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On the Julia set of a typical
quadratic polynomial with a Siegel disk

By C. L. Petersen and S. Zakeri

To the memory of Michael R. Herman (1942–2000)

Abstract

Let 0 < θ < 1 be an irrational number with continued fraction expansion
θ = [a1, a2, a3, . . .], and consider the quadratic polynomial Pθ : z �→ e2πiθz +
z2. By performing a trans-quasiconformal surgery on an associated Blaschke
product model, we prove that if

log an = O(
√

n) as n → ∞,

then the Julia set of Pθ is locally connected and has Lebesgue measure zero.
In particular, it follows that for almost every 0 < θ < 1, the quadratic Pθ has
a Siegel disk whose boundary is a Jordan curve passing through the critical
point of Pθ. By standard renormalization theory, these results generalize to
the quadratics which have Siegel disks of higher periods.
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1. Introduction

Consider the quadratic polynomial Pθ : z �→ e2πiθz + z2, where 0 < θ < 1
is an irrational number. It has an indifferent fixed point at 0 with multiplier
P ′

θ(0) = e2πiθ, and a unique finite critical point located at −e2πiθ/2. Let Aθ(∞)
be the basin of attraction of infinity, Kθ = C � Aθ(∞) be the filled Julia set,
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and Jθ = ∂Kθ be the Julia set of Pθ. The behavior of the sequence of iterates
{P ◦n

θ }n≥0 near Jθ is intricate and highly nontrivial. (For a comprehensive
account of iteration theory of rational maps, we refer to [CG] or [M].)

The quadratic polynomial Pθ is said to be stable near the indifferent fixed
point 0 if the family of iterates {P ◦n

θ }n≥0 restricted to a neighborhood of 0 is
normal in the sense of Montel. In this case, the largest neighborhood of 0 with
this property is a simply connected domain ∆θ called the (maximal) Siegel disk
of Pθ. The unique conformal isomorphism ψθ : ∆θ

�−→ D with ψθ(0) = 0 and
ψ′

θ(0) > 0 linearizes Pθ in the sense that ψθ ◦ Pθ ◦ ψ−1
θ (z) = Rθ(z) := e2πiθz

on D.
Consider the continued fraction expansion θ = [a1, a2, a3, . . .] with an ∈ N,

and the rational convergents pn/qn := [a1, a2, . . . , an]. The number θ is said
to be of bounded type if {an} is a bounded sequence. A celebrated theorem of
Brjuno and Yoccoz [Yo3] states that the quadratic polynomial Pθ has a Siegel
disk around 0 if and only if θ satisfies the condition

∞∑
n=1

log qn+1

qn
< +∞,

which holds almost everywhere in [0, 1]. But this theorem gives no information
as to what the global dynamics of Pθ should look like. The main result of this
paper is a precise picture of the dynamics of Pθ for almost every irrational θ

satisfying the above Brjuno-Yoccoz condition:

Theorem A. Let E denote the set of irrational numbers θ = [a1, a2, a3, . . .]
which satisfy the arithmetical condition

log an = O(
√

n) as n → ∞.

If θ ∈ E , then the Julia set Jθ is locally connected and has Lebesgue measure
zero. In particular, the Siegel disk ∆θ is a Jordan domain whose boundary
contains the finite critical point.

This theorem is a rather far-reaching generalization of a theorem which
proves the same result under the much stronger assumption that θ is of bounded
type [P2]. It is immediate from the definition that the class E contains all ir-
rationals of bounded type. But the distinction between the two arithmetical
classes is far more remarkable, since E has full measure in [0, 1] whereas num-
bers of bounded type form a set of measure zero (compare Corollary 2.2).

The foundations of Theorem A was laid in 1986 by several people, notably
Douady [Do]. Their idea was to construct a model map Fθ for Pθ by performing
surgery on a cubic Blaschke product fθ. Along with the surgery, they also
proved a meta theorem asserting that Fθ and Pθ are quasiconformally conjugate
if and only if fθ is quasisymmetrically conjugate to the rigid rotation Rθ on S1.
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Soon after, Herman used a cross ratio distortion inequality of Światek [Sw] for
critical circle maps to give this meta theorem a real content. He proved that fθ

(or any real-analytic critical circle map with rotation number θ for that matter)
is quasisymmetrically conjugate to Rθ if and only if θ is of bounded type [H2].
In 1993, Petersen showed that the “Julia set” J(Fθ) is locally connected for
every irrational θ, and has measure zero for every θ of bounded type [P2]. The
measure zero statement was soon extended by Lyubich to all irrational θ. It
follows from Herman’s theorem that Jθ is locally connected and has measure
zero when θ is of bounded type. In this case, the Siegel disk ∆θ is a quasidisk
in the sense of Ahlfors and its boundary contains the finite critical point.

The idea behind the proof of Theorem A is to replace the technique of
quasiconformal surgery by a trans-quasiconformal surgery on a cubic Blaschke
product fθ. Let us give a brief sketch of this process.

We fix an irrational number 0 < θ < 1 and following [Do] we consider the
degree 3 Blaschke product

fθ : z �→ e2πit z2
(

z − 3
1 − 3z

)
,

which has a double critical point at z = 1. Here 0 < t = t(θ) < 1 is the unique
parameter for which the critical circle map fθ|S1 : S1 → S1 has rotation number
θ (see subsection 2.4). By a theorem of Yoccoz [Yo1], there exists a unique
homeomorphism hθ : S1 → S1 with hθ(1) = 1 such that hθ ◦ fθ|S1 = Rθ ◦ hθ.
Let H : D → D be any homeomorphic extension of hθ and define

Fθ(z) = Fθ,H(z) :=

 fθ(z) if |z| ≥ 1

(H−1 ◦ Rθ ◦ H)(z) if |z| < 1.

Then Fθ is a degree 2 topological branched covering of the sphere. It is holo-
morphic outside of D and is topologically conjugate to the rigid rotation Rθ

on D. This is the candidate model for the quadratic map Pθ.
By way of comparison, if there is any correspondence between Pθ and Fθ,

the Siegel disk for Pθ should correspond to the unit disk for Fθ, while the
other bounded Fatou components of Pθ should correspond to other iterated
Fθ-preimages of the unit disk, which we call drops. The basin of attraction
of infinity for Pθ should correspond to a similar basin A(∞) for Fθ (which is
the immediate basin of attraction of infinity for fθ). By imitating the case
of polynomials, we define the “filled Julia set” K(Fθ) as C � A(∞) and the
“Julia set” J(Fθ) as the topological boundary of K(Fθ), both of which are
independent of the homeomorphism H (compare Figure 2).

By the results of Petersen and Lyubich mentioned above, J(Fθ) is locally
connected and has measure zero for all irrational numbers θ. Thus, the local-
connectivity statement in Theorem A will follow once we prove that for θ ∈ E
there exists a homeomorphism ϕθ : C → C such that ϕθ ◦ Fθ ◦ ϕ−1

θ = Pθ.
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The measure zero statement in Theorem A will follow once we prove ϕθ is
absolutely continuous.

The basic idea described by Douady in [Do] is to choose the homeomorphic
extension H in the definition of Fθ to be quasiconformal, which by Herman’s
theorem is possible if and only if θ is of bounded type. Taking the Beltrami
differential of H on D, and spreading it by the iterated inverse branches of
Fθ to all the drops, one obtains an Fθ-invariant Beltrami differential µ on C
with bounded dilatation and with the support contained in the filled Julia
set K(Fθ). The measurable Riemann mapping theorem shows that µ can be
integrated by a quasiconformal homeomorphism which, when appropriately
normalized, yields the desired conjugacy ϕθ.

To go beyond the bounded type class in the surgery construction, one has
to give up the idea of a quasiconformal surgery. The main idea, which we
bring to work here, is to use extensions H which are trans-quasiconformal, i.e.,
have unbounded dilatation with controlled growth. What gives this approach
a chance to succeed is the theorem of David on integrability of certain Beltrami
differentials with unbounded dilatation [Da]. David’s integrability condition
requires that for all large K, the area of the set of points where the dilatation
is greater than K be dominated by an exponentially decreasing function of K

(see subsection 2.5 for precise definitions). An orientation-preserving homeo-
morphism between planar domains is a David homeomorphism if it belongs to
the Sobolev class W 1,1

loc and its Beltrami differential satisfies the above integra-
bility condition. Such homeomorphisms are known to preserve the Lebesgue
measure class.

To carry out a trans-quasiconformal surgery, we have to address two fun-
damental questions:

Question 1. Under what optimal arithmetical condition EDE on θ does
the linearization hθ admit a David extension H : D → D?

Question 2. Under what optimal arithmetical condition EDI on θ does
the model Fθ admit an invariant Beltrami differential satisfying David’s inte-
grability condition in the plane?

It turns out that the two questions have the same answer, i.e., EDE = EDI.
Clearly EDE ⊇ EDI, but the other inclusion is a nontrivial result, which we
prove in this paper by means of the following construction.

Define a measure ν supported on D by summing up the push forward of
Lebesgue measure on all the drops. In other words, for any measurable set
E ⊂ D, set

ν(E) := area(E) +
∑
g

area(g(E)),
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where the summation is over all the univalent branches g = F−k
θ mapping D to

various drops. Evidently ν is absolutely continuous with respect to Lebesgue
measure on D. However, we prove a much sharper result:

Theorem B. The measure ν is dominated by a universal power of Lebesgue
measure. In other words, there exist a universal constant 0 < β < 1 and a con-
stant C > 0 (depending on θ) such that

ν(E) ≤ C (area(E))β

for every measurable set E ⊂ D.

It follows immediately from this key estimate that the Fθ-invariant Bel-
trami differential µ constructed above satisfies David’s integrability condition
if µ|D does, or equivalently, if there is a David extension H for hθ.

Theorem B can be used to prove that a conjugacy ϕθ between Fθ and
Pθ exists whenever hθ admits a David extension to the disk. The following
theorem proves the existence of David extensions for circle homeomorphisms
which arise as linearizations of critical circle maps with rotation numbers in E .
This theorem, as formulated here in the context of our trans-quasiconformal
surgery, is new. However, we should emphasize that all the main ingredients
of its constructive proof are already present in a manuscript of Yoccoz [Yo2].

Theorem C. Let f : S1 → S1 be a critical circle map whose rotation
number θ = [a1, a2, a3, . . .] belongs to the arithmetical class E. Then the nor-
malized linearizing map h : S1 → S1, which satisfies h ◦ f = Rθ ◦ h, admits a
David extension H : D → D so that

area

{
z ∈ D :

∣∣∣∣∣∂H(z)
∂H(z)

∣∣∣∣∣ > 1 − ε

}
≤ M e−

α
ε for all 0 < ε < ε0.

Here M > 0 is a universal constant, while in general the constant α > 0
depends on lim supn→∞(log an)/

√
n and the constant 0 < ε0 < 1 depends on f .

Let us point out that Theorem C proves E ⊂ EDE, where EDE is the
arithmetical condition in Question 1. We have reasons to suspect that the
above inclusion might in fact be an equality, but so far we have not been able
to prove this.

When θ is of bounded type, the boundary of the Siegel disk ∆θ is a
quasicircle, so it clearly has Hausdorff dimension less than 2. McMullen has
proved that in this case the entire Julia set Jθ has Hausdorff dimension less
than 2 [Mc2], a result which improves the measure zero statement in Petersen’s
theorem. The situation when θ belongs to E but is not of bounded type
might be quite different. In this case, the proof of Theorem A shows that
the boundary of ∆θ is a David circle, i.e., the image of the round circle under
a David homeomorphism. It can be shown that, unlike quasiconformal maps,
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David homeomorphisms do not preserve sets of Hausdorff dimension 0 or 2,
and in fact there are David circles of Hausdorff dimension 2 [Z2]. So, a priori,
the boundary of ∆θ might have Hausdorff dimension 2 as well. Motivated by
these remarks, we ask:

Question 3. What can be said about the Hausdorff dimension of Jθ when
θ belongs to E but is not of bounded type? Does there exist such a θ for which
Jθ, or even ∂∆θ, has Hausdorff dimension 2?

The use of trans-quasiconformal surgery in holomorphic dynamics was
pioneered by Häıssinsky who showed how to produce a parabolic point from a
pair of attracting and repelling points when the repelling point is not in the
ω-limit set of a recurrent critical point [Ha]. In contrast, our maps have a
recurrent critical point whose orbit is dense in the boundary of the disk on
which we perform surgery.

The idea of constructing rational maps by quasiconformal surgery on
Blaschke products has been taken up by several authors; for instance Zakeri,
who in [Z1] models the one-dimensional parameter space of cubic polynomials
with a Siegel disk of a given bounded type rotation number. Also this idea is
central to the work of Yampolsky and Zakeri in [YZ], where they show that
any two quadratic Siegel polynomials Pθ1 and Pθ2 with bounded type rotation
numbers θ1 and θ2 are mateable provided that θ1 �= 1 − θ2. We believe adap-
tations of the ideas and techniques developed in the present paper will give
generalizations of those results to rotation numbers in E .

Acknowledgements. The first author would like to thank the Mathematics
Department of Cornell University for its hospitality and IMFUA at Roskilde
University for its financial support. The second author is grateful to IMS at
Stony Brook for supporting part of this research through NSF grant DMS
9803242 during the spring semester of 1999. Further thanks are due to the
referee whose suggestions improved our presentation of puzzle pieces in Section
4, and to P. Häıssinsky whose comment prompted us to add Lemma 5.5 to
our early version of this paper.

2. Preliminaries

2.1. General notation. We will adopt the following notation throughout
this paper:

• T is the quotient R/Z.

• S1 is the unit circle {z ∈ C : |z| = 1}; we often identify T and S1 via the
exponential map x �→ e2πix without explicitly mentioning it.
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• |I| is the Euclidean length of a rectifiable arc I ⊂ C.

• For x, y ∈ T or S1 which are not antipodal, [x, y] = [y, x] (resp. ]x, y[ =
]y, x[) denotes the shorter closed (resp. open) interval with endpoints x, y.

• diam(·), dist(·, ·) and area(·) denote the Euclidean diameter, Euclidean
distance and Lebesgue measure in C.

• For a hyperbolic Riemann surface X, 
X(·), diamX(·) and distX(·) denote
the hyperbolic arclength, diameter and distance in X.

• In a given statement, by a universal constant we mean one which is inde-
pendent of all the parameters/variables involved. Two positive numbers
a, b are said to be comparable up to a constant C > 1 if b/C ≤ a ≤ b C.
For two positive sequences {an} and {bn}, we write an � bn if there ex-
ists a universal constant C > 1 such that an ≤ C bn for all large n. We
define an � bn in a similar way. We write an � bn if bn � an � bn, i.e., if
there exists a universal constant C > 1 such that bn/C ≤ an ≤ C bn for
all large n. Any such relation will be called an asymptotically universal
bound. Note that for any such bound, the corresponding inequalities hold
for every n if C is replaced by a larger constant (which may well depend
on our sequences and no longer be universal).

Another way of expressing an asymptotically universal bound, which we
will often use, is as follows: When an � bn, we say that an/bn is bounded
from above by a constant which is asymptotically universal. Similarly,
when an � bn, we say that an and bn are comparable up to a constant
which is asymptotically universal.

Finally, let {an = an(x)} and {bn = bn(x)} depend on a parameter x

belonging to a set X. Then we say that an � bn uniformly in x ∈ X if
there exists a universal constant C > 1 and an integer N ≥ 1 such that
bn(x)/C ≤ an(x) ≤ Cbn(x) for all n ≥ N and all x ∈ X.

2.2. Some arithmetic. Here we collect some basic facts about continued
fractions; see [Kh] or [La] for more details. Let 0 < θ < 1 be an irrational
number and consider the continued fraction expansion

θ =
1

a1 + 1
a2 +

1
a3 + · · ·

= [a1, a2, a3, . . .],

with an = an(θ) ∈ N. The n-th convergent of θ is the irreducible fraction
pn/qn := [a1, a2, . . . , an]. We set p0 := 0, q0 := 1. It is easy to verify the
recursive relations

(2.1) pn = an pn−1 + pn−2 and qn = an qn−1 + qn−2
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for n ≥ 2. The denominators qn grow exponentially fast; in fact it follows
easily from (2.1) that

qn ≥ (
√

2)n for n ≥ 2.

Elementary arithmetic shows that

(2.2)
1

qn(qn + qn+1)
<

∣∣∣∣θ − pn

qn

∣∣∣∣ <
1

qnqn+1
,

which implies pn/qn → θ exponentially fast.
Various arithmetical conditions on irrational numbers come up in the

study of indifferent fixed points of holomorphic maps. Of particular interest
are:

• The class Dd of Diophantine numbers of exponent d ≥ 2. An irrational θ

belongs to Dd if there exists some C > 0 such that |θ − p/q| ≥ Cq−d for
all rationals p/q. It follows immediately from (2.2) that for any d ≥ 2

(2.3) θ ∈ Dd ⇔ sup
n

qn+1

qn
d−1

< +∞ ⇔ sup
n

an+1

qn
d−2

< +∞.

• The class D :=
⋃

d≥2 Dd of Diophantine numbers. From (2.3) it follows
that

θ ∈ D ⇔ sup
n

log qn+1

log qn
< +∞.

• The class D2 of Diophantine numbers of exponent 2. Again by (2.3)

θ ∈ D2 ⇔ sup
n

an < +∞.

For this reason, any such θ is called a number of bounded type.

• The class B of numbers of Brjuno type. By definition,

θ ∈ B ⇔
∞∑

n=1

log qn+1

qn
< +∞.

We have the proper inclusions

D2 � Dd � D � B

for any d > 2. Diophantine numbers of any exponent d > 2 have full measure
in [0, 1] while numbers of bounded type form a set of measure zero.

The following theorem characterizes the asymptotic growth of the se-
quence {an} for random irrational numbers:
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Theorem 2.1. Let ψ : N → R be a given positive function.

(i) If
∑∞

n=1
1

ψ(n) < +∞, then for almost every irrational 0 < θ < 1 there are
only finitely many n for which an(θ) ≥ ψ(n).

(ii) If
∑∞

n=1
1

ψ(n) = +∞, then for almost every irrational 0 < θ < 1 there are
infinitely many n for which an(θ) ≥ ψ(n).

This theorem is often attributed to E. Borel and F. Bernstein, at least in
the case ψ is increasing. For a proof of the general case, see Khinchin’s book
[Kh].

Corollary 2.2. Let E be the set of all irrational numbers 0 < θ < 1 for
which the sequence {an = an(θ)} satisfies

(2.4) log an = O(
√

n) as n → ∞.

Then E has full measure in [0, 1].

The class E will be the center of focus in the present paper. It is easily
seen to be a proper subclass of Dd for any d > 2.

2.3. Rigid rotations. We now turn to elementary properties of rigid rota-
tions on the circle. For a comprehensive treatment, we recommend Herman’s
monograph [H1]. Let Rθ : x �→ x + θ (mod Z) denote the rigid rotation by the
irrational number θ. For x ∈ R, set ‖x‖ := infn∈Z |x − n|. Then, for n ≥ 2,

‖qnθ‖ < ‖iθ‖ for all 1 ≤ i < qn.

Thus, considering the orbit of 0 ∈ T under the iteration of Rθ, the denominators
qn constitute the moments of closest return. Clearly the same is true for the
orbit of every point. It is not hard to verify that

(2.5) ‖qnθ‖ = (−1)n(qnθ − pn),

so that the closest returns occur alternately on the left and right sides of 0.
Consider the decreasing sequence ‖q1θ‖ > ‖q2θ‖ > ‖q3θ‖ > · · · and define

the scaling ratio

sn :=
‖qnθ‖
‖qn+1θ‖

> 1.

By (2.1) and (2.5)

sn−1 = an+1 +
1
sn

.

In particular, the two sequences {an+2} and {sn} have the same asymptotic
behavior. For example, it follows that the sequence {sn} is bounded if and
only if θ is of bounded type.

There are two basic facts about the structure of the orbits of rotations
that we will use repeatedly:
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• For i ∈ Z, let xi denote the iterate R−i
θ (0) (Caution: We have labelled

the orbit of 0 backwards to simplify the subsequent notations; this cor-
responds to the standard notation for the inverse map R−1

θ ). Given two
consecutive closest return moments qn and qn+1, the points in the orbit
of 0 occur in the order shown in Figure 1 (the picture shows the case n is
odd; for the case n is even simply rotate the picture 180◦ about 0). Note
that |[0, xqn ]| = |[0, x−qn ]| = ‖qnθ‖. Evidently, the orbit of any other
point of T enjoys the same order.

xqn+1
xqn+1 qn qn-1

xqn + xqn-1

...
0nqx x qn+1

Figure 1. Selected points in the orbit of 0 under the rigid rotation.

• Let In := [0, xqn ] be the n-th closest return interval for 0. Then the
collection of intervals

(2.6) Πn(Rθ) := {R−i
θ (In)}0≤i≤qn+1−1 ∪ {R−i

θ (In+1)}0≤i≤qn−1

defines a partition of the circle modulo the common endpoints. We call
Πn(Rθ) the dynamical partition of level n for Rθ.

Theorem 2.3 (Poincaré). Let f : T → T be any circle homeomorphism
without periodic points. Then there exists a unique irrational number θ and a
continuous degree 1 monotone map h : T → T such that h ◦ f = Rθ ◦ h.

The number θ is called the rotation number of f and is denoted by ρ(f).
The map h is called a Poincaré semiconjugacy. It easily follows from this
theorem that the combinatorial structure of the orbits of any circle homeo-
morphism with irrational rotation number θ is the same as the combinatorial
structure of the orbit of 0 for Rθ.

2.4. Critical circle maps. For our purposes, a critical circle map will be
a real-analytic homeomorphism of T with a critical point at 0. It was proved
by Yoccoz [Yo1] that for a critical circle map with irrational rotation number,
every Poincaré semiconjugacy is in fact a conjugacy:

Theorem 2.4 (Yoccoz). Let f : T → T be a critical circle map with
irrational rotation number ρ(f) = θ. Then there exists a homeomorphism
h : T → T such that h ◦ f = Rθ ◦ h. This h is uniquely determined once
normalized by h(0) = 0.

We will reserve the notation xi for the backward iterate f−i(0) of the
critical point 0 and In := [0, xqn ] for the n-th closest return interval under f−1.
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The dynamical partition Πn(f) of level n for f will be defined as h−1(Πn(Rθ)),
or equivalently, by (2.6) with Rθ replaced by f .

Herman took the next step in studying critical circle maps by showing
that the linearizing map h is quasisymmetric if and only if ρ(f) is irrational of
bounded type. The proof of this theorem makes essential use of the existence
of real a priori bounds developed by Światek and Herman. Here is a version of
their result needed in this paper (see [Sw], [H2], [dFdM], or [P4]).

Theorem 2.5 (Światek-Herman). Let f : T → T be a critical circle map
with ρ(f) irrational. Then

(i) There exists an asymptotically universal bound

|[y, f◦qn(y)]| � |[y, f−qn(y)]|

which holds uniformly in y ∈ T.

(ii) The lengths of any two adjacent intervals in the dynamical partition
Πn(f) are comparable up to a bound which is asymptotically universal.
In other words,

max
{ |I|
|J | : I, J ∈ Πn(f) are adjacent

}
� 1.

An important corollary of (ii), which exhibits a sharp contrast with the
case of rigid rotations, is that the scaling ratio is bounded from above and
below by an asymptotically universal constant regardless of the map f :

sn(f) :=
|In|
|In+1| � 1.

Remark 2.6. The above (i) and (ii) are presumably the most general
statements one can expect when working with the class of all critical circle
maps. However, stronger versions of these bounds can be obtained by restrict-
ing to a special class of such maps. For example, fix a critical circle map f0

and consider the one-dimensional family

F = {Rt ◦ f0 : 0 ≤ t ≤ 1 and ρ(Rt ◦ f0) is irrational}.

Then, within this family the above bounds hold for all n (rather than all large
n), with the constant depending only on f0 and not on t. In other words, there
exists a constant C = C(f0) > 1 such that

1
C

≤ |[y, f◦qn(y)]|
|[y, f−qn(y)]| ≤ C for all n ≥ 1, y ∈ T, and f ∈ F ,

1
C

≤ max
{ |I|
|J | : I, J ∈ Πn(f) are adjacent

}
≤ C for all n ≥ 1 and f ∈ F .
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We will need the following result on the size of the intervals in the dy-
namical partitions for a critical circle map; it is a direct consequence of real
a priori bounds (see for example [dFdM, Th. 3.1]):

Lemma 2.7. Let f : T → T be a critical circle map, with ρ(f) irrational,
and let Πn(f) denote the dynamical partition of level n for f . Then there exist
universal constants 0 < σ1 < σ2 < 1 such that

σn
1 � |In| ≤ max

I∈Πn(f)
|I| � σn

2 .

2.5. David homeomorphisms. An orientation-preserving homeomorphism
ϕ : Ω → Ω′ between planar domains belongs to the Sobolev class W 1,1

loc (Ω) if
the distributional partial derivatives ∂ϕ and ∂ϕ exist and are locally integrable
in Ω (equivalently, if ϕ is absolutely continuous on lines in Ω; see for example
[A]). In this case, ϕ is differentiable almost everywhere and the Jacobian
Jac(ϕ) = |∂ϕ|2 − |∂ϕ|2 ≥ 0 is locally integrable.

A Beltrami differential in Ω is a measurable (−1, 1)-form µ = µ(z) dz/dz

such that |µ| < 1 almost everywhere in Ω. We say that µ is integrable if there is
a homeomorphism ϕ : Ω → Ω′ in W 1,1

loc (Ω) which solves the Beltrami equation
∂ϕ = µ ∂ϕ. The classical quasiconformal mappings arise as the solutions of
the Beltrami equation in the case ‖µ‖∞ < 1. However, there are numerous
important problems in which one has to study this equation when ‖µ‖∞ = 1.
Simple examples show that such a µ is not generally integrable, so one has to
seek conditions on the growth of |µ| which guarantee integrability. One such
condition was given by Guy David in [Da], who studied Beltrami differentials
satisfying an exponential growth condition. Let us call µ a David-Beltrami
differential if there exist constants M > 0, α > 0, and 0 < ε0 < 1 such that

(2.7) area{z ∈ Ω : |µ|(z) > 1 − ε} ≤ M e−
α
ε for all 0 < ε < ε0.

This notion can be extended to arbitrary domains on the sphere Ĉ; it suffices
to replace the Euclidean area with the spherical area in the growth condition
(2.7).

David proved that the analogue of the measurable Riemann mapping the-
orem [AB] holds for the class of David-Beltrami differentials [Da]:

Theorem 2.8 (David). Let Ω be a domain in C and µ be a David -
Beltrami differential in Ω. Then µ is integrable. More precisely, there exists an
orientation-preserving homeomorphism ϕ : Ω → Ω′ in W 1,1

loc (Ω) which satisfies
∂ϕ = µ ∂ϕ almost everywhere. Moreover, ϕ is unique up to postcomposition
with a conformal map. In other words, if Φ : Ω → Ω′′ is another homeomorphic
solution of the same Beltrami equation in W 1,1

loc (Ω), then Φ ◦ ϕ−1 : Ω′ → Ω′′ is
a conformal map.



QUADRATIC POLYNOMIALS WITH A SIEGEL DISK 13

Solutions of the Beltrami equation given by this theorem are called David
homeomorphisms. They differ from classical quasiconformal maps in many
respects. A significant example is the fact that the inverse of a David home-
omorphism is not necessarily David. However, they enjoy some convenient
properties of quasiconformal maps such as compactness; see [T] for a study of
some of these similarities. The following result is particularly important [Da]:

Theorem 2.9. Let ϕ : Ω → Ω′ be a David homeomorphism. Then ϕ

and ϕ−1 are both absolutely continuous; in other words, for a measurable set
E ⊂ Ω,

area(E) = 0 ⇐⇒ area(ϕ(E)) = 0.

It easily follows that if ϕ : Ω → Ω′ is a David homeomorphism, then
∂ϕ �= 0 almost everywhere in Ω. Thus, the complex dilatation of ϕ, defined by
the measurable (−1, 1)-form

µϕ :=
∂ϕ

∂ϕ

dz

dz

is a well-defined David-Beltrami differential in the sense of (2.7). Equivalently,
the real dilatation of ϕ, given by

Kϕ :=
1 + |µϕ|
1 − |µϕ|

,

satisfies a condition of the form

(2.8) area{z ∈ Ω : Kϕ(z) > K} ≤ M e−αK for all K > K0

for some constants M > 0, α > 0, and K0 > 1.

2.6. Extensions of linearizing homeomorphisms. Let f be a critical circle
map with ρ(f) irrational and consider the linearizing map h given by Yoc-
coz’s Theorem 2.4. The problem of extending h to a self-homeomorphism of
the disk with nice analytic properties arises in various circumstances in holo-
morphic dynamics, particularly in the construction of Siegel disks by means
of surgery. When ρ(f) is of bounded type, it follows from Theorem 2.5 that
h is quasisymmetric. Hence, by the theorem of Beurling-Ahlfors [BA], it can
be extended to a quasiconformal map D → D whose dilatation only depends
on the quasisymmetric norm of h (which in turn only depends on supn an(θ),
where θ = ρ(f)). This allows a quasiconformal surgery (compare [Do], [P2],
[Z1], or [YZ]).

On the other hand, when ρ(f) is not of bounded type, again by Theo-
rem 2.5, h fails to be quasisymmetric and hence it admits no quasiconformal
extension. Thus, one is forced to give up the idea of quasiconformal surgery.

Still, one can ask if in this case h admits a David extension to D. One
way to address this problem is to develop a Beurling-Ahlfors theory for David
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homeomorphisms of the disk. For example, it is possible to show that a circle
homeomorphism whose local distortion has controlled growth admits a David
extension. But, to the best of our knowledge, the problem of characterizing
boundary values of David homeomorphisms has not yet been solved completely:

Problem. Find necessary and sufficient conditions for a circle homeomor-
phism to admit a David extension to the unit disk.

Another approach, less general but very effective in our dynamical frame-
work, is to attempt to construct David extensions directly for the circle home-
omorphisms which arise as linearizing maps of critical circle maps. This ap-
proach turns out to be successful because of the existence of real a priori
bounds (Theorem 2.5). In fact, using Yoccoz’s work in [Yo2], one can prove
the following:

Theorem C. Let f : S1 → S1 be a critical circle map whose rotation
number θ = [a1, a2, a3, . . .] belongs to the arithmetical class E defined in (2.4).
Then the linearizing map h : S1 → S1, which satisfies h ◦ f = Rθ ◦ h and
h(1) = 1, admits a David extension H : D → D. Moreover, the constant
M in condition (2.7) is universal, while in general α depends on
lim supn→∞(log an)/

√
n and ε0 depends on f .

The proof of this result is rather lengthy and will be presented in the
appendix.

3. A Blaschke model

3.1. Definitions. Given an irrational number 0 < θ < 1, consider the
degree 3 Blaschke product

(3.1) f = fθ : z �→ e2πit(θ) z2
(

z − 3
1 − 3z

)
,

which has superattracting fixed points at 0 and ∞ and a double critical point
at z = 1. Here 0 < t(θ) < 1 is the unique parameter for which the critical circle
map f |S1 : S1 → S1 has rotation number θ. By Theorem 2.4, there exists a
unique homeomorphism h : S1 → S1 with h(1) = 1 such that h ◦ f |S1 = Rθ ◦ h.
Let H : D → D be any homeomorphic extension of h and define

(3.2) F (z) = Fθ,H(z) :=

 f(z) if |z| ≥ 1

(H−1 ◦ Rθ ◦ H)(z) if |z| < 1.

It is easy to see that F is a degree 2 topological branched covering of the
sphere which is holomorphic outside of D and is topologically conjugate to a
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rigid rotation on D. By imitating the polynomial case, we define the “filled
Julia set” of F by

K(F ) := {z ∈ C : The orbit {F ◦n(z)}n≥0 is bounded}

and the “Julia set” of F as the topological boundary of K(F ):

J(F ) := ∂K(F ).

Let A(∞) be the basin of attraction of ∞ for F . Then A(∞) is simply-
connected and

K(F ) = C � A(∞), J(F ) = ∂A(∞).

Let us point out that although the homeomorphism H is by no means canon-
ical, neither J(F ) nor K(F ) nor any of the definitions to follow depends on a
particular choice of H. This is simply because the constructions do not involve
the values of F on D. The main purpose of introducing F for the following
constructions is to forget about the f -preimages of D in D. A particular choice
of H is only used in the final step of the proof of Theorem A, where we need
H to be a David homeomorphism.

The Blaschke product f was introduced by Douady and Herman [Do],
using an earlier idea of Ghys, and has been used by various authors in order
to study rational maps with Siegel disks; see for example [P2] and [Mc2] for
the case of quadratic polynomials, and [Z1] and [YZ] for variants in the case
of cubic polynomials and quadratic rational maps.

3.2. Drops and limbs. Here we follow the presentations of [P2] and [YZ]
with minor modifications. The reader might consult either of these references
for a more detailed description.

Figure 2. Filled Julia set K(F ) for θ = [a1, a2, a3, . . .], where an = �e
√

n�.
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By definition, the unique component of F−1(D) � D is called the 0-drop
of F and is denoted by U0. (In Figure 2, U0 is the prominently visible Jordan
domain attached to the unit disk at z = 1.) For n ≥ 1, any component U of
F−n(U0) is a Jordan domain called an n-drop, with n being the depth of U .
The map F ◦n = f◦n : U → U0 is a conformal isomorphism which extends
isomorphically to a neighborhood of U , because U0 does not intersect the
forward orbit of the critical values. The unique point F−n(1) ∩ ∂U is called
the root of U and is denoted by x(U). The boundary ∂U is a real-analytic
Jordan curve except at the root where it has an angle of π/3. We simply refer
to U as a drop when the depth is not important. For convenience, we define
D to be a (−1)-drop, i.e., a drop of depth −1. Note that these drops do not
depend on the extension H used to define the map F in (3.2).

Let U and V be distinct drops of depths m and n, respectively, with
m ≤ n. Then either U ∩ V = ∅ or else U ∩ V = x(V ) and m < n. In the latter
case, we call U the parent of V , and V a child of U . Every n-drop with n ≥ 0
has a unique parent which is an m-drop with −1 ≤ m < n. In particular, the
root of this n-drop belongs to the boundary of its parent.

By definition, D is said to be of generation 0. Any child of D is of gen-
eration 1. In general, a drop is of generation k if and only if its parent is of
generation k − 1. Given a point w ∈ ⋃

n≥0 F−n(1), there exists a unique drop
U with x(U) = w. In particular, two distinct children of a parent have distinct
roots.

We give a symbolic description of drops by assigning addresses to them.
Set U∅ := D, where ∅ is the empty index. For n ≥ 0, let xn := F−n(1) ∩ S1

and let Un be the n-drop of generation 1 with root xn. Let ι = ι1, ι2, . . . , ιk be
any multi-index of length k ≥ 1, where each ιj is a nonnegative integer. We
recursively define the (ι1+ι2+· · ·+ιk)-drop Uι1,ι2,...,ιk of generation k with root
x(Uι1,ι2,...,ιk) = xι1,ι2,...,ιk as follows. We have already defined these for k = 1.
Suppose that we have defined xι1,ι2,...,ιk−1

for all multi-indices ι1, ι2, . . . , ιk−1 of
length k − 1. Then, we define

xι1,ι2,...,,ιk := F−(1+ι1)(xι2,...,ιk) ∩ ∂Uι1,ι2,...,ιk−1
.

The drop Uι1,ι2,...,ιk will be determined by the condition of having xι1,ι2,...,ιk as
its root. By the way these drops have been given addresses, we have

F (Uι1,ι2,...,ιk) =

 Uι2,...,ιk if ι1 = 0

Uι1−1,ι2,...,ιk if ι1 > 0.

Let us fix a drop Uι1,...,ιk . By definition, the limb Lι1,...,ιk is the closure
of the union of this drop and all its descendants, i.e., children, grandchildren,
etc.:

Lι1,...,ιk :=
⋃

Uι1,...,ιk,··· .
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The integers k and ι1 + · · · + ιk are called generation and depth of the limb
Lι1,...,ιk , respectively. Any two limbs are either disjoint or nested. Moreover,
for any limb Lι1,...,ιk , we have

F (Lι1,...,ιk) =

 Lι2,...,ιk if ι1 = 0

Lι1−1,ι2,...,ιk if ι1 > 0.

In particular, every limb eventually maps to L0 and then to the entire filled
Julia set L∅ = K(F ).

3.3. Main results on J(F ). The Julia set J(F ) = J(Fθ,H) serves as a
model for the Julia set Jθ of the quadratic polynomial Pθ : z �→ e2πiθz + z2

when Jθ is locally connected. In fact, it follows from the next theorem that F

and Pθ are topologically conjugate if and only if Jθ is locally connected:

Theorem 3.1 (Petersen). For every irrational 0 < θ < 1 the Julia set
J(F ) is locally connected.

See [P2] for the original proof as well as [Ya] and [P3] for a simplified
version of it. The central theme of the proof is the fact that the Euclidean
diameter of a limb Lι1,...,ιk tends to 0 as its depth ι1 + · · · + ιk tends to ∞.

Another issue is the Lebesgue measure of these Julia sets:

Theorem 3.2 (Petersen, Lyubich). For every irrational 0 < θ < 1 the
Julia set J(F ) has Lebesgue measure zero.

This theorem was first proved in [P2] for θ of bounded type. The proof of
the general case, suggested by Lyubich, can be found in [Ya].

4. Puzzle pieces and a priori area estimates

4.1. The dyadic puzzle. This subsection outlines the construction of puzzle
pieces and recalls their basic properties. Much of the material here can be found
in greater detail in [P2] and [P3].

Let R0 denote the closure of the fixed external ray landing at the re-
pelling fixed point β ∈ C�D of F . Similarly, let R1/2 := F−1(R0)�R0 denote
the closure of the external ray landing at the preimage of β (for landing of
(pre)periodic rays, see for example [DH1], [P1], or [TY]). Let E be the equipo-
tential {z : G(z) = 1}, where G : A(∞) → R is the Green’s function on the
basin of infinity. The set

C � (R0 ∪R1/2 ∪ E ∪ D ∪ U0 ∪ U00 ∪ U000 ∪ · · · ∪ U1 ∪ U10 ∪ U100 ∪ · · ·)
has two bounded connected components which are Jordan domains. Let P1,0

be the closure of that component which intersects the external rays with angles
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in ]0, 1/2[. Call the closure of the other component P1,1, i.e., the one which
intersects the external rays with angles in ]1/2, 1[ (see Figure 3). We call these
two sets the puzzle pieces of level 1. They form the basis of a dyadic puzzle as
follows. For n ≥ 2, define the puzzle pieces of level n as the set of homeomorphic
(univalent in the interior) preimages F−(n−1)(P1,0) and F−(n−1)(P1,1). There
are exactly 2n puzzle pieces of level n. The collection of all puzzle pieces of all
levels ≥ 1 is the dyadic puzzle.

P

1

100

10

P

E

P

U

x

2x
x

1,0

P
01U

U

U

1,1

2

U
U

0

00

U000

β

U

1

1

1

R1/2

R0

Figure 3. The two puzzle pieces P1,0 and P1,1 of level 1, together
with their four preimages, which form the puzzle pieces of level 2.
Also shown (in dark shades) are two critical puzzle pieces P and P ′

which are “above” and “below” the critical point 1, respectively.

Let P and P ′ be two distinct puzzle pieces of levels m and n, respectively,
with m ≤ n. Then either P and P ′ are interiorly disjoint or else P ′ � P and
m < n. Moreover, for any puzzle piece P and any drop U , either P ∩ U = ∅
or else P contains a neighborhood of U � {x(U)}, where x(U) is the root of U .
The boundary of each puzzle piece P consists of a rectifiable arc in A(∞)
and a rectifiable arc in J(F ). The latter arc starts at an iterated preimage
of β, follows along the boundaries of drops passing from child to parent until
it reaches the boundary of a drop U of minimal generation. It then follows
the boundary of U along a nontrivial arc I. Finally, it returns along the
boundaries of another chain of descendants of U until it reaches a different
iterated preimage of β. We call I = I(P ) ⊂ ∂U the base arc of the puzzle
piece P .
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A puzzle piece P is called critical if it contains the critical point x0 = 1.
The critical puzzle piece P1,0 is said to be “above” (the critical point 1), because
its intersection with a small disk around 1 is contained in the closed upper half-
plane; similarly P1,1 is said to be “below”. More generally, a critical puzzle
piece P is “above” if P ⊂ P1,0 and “below” if P ⊂ P1,1 (compare Figure 3).

Recall that xj := F−j(1)∩S1 for all j ∈ Z. The base arc I(P ) of a critical
puzzle piece P is an arc [xj , 1] ⊂ S1, where j = aqn+1 + qn for some n ≥ 0
and some 0 ≤ a < an+2, as is easily seen by induction. In fact, this holds
trivially for the puzzle pieces P1,0 and P1,1 (in which case n = a = 0). Suppose
P is a critical puzzle piece with I(P ) = [xj , 1], where j = aqn+1 + qn and
0 ≤ a < an+2. Then for every 0 < k < qn+1 the puzzle piece F−k(P ) with base
arc F−k(I(P )) ⊂ S1 is not critical. But F−qn+1(P ) is the union of two critical
puzzle pieces: The Swap of P , which is on the opposite side of 1 as P is, and
the Gain of P , which is on the same side of 1 as P . We denote these puzzle
pieces by PS and PG, respectively (see Figure 4 right). A brief computation
shows that the base arc of PS is I(PS) = [1, xqn+1 ] = [1, xjS ], and the base
arc of PG is I(PG) = [xj+qn+1 , 1] = [xjG , 1]. Here jS := qn+1 = 0qn+2 + qn+1

and jG := j + qn+1 = (a + 1)qn+1 + qn ≤ qn+2, with equality if and only if
a = an+2 − 1 in which case jG = qn+2 = 0qn+3 + qn+2. It follows that a Swap
increases n by 1 and a Gain either preserves n or increases it by 2. The base
arcs satisfy I(PS)∩ I(P ) = {1} and I(PG) ⊂ I(P ). As puzzle pieces are either
interiorly disjoint or nested, we immediately obtain PS∩P = {1} and PG ⊂ P .

I

R
O

B

G

P

x

P

j

P
G

S

x

x
i0,U

0,i

1 S

j

xjGj

U

G

S

U0

ϕ

ϕ

Figure 4. Right: a critical puzzle piece P together with its Gain
PG and its Swap PS and the corresponding moves ϕG and ϕS. Left:
the boundary coloring of P .

We use the notations ϕS and ϕG for the two inverse branches of F−qn+1

mapping P homeomorphically to PS and PG, respectively. These will be called
the moves from P . We also call ϕS a Swap and ϕG a Gain (see pages 180–181
of [P2]). We use the iterative notation ϕ◦k

S (resp. ϕ◦k
G ) to indicate the effect of

k consecutive Swaps (resp. Gains).
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In order to make precise references to the constructions in [P2], we need
to reproduce the definition of “boundary coloring” here. This is a partition
of the boundary of each critical puzzle piece P into five closed and interiorly
disjoint arcs I, O, B, R and G defined as follows (compare Figure 4 left):

• The base arc I = I(P ) = P ∩ S1 = [xj , 1], with j = aqn+1 + qn and
0 ≤ a < an+2, has already been defined.

• The Orange arc O = O(P ) := P∩∂U0 = [1, x0,i], where i = bqn+qn−1−1,
1 ≤ b ≤ an+1, and n is given by j as above. Here and in what follows,
the notation [1, x0,i] indicates the shorter subarc of ∂U0 with endpoints
1 and x0,i. (For a comparison, note that in [P2] the point x0,i is denoted
by yi+1.)

• The Blue arc B = B(P ) := P ∩ ∂Uj , with j as above.

• The Red arc R = R(P ) := P ∩ ∂U0,i, with i as above.

• Finally, the Green arc G = G(P ) is the closure of the complementary arc
∂P � (I ∪ O ∪ B ∪ R).

In what follows, P (I, O, B, R, G) will denote the critical puzzle piece with
boundary arcs I, O, B, R, G. Note that the arcs R and G of any critical puzzle
piece are compact subsets of C � D.

The relation between boundary colorings and moves is as follows. Suppose

ϕ : P ′(I ′, O′, B′, R′, G′) → P (I, O, B, R, G)

is a move from the critical puzzle piece P ′ to the critical puzzle piece P . Then

ϕ(I ′) = I ∪ O ϕ(R′ ∪ G′) = G.

Moreover, if ϕ = ϕS is a Swap, then

ϕS(O′) = B ϕS(B′) = R,

while if ϕ = ϕG is a Gain, then

ϕG(O′) = R ϕG(B′) = B.

One can use the above relations to verify that neither I, O nor even
I, O, B, R can determine a puzzle piece P uniquely. In fact, if P is a criti-
cal puzzle piece with I(P ) = [xqn , 1], it follows from the definitions of Swap
and Gain that the two puzzle pieces P1 = ϕ◦2

S (P ) and P2 = ϕ
◦an+2

G (P ) are
distinct but have identical base arcs I(P1) = I(P2) = [xqn+2 , 1]. On the other
hand, if P1 and P2 are two distinct critical puzzle pieces with the same base
arc I(P1) = I(P2), the above relations show that the two puzzle pieces ϕ◦3

S (P1)
and ϕ◦3

S (P2) are distinct but have identical I, O, B, R boundary arcs.
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4.2. A sequence of good puzzle pieces. Following [P2], we describe how to
choose a sequence of critical puzzle pieces with bounded geometry and good
combinatorics. The discussion culminates in Theorem 4.3, which is essential
in the proofs of both Theorems A and B.

Let us introduce a binary tree T whose vertices are labeled by critical
puzzle pieces and whose edges are labeled by the moves Swap and Gain. (In
[P2], the vertices are labeled by the boundaries of the critical puzzle pieces, not
the pieces themselves.) Let P 0 denote the level 1 critical puzzle piece which
does not contain the critical value x−1. It is easy to check that P 0 = P1,1

if 0 < θ < 1
2 and P 0 = P1,0 if 1

2 < θ < 1. The root of the binary tree T
is the critical puzzle piece P 0. The children of P 0 are the two critical puzzle
pieces (P 0)S and (P 0)G, and the joining edges are labeled by the corresponding
moves ϕS and ϕG. The infinite binary tree T is then defined by repeating this
procedure inductively at each vertex.

Our main goal is to choose an infinite path P 0 ϕ0

→ P 1 ϕ1

→ P 2 ϕ2

→ · · · in
T whose vertices Pn have bounded geometry and good combinatorics. A
natural choice for this path is given by ϕn = ϕS for all n, which amounts
to defining each Pn to be the Swap child of its parent Pn−1. This choice is
combinatorially compatible with the standard renormalization of critical circle
maps, and fulfills some of the geometric estimates we need. For example, [Ya]
and [YZ] give asymptotically universal estimates on the diameter and area of
such Pn, by an argument simpler than the one given in [P2]. However, more
sophisticated bounds on the perimeter or inner radius of puzzle pieces, as in
Theorem 4.3 below, do not follow directly from that argument. This is one of
the reasons why we adopt the original construction of [P2] in what follows.

Here is the strategy of this construction: For the above simple choice
of the Pn, it is not easy to estimate the hyperbolic length of the Green arc
G(Pn), and this will sharply affect the perimeter and inner radius bounds.
To remedy this problem, instead of choosing the Swap child at every step, we
allow isolated occurrences of Gain children in our infinite path. Formally, we
define a subtree G∗ ⊂ T by removing any Gain child of a Gain parent and all
its descendants. In other words, if we picture T as an infinite binary tree with
its root at the bottom, growing upward, and having Gain branches to the left
and Swap branches to the right at every vertex, then G∗ is the maximal subtree
of T containing P 0 and with no pair of consecutive left branches. We initially
construct an infinite path {ϕn : P̃n → P̃n+1}n≥0 within the subtree G∗; the
freedom acquired by allowing isolated Gains makes it easy to prove that {P̃n}
has bounded geometry (Theorem 4.2). A slight modification of this path then
leads to our final choice of the sequence of puzzle pieces {Pn} which has the
right combinatorics also (Theorem 4.3).

We remark in passing that many of the estimates in [P2] are in fact proved
for a larger subtree G ⊃ G∗, in which several consecutive Gains may occur.
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Definition 4.1. For an open interval J � S1, define the hyperbolic domain

(4.1) C∗
J := (C∗ � S1) ∪ J.

The simplified notation 
∗J(·) = 
C∗
J
(·), diam∗

J(·) = diamC∗
J
(·) and dist∗J(·) =

distC∗
J
(·) will be used for the hyperbolic arclength, diameter and distance in C∗

J .

For n ≥ 0, let

Jn := ]x−qn+1+qn , x−qn [ and Jn
+ := ]x−qn+1+qn , 1[.

Note that
In � {1} = [xqn , 1[ � Jn

+ � Jn.

The main technical tool in [P2] is the following collection of estimates on the
length of the boundary arcs of critical puzzle pieces.

Theorem 4.2. Let P (I, O, B, R, G) be a critical puzzle piece with the
base arc I = [xj , 1], where j = aqn+1 + qn and 0 ≤ a < an+2. Let J = Jn and
J+ = Jn

+. Then the following asymptotically universal bounds hold :

(i) |O| � |I| and 
∗J(O) � 
∗J(I) � 1.

Moreover, if P is a vertex of G∗, then

(ii) 
∗J(B) � 
∗J+
(B) � 1,

(iii) 
C�D(R) � 1.

Finally, there exists an infinite path {ϕk : P̃ k → P̃ k+1}k≥0 in G∗, starting at
the root P̃ 0 = P 0, such that

(iv) 
C�D(G̃k) � 1,

where G̃k = G(P̃ k) is the Green arc of ∂P̃ k.

Proof. The bounds in (i) are immediate consequences of real a priori
bounds (Theorem 2.5) and the fact that f has a cubic critical point at 1
(compare the proof of Theorem 2.2(1) in [P2] as well as the following proof of
(ii)).

The bounds in (ii) are essentially proved in Lemma 3.3 of [P2]; we shall
however sketch a proof here. As C∗

J+
⊂ C∗

J , the Schwarz lemma implies
that 
∗J(·) ≤ 
∗J+

(·) so we need only prove the bound 
∗J+
(B) � 1. Let

ϕ : P ′(I ′, O′, B′, R′, G′) → P (I, O, B, R, G) be the move to P from its par-
ent P ′. Then ϕ is a branch of F−qn = f−qn . We divide the proof into two
cases depending on whether ϕ = ϕS is a Swap or ϕ = ϕG is a Gain.
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Assume first that ϕ is a Swap, so that B = ϕ(O′). Let K := f◦qn(J+) =
]x−qn+1 , x−qn [. Then W := f−qn(C∗

K) is a proper subdomain of C∗
J+

, so by the
Schwarz lemma the inclusion i : W ↪→ C∗

J+
contracts the hyperbolic metrics.

On the other hand, the critical values of f◦qn are located at 0,∞, x−1, . . . , x−qn ,
none of which belongs to C∗

K . This shows f◦qn : W → C∗
K is an unbranched

covering map, hence a local isometry by the Schwarz lemma. Thus ϕ = i◦f−qn

is a contraction with respect to the hyperbolic metrics on C∗
K and C∗

J+
, so that


∗J+
(B) = 
∗J+

(ϕ(O′)) ≤ 
∗K(O′),

and we need only prove that 
∗K(O′) � 1. Since the arc O′ is contained in ∂U0

which makes an angle of π/3 with S1 at 1, it suffices to show that

(4.2) |O′| � min { |[1, x−qn ]| , |[1, x−qn+1 ]| }.
For this, observe that O′ = [1, x0,i′ ], where i′ = b′qn−1 + qn−2 − 1 and 1 ≤ b′ ≤
an, so that

[1, x0,qn−1] ⊂ O′ ⊂ [1, x0,qn−2−1].

By real a priori bounds (Theorem 2.5) and the fact that f has a cubic critical
point at 1, we have

|[1, x0,qn−2−1]| � |[1, x0,qn−1]| � |[1, x−qn ]| � |[1, x−qn+1 ]|,
which proves (4.2).

Assume next that ϕ is a Gain and let

ϕ′ : P ′′(I ′′, O′′, B′′, R′′, G′′) → P ′(I ′, O′, B′, R′, G′)

denote the move to P ′ from its parent P ′′. Then ϕ′ is a Swap because P is a
vertex of G∗. Hence B = ϕ(ϕ′(O′′)). From this point on, the proof is similar
to the Swap case treated above, and further details will be left to the reader.

The bound in (iii) is Theorem 2.2(4) in [P2]; note that G∗ ⊂ G.
Finally, the existence of an infinite path {ϕk : P̃ k → P̃ k+1}k≥0 in G∗

satisfying (iv) is proved in pages 188–189 of [P2]. Let us just give a brief
outline here: Suppose P (I, O, B, R, G) is a vertex of G∗, so that 
C�D(R) ≤ L

for some asymptotically universal L > 0 by (iii). Let P ′(I ′, O′, B′, R′, G′) and
P ′′(I ′′, O′′, B′′, R′′, G′′) be the two children of P . Then the moves from P to P ′

and P ′′ contract the hyperbolic metric on C � D, because F−1(C � D) ⊂ C � D
and F = f has no critical values in C � D. Since these moves map R ∪ G to
G′ and G′′, we obtain

(4.3) max{
C�D(G′), 
C�D(G′′)} ≤ 
C�D(G) + L.

A more careful application of the Schwarz lemma (see Lemma 1.11 of [P2])
shows that there is an asymptotically universal ε > 0 such that

(4.4) min{
C�D(G′), 
C�D(G′′)} ≤ (1 − ε)(
C�D(G) + L).
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To define the sequence {P̃ k} it suffices to specify the move ϕk at each vertex,
starting with P̃ 0 = P 0 already defined. Set ϕ0 = ϕ1 = ϕS, so that P̃ 1 = (P̃ 0)S
and P̃ 2 = (P̃ 1)S. Assuming k ≥ 2 and P̃ k is defined, we consider two cases: If
P̃ k is a Gain child, by the definition of G∗ we must choose ϕk = ϕS. On the
other hand, if P̃ k is a Swap child, then we have a choice between Swap and
Gain, and we define ϕk to be the move which introduces a definite contraction
in (4.4). It follows that the length 
k := 
C�D(G̃k) undergoes a contraction of
the form (4.3) for all k and a definite contraction of the form (4.4) for at least
every other k. It follows that


k+2 ≤ (1 − ε)(
k + L) + L

for all k. Evidently this implies that {
k} is bounded by a constant C =
C(L, ε). Since L and ε are asymptotically universal, the same must be true for
C and this finishes the proof of (iv).

The following theorem gives us a sequence of critical puzzle pieces with
bounded geometry and good combinatorics. The existence of such a sequence
was the crucial step in the proof of local connectivity in [P2], and will be fully
utilized in the next two subsections. In what follows, by the inner and outer
radius of a critical puzzle piece P (I, O, B, R, G) is meant

rin(P ) := min {|1 − z| : z ∈ B ∪ R ∪ G}
rout(P ) := max {|1 − z| : z ∈ B ∪ R ∪ G}.

Theorem 4.3. There exists a sequence {Pn}n≥0 of critical puzzle pieces
with

I(Pn) = In := [1, xqn ], O(Pn) = On := [1, x0,qn+qn−1−1],(4.5)

I((Pn)S) = In+1, O((Pn)S) = On+1(4.6)

which satisfies the following asymptotically universal bounds:

diam∗
Jn(Pn) � 
∗Jn(∂Pn) � 1(4.7)

diam∗
Jn+1((Pn)S) � 
∗Jn+1(∂(Pn)S) � 1(4.8)

rin(Pn) � |In| � rout(Pn)(4.9)

rin((Pn)S) � |In+1| � rout((Pn)S).(4.10)

Proof. The following essentially repeats the construction in Proposition
and Definition 3.1 of [P2]. It is not hard to see from the definition of Swap as
well as the boundary coloring that if I(P ) = In for some n, then I(PS) = In+1

and O(PS) = On+1. This observation is the key to the following construction.
By definition, P̃ 1 = (P̃ 0)S and P̃ 2 = (P̃ 1)S. We set Pn := P̃n for n = 0, 1, 2.
For n ≥ 3, we look for a k with I(P̃ k) = In and O(P̃ k) = On. If such a k exists,
we define Pn := P̃ k; otherwise we look for a k with I(P̃ k) = In−1. If such a k
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exists, we define Pn := (P̃ k)S; otherwise we take a k with I(P̃ k) = In−2. Such a
k must exist, because the sequence of n’s associated with {P̃ k}k≥0 cannot omit
two or more consecutive integers. In this last case, we define Pn := ((P̃ k)S)S,
that is, the critical puzzle piece obtained from two consecutive Swaps of P̃ k.
By the construction, {Pn}n≥0 defined this way satisfies (4.5) and (4.6).

Let us now prove (4.7); the proof of (4.8) is similar. First note that


∗Jn(∂Pn) ≥ 2 diam∗
Jn(Pn) ≥ 2
∗Jn(In) � 1,

where the last bound comes from Theorem 4.2(i). It follows that

(4.11) 
∗Jn(∂Pn) � diam∗
Jn(Pn) � 1.

To prove the upper bounds, let P be a puzzle piece in the sequence {P̃ k}k≥0

given by Theorem 4.2(iv), where as before I(P ) = [xj , 1], j = aqn+1 + qn, and
0 ≤ a < an+2. Then the bound

(4.12) 
∗Jn(∂P ) � 1

simply follows from Theorem 4.2 because C�D ⊂ C∗
Jn implies 
∗Jn(·) ≤ 
C�D(·).

Furthermore, any move ϕ : P (I, O, B, R, G) → P ′(I ′, O′, B′, R′, G′) contracts
the hyperbolic metric on C � D. Since G′ = ϕ(R ∪ G), we obtain from Theo-
rem 4.2(iii), (iv)


C�D(G′) ≤ 
C�D(R) + 
C�D(G) � 1.

In particular, when P ′ = PS is the Swap of P , it follows from Theorem 4.2
together with 
∗Jn+1(·) ≤ 
C�D(·) that

(4.13) 
∗Jn+1(∂PS) � 1.

By the construction, every Pn is of the form P̃ k or (P̃ k)S or ((P̃ k)S)S for
some k. This, together with (4.12) and (4.13), implies

(4.14) diam∗
Jn(Pn) � 
∗Jn(∂Pn) � 1.

Now (4.7) follows by combining (4.11) and (4.14).
Finally, let us prove (4.9); the proof of (4.10) is similar. Since diam∗

Jn(Pn)
� 1, we have the Euclidean bound diam(Pn) � |Jn|. It follows from Theo-
rem 4.2(i) that for any z ∈ Bn ∪ Rn ∪ Gn,

|1 − z| ≤ diam(Pn) � |Jn| � |In|,
so that

(4.15) rout(Pn) � |In|.
On the other hand, by Theorem 4.2(ii)–(iv) and the fact that 
∗Jn

+
(·) ≤ 
C�D(·)

we have 
∗Jn
+
(Bn ∪ Rn ∪ Gn) � 1. Hence, every z ∈ Bn ∪ Rn ∪ Gn satisfies

dist∗Jn
+
(z, xqn) � 1. It follows that

|1 − z| � |Jn
+| � |In|,
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which gives

(4.16) rin(Pn) � |In|
Putting (4.15) and (4.16) together, we obtain (4.9).

As a final preparation, it will be convenient to consider each puzzle piece
Pn as a compact subset of a simply connected domain rather than the multiply
connected domain C∗

Jn . This can be done at an asymptotically negligible
expense by introducing appropriate cuts in C∗

Jn (alternatively, we could take
the maximal embedded hyperbolic disk in C∗

Jn centered at 1).

Definition 4.4. Let R be the closure of the unique external ray landing
at the critical value x−1 and let R̂ be the image of R under the reflection
z �→ 1/z. For an open interval J � S1 � {x−1}, define the simply connected
domain

(4.17) CJ := C∗
J � (R∪ R̂) = (C � (S1 ∪R ∪ R̂)) ∪ J.

As before, the notation 
J(·) = 
CJ
(·), diamJ(·) = diamCJ

(·) and distJ(·) =
distCJ

(·) will be reserved for the hyperbolic arclength, diameter and distance
in CJ .

Corollary 4.5. The sequence of critical puzzle pieces {Pn}n≥0 in The-
orem 4.3 also satisfies the following asymptotically universal bounds:

diamJn(Pn) � 
Jn(∂Pn) � 1,

diamJn+1((Pn)S) � 
Jn+1(∂(Pn)S) � 1.

Proof. The hyperbolic distance dist∗Jn(1,R ∪ R̂) tends to infinity as
n → ∞. Hence on the hyperbolic ball in C∗

Jn of a fixed radius centered at 1,
the hyperbolic metrics of C∗

Jn and CJn are asymptotically equal as n → ∞.

4.3. Some new sets. For 0 ≤ j < qn+1, define In
j and Jn

j as the iterated
preimages (F |S1)−j(In) and (F |S1)−j(Jn), respectively. Observe that In

j � Jn
j ,

and that the collection

{In
j }

qn+1−1
j=0 ∪ {In+1

j }qn−1
j=0

induces the dynamical partition Πn(f) as defined in subsection 2.4.
Based on the sequence {Pn}n≥0 given by Theorem 4.3, we shall define

several new sets, which will be the basis of the proofs of our main theorems.
In what follows the integer n ≥ 0 will be fixed.

(i) Define Pn
0 := Pn and Pn

qn+1
:= (Pn)S. For 0 ≤ j < qn+1, let Pn

j be the
unique puzzle piece with base arc In

j which maps isomorphically to Pn

by F ◦j , and for qn+1 ≤ j < qn+1 + qn, let Pn
j be the unique puzzle piece

with base arc In+1
j−qn+1

which maps isomorphically to Pn
qn+1

by F ◦j−qn+1 .
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(ii) For 0 ≤ j < qn+1 +qn, we define the reflected puzzle piece P̂n
j ⊂ D as the

image of Pn
j under z �→ 1/z. By abuse of the language, these reflected

puzzle pieces and their iterated F -preimages outside D will also be called
“puzzle pieces”. To emphasize this distinction, the original elements of
the dyadic puzzle will sometimes be referred to as the exterior puzzle
pieces.

(iii) Let Qn
0 ⊂ U0 be the unique puzzle piece which satisfies F (Qn

0 ) = f(P̂n
qn+1

)
= P̂n

qn+1−1. For 0 ≤ j < qn+1 + qn, define Qn
j to be the unique puzzle

piece in Uj which maps isomorphically to Qn
0 by F ◦j . Similarly, for

0 ≤ j < qn+1 + qn, define Q̂n
j ⊂ D to be the image of Qn

j under the
reflection z �→ 1/z (see Figure 5).

(iv) For 0 ≤ j < qn+1 + qn, j �= qn+1 − 1, let Pn
0,j be the unique puzzle piece

whose base arc is on ∂U0 and satisfies F (Pn
0,j) = Pn

j . Similarly, we define
P̂n

0,j ⊂ U0 as the reflection of Pn
0,j in ∂U0, i.e., the unique puzzle piece

with the same base arc as Pn
0,j which satisfies F (P̂n

0,j) = P̂n
j .

1
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Figure 5. Some other puzzle pieces.

(v) For 0 ≤ j < qn+1 + qn, let Qn
0,j and Q̂n

0,j denote the unique puzzle pieces
containing x0,j which map by F to Qn

j and Q̂n
j , respectively.

(vi) We define the closed annuli

An :=
qn+1+qn−1⋃

j=0

(
Pn

j ∪ Qn
j

)
,
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Ân :=
qn+1+qn−1⋃

j=0

(
P̂n

j ∪ Q̂n
j

)
,

An := An ∪ Ân.

It is easy to check that An is a closed topological annulus whose interior
contains the unit circle.

(vii) Similarly, we define the closed “rectangles”

An
0 :=

qn+1+qn−1⋃
j=0,j �=qn+1−1

Pn
0,j ∪

qn+1+qn−1⋃
j=0

Qn
0,j ,

Ân
0 :=

qn+1+qn−1⋃
j=0,j �=qn+1−1

P̂n
0,j ∪

qn+1+qn−1⋃
j=0

Q̂n
0,j ,

An
0 := An

0 ∪ Ân
0 .

It is easy to check that An
0 is a closed topological disk which does not

contain the critical point x0 = 1. Moreover, An ∪ An
0 contains an open

neighborhood of the union S1 ∪ ∂U0 (see Figure 6). Note also that
F−1(Ân) ∩ U0 = Ân

0 ∪ Qn
0 .

An

An ∩ An
0

An
0

Figure 6. Schematic picture of the annulus An and the “rectangle” An
0 .

(viii) Finally, pull these annuli and rectangles back to define the sets

Zn
−1 := Ân, Zn

k := Ân ∪
k⋃

m=0

F−m(Ân
0 ∪ Qn

0 ),

Zn := Ân ∪
∞⋃

m=0

F−m(Ân
0 ∪ Qn

0 ),

Yn
−1 := An, Yn

k := An ∪
k⋃

m=0

F−m(An
0 ), Yn := An ∪

∞⋃
m=0

F−m(An
0 ).
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Observe that Zn
k and Zn = limk→∞Zn

k are subsets of the filled Julia set
K(F ). Moreover, we have the inclusions

Zn+2
k ⊂ Zn

k , Yn+2
k ⊂ Yn

k , Zn
k ⊂ Yn

k

Zn+2 ⊂ Zn, Yn+2 ⊂ Yn, Zn ⊂ Yn.

In what follows we use the generic symbol P for any of the puzzle pieces
P or Q defined in the items (i)–(v) above, as well as their iterated preimages
under F . Similarly, the generic symbol P̂ will be used for any of the puzzle
pieces P̂ or Q̂ defined in (i)–(v) and their preimages. Note that puzzle pieces
always come in pairs (P, P̂ ) which are the reflections of one another through
the boundary of some drop U , with P ∩ U = ∅, and P̂ ⊂ U .

By an abuse of language, we say that a puzzle piece P belongs to one of
the sets defined in items (vi)–(viii) above if P appears as a puzzle piece in
one of the unions used in the definition of that set. We use the notation � to
express this relation. As an example, Pn

0 belongs to An and we write Pn
0 � An.

Note that the relation � implies the set-theoretic ⊂, but not vice versa. For
instance, P̂n+2

0 ⊂ Zn but P̂n+2
0 � Zn does not hold.

4.4. Supporting lemmas. This subsection will prove several a priori es-
timates on the geometry of the puzzle pieces and the sets defined above. As
is common in dynamics, distortion estimates for long compositions of f or its
inverse play a central role. We use the following version of the classical Köebe
distortion theorem (see for example [Po]):

Theorem 4.6. Let φ : U → C be a univalent map on a simply-connected
domain U � C and let K ⊂ U be compact with hyperbolic diameter d. Then

χ(φ, K) := sup
{∣∣∣∣ φ′(z)

φ′(w)

∣∣∣∣ : z, w ∈ K

}
≤ e4d.

Lemma 4.7. The following asymptotically universal bounds exist :

diamJn
0
(Pn

0 ) = diamJn
0
(P̂n

0 ) � 1,

diamJn+1
0

(Pn
qn+1

) = diamJn+1
0

(P̂n
qn+1

) � 1,

diamJn
0
(Qn

0 ) = diamJn
0
(Q̂n

0 ) � 1.

Proof. The first two come from Corollary 4.5. To prove the third bound,
observe that diam(P̂n

qn+1
) � diam(Qn

0 ) and hence by the second bound we have
the (Euclidean) asymptotically universal bound

|Jn
0 | � |Jn+1

0 | � diam(P̂n
qn+1

) � diam(Qn
0 ).

Since Qn
0 is a subset of U0 whose boundary makes an angle of π/3 with the

unit circle at z = 1, the third bound follows.
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Combining Lemma 4.7 with Theorem 4.6, we immediately obtain

Corollary 4.8. Let g be any univalent branch of f−k defined on the
simply connected domain CJn

0
. Then, there exist the asymptotically universal

distortion bounds

χ(g, Pn
0 ∪ P̂n

0 ) � χ(g, Pn−1
qn

∪ P̂n−1
qn

) � χ(g, Qn
0 ∪ Q̂n

0 ) � 1

uniformly in g.

Lemma 4.9. There exists the following asymptotically universal bound :

area(Pn
0 ) � |In|2.

Proof. This is an immediate consequence of (4.9) in Theorem 4.3 and the
fact that ∂U0 makes an angle of π/3 with S1 at 1.

Lemma 4.10. There exist the following asymptotically universal bounds:

area(Pn
0 � An+2) � area(P̂n

0 � Ân+2) � area(Pn
0 ∪ P̂n

0 ),

area(Pn
qn+1

� An+2) � area(P̂n
qn+1

� Ân+2) � area(Pn
qn+1

∪ P̂n
qn+1

),

area(Qn
0 � An+2) � area(Q̂n

0 � Ân+2) � area(Qn
0 ∪ Q̂n

0 ).

Proof. We prove the first bound, the other two being similar. Clearly,

area(Pn
0 � An+2) � area(P̂n

0 � Ân+2) � area(Pn
0 ∪ P̂n

0 ),

and so we need only prove the reverse bound. With i = qn + qn−1−1, the base
arc of the puzzle piece Pn+2

0,i satisfies I(Pn+2
0,i ) = [x0,i+qn+2 , x0,i] ⊂ [1, x0,i] =

O(Pn). It follows that Pn+2
0,i ⊂ Pn

0 �An+2 (see Figure 5). Observe that by real
a priori bounds, Corollary 4.8 and Lemma 4.9,

|In|2 � |[xqn+2+qn+qn−1 , xqn+qn−1 ]|2

� |[x0,qn+2+i, x0,i]|2 = |I(Pn+2
0,i )|2

� area(Pn+2
0,i ).

Hence by another application of Lemma 4.9,

area(Pn
0 ∪ P̂n

0 ) � |In|2 � area(Pn+2
0,i ).

Since area(Pn
0 � An+2) ≥ area(Pn+2

0,i ), we obtain the reverse bound

area(Pn
0 � An+2) � area(Pn

0 ∪ P̂n
0 ).
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Our next task is to estimate the area of the sets Zn and Yn defined above.
We use Corollary 4.8 to prove two distortion lemmas which will be essential in
the proof of Theorem 4.15. The first lemma deals with the pull-backs of the
critical puzzle pieces to An and An

0 only:

Lemma 4.11. Every pair (P, P̂ ) �An or An
0 is a bounded distortion pull -

back of the corresponding pair of critical puzzle pieces in An. More precisely,
let g be the univalent branch of f−j which maps the pair of critical puzzle
pieces (P ′, P̂ ′) � An to (P, P̂ ), where (P ′, P̂ ′) = (Pn

0 , P̂n
0 ) or (Pn

qn+1
, P̂n

qn+1
) or

(Qn
0 , Q̂n

0 ). Then
χ(g, P ′ ∪ P̂ ′) � 1

uniformly in g.

Proof. Let us first assume (P, P̂ ) � An. It suffices to consider the case
(P, P̂ ) = (Pn

j , P̂n
j ) for some 0 ≤ j < qn+1, because the other two cases are

similar. The critical values of f◦j are located at 0,∞, x−1, . . . , x−j , none of
which belongs to CJn

0
since j < qn+1. Hence the univalent branch g = f−j

which maps Pn
0 ∪ P̂n

0 to Pn
j ∪ P̂n

j extends univalently to the simply-connected
domain CJn

0
, and the claim follows from Corollary 4.8.

Now let us assume (P, P̂ ) � An
0 . Then either (P, P̂ ) = (Pn

0,j , P̂
n
0,j) for

some 0 ≤ j < qn+1 − 1, or for some qn+1 − 1 < j < qn+1 + qn, or else
(P, P̂ ) = (Qn

0,j , Q̂
n
0,j) for some 0 ≤ j < qn+1 + qn. Again, let us consider only

the first case, the others being similar. In this case, the branch g = f−j−1

which maps Pn
0 ∪ P̂n

0 to Pn
0,j ∪ P̂n

0,j has a univalent extension to CJn
0

since by
j + 1 < qn+1 the latter set does not contain any critical value of f◦j+1. Hence,
again, the claim follows from Corollary 4.8.

The second distortion lemma considers further pull-backs of puzzle pieces.
First, it will be convenient to include the following:

Definition 4.12. For an integer k ≥ 0 and a k-drop U , consider the
branch of f−k = F−k mapping U0 isomorphically to U . It is easy to see
that this branch has a univalent extension to the simply connected domain
C � (D ∪R), where R is the closure of the external ray landing at the critical
value x−1. We denote this univalent extension by gU . Furthermore, we define

Hk := {gU : U is a drop of depth k},
and we set H :=

⋃∞
k=0 Hk. Note that H0 = {id}.

Lemma 4.13. For every pair of puzzle pieces (P, P̂ ) �An
0 , there exists the

asymptotically universal distortion bound

χ(g, P ∪ P̂ ) � 1

which holds uniformly in (P, P̂ ) and g ∈ H.
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Proof. Note that every g ∈ H is defined on An
0 since the domain C�(D∪R)

certainly contains An
0 . Fix a pair (P, P̂ ) � An

0 . By the proof of Lemma 4.11,
the univalent branch g1 of f−j−1 which maps the pair of critical puzzle pieces
(P ′, P̂ ′) � An to (P, P̂ ) has a univalent extension to CJn

0
or CJn+1

0
(depending

on which of the three possible types (P ′, P̂ ′) is). Let us assume we have the
first case, the other two cases being similar. If Ω := g1(CJn

0
), it follows that the

hyperbolic diameter diamΩ(P ∪ P̂ ) is equal to diamJn
0
(P ′∪ P̂ ′) which is � 1 by

Lemma 4.7. Let Ω′ be the connected component of Ω � (D∪R) containing the
pair (P, P̂ ). It is easy to see that Ω′ is simply connected and diamΩ′(P∪P̂ ) � 1.
It follows that g is univalent in Ω′ and Theorem 4.6 implies χ(g, P ∪ P̂ ) � 1 as
claimed.

Lemma 4.14. (i) Let k ≥ 0, U be a k-drop, P ′ be an exterior puzzle piece,
and n ≥ 0. If U ∩ P ′ �= ∅, then U ⊂ P ′ and gU (An

0 ) ⊂ P ′.

(ii) Let k ≥ 0 and U be a k-drop. Then either gU (An
0 ) ⊂ Yn

k−1 or gU (Ân
0 ) ∩

Yn
k−1 = ∅.

(iii) For every k ≥ 0, there is the equality

Yn
k = Yn

k−1 ∪
⋃

{P ∪ P̂ : P̂ � Hk(Ân
0 ) and P̂ ∩ Yn

k−1 = ∅}.

(iv) For every P̂ � Hk(Ân
0 ) with P̂ ∩ Yn

k−1 = ∅, P̂ � Yn+2
k = P̂ � Zn+2

k .

Proof. (i) As was remarked in subsection 4.1, U ∩ P ′ �= ∅ implies U ⊂ P ′

so that P̂ ⊂ P ′ for every P̂ � gU (Ân
0 ). If P � gU (An

0 ), then the interior of P

intersects the interior of P ′ since P ′ contains a neighborhood of U � {x(U)}.
It follows from the nested property of puzzle-pieces that P ⊂ P ′.

(ii) For k = 0 the claim is clear since Ân
0 ∩ Yn

−1 = ∅. Assume k ≥ 1 and
consider a k-drop U . If gU (Ân

0 ) ∩ Yn
k−1 �= ∅, then for some external puzzle

piece P ′ � Yn
k−1 we must have U ∩ P ′ �= ∅. It follows from (i) that U ⊂ P ′ and

gU (An
0 ) ⊂ P ′. This proves gU (An

0 ) ⊂ Yn
k−1.

(iii) From the definition Yn
k = Yn

k−1 ∪ Hk(An
0 ). Hence the inclusion ⊃

is trivial. For the reverse inclusion, suppose that z ∈ Yn
k � Yn

k−1. Then z ∈
Hk(An

0 ), which means z ∈ P ∪ P̂ , where P̂ � gU (Ân
0 ) for some k-drop U .

Since z ∈ gU (An
0 ) � Yn

k−1, by (ii) we must have gU (Ân
0 ) ∩ Yn

k−1 = ∅, so that
P̂ ∩ Yn

k−1 = ∅.
(iv) As P̂ ∩ Yn

k−1 = ∅ implies P̂ ∩ Yn+2
k−1 = ∅,

P̂ � Yn+2
k = P̂ � Hk(An+2

0 ) = P̂ � Hk(Ân+2
0 ∪ Qn+2

0 ) = P̂ � Zn+2
k ,

where the last equality holds since P̂ ∩ Zn+2
k−1 = ∅.



QUADRATIC POLYNOMIALS WITH A SIEGEL DISK 33

The following is one of the main technical results of this paper. It is
this estimate which allows us to show that the pull-back of a David-Beltrami
differential on D to the union of all drops is a David-Beltrami differential on C
(compare Theorem B).

Theorem 4.15. The following asymptotically universal bound exists:

(4.18) area(Yn � Yn+2) � area(Yn).

As a result, there is a universal constant 0 < δ < 1 such that

(4.19) area(Zn) ≤ area(Yn)�δn.

Proof. Combining Lemma 4.10 with Lemma 4.11, we obtain a universal
constant 0 < λ′ < 1 and an integer N ′ ≥ 1 such that for every n ≥ N ′,

(4.20)
area(P̂ � Ân+2) ≥ λ′ area(P ∪ P̂ ) for all P̂ � Ân,

area(P̂ � Ân+2
0 ) ≥ λ′ area(P ∪ P̂ ) for all P̂ � Ân

0 .

This, together with Lemma 4.13, shows that there exist a universal constant
λ and an integer N , with 0 < λ < λ′ < 1 and N ≥ N ′, such that for every
n ≥ N , k ≥ 0, and P̂ � Hk(Ân

0 ),

(4.21) area(P̂ � Zn+2
k ) ≥ λ area(P ∪ P̂ ).

We shall prove by induction on k ≥ −1 that for every n ≥ N ,

(4.22) area(Zn
k � Yn+2

k ) ≥ λ area(Yn
k ).

For the induction basis, note that the puzzle pieces which belong to Ân have
disjoint interiors. Thus, summing up the first estimate in (4.20) over all P̂ �Ân,
we obtain

area(Zn
−1 � Yn+2

−1 ) = area(Zn
−1 � Zn+2

−1 ) ≥ λ′ area(An) > λ area(Yn
−1).

For the induction step, assume (4.22) holds for some k − 1 ≥ −1. Writing
Zn

k = Zn
k−1 ∪Hk(Ân

0 ∪Qn
0 ), we have the following estimates in which the sums

are taken over all puzzle pieces P̂ � Hk(Ân
0 ) which do not intersect Yn

k−1:

area(Zn
k � Yn+2

k ) ≥ area(Zn
k−1 � Yn+2

k ) +
∑
P̂

area(P̂ � Yn+2
k )

(by Lemma 4.14(iv)) = area(Zn
k−1 � Yn+2

k−1 ) +
∑
P̂

area(P̂ � Zn+2
k )

(by (4.21) and (4.22)) ≥ λ area(Yn
k−1) +

∑
P̂

λ area(P ∪ P̂ )

(by Lemma 4.14(iii)) ≥ λ area(Yn
k ).
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This completes the induction step. It now follows from (4.22) that for every
k ≥ −1 and n ≥ N ,

area(Yn � Yn+2
k ) ≥ area(Yn

k � Yn+2
k ) ≥ area(Zn

k � Yn+2
k ) ≥ λ area(Yn

k ).

Taking the limit as k → ∞ yields area(Yn � Yn+2) ≥ λ area(Yn), which is
equivalent to (4.18).

The proof of (4.19) is now immediate. Let 0 < η := 1 − λ < 1 and let N

be as above. Then by induction we obtain

area(Yn) ≤ η
n−N−1

2 area(Y1) ≤ η
n−N−1

2 area{z : G(z) ≤ 1},
where G : A(∞) → R is the Green’s function on the basin of infinity. Since
this last area is bounded by a universal constant C > 0, we obtain

area(Yn) ≤ C η
n
3

for all n ≥ 3N + 3, which proves (4.19) with δ := η
1
3 .

5. Proofs of Theorems A and B

In this section we prove Theorems A and B cited in the introduction. As
indicated there, Theorem B implies that a David-Beltrami differential sup-
ported on D extends to an F -invariant David-Beltrami differential on C by
pull-back. Note that the statement of this theorem is completely independent
of the arithmetic of the rotation number θ. Thus, with Theorem B in hand, it
follows that Theorem A is true for any arithmetical condition on θ for which
the more elementary Theorem C holds (compare Questions 1 and 2 in the
introduction and the discussion there).

5.1. Concentrating Lebesgue measure. Consider the Blaschke product
f = fθ of (3.1) and the modified map F = Fθ,H of (3.2) for any irrational
0 < θ < 1 and any homeomorphism H. We will associate to f a measure
ν = νθ depending only on θ, supported on the closed unit disk and with total
mass equal to area(K(F )). This measure is obtained by summing up the push
forward of Lebesgue measure on each drop U by the minimal iterate of f map-
ping U to D. More explicitly, let g0 : D → U0 denote the univalent branch of
f−1 = F−1 and let H be as in Definition 4.12. Then, for any measurable set
E ⊂ D,

(5.1) ν(E) := area(E) +
∑
g∈H

area(g ◦ g0(E)).

Evidently ν is absolutely continuous with respect to Lebesgue measure on D
so that ν(E) → 0 as area(E) → 0. Remarkably, it is possible to control the
rate of this convergence by the following power law:
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Theorem B. The measure ν = νθ is dominated by a universal power of
Lebesgue measure. In other words, there exist a universal constant 0 < β < 1
and a constant C > 0 (depending on θ) such that

ν(E) ≤ C (area(E))β

for every measurable set E ⊂ D.

Following the notation of Section 4, we consider the sequence of puzzle
pieces {P̂n

qn+1−1}n≥1 in D containing the critical value x−1 (compare Figure 7).
For simplicity, we set ∆n := P̂n

qn+1−1, and thus obtain the nest of puzzle pieces

∆1 ⊃ ∆2 ⊃ · · · ⊃ ∆n ⊃ · · · ⊃ {x−1}.

Note that diam(∆n) � |In
qn+1−1| by Lemma 4.7 and Lemma 4.11. In particular,

diam(∆n) → 0 as n → ∞, and hence⋂
n≥1

∆n = {x−1}.

Define

D0 := D � ∆1 and Dn := ∆n � ∆n+1 for n ≥ 1.

+2

+1

+1nq
n

-1

+1nq
+2n

n +1

n
-1nq

+2n

-1

-1

q

n∆

I

∆n P+1

-1x

I

I

Figure 7. Puzzle pieces ∆n and ∆n+1 near the critical value x−1.

Using the a priori area estimates we developed in the previous section, it is
quite easy to prove Theorem B in the special case where E = Dn for large n:

Lemma 5.1. There exists a universal constant 0 < β1 < 1 such that the
following asymptotically universal bound holds:

ν(Dn)�(area(Dn))β1 .
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Proof. Since
Dn ∪

⋃
g∈H

g ◦ g0(Dn) ⊂ Zn

for all n ≥ 1, it follows from (5.1) and Theorem 4.15 that

(5.2) ν(Dn) ≤ area(Zn) ≤ area(Yn) � δn.

We claim that
area(Dn) � area(∆n).

In fact, In+2
qn+1−1 and In+1

qn+2−1 are interiorly disjoint subintervals of In
qn+1−1, and

by Theorem 2.5
|In+2

qn+1−1| � |In+1
qn+2−1| � |In

qn+1−1|.

It follows in particular that P̂n+2
qn+1−1 ⊂ Dn (compare Figure 7). By Lemma 4.9

and Lemma 4.11,

area(∆n) ≥ area(Dn) ≥ area(P̂n+2
qn+1−1) � |In+2

qn+1−1|2 � |In
qn+1−1|2 � area(∆n),

which proves our claim. It follows that

(5.3) area(Dn) � area(∆n) � |In
qn+1−1|2 � σ6n

1 ,

where 0 < σ1 < 1 is the universal constant given by Lemma 2.7. Now by
(5.2) and (5.3), any positive constant β1 < (log δ)/(6 log σ1) will satisfy the
condition of the lemma.

Lemma 5.2. There exists the following asymptotically universal bound :

dist(x−1, ∂Pn
qn+1−1 � S1) � |In

qn+1−1|.

Proof. Note that

Pn
qn+1−1 = f(Pn

qn+1
) = f((Pn)S).

For any w ∈ ∂Pn
qn+1−1 �S1 there is a unique z in the union B∪R∪G ⊂ ∂(Pn)S

such that w = f(z). Since f has a cubic critical point at 1, it follows from
(4.10) in Theorem 4.3 that

|x−1 − w| � |1 − z| 13 � |In+1| 13 � |In
qn+1−1|.

Corollary 5.3. Let T := {rx−1 : r ≥ 1} be the radial line segment going
from the critical value out to infinity. Then there is the following asymptotically
universal bound :

diamC�T (Dn) � 1.

Proof. This easily follows from the above Lemma 5.2 since Dn =
∆n � ∆n+1, |In

qn+1−1| � |In+1
qn+2−1|, and the hyperbolic metric of C � T at z

is comparable to 1/ dist(z, T ).
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Let W denote the connected component of F−1(C � T ) which contains U0.
Then W ⊂ C � D and g0 extends to a biholomorphic map g0 : C � T → W .
Hence each g ◦ g0 for g ∈ H has a univalent extension to C � T and we obtain
the following result by applying Theorem 4.6 and Corollary 5.3:

Corollary 5.4. There exists the asymptotically universal distortion
bound

χ(g ◦ g0, D
n) � 1,

which holds uniformly in g ∈ H.

Proof of Theorem B. Choose positive constants C1, C2 and C3 (all de-
pending on θ), such that for all n ≥ 0 and all g ∈ H,

ν(Dn) ≤ C1 (area(Dn))β1 ,

χ(g ◦ g0, D
n) ≤ C2,

area(Dn) ≤ C3 δn.

The existence of these constants is assured by Lemma 5.1, Corollary 5.4 and
the estimate (5.2), respectively. Fix a measurable set E ⊂ D and decompose
it into the disjoint union

E = E0 ∪ E1 ∪ E2 ∪ · · · ,

where En := Dn ∩ E for n ≥ 0. Then,

ν(En) = area(En) +
∑
g∈H

area(g ◦ g0(En))

≤ C2
2

area(En)
area(Dn)

area(Dn) +
∑
g∈H

area(g ◦ g0(Dn))


= C2

2

area(En)
area(Dn)

ν(Dn)

= C2
2

ν(Dn)
(area(Dn))β1

(
area(En)
area(Dn)

)1−β1

(area(En))β1 ,

which gives

(5.4) ν(En) ≤ C1 C2
2 (area(En))β1 for all n ≥ 0.
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Choose any 0 < β < β1 and let β2 := β1 − β. Then, it follows from (5.4) and
Hölder’s inequality that

ν(E) ≤ C1 C2
2

∞∑
n=0

(area(En))β+β2

≤ C1 C2
2

( ∞∑
n=0

(area(En))
β2

1−β

)1−β ( ∞∑
n=0

area(En)

)β

≤ C1 C2
2 Cβ2

3

( ∞∑
n=0

δ
nβ2
1−β

)1−β

(area(E))β.

This completes the proof of Theorem B.

5.2. Main Theorem. Now we are ready to prove the main result of this
work:

Theorem A. Let E denote the set of irrational numbers θ = [a1, a2, a3, . . .]
which satisfy the arithmetical condition

log an = O(
√

n) as n → ∞.

If θ ∈ E , then the Julia set of the quadratic polynomial Pθ : z �→ e2πiθz + z2 is
locally connected and has Lebesgue measure zero. In particular, the Siegel disk
∆θ of Pθ is a Jordan domain whose boundary contains the finite critical point
of Pθ.

Recall that E has full measure in [0, 1] by Corollary 2.2.

Proof. Fix an irrational θ ∈ E and consider the Blaschke product fθ in
(3.1). By Theorem C (see the end of subsection 2.6 as well as the appendix),
there exists a David homeomorphism H : D → D, with H ◦ fθ ◦ H−1 = Rθ on
S1, so that

area{z ∈ D : |µH |(z) > 1 − ε} ≤ M e−
α
ε for all 0 < ε < ε0.

Here M > 0 is universal, α > 0 depends on lim supn→∞(log an)/
√

n, and
0 < ε0 < 1 depends on θ. Let F = Fθ,H denote the Blaschke map modified by
H as in (3.2). We define an F -invariant measurable Beltrami differential µ on
C as follows: First, on the unit disk D, let

µ := µH =
∂H

∂H

dz

dz

be the pull-back of the zero Beltrami differential by H. Then, pull µ|D back to
the union of all drops by the univalent branches g ◦ g0 for g ∈ H. Finally, on
the rest of the plane, define µ to be the zero Beltrami differential. By the very
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construction, F ∗(µ) = µ. Also, the branches g ◦ g0 used to spread µ around
are all conformal, so they do not change |µ|. It follows that

area{z ∈ C : |µ|(z) > 1 − ε} = ν{z ∈ D : |µ|(z) > 1 − ε},

where ν is the measure defined in (5.1). By Theorem B, there is a univer-
sal constant 0 < β < 1 and a constant C > 0 depending on θ such that
ν(E) ≤ C (area(E))β for all E ⊂ D. It follows that for all 0 < ε < ε0,

area{z ∈ C : |µ|(z) > 1−ε} ≤ C (area{z ∈ D : |µ|(z) > 1 − ε})β ≤ C Mβ e−
αβ
ε .

One can actually get rid of the constants in front of the exponential by making
ε0 smaller. In fact, choose any ω such that 0 < ω < α β and define

ε1 := min
{

ε0,
α β − ω

log(C Mβ)

}
.

Then a brief computation shows that if 0 < ε < ε1,

(5.5) area{z ∈ C : |µ|(z) > 1 − ε} ≤ e−
ω
ε .

This shows that µ is a David-Beltrami differential, hence integrable by The-
orem 2.8. Let ϕ : C → C be the solution to the Beltrami equation µϕ = µ,
normalized by ϕ(H−1(0)) = 0, ϕ(1) = −e2πiθ/2. Let P := ϕ ◦ F ◦ ϕ−1 denote
the conjugate map. Assuming for a moment that P is a quadratic polynomial
(see Lemma 5.5 below), we see clearly that ∆ = ϕ(D) is a Siegel disk of ro-
tation number θ for P . By the way we normalized ϕ, we must have P = Pθ.
Local connectivity of Jθ now follows from Theorem 3.1 and the fact that ϕ is
a homeomorphism. That area(Jθ) = 0 follows from Theorems 3.2 and 2.9.

It remains to prove the following

Lemma 5.5. The conjugate map P := ϕ ◦ F ◦ ϕ−1 is a quadratic polyno-
mial.

Note that this trivially follows from Weyl’s lemma when µ has bounded
dilatation on C, or equivalently when ϕ is quasiconformal.

Proof. P is a degree 2 branched covering of the sphere with P−1(∞) = ∞,
so it will be a quadratic polynomial once we show that it is holomorphic. To
this end, we prove that ϕ◦F ∈ W 1,1

loc (C�{1}). Then, on a small neighborhood U

of every regular point of F , both ϕ and ϕ◦F pull the zero Beltrami differential
back to µ|U , and it follows from Theorem 2.8 that they must coincide up to a
conformal map, meaning in particular that P must be holomorphic in ϕ(U).
This argument will show that P is holomorphic on C � {ϕ(1)}, hence on the
entire plane.

So let us prove ϕ ◦ F ∈ W 1,1
loc (C � {1}). Evidently ϕ ◦ F ∈ W 1,1

loc (C � D)
simply because F is holomorphic in C � D and ϕ ∈ W 1,1

loc (C). On the other
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hand, on D we can write ϕ◦F = ϕ◦H−1◦Rθ ◦H. Here ϕ◦H−1 is conformal by
another application of Theorem 2.8 since both H and ϕ are homeomorphisms
in W 1,1

loc (D) pulling the zero Beltrami differential back to µ|D. It follows that
ϕ ◦ F is given in D by postcomposing H with a conformal map, hence is in
W 1,1

loc (D).
It remains to show that ϕ ◦ F ∈ W 1,1

loc (U) for every small open disk U

whose center belongs to S1 � {1}. Note that by the above argument ϕ ◦ F is
differentiable almost everywhere in U , which shows∫

U
Jac(ϕ ◦ F ) ≤ area((ϕ ◦ F )(U)) < +∞,

so that Jac(ϕ ◦ F ) ∈ L1(U). Moreover, on every compact subset of U � S1 the
ordinary partial derivatives ∂(ϕ ◦ F ) and ∂(ϕ ◦ F ) are integrable and coincide
with the distributional derivatives of ϕ◦F . If we show that ∂(ϕ◦F ), and hence
∂(ϕ◦F ) = µϕ◦F ∂(ϕ◦F ), is in L1(U), it follows from a standard approximation
argument that ∂(ϕ ◦F ) and ∂(ϕ ◦F ) are the distributional partial derivatives
in U , and hence ϕ ◦ F ∈ W 1,1

loc (U). But ∂(ϕ ◦ F ) ∈ L1(U) is fairly easy to see:
since µϕ◦F = µ almost everywhere in U , we have

|∂(ϕ ◦ F )|2 =
Jac(ϕ ◦ F )
1 − |µϕ◦F |2

≤ Jac(ϕ ◦ F )
1 − |µϕ◦F |

=
Jac(ϕ ◦ F )

1 − |µ| ,

so that
|∂(ϕ ◦ F )| ≤ Jac(ϕ ◦ F )

1
2 (1 − |µ|)−

1
2 .

By the exponential growth condition (5.5), the measurable function (1 − |µ|)−1

belongs to L1(C). It follows then from Hölder inequality that ∂(ϕ ◦ F ) ∈
L1(U).

We would like to draw the reader’s attention to the following corollary
which is implicit in the above proof. It describes how the conjugating map in
the above construction depends on various parameters; this point may be of
interest in possible future investigations, when one considers a family of such
David conjugacies as θ varies in E :

Corollary 5.6. Let θ ∈ E and let ϕ be the conjugating homeomorphism
between Fθ and Pθ given by Theorem A. Then ϕ is a David homeomorphism
on C so that its dilatation satisfies an exponential condition of the form (2.7).
Moreover, the constant M in (2.7) can be chosen to be 1, but in general α

depends on lim supn→∞(log an)/
√

n and ε0 depends on θ.

By [P5], the boundary of the Siegel disk of Pθ is a quasicircle containing
the critical point if and only if θ belongs to the class D2 of bounded type
irrational numbers.
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Corollary 5.7. Let θ belong to the full measure set E � D2. Then the
boundary of the Siegel disk of the quadratic polynomial Pθ is a Jordan curve of
measure zero containing the critical point, but it is not a quasicircle.

As a final remark, let us briefly sketch how to generalize Theorem A to the
case of Siegel disks of higher periods (we assume familiarity with the theory
of polynomial-like maps). Let P : z �→ z2 + c be a quadratic polynomial with
a Siegel disk ∆ of period n > 1 and rotation number θ ∈ E . Douady and
Hubbard proved that P is renormalizable, i.e., there exist open topological
disks U and V , with ∆ ⊂ U ⊂ U ⊂ V , such that P ◦n|U : U → V is a
degree 2 proper holomorphic map (compare [Z1, Th. 4.2]). According to [DH2],
P ◦n|U is a hybrid equivalent to the quadratic polynomial Pθ. In particular, the
“little Julia set” J := ∂{z ∈ U : P ◦nk(z) ∈ U for all k ≥ 1} is quasiconformally
homeomorphic to the Julia set Jθ. It follows from Theorem A that J is locally
connected and has measure zero. From this, it is not hard to draw the same
conclusions for the “big Julia set” J(P ). The fact that local connectivity of
J implies that of J(P ) is standard in renormalization theory (see for example
[P3]). That J(P ) has measure zero follows from the general principle (see [Ly]
or [Mc1]) that the orbit of almost every z ∈ J(P ) converges to the postcritical
set of P , which is the union ∂∆ ∪ · · · ∪ P ◦n−1(∂∆) in this case. Thus, up to a
set of measure zero, J(P ) =

⋃
k≥0 P−k(J), which shows area(J(P )) = 0.

6. Appendix: A proof of Theorem C

In this appendix we present a proof of Theorem C, which is substantially
based on Yoccoz’s work in the unpublished manuscript [Yo2]. The idea of the
proof is to construct two combinatorially equivalent dynamically defined cell
decompositions for the upper half-plane using the critical circle map and the
corresponding rigid rotation. The cells in these decompositions have bounded
geometry and are labelled by an integer, called their level. The closer the
cell is chosen to the boundary of H, the higher its level and the smaller its
Euclidean diameter will be. The required extension quasiconformally maps
each cell of level n of the first decomposition to a unique cell of level n of the
second decomposition, with the dilatation depending only on the (n + 1)-st
term an+1 of the continued fraction expansion of the rotation number θ. The
cell decompositions of bounded geometry, a fundamental inequality of Yoccoz
(Theorem 6.6 below), and a construction of Strebel (Lemma 6.10 below) are
the main ingredients of the proof.

6.1. Two cell decompositions for the upper half -plane. As in subsection
2.4, let f : T → T be a critical circle map with a critical point at 0 and
irrational rotation number θ = [a1, a2, a3, . . .] with convergents pn/qn. We set
xn := f−n(0) for all n ∈ Z.
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Consider the dynamical partition Πn(f) as defined in subsection 2.4. It is
easy to see that the collection of endpoints of the intervals in Πn(f) is precisely
the set {xj : 0 ≤ j < qn+1 + qn}. By Theorem 2.5, these points chop the circle
up into comparable adjacent pieces. Unfortunately, this is not true for the
corresponding partition for the rigid rotation Rθ unless θ is of bounded type.
To circumvent this problem in our forthcoming arguments, we choose a slightly
different partition as follows.

For every integer n ≥ 0, consider the collection of points

Qn := {xj : 0 ≤ j < qn}

on T, so that Q0 = {0}. It is not hard to see that

T � Qn =

 ⋃
0≤j<qn−qn−1

]xj+qn−1 , xj [

 ∪
 ⋃

0≤j<qn−1

]xj , xj+qn−qn−1 [

 .

Thus xj and xk, with j < k, are adjacent in Qn if and only if either k = j+qn−1

and 0 ≤ j < qn − qn−1, or k = j + qn − qn−1 and 0 ≤ j < qn−1. It follows that
in the first case
(6.1)

[xk, xj ] ∩Qn+1 = {xk, xk+qn , xk+2qn , . . . , xk+(an+1−1)qn
= xj+qn+1−qn , xj},

and in the second case

(6.2) [xj , xk] ∩Qn+1 = {xj , xj+qn , xj+2qn , . . . , xj+an+1qn = xk+qn+1−qn , xk}.

As a result, we see that xj and xk, with j < k, are adjacent in both Qn and
Qn+1 if and only if an+1 = 1, k = j + qn−1, and 0 ≤ j < qn − qn−1.

Using the canonical projection R → T = R/Z, we lift the set Qn to the
translation-invariant set Q̃n := Qn + Z in R. By the above construction, for
n ≥ 1, the closure of each interval in T � Qn is either an interval or the union
of two adjacent intervals in Πn(f). Hence, by the lift to R, Theorem 2.5(ii)
implies the following:

Lemma 6.1. Any two adjacent intervals in R � Q̃n have lengths compa-
rable up to a bound which is asymptotically universal. In other words,

max
{ |I|
|J | : I, J are adjacent in R � Q̃n

}
� 1.

For n ≥ 0 and x ∈ Q̃n, let

Mn(x) :=
1
2
(xr − x�),

where xr and x� are the points in Q̃n immediately to the right and left of x.
Evidently, Mn(x) > Mn+1(x) unless xr and x� are adjacent to x in Q̃n+1 also,
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in which case Mn(x) = Mn+1(x). Observe that M0(x) = 1 for all x ∈ Q̃0 = Z.
Define

zn(x) := x + i Mn(x) n ≥ 0, x ∈ Q̃n.

Using the sequence {zn}, we shall define an imbedded graph Γ in the upper
half-plane H as follows: The vertices of Γ are the points {zn(x) : n ≥ 0 and x ∈
Q̃n}. Note that zn(x) = zn+1(x) if and only if Mn(x) = Mn+1(x), in which
case the corresponding vertex of Γ is doubly labelled. The edges of Γ are the
vertical segments

{[zn(x), zn+1(x)] : n ≥ 0 and x ∈ Q̃n with Mn(x) �= Mn+1(x)}

as well as the nonvertical segments

{[zn(x), zn(y)] : n ≥ 0 and x, y are adjacent in Q̃n}.

By a cell of Γ we mean the closure of any bounded connected component of
H�Γ. Any cell γ of Γ is uniquely determined by a pair of adjacent points x < y

in Q̃n with the property that either Mn(x) �= Mn+1(x) or Mn(y) �= Mn+1(y).
The integer n ≥ 0 will be called the level of γ, or we say that γ is an n-cell.
The top of the n-cell γ is formed by the nonvertical edge [zn(x), zn(y)] while
its bottom is formed by the union of nonvertical edges

[zn+1(t0), zn+1(t1)] ∪ [zn+1(t1), zn+1(t2)] ∪ . . . ∪ [zn+1(tk−1), zn+1(tk)],

where the points x = t0 < t1 < . . . < tk = y form the intersection [x, y] ∩
Q̃n+1. The sides of γ are formed by the vertical edge [zn(x), zn+1(x)] (which
collapses to a single point if Mn(x) = Mn+1(x)) as well as [zn(y), zn+1(y)]
(which similarly collapses to a single point if Mn(y) = Mn+1(y)). If k = 1 so
that x, y are also adjacent in Q̃n+1, then γ is either a triangle or a trapezoid.
Otherwise k ≥ 2 and by (6.1) or (6.2), γ is a (k + 3)-gon, where k is either
an+1 or an+1 + 1.

Note that for m ≥ n, any m-cell γ is contained in the horizontal strip

{z ∈ H : 0 ≤ Im(z) ≤ max
x∈Q̃n

Mn(x)}.

Hence, Lemma 2.7 implies the following

Lemma 6.2. Fix any integer n ≥ 0. Then the union of all the m-cells of
Γ for all m ≥ n is contained in a horizontal strip {z ∈ H : 0 ≤ Im(z) ≤ 
}
whose height satisfies an asymptotically universal bound 
 � σn

2 , where 0 <

σ2 < 1 is the universal constant given by Lemma 2.7.
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xqn-1 - qn-2 3 xqn-1
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Figure 8. The imbedded graph Γ′ for the rigid rotation with se-
lected cells and points in Q′

n. In this picture an = 3 and an+1 = 4.
The labels on cells denote their level.

The next lemma is a straightforward consequence of the construction of
Γ and Lemma 6.1:

Lemma 6.3. The cells of Γ have “bounded geometry” in the following
sense: There is a constant C > 1 such that the top, bottom, and sides of
any n-cell γ of Γ have lengths comparable up to C. Moreover, the slopes of
nonvertical edges of γ are bounded by C. The constant C is asymptotically
universal.

In a similar fashion, we can construct the above objects for the rigid
rotation Rθ, for which we choose similar but “primed” notation. Thus, we
have the backward iterate x′

j of the point 0, the sets Q′
n and Q̃′

n, the functions
M ′

n(·) and z′n(·), and the imbedded graph Γ′ with a typical cell γ′ (compare
Figure 8). Note that in this case any two (adjacent or not) intervals I and J

of R � Q̃′
n satisfy 1/2 < |I|/|J | < 2. We thus obtain the following analogue of

Lemma 6.3 for rigid rotations:

Lemma 6.4. The cells of Γ′ have “bounded geometry” in the following
sense: There is a universal constant C > 1 such that the top, bottom, and sides
of any cell γ′ of Γ′ have lengths comparable up to C. Moreover, the slopes of
nonvertical edges of γ are bounded by 1/2.

6.2. Construction of the extension. Now let h : T → T denote the conju-
gacy between the critical circle map f and the rigid rotation Rθ, normalized
by h(0) = 0, given by Yoccoz’s Theorem 2.4. Let h̃ : R → R be its lift with
h̃(0) = 0. Note that h̃ fixes the integer points and h̃(Q̃n) = Q̃′

n for all n ≥ 0.
We shall extend h̃ to a homeomorphism H̃ between the imbedded graphs Γ
and Γ′ by mapping each vertex of Γ to the corresponding vertex of Γ′ and each
edge of Γ affinely to the corresponding edge of Γ′. Strictly speaking, for each
n ≥ 0 and x ∈ Q̃n, we define H̃(zn(x)) := z′n(h̃(x)). Then [z, w] is an edge of
Γ if and only if [H̃(z), H̃(w)] is an edge of Γ′. Thus we can extend H̃ further
to a homeomorphism Γ �−→ Γ′ by mapping each such edge [z, w] affinely to
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[H̃(z), H̃(w)]. Note that H̃ defined this way is the identity on the horizontal
line R + i so that we can define H(z) = z for all z ∈ H with Im(z) ≥ 1. It
is easy to check that for each cell γ of Γ, the boundary ∂γ is mapped by H̃

homeomorphically and edgewise affinely onto the boundary ∂γ′ of a unique
cell γ′ of Γ′.

The following is the key result of this appendix:

Theorem 6.5 (Yoccoz). There exists a constant C > 0 with the following
property : For any n-cell γ of Γ, the edgewise affine boundary homeomorphism
H̃ : ∂γ → ∂γ′ extends to a quasiconformal homeomorphism H̃ : γ → γ′ whose
dilatation is at most C(1 + (log an+1)2). The constant C is asymptotically
universal.

Assuming this result for a moment, we show how Theorem C, cited at the
end of subsection 2.6, follows:

Proof of Theorem C. Consider the extension H̃ : H → H obtained by glu-
ing various extensions to cells given by Theorem 6.5. Clearly H̃ is in W 1,1

loc (H)
and satisfies H̃(z + 1) = H̃(z) + 1 for all z ∈ H. Since log an = O(

√
n) by

the assumption, there are a constant C1 > 0 and an integer N1 ≥ 1, both
depending on θ, such that 1 + (log an+1)2 ≤ C1 n whenever n > N1. By Theo-
rem 6.5, there is a universal constant C2 > 0 and an integer N2 ≥ 1 depending
on f such that the dilatation K

H̃
in the interior of any n-cell of Γ is at most

C2 (1 + (log an+1)2) whenever n > N2. Finally, by Lemma 6.2, there is a uni-
versal constant C3 > 0 and an integer N3 ≥ 1 depending on f such that if
n > N3,

∞⋃
m=n

{γ : γ is an m−cell of Γ} ⊂ {z ∈ H : 0 < Im(z) ≤ C3σ
n
2 }.

Set N := max{N1, N2, N3} and define

K0 := max{K
H̃

(z) : z belongs to the interior of an m-cell of Γ with m ≤ N}.

If K
H̃

(z) > K > K0, then either z ∈ Γ (which has Lebesgue measure zero),
or else z belongs to the interior of an n-cell of Γ with n ≥ N , so that K <

K
H̃

(z) ≤ C1C2 n, or equivalently, n > K/(C1C2). It follows that

area{z ∈ H : 0 ≤ Re(z) ≤ 1 and K
H̃

(z) > K} ≤ C3 σ
K

C1C2
2 = C3 e

− log σ2
C1C2

K
.

The exponential map z �→ e2πiz does not change the dilatation and has norm
of the derivative bounded by 2π when restricted to the upper half-plane H.
Therefore, the induced homeomorphism H : D → D satisfies

area{z ∈ D : KH(z) > K} ≤ 4π2 C3 e
− log σ2

C1C2
K
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whenever K > K0. It follows that H is a David homeomorphism as in
(2.8), with M = 4π2C3, α = (log σ2)/(C1C2), and K0 defined as above.
Moreover, M is universal, α depends on C1 (which in turn depends on
lim supn→∞(log an)/

√
n), and K0 depends on f .

6.3. The proof of Yoccoz ’s theorem. It remains to give the proof of Theo-
rem 6.5. Before we proceed, some preliminaries are in order.

Let n ≥ 1 and x, y be adjacent points in Qn. Let {x = t0, t1, . . . , tk−1,

tk = y} = [x, y] ∩ Qn+1. Note that by (6.1) and (6.2), k = an+1 or an+1 + 1.
By Lemma 6.1, we know that each interval [tj−1, tj ] in this cascade has length
comparable to the next one [tj , tj+1]. However, for large values of k, the action
of f◦qn on this cascade of intervals is uniformly close to the action of a Möbius
transformation on its fundamental domains near a parabolic fixed point. This
idea led Yoccoz to the following much sharper statement about the relative
size of these intervals, a proof of which can be found in [Yo2] or [dFdM]:

Theorem 6.6 (Yoccoz’s almost-parabolic bound). The lengths of the
intervals in the above cascade satisfy

|[tj−1, tj ]| �
|[t0, tk]|

min{j, k − j + 1}2

uniformly in j, 1 ≤ j ≤ k.

Möbius transformations with two distinct fixed points on the real line will
play a basic role in the proof of Theorem 6.5. For our purposes, it will be
convenient to put them in the normal form

(6.3) ζa(z) :=
z

a − (a − 1)z
, a ≥ 2, z ∈ Ĉ.

Note that ζa preserves the real line, has an attracting fixed point at z = 0 with
multiplier Dζa(0) = a−1 and a repelling fixed point at z = 1 with multiplier
Dζa(1) = a. (Here and in what follows, D is the differentiation operator.)

Lemma 6.7. The derivative Dζa(x) is monotonically increasing from 1/a

to a on 0 ≤ x ≤ 1. Moreover, for 0 ≤ x < x + ε ≤ 1, there exist the estimates

1 <
Dζa(x + ε)

Dζa(x)
≤ (1 + εa)2,

ε3a

(1 + εa)2
1

(1 − x)2
≤ ζa(x + ε) − ζa(x) ≤ ε(1 + εa)2

a

1
(1 − x)2

.

In particular, if ε is comparable to 1/a so that 1/(Ca) ≤ ε ≤ C/a for some
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C ≥ 1, then the above estimates take the form

(6.4) 1 <
Dζa(x + ε)

Dζa(x)
≤ (1 + C)2,

(6.5)
1

C3(1 + C)2
1

a2(1 − x)2
≤ ζa(x + ε) − ζa(x) ≤ C(1 + C)2

1
a2(1 − x)2

.

Proof. This is an elementary computation which will be left to the reader.
For the second set of inequalities, it is convenient to estimate Dζa and apply
the Mean Value Theorem.

Finally, let us also recall the following standard result in quasiconformal
theory:

Lemma 6.8. Let K > 1 and g : R → R be a piecewise differentiable
homeomorphism such that

1
K

≤ Dg(x) ≤ K

for all x at which g is differentiable. Then the homeomorphic extension G :
H → H given by G(x + iy) := g(x) + iy is K-quasiconformal.

The proof of Theorem 6.5 begins as follows. Throughout we may assume
k ≥ 4, for otherwise γ and γ′ are m-gons of bounded geometry for some m ≤ 6
(compare Lemmas 6.3 and 6.4) and evidently there is an extension H̃ : γ → γ′

with asymptotically universal dilatation. It will be convenient to normalize
both γ and γ′ by mapping them to the upper half-plane. Let H = H∪R∪{∞}
and R = R ∪ {∞}. As before, let the projections on R of the vertices of the
n-cells γ and γ′ consist of the points

t0 < t1 < . . . < tk and t′0 < t′1 < . . . < t′k,

where t′j = h̃(tj). Since k ≥ 4, we have Mn(t0) �= Mn+1(t0) and Mn(tk) �=
Mn+1(tk). It follows from Lemma 6.3 that the top of γ is bounded by the
graph of a positive affine map g1, with |Dg1| � 1. The bottom of γ is bounded
by the graph of a positive piecewise affine map g2 with |Dg2| � 1. Moreover,

sup
t0≤x≤tk

g1(x) − g2(x) � inf
t0≤x≤tk

g1(x) − g2(x) � tk − t0.

Define a homeomorphism p : γ
�−→ SQ := {x + iy : |x| ≤ 1 and 0 ≤ y ≤ 2} by

p(x, y) :=
(
−1 + 2

x − t0
tk − t0

, 2
y − g2(x)

g1(x) − g2(x)

)
.

Note that p is affine in the x-coordinate, is fiberwise affine in the y-coordinate,
and maps the corners zn(t0), zn(tk), zn+1(t0) and zn+1(tk) to −1+2i, 1+2i, −1
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and 1, respectively (see Figure 9). Since γ has bounded geometry as seen in the
above conditions on g1 and g2, it is not hard to check that p is a quasiconformal
homeomorphism whose maximum dilatation is asymptotically universal.

p

SQ

p

H

p
2

p
1 1

p
2

p

H

-1 1 -1 1

1-11-1

i i

(    )+1nz t
(    )n+1z t

(    )nz t (    )nz t

+1(    )zn t zn+1(    )t

(    )nz t0

0

0

0 k

k

k

(    )nz tk

~

2-1+ 1+2 i 2-1+ 1+ i2

SQ

γ γ

Figure 9. Normalizing the cells γ and γ′, where k = 9.

Similarly, map γ′ onto the square SQ by a quasiconformal homeomorphism
p′ which is affine in the x-coordinate and is fiberwise affine in the y-coordinate
as above. Then, by Lemma 6.4, the maximum dilatation of p′ will be bounded
by a universal constant.

To finish the normalization process, we should map the square SQ to H in
an appropriate way. Let p1 : SQ �−→ H be the unique conformal isomorphism,
which fixes −1, 0, 1. A brief computation shows that p1 maps the corners
±1 + 2i to ±3. Postcompose p1 with the quasiconformal homeomorphism
p2 : H → H given by

p2(z) :=


1 + (z − 1)(1 − p−1

1 (1 − |z − 1|)) if |z − 1| < 1
−1 + (z + 1)(1 + p−1

1 (−1 + |z + 1|)) if |z + 1| < 1
z otherwise

It is easy to check that the composition p2 ◦ p1 is a quasiconformal homeo-
morphism SQ → H with p2 ◦ p1(t) = t for all −1 ≤ t ≤ 1 (note that both
p1 and p2 are common for all cells and thus universal). The quasiconformal
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homeomorphisms

φ := p2 ◦ p1 ◦ p : γ → H and φ′ := p2 ◦ p1 ◦ p′ : γ′ → H

have maximum dilatations which are asymptotically universal and universal,
respectively. They give the required normalizations of γ and γ′.

Define a new homeomorphism Ĥ := φ′ ◦ H̃ ◦ φ−1 : R → R, and set
sj := φ(zn+1(tj)), s′j := φ′(z′n+1(t

′
j)) = Ĥ(sj). Note that Ĥ is the identity

when |x| ≥ 1, and maps the interval [sj−1, sj ] affinely onto the interval [s′j−1, s
′
j ]

for every 1 ≤ j ≤ k. From its definition, it is easy to see that the map
φ ◦ zn+1 : [t0, tk] → [−1, 1] sending {tj} to {sj} is affine. Together with
Theorem 6.6, this shows the existence of an asymptotically universal constant
C0 > 1 such that for every 1 ≤ j ≤ k,

(6.6)
1

C0 min{j, k − j + 1}2
≤ sj − sj−1 ≤ C0

min{j, k − j + 1}2
.

Similarly, the map φ′ ◦ z′n+1 : [t′0, t
′
k] → [−1, 1] sending {t′j} to {s′j} is affine.

Together with the fact that the t′j are roughly equally spaced, this shows the
existence of a universal constant C1 > 1 such that for every 1 ≤ j ≤ k,

(6.7)
1

C1 k
≤ s′j − s′j−1 ≤ C1

k
,

so that

(6.8)
j

C1k
≤ s′j + 1 ≤ C1j

k
and

k − j

C1k
≤ 1 − s′j ≤

C1(k − j)
k

.

Thus, we have reduced Theorem 6.5 to the situation described in the following:

Lemma 6.9. Let Ĥ : R → R be a homeomorphism such that Ĥ(x) = x

when |x| ≥ 1. Suppose that k ≥ 4 and there are points s0 = −1 < s1 <

. . . < sk−1 < sk = 1 mapping to Ĥ(sj) = s′j such that Ĥ is affine on each
interval [sj , sj−1]. If {sj} and {s′j} satisfy (6.6) and (6.7), then there exists a
quasiconformal extension of Ĥ to H whose dilatation is at most C (1+(log k)2),
where C > 0 depends only on C0 and C1.

The idea of the proof is to change Ĥ up to a quasiconformal factor to make
it into a piecewise Möbius transformation on [−1, 1] for which the result is easier
to prove. Write k = a + b, where a, b are integers such that 2 ≤ a ≤ b ≤ a + 1.
Let ζ− and ζ+ be the Möbius transformations defined by

ζ−(z) := s′a − (1 + s′a) ζa

(−z + s′a
1 + s′a

)
,

ζ+(z) := s′a + (1 − s′a) ζb

(
z − s′a
1 − s′a

)
.
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Here ζa and ζb are the Möbius transformations defined by (6.3). Define a
homeomorphism ψ1 : R → R by

ψ1(x) :=


ζ−(x) −1 ≤ x ≤ s′a

ζ+(x) s′a ≤ x ≤ 1

x otherwise.

Then by (6.5), (6.7) and (6.8) there exists a constant C2 > 1 depending only
on C1 such that for all 1 ≤ j ≤ k,

(6.9)
1

C2 min{j, k − j + 1}2
≤ ψ1(s′j) − ψ1(s′j−1) ≤

C2

min{j, k − j + 1}2
.

Moreover, let ψ2 : R → R be the piecewise affine map which is the identity when
|x| ≥ 1 and satisfies ψ2(s′j) = ψ1(s′j). Then by (6.4) there exists a constant
C3 > 1 depending only on C1 such that the homeomorphism ψ3 := ψ1 ◦ ψ−1

2 :
R → R is piecewise differentiable, with 1/C3 ≤ Dψ3(x) ≤ C3 for all x ∈ R.
Finally, let ψ4 : R → R be the piecewise affine map which is the identity when
|x| ≥ 1 and satisfies ψ4(sj) = ψ1(s′j). Then by (6.6) and (6.9) there exists a
constant C4 > 1 depending only on C0 and C2 such that 1/C4 ≤ Dψ4(x) ≤ C4

for all x ∈ R. Note that

Ĥ = ψ−1
2 ◦ ψ4 = ψ−1

1 ◦ ψ3 ◦ ψ4,

because Ĥ is piecewise affine. By Lemma 6.8, ψ3 and ψ4 have quasiconformal
extensions whose dilatations are bounded by C3 and C4, hence depend only
on C0 and C1. Thus the proof of Lemma 6.9 will be complete once we show
that the piecewise Möbius map ψ1 has an extension to H with the bound
2(1 + (log k)2) on its dilatation. But this is a special case of the following
lemma due to K. Strebel:

Lemma 6.10. Let ψ : R → R be an orientation-preserving homeomor-
phism which is piecewise Möbius in the following sense: There exist n ≥ 2 fixed
points x1 = xn+1 < x2 < · · · < xn and n Möbius transformations ζ1, ζ2, . . . , ζn

preserving R such that ψ|[xj ,xj+1] = ζj for 1 ≤ j ≤ n. Let k > 1 be the
largest among the multipliers of the repelling fixed points of the ζj. Then ψ

has a quasiconformal extension Ψ : H → H whose dilatation is bounded by
2(1 + (log k)2).

Proof. Let us first consider a related but easier problem on the horizontal
strip S := {z ∈ C : 0 ≤ Im(z) ≤ π/2} with ψ(z) = z on the bottom edge R
and ψ(z) = z + log λ on the top edge R + iπ/2, where λ > 1. In this case, we
can extend ψ to a quasiconformal self-homeomorphism Ψ of S by interpolating
linearly:

Ψ(z) = z +
2
π

Im(z) log λ.
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It is easy to verify that the dilatation of this Ψ is less than 2(1+(log λ)2). (As
an exercise, the reader can show that this is the best possible extension.)

Back to the original situation, consider the hyperbolic convex set Dj

bounded by the interval [xj , xj+1] ⊂ R and the hyperbolic geodesic Υj in
H with endpoints xj and xj+1. Each Dj is conformally isomorphic to the strip
S above, with [xj , xj+1] mapping to R + iπ/2 and Υj mapping to R. The
action of ψ on [xj , xj+1] corresponds to z �→ z ± log λj , where λj > 1 is the
multiplier of the repelling fixed point of ζj . Thus, by the initial construc-
tion, ψ can be extended to a quasiconformal homeomorphism Ψ : Dj → Dj

which interpolates between ψ|[xj ,xj+1] and the identity on Υj , with dilatation
less that 2(1 + (log λj)2). On H �

⋃n
j=1 Dj , an ideal hyperbolic n-gon, ex-

tend Ψ as the identity map. Evidently the dilatation of Ψ on H is less than
2(1 + (log(maxj λj))2) = 2(1 + (log k)2).
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