Approximation to real numbers by cubic algebraic integers. II

By Damien Roy*

Abstract

It has been conjectured for some time that, for any integer $n \geq 2$, any real number $\varepsilon>0$ and any transcendental real number ξ, there would exist infinitely many algebraic integers α of degree at most n with the property that $|\xi-\alpha| \leq H(\alpha)^{-n+\varepsilon}$, where $H(\alpha)$ denotes the height of α. Although this is true for $n=2$, we show here that, for $n=3$, the optimal exponent of approximation is not 3 but $(3+\sqrt{5}) / 2 \simeq 2.618$.

1. Introduction

Define the height $H(\alpha)$ of an algebraic number α as the largest absolute value of the coefficients of its irreducible polynomial over \mathbf{Z}. Thanks to work of H. Davenport and W. M. Schmidt, we know that, for any real number ξ which is neither rational nor quadratic over \mathbf{Q}, there exists a constant $c>0$ such that the inequality

$$
|\xi-\alpha| \leq c H(\alpha)^{-\gamma^{2}},
$$

where $\gamma=(1+\sqrt{5}) / 2$ denotes the golden ratio, has infinitely many solutions in algebraic integers α of degree at most 3 over \mathbf{Q} (see Theorem 1 of [3]). The purpose of this paper is to show that the exponent γ^{2} in this statement is best possible.

Theorem 1.1. There exists a real number ξ which is transcendental over \mathbf{Q} and a constant $c_{1}>0$ such that, for any algebraic integer α of degree at most 3 over \mathbf{Q}, we have

$$
|\xi-\alpha| \geq c_{1} H(\alpha)^{-\gamma^{2}}
$$

[^0]In general, for a positive integer n, denote by τ_{n} the supremum of all real numbers τ with the property that any transcendental real number ξ admits infinitely many approximations by algebraic integers α of degree at most n over \mathbf{Q} with $|\xi-\alpha| \leq H(\alpha)^{-\tau}$. Then, the above result shows that $\tau_{3}=\gamma^{2} \simeq 2.618$ against the natural conjecture that $\tau_{n}=n$ for all $n \geq 2$ (see [7, p. 259]). Since $\tau_{2}=2$ (see the introduction of [3]), it leaves open the problem of evaluating τ_{n} for $n \geq 4$. At present the best known estimates valid for general $n \geq 2$ are

$$
\lceil(n+1) / 2\rceil \leq \tau_{n} \leq n
$$

where the upper bound comes from standard metrical considerations, while the lower bound, due to M. Laurent [4], refines, for even integers n, the preceding lower bound $\tau_{n} \geq\lfloor(n+1) / 2\rfloor$ of Davenport and Schmidt [3]. Note that similar estimates are known for the analog problem of approximation by algebraic numbers, but in this case the optimal exponent is known only for $n \leq 2$ (see [2]).

In the next section we recall the results that we will need from [6]. Then, in Section 3, we present the class of real numbers for which we will prove, in Section 4, that they satisfy the measure of approximation of Theorem 1.1. Section 3 also provides explicit examples of such numbers based on the Fibonacci continued fractions of [5] and [6] (a special case of the Sturmian continued fractions of [1]).

2. Extremal real numbers

The arguments of Davenport and Schmidt in Section 2 of [3] show that, if a real number ξ is not algebraic over \mathbf{Q} of degree at most 2 and has the property stated in Theorem 1.1, then there exists another constant $c_{2}>0$ such that the inequalities

$$
\begin{equation*}
1 \leq\left|x_{0}\right| \leq X, \quad\left|x_{0} \xi-x_{1}\right| \leq c_{2} X^{-1 / \gamma}, \quad\left|x_{0} \xi^{2}-x_{2}\right| \leq c_{2} X^{-1 / \gamma} \tag{2.1}
\end{equation*}
$$

have a solution in integers x_{0}, x_{1}, x_{2} for any real number $X \geq 1$. In [6], we defined a real number ξ to be extremal if it is not algebraic over \mathbf{Q} of degree at most 2 and satisfies the latter property of simultaneous approximation. We showed that such numbers exist and form a countable set. Thus, candidates for Theorem 1.1 have to be extremal real numbers.

For each $\mathbf{x}=\left(x_{0}, x_{1}, x_{2}\right) \in \mathbf{Z}^{3}$ and each $\xi \in \mathbf{R}$, we define

$$
\|\mathbf{x}\|=\max \left\{\left|x_{0}\right|,\left|x_{1}\right|,\left|x_{2}\right|\right\} \quad \text { and } \quad L_{\xi}(\mathbf{x})=\max \left\{\left|x_{0} \xi-x_{1}\right|,\left|x_{0} \xi^{2}-x_{2}\right|\right\} .
$$

Identifying x with the symmetric matrix

$$
\left(\begin{array}{ll}
x_{0} & x_{1} \\
x_{1} & x_{2}
\end{array}\right),
$$

we also define

$$
\operatorname{det}(\mathbf{x})=x_{0} x_{2}-x_{1}^{2}
$$

Then, Theorem 5.1 of [6] provides the following characterization of extremal real numbers.

Proposition 2.1. A real number ξ is extremal if and only if there exists a constant $c_{3} \geq 1$ and an unbounded sequence of nonzero points $\left(\mathbf{x}_{k}\right)_{k \geq 1}$ of \mathbf{Z}^{3} satisfying, for all $k \geq 1$,
(i) $c_{3}^{-1}\left\|\mathbf{x}_{k}\right\|^{\gamma} \leq\left\|\mathbf{x}_{k+1}\right\| \leq c_{3}\left\|\mathbf{x}_{k}\right\|^{\gamma}$,
(ii) $c_{3}^{-1}\left\|\mathbf{x}_{k}\right\|^{-1} \leq L_{\xi}\left(\mathbf{x}_{k}\right) \leq c_{3}\left\|\mathbf{x}_{k}\right\|^{-1}$,
(iii) $1 \leq\left|\operatorname{det}\left(\mathbf{x}_{k}\right)\right| \leq c_{3}$,
(iv) $1 \leq\left|\operatorname{det}\left(\mathbf{x}_{k}, \mathbf{x}_{k+1}, \mathbf{x}_{k+2}\right)\right| \leq c_{3}$.

In order to prove our main Theorem 1.1, we will also need the following special case of Proposition 9.1 of [6] where, for a real number t, the symbol $\{t\}$ denotes the distance from t to a closest integer:

Proposition 2.2. Let ξ be an extremal real number and let $\left(\mathrm{x}_{k}\right)_{k \geq 1}$ be as in Proposition 2.1. Assume that, upon writing $\mathbf{x}_{k}=\left(x_{k, 0}, x_{k, 1}, x_{k, 2}\right)$, there exists a constant $c_{4}>0$ such that

$$
\left\{x_{k, 0} \xi^{3}\right\} \geq c_{4}
$$

for all $k \geq 1$. Then, for any algebraic integer α of degree at most 3 over \mathbf{Q}, we have

$$
|\xi-\alpha| \geq c_{5} H(\alpha)^{-\gamma^{2}}
$$

for some constant $c_{5}>0$.
Since extremal real numbers are transcendental over \mathbf{Q} (see [6, §5]), this reduces the proof of Theorem 1.1 to finding extremal real numbers satisfying the hypotheses of the above proposition. Note that, for an extremal real number ξ and a corresponding sequence $\left(\mathrm{x}_{k}\right)_{k \geq 1}$, Proposition 9.2 of [6] shows that there exists a constant $c_{6}>0$ such that

$$
\left\{x_{k, 0} \xi^{3}\right\} \geq c_{6}\left\|\mathbf{x}_{k}\right\|^{-1 / \gamma^{3}}
$$

for any sufficiently large k.
We also mention the following direct consequence of Corollary 5.2 of [6]:
Proposition 2.3. Let ξ be an extremal real number and let $\left(\mathbf{x}_{k}\right)_{k \geq 1}$ be as in Proposition 2.1. Then there exists an integer $k_{0} \geq 1$ and a 2×2 matrix M with integral coefficients such that, viewing each \mathbf{x}_{k} as a symmetric matrix, the point \mathbf{x}_{k+2} is a rational multiple of $\mathbf{x}_{k+1} M \mathbf{x}_{k}$ when $k \geq k_{0}$ is odd, and a rational multiple of $\mathbf{x}_{k+1}{ }^{t} M \mathbf{x}_{k}$ when $k \geq k_{0}$ is even.

Proof. Corollary 5.2 together with formula (2.2) of [6] show that there exists an integer $k_{0} \geq 1$ such that \mathbf{x}_{k+2} is a rational multiple of $\mathbf{x}_{k+1} \mathbf{x}_{k-1}^{-1} \mathbf{x}_{k+1}$ for all $k>k_{0}$. If S is a 2×2 matrix such that \mathbf{x}_{k+1} is a rational multiple of $\mathbf{x}_{k} S \mathbf{x}_{k-1}$ for some $k>k_{0}$, this implies that \mathbf{x}_{k+2} is a rational multiple of $\mathbf{x}_{k} S \mathbf{x}_{k+1}$ and thus, by taking transpose, that \mathbf{x}_{k+2} is a rational multiple of $\mathbf{x}_{k+1}{ }^{t} S \mathbf{x}_{k}$. The conclusion then follows by induction on k, upon choosing M so that the required property holds for $k=k_{0}$.

Note that, in the case where all points \mathbf{x}_{k} have determinant 1 , one may assume that $M \in \mathrm{GL}_{2}(\mathbf{Z})$ in the above proposition and the conclusion then becomes $\mathbf{x}_{k+2}= \pm \mathbf{x}_{k+1} S \mathbf{x}_{k}$ where S is either M or ${ }^{t} M$ depending on the parity of $k \geq k_{0}$. This motivates the following definition:

Definition 2.4. Let $M \in \mathrm{GL}_{2}(\mathbf{Z})$ be a nonsymmetric matrix. We denote by $\mathcal{E}(M)$ the set of extremal real numbers ξ with the following property. There exists a sequence of points $\left(\mathbf{x}_{k}\right)_{k \geq 1}$ in \mathbf{Z}^{3} satisfying the conditions of Proposition 2.1 which, viewed as symmetric matrices, belong to $\mathrm{GL}_{2}(\mathbf{Z})$ and satisfy the recurrence relation

$$
\mathbf{x}_{k+2}=\mathbf{x}_{k+1} S \mathbf{x}_{k}, \quad(k \geq 1), \quad \text { where } \quad S= \begin{cases}M & \text { if } k \text { is odd } \\ t^{\prime} M & \text { if } k \text { is even. }\end{cases}
$$

Examples of extremal real numbers are the Fibonacci continued fractions $\xi_{a, b}$ (see [5] and $[6, \S 6]$) where a and b denote distinct positive integers. They are defined as the real numbers

$$
\xi_{a, b}=[0, a, b, a, a, b, \ldots]=1 /(a+1 /(b+\cdots))
$$

whose sequence of partial quotients begins with 0 followed by the elements of the Fibonacci word on $\{a, b\}$, the infinite word $a b a a b \cdots$ starting with a which is a fixed point of the substitution $a \mapsto a b$ and $b \mapsto a$. Corollary 6.3 of [6] then shows that such a number $\xi_{a, b}$ belongs to $\mathcal{E}(M)$ with

$$
M=\left(\begin{array}{ll}
a & 1 \tag{2.2}\\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
b & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
a b+1 & a \\
b & 1
\end{array}\right) .
$$

We conclude this section with the following result.
Lemma 2.5. Assume that ξ belongs to $\mathcal{E}(M)$ for some nonsymmetric matrix

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}(\mathbf{Z})
$$

and let $\left(\mathbf{x}_{k}\right)_{k \geq 1}$ be as in Definition 2.4. Then, upon writing $\mathbf{x}_{k}=\left(x_{k, 0}, x_{k, 1}, x_{k, 2}\right)$, we have, for all $k \geq 2$,
(i) $\mathbf{x}_{k+2}=\left(a x_{k, 0}+(b+c) x_{k, 1}+d x_{k, 2}\right) \mathbf{x}_{k+1} \pm \mathbf{x}_{k-1}$,
(ii) $x_{k, 0} x_{k+1,2}-x_{k, 2} x_{k+1,0}= \pm\left(a x_{k-1,0}-d x_{k-1,2}\right) \pm(b-c) x_{k-1,1}$.

Proof. For $k \geq 1$, we have

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k} S \mathbf{x}_{k-1} \quad \text { and } \quad \mathbf{x}_{k+2}=\mathbf{x}_{k+1}^{t} S \mathbf{x}_{k}
$$

where S is M or ${ }^{t} M$ according to whether k is even or odd, and so

$$
\mathbf{x}_{k+2}={ }^{t} \mathbf{x}_{k+2}=\mathbf{x}_{k} S \mathbf{x}_{k+1}=\left(\mathbf{x}_{k} S\right)^{2} \mathbf{x}_{k-1} .
$$

Since Cayley-Hamilton's theorem gives

$$
\left(\mathbf{x}_{k} S\right)^{2}=\operatorname{trace}\left(\mathbf{x}_{k} S\right) \mathbf{x}_{k} S-\operatorname{det}\left(\mathbf{x}_{k} S\right) I
$$

we deduce

$$
\mathbf{x}_{k+2}=\operatorname{trace}\left(\mathbf{x}_{k} S\right) \mathbf{x}_{k+1}-\operatorname{det}\left(\mathbf{x}_{k} S\right) \mathbf{x}_{k-1}
$$

which proves (i). Finally, (ii) follows from the fact that the left-hand side of this inequality is the sum of the coefficients outside of the diagonal of the product

$$
\mathbf{x}_{k} J \mathbf{x}_{k+1} \quad \text { where } \quad J=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

and that, since $J \mathbf{x}_{k} J= \pm \mathbf{x}_{k}^{-1}$, we have

$$
\mathbf{x}_{k} J \mathbf{x}_{k+1}= \pm J \mathbf{x}_{k}^{-1} \mathbf{x}_{k+1}= \pm J S \mathbf{x}_{k-1}
$$

3. A smaller class of real numbers

Although we expect that all extremal real numbers ξ satisfy a measure of approximation by algebraic integers of degree at most 3 which is close to that of Theorem 1.1, say with exponent $\gamma^{2}+\varepsilon$ for any $\varepsilon>0$, we could only prove in [6] that they satisfy a measure with exponent $\gamma^{2}+1$ (see [6, Th. 1.5]). Here we observe that the formulas of Lemma 2.5 show a particularly simple arithmetic for the elements ξ of $\mathcal{E}(M)$ when, in the notation of this lemma, the matrix M has $b=1, c=-1$ and $d=0$. Taking advantage of this, we will prove:

Theorem 3.1. Let a be a positive integer. Then, any element ξ of

$$
\mathcal{E}_{a}=\mathcal{E}\left(\begin{array}{cc}
a & 1 \\
-1 & 0
\end{array}\right)
$$

satisfies the measure of approximation of Theorem 1.1.
The proof of this result will be given in the next section. Below, we simply show that, for $a=1$, the corresponding set of extremal real numbers is not empty.

Proposition 3.2. Let m be a positive integer. Then, the real number

$$
\eta=\left(m+1+\xi_{m, m+2}\right)^{-1}=[0, m+1, m, m+2, m, m, m+2, \ldots]
$$

belongs to the set \mathcal{E}_{1}.

Proof. We first note that, if a real number ξ belongs to $\mathcal{E}(M)$ for some nonsymmetric matrix $M \in \mathrm{GL}_{2}(\mathbf{Z})$ with corresponding sequence of symmetric matrices $\left(\mathbf{x}_{k}\right)_{k \geq 1}$, and if C is any element of $\mathrm{GL}_{2}(\mathbf{Z})$, then the real number η for which $(\eta,-1)$ is proportional to $(\xi,-1) C$ belongs to $\mathcal{E}\left({ }^{t} C M C\right)$ with corresponding sequence $\left(C^{-1} \mathbf{x}_{k}^{t} C^{-1}\right)_{k \geq 1}$. The conclusion then follows since $\xi_{m, m+2}$ belongs to $\mathcal{E}(M)$ where M is given by (2.2) with $a=m$ and $b=m+2$ and since

$$
{ }^{t} C M C=\left(\begin{array}{cc}
1 & 1 \\
-1 & 0
\end{array}\right) \quad \text { for } \quad C=\left(\begin{array}{cc}
0 & -1 \\
-1 & m+1
\end{array}\right) .
$$

Remark. In fact, it can be shown that \mathcal{E}_{a} is not empty for any integer $a \geq 1$. For example, consider the sequence of matrices $\left(\mathrm{x}_{k}\right)_{k \geq 1}$ defined recursively using the formula of Definition 2.4 with

$$
\mathbf{x}_{1}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right), \quad \mathbf{x}_{2}=\left(\begin{array}{cc}
a^{3}+2 a & a^{3}-a^{2}+2 a-1 \\
a^{3}-a^{2}+2 a-1 & a^{3}-2 a^{2}+3 a-2
\end{array}\right)
$$

and

$$
M=\left(\begin{array}{cc}
a & 1 \\
-1 & 0
\end{array}\right) .
$$

Then, using similar arguments as in $[6, \S 6]$, it can be shown that $\left(\mathrm{x}_{k}\right)_{k \geq 1}$ is a sequence of symmetric matrices in $\mathrm{GL}_{2}(\mathbf{Z})$ which satisfies the four conditions of Proposition 2.1 for some real number ξ which therefore belongs to \mathcal{E}_{a}.

4. Proof of Theorem 3.1

We fix a positive integer a, a real number $\xi \in \mathcal{E}_{a}$, and a corresponding sequence of points $\left(\mathbf{x}_{k}\right)_{k \geq 1}$ of \mathbf{Z}^{3} as in Definition 2.4. For simplicity, we also define

$$
X_{k}=\left\|\mathbf{x}_{k}\right\| \quad \text { and } \quad \delta_{k}=\left\{x_{k, 2} \xi\right\}, \quad(k \geq 1) .
$$

The constant c_{3} being as in Proposition 2.1, we first note that

$$
\begin{align*}
& \left\{x_{k, 0} \xi\right\} \leq\left|x_{k, 0} \xi-x_{k, 1}\right| \leq c_{3} X_{k}^{-1} \tag{4.1}\\
& \left\{x_{k, 1} \xi\right\} \leq\left|x_{k, 1} \xi-x_{k, 0} \xi^{2}\right|+\left|x_{k, 0} \xi^{2}-x_{k, 2}\right| \leq(|\xi|+1) c_{3} X_{k}^{-1}
\end{align*}
$$

For $k \geq 2$, the recurrence formula of Lemma 2.5 (i) implies

$$
\begin{equation*}
x_{k+2,2}=a x_{k, 0} x_{k+1,2} \pm x_{k-1,2} \tag{4.2}
\end{equation*}
$$

and Lemma 2.5 (ii) gives

$$
x_{k, 0} x_{k+1,2}=x_{k, 2} x_{k+1,0} \pm a x_{k-1,0} \pm 2 x_{k-1,1} .
$$

Using (4.1), the latter relation leads to the estimate

$$
\left\{x_{k, 0} x_{k+1,2} \xi\right\} \leq X_{k}\left\{x_{k+1,0} \xi\right\}+a\left\{x_{k-1,0} \xi\right\}+2\left\{x_{k-1,1} \xi\right\} \leq c_{7} X_{k-1}^{-1}
$$

for some constant $c_{7}>0$ (since $X_{k} X_{k+1}^{-1} \leq c_{3}^{2+\gamma} X_{k-1}^{-1}$ by virtue of Proposition 2.1 (i)). Combining this with (4.2), we deduce

$$
\left|\delta_{k+2}-\delta_{k-1}\right| \leq a\left\{x_{k, 0} x_{k+1,2} \xi\right\} \leq a c_{7} X_{k-1}^{-1}
$$

Since the sequence $\left(X_{k}\right)_{k \geq 1}$ grows at least geometrically, this in turn implies that, for any pair of integers j and k which are congruent modulo 3 with $j \geq k \geq 1$, we have

$$
\left|\delta_{j}-\delta_{k}\right| \leq c_{8} X_{k}^{-1}
$$

with some other constant $c_{8}>0$. Since

$$
\left|\left\{x_{k, 0} \xi^{3}\right\}-\delta_{k}\right| \leq\left|x_{k, 0} \xi^{3}-x_{k, 2} \xi\right| \leq c_{3}|\xi| X_{k}^{-1}, \quad(k \geq 1)
$$

we conclude that, for $i=1,2,3$, the limit

$$
\theta_{i}=\lim _{j \rightarrow \infty}\left\{x_{i+3 j, 0} \xi^{3}\right\}=\lim _{j \rightarrow \infty} \delta_{i+3 j}
$$

exists and that

$$
\left|\theta_{i}-\left\{x_{k, 0} \xi^{3}\right\}\right| \leq\left(c_{8}+c_{3}|\xi|\right) X_{k}^{-1}
$$

for $k \equiv i \bmod 3$. Since, for all sufficiently large k, Proposition 9.2 of [6] gives

$$
\left\{x_{k, 0} \xi^{3}\right\} \geq c_{9} X_{k}^{-1 / \gamma^{3}}
$$

with a constant $c_{9}>0$, these numbers θ_{i} are nonzero. Thus the sequence $\left(\left\{x_{k, 0} \xi^{3}\right\}\right)_{k \geq 1}$ has (at most three) nonzero accumulation points and therefore is bounded below by some positive constant, say for $k \geq k_{0}$, to exclude the finitely many indices k where $x_{k, 0}=0$. Applying Proposition 2.2 to the subsequence $\left(\mathbf{x}_{k}\right)_{k \geq k_{0}}$, we conclude that ξ has the approximation property stated in Theorem 1.1.

University of Ottawa, Ottawa, Ontario, Canada
E-mail address: droy@uottawa.ca

References

[1] J.-P. Allouche, J. L. Davison, M. Queffélec, and L. Q. Zamboni, Transcendence of Sturmian or morphic continued fractions, J. Number Theory 91 (2001), 39-66.
[2] H. Davenport and W. M. Schmidt, Approximation to real numbers by quadratic irrationals, Acta Arith. 13 (1967), 169-176.
$[3] \xrightarrow{[}$, Approximation to real numbers by algebraic integers, Acta Arith. 15 (1969), 393-416.
[4] M. Laurent, Simultaneous rational approximation to the successive powers of a real number, Indag. Math. 11 (2003), 45-53.
[5] D. Roy, Approximation simultanée d'un nombre et de son carré, C. R. Acad. Sci., Paris, ser. I 336 (2003), 1-6.
$[6]$, Approximation to real numbers by cubic algebraic integers I, Proc. London Math. Soc. 88 (2004), 42-62; arXiv:math.NT/0210181.
[7] W. M. Schmidt, Diophantine Approximation, Lecture Notes in Math. 785, SpringerVerlag, New York, 1980.
(Received October 11, 2002)

[^0]: *Work partly supported by NSERC and CICMA.
 2000 Mathematics Subject Classification: Primary 11J04; Secondary 11J13.

