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Approximation to real numbers
by cubic algebraic integers. II

By Damien Roy*

Abstract

It has been conjectured for some time that, for any integer n ≥ 2, any
real number ε > 0 and any transcendental real number ξ, there would exist
infinitely many algebraic integers α of degree at most n with the property that
|ξ−α| ≤ H(α)−n+ε, where H(α) denotes the height of α. Although this is true
for n = 2, we show here that, for n = 3, the optimal exponent of approximation
is not 3 but (3 +

√
5)/2 � 2.618.

1. Introduction

Define the height H(α) of an algebraic number α as the largest absolute
value of the coefficients of its irreducible polynomial over Z. Thanks to work
of H. Davenport and W. M. Schmidt, we know that, for any real number ξ

which is neither rational nor quadratic over Q, there exists a constant c > 0
such that the inequality

|ξ − α| ≤ cH(α)−γ2
,

where γ = (1 +
√

5)/2 denotes the golden ratio, has infinitely many solutions
in algebraic integers α of degree at most 3 over Q (see Theorem 1 of [3]). The
purpose of this paper is to show that the exponent γ2 in this statement is best
possible.

Theorem 1.1. There exists a real number ξ which is transcendental over
Q and a constant c1 > 0 such that, for any algebraic integer α of degree at
most 3 over Q, we have

|ξ − α| ≥ c1H(α)−γ2
.
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In general, for a positive integer n, denote by τn the supremum of all real
numbers τ with the property that any transcendental real number ξ admits
infinitely many approximations by algebraic integers α of degree at most n over
Q with |ξ − α| ≤ H(α)−τ . Then, the above result shows that τ3 = γ2 � 2.618
against the natural conjecture that τn = n for all n ≥ 2 (see [7, p. 259]). Since
τ2 = 2 (see the introduction of [3]), it leaves open the problem of evaluating
τn for n ≥ 4. At present the best known estimates valid for general n ≥ 2 are

�(n + 1)/2� ≤ τn ≤ n

where the upper bound comes from standard metrical considerations, while the
lower bound, due to M. Laurent [4], refines, for even integers n, the preceding
lower bound τn ≥ �(n+1)/2� of Davenport and Schmidt [3]. Note that similar
estimates are known for the analog problem of approximation by algebraic
numbers, but in this case the optimal exponent is known only for n ≤ 2
(see [2]).

In the next section we recall the results that we will need from [6]. Then,
in Section 3, we present the class of real numbers for which we will prove, in
Section 4, that they satisfy the measure of approximation of Theorem 1.1. Sec-
tion 3 also provides explicit examples of such numbers based on the Fibonacci
continued fractions of [5] and [6] (a special case of the Sturmian continued
fractions of [1]).

2. Extremal real numbers

The arguments of Davenport and Schmidt in Section 2 of [3] show that,
if a real number ξ is not algebraic over Q of degree at most 2 and has the
property stated in Theorem 1.1, then there exists another constant c2 > 0
such that the inequalities

(2.1) 1 ≤ |x0| ≤ X, |x0ξ − x1| ≤ c2X
−1/γ , |x0ξ

2 − x2| ≤ c2X
−1/γ ,

have a solution in integers x0, x1, x2 for any real number X ≥ 1. In [6], we
defined a real number ξ to be extremal if it is not algebraic over Q of degree
at most 2 and satisfies the latter property of simultaneous approximation. We
showed that such numbers exist and form a countable set. Thus, candidates
for Theorem 1.1 have to be extremal real numbers.

For each x = (x0, x1, x2) ∈ Z3 and each ξ ∈ R, we define

‖x‖ = max{|x0|, |x1|, |x2|} and Lξ(x) = max{|x0ξ − x1|, |x0ξ
2 − x2|}.

Identifying x with the symmetric matrix(
x0 x1

x1 x2

)
,
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we also define
det(x) = x0x2 − x2

1.

Then, Theorem 5.1 of [6] provides the following characterization of extremal
real numbers.

Proposition 2.1. A real number ξ is extremal if and only if there exists
a constant c3 ≥ 1 and an unbounded sequence of nonzero points (xk)k≥1 of Z3

satisfying, for all k ≥ 1,

(i) c−1
3 ‖xk‖γ ≤ ‖xk+1‖ ≤ c3‖xk‖γ ,

(ii) c−1
3 ‖xk‖−1 ≤ Lξ(xk) ≤ c3‖xk‖−1,

(iii) 1 ≤ |det(xk)| ≤ c3,

(iv) 1 ≤ |det(xk,xk+1,xk+2)| ≤ c3.

In order to prove our main Theorem 1.1, we will also need the following
special case of Proposition 9.1 of [6] where, for a real number t, the symbol {t}
denotes the distance from t to a closest integer:

Proposition 2.2. Let ξ be an extremal real number and let (xk)k≥1 be
as in Proposition 2.1. Assume that, upon writing xk = (xk,0, xk,1, xk,2), there
exists a constant c4 > 0 such that

{xk,0ξ
3} ≥ c4

for all k ≥ 1. Then, for any algebraic integer α of degree at most 3 over Q,
we have

|ξ − α| ≥ c5H(α)−γ2

for some constant c5 > 0.

Since extremal real numbers are transcendental over Q (see [6, §5]), this
reduces the proof of Theorem 1.1 to finding extremal real numbers satisfying
the hypotheses of the above proposition. Note that, for an extremal real num-
ber ξ and a corresponding sequence (xk)k≥1, Proposition 9.2 of [6] shows that
there exists a constant c6 > 0 such that

{xk,0ξ
3} ≥ c6‖xk‖−1/γ3

for any sufficiently large k.
We also mention the following direct consequence of Corollary 5.2 of [6]:

Proposition 2.3. Let ξ be an extremal real number and let (xk)k≥1 be
as in Proposition 2.1. Then there exists an integer k0 ≥ 1 and a 2 × 2 matrix
M with integral coefficients such that, viewing each xk as a symmetric matrix,
the point xk+2 is a rational multiple of xk+1Mxk when k ≥ k0 is odd, and a
rational multiple of xk+1

tMxk when k ≥ k0 is even.
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Proof. Corollary 5.2 together with formula (2.2) of [6] show that there
exists an integer k0 ≥ 1 such that xk+2 is a rational multiple of xk+1x−1

k−1xk+1

for all k > k0. If S is a 2 × 2 matrix such that xk+1 is a rational multiple
of xkSxk−1 for some k > k0, this implies that xk+2 is a rational multiple of
xkSxk+1 and thus, by taking transpose, that xk+2 is a rational multiple of
xk+1

tSxk. The conclusion then follows by induction on k, upon choosing M

so that the required property holds for k = k0.

Note that, in the case where all points xk have determinant 1, one may
assume that M ∈ GL2(Z) in the above proposition and the conclusion then
becomes xk+2 = ±xk+1Sxk where S is either M or tM depending on the parity
of k ≥ k0. This motivates the following definition:

Definition 2.4. Let M ∈ GL2(Z) be a nonsymmetric matrix. We denote
by E(M) the set of extremal real numbers ξ with the following property. There
exists a sequence of points (xk)k≥1 in Z3 satisfying the conditions of Proposi-
tion 2.1 which, viewed as symmetric matrices, belong to GL2(Z) and satisfy
the recurrence relation

xk+2 = xk+1Sxk, (k ≥ 1), where S =
{

M if k is odd,
tM if k is even.

Examples of extremal real numbers are the Fibonacci continued fractions
ξa,b (see [5] and [6, §6]) where a and b denote distinct positive integers. They
are defined as the real numbers

ξa,b = [0, a, b, a, a, b, . . .] = 1/(a + 1/(b + · · ·))
whose sequence of partial quotients begins with 0 followed by the elements of
the Fibonacci word on {a, b}, the infinite word abaab · · · starting with a which
is a fixed point of the substitution a �→ ab and b �→ a. Corollary 6.3 of [6] then
shows that such a number ξa,b belongs to E(M) with

(2.2) M =
(

a 1
1 0

) (
b 1
1 0

)
=

(
ab + 1 a

b 1

)
.

We conclude this section with the following result.

Lemma 2.5. Assume that ξ belongs to E(M) for some nonsymmetric
matrix

M =
(

a b

c d

)
∈ GL2(Z),

and let (xk)k≥1 be as in Definition 2.4. Then, upon writing xk = (xk,0, xk,1, xk,2),
we have, for all k ≥ 2,

(i) xk+2 = (axk,0 + (b + c)xk,1 + dxk,2)xk+1 ± xk−1,

(ii) xk,0xk+1,2 − xk,2xk+1,0 = ±(axk−1,0 − dxk−1,2) ± (b − c)xk−1,1.
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Proof. For k ≥ 1, we have

xk+1 = xkSxk−1 and xk+2 = xk+1
tSxk

where S is M or tM according to whether k is even or odd, and so

xk+2 = txk+2 = xkSxk+1 = (xkS)2xk−1.

Since Cayley-Hamilton’s theorem gives

(xkS)2 = trace(xkS)xkS − det(xkS)I,

we deduce
xk+2 = trace(xkS)xk+1 − det(xkS)xk−1

which proves (i). Finally, (ii) follows from the fact that the left-hand side
of this inequality is the sum of the coefficients outside of the diagonal of the
product

xkJxk+1 where J =
(

0 1
−1 0

)
,

and that, since JxkJ = ±x−1
k , we have

xkJxk+1 = ±Jx−1
k xk+1 = ±JSxk−1.

3. A smaller class of real numbers

Although we expect that all extremal real numbers ξ satisfy a measure of
approximation by algebraic integers of degree at most 3 which is close to that
of Theorem 1.1, say with exponent γ2 +ε for any ε > 0, we could only prove in
[6] that they satisfy a measure with exponent γ2 +1 (see [6, Th. 1.5]). Here we
observe that the formulas of Lemma 2.5 show a particularly simple arithmetic
for the elements ξ of E(M) when, in the notation of this lemma, the matrix M

has b = 1, c = −1 and d = 0. Taking advantage of this, we will prove:

Theorem 3.1. Let a be a positive integer. Then, any element ξ of

Ea = E
(

a 1
−1 0

)

satisfies the measure of approximation of Theorem 1.1.

The proof of this result will be given in the next section. Below, we simply
show that, for a = 1, the corresponding set of extremal real numbers is not
empty.

Proposition 3.2. Let m be a positive integer. Then, the real number

η = (m + 1 + ξm,m+2)−1 = [0, m + 1, m, m + 2, m, m, m + 2, . . .]

belongs to the set E1.
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Proof. We first note that, if a real number ξ belongs to E(M) for some
nonsymmetric matrix M ∈ GL2(Z) with corresponding sequence of symmetric
matrices (xk)k≥1, and if C is any element of GL2(Z), then the real number
η for which (η,−1) is proportional to (ξ,−1)C belongs to E(tCMC) with
corresponding sequence (C−1xk

tC−1)k≥1. The conclusion then follows since
ξm,m+2 belongs to E(M) where M is given by (2.2) with a = m and b = m + 2
and since

tCMC =
(

1 1
−1 0

)
for C =

(
0 −1
−1 m + 1

)
.

Remark. In fact, it can be shown that Ea is not empty for any integer
a ≥ 1. For example, consider the sequence of matrices (xk)k≥1 defined recur-
sively using the formula of Definition 2.4 with

x1 =
(

1 1
1 0

)
, x2 =

(
a3 + 2a a3 − a2 + 2a − 1

a3 − a2 + 2a − 1 a3 − 2a2 + 3a − 2

)

and
M =

(
a 1
−1 0

)
.

Then, using similar arguments as in [6, §6], it can be shown that (xk)k≥1 is a
sequence of symmetric matrices in GL2(Z) which satisfies the four conditions
of Proposition 2.1 for some real number ξ which therefore belongs to Ea.

4. Proof of Theorem 3.1

We fix a positive integer a, a real number ξ ∈ Ea, and a corresponding
sequence of points (xk)k≥1 of Z3 as in Definition 2.4. For simplicity, we also
define

Xk = ‖xk‖ and δk = {xk,2ξ}, (k ≥ 1).

The constant c3 being as in Proposition 2.1, we first note that

{xk,0ξ} ≤ |xk,0ξ − xk,1| ≤ c3X
−1
k ,(4.1)

{xk,1ξ} ≤ |xk,1ξ − xk,0ξ
2| + |xk,0ξ

2 − xk,2| ≤ (|ξ| + 1)c3X
−1
k .

For k ≥ 2, the recurrence formula of Lemma 2.5 (i) implies

(4.2) xk+2,2 = axk,0xk+1,2 ± xk−1,2

and Lemma 2.5 (ii) gives

xk,0xk+1,2 = xk,2xk+1,0 ± axk−1,0 ± 2xk−1,1.

Using (4.1), the latter relation leads to the estimate

{xk,0xk+1,2ξ} ≤ Xk{xk+1,0ξ} + a{xk−1,0ξ} + 2{xk−1,1ξ} ≤ c7X
−1
k−1
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for some constant c7 > 0 (since XkX
−1
k+1 ≤ c2+γ

3 X−1
k−1 by virtue of Proposition

2.1 (i)). Combining this with (4.2), we deduce

|δk+2 − δk−1| ≤ a{xk,0xk+1,2ξ} ≤ ac7X
−1
k−1.

Since the sequence (Xk)k≥1 grows at least geometrically, this in turn implies
that, for any pair of integers j and k which are congruent modulo 3 with
j ≥ k ≥ 1, we have

|δj − δk| ≤ c8X
−1
k

with some other constant c8 > 0. Since

|{xk,0ξ
3} − δk| ≤ |xk,0ξ

3 − xk,2ξ| ≤ c3|ξ|X−1
k , (k ≥ 1),

we conclude that, for i = 1, 2, 3, the limit

θi = lim
j→∞

{xi+3j,0ξ
3} = lim

j→∞
δi+3j

exists and that
|θi − {xk,0ξ

3}| ≤ (c8 + c3|ξ|)X−1
k

for k ≡ i mod 3. Since, for all sufficiently large k, Proposition 9.2 of [6] gives

{xk,0ξ
3} ≥ c9X

−1/γ3

k

with a constant c9 > 0, these numbers θi are nonzero. Thus the sequence(
{xk,0ξ

3}
)

k≥1
has (at most three) nonzero accumulation points and therefore

is bounded below by some positive constant, say for k ≥ k0, to exclude the
finitely many indices k where xk,0 = 0. Applying Proposition 2.2 to the sub-
sequence (xk)k≥k0 , we conclude that ξ has the approximation property stated
in Theorem 1.1.
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