4ε0 → expX
x (Z),

there is a smooth function k′
x (Z) with values in R∗

+ such that

dvX (Z) = k′
x (Z) dvTX (Z) ,(12.29)

and
k′

x (0) = 1(12.30)

Proposition 12.11. For y0 ∈ Xg,K , Z0 ∈ NXg,K/Xg,y0
, |Z0| ≤ ε0, Z ∈

NXg/X,y0
, |Z| ≤ ε0/

√
a, the following identity holds:

(12.31)

a(n−m)/2Trs
[
gF̃a (N a)

(
g−1 (

Z0,
√

aZ
)
,
(
Z0,

√
aZ

))]
k′

(y0,Z0)

(√
aZ

)
= (−1)m(m+1)/2 1

w(m−�)/2
Trs

Λ·
(
N∗

Xg/X

) [
gF̃a

(
N 3,a

Z0

) (
g−1Z, Z

)]max
.

Proof. This is a trivial consequence of (9.35).

12.4. A family of norms. As indicated in Section 12.3, we will assume
that (s, v) ∈ [0, 1] × [a, 1] are such that w ∈ ]0, 1].

For 0 ≤ p ≤ �, 0 ≤ q ≤ m − �, set

Λ(p,q) (T ∗Xg)y0
= Λp

(
T ∗

y0
Xg,K

)
⊗̂Λq

(
N∗

Xg,K/Xg,y0

)
.(12.32)

The various Λ(p,q) (T ∗Xg)y0
are mutually orthogonal in Λ· (T ∗Xg). Also

Λr,r′ (
R3

)
denote the forms in Λ· (R3

)
which have partial degree r in the Grass-

mann variable ds, and r′ in the Grassmann variables ds, dv.
Let Iy0 be the vector space of smooth sections of(

Λ· (T ∗Xg) ⊗̂ Λ̂· (T ∗Xg) ⊗̂Λ·
(
N∗

Xg/X

)
⊗̂F ⊗̂Λ

(
R3

))
y0

on Ty0X; let I(p,p′,q′,r,r′)
y0 be the vector space of smooth sections of(

Λp (T ∗Xg) ⊗̂ Λ̂(p′,q′) (T ∗Xg) ⊗̂Λ·
(
N∗

Xg/X

)
⊗̂F ⊗̂Λr,r′

(
R3

))
y0

on Ty0X. Let I0
y0

, I(p,p′,q′,r,r′),0
y0 be the corresponding vector spaces of square-

integrable sections.

Definition 12.12. For a ∈ ]0, 1], (s, v) ∈ [0, 1] × [a, 1], y0 ∈ Xg,K , Z0 ∈
NXg,K/Xg,y0

, |Z0| ≤ ε0/
√

w, if h ∈ I(p,p′,q′,r,r′)
y0 has compact support, set

|h|2a,s,v,Z0,0
=

∫
Ty0X

|h (Z)|2
(
1 +

√
v |Z| ρ

(√
aZ/2

))2(m−p)(12.33)

·
(

1 +
(√

a/v |Z| + |Z0|
)

ρ
(√

aZ/2
))2(�−p′+1−r′)
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·
(

1 +
√

aw/v |Z| ρ
(√

aZ/2
))2(m−�−q′)

(
1 + (|Z| + |Z0|) ρ

(√
aZ/2

))2(1−r)
dvTX (Z) .

Then (12.33) defines a Hermitian product 〈 〉a,s,v,Z0,0
on I(p,p′,q′,r,r′),0

y0 . We
equip I0

y0
with the direct sum of these Hermitian products.

Using (7.14), we find that the coefficients
√

v,
√

a/v and
√

aw/v are uni-
formly bounded.

Proposition 12.13. For 1 ≤ i ≤ m, when acting on
(
Iy0 , | |a,s,v,Z0,0

)
,

the following family of operators have uniformly bounded norm:

1|√aZ|≤4ε0

√
a/vca/v (ei) , 1|√aZ|≤4ε0

√
a |Z| ca/v (ei) .(12.34)

Similarly, for 1 ≤ i ≤ �, the family of operators

1|√aZ|≤4ε0

√
vĉv (ei) , 1|√aZ|≤4ε0

√
a |Z| ĉv (ei) ,(12.35)

1|√aZ|≤4ε0

√
v |Z0| ĉv (ei) , 1|√aZ|≤4ε0

√
av/w |Z| ĉv (ei) ,

and for � + 1 ≤ i ≤ m, the family of operators

1|√aZ|≤4ε0

√
v/wĉv/w (ei) , 1|√aZ|≤4ε0

√
a |Z| ĉv/w (ei) ,(12.36)

are uniformly bounded. Finally the operators

1|√aZ|≤4ε0
ds, 1|√aZ|≤4ε0

|Z| ds,(12.37)

1|√aZ|≤4ε0
ds, 1|√aZ|≤4ε0

|Z0| ds, 1|√aZ|≤4ε0

√
a/v |Z| ds,

1|√aZ|≤4ε0
dv, 1|√aZ|≤4ε0

|Z0| dv, 1|√aZ|≤4ε0

√
a/v |Z| dv.

are also uniformly bounded.

Proof. By (9.10), if |√aZ| ≤ 4ε0, then ρ (
√

aZ/2) = 1. Then the uniform
bounds on the family (12.34) follow from the next uniform bounds under the
given conditions on s, v, Z0, Z:

(12.38) 1
1 +

√
v |Z| ≤ C,

√
v |Z|

1 +
√

v |Z| ≤ C,

a

v

(
1 +

√
v |Z|

)
≤ C,

a√
v
|Z|

(
1 +

√
v |Z|

)
≤ C.

The uniform bounds on the family (12.35) follow from the next uniform bounds,
where (7.14) is used,
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(12.39)
1

1 +
√

a/v |Z| + |Z0|
≤ C,

√
a/v |Z|

1 +
√

a/v |Z| + |Z0|
≤ C,

v

(
1 +

√
a/v |Z| + |Z0|

)
≤ C,

√
av |Z|

(
1 +

√
a/v |Z| + |Z0|

)
≤ C,

|Z0|
1 +

√
a/v |Z| + |Z0|

≤ C,

√
a/w |Z|

1 +
√

a/v |Z| + |Z0|
≤ C,

v |Z0|
(

1 +
√

a/v |Z| + |Z0|
)
≤ C,

√
a/wv |Z|

(
1 +

√
a/v |Z| + |Z0|

)
≤ C.

The bounds in (12.36) follow from the next bounds, where (7.14) is used again:

(12.40) 1
1 +

√
aw/v |Z|

≤ C,

√
aw/v |Z|

1 +
√

aw/v |Z|
≤ C,

v

w

(
1 +

√
aw/v |Z|

)
≤ C,

√
av/w |Z|

(
1 +

√
aw/v |Z|

)
≤ C.

Finally the fact that the operators in (12.37) have uniformly bounded norm is
trivial. The proof of our proposition is complete.

Definition 12.14. For a ∈ ]0, 1], (s, v) ∈ [0, 1] × [a, 1], y0 ∈ Xg,K , Z0 ∈
NXg,K/X,y0

, |Z0| ≤ ε0/
√

w, if h ∈ Iy0 has compact support, set

(12.41)
|h|2a,s,v,Z0,1

= |h|2a,s,v,Z0,0
+

1
w

∣∣∣ρ (√
aZ

) ∣∣∣KX (√
wZ0 +

√
aZ

)∣∣∣ h∣∣∣2
a,s,v,Z0,0

+
n∑

i=1

|∇ei
h|2a,s,v,Z0,0

.

Let (I1
y0

, | |t,x,1) be the Hilbert closure of the above vector space with respect to
| |a,s,v,Z0,1. Then (I1

y0
, | |a,s,v,Z0,1) is densely embedded in (I0

y0
, | |a,s,v,Z0,0) with

norm smaller than 1. We identify I0
y0

to its antidual by the Hermitian product
〈 〉a,s,v,Z0,0. Let (I−1

y0
, | |a,s,v,Z0,−1) be the antidual of (I1

y0
, | |a,s,v,Z0,1). Then I−1

y0

embeds into I1
y0

, and the norm of the embedding is ≤ 1.

12.5. Uniform estimates on the operators N 3,a√
wZ0

. If Z0 ∈ NXg,K/Xg,y0
,

|Z0| ≤ ε0, Z ∈ Ty0X, |Z| ≤ 4ε0, if U ∈ Ty0X, let τZ0U (Z) be the parallel trans-
port of U along the curve h → 2tZ0, 0 ≤ h ≤ 1/2, h → expZ0

((2h − 1)Z) , 1/2 ≤
h ≤ 1 with respect to ∇TX .

Recall that k = zK0. Now we have an analogue of [BGo1, Th. 8.18].
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Theorem 12.15. There exist constants C1 > 0, . . . , C4 > 0 such that
if a ∈ [0, 1], if (s, v) ∈ [0, 1] × [a, 1] are such that w ∈ ]0, 1], if n ∈ N,

y0 ∈ Xg,K , Z0 ∈ NXg,K/Xg,y0
, |Z0| ≤ ε0/

√
w, if z ∈ R, |z| ≤ 1, if h, h′ ∈ Iy0

have compact support in {Z ∈ Ty0X, |Z| ≤ n}, then

(12.42)

Re
〈
N 3,a√

wZ0
h, h′

〉
a,s,v,Z0,0

≥C1 |h|2a,s,v,Z0,1
− C2

(
1 + |nz|2

)
|s|2a,s,v,Z0,0

,∣∣∣∣Im 〈
N 3,a√

wZ0
h, h′

〉
a,s,v,Z0,0

∣∣∣∣≤C3 (1 + |nz|) |h|a,s,v,Z0,1
|h|a,s,v,Z0,0

,∣∣∣∣〈N 3,a√
wZ0

h, h′
〉

a,s,v,Z0,0

∣∣∣∣≤C4

(
1 + |nz|2

)
|h|a,s,v,Z0,1

∣∣h′∣∣
a,s,v,Z0,1

.

Proof. Recall that Z is parallel along the geodesic h ∈ [0, 1] → Z0+hZ. By
(9.6), we find that in the trivialization indicated in Section 12.3, if U ∈ Ty0X,

c
(
τZ0U

) (√
aZ

)
= c (U) + (2s − 1) 〈U, Z〉 ds,(12.43)

ĉ
(
τZ0U

) (√
aZ

)
= ĉ (U) + 〈U, Z〉 ds.

In particular the right-hand side of (12.43) does not depend on a.
Observe that by (7.14), if a, s, v are taken as indicated,

v/w + a/4v

remains uniformly bounded. Then using Proposition 12.13, (12.43) and by
proceeding as in [BL, Th. 11.26], [BGo1, Ths. 7.31 and 8.18], we find easily
that the term which is part of N 3,a√

wZ0
,

−a

(
∇Λ·(T ∗X)⊗̂F,u

ei
− 1

a

(
v

w
+

a

4v

) 〈
KX , ei

〉

+ (2s − 1)
c (ei)
2
√

a
ds − ĉ (ei)

2
√

a
ds

)2

+

∣∣∣KX
∣∣∣2

w
+

a

4
H

fits with the estimates in (12.42).
Using again Proposition 12.13, we find that the contribution of the terms

−
√

ac
(
ω

(
∇F , gF

))
ds/2 + (2s − 1)

√
aĉ

(
ω

(
∇F , gF

))
ds

is also harmless for our estimates.
Recall that w ∈ ]0, 1]. By Proposition 12.13, the operators

√
a/vca/v (ei) ,

1 ≤ i ≤ �,
√

vĉv (ei) , 1 ≤ i ≤ �,
√

vĉv/w (ei) , � + 1 ≤ i ≤ m remain uniformly
bounded. Using again (12.43), we find that the term

a

8

〈
ek, R

TX (ei, ej) el

〉
c (ei) c (ej) ĉ (ek) ĉ (el)
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in N a is also harmless for our estimates. The same argument applies to

4a

(
1
32

(−c (ei) c (ej) + ĉ (ei) ĉ (ej))ω2
(
∇F , gF

)
(ei, ej)

+
1
16

∣∣∣ω (
∇F , gF

)∣∣∣2 − 1
8
c (ei) ĉ (ej)∇F,u

ei
ω

(
∇F , gF

)
(ej)

)
.

Now, we will consider the other remaining terms in the right-hand side
of (12.22). Using (12.34) in Proposition 12.13 and the definition of the norm
| |a,s,v,Z0,1

in (12.41) , the term

−
√

a

2
√

v
c
(
KX/

√
w

)
dv

is easily dealt with. Moreover,√
a/vĉ

(
KX/

√
w

)
=

∑
1≤i≤n

〈
KX , τZ0ei

〉 √
a/vwĉ

(
τZ0ei

)
.(12.44)

By (12.37) in Proposition 12.13 and by (12.43), the contribution of the i,
m + 1 ≤ i ≤ n in the right-hand side of (12.44) is harmless. Also, by (7.14),

a/v ≤ Cv/w.(12.45)

By (12.36), (12.37) in Proposition 12.13, (12.43) and (12.45), the same holds
for the contribution of the i, � + 1 ≤ i ≤ m is also harmless. Also one verifies
easily that if 1 ≤ i ≤ �, 〈

KX (Z0 + Z) , τZ0ei (Z)
〉

and its first derivatives in the variables Z0, Z vanish at (0, 0), so that〈
KX , τ

√
wZ0ei

〉 (√
wZ0 +

√
aZ

)
= O

(∣∣√wZ0

∣∣2 +
∣∣√aZ

∣∣2) .(12.46)

By (12.46), if 1 ≤ i ≤ �, we get√
a/vw

〈
KX (√

wZ0 +
√

aZ
)
, τ

√
wZ0ei

(√
aZ

)〉
ĉ
(
τ
√

wZ0ei
(√

aZ
))

(12.47)

=
√

aw/v2
√

v |Z0| ĉ
(
τ
√

wZ0ei
(√

aZ
))

O (|Z0|)

+
√

av

w
|Z| ĉ

(
τ
√

wZ0ei
(√

aZ
))

O
(

a

v
|Z|

)
.

By (7.14), (12.35), (12.37) in Proposition 12.13, by (12.43), by (12.44)–(12.47),
we deduce that the term

1
2

√
a/vĉ

(
KX/

√
w

) ((
1 + (2s − 1)2

)
ds − (2s − 1) dv

)
in the right-hand side of (12.22) is compatible with (12.42).



EQUIVARIANT DE RAHM TORSIONS 207

Using (12.34) in Proposition 12.13 and (12.43), we see that the term
1
4

〈
∇TX

ei
KX , ej

〉 a

v
c (ei) c (ej)

is still harmless.
The final term to be considered is

1
4

〈
∇TX

ei
KX , ej

〉 4v

w
ĉ (ei) ĉ (ej) .

By (7.14), by (12.36), (12.37) in Proposition 12.13 and by (12.43), (12.45), the
case where � + 1 ≤ i, j ≤ n is easily dealt with. Also, using (2.7), we find that
for 1 ≤ i ≤ �,

∇TX
τ
√

wZ0ei(
√

aZ)K
X (√

wZ0 +
√

aZ
)

= O
(
w |Z0|2 + a |Z|2

)
.(12.48)

By Proposition 12.13 and by (12.43), (12.48), we find that the contribution of
the i, j such that 1 ≤ i or j ≤ � is also harmless. The proof of Theorem 12.15
is complete.

12.6. An estimate on the difference of two operators. Now we take
x ∈ Xg. In the sequel, the tensors which we will consider are evaluated at x.
By imitating (9.17), set

(12.49)

N 3,a′
x,K =−

(
∇ei

+
1
2

〈
RTX

2(v/w)K/2πZ, ei

〉)2

+

∣∣∣KXg

∣∣∣2
w

− KXg′
√

2vw
dv − dKXg′

2v
+

ĉ
(
RTX

2(v/w)/2πKZ
)
−

ω
(
∇F , gF

)
√

2

 ds

+
1
2

√
a

v
ĉ
(
KX/

√
w

) ((
1 + (2s − 1)2

)
ds − (2s − 1) dv

)
+

1
2

〈
ek, R

TX
2(v/w)K/2πel

〉
ĉ (ek) ĉ (el) −

1
2
ω2

(
∇F , gF

)
.

As the notation emphasizes, the operator N 3,a′
Z0

depends on a, through w, but
also because

√
a appears explicitly in the right-hand side of (12.49).

Definition 12.16. Let N 3,a
Z0

be the operator obtained from the operator
N 3,a′

Z0,K
by replacing ei by

√
vei, 1 ≤ i ≤ m, by replacing ĉ (ei) by ĉv (ei) for

1 ≤ i ≤ �, by ĉv/w (ei) for �+1 ≤ i ≤ m, while leaving the ĉ (ei) unchanged for
m + 1 ≤ i ≤ n.

Let N 3,0
Z0

be the operator obtained from N 3,a
Z0

by making a = 0, including in
w, which was defined in (7.13). By Theorem 9.8, we know that as a → 0,

N 3,a
Z0

→ N 3,0
Z0

.(12.50)

Now we establish an analogue of [BGo1, Th. 8.24].
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Theorem 12.17. There exist C > 0, r ∈ N such that for a ∈ ]0, 1], if
(s, v) ∈ [0, 1] × [a, 1] are such that w ∈ ]0, 1], if z ∈ R∗, |z| ≤ 1, n ∈ N,

y0 ∈ Xg,K , Z0 ∈ NXg,K/X,y0
, |Z0| ≤ ε0/

√
w, if the support of s ∈ Iy0 is included

in {Z ∈ Ty0X, |Z| ≤ n}, then∣∣∣(N 3,a√
wZ0

−N 3,a√
wZ0

)
s
∣∣∣
a,s,v,Z0,−1

(12.51)

≤ C (1 + nr)
√

a

v

(
1 + |Z0|2

)
|s|a,v,s,Z0,1

.

Proof. We need to show that if s, s′ ∈ Iy0 have compact support,∣∣∣∣〈(
N 3,a√

wZ0
−N 3,a√

wZ0

)
s, s′

〉
a,s,v,Z0,0

∣∣∣∣(12.52)

≤ C (1 + nr)
√

a

v

(
1 + |Z0|2

)
|s|a,v,s,Z0,1

∣∣s′∣∣a,v,s,Z0,1
.

We use again the Lichnerowicz formula for N a in (12.22). The first term in
the right-hand side of (12.22) does not raise any difficulty with respect to the
corresponding term in [BL, Th. 11.35] and of [BGo1, Th. 8.24].

Clearly

1
w

(∣∣∣KX(
√

wZ0 +
√

aZ)
∣∣∣2 − ∣∣∣KX(

√
wZ0)

∣∣∣2)(12.53)

=
1
w

〈
KX(

√
wZ0 +

√
aZ) − KX(

√
wZ0),

KX(
√

wZ0 +
√

aZ) + KX(
√

wZ0)
〉

.

By (12.53), since KX vanishes on Xg,K , so that if (Z0, Z) = (0, 0), then
KX(

√
wZ0 +

√
aZ) = 0, we get

1
w

(∣∣∣KX(
√

wZ0 +
√

aZ)
∣∣∣2 − ∣∣∣KX(

√
wZ0)

∣∣∣2)(12.54)

=
1
w
O

(∣∣√aZ
∣∣ (
|
√

wZ0| + |
√

aZ|
))

= O
(√

a/w |Z| |Z0| + (a/w) |Z|2
)

.

By (7.14), there is C > 0 such that w ≥ Ca, and so, by (12.54), we deduce
that for |Z| ≤ n,
(12.55)∣∣∣∣ 1

w

(∣∣∣KX (√
wZ0 +

√
aZ

)∣∣∣2 − |KX (√
wZ0

)
|2

)∣∣∣∣ ≤ C

√
a

w

(
1 + n2

)
(1 + |Z0|) .

Using (7.14), (12.55), we find that the term
∣∣∣KX

∣∣∣2 /w in the right-hand side
of (12.22) is also compatible with (12.51).
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By Proposition 12.13, the term

−
√

ac
(
ω

(
∇F , gF

))
ds/2 + (2s − 1)

√
aĉ

(
ω

(
∇F , gF

))
ds/2

can be dealt with easily. Using (7.14), (12.34), (12.37) in Proposition 12.13
and (12.43), the term

−1
2

√
a/vc

(
KX/

√
w

)
dv

can also be easily dealt with.
We still write √

a/vĉ
(
KX/

√
w

)
as in (12.44). The same arguments as above and (12.36), (12.37) in Proposition
12.13 allow us to control easily the contribution of the terms with �+1 ≤ i ≤ n.
Moreover, for 1 ≤ i ≤ �, as we saw after (12.45),〈

KX (Z0 + Z) , τZ0ei (Z)
〉

and its first derivatives in the variables (Z0, Z) vanish at (0, 0). Therefore, for
1 ≤ i ≤ �, ∣∣∣〈KX (√

wZ0 +
√

aZ
)
, τ

√
wZ0

(√
aZ

)
ei

〉
−

〈
KX (√

wZ0
)
, τ

√
wZ0ei

〉∣∣∣(12.56)

≤ C
√

a |Z|
(∣∣√wZ0

∣∣ +
∣∣√aZ

∣∣) .

Using (12.35), (12.37) in Proposition 12.13 again and (12.43), (12.56), we find
that in (12.44), the i such that 1 ≤ i ≤ � are also harmless.

By (2.7), we get〈
∇TX

τ
√

wZ0ej(
√

aZ)K
X (√

wZ0 +
√

aZ
)
, τ

√
wZ0ej′

(√
aZ

)〉
(12.57)

−
〈
∇TX

τ
√

wZ0ej(0)
KX (√

wZ0
)
, τ

√
wZ0ej′ (0)

〉
= O

(√
a |Z|

)
O

(√
w |Z0| +

√
a |Z|

)
.

Using Proposition 12.13 and (12.57), we see that the term

1
4

〈
∇TX

ei
KX , ej

〉 (
−a

v
c (ei) c (ej) +

4v

w
ĉ (ei) ĉ (ej)

)
can also be dealt with. The remaining terms in the right-hand side of (12.22)
are handled easily.

The proof of our theorem is completed.

Remark 12.18. Now we briefly explain why the terms containing√
a/vĉ

(
KX/

√
w

)
have been included in (12.49), although they vanish identi-

cally for a = 0. In fact, observe that
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√
a/vĉv (ei) =

√
2a

v
ê i −

√
a/2iêi

for 1 ≤ i ≤ �,(12.58) √
a/vĉv/w (ei) =

√
2aw

v
ê i −

√
a/2wiêi

for � + 1 ≤ i ≤ m.

Equation (12.58) makes clear that, if the terms
√

a/vĉ
(
KX/

√
w

)
had not been

included, in the right-hand side of (12.51),
√

a/v should have been replaced by
at least

√
a/v, which is not even bounded.

12.7. A proof of (7.20) when w ∈ ]0, 1]. Put

(12.59)

mh,v =−
{

(2π)m/2 2eK

(
TXg,∇TXg

)
β

Xg

K,v/2

Tr

g
ω

(
∇F , gF

)
2

exp
(
hω2

(
∇F , gF

))
/2π

}max

,

nv =

{
(2π)m/2 √πTrF |Xg [g]

v

2
β

Xg

K,v/2

∫ B̂

K̂Xg′ exp
(
−Ṙ

TXg

K /2π
)}max

,

oh,v =−
{

(2π)m/2 α
Xg

K,v/2

1
4
√

π
Tr

[
gω

(
∇F , gF

)
exp

(
hω2

(
∇F , gF

))
/2π

]
∫ B̂

K̂Xg′ exp
(
−Ṙ

TXg

K /2π
)}max

.

The above forms are the normalized integrands for mh,v, nv, oh,v in (7.9).
Let k (x, Z) be the smooth function on Uε0 , such that

dvX (x, Z) = k (x, Z) dvXg
(x) dvNXg/X

(Z) .(12.60)

Theorem 12.19. There exist c ∈ ]0, 1], γ ∈ ]0, 1] such that for p ∈ N,
there is C > 0 such that if z ∈ R∗, |z| ≤ c, a ∈ ]0, 1], if (s, v) ∈ [0, 1]× [a, 1] are
such that w ∈ ]0, 1], if y0 ∈ Xg,K , Z0 ∈ NXg,K/Xg,y0

, |Z0| ≤ ε0√
w

, then
(12.61)∣∣∣∣∣w(m−�)/2

(∫
Z∈NXg/X,R,y0

|Z|≤ε0

Trs

[
gF̃a (N a)

(
g−1 (

y0,
√

wZ0, Z
)
,

(
y0,

√
wZ0, Z

))]dsdv

k
(
y0,

√
wZ0, Z

) dvNXg/X
(Z)

(2π)(n−m)/2

−
(√

v

w
mv/w,w

(
y0,

√
wZ0

)
+ (2s − 1)

√
a/vwov/w,w

(
y0,

√
wZ0

))
dsdv

)∣∣∣∣∣
≤ C

(1 + |Z0|)�+1

(1 + |zZ0|)p

(
a

v

)γ

,
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(∫
Z∈NXg/X,R,y0

|Z|≤ε0

Trs

[
gF̃a (N a)

(
g−1 (

y0,
√

wZ0, Z
)
,

(
y0,

√
wZ0, Z

))]dsdv

k
(
y0,

√
wZ0, Z

) dvNXg/X
(Z)

(2π)(n−m)/2

−
(
1 + (2s − 1)2

) √
a

vw
nwdsdv

∣∣∣∣∣
≤ C

(1 + |Z0|)�+1

(1 + |zZ0|)p

(
a

v

)γ

.

Proof. We start from Proposition 12.11 and use Theorems 12.15 and 12.17.
We will now briefly explain how to use similar results established by Bismut-
Goette [BGo1] in a holomorphic context. In fact the above results are the
strict analogues of [BGo1, Prop. 8.11, Th. 8.18 and 8.24 ].

Since X is a compact manifold, there exists a finite family of smooth
functions f1, . . . , fr : X → [0, 1] which have the following properties:

• XK =
r⋂

j=1

{x ∈ X, fj(x) = 0.}

• On XK , df1, . . . , dfr span NXg,K/X .

Let Qa,s,v,Z0 be the family of operators

(12.62)
Qa,s,v,Z0 =

{
∇ei

, 1 ≤ i ≤ 2�;
z√
w

ρ
(√

aZ
)
fj

(√
wZ0 +

√
aZ

)
, 1 ≤ j ≤ r

}
.

Then commutator estimates similar to the estimates in [BL, Prop. 11.29] and
[BGo1, Prop. 8.22] can easily be proved, along the lines of the proof of The-
orems 12.15 and12.17. By proceeding as in [BGo1, §8.6–8.11], we obtain in
particular the analogue of [BGo1, eq. (8.76)], so that given p ∈ N, there exist
C > 0, C ′ > 0 such that if all the variables are taken as before,∣∣∣(F̃a

(
N 3,a√

wZ0

)
− exp

(
−N 3,a√

wZ0

)) (
g−1Z, Z

)∣∣∣(12.63)

≤ C

(
a

v

)1/4(n+1) (1 + |Z0|)�+1

(1 + |zZ0|)p exp
(
−C ′ |Z|2

)
.

We use the notation in (9.28). By (9.30) in Theorem 9.14 and by (10.13)
in Proposition 10.9,

(12.64)

2m/2

[∫
NXg/X

T̂rs
[
g exp

(
−N 3,a′

Z0,K

) (
g−1Z, Z

)] dvNXg/X
(Z)

(2π)(n−m)/2

]dsdv,max

=
(√

v

w
mw/v,w (y0, Z0) + (2s − 1)

√
a/vwov/w,w

)
dsdv,
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2m/2

[∫
NXg/X

T̂rs
[
g exp

(
−N 3,a′

Z0

) (
g−1Z, Z

)] dvNXg/X
(Z)

(2π)(n−m)/2

]dsdv,max

=
(
1 + (2s − 1)2

) √
a

vw
nwdsdv.

Using (12.63), (12.64) and proceeding as in [BGo1, §8.11], we get (12.61). The
proof of our theorem is completed.

Theorem 12.20. There exist c > 0, r ∈ N, C > 0, γ ∈ ]0, 1/2] such that
if a ∈ ]0, 1], (s, v) ∈ [0, 1] × [a, 1] are such that w ∈ ]0, 1], if z ∈ R∗

+, |z| ≤ c,
then
(12.65)

|z|r
∣∣∣∣Trs

[
gF̃a (N a)

]dsdv
−

(√
v

w
mv/w,w + (2s − 1)

√
a/vwov/w,w

)
dsdv

∣∣∣∣
≤ C

(
a

v

)γ

,

|z|r
∣∣∣∣∣Trs

[
gF̃a (N a)

]dsdv
− (1 + (2s − 1))2

√
a

vw
nwdsdv

∣∣∣∣∣ ≤ C

(
a

v

)γ

.

Proof. By Theorem 12.19, the proof of our theorem is the same as the
proof of [BGo1, Th. 8.29]. The idea is essentially that the ‘hard’ estimate of
Theorem 12.19 near Xg,K can be trivially extended near Xg, but away from
Xg,K .

Remark 12.21. By (7.14), (12.23), (12.24) and by (12.65), under the con-
ditions of Theorem 12.20, we get

|z|r
∣∣∣∣∣Trs

[
gF̃a (Na)

]dsdv
(12.66)

−
(

mv/w,w

v
+

(
1 + (2s − 1)2

)√
a
nw

v3
+ (2s − 1)

√
a
ov/w,w

v2

)
dsdv

∣∣∣∣∣
≤ C

(
a

v

)γ w

v2
.

Using the argument which was given after Theorem 12.5 and (12.66), we find
that (7.20) was established when w ∈ ]0, 1].

12.8. A proof of (7.20) when w ≥ 1. Now, we will assume that (s, v) ∈
[0, 1] × [a, 1] are such that w ≥ 1. Our estimates will now be much simpler,
since the fact that KX vanishes on XK will not play any role.

Our starting point is still equation (12.24). In Section 12.3, we replace
Z0 ∈ NXg,K/Xg

by an arbitrary x ∈ Xg. Otherwise, we use the same trivializa-
tions as in this section. We define the operator N 1,a

x as in Definition 12.9.
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Let (e1, . . . , em) be an orthonormal basis of TxXg, and let em+1, . . . , em

be an orthonormal basis of NXg/X,x. We still define the operator N 3,a
x as in

Definition 12.10, with the obvious modification that if 1 ≤ i ≤ m, ĉ (ei) is
replaced by ĉv (ei); i.e., w does not appear any more.

Then the obvious analogue of equation (12.31) holds, with w replaced
by 1. Let now Ip,p′,r,r′

x be the vector space of smooth sections of

Λp (T ∗Xg) ⊗̂ Λ̂p′
(T ∗Xg) ⊗̂Λ

(
N∗

Xg/X

)
⊗̂Λr,r′

(
R3

)
.

We use other notation similar to the notation of Section 12.4. Instead of
(12.33), if h ∈ Ip,p′,r,r′

x has compact support, set

|h|2a,s,v,x,0 =
∫

TxX
|h (Z)|2

(
1 +

√
v |Z| ρ

(√
aZ/2

))2(m−p)(12.67) (
1 +

√
a

v
|Z| ρ

(√
a |Z| /2

))2(m−p′+1−r′)

(
1 + |Z| ρ

(√
aZ/2

))2(1−r)
dvTX (Z) .

Then an analogue of Proposition 12.13 still holds. Namely the operators
in (12.34) are still uniformly bounded. Also the first row of operators in (12.35)
is now uniformly bounded, and here 1 ≤ i ≤ m. The fact that the operators
1|√aZ|≤4ε0

√
av/w |Z| ĉv (ei) , 1 ≤ i ≤ m, are uniformly bounded follows from

the above.
It is then easy to proceed as in Section 12.7 and to establish (12.66) also

in the case where w ≥ 1.

Remark 12.22. It should be pointed out that when w ≥ 1, in the right-
hand side of (12.22), we could have replaced c

(
KX/

√
w

)
and ĉ

(
KX/

√
w

)
by

c
(
KX

)
, ĉ

(
KX

)
, while replacing

√
w/v3/2 in our formula for E1 in (12.23) by

1/v3/2. This is because when w ≥ 1, we have the trivial

1/v3/2 ≤
√

w/v3/2.(12.68)
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