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Approximating a bandlimited function
using very coarsely quantized data:

A family of stable sigma-delta
modulators of arbitrary order

By Ingrid Daubechies and Ron DeVore

1. Introduction

Digital signal processing has revolutionized the storage and transmission
of audio and video signals as well as still images, in consumer electronics
and in more scientific settings (such as medical imaging). The main ad-
vantage of digital signal processing is its robustness: although all the oper-
ations have to be implemented with, of necessity, not quite ideal hardware, the
a priori knowledge that all correct outcomes must lie in a very restricted set
of well-separated numbers makes it possible to recover them by rounding off
appropriately. Bursty errors can compromise this scenario (as is the case in
many communication channels, as well as in memory storage devices), making
the “perfect” data unrecoverable by rounding off. In this case, knowledge of
the type of expected contamination can be used to protect the data, prior to
transmission or storage, by encoding them with error correcting codes; this is
done entirely in the digital domain. These advantages have contributed to the
present widespread use of digital signal processing.

Many signals, however, are not digital but analog in nature; audio signals,
for instance, correspond to functions f(t), modeling rapid pressure oscillations,
which depend on the “continuous” time t (i.e. t ranges over R or an interval
in R, and not over a discrete set), and the range of f typically also fills an
interval in R. For this reason, the first step in any digital processing of such
signals must consist in a conversion of the analog signal to the digital world,
usually abbreviated as A/D conversion. For different types of signals, different
A/D schemes are used; in this paper, we restrict our attention to a particular
class of A/D conversion schemes adapted to audio signals. Note that at the end
of the chain, after the signal has been processed, stored, retrieved, transmitted,
..., all in digital form, it needs to be reconverted to an analog signal that can
be understood by a human hearing system; we thus need a D/A conversion
there.
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The digitization of an audio signal rests on two pillars: sampling and
quantization, both of which we now briefly discuss.

We start with sampling. It is standard to model audio signals by band-
limited functions, i.e. functions f ∈ L2(R) for which the Fourier transform

f̂(ξ) =
1√
2π

∫ ∞

−∞
f(t)e−iξtdt

vanishes outside an interval |ξ| ≤ Ω. Note that our Fourier transform is nor-
malized so that it is equal to its inverse, up to a sign change,

f(t) =
1√
2π

∫ ∞

−∞
f̂(ξ)eitξdξ .

The bandlimited model is justified by the observation that for the audio signals
of interest to us, observed over realistic intervals [−T, T ], ‖χ|ξ|>Ω(χ|t|≤T f)∧‖2 is
negligible compared with ‖χ|ξ|≤Ω(χ|t|≤T f)∧‖2 for Ω � 2π ·20, 000 Hz. Here and
later in this paper, ‖·‖2 denotes the L2(R) norm. For bandlimited functions one
can use a well-known sampling theorem, the derivation of which is so simple
that we include it here for completeness: since f̂ is supported on [−Ω, Ω], it
can be represented by a Fourier series converging in L2(−Ω, Ω); i.e.,

f̂(ξ) =
∑
n∈Z

cne−inξπ/Ω for |ξ| ≤ Ω ,

where

cn =
1

2Ω

∫ Ω

−Ω
f̂(ξ)einξπ/Ω =

1
Ω

√
π

2
f

(
nπ

Ω

)
.

We thus have

f̂(ξ) =
1
Ω

√
π

2

∑
n∈Z

f

(
nπ

Ω

)
e−inξπΩ χ|ξ|≤Ω ,

which by the inverse Fourier transform leads to

(1) f(t) =
∑
n∈Z

f

(
nπ

Ω

)
sin(Ωt − nπ)
(Ωt − nπ)

=
∑
n∈Z

f

(
nπ

Ω

)
sinc(Ωt − nπ) .

This formula reflects the well-known fact that an Ω-bandlimited function is
completely characterized by sampling it at the corresponding Nyquist
frequency Ω

π .
However, (1) is not useful in practice, because sinc(x) = x−1 sin x decays

too slowly. If, as is to be expected, the samples f
(

nπ
Ω

)
are not known perfectly,

and have to be replaced, in the reconstruction formula (1) for f(t), by f̃n =
f

(
nπ
Ω

)
+ εn, with all |εn| ≤ ε, then the corresponding approximation f̃(t) may

differ appreciably from f(t). Indeed, the infinite sum
∑

n εnsinc(Ωt−nπ) need
not converge. Even if we assume that we sum only over the finitely many n
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satisfying
∣∣n π

Ω

∣∣ ≤ T (using the tacit assumption that the f
(

nπ
Ω

)
decay rapidly

for n outside this interval), we will still not be able to ensure a better bound
than |f(t)−f̃(t)| ≤ Cε log T ; since T may well be large, this is not satisfactory.

To circumvent this, it is useful to introduce oversampling. This amounts
to viewing f̂ as an element of L2(−λΩ, λΩ), with λ > 1; for |ξ| ≤ λΩ we can
then represent f̂ by a Fourier series in which the coefficients are proportional
to f

(
nπ
λΩ

)
,

f̂(ξ) =
1

λΩ

√
π

2

∑
n∈Z

f

(
nπ

λΩ

)
e−inξπ/λΩ for |ξ| ≤ λπ .

Introducing a function g such that ĝ is C∞, and ĝ(ξ) = 1√
2π

for |ξ| ≤ π,
ĝ(ξ) = 0 for |ξ| > λπ, we can write

f̂(ξ) =
π

λΩ

∑
n∈Z

f

(
nπ

λΩ

)
e−inξπ/λΩ ĝ

(
πξ

Ω

)
,

resulting in

(2) f(t) =
1
λ

∑
n∈Z

f

(
nπ

λΩ

)
g

(
Ω
π

t − n

λ

)
.

Because g is smooth with fast decay, this series now converges absolutely
and uniformly; moreover if the f

(
nπ
λΩ

)
are replaced by f̃n = f

(
nπ
λΩ

)
+ εn in (2),

with |εn| < ε, then the difference between the approximation f̃(x) and f(x)
can be bounded uniformly:

(3) |f(t) − f̃(t)| ≤ ε
1
λ

∑
n∈Z

∣∣∣∣g (
Ω
π

t − n

λ

)∣∣∣∣ ≤ εCg

where Cg = λ−1‖g′‖L1 +‖g‖L1 does not depend on T . Oversampling thus buys
the freedom of using reconstruction formulas, like (2), that weigh the different
samples in a much more localized way than (1) (only the f

(
nπ
λΩ

)
with

∣∣t − nπ
λΩ

∣∣
“small” contribute significantly). In practice, it is customary to sample audio
signals at a rate that is about 10 or 20% higher than the Nyquist rate; for high
quality audio, a traditional sampling rate is 44,000 Hz.

The above discussion shows that moving from “analog time” to “discrete
time” can be done without any problems or serious loss of information: for all
practical purposes, f is completely represented by the sequence

(
f

(
nπ
λΩ

))
n∈Z.

At this stage, each of these samples is still a real number. The transition to a
discrete representation for each sample is called quantization.

The simplest way to “quantize” the samples f
(

nπ
λΩ

)
would be to replace

each by a truncated binary expansion. If we know a priori that |f(t)| ≤ A < ∞
for all t (a very realistic assumption), then we can write

f

(
nπ

λΩ

)
= −A + A

∞∑
k=0

bn
k2−k ,
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with bn
k ∈ {0, 1} for all k, n. If we can “spend” κ bits per sample, then a natural

solution is to just select the (bn
k)0≤k≤κ−1; constructing f̃(x) from the approx-

imations f̃n = −A + A
∑κ−1

k=0 bn
k2−n then leads to |f(t) − f̃(t)| ≤ C2−κ+1A,

where C is independent of κ or f . Quantized representations of this type are
used for the digital representations of audio signals, but they are not the so-
lution of choice for the A/D conversion step. (Instead, they are used after the
A/D conversion, once one is firmly in the digital world.) The main reason for
this is that it is very hard (and therefore very costly) to build analog devices
that can divide the amplitude range [−A, A] into 2−κ+1 precisely equal bins.

It turns out that it is much easier (= cheaper) to increase the oversampling
rate, and to spend fewer bits on each approximate representation f̃n of f

(
nπ
Ωλ

)
.

By appropriate choices of f̃n one can then hope that the error will decrease
as the oversampling rate increases. Sigma-Delta (abbreviated by Σ∆) quan-
tization schemes are a very popular way to do exactly this. In the most
extreme case, every sample f

(
nπ
λΩ

)
in (1) is replaced by just one bit, i.e. by a

qn with qn ∈ {−1, 1}; in this paper we shall restrict our attention to such 1-bit
Σ∆ quantization schemes. Although multi-bit Σ∆ schemes are becoming more
popular in applications, there are many instances where 1-bit Σ∆ quantization
is used.

The following is an outline of the content of the paper. In Section 2 we
explain the algorithm underlying Σ∆ quantization in its simplest version, we
review the mathematical results that are known, and we formulate several
questions.

In Section 3, we generalize the simple first-order Σ∆ scheme of Section 2 to
higher orders, leading to better bounds. In particular, we show, for any k ∈ N,
an explicit mathematical algorithm that defines, for every function f that is
bandlimited (i.e. the inverse Fourier transform of a finite measure supported
in [−Ω, Ω]) with absolute value bounded by a < 1, and for all n ∈ Z, “bits”
q
(k)
n ∈ {−1, 1} such that, uniformly in t,

(4)

∣∣∣∣∣f(t) − 1
λ

∑
n

q(k)
n g

(
Ω
π

t − n

λ

)∣∣∣∣∣ ≤ C(k)
g λ−k .

Moreover, we prove that our algorithm is robust in the following sense. Since
we have to make a transition from real-valued inputs f

(
nπ
λΩ

)
to the discrete-

valued qn ∈ {−1, 1}, we have to use a discontinuous function as part of our
algorithm. In our case, this will be the sign function, sign(A) = 1 if A ≥ 0,
sign(A) = −1 if A < 0. In practice, one cannot build, except at very high cost,
an implementation of sign that “toggles” at exactly 0; we shall therefore allow
every occurrence of sign(A) to be replaced by Q(A), where Q can vary from
one time step to the next, or from one component of the algorithm to another,
with only the restrictions that Q(A) = sign(A) for |A| ≥ τ and |Q(A)| ≤ 1 for
|A| ≤ τ , where τ > 0 is known. (Note that this allows for both continuous and
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discontinuous Q; if we impose a priori that Q(t) can take the values 1 and −1
only, then the restrictions reduce to the first condition.) Moreover, whenever
our algorithm uses multiplication by some real-valued parameter P , we also
allow for the replacement of P by P (1 + ε), where ε can again vary, subject
only to |ε| ≤ µ < 1, where the tolerance µ is again known a prioiri. We can
now formulate what we mean by robustness: despite all this wriggle room, we
prove that (4) holds independently of the (possibly time-varying) values of all
the ε and Q, within the constraints.

We conclude, in Section 4, with open problems and outlines for future
research.

2. First order Σ∆-quantization

2.1. The simplest bound. For the sake of convenience, we shall set (by
choosing appropriate units if necessary) Ω = π and A = 1. We are thus
concerned with coarse quantization of functions f ∈ C2 = {h ∈ L2; ‖h‖L∞ ≤ 1,
support ĥ ⊂ [−π, π]}; for most of our results we also can consider the larger
class

C1 = {h : ĥ is a finite measure supported in [−π, π], ‖h‖L∞ ≤ 1} .

With these normalizations (3) simplifies to

(5) f(t) =
1
λ

∑
n

f

(
n

λ

)
g

(
t − n

λ

)
,

with g as described before; i.e.,

(6) ĝ(ξ) =
1√
2π

for |ξ| ≤ π, ĝ(ξ) = 0 for |ξ| > λπ and ĝ ∈ C∞ .

It is not immediately clear how to construct sequences qλ = (qλ
n)n∈Z, with

qλ
n ∈ {−1, 1} for each n ∈ Z, such that

(7) f̃qλ(t) =
1
λ

∑
qλ
ng

(
t − n

λ

)
provides a good approximation to f . Taking simply qλ

n = sign
(
f

(
n
λ

))
does not

work because there exist infinitely many independent bandlimited functions
ϕ that are everywhere positive (such as the lowest order prolate spheroidal
wave functions [16], [14] for arbitrary time intervals and symmetric frequency
intervals contained in [−π, π]); picking the signs of samples as candidate qλ

n

would make it impossible to distinguish between any two functions in this
class.

First order Σ∆-quantization circumvents this by providing a simple iter-
ative algorithm in which the qλ

n are constructed by taking into account not
only f

(
n
λ

)
but also past f

(
m
λ

)
; we shall see below how this leads to good
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approximate f̃qλ . Concretely, one introduces an auxiliary sequence (un)n∈Z
(sometimes described as giving the “internal state” of the Σ∆ quantizer) iter-
atively defined by

(8)


un = un−1 + f

(
n

λ

)
− qλ

n

qλ
n = sign

(
un−1 + f

(
n

λ

))
,

and with an “initial condition” u0 arbitrarily chosen in (−1, 1). In circuit
implementation, the range of n in (8) is n ≥ 1. However, for theoretical
reasons, we view (8) as defining the un and qn for all n. At first glance, this
means the un are defined implicitly for n < 0. However, as we shall see below,
it is possible to write un and qn directly in terms of un+1 and fn+1 when n < 0.

We shall now show by a simple inductive argument that the un of (8) are
all bounded by 1. We prove this in two steps:

Lemma 2.1. For any f ∈ C1 and |u0| < 1, the sequence (un)n∈N defined
by the recursion (8) is uniformly bounded, |un| < 1 for all n ≥ 0.

Proof. Suppose |un−1| < 1. Because f ∈ C1, we have
∣∣f (

n
λ

)∣∣ ≤ 1, so that∣∣f (
n
λ

)
+ un−1

∣∣ < 2. It then follows that
∣∣f (

n
λ

)
+ un−1 − sign

(
f

(
n
λ

)
+ un−1

)∣∣
< 1.

For negative n, we first have to transform the system (8) into a recursion
in the other direction. To do this, observe that for n ≥ 1,

un−1 + f

(
n

λ

)
> 0 ⇒ un − f

(
n

λ

)
= un−1 − 1 < 0

un−1 + f

(
n

λ

)
< 0 ⇒ un − f

(
n

λ

)
= un−1 + 1 > 0.

In all cases we have, thus, sign (un − f
(

n
λ

)
) = − sign(un−1 + f

(
n
λ

)
). The

recursion (8) therefore implies, for n ≥ 1,

(9) un−1 = un − f

(
n

λ

)
− sign(un − f

(
n

λ

)
) ,

which we can now extend to all n, making it possible to compute un for n < 0
corresponding to the “initial” value u0 ∈ (−1, 1). The same inductive argument
then proves that these un are also bounded by 1. We have thus:

Proposition 2.2. The recursion (8), with |u0| < 1 and f ∈ C1, defines
a sequence (un)n∈Z for which |un| < 1 for all n ∈ Z.

From this we can immediately derive a bound for the approximation error
|f(t) − f̃qλ(t)|.
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Proposition 2.3. For f ∈ C1, λ > 1, define the sequence qλ through
the recurrence (8), with u0 chosen arbitrarily in (−1, 1). Let g be a function
satisfying (6). Then

(10)

∣∣∣∣∣f(t) − 1
λ

∑
n

qλ
ng

(
t − n

λ

)∣∣∣∣∣ ≤ 1
λ
‖g′‖L1 .

Proof Using (5), summation by parts, and the bound |un| < 1, we derive∣∣∣∣∣f(t) − 1
λ

∑
n

qλ
ng

(
t − n

λ

)∣∣∣∣∣ =
1
λ

∣∣∣∣∣∑
n

(
f

(
n

λ

)
− qλ

n

)
g

(
t − n

λ

)∣∣∣∣∣
=

1
λ

∣∣∣∣∣∑
n

un

(
g

(
t − n

λ

)
− g

(
t − n + 1

λ

))∣∣∣∣∣
≤ 1

λ

∑
n

∣∣∣∣g (
t − n

λ

)
− g

(
t − n + 1

λ

)∣∣∣∣
≤ 1

λ

∑
n

∫ t−n
λ

t−n+1
λ

|g′(y)|dy =
1
λ
‖g′‖L1 .

This extremely simple bound is rather remarkable in its generality. What
makes it work is, of course, the special construction of the qλ

n via (8); the qλ
n are

chosen so that, for any N , the sum
∑N

n=1 qλ
n closely tracks

∑N
n=1 f

(
n
λ

)
, since∣∣∣∣∣

N∑
n=1

f

(
n

λ

)
−

N∑
n=1

qλ
n

∣∣∣∣∣ = |uN − u0| < 2 .

If we choose u0 = 0 (as is customary), then we even have

(11)

∣∣∣∣∣
N∑

n=1

f

(
n

λ

)
−

N∑
n=1

qλ
n

∣∣∣∣∣ = |uN | < 1 ;

this requirement (which can be extended to negative N) clearly fixes the qλ
n

unambiguously. The “Σ” in the name Σ∆-modulation or Σ∆-quantization
stems from this feature of tracking “sums” in defining the qλ

n; Σ∆-modulation
can be viewed as a refinement of earlier ∆-modulation schemes, to which the
sum-tracking was added. There exists a vast literature on Σ∆-modulation in
the electrical engineering community; see e.g. the review books [2] and [15].
This literature is mostly concerned with the design of, and the study of good
design criteria for, more complicated Σ∆-schemes. The one given by (8) is the
oldest and simplest [2], but is not, as far as we know, used in practice. We
shall see below how better bounds than (10), i.e. bounds that decay faster as
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λ → ∞, can be obtained by replacing (8) by other recursions, in which higher
order differences play a role. Before doing so, we spend the remainder of this
section on further comments on the first-order scheme and its properties.

2.2. Finite filters. In practice, one cannot use filter functions g that
satisfy the condition in (6) because they require the full sequence (qλ

n)n∈Z to
approximate even one value f(t). It would be closer to the common practice
to use G that are compactly supported (and for which the support of Ĝ is
therefore all of R, in contrast with (6)). In this case, the reconstruction formula
(5) no longer holds, and the approximation error has additional contributions.
Suppose G is supported in [−R, R], so that, for a given t, only the qλ

n with
|t − n

λ | < R can contribute to the sum
∑

n qλ
nG(t − n

λ ). Then we have∣∣∣∣∣f(t) − 1
λ

∑
n

qλ
nG

(
t − n

λ

)∣∣∣∣∣ ≤
∣∣∣∣∣f(t) − 1

λ

∑
n

f

(
n

λ

)
G

(
t − n

λ

)∣∣∣∣∣(12)

+
1
λ

∣∣∣∣∣∑
n

(
f

(
n

λ

)
− qλ

n

)
G

(
t − n

λ

)∣∣∣∣∣ .

The second term can be bounded as before. We can bound the first term by
introducing again an “ideal” reconstruction function g, satisfying supp ĝ ⊂
[−λπ, λπ] and ĝ|[−π,π] ≡ (2π)−1/2. Then∣∣∣∣∣f(t) − 1

λ

∑
n

f

(
n

λ

)
G

(
t − n

λ

) ∣∣∣∣∣
=

1
λ

∣∣∣∣∣ ∑
n

f

(
n

λ

) [
g

(
t − n

λ

)
− G

(
t − n

λ

)] ∣∣∣∣∣
≤ 1

λ

∑
n

∣∣∣∣∣g
(

t − n

λ

)
− G

(
t − n

λ

) ∣∣∣∣∣ ≤ ‖G − g‖L1 + λ−1‖G′ − g′‖L1 .

By imposing on G that the L1 distance of G and G′/λ to g and g′/λ, re-
spectively, be less than C/λ for at least one suitable g, we see that this term
becomes comparable to the estimate for the first term. (This means that G

depends on λ; the support of G typically increases with λ.)
In practical applications, one is generally interested only in approximating

f(t) for t after some starting time t0, t > t0. If finite filters are used this means
that one needs the qλ

n only for n exceeding some corresponding n0. There is
then no need to consider the ”backwards” recursion (9), introduced to extend
Lemma 2.1 (bound on the |un| uniform in n ≥ 0) to Proposition 2.2 (bound
on the |un| uniform in n).

Note that in practice, and except at the final D/A step mentioned in the
introduction, bandlimited models for audio signals are always represented in
sampled form. This means that once a digital sequence (qλ

n)n∈Z is determined,
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all the filtering and manipulations will be digital, and an estimate closer to the
electrical engineering practice would seek to bound errors of the type

(13)

∣∣∣∣∣f
(

m

λ

)
−

∑
n

qλ
nGλ

m−n

∣∣∣∣∣ ,

using discrete convolution with finite filters Gλ, rather than expressions of
the type (10) or (11). If we were interested in optimizing constants relevant
for practice, we should concentrate on (13) directly. For our present level of
modeling however, in which we want to study the dominant behavior as a
function of λ, working with (10) or (11), or their equivalent forms for higher
order schemes, below, will suffice, since (13) will have the same asymptotic
behavior as (11), for appropriately chosen Gλ

m. Unless specified otherwise,
we shall assume, for the sake of convenience, that we work with reconstruction
functions g satisfying (6). Since such g are supported on all of R, we will always
need to define qn for all n ∈ Z (rather than N). For first-order Σ∆, we could
easily “invert” the recursion so as to reach n < 0. For the higher order Σ∆
considered from Section 3 onwards, such an inversion is not straightforward;
instead we will simply give, for every algorithm that defines qn for n ≥ 0, a
parallel prescription that defines qn for n < 0.

2.3. More refined bounds. In practice, one observes better behavior for
|f(t)− f̃qλ(t)| than that proved in Proposition 2.3. In particular, it is believed
that, for arbitrary f ∈ C1,

(14) lim
T→∞

1
2T

∫
|t|≤T

∣∣∣∣∣f(t) − 1
λ

∑
n

qλ
ng

(
t − n

λ

)∣∣∣∣∣
2

dt ≤ C

λ3
,

with C independent of f ∈ C1 or of the initial condition u0 for the recursion (8).
Whether the conjecture (14) holds, either for each f ∈ C1, or in the mean
(taking an average over a large class of functions in C1 or C2) is still an open
problem.

It is not surprising that a better bound than (10) would hold, since we
used very little in its derivation. In particular, we never used explicitly that
the f

(
n
λ

)
were samples of the entire (because bandlimited) function f .

For some special cases, i.e. for very restricted classes of functions f , (14)
has been proved. In particular, it was proved by R. Gray [5] that if one restricts
oneself to f = fa, where a ∈ [−1, 1] and fa(t) ≡ a, then

(15)
∫ 1

−1

 lim
T→∞

1
2T

∫
|t|≤T

∣∣∣∣∣fa(t) −
1
λ

∑
n

qλ
ng

(
t − n

λ

)∣∣∣∣∣
2

dt

 da ≤ C

λ3
;

in Gray’s analysis the integral over t is a sum over samples, and g is replaced
by a discrete filter Gλ (see above), but his analysis applies equally well to our
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case. A different proof can be found in [10]. Gray’s result was later extended
by Gray, Chou and Wong [6] to the case where the input function f(t) is a
sinusoid, f(t) = a sin bt, with |b| < π.

For general bandlimited functions, there were no results, to our knowledge,
until the work of S. Güntürk [7], [8], [9], who proved, by a combination of tools
from number theory and harmonic analysis, that, for all f ∈ C1 and all t for
which f ′(t) �= 0,

(16)

∣∣∣∣∣f(t) −
∑
n

qλ
ngλ

(
t − n

λ

)∣∣∣∣∣ ≤ Cλ− 4
3
+ε .

In Güntürk’s analysis the value of C depends on |f ′(t)| as well as ε; his gλ (into
which the 1/λ factor from (10) has been absorbed) is compactly supported,
and has to satisfy various technical conditions. Although there is no mathe-
matical proof for the moment, numerical simulations of intermediate results
in Güntürk’s work suggest that (16) may still hold, for general f ∈ C1, if the
upper bound Cλ− 4

3
+ε is replaced by Cλ− 3

2
+ε. For more details concerning the

whole analysis and this discussion in particular, we refer the reader to [8], [9].

2.4. Robustness. Remarkably, an iterative procedure very similar to (8)
can be used to compute the binary expansion of a number in (0, 1). Consider
the recursion

(17)

{
ũn = 2ũn−1 + xn − b̃n

b̃n = sign(2ũn−1 + xn)

with initial condition ũ−1 = α/2, b̃0 = sign(α), and with the sequence (xn)n

defined by x0 = α, xn = 0 for n > 0; here α is any number in (−1, 1). By
induction one derives again that |ũn| < 1 for all n, so that∣∣∣∣∣2α −

N∑
n=0

2−nb̃n

∣∣∣∣∣ =

∣∣∣∣∣α +
N∑

n=0

2−n(xn − b̃n)

∣∣∣∣∣
= |2ũ−1 +

N∑
n=0

2−n(ũn − 2ũn−1)|

= |2−N ũN | < 2−N → 0 as N → ∞,

which converges exponentially like a binary expansion. (Since the b̃n ∈ {−1, 1},∑∞
n=0 2−nb̃n is not quite a binary expansion; however, for n ≥ 1, the bn =

(1 + b̃n−1)/2 ∈ {0, 1} are the digits for the binary expansion of 1+α
2 .)

The only difference between the two recursions is the presence of the
multiplications by 2 in (17). When the recursive equations are converted into
block diagrams for circuits that would implement these recursions in practice,
the diagram for (17) would require only one item more (a multiplier by 2)
than the diagram for (8). The similarity of the two algorithms or circuits
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seems to contradict the claim in the introduction, that Σ∆ quantization is
much cheaper to implement than binary quantization of less frequent samples.
However, the two algorithms behave very differently when imperfections, in
particular imperfect quantizers, are introduced. Quantizers are never perfect.
Although we desire to use q(x) = sign(x) for our 1-bit quantizer, in practice
we may have, e.g., q(x) = sign(x + δ), where δ is unknown except for the
specification |δ| < τ ; the value of δ may vary from one circuit to another, and
it may even, due to thermal fluctuations, vary from one time step n to the next.
More generally, we may have Q(x) = sign(x) for |x| ≥ τ , whereas for |x| ≤ τ ,
we have only the bound |Q(x)| ≤ 1. (Note that if Q is restricted to take only
the values 1 and −1, the second condition is automatically satisfied, implying
that for |t| < τ , the behavior of Q(t) can be completely arbitrary.) A good
algorithm or circuit is one that will perform well even without very stringent
requirements on τ ; if extremely tight specifications on τ are necessary to make
everything work well, then this will translate into an expensive circuit.

Let us replace the sign function in (8) by such a nonideal quantizer; the
new recursion is then

(18)

{
un = un−1 + f

(
n
λ

)
− qn

qn = Qn
(
un−1 + f

(
n
λ

))
,

and let us assume that, for all n ∈ Z,

(19)
Qn(x) = sign(x) for |t| ≥ τ

|Qn(x)| ≤ 1 for |t| ≤ τ .

It turns out that the un are then still bounded, uniformly, independently of
the detailed behavior of Qn, as long as (19) is satisfied:

Lemma 2.4. Let f be ∈ C1, let un, qn be as defined in (18), and let Qn

satisfy (19) for all n. If |u0| ≤ 1 + τ , then |un| ≤ 1 + τ for all n ≥ 0.

Proof. We use induction again. Suppose |un−1| ≤ τ + 1. Because f ∈ C1,∣∣f (
n
λ

)∣∣ ≤ 1. We now distinguish three cases. If un−1 + f
(

n
λ

)
> τ , then

un = un−1 + f
(

n
λ

)
− 1 ∈ (τ − 1, τ + 1). Likewise, if un−1 + f

(
n
λ

)
< −τ , then

un = un−1 + f
(

n
λ

)
+ 1 ∈ (−τ − 1,−τ + 1). Finally, if −τ ≤ un−1 + f

(
n
λ

)
≤ τ ,

then |Qn(un−1 + f
(

n
λ

)
)| ≤ 1, so that un = un−1 + f

(
n
λ

)
−Qn(un−1 + f

(
n
λ

)
) ∈

(−τ − 1, τ + 1).

Note that Lemma 2.4 holds regardless of how large τ is; even τ  1
is allowed. To discuss the case n ≤ 0, we need to reconsider the recursion,
because for generic Qn, we can no longer “invert” the relationship between
un and un−1. Therefore, we simply posit the following recursion for n < 0,
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inspired by (9),

(20)

 un = un+1 − f
(

n+1
λ

)
+ qn

qn = −Qn

(
un+1 − f(n+1

λ )
)

.

An immediate generalization of Lemma 2.4 is then

Lemma 2.5. Let f be in C1, let un, qn be as defined in (18) or (20), and
let Qn satisfy (19) for all |n| > 1. Assume also that |u0| ≤ 1 + τ . Then
|un| ≤ τ + 1 for all n ∈ Z.

By the same argument as in the proof of Proposition 2.3, Lemma 2.5 has
as an immediate consequence the following:

Corollary 2.6. Let f be in C1, let λ be > 1, and suppose g satisfies (6).
Suppose, also, the sequence (qλ

n)n∈Z is generated by (18), with imperfect quan-
tizers Qn(t) that satisfy (19). Then, for all t ∈ R,

(21)

∣∣∣∣∣f(t) − 1
λ

∑
n

qλ
ng

(
t − n

λ

)∣∣∣∣∣ ≤ 1 + τ

λ
‖g′‖L1 .

If one replaces the “perfect” reconstruction function g by a suitable com-
pactly supported Gλ, as in subsection 2.2, then one can also derive estimates
similar to (21), exploiting the compactness of the support of Gλ. Although we
must pay some penalty for the imperfection of the quantizer in all these cases
(the constants increase), the precision that can be attained is nevertheless not
limited by the imperfection: by choosing λ sufficiently large, the approximation
error can be made arbitrarily small.

The same is not true for the binary expansion-type schemes (17). Sup-
pose we use (17) to generate bits b̃n ∈ {−1, 1}, and consider the approximation
αN =

∑N
n=0 2−nb̃n to the input α, as before; however, the quantizer has been

changed to, say, Qn(t) = sign(t − δn), with |δn| < τ . Suppose now α = δ0
2 ;

for the sake of definiteness, assume δ0 > 0. Then (17), with this imperfect
quantizer, will give b̃0 = −1, so that αN = b̃0 +

∑N
n=1 2−nb̃n ≤ −2−N for

all N , implying |α − αN | > δ0
2 for all N . The mistake made by the imperfect

quantizer cannot be recovered by computing more bits, in contrast to the self-
correcting property of the Σ∆-scheme. In order to obtain good precision overall
with the binary quantizer, one must therefore impose very strict requirements
on τ , which would make such quantizers very expensive in practice (or even
impossible if τ is too small). On the other hand [3], Σ∆-quantizers are robust
under such imperfections of the quantizer, allowing for good precision even if
cheap quantizers are used (corresponding to less stringent restrictions on τ). It
is our understanding that it is this feature that makes Σ∆-schemes so successful
in practice.
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It would be better, however, to see the approximation error decay faster
with λ, faster even than the λ− 3

2 estimate conjectured to hold for first order
Σ∆-quantization of bandlimited functions (see §2.3 above). For this faster
decay we must turn to higher order schemes.

3. Higher order Σ∆-quantization

3.1. The general principle. The proof of Proposition 2.3 suggests a mech-
anism by which better decay for |f(t)− f̃qλ(t)| can be obtained. The argument
relied completely on the fact that f

(
n
λ

)
−qλ

n was rewritten as the first difference
of a bounded sequence; summation by parts then gave the estimate. If we can
work with k-th order (instead of first-order) differences of bounded sequences,
then we obtain a λ−k decay for |f(t)− f̃qλ(t)| instead of the λ−1 decay of (10):

Proposition 3.1. Take f ∈ C1; take λ > 1, and suppose g satisfies (6).
Suppose that the qλ

n ∈ {−1, 1} are such that there exists a bounded sequence
(un)n∈Z for which

(22) f

(
n

λ

)
− qλ

n = ∆k
n(u) :=

k∑
l=0

(−1)l

(
k

l

)
un−l .

(23) Then, for all x ∈ R,

∣∣∣∣∣∣f(t) − 1
λ

∑
n∈Z

qλ
ng

(
t − n

λ

)∣∣∣∣∣∣ ≤ 1
λk

‖u‖
l∞

∥∥∥∥∥dkg

dtk

∥∥∥∥∥
L1

.

Proof. It follows from (22) that

|f(t) − 1
λ

∑
n

qλ
ng

(
x − n

λ

)∣∣∣∣∣ =
1
λ

∣∣∣∣∣∑
n

∆k
n(u)g

(
t − n

λ

)∣∣∣∣∣(24)

=
1
λ

∣∣∣∣∣∑
n

un∆k
n

(
g

(
t − ·

λ

))∣∣∣∣∣ ,

where ∆k is the k-th order forward difference. Thus (see [4, p. 137]),

∆k
n

(
g

(
t − ·

λ

))
=

k∑
l=0

(−1)l

(
k

l

)
g

(
t − n + l

λ

)
(25)

= (−1)k 1
λk−1

∫ k/λ

0
g(k)

(
t − n + k

λ
+ s

)
ϕk(λs)ds ,

where ϕk is the k-th order B-spline, ϕk = χ[0,1] ∗ · · · ∗ χ[0,1] (k convolution
factors). Note that ϕk is positive, and supported on [0, k] (so that we can just
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as well replace the integration limits by −∞ and ∞). Moreover,∑
m∈Z

ϕk(y + m) = 1

for all y ∈ R. It follows that we can estimate∣∣∣∣∣f(t) − 1
λ

∑
n∈Z

qλ
ng

(
t − n

λ

)∣∣∣∣∣∣
≤ 1

λk
‖u‖l∞

∑
n

∫ ∞

−∞
|g(k)(t − n + k

λ
+ s)|ϕk(λs)ds

=
1
λk

‖u‖
l∞

∑
n

∫ ∞

−∞
|g(k)(y)|ϕk(λy − λt + n + k)dy

=
1
λk

‖u‖
l∞‖g(k)‖L1 .

The key to better decay in λ for the approximation rate is thus to construct
algorithms of type (22) with k > 1 and uniformly bounded un. A Σ∆ algo-
rithm which has such uniform bounds on the “internal state variables” is called
“stable” in the electrical engineering literature; see e.g. [13]. We are thus con-
cerned here with establishing the existence of stable Σ∆ schemes of arbitrary
order. We first discuss the cases k = 2 and 3, before proceeding to general k.

3.2. Second-order Σ∆ schemes. We shall consider the recursion

(26)


vn = vn−1 + xn − qn

un = un−1 + vn

qn = sign[F (un−1, vn−1, xn)] ,

where the function F still needs to be specified. We are interested in applying
this to the case where the xn are samples of a function f ∈ C1; however, our
discussion of the boundedness of un, vn is valid for arbitrary input sequences
(xn)n∈Z, provided |xn| ≤ a < 1.

Several choices for F have been considered in the literature; see e.g. [2].
One family of choices described in [2] is

(27) F (u, v, x) = γu + v + x ,

where γ is a fixed parameter. A detailed discussion of the mathematical prop-
erties of this family is given in [19]. Another very interesting choice, proposed
by N. Thao [17], is

(28) F (u, v, x) =
6x − 7 sign(x)

3
+

(
v +

x + 3 sign(x)
2

)2

+ 2(1 − |x|)u .

In both cases, one can prove that there exists a bounded set Aa ⊂ R
2 so that if

|xn| ≤ a for all n, and (u0, v0) ∈ Aa, then (un, vn) ∈ Aa for all n ∈ N; see [19].
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It follows that we have uniform boundedness for the un if xn = f
(

n
λ

)
for

bandlimited f with ‖f‖L∞ ≤ a, implying a λ−2 bound according to (23). As
in the first order case, it turns out that for (28) this λ−2 bound can be improved
by a more detailed analysis; for constant input one achieves, in a root-mean-
squared sense, a λ−9/4+ε bound. Numerical observations suggest that this
result can be improved to a λ−5/2 decay rate for appropriately “balanced” F ;
they also suggest that this result can be extended to general band-limited
functions (instead of constants). We refer to [11], [18], [19] for a detailed
analysis and discussion of these schemes.

Robustness is an issue for second-order (and higher-order) schemes, just
as it was for the first-order case. In fact, the problem becomes trickier because
the quantization scheme should be able to deal not only with imperfect quan-
tizers, but also with imprecisions in the multiplicative factors defining F in
(28) or (30) (below). The analysis in [19] shows that we do indeed have such
robustness, for a wide family of second-order sigma-delta schemes.

Proving more refined bounds than (23) for higher order Σ∆ schemes, even
for constant input, turns out to be much harder than for first order (where
already the analysis leading to (16) is highly nontrivial – see [8], [9]). This is
mainly because even for xn ≡ x constant, the dynamical system (26) is much
more complex than (8). In particular, the map

R1,x : R→ R

u �→ u + x − sign(u + x)

has [−1, 1] as an invariant set, regardless of the value of x ∈ [−1, 1]. In contrast,
the maps

R2,x : R
2 → R

2(29) (
u

v

)
�→

(
u + x − sign(u + v

2 + x)
v + u + x − sign(u + v

2 + x)

)

have invariant sets Γx that depend on the value of x ∈ (−1, 1). The sets Γx

have fascinating properties which are still poorly understood; for instance, for
each fixed x,Γx seems to be a tile for R2 under translations by 2Z2. (This
tiling property is observed for many F , and we conjecture that it holds for
a large family of F , even though we can prove only a few special cases – see
below.) For x �= 0, the Γx for (27) can have interesting fractal boundaries; for
“large” x, these Γx are disconnected. (See Figure 1.)

On the other hand, the sets Γx for (28) are connected neighborhoods of
(0, 0) bounded by four parabolic arcs (see Figure 2); because of the explicit
characterization of these sets, a proof that the 2Z2-translates of Γx tile R2 is
straightforward in this case. The smoothness of the boundaries also makes it
possible to refine (23) for this choice of F and for constant input (see [11]).
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Figure 1. The attracting invariant sets Γx for two values of x

(left: x = .2, right: x = .8) and for the choice (27) for F , with
γ = .5. For x = .2, Γx is polygon, with sides that can be computed
explicitly [11]; for x = .8, Γx is disconnected and fractal.
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Figure 2. The attracting invariant sets Γx for two values of x

(left: x = .5, right: x = .8) for the choice (28) for F .

Neither of the two schemes (27) or (28) is easy to generalize to higher
order. We shall therefore concentrate our attention here on yet another choice
for F ,

(30) F (u, v, x) = v + x + M sign(u) ,

with M > 1 to be fixed below. In addition, we shall also allow the sign-
functions in (26) and (30) to be imperfect quantizers, and the multiplication
by M to be imperfect as well. Our recursion thus reads, for n > 0,

(31)


vn = vn−1 + xn − qn

un = un−1 + vn

qn = Q1
n[vn−1 + xn + M(1 + εn)Q2

n(un−1)] ,

where we assume that Q1
n, Q2

n satisfy (19), and |εn| ≤ µ < 1.
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The approach in [19] can be used to show that this second-order recursion
does produce uniformly bounded un, vn. We shall provide a different argument
here, that, unlike the analysis in [19], generalizes to arbitrary order.

Prescribing initial values u0, v0 (or equivalently u0, u−1) the recursion (31)
determines qn, un, vn, n ≥ 1. In addition, we also need to give a prescription
for n ≤ 0. Observe that the equations for un, vn can be rewritten as un =
2un−1 − un−2 + xn − qn ; this suggests a symmetry between un and un−2. We
use this to define the following recursion for un, qn with n < 0,{

un = 2un+1 − un+2 + xn+2 − qn+2

qn+2 = Q1
n

[
un+1 − un+2 + xn+2 + M(1 + εn)Q2

n(un+1)
]

,

to be used for n ≤ −2. If we introduce also vn = un − un+1 for n < 0, this
becomes

(32)


vn = vn+1 + xn+2 − qn+2

un = un+1 + vn

qn+2 = Q1
n

[
vn+1 + xn+2 + M(1 + εn)Q2

n.(un+1)
]

,

We define v−1 = −v0 and use this together with the already prescribed values
u0, u−1 in (32). This recursion will then serve to determine the values of
qj , uj , vj for j ≤ 0. The sequences (un), (qn) will then satisfy, for all n,

∆2un = xn − qn.

As pointed out at the end of Section 2.2, we introduce an algorithm to
generate qn for n < 0 because our approximation formula (5), using g supported
on all of R, requires them; in practice one uses only compactly supported G,
and qn with n ≤ 0 are not needed. Since the negatively-indexed qn are kept
for only theoretical reasons, we would be justified in keeping the sign function
“clean” in their recursion, i.e. without the Q1

n, Q2
n, εn “imperfections”; we left

them in for the sake of generality. It is clear, by comparing (32) with (31),
that if we can prove that (31) implies uniform bounds on |un|, |vn| for n > 0,
starting from some initial condition |u0| ≤ U0, |v0| ≤ V0 (with U0, V0 to be
determined), then the same uniform bounds on |un|, |vn| for n < 0 will follow,
provided |u−1| ≤ U0, |v−1| ≤ V0. Since v−1 = −v0, we need to impose only the
additional constraint |u0 + v−1| = |u0 − v0| ≤ U0 for this to hold. This will
allow us to restrict our arguments to the n > 0 case. We then have:

Proposition 3.2. Suppose |xn| ≤ a < 1 for all n ∈ Z. Let un, vn, and qn

be defined as in (31) and (32), with M ≥ 2a+τ+1
1−µ . Then, if |v0| ≤ M(1 + µ) +

1 + τ , there exists |vn| ≤ M(1 + µ) + 1 + τ for all n ∈ Z. Moreover, if
|u0|, |v0| ≤ τ/2, then |un| ≤ τ + [M(1+µ)+τ+3/2−a/2]2

2(1−a) for all n ∈ Z.

We start by proving a succession of lemmas, in each of which we make the
same assumptions as in the statement of Proposition 3.2. The lemmas deal
only with the case n ∈ N.
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Lemma 3.3. If |v0| ≤ M(1 + µ) + 1 + τ , then |vn| ≤ M(1 + µ) + 1 + τ

for all n ∈ N.

Proof. By induction. Suppose |vn−1| ≤ M(1+µ)+1+ τ . If |vn−1 +xn| >

M(1 + εn) + τ , then

|vn| = |vn−1 + xn − Q1
n(vn−1 + xn)| = |vn−1 + xn| − 1

≤ |vn−1| + a − 1 < M(1 + µ) + 1 + τ,

where we have used that |vn−1 + xn| > τ . If |vn−1 + xn| ≤ M(1 + εn) + τ , then

|vn| ≤ |vn−1 + xn| + 1 ≤ M(1 + εn) + τ + 1 ≤ M(1 + µ) + 1 + τ.

Lemma 3.4. Suppose uk ≤ τ , and uk+1, uk+2, . . . , uk+L > τ . Define κ to
be the smallest integer strictly larger than 2M

1−a + 1. If L ≥ κ, then there exists
at least one l ∈ {1, . . . , κ} such that vk+l + xk+l+1 < −M(1 − µ) + 1 + a + τ .

Proof. Suppose vk+1 +xk+2, . . . , vk+κ−1 +xk+κ are all ≥ −M(1−µ)+1+
a + τ . Because uk+1, . . . , uk+κ−1 are all > τ , we have qk+2 =. . . = qk+κ = 1,
which implies

vk+κ + xk+κ+1 = vk+1 +
κ∑

l=2

(xk+l − qk+l) + xk+κ+1

≤ M(1 + µ) + 1 + τ + (κ − 1)(a − 1) + a

< M(1 + µ) + 1 + τ + a − (1 − a)
2M

1 − a
= −M(1 − µ) + 1 + a + τ .

Lemma 3.5. Let uk, uk+1, . . . , uk+L be as in Lemma 3.4. If

vk+l + xk+l+1 < −M(1 − µ) + 1 + a + τ

for some l ∈ {1, . . . , L}, then for all l′ satisfying l ≤ l′ ≤ L,

vk+l′ + xk+l′+1 < −M(1 − µ) + 1 + a + τ .

Proof. By induction. Suppose vk+n + xk+n+1 < −M(1 − µ) + 1 + a + τ

with n ∈ {1, . . . , L − 1}; we prove that this implies

vk+n+1 + xk+n+2 < −M(1 − µ) + 1 + a + τ.

If vk+n + xk+n+1 ≥ −M(1 + εn+k+1) + τ , then qk+n+1 = 1 (since uk+n > τ),
hence

vk+n+1 + xk+n+2 < −M(1 − µ) + 1 + a + τ − 1 + xk+n+2

< −M(1 − µ) + 1 + a + τ.

On the other hand, if

vk+n + xk+n+1 < −M(1 + εn+k+1) + τ,
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then

vk+n+1 + xk+n+2 < −M(1 + εn+k+1) + τ + 1 + xk+n+2

≤ −M(1 − µ) + 1 + a + τ.

Lemma 3.6. Let uk, uk+1, . . . , uk+L be as above. Then the vk+l decrease
monotonically in l, with vk+l−1 − vk+l ≥ 1− a, until vk+l + xk+l+1 drops below
−M(1 − µ) + 1 + a + τ . All subsequent vk+l′ with l′ ≤ L remain negative.

Proof. As long as vk+n +xk+n+1 ≥ −M(1−µ)+1+a+ τ with n ≤ L, we
have qk+n+1 = 1, so vk+n − vk+n+1 = −xk+n+1 + 1 ≥ 1− a. If vk+l + xk+l+1 <

−M(1 − µ) + 1 + a + τ , then vk+l′ + xk+l′+1 < −M(1 − µ) + 1 + a + τ by
Lemma 3.5 if l ≤ l′ ≤ L, so that vk+l′ < −M(1 − µ) + 1 + 2a + τ ≤ 0.

It is now easy to complete the proof of Proposition 3.2:

Proof. We first discuss the case n > 0. The bound on vn is proved in
Lemma 3.3; we now turn to un. Suppose uk+1, . . . , uk+L is a stretch of un > τ ,
preceded by uk ≤ τ . We have then, for all m ∈ {1, . . . , L},

uk+m = uk +
m∑

l=1

vk+l ≤ τ +
m∑

l=1

vk+l .

By Lemma 3.6, these vk+l decrease monotonically by at least (1 − a) at every
step until they drop below a certain negative value, after which they stay
negative. Consequently, uk+l ≤ uk+1− (1 − a)(l − 1) ≤ M(1 + µ) + 1 + τ

− (1− a)(l − 1), at least until this last expression drops below zero. It follows
that

uk+m ≤ τ + max
n≥1

n∑
l=1

[M(1 + µ) + 1 + τ − (1 − a)(l − 1)](33)

≤ τ +
[M(1 + µ) + 3/2 − 1/2 + τ ]2

2(1 − a)

The initial condition |u0| ≤ τ/2 ensures that the upper bound (33) holds for
all un, n ≥ 0. The lower bound, un ≥ −τ − [M(1+µ)+3/2−a/2+τ ]2

2(1−a) for n ≥ 0, is
proved entirely analogously.

To treat n < 0, note that the “initial conditions” for the recursion (32)
satisfy |v−1| = |v0| ≤ τ/2, and |u−1| = |u0 − v0| ≤ τ . It follows that we can
repeat the same arguments to derive an identical bound on |un| for n ≤ −1.

Remarks. 1. The bound on |un| is significantly larger than that on |vn|.
For a = .5 and τ = µ = .1, for instance, and M = (2a + τ + 1)/(1 − µ) = 7/3,
we have |vn| ≤ 10/3 and |un| ≤ 12.6. Although we could certainly tighten up
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our estimates, the growth of the bounds on the interval state variables, as we
go to higher order schemes, is unavoidable. We shall come back to this later.

2. It is not really necessary to suppose |v0|, |u0| ≤ τ/2. If |v0|
≤ M(1+µ)+1+ τ , and |u0| ≤ A, then |u0 − v0| ≤ A′ = A+M(1+µ)+1+ τ ,
and we have |un| ≤ A′ + [M(1 + µ) + τ + 3/2 − a/2]2/[2(1 − a)] for all n ∈ Z;
moreover, once an index  is reached for which u
 and u
+1 differ in sign, we
have |un| ≤ τ + [M(1 + µ) + τ + 3/2 − a/2]2 /[2(1 − a)] for all n >  if  is
positive, or all n <  if  is negative.

3.3. A third-order Σ∆ scheme. Let us consider the construction we dis-
cussed for second order, but take it one step further. For n > 0 define the
recursion
(34)

u
(1)
n = u

(1)
n−1 + xn − qn

u
(2)
n = u

(2)
n−1 + u

(1)
n

u
(3)
n = u

(3)
n−1 + u

(2)
n

qn = Q1
n

[
u

(1)
n−1 + xn + M1(1 + ε1

n)Q2
n

(
u

(2)
n−1 + M2(1 + ε2

n)Q3
n(u(3)

n−1)
)]

where Q1
n, Q2

n, Q3
n satisfy (19), |ε1

n|, |ε2
n| ≤ µ, and where M1, M2 will be fixed

below in such a way as to ensure uniform boundedness of the (|u(3)
n | )n∈N,

provided we start from appropriate initial conditions u
(1)
0 , u

(2)
0 , u

(3)
0 . We assume

again that |xn| ≤ a < 1 for all n ≥ 0.
Let us indicate here how the arguments of subsection 3.2 can be adapted

to deal with this case. We shall keep this discussion to a sketch only; a formal
proof of this third order case will be implied by the formal proof for arbi-
trary order in the next subsection. This preliminary discussion will help us
understand the more general construction, however.

First of all, exactly the same argument as in the proof of Lemma 3.3
establishes that |u(1)

n | ≤ M1(1 + µ) + 1 + τ =: M ′
1.

Next, imagine a long stretch of u
(2)
n+1, u

(2)
n+2, . . . , all > M2(1 + µ) + 1 + τ .

Then the corresponding qn+l+1 are all automatically equal to 1, unless u
(1)
n+l +

xn+l < −M1(1+ε1n+l)+τ . Arguments similar to those in the proofs of Lemmas

3.4–3.6 then show that if u
(1)
n+1 > −M1(1 − µ) + 1 + a + τ ≥ 0, the u

(1)
n+l will

decrease monotonically, by at least (1−a) at each step, until u
(1)
n+l+xn+l+1 drops

below −M1(1−µ)+1+a+τ (in at most κ1 =
⌊

2M1
1−a

⌋
+2 steps), after which all the

subsequent u
(1)
n+l′ in the stretch are negative, provided we chose M1 ≥ 1+2a+τ

1−µ .

As before, this argument leads to |u(2)
n | ≤ M ′

2 := M2(1 + µ) + τ + M ′
1+(1−a)/2
2(1−a) .
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One could then imagine repeating the same argument again to prove the

desired bound on the |u(3)
n |: prove that if one has a long stretch of u

(3)
l+1, . . . , u

(3)
l+L

that are all positive, then necessarily the corresponding u
(2)
l+m must dip to

negative values and remain negative, in such a way that the total possible
growth of the u

(3)
l+m must remain bounded. We will have to make up for a

missing argument, however: when we followed this reasoning at the previous
level, we were helped by the a priori knowledge that consecutive u

(1)
n just

differ by some minimal amount, |u(1)
n+1 − u

(1)
n | ≥ 1 − a. We used this to ensure

a minimum speed for the dropping u
(1)
l+m, and thus to bound the u

(2)
l+m. In our

present case, we have no such a priori bound on |u(2)
n+1 −u

(2)
n |, so that we need

to find another argument to ensure sufficiently fast decrease of the u
(2)
l+m. What

follows sketches how this can be done.

Suppose u
(3)
l ≤ τ, u

(3)
l+1, . . . , u

(3)
l+L > τ . Then we must have, within the first

κ2 indices of this stretch (with κ2, independent of L, to be determined below)
that some u

(2)
l+m ≤ −M2(1−µ) + τ . Indeed, if u

(2)
l+1, . . . , u

(2)
l+κ2−1 > −M2(1−µ)

+τ , then the corresponding ql+m are 1, unless u
(1)
l+m−1 < −M1(1 − µ) + a + τ .

As before, this forces the u
(1)
l+m down, until they hit below −M1(1−µ)+a+τ in

at most κ1 steps, after which they remain below this negative value. This forces

the u
(2)
l+m to decrease, and one can determine κ2 so that if u

(2)
l+1, . . . , u

(2)
l+κ2−1 >

−M2(1 − µ) + τ , then u
(2)
l+κ2

≤ −M2(1 − µ) + τ must follow. Once u
(2)
l+l′ has

dropped below −M2(1−µ)+ τ , the picture changes. We can get ql+l′+k = −1,
and the argument that kept the u

(1)
l+m down can then no longer be applied. In

fact, some of the u
(1)
l+m with m > l′ may exceed τ again, causing the u

(2)
l+m to

increase. However, as soon as we have κ1 consecutive u
(2)
n > −M2(1 − µ) + τ ,

we must have, for at least one of the corresponding indices, that u
(1)
n <

−M1(1−µ)+1+a+τ , which forces the subsequent u
(1)
n below this value too, and

we are back in our cycle forcing the u
(2)
n down, until they hit below −M2(1 −

µ) + τ . So if −M2(1 − µ) + τ + κ1M
′
1 ≤ 0, then the u

(2)
n do not get a chance

to grow to positive values within the first κ1 indices after u
(2)
l+l′ < −M2(1−µ)+τ .

This forces all the u
(2)
l+m to be negative for m = l′ + 1, . . . , L; since l′ ≤ κ2,

this then leads, by the same argument as on the previous level, to a bound on

u
(3)
l+m.

In the next subsection we present this argument formally, for schemes
of arbitrary order; the proof consists essentially of careful repeats of the last
paragraph at every level. This then also leads to estimates for the bounds M ′

j ,
and corresponding conditions on the Mj .
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3.4. Generalization to arbitrary order. We assume again that |xn| ≤ a < 1
for all n ∈ N. To define the Σ∆ scheme of order J for which we shall prove
uniform boundedness of all internal variables, we need to introduce a number
of constants. As before, the Σ∆-scheme will use nonideal quantizers with an
inherent imprecision limited by τ , and all the multipliers in the algorithm will
be known only up to a factor (1 + ε), where |ε| ≤ µ < 1. We pick α so that
2α < 1 − µ, and we define

M1 := 2
1 + a + τ

1 − µ
κ1 :=

⌊
2M1 + 1 + a

1 − a

⌋
+ 2(35)

B :=
4

1 − µ − α
Mj := M1B

j−1ν(j−1)2

ν :=

⌊
max

(
4B

κ1(1 − µ)
+

κ2
1

B
, 1 +

B(3 − α − µ)
ακ1

, κ1

)⌋
+ 1

where j ranges from 1 to J . For n ≥ 0, the scheme itself is then defined as
follows
(36)

u
(1)
n = u

(1)
n−1 + xn − qn

u
(j)
n = u

(j)
n−1 + u

(j−1)
n , j = 2, . . . , J

qn = Q1
n

{
u

(1)
n−1 + M1(1 + ε1n)Q2

n

[
u

(2)
n−1 + M2(1 + ε2n)Q3

n

(
u

(3)
n−1 + · · ·

+MJ−2(1 + εJ−2
n )QJ−1

n

(
u

(J−1)
n−1 + · · ·

+MJ−1(1 + εJ−1
n )QJ

n(u(J)
n−1)

)
· · ·

)]}
,

where |ε1
n|, |ε2

n|, . . . , |εJ−1
n | ≤ ε and Q1

n, . . . QJ
n satisfy (19) for all n. We start

with initial conditions u
(1)
0 , . . . , u

(J)
0 , and we apply (36) recursively to deter-

mine qj , u
(1)
j , . . . , u

(J)
j for j = 1, 2, . . . . Prescribing these initial conditions is

equivalent to prescribing u
(J)
0 , . . . , u

(J)
−J+1.

For n < 0, we mirror this system, obtaining
(37)

u
(1)
n = u

(1)
n+1 + (−1)J(xn+J − qn+J)

u
(j)
n = u

(j)
n+1 + u

(j−1)
n , j = 2, . . . , J

qn+J = (−1)JQ1
n

{
u

(1)
n+1+M1(1+ε1n)Q2

n

[
u

(2)
n+1+M2(1+ε2n)Q3

n

(
u

(3)
n+1+· · ·

+MJ−2(1+εJ−2
n )QJ−1

n

(
u

(J−1)
n+1 +MJ−1(1+εJ−1

n )QJ
n(u(J)

n+1)
)
· · ·

)]}
.
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To set the recursion running for n < 0, we prescribe the mirrored initial con-

ditions u
(j)
−J+1 =

∑j
l=1(−1)j−lu

(l)
0

(
j − 1
l − 1

)
. These conditions are chosen to

guarantee that u
(J)
0 , . . . , u

(J)
−J+1 are given the same values as in the prescription

for the forward recurrence. We now use (37) recursively to generate the qn,
n ≤ 0. If we take, for simplicity, u

(j)
0 = 0 for j = 1, . . . J , then the “initial condi-

tions” for the n < 0 recursion have likewise u
(j)
−J+1 = 0 for j = 1, . . . J . If we re-

lax our constraints on the initial conditions somewhat, imposing
∣∣∣u(j)

0

∣∣∣ ≤ Aj for

appropriate Aj , then we also impose that

∣∣∣∣∣∑j
l=1(−1)j−lu

(l)
0

(
j − 1
l − 1

)∣∣∣∣∣ ≤ Aj .

In both cases, one readily sees, as before, that the proof of a uniform bound
for the |u(J)

n | in the n > 0 recursion simultaneously provides the same uniform
bound for the |u(J)

n | in the n < 0 recursion.
We then have the following proposition:

Proposition 3.7. Suppose |xn| ≤ a < 1 for all n ∈ Z. Let Mj for
j = 1, . . . , J , be defined as in (35), let the imperfect quantizers Q1

n, . . . QJ
n satisfy

(19) for all n ∈ Z, and let the sequences (qn)n∈N and (u(j)
n )n∈N, j = 1, . . . , J ,

be as defined by (36) or (37), with initial conditions u
(j)
0 = 0 for j = 1, . . . , J .

Then |u(J)
n | ≤ (2 − α)M1B

J−1ν(J−1)2 for all n ∈ Z.

Remarks. 1. Note that this scheme is slightly different from the ones
considered so far, in that the formula for qn includes u

(1)
n−1 only and not the

combination u
(1)
n−1 + xn. This is done merely for convenience: it avoids having

to single out the case j = 1 as a special case whenever we write general lemmas
involving the u

(j)
n , below. Similar bounds can be proved when xn is included

in the formula for qn; we expect that the numerical constants might be slightly
better (as they are in the first and second order case) but their general behavior
will be similar.

2. In all the lemmas below, we treat the case n ≥ 0 only. The case n < 0
is similar.

3. As in the second order case, it is not necessary (and in practice it
would not be possible) to have initial conditions exactly zero. The bounds on
the |u(J)

n | might increase somewhat in the initial regime if the u
(l)
0 are bounded

but not zero, but essentially the estimates are the same.

The proof of Proposition 3.7 is essentially along the lines sketched for the
third-order case, albeit more technical in order to deal with general J . The
whole argument is one big induction on j. We start by stating two lemmas for
the lowest value of j, to start off the induction argument.
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Lemma 3.8. |u(1)
n | ≤ M1(1 + µ) + 1 + a + τ for all n ∈ N.

Proof. The argument is very similar to that used in the proof of Lemma 3.3,
except that xn does not appear in the definition of qn. We work by induc-

tion. Suppose |u(1)
n−1| ≤ M1(1 + µ) + 1 + a + τ . If |u(1)

n−1| > M1(1 + ε1n) + τ ,
then qn and u

(1)
n−1 have the same sign, so that |u(1)

n | ≤ |u(1)
n−1| − 1 + |xn| ≤

|u(1)
n−1| − 1 + a ≤ |u(1)

n−1| ≤ M1(1 + µ) + 1 + a + τ . If |u(1)
n−1| ≤ M1(1 + ε1n) + τ ,

then |u(1)
n | ≤ |u(1)

n−1| + 1 + a ≤ M1(1 + µ) + 1 + a + τ .

Lemma 3.9. If u
(2)
n+1, . . . , u

(2)
n+N > M2(1+µ)+τ , with N ≥ κ1, then there

must exist l ∈ {1, . . . , κ1} such that u
(1)
n+l < −M1(1− µ) + τ . Moreover, for all

l′ ∈ {l, . . . , N}, u
(1)
n+l′ < −M1(1 − µ) + τ + 1 + a. A similar statement holds if

u
(2)
n+1, . . . , u

(2)
n+N < −M2(1 + µ) − τ , and other signs are reversed accordingly.

Proof. The argument is again similar to the proofs of Lemmas 3.4–3.5.
Suppose u

(1)
n+1, . . . , u

(1)
n+κ1−1 are all ≥ −M1(1 − µ) + τ . Then we have qn+2 =

· · · = qn+κ1 = 1. Hence

u
(1)
n+κ1

= u
(1)
n+1 +

κ1∑
l=2

(xn+l − qn+l)

≤ M1(1 + µ) + 1 + a + τ − (κ1 − 1)(1 − a) < −M1(1 − µ) + τ .

This establishes that u
(1)
n+l < −M1(1 − µ) + τ for some l ∈ {1, . . . , κ1}. Next,

suppose that u
(1)
n+r < −M1(1 − µ) + τ + 1 + a, for some r with l ≤ r ≤ N − 1.

If u
(1)
n+r ≥ −M1(1 − µ) + τ , then qn+r+1 = 1, hence

u
(1)
n+r+1 = u

(1)
n+r + xn+r+1 − 1 < u

(1)
n+r < −M1(1 − µ) + τ + 1 + a;

if u
(1)
n+r < −M1(1 − µ) + τ , then

u
(1)
n+r+1 < −M1(1 − µ) + τ + 1 + |xn+r+1| ≤ −M1(1 − µ) + τ + 1 + a.

In both cases, u
(1)
n+r+1 < −M1(1−µ)+τ+1+a, and we continue by induction.

Next we introduce auxiliary constants, for j = 1, . . . , J :

κj := ν2(j−1)κ1(38)

M ′
1 := (1 + µ)M1 + τ + 1 + a M ′

j := (1 + µ)Mj + τ + κj−1M
′
j−1 for j ≥ 2

M ′′
1 := (1 − µ)M1 − τ − 1 − a M ′′

j := (1 − µ)Mj − τ − κj−1M
′
j−1 for j ≥ 2

M̃j := Mj(1 + µ) + τ

m̃j := Mj(1 − µ) − τ .
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These have been tailored so that

Lemma 3.10. The constants defined above by (37) satisfy, for j =
2, . . . , J ,

(1 − µ)Mj > τ + κj−1(2 − α)Mj−1,(39)

M ′
j ≤ (2 − α)Mj ,(40)

κj − κj−1 ≥
m̃j + M ′

j

M ′′
j−1

.(41)

Proof. The first equation is proved by straight substitution:

(1 − µ)Mj − τ − κj−1(2 − α)Mj−1(42)

= Bj−1ν(j−1)2M1

[
1 − µ − τ

ν(j−1)2Bj−1M1
− (2 − α)κ1

Bν

]

≥ Bj−1ν(j−1)2M1

[
1 − µ − τ/M1 + (2 − α)κ1

Bν

]

≥ Bj−1ν(j−1)2M1

[
1 − µ − 2(2 − α)(1 − α − µ)

4

]
≥ αMj .

The second equation is proved by induction. First we consider the case j = 2:

M ′
2 − (2 − α)M2 = (µ + α − 1)M2 − τ − κ1M

′
1 < −αM2 − τ − κ1M

′
1 < 0 .

Now suppose that M ′
j ≤ (2 − α)Mj holds for some j ≥ 2. Then (42) immedi-

ately implies that

M ′′
j+1 > (1 − µ)Mj+1 − τ − κj(2 − α)Mj ≥ αMj+1 ,

leading to
M ′

j+1 = 2Mj+1 − M ′′
j+1 ≤ (2 − α)Mj+1 .

It remains to prove the third inequality. Because the definition of M ′′
j−1 is

slightly different for j = 2 than for j > 2, we handle the case j = 2 separately.
Now

M ′′
1 (κ2 − κ1) − m̃2 − M ′

2 = M ′′
1 κ2 − 2M1κ1 − 2M2

= (a + 1 + τ)ν2κ1 − 2M1κ1 − 2νBM1

= (a + 1 + τ)
[
ν

(
νκ1 −

4B

1 − µ

)
− 4κ1

1 − µ

]
> 0 ,

where we have used ν > 4B
κ1(1−µ) + κ2

1
B .
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For j > 2 we use M ′
j ≤ (2 − α)Mj and M ′′

j−1 ≥ αMj−1 to upper
bound the right-hand side of (40), and we replace the various κs and Ms

by their definitions; then we see that the equation holds if νκ1(1 − ν−2) ≥
B(3−α−µ)α−1, or, equivalently, if ν2 ≥ B(3−α−µ)ν(ακ1)−1 +1. From the
definition of ν one easily checks that this is indeed the case, completing the
proof.

We are now ready to state and prove our general lemmas, used in the
induction argument of the proof of the proposition.

Lemma 3.11 (j). For all n ∈ N, |u(j)
n | ≤ M ′

j.

Lemma 3.12 (j). If u
(j+1)
n+1 , . . . , u

(j+1)
n+N > M̃j+1, with N ≥ κj , then there

must be l ∈ {1, . . . , κj} so that u
(j)
n+l < −m̃j. For all l′ ∈ {l, . . . , N}, moreover,

u
(j)
n+l′ < −M ′′

j . A similar statement holds if u
(j+1)
n+1 , . . . , u

(j+1)
n+N < −M̃j+1, and

other signs are reversed appropriately.

Our induction argument then alternates two steps:

Step a. Lemma 3.11(j) + Lemma 3.12(j) imply Lemma 3.11(j + 1).

Step b. Lemmas 3.11(k) + 3.12(k) for k ≤ j, together with Lemma
3.11(j + 1), imply Lemma 3.12(j + 1).

Since the case j = 1 is established (see Lemmas 3.8, 3.9), induction will ulti-
mately get us to a proof of Lemma 3.11(J), establishing |u(J)

n | ≤ M ′
J . By (39)

this then completes the proof of Proposition 3.7. It remains to prove Steps a
and b.

Proof of Step a. We prove only that u
(j+1)
n ≤ M ′

j+1; the inequality u
(j+1)
n ≥

−M ′
j+1 is analogous.

Assume u
(j+1)
n ≤ M̃j+1, and u

(j+1)
n+1 , . . . , u

(j+1)
n+N > M̃j+1. We need to show

that none of these u
(j+1)
n+l , l = 1, . . . , N , can exceed M ′

j+1. We have u
(j+1)
n+l =

u
(j+1)
n +

∑l
k=1 u

(j)
n+k. By Lemma 3.12(j), at most the first κj terms in this

sum can be positive, and each of these is bounded by M ′
j by Lemma 3.11(j).

Therefore, for each l ∈ {1, . . . , N},

u
(j+1)
n+l ≤ M̃j+1 + κjM

′
j = M ′

j+1 .

Proof of Step b. This step is the most complicated. In order to prove it,
we invoke a third technical lemma, that will itself be proved by induction. We
put ourselves in the framework where Lemmas 3.11(k) are proved for k ≤ j+1,
as well as Lemmas 3.12(k) for k ≤ j.
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Lemma 3.13 (j + 1). Let j ∈ {1, . . . , J − 2} be fixed, and assume k ∈
{1, . . . , j}. Suppose u

(j+2)
n+1 , . . . , u

(j+2)
n+N > M̃j+2 with N ≥ κj+1. Suppose that

the set S ⊂ {n + 1, . . . , n + N} satisfies the following requirements:

• S consists of consecutive indices only, and contains at least κk elements,
i.e. S = {n + m + 1, . . . , n + M + m} for some m ≥ 0 and M ≥ κk;

• u
(l)
r ≥ −m̃l for all r ∈ S, all l ∈ {k + 1, . . . , j + 1}.

Then any κk consecutive elements in S must contain at least one r such that
u

(k)
r < −m̃k. Moreover, once u

(k)
r < −m̃k, for an r ∈ S, then we have u

(k)
r′ ≤

−M ′′
k for all r′ ∈ S, r′ ≥ r.

Proof. By induction on k. We assume Lemmas 3.11(j′) and 3.12(j′) hold
for j′ ≤ j + 1 and j′ ≤ j respectively.

1. The case k = 1.

• We have u
(j′)
s ≥ −m̃j′ for all s ∈ S, and all j′ ∈ {2, . . . , j}. We

must prove that if there are κ1 − 1 consecutive elements in S, numbered
r+1, . . . , r+κ1−1, for which u

(1)
r+1, . . . , u

(1)
r+κ1−1 ≥ −m̃1, then necessarily

u
(1)
r+κ1

< −m̃1.

If u
(1)
r+1, . . . , u

(1)
r+κ1−1 ≥ −m̃1, then qr+2 = · · · = qr+κ1 = 1 (because all

the indices are in S, so that for each s, u
(j′)
s ≥ −m̃j′ if j′ ∈ {2, . . . , j +1},

and u
(j+2)
s > M̃j+2). It follows that

(43) u
(1)
r+κ1

= u
(1)
r+1 +

r+κ1∑
m=r+2

(xm − qm) ≤ M ′
1 + (κ1 − 1)(a − 1) < −m̃1

• Next we must show that if u
(1)
r < −m̃1 for some r ∈ S, then u

(1)
r′ < −M ′′

1

for r′ ≥ r, r′ ∈ S.

This is again done as in the proof of Lemma 3.8, by induction on r′:

– assume u
(1)
r′−1 < −M ′′

1 ,

– if u
(1)
r′−1 < −m̃1, then u

(1)
r′ < −m̃1 + a + 1 = −M ′′

1 , if u
(1)
r′−1

≥ −m̃1, then qr′ = 1 and u
(1)
r′ = u

(1)
r′−1 + a − 1 ≤ −M ′′

1 + a − 1
< −M ′′

1 .

This completes the proof of the case k = 1 of Lemma 3.13(j + 1).

2. Suppose the lemma holds for k = 1, . . . , k0 − 1, with 2 ≤ k0 ≤ j. Let us
then prove it for k = k0.

Take a set S that satisfies all the requirements for k = k0.



706 INGRID DAUBECHIES AND RON DEVORE

• In a first part, we must prove that among any κk0 consecutive elements
in S there is at least one r such that u

(k0)
r < −m̃k0 . That is, we must

prove that if there exist u
(k0)
s+1 , . . . , u

(k0)
s+κk0

−1 that are all ≥ −m̃k0 , then

u
(k0)
s+κk0

must be < −m̃k0 .

Define S̃ = {s + 1, . . . , s + κk0 − 1} ⊂ S. Then S̃ satisfies all the
requirements in Lemma 3.13(j + 1) for k = k0 − 1. By the induction
hypothesis, it follows that there is a t among the first κk0−1 elements of
S̃ such that u

(k0−1)
t < −m̃k0−1. Moreover, for all t′ ∈ S̃ exceeding this t,

u
(k0−1)
t′ < −M ′′

k0−1. It follows that

u
(k0)
s+κk0

= u
(k0)
t−1 +

s+κk0
−1∑

t′=t+1

u
(k0−1)
t′ + u

(k0−1)
t + u

(k0−1)
s+κk0

< M ′
k0

− (κk0 − 1 − κk0−1)M ′′
k0−1 − m̃k0−1 + (−M ′′

k0−1 + m̃k0−1)

= M ′
k0

− (κk0 − κk0−1)M ′′
k0−1

≤ M ′
k0

−
m̃k0 + M ′

k0

M ′′
k0−1

M ′′
k0−1 = −m̃k0 ,

where in the first inequality, we used Lemma 3.12 (k0 − 1) to bound
each of the entries in the sum and we bounded the last term by writing
u

(k0−1)
s+κk0

= u
(k0−1)
s+κk0

−1 + u
(k0−2)
s+κk0

−1 ≤ −M ′′
k0−1 + M ′

k0−2, and using M ′
k0−2 <

m̃k0−1 if k0 > 2; if k0 = 2, we use instead u
(1)
s+κ2

≤ u
(1)
s+κ2−1 + 1 + a ≤

−M ′′
1 + 1 + a < −M ′′

1 + m̃1 . In the second inequality of the derivation,
we used Lemma 3.10.

• In this second part, we must prove that if, for r ∈ S, u
(k0)
r < −m̃k0 ,

then all r′ ∈ S with r′ ≥ r must satisfy u
(k0)
r′ < −M ′′

k0
.

For r′ > r, let r′′ = max{t ≤ r′; u(k0)
t < −m̃k0}. Then u

(k0)
r′′+1, . . . ,

u
(k0)
r′−1 ≥ −m̃k0 . By the induction hypothesis, we must have, among the

first κk0−1 of these (if the stretch is that long) an index t so that u
(k0−1)
t <

−m̃k0−1, and all later t′ in the stretch will have u
(k0−1)
t′ ≤ −M ′′

k0−1. It

follows that the u
(k0)
r′′+1, . . . , u

(k0)
r′−1 cannot increase after the first κk0−1 − 1

entries:

max
[
u

(k0)
r′′+1, . . . , u

(k0)
r′−1

]
≤ max

[
u

(k0)
r′′+1, . . . , u

(k0)
r′′+κk0−1−1

]
≤ uk0

r′′ + max
l∈{1,...,κk0−1−1}

l∑
l′=1

u
(k0−1)
r′′+l′

< −m̃k0 + (κk0−1 − 1)M ′
k0−1 .
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Hence u
(k0)
r′ ≤ u

(k0)
r′−1 + M ′

k0−1 < −m̃k0 + κk0−1M
′
k0−1 = −M ′′

k0
. This

completes the proof of Lemma 3.13(j + 1).

We can now use this to complete the

Proof of Step b. Assume Lemmas 3.11(j′) and 3.12(j′) hold for j′ ≤ j,
as well as Lemma 3.11(j + 1). This also allows us to use Lemma 3.13(j′) for
j′ ≤ j + 1.

• Suppose now u
(j+2)
n+1 , . . . , u

(j+2)
n+N > M̃j+2 with N ≥ κj+1. We have to

prove that among the first κj+1 elements of this stretch, we have one
for which u

(j+1)
n+l < −m̃j+1. As usual, we assume u

(j+1)
n+1 , . . . , u

(j+1)
n+κj+1−1 ≥

−m̃j+1 (and we need to establish u
(j+1)
n+κj+1

< −m̃j+1). Define S by S =
{n+1, . . . , n+κj+1−1}, and fix k = j. Then S, k satisfy all the conditions
in Lemma 3.13 (j +1). It follows that at most the first κj −1 elements of
S can correspond to u

(j)
r ≥ −M ′′

j . Therefore the max of {u(j+1)
t ; t ∈ S}

must be achieved among the first κj − 1 elements, and

u
(j+1)
n+κj+1

< max{u(j+1)
t ; t ∈ {n + 1, . . . , n + κj + 1}}

−(κj+1 − κj − 1)M ′′
j ≤ M ′

j+1 − (κj+1 − κj)M ′′
j ≤ m̃j+1

where we have used Lemma 3.10.

• Next, we need to prove that if u
(j+1)
n+l < −m̃j+1 for some l ∈ {1, . . . , N},

then u
(j+1)
n+l′ ≤ −M ′′

j+1 for l′ ∈ {l, . . . , N}. Define l′′ := max{t ≤ l′ :

u
(j+1)
n+t < −m̃j+1}. Then u

(j+1)
n+l′′+1, . . . , u

(j+1)
n+l′−1 ≥ −m̃j+1. Again, the max

of these must be obtained among the first κj −1 entries (since after that,
the u

(j+1)
s must decrease monotonely), so that

max[u(j+1)
n+l′′+1, . . . , u

(j+1)
n+l′−1] ≤ u

(j+1)
n+l′′ +

∑κj−1
s=1 |u(j)

n+l′′+s|
< −m̃j+1 + (κj − 1)M ′

j

⇒ u
(j+1)
n+l′ ≤ u

(j+1)
n+l′−1 + M ′

j ≤ −m̃j+1 + κjM
′
j = −M ′′

j+1 .

• We have thus proved Lemma 3.12(j + 1), completing the proof of Step b
in our induction process.

Remarks. 1. There is clearly a lot of room for obtaining tighter bounds.
We have not been able to reduce the growth in J of the exponent of ν below
a quadratic, however, even in the “perfect” case, when τ = µ = 0. We shall
come back to this, and its implications, in the next section.
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2. As in the lower order special cases, it is not really crucial to start with
u

(j)
−1 = 0; other initial conditions can also be chosen, with minimal impact on

the bounds.

4. Conclusions and open problems

Our construction in Section 3 showed that it is possible to construct stable
Σ∆-quantizers of arbitrary order. The quantizers (36) are, however, very far
from schemes built in practice for 1-bit Σ∆-quantization. Often, such prac-
tical schemes involve not only higher order differences (as in our family), but
also additional convolutional filters; it is not clear to us at this point what
mathematical role is played by these filters. It may well be that they allow the
bounds on the internal state variables to be smaller numerically than in our
construction. (Note added in revision: in very recent work [12], Güntürk has
constructed a Σ∆ scheme with filters that achieves better bounds; see below.)

In addition, other notions of “stability” are often desirable in practice. For
instance, audio signals often have stretches in time where they are uniformly
small in amplitude. It would be of interest to ensure that the internal state
variables of the system then also fall back (after a transition time) into a
bounded range much smaller than their full dynamic range. At present, we
know of no construction to ensure this mathematically.

The fast growth of our bounds Mj in subsection 3.4 is also unsatisfactory
from the purely theoretical point of view. The combination of Propositions 3.1
and 3.7 leads, for f ∈ C1 with ‖f‖L∞ ≤ a < 1, to the estimate∣∣∣∣∣f(x) − 1

λ

∑
n

q(k),λ
n g(x − n

λ
)

∣∣∣∣∣ ≤ C
1
λk

γkνk2
,

where we have absorbed the bound on ‖ dkg
dxk ‖L1 into γk (which is possible for

appropriately chosen g, within the constraints of (5)), and where we write q
(k),λ
n

for the output of the k-th order Σ∆-quantizer (36), given input
(
f(n

λ )
)
n∈Z.

Given λ, we can then select the optimal kλ, which leads to the estimate∣∣∣∣∣f(x) − 1
λ

∑
n

q(λ)
n g(x − n

λ
)

∣∣∣∣∣ ≤ C ′λ−γ log λ ,

where q
(λ)
n = q

(kλ),λ
n . By spending λ bits per Nyquist interval, we thus ob-

tain a precision with an asymptotic behavior that is better than any inverse
polynomial in λ, but that is still far from the exponential decay in λ that one
would get from spending the bits on binary approximations to samples taken
at a frequency slightly above the Nyquist frequency. We do not know how
much of this huge discrepancy is due to our method of proof, to our stable
family itself, or to the limitation of Σ∆-quantization schemes (without filters)
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in general. In [1] it is proved that 1-bit quantization schemes that allow con-
volutional approximation formulas can never obtain the optimal accuracy of
binary expansions. On the other hand, sub-optimal but still exponential decay
in λ is not excluded. In fact, the filter-Σ∆ scheme in [12] achieves such expo-
nential decay (although it is no longer robust in the sense of this paper). It
would be interesting to see what the information-theoretic constraints are on
Σ∆ schemes or other practical quantization schemes for redundant informa-
tion; a first discussion (including other robust quantizers) is given in [3], but
there are still many open problems.
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