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The ionization conjecture
in Hartree-Fock theory

By Jan Philip Solovej*

Abstract

We prove the ionization conjecture within the Hartree-Fock theory of
atoms. More precisely, we prove that, if the nuclear charge is allowed to tend
to infinity, the maximal negative ionization charge and the ionization energy of
atoms nevertheless remain bounded. Moreover, we show that in Hartree-Fock
theory the radius of an atom (properly defined) is bounded independently of
its nuclear charge.
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1. Introduction and main results

One of the great triumphs of quantum mechanics is that it explains the
order in the periodic table qualitatively as well as quantitatively. In elementary
chemistry it is discussed how quantum mechanics implies the shell structure
of atoms which gives a qualitative understanding of the periodic table. In
computational quantum chemistry it is found that quantum mechanics gives
excellent agreement with the quantitative aspects of the periodic table. It is
a very striking fact, however, that the periodic table is much more “periodic”
than can be explained by the simple shell structure picture. As an example it
can be mentioned that e.g., the radii of different atoms belonging to the same
group in the periodic table do not vary very much, although the number of
electrons in the atoms can vary by a factor of 10. Another related example is
the fact that the maximal negative ionization (the number of extra electrons
that a neutral atom can bind) remains small (possibly no bigger than 2) even
for atoms with large atomic number (nuclear charge). These experimental facts
can to some extent be understood numerically, but there is no good qualitative
explanation for them.

In the mathematical physics literature the problem has been formulated
as follows (see e.g., Problems 10C and 10D in [22] or Problems 9 and 10 in
[23]). Imagine that we consider ‘the infinitely large periodic table’, i.e., atoms
with arbitrarily large nuclear charge Z; is it then still true that the radius and
maximal negative ionization remain bounded? This question often referred to
as the ionization conjecture is the subject of this paper.

To be completely honest neither the qualitative nor the quantitative expla-
nations of the periodic table use the full quantum mechanical description. On
one hand the simple qualitative shell structure picture ignores the interactions
between the electrons in the atoms. On the other hand even in computational
quantum chemistry one most often uses approximations to the full many body
quantum mechanical description. There are in fact a hierarchy of models for the
structure of atoms. The one which is usually considered most complete is the
Schrödinger many-particle model. There are, however, even more complicated
models, which take relativistic and/or quantum field theoretic corrections into
account.

A description which is somewhat simpler than the Schrödinger model is the
Hartree-Fock (HF) model. Because of its greater simplicity it has been more
widely used in computational quantum chemistry than the full Schrödinger
model. Although, chemists over the years have developed numerous gener-
alizations of the Hartree-Fock model, it is still remarkable how tremendously
successful the original (HF) model has been in describing the structure of atoms
and molecules.
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A model which is again much simpler than the Hartree-Fock model is the
Thomas-Fermi (TF) model. In this model the problem of finding the structure
of an atom is essentially reduced to solving an ODE. The TF model has some
features, which are qualitatively wrong. Most notably it predicts that atoms
do not bind to form molecules (Teller’s no binding theorem; see [17]).

In this work we shall show that the TF model is, indeed, a much better
approximation to the more complicated HF model than generally believed. In
fact, we shall show that it is only the outermost region of the atom which is
not well described by the TF model.

As a simple corollary of this improved TF approximation we shall prove
the ionization conjecture within HF theory. The corresponding results for the
full Schrödinger theory are still open and only much simpler results are known
(see e.g., [5], [15], [20], [21], [24]). In [3] the ionization conjecture was solved in
the Thomas-Fermi-von Weizsäcker generalization of the Thomas-Fermi model.
In [25] the ionization conjecture was solved in a simplified Hartree-Fock mean
field model by a method very similar to the one presented here. In the simplified
model the atoms are entirely spherically symmetric. In the full HF model,
however, the atoms need not be spherically symmetric. This lack of spherical
symmetry in the HF model is one of the main reasons for many of the difficulties
that have to be overcome in the present paper, although this may not always
be apparent from the presentation.

We shall now describe more precisely the results of this paper. In common
for all the atomic models is that, given the number of electrons N and the
nuclear charge Z, they describe how to find the electronic ground state density
ρ ∈ L1(R3), with

∫
ρ = N . Or more precisely how to find one ground state

density, since it may not be unique. In the TF model the ground state is
described only by the density, whereas in the Schrödinger and HF models the
density is derived from more detailed descriptions of the ground state. For all
models we shall use the following definitions. We distinguish quantities in the
different models by adding superscripts TF, HF. (In this work we shall not be
concerned with the Schrödinger model at all.) Throughout the paper we use
units in which h̄ = m = e = 1, i.e., atomic units.

We shall discuss Hartree-Fock theory in greater detail in Section 3 and
Thomas-Fermi theory in greater detail in Section 4. For a complete discussion
of TF theory we refer the reader to the original paper by Lieb and Simon [17]
or the review by Lieb [10]. In this introduction we shall only make the most
basic definitions and enough remarks in order to state some of the main results
of the paper.

Definition 1.1. (Mean field potentials). Let ρHF and ρTF be the densities
of atomic ground states in the HF and TF models respectively. We define the
corresponding mean field potentials
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ϕHF(x) := Z|x|−1 − ρHF ∗ |x|−1 = Z|x|−1 −
∫

ρHF(y)|x − y|−1dy(1)

ϕTF(x) := Z|x|−1 − ρTF ∗ |x|−1 = Z|x|−1 −
∫

ρTF(y)|x − y|−1dy(2)

and for all R ≥ 0 the screened nuclear potentials at radius R

ΦHF

R (x) := Z|x|−1 −
∫
|y|<R

ρHF(y)|x − y|−1dy(3)

ΦTF

R (x) := Z|x|−1 −
∫
|y|<R

ρTF(y)|x − y|−1dy.(4)

This is the potential from the nuclear charge Z screened by the electrons in the
region {x : |x| < R}. The screened nuclear potential will be very important in
the technical proofs in Sections10–13.

Definition 1.2. (Radius). Let again ρHF and ρTF be the densities of atomic
ground states in the HF and TF models respectively. We define the radius
RZ,N (ν) to the ν last electrons by∫

|x|≥RTF
Z,N (ν)

ρTF(x) dx = ν,

∫
|x|≥RHF

Z,N (ν)
ρHF(x) dx = ν.

The functions ϕTF and ρTF are the unique solutions to the set of equations

∆ϕTF(x) = 4πρTF(x) − 4πZδ(x)(5)

ρTF(x) = 23/2(3π2)−1 [ϕTF(x) − µTF]3/2
+(6) ∫

ρTF = N.(7)

Here µTF is a nonnegative parameter called the chemical potential, which is
also uniquely determined from the equations. We have used the notation
[t]+ = max{t, 0} for all t ∈ R. The equations (5–7) only have solutions when
N ≤ Z. For N > Z we shall let ϕTF and ρTF refer to the solutions for N = Z,
the neutral case. Instead of fixing N and determining µTF (the ‘canonical’ pic-
ture) one could fix µTF and determine N (the ‘grand canonical’ picture). The
equation (5) is essentially equivalent to (2) and expresses the fact that ϕTF is
the mean field potential generated by the positive charge Z and the negative
charge distribution −ρTF. The equations (6–7) state that ρTF is given by the
semiclassical expression for the density of an electron gas of N electrons in the
exterior potential ϕTF. For a discussion of semiclassics we refer the reader to
Section 8.

Remark 1.3. The total energy of the atom in Thomas-Fermi theory is

3
10(3π2)2/3

∫
ρTF(x)5/3 dx − Z

∫
ρTF(x)|x|−1dx(8)

+1
2

∫ ∫
ρTF(x)|x − y|−1ρTF(y)dx dy ≥ −e0Z

7/3
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where e0 is the total binding energy of a neutral TF atom of unit nuclear
charge. Numerically [10],

(9) e0 = 2(3π2)−2/3 · 3.67874 = 0.7687.

For a neutral atom, where N = Z, the above inequality is an equality. The
inequality states that in Thomas-Fermi theory the energy is smallest for a
neutral atom.

We can now state two of the main results in this paper.

Theorem 1.4 (Potential estimate). For all Z ≥ 1 and all integers N

with N ≥ Z for which there exist Hartree-Fock ground states with
∫

ρHF = N

we have

(10) |ϕHF(x) − ϕTF(x)| ≤ Aϕ|x|−4+ε0 + A1,

where Aϕ, A1, ε0 > 0 are universal constants.

This theorem is proved in Section 13 on page 535. The significance of the
power |x|−4 is that for N ≥ Z we have limZ→∞ ϕTF(x) = 342−3π2|x|−4. The
existence of this limit known as the Sommerfeld asymptotic law [27] follows
from Theorem 2.10 in [10], but we shall also prove it in Theorems 5.2 and 5.4
below.

Note that the bound in Theorem 1.4 is uniform in N and Z.
The second main theorem is the universal bound on the atomic radius

mentioned in the beginning of the introduction. In fact, not only do we prove
uniform bounds but we also establish a certain exact asymptotic formula for
the radius of an “infinite atom”.

Theorem 1.5. Both lim inf
Z→∞

RHF
Z,Z(ν) and lim sup

Z→∞
RHF

Z,Z(ν) are bounded

and have the asymptotic behavior

2−1/334/3π2/3ν−1/3 + o(ν−1/3)

as ν → ∞.

The proof of this theorem can be found in Section 13 on page 535. The
universal bound on the maximal ionization is given in Theorem 3.6. The proof
is given in Section 13 on page 534. A universal bound on the ionization energy
(the energy it takes to remove one electron) is formulated in Theorem 3.8.
The proof is given in Section 13 on page 537. Theorems 3.6 and 3.8 are
as important as Theorems 1.4 and 1.5. We have deferred the statements of
Theorems 3.6 and 3.8 in order not to have to make too many definitions here
in the introduction.

One of the main ideas in the paper is to use the strong universal behav-
ior of the TF theory reflected in the Sommerfeld asymptotics. If we com-
bine (5) and (6) we see that for µTF = 0 the potential satisfies the equation
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∆ϕTF(x) = 27/2(3π)−1[ϕTF]3/2
+ (x) for x �= 0. It turns out that the singularity

at x = 0 of any solution to this equation is either of weak type ∼ Z|x|−1 for
some constant Z or of strong type ∼ 342−3π2|x|−4 (see [30] for a discussion
of singularities for differential equations of similar type). The surprising fact,
contained in Theorem 1.4, is that the same type of universal behavior holds
also for the much more complicated HF potential. We prove this by comparing
with appropriately modified TF systems on different scales, using the fact that
the modifications do not affect the universal behavior. A direct comparison
works only in a short range of scales. This is however enough to use an iter-
ative renormalization argument to bootstrap the comparison to essentially all
scales.

The paper is organized as follows. In Section 2 we fix our notational
conventions and give some basic prerequisites. In Section 3 we discuss Hartree-
Fock theory. In Sections 4 and 5 we discuss Thomas-Fermi theory. In particular
we show that the TF model, indeed, has the universal behavior for large Z that
we want to establish for the HF model. In the TF model the universality can
be expressed very precisely through the Sommerfeld asymptotics.

In Section 6 we begin the more technical work. We show in this section
that the HF atom in the region {x : |x| > R} is determined to a good approx-
imation, in terms of energy, from knowledge of the screened nuclear potential
ΦHF

R . It is this crucial step in the whole argument that I do not know how to
generalize to the Schrödinger model or even to the case of molecules in HF
theory.

For the outermost region of the atom one cannot use the energy to control
the density. In fact, changing the density of the atom far from the nucleus will
not affect the energy very much. Far away from the nucleus one must use the
exact energy minimizing property of the ground state, i.e., that it satisfies a
variational equation. This is done in Section 7 to estimate the L1-norm of the
density in a region of the form {x : |x| > R}.

In Section 8 we establish the semiclassical estimates that allow one to
compare the HF model with the TF model. To be more precise, there is no
semiclassical parameter in our setup, but we derive bounds that in a semiclas-
sical limit would be asymptotically exact.

It turns out to be useful to use the electrostatic energy (or rather its square
root) as a norm in which to control the difference between the densities in TF
and HF theory. The properties of this norm, which we call the Coulomb norm,
are discussed in Section 9. Sections 4–9 can be read almost independently.

In Section 10 we state and prove the main technical tool in the work. It is
a comparison of the screened nuclear potentials in HF and TF theory. Using a
comparison between the screened nuclear potentials at radius R one may use
the result of the separation of the outside from the inside given in Section 6 to
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get good control on the outside region {x : |x| > R}. Using an iterative scheme
one establishes the main estimate for all R. The two main technical lemmas
are proved in Section 11 and Section 12 respectively.

Finally the main theorems are proved in Section 13.
The main results of this paper were announced in [26] and a sketch of the

proof was given there. The reader may find it useful to read this sketch as a
summary of the proof.

2. Notational conventions and basic prerequisites

We shall throughout the paper use the definitions

B(r) :=
{
y ∈ R3 : |y| ≤ r

}
,(11)

B(x, r) :=
{
y ∈ R3 : |y − x| ≤ r

}
,(12)

A(r1, r2) :=
{
x ∈ R3 : r1 ≤ |x| ≤ r2

}
.(13)

For any r > 0 we shall denote by χr the characteristic function of the ball
B(r) and by χ

+
r = 1 − χr. We shall as in the introduction use the notation

[t]± = (t)± := max{±t, 0}.
Our convention for the Fourier transform is

(14) f̂(p) := (2π)−3/2
∫

eipxf(x) dx.

Then

(15) f̂ ∗ g = (2π)3/2f̂ ĝ, ‖f‖2 = ‖f̂‖2, |f̂(p)| ≤ (2π)−3/2‖f‖1

and

(16)
∫ ∫

f(x)|x − y|−1g(y)dx dy = 2(2π)
∫

f̂(p)ĝ(p)|p|−2 dp.

Definition 2.1. (Density matrix). Here we shall use the definition that a
density matrix, on a Hilbert space H, is a positive trace class operator satisfying
the operator inequality 0 ≤ γ ≤ I. When H is either L2(R3) or L2(R3;C2) we
write γ(x, y) for the integral kernel for γ. It is 2× 2 matrix valued in the case
L2(R3;C2). We define the density 0 ≤ ργ ∈ L1(R3) corresponding to γ by

(17) ργ :=
∑
j

νj |uj(x)|2,

where νj and uj are the eigenvalues and corresponding eigenfunctions of γ.
Then

∫
ργ = Tr[γ].

Remark 2.2. Whenever γ is a density matrix with eigenfunctions uj and
corresponding eigenvalues νj on either L2(R3) or L2(R3;C2) we shall write

(18) Tr [−∆γ] :=
∑
j

νj

∫
|∇uj(x)|2 dx.
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If we allow the value +∞ then the right side is defined for all density matrices.
The expression −∆γ may of course define a trace class operator for some γ,
i.e., if the eigenfunctions uj are in the Sobolev space H2 and the right side
above is finite. In this case the left side is well defined and is equal to the right
side. On the other hand, the right side may be finite even though −∆γ does
not even define a bounded operator, i.e., if an eigenfunction is in H1, but not
in H2. Then the sum on the right is really

Tr
[
(−∆)1/2γ(−∆)1/2

]
= Tr [∇ · γ∇] .

It is therefore easy to see that (18) holds not only for the spectral decompo-
sition, but more generally, whenever γ can be written as γf =

∑
j νj(uj , f)uj ,

with 0 ≤ νj (the uj need not be orthonormal). The same is also true for the
expression (17) for the density.

Proposition 2.3 (The radius of an infinite neutral HF atom). The map
γ �→ Tr[−∆γ] as defined above on all density matrices is affine and weakly
lower semicontinuous.

Proof. Choose a basis f1, f2, . . . for L2 consisting of functions from H1.
Then

Tr[−∆γ] =
∑
m

(∇fm, γ∇fm).

The affinity is trivial and the lower semicontinuity follows from Fatou’s lemma.

We are of course abusing notation when we define Tr[−∆γ] for all density
matrices. This is, however, very convenient and should hopefully not cause
any confusion.

If V is a positive measurable function, we always identify V with a mul-
tiplication operator on L2. If V ργ ∈ L1(R3) we abuse notation and write

Tr [V γ] :=
∫

V ργ .

As before if V γ happens to be trace class then the left side is well defined
and finite and is equal to the right side. Otherwise, we really have

∫
V ργ =

Tr
[
[V ]1/2

+ γ[V ]1/2
+

]
− Tr

[
[V ]1/2

− γ[V ]1/2
−

]
.

Lemma 2.4 (The IMS formulas). If u is in the Sobolev space H1(R3;C2)
or H1(R3) and if Ξ ∈ C1(R3) is real, bounded, and has bounded derivative
then1

(19) Re
∫

∇
(
Ξ2u∗

)
· ∇u =

∫
|∇(Ξu)|2 −

∫
|∇Ξ|2 |u|2.

1We denote by u∗ the complex conjugate of u. In the case when u takes values in C2 this refers

to the complex conjugate matrix.
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If γ is a density matrix on L2(R3;C2) or L2(R3) and if Ξ1, . . . ,Ξm ∈ C1(R3)
are real, bounded, have bounded derivatives, and satisfy Ξ2

1 + . . .+Ξ2
m = 1 then

Tr [−∆γ] = Tr [−∆(Ξ1γΞ1)] − Tr
[
(∇Ξ1)

2 γ
]
+ . . .(20)

+ Tr [−∆(ΞmγΞm)] − Tr
[
(∇Ξm)2 γ

]
.

Note that ΞjγΞj again defines a density matrix (where we identified Ξj with a
multiplication operator).

Proof. The identity (19) follows from a simple computation. If we sum
this identity and use Ξ2

1 + . . . + Ξ2
m = 1 we obtain∫

|∇u|2 =
∫

|∇(Ξ1u)|2 −
∫

|∇Ξ1|2 |u|2 + . . . +
∫

|∇(Ξmu)|2 −
∫

|∇Ξm|2 |u|2.

If we allow the value +∞ this identity holds for all functions u in L2. Thus
(20) is a simple consequence of the definition (18).

Theorem 2.5 (Lieb-Thirring inequality). We have the Lieb-Thirring
inequality

(21) Tr
[
−1

2∆γ
]
≥ K1

∫
ρ5/3

γ ,

where K1 := 20.49. Equivalently, If V ∈ L5/2(R3) and if γ is any density
matrix such that Tr[−∆γ] < ∞ we have

(22) Tr
[
−1

2∆γ
]
− Tr [V γ] ≥ −L1

∫
[V ]5/2

+ ,

where L1 := 2
5

(
3

5K1

)2/3
= 0.038.

The original proofs of these inequalities can be found in [18]. The con-
stants here are taken from [7]. From the min-max principle it is clear that the
right side of (22) is in fact a lower bound on the sum of the negative eigenvalues
of the operator −1

2∆ − V .

Theorem 2.6 (Cwikel-Lieb-Rozenblum inequality). If V ∈ L3/2(R3)
then the number of nonpositive eigenvalues of −1

2∆ − V , i.e.,

Tr
[
χ(−∞,0]

(
−1

2∆ − V
)]

,

where χ(−∞,0] is the characteristic function of the interval (−∞, 0], satisfies
the bound

(23) Tr
[
χ(−∞,0]

(
−1

2∆ − V
)]

≤ L0

∫
[V ]3/2

+ ,

where L0 := 23/20.1156 = 0.3270.
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The original (independent) proofs can be found in Cwikel [4], Rozen-
blum [19], and Lieb [9]. The constant is from Lieb [9].

3. Hartree-Fock theory

In Hartree-Fock theory, as opposed to Schrödinger theory, one does not
consider the full N -body Hilbert space

∧N L2(R3;C2). One rather restricts
attention to the pure wedge products (Slater determinants)

(24) Ψ = (N !)−1/2u1 ∧ . . . ∧ uN ,

where u1, . . . , uN ∈ L2(R3;C2). Then one minimizes the energy expectation

(Ψ, HN,ZΨ)
(Ψ,Ψ)

of the Hamiltonian

(25) HN,Z :=
N∑

i=1

(
−1

2∆ − Z

|x|

)
+

∑
1≤i<j≤N

1
|xi − xj |

over wave functions Ψ of the form (24) only.
If γ is the projection onto the N -dimensional space spanned by the func-

tions u1, . . . , uN , the energy depends only on γ. In fact,

(Ψ, HN,ZΨ)
(Ψ,Ψ)

= EHF(γ).

Here we have defined the Hartree-Fock energy functional

EHF(γ) : = Tr
[(
−1

2∆ − Z|x|−1
)

γ
]
+ D(γ) − EX(γ)(26)

= Tr
[
−1

2∆γ
]
−

∫
Z|x|−1ργ(x) dx + D(γ) − EX(γ),

where we have introduced the direct Coulomb energy, defined in terms of the
Coulomb inner product D (see also (79) below), by

(27) D(γ) := D(ργ , ργ) = 1
2

∫ ∫
ργ(x)|x − y|−1ργ(y)dx dy

and the exchange Coulomb energy

(28) EX(γ) := 1
2

∫ ∫
TrC2

[
|γ(x, y)|2

]
|x − y|−1dx dy.

Definition 3.1. (The Hartree-Fock ground state). Let Z > 0 be a real
number and N ≥ 0 be an integer. The Hartree-Fock ground state energy is

EHF(N, Z) := inf
{
EHF(γ) : γ∗ = γ, γ = γ2, Tr[γ] = N

}
.

If a minimizer γHF exists we say that the atom has an HF ground state described
by γHF. In particular, its density is ρHF(x) = ργHF(x).
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Theorem 3.2 (Bound on the Hartree-Fock energy). For Z > 0 and any
integer N > 0 we have

EHF(N, Z) ≥ −3(4πL1)2/3Z2N1/3,

where L1 is the constant in the Lieb-Thirring inequality (22).

Proof. Let γ be an N dimensional projection. Since the last term in HN,Z

is positive we see that EHF(γ) ≥ Tr
[(
−1

2∆ − Z|x|−1
)

γ
]
. It the follows from

the Lieb-Thirring inequality (22) that for all R > 0 we have

EHF(γ) ≥ −L1

∫
|x|<R

Z5/2|x|−5/2 dx − ZNR−1.

The estimate in the theorem follows by evaluating the integral and choosing
the optimal value for R.

Remark 3.3. The function N �→ EHF(N, Z) is nonincreasing. This can
be seen fairly easily by constructing a trial N + 1-dimensional projection from
any N -dimensional projection by adding an extra dimension corresponding to
a function u concentrated far from the origin and with very small kinetic energy∫
|∇u|2. This trial projection can be constructed such that it has an energy

arbitrarily close to the original N -dimensional projection. Therefore we also
have that

(29) EHF(N, Z) = inf
{
EHF(γ) : γ∗ = γ, γ2 = γ, Trγ ≤ N

}
.

This Hartree-Fock minimization problem was studied by Lieb and Simon
in [16]. They proved the following about the existence of minimizers.

Theorem 3.4 (Existence of HF minimizers). If N is a positive integer
such that N < Z + 1 then there exists an N -dimensional projection γHF mini-
mizing the functional EHF in (26), i.e., EHF(N, Z) = EHF(γHF) is a minimum.

In the opposite direction the following result was proved by Lieb [13].

Theorem 3.5 (Lieb’s bound on the maximal ionization). If N is a
positive integer such that N > 2Z +1 there are no minimizers for the Hartree-
Fock functional among N -dimensional projections, i.e., there does not exist an
N -dimensional projection γ such that EHF(γ) = EHF(N, Z).

This theorem will, in fact, follow from the proof of Lemma 7.1 below (see
page 503). Although this result is very good for Z = 1 it is far from optimal
for large Z. In particular the factor 2 should rather be 1. This fact known as
the ionization conjecture is one of the of the main results of the present work.
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Theorem 3.6 (Universal bound on the maximal ionization charge). There
exists a universal constant Q > 0 such that for all positive integers satisfying
N ≥ Z + Q there are no minimizers for the Hartree-Fock functional among
N -dimensional projections.

Remark 3.7. Although, it is possible to calculate an exact value for the
constant Q above it is quite tedious to do so. Moreover, the present work
does not attempt to optimize this constant. The result of this work is mainly
to establish that such a finite constant exists. This of course raises the very
interesting question of finding a good estimate on the constant, but we shall
not address this here.

The proof of Theorem 3.6 is given in Section 13 on page 534.

Theorem 3.8 (Bound on the ionization energy). The ionization energy
of a neutral atom EHF(Z−1, Z)−EHF(Z, Z) is bounded by a universal constant
(in particular, independent of Z).

This theorem is proved in Section 13 on page 573.
The variational equations (Euler-Lagrange equations) for the minimizer

was also given in [16]. Since the Hartree-Fock variational equations shall be
used later in this work, we shall derive them in Theorem 3.11 below.

We first note that the Hartree-Fock functional EHF may be extended from
projections (i.e., density matrices with γ2 = γ) to all density matrices. If
Tr [−∆γ] < ∞ all the terms of EHF are finite. In fact, Tr

[
Z|x|−1γ

]
is finite

by the Lieb-Thirring inequality (21) since Z|x|−1 ∈ L∞(R3) + L5/2(R3). The
term D(γ) is finite by the Hardy-Littlewood-Sobolev inequality since ργ ∈
L1(R3) ∩ L5/3(R3) ⊂ L6/5(R3). Finally, EX(γ) ≤ D(γ) since

D(γ) − EX(γ) = 1
4

∑
i,j

νiνj

∫ ∫ ‖ui(x) ⊗ uj(y) − uj(x) ⊗ ui(y)‖2
C2⊗C2

|x − y| dx dy ≥ 0,

when νi are the eigenvalues of γ with ui being the corresponding eigenfunctions.
If Tr [−∆γ] = ∞ we set EHF(γ) := ∞. It is clear that limn EHF(γn) = ∞ if
limn Tr [−∆γn] → ∞.

Remark 3.9. It is important to realize that although D(γ) − EX(γ) is
positive it is not a convex functional on the set of density matrices. In partic-
ular, the Hartree-Fock minimizer need not be unique. (A simple example of
nonuniqueness occurs for the case N = 1. For a one-dimensional projection γ,
it is clear that D(γ) − EX(γ) = 0, hence the minimizer in this case is simply
the projection onto a ground state of the operator −1

2∆−Z|x|−1 on the space
L2(R3;C2). There are many ground states since the spin can point in any
direction.)
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Another fact related to the nonconvexity of the Hartree-Fock functional
is the important observation first made by Lieb in [11] that the infimum of
the Hartree-Fock functional is not lowered by extending the functional to all
density matrices. For a simple proof of this see [1].

Theorem 3.10 (Lieb’s variational principle). For all nonnegative inte-
gers N we have

inf
{
EHF(γ) : γ∗ = γ, γ = γ2, Tr[γ] = N

}
= inf {EHF(γ) : 0 ≤ γ ≤ I, Tr[γ] = N}

and if the infimum over all density matrices (the inf on the right) is attained
then so is the infimum over projections (the inf on the left).

We now come to the properties of the Hartree-Fock minimizers, especially
that they satisfy the Hartree-Fock equations. These equations state that a min-
imizing N -dimensional projection γHF is the projection onto the N -dimensional
space spanned by eigenfunctions with lowest possible eigenvalues for the HF
mean field operator

(30) HγHF := −1
2∆ − Z|x|−1 + ρHF ∗ |x|−1 −KγHF .

Here KγHF is the exchange operator defined by having the 2× 2-matrix valued
integral kernel

KγHF(x, y) := |x − y|−1γHF(x, y).

Thus γHF(x, y) =
∑N

i=1 ui(x)ui(y)∗, where HγHFui = εiui, and ε1, ε2, . . . , εN

≤ 0 are the N lowest eigenvalues of HγHF counted with multiplicities.
This self-consistent property of a minimizer γHF may equivalently be stated

as in the theorem below.

Theorem 3.11 (Properties of HF minimizers). If γHF with density ρHF is a
projection minimizing the HF functional EHF under the constraint Tr [γHF] = N

then ρHF ∈ L5/3(R3) ∩ L1(R3) and HγHF defines a semibounded self -adjoint
operator with form domain H1(R3;C2) having at least N nonpositive eigen-
values. Moreover, γHF is the N -dimensional projection minimizing the map
γ �→ Tr

[
HγHFγ

]
.

Remark 3.12. The reader may worry that, because of degenerate eigen-
values of HγHF , the N -dimensional projection γ minimizing Tr

[
HγHFγ

]
may

not be unique. That it is, indeed, unique was proved in [2].

Proof of Theorem 3.11. We note that Tr [γHF] = N , Tr [−∆γHF] < ∞,
and the Lieb-Thirring inequality (21) implies that ρHF ∈ L5/3(R3) ∩ L1(R3).
From this it is easy to see that ρHF ∗ |x|−1 is a bounded function (in fact, it
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is continuous and tends to 0 as |x| → ∞). Moreover, in the operator sense
KγHF ≤ ρHF ∗ |x|−1. This follows, since for f ∈ L2(R3;C2) we have∫

ρHF ∗ |x|−1|f(x)|2dx −
∫ ∫

f(x)∗KγHF(x, y)f(y)dx dy

=
N∑

i=1

1
2

∫ ∫ ‖ui(x) ⊗ f(y) − f(x) ⊗ ui(y)‖2
C2⊗C2

|x − y| dx dy,

where u1, . . . , uN is a complete set of eigenfunctions of γHF. It is therefore
clear that HγHF defines a semibounded operator with form domain H1(R3;C2).

Thus it makes sense to compute Tr
[
HγHFγ

]
if and only if Tr [−∆γ] < ∞.

Let γ′ be an N -dimensional projection with Tr [−∆γ′] < ∞. We shall
prove that

Tr
[
HγHFγ′

]
≥ Tr

[
HγHFγHF

]
.

For 0 ≤ t ≤ 1, consider the density matrix γt = (1 − t)γHF + tγ′. It
satisfies Tr[γt] = N . By the Lieb variational principle, Theorem 3.10, we have
that EHF(γHF) = EHF(γ0) ≤ EHF(γt), for all 0 ≤ t ≤ 1. Hence

0 ≤ dEHF(γt)
dt

∣∣∣∣
t=0

= Tr
[
HγHFγ′

]
− Tr

[
HγHFγHF

]
.

The fact that Tr
[
HγHFγ

]
is minimized among N -dimensional projections

implies in particular that HγHF has at least N nonpositive eigenvalues.

4. Thomas-Fermi theory

In this section we discuss the facts needed from Thomas-Fermi theory. We
focus only on the results that we shall use in our study of Hartree-Fock theory.

Definition 4.1. (Thomas-Fermi functional). Let V ∈ L5/2(R3) + L∞(R3)
with

inf
{
‖W‖L∞(R3) : V − W ∈ L5/2(R3)

}
= 0.

Corresponding to V we define the Thomas-Fermi (TF) energy functional

ETF

V (ρ) = 3
10(3π2)2/3

∫
ρ5/3 −

∫
V ρ + 1

2

∫ ∫
ρ(x)|x − y|−1ρ(y)dx dy,

on functions ρ with 0 ≤ ρ ∈ L5/3(R3) ∩ L1(R3).

Note that the Hardy-Littlewood-Sobolev inequality implies that D(ρ, ρ) =
1
2

∫ ∫
ρ(x)|x−y|−1ρ(y)dx dy is finite for functions ρ ∈ L5/3∩L1 ⊂ L6/5. Hence

ETF

V is finite on these functions.
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The proof of existence and uniqueness of minimizers to the TF functional
and the characterization of their properties can be found in the work of Lieb
and Simon [17] (see also [10]). We state the properties that we need in the
following theorem.

Theorem 4.2 (The TF minimizer). Let V be as in Definition 4.1. For all
N ′ ≥ 0 there exists a unique nonnegative ρTF

V
∈ L5/3(R3) such that

∫
ρTF

V
≤ N ′

and

(31) ETF

V (ρTF

V
) = inf

{
ETF

V (ρ) : ρ ∈ L5/3(R3),
∫

ρ ≤ N ′
}

.

On the other hand there exists a (unique) chemical potential (Lagrange
multiplier) µTF

V
(N ′), with 0 ≤ µTF

V
(N ′) ≤ supV , such that ρTF

V
is uniquely

characterized by

ETF

V (ρTF

V
) + µTF

V
(N ′)

∫
ρTF

V
(32)

= inf
{
ETF

V (ρ) + µTF

V
(N ′)

∫
ρ : 0 ≤ ρ ∈ L5/3(R3) ∩ L1(R3)

}
.

Moreover, ρTF

V
is the unique solution in L5/3 ∩ L1 to the Thomas-Fermi

equation (the Euler -Lagrange equation for the variational problem (32))

(33) 1
2(3π2)2/3

(
ρTF

V
(x)

)2/3
=

[
V (x) − ρTF

V
∗ |x|−1 − µTF

V
(N ′)

]
+

.

If µTF

V
(N ′) > 0 then

∫
ρTF

V
= N ′. Therefore µTF

V
(N ′)

∫
ρTF

V
= µTF

V
(N ′)N ′.

For all 0 < µ there is a unique minimizer 0 ≤ ρ ∈ L5/3 ∩ L1 to ETF

V (ρ) +
µ

∫
ρ. (If µ ≥ supV then ρ is simply zero.)

We shall be interested in properties of the Thomas-Fermi potential

(34) ϕTF

V
:= V (x) − ρTF

V
∗ |x|−1.

The Thomas-Fermi equation (33) can be turned into the Thomas-Fermi dif-
ferential equation

(35) ∆ϕTF

V
= 27/2(3π)−1

[
ϕTF

V
− µTF

V
(N ′)

]3/2

+
+ ∆V,

which holds in distribution sense.

Theorem 4.3 (Maximal ionization). There exists a nonnegative real
number Nc, possibly equal to +∞, such that µTF

V
(N ′) > 0 if and only if N ′ <

Nc. Moreover,

(36) Nc ≥ lim inf
r→∞ (4π)−1

∫
S2

rV (rω)dω,

where dω is the surface measure on the unit 2-sphere S2.
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Proof. Since ETF

V is a convex functional of ρ it is clear that ETF

V

(
ρTF

V

)
is

a convex and decreasing function of N ′. Hence there is a value Nc such that
ETF

V

(
ρTF

V

)
is strictly decreasing for N ′ < Nc and constant for N ′ ≥ Nc. Thus

if N ′ ≥ Nc then
∫

ρTF

V
= Nc. Since

∫
ρTF

V
= N ′ if µTF

V
> 0 we must have

µTF

V
(N ′) = µTF

V
(Nc) = 0 for N ′ ≥ Nc. On the other hand since

∫
ρTF

V
= N ′

if N ′ < Nc we cannot have µTF

V
(N ′) = 0 in this case. This proves the first

assertion.
In order to prove the second assertion we may of course assume that

Nc < ∞. Since µTF

V
(Nc) = 0 we have for the corresponding Thomas-Fermi

minimizer that

∫
S2

ρTF

V
(rω)dω = (Const.)

∫
S2

[
V (rω) − ρTF

V
∗ |rω|−1

]3/2

+
dω

≥ (Const.)
[
(4π)−1

∫
S2

V (rω)dω − r−1
∫
R3

ρTF

V

]3/2

+
,

where the last estimate follows from Jensen’s inequality and Newton’s theorem.
Since we are considering a TF minimizer ρTF

V
such that

∫
ρTF

V
= Nc it is clear

that if (36) is violated then
∫
S2 ρTF

V
(rω)dω > cr−3/2 for some positive constant c

and all large enough r. Hence Nc =
∫

ρTF

V
= ∞ in contradiction with our

assumption.

Proving a bound on Nc in the opposite direction is in general more difficult.
We shall return to a partial converse to (36) in Corollary 4.8 below.

Usually the Thomas-Fermi model is studied for the potential V being
the Coulomb potential, i.e., Z|x|−1. In this case we denote ρTF

V
, ϕTF

V
, and

µTF

V
simply by ρTF, ϕTF, and µTF. These are the functions discussed in the

introduction. In fact, the equations (5) and (6) correspond to (33) and (35).
From Theorem 4.3 we see that in this case Nc ≥ Z. We shall see below

after Corollary 4.8 that indeed Nc = Z.
The first mathematical study of the atomic TF equation was done by

Hille [6]; a much more complete analysis can be found in [17].
The function ϕTF satisfies the asymptotics ϕTF(x) ≈ 342−3π2|x|−4 for

large x. The important thing to note about this asymptotics, first discovered by
Sommerfeld [27], is that it is independent of Z. The Sommerfeld asymptotics
is central to the present work and we shall prove a strong version of it in
Theorems 5.2 and 5.4 below. Similar asymptotic estimates may be derived
for the density using the TF equation (33). We shall more generally prove
asymptotic bounds for ϕTF

V
, in the case when the potential V is harmonic in

certain regions of space.
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We now come to the main technical lemma in this section, which is a
version of the Sommerfeld estimate.2

Lemma 4.4 (Sommerfeld estimate). Assume that ϕ ≥ 0 is a smooth
function on |x| > R and satisfies the differential equation

∆ϕ(x) = 27/2(3π)−1ϕ(x)3/2, for |x| > R,

for some R ≥ 0. Let ζ := (−7 +
√

73)/2 ≈ 0.77. Define

a(R) := lim inf
r↘R

sup
|x|=r

[(
ϕ(x)

342−3π2r−4

)−1/2

− 1

]
rζ

and
A(R) := lim inf

r↘R
sup
|x|=r

[
ϕ(x)

342−3π2r−4
− 1

]
rζ .

Then for |x| > R we have

(37)
(
1 + a(R)|x|−ζ

)−2
≤ ϕ(x)

342−3π2|x|−4
≤

(
1 + A(R)|x|−ζ

)
.

Remark 4.5. It is important to realize that we are not assuming that ϕ

is spherically symmetric. The lemma above can therefore not be proved by
ODE techniques. By elliptic regularity the smoothness of ϕ would of course
be a consequence of a much weaker assumption.

Proof of Lemma 4.4. We first prove that ϕ(x) → 0 as |x| → ∞. For
this purpose consider L > 4R and for L/4 < |x| < L the function f(x) =
C[(|x| − L/4)−4 + (L − |x|)−4]. We compute

∆f = C

[
20

(
(|x| − L/4)−6 + (L − |x|)−6

)
+ 8|x|−1(L − |x|)−5 − 8|x|−1(|x| − L/4)−5

]
≤ 44C(L − |x|)−6 + 20C(|x| − L/4)−6.

On the other hand, f(x)3/2 ≥ C3/2
(
(|x| − L/4)−6 + (L − |x|)−6

)
. It is

therefore clear that we can choose C independently of L such that ∆f ≤
27/2(3π)−1f3/2. We claim that ϕ(x) ≤ f(x) for L/4 < |x| < L. This is trivial
for |x| close to L/4 or close to L since here f(x) diverges whereas ϕ(x) remains

2A version of this Sommerfeld estimate was stated in the announcement [26]. The result stated

was weaker than here in the sense that the exponents in the error terms were different for the upper

and lower bounds. The result in the announcement also contained a minor error because the lower

bound had been stated incorrectly. The better and correct version is the one stated and proved here.
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bounded. Consider the set {L/4 < |x| < L : ϕ(x) > f(x)}. This is an open set
on which ∆(ϕ − f) ≥ 27/2(3π)−1(ϕ3/2 − f3/2) > 0; i.e., ϕ − f is subharmonic
on the set and is zero on its boundary. Hence ϕ(x) ≤ f(x) on the set which
is a contradiction unless the set is empty. Thus for all L > 4R we have
sup|x|=L/2 ϕ(x) ≤ C

(
(1/4)−4 + (1/2)−4

)
L−4. Hence, ϕ(x)|x|4 is bounded.

Next we turn to the proof of the main estimate. Let R′ > R and set
A′ = A(R′) and a′ = a(R′). Then a′ and A′ are finite. We consider the two
functions

ω+
A′(x) := 342−3π2|x|−4(1 + A′|x|−ζ)

and
ω−

a′(x) := 342−3π2|x|−4(1 + a′|x|−ζ)−2.

Note that by the definition of a′ and A′ both functions are well-defined and
positive for |x| > R′. We claim that

(38) ∆ω+
A′(x) ≤ 27/2(3π)−1ω+

A′(x)3/2 and ∆ω−
a′(x) ≥ 27/2(3π)−1ω−

a′(x)3/2.

As we shall first show the lemma is a simple consequence of the estimates
in (38). We give the proof for the upper bound. The lower bound is similar.
Let

Ω+ :=
{
|x| > R′ : ϕ(x) > ω+

A′(x)
}
.

On Ω+, ϕ − ω+
A′ is subharmonic. On the boundary of Ω+, ϕ − ω+

A′ vanishes.
For the subset ∂Ω+ ∩ {x : |x| = R′} this follows from the choice of A′. Since
ϕ(x) and ω+

A′(x) both tend to zero as |x| tends to infinity we conclude that
Ω+ = ∅.

Therefore ϕ(x) ≤ ω+
A(R′)(x) for |x| > R′. For |x| > R we get ϕ(x) ≤

lim infR′↘R ω+
A(R′)(x) = ω+

A(R)(x).
It remains to check (38). For ω−

a′ we get

∆ω−
a′(x) = 27/2(3π)−1ω−

a′(x)3/2
(

1 +
(
1 − 1

6ζ(ζ + 7)
)

a′|x|−ζ

+1
2(1 + a′|x|−ζ)−1(ζa′|x|−ζ)2

)
.

Since ζ(ζ+7) = 6 and 1+a′|x|−ζ > 0 we see that ∆ω−
a′(x) ≥ 27/2(3π)−1ω−

a′(x)3/2.
For ω+

A′ we have

∆ω+
A′(x)

= 27/2(3π)−1ω+
A′(x)3/2(1 + A′|x|−ζ)−3/2

(
1 +

(
1 +

ζ(ζ + 7)
12

)
A′|x|−ζ

)
≤ 27/2(3π)−1ω+

A′(x)3/2,

where we have used that

(1 + A′|x|−ζ)3/2 ≥ 1 + 3
2A′|x|−ζ = 1 + (1 + 1

12ζ(ζ + 7))A′|x|−ζ .
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We can immediately use this lemma to get estimates on ϕTF

V
when µTF

V
= 0.

For general µTF

V
the result can be generalized as follows.

Theorem 4.6 (Sommerfeld estimate for general µTF

V
). Assume that V

is continuous and harmonic for |x| > R and satisfies lim|x|→∞ V (x) = 0.
Consider the corresponding Thomas-Fermi potential ϕTF

V
, which satisfies the

TF differential equation (35). Assume that µTF

V
< lim inf

r↘R
inf
|x|=r

ϕTF

V
(x). Define

a(R) := lim inf
r↘R

sup
|x|=r

(
ϕTF

V
(x)

342−3π2r−4

)−1/2

− 1

 rζ(39)

and

A(R, µTF

V
) := lim inf

r↘R
sup
|x|=r

[
ϕTF

V
(x) − µTF

V

342−3π2r−4
− 1

]
rζ .(40)

Then again, with ζ = (−7 +
√

73)/2 ≈ 0.77, we find for all |x| > R

(41) ϕTF

V
(x) ≤ 342−3π2|x|−4

(
1 + A(R, µTF

V
)|x|−ζ

)
+ µTF

V

and

(42) ϕTF

V
(x) ≥ max

{
342−3π2|x|−4

(
1 + a(R)|x|−ζ

)−2
, ν(µTF

V
)|x|−1

}
,

where

(43) ν(µTF

V
) := inf

|x|≥R
max

{
342−3π2|x|−3

(
1 + a(R)|x|−ζ

)−2
, µTF

V
|x|

}
.

Proof. Since ρTF

V
∈ L5/3 ∩L1 it is easy to see that ρTF

V
∗ |x|−1 is continuous

and tends to zero as x tends to infinity. Thus from the assumption on V it
follows that ϕTF

V
is continuous on |x| > R and satisfies ϕTF

V
(x) → 0 as |x| → ∞.

Let R′ > R and set A′ = A(R′, µTF

V
) and a′ = a(R′). Then a′ is well-defined

if R′ is close enough to R since then we may assume that ϕTF

V
(x) > µTF

V
≥ 0

for all |x| = R′. Both a′ and A′ are finite. Using the notation from the proof
of Lemma 4.4 we define

ω+

µTF

V
,A′(x) := ω+

A′(x) + µTF

V
and ω−

µTF

V
,a′(x) := max

{
ω−

a′(x), ν ′|x|−1
}

,

where
ν ′ := min

|x|≥R′
max

{
|x|ω−

a′(x), |x|µTF

V

}
.

Note that, since we assume that ϕTF

V
(x) > µTF

V
for |x| = R′, we have that both

ω+
A′(x) and ω−

a′(x) are positive for all |x| > R′. We also have that ω−
a′(x) > µTF

V

for |x| = R′ and hence that ω−
a′(x0) = µTF

V
at points x0 where the minimum,

defining ν ′, is attained. (Note that |x|ω−
a′(x) is a radially decreasing function

for |x| > R′.)
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The proof of the present lemma is now similar to that of Lemma 4.4 if we
can show that for |x| > R′

(44) ∆ω+

µTF

V
,A′(x) ≤ 27/2(3π)−1

[
ω+

µTF

V
,A′(x) − µTF

V

]3/2

+

and

(45) ∆ω−
µTF

V
,a′(x) ≥ 27/2(3π)−1

[
ω−
µTF

V
,a′(x) − µTF

V

]3/2

+

(in distribution sense). The inequality (44) follows immediately from the first
inequality in (38). The inequality (45) is slightly more complicated. Note
that the definitions of ω−

µTF

V
,a′ and of ν ′ imply that ω−

µTF

V
,a′(x) = ν ′|x|−1 if

ω−
µTF

V
,a′(x) < µTF

V
and ω−

µTF

V
,a′(x) = ω−

a′(x) if ω−
µTF

V
,a′(x) > µTF

V
. Thus if

ω−
µTF

V
,a′(x) < µTF

V
we have that ω−

µTF

V
,a′ is harmonic. Hence (45) holds in

this region. If ω−
µTF

V
,a′(x) > µTF

V
then ω−

µTF

V
,a′(x) = ω−

a′(x) and (45) follows

in this region from the second inequality in (38). Finally, since the maxi-
mum of two subharmonic functions is also subharmonic, it is clear that the
distribution ∆ω−

µTF

V
,a′ is a positive measure and in particular positive on the

set (of Lebesgue measure) zero where ω−
µTF

V
,a′(x) = µTF

V
. Hence, (45) holds in

distribution sense for all |x| > R′.

As an application of the lower bound on ϕTF

V
in (42) we can get an estimate

on the chemical potential µTF

V
.

Corollary 4.7 (Chemical potential estimate). With the assumptions
and definitions in Theorem 4.6, in particular, if µTF

V
< lim infr↘R inf |x|=r ϕTF

V
(x)

we have
(46)

(µTF

V
)3/4 ≤ 23/4

3π1/2
(1+|a(R)|R−ζ)1/2

(
lim

r→∞(4π)−1
∫
S2

rV (rω)dω −
∫
R3

ρTF

V
(y)dy

)
.

Proof. According to (42) we have ν(µTF

V
) ≤ lim inf |x|→∞ |x|ϕTF

V
(x). Using

that V is harmonic and tends to zero at infinity we have that for all r > R

lim inf
|x|→∞

|x|ϕTF

V
(x) ≤ (4π)−1

∫
S2

rV (rω)dω −
∫
R3

ρTF

V
(y)dy.

Moreover since, µTF

V
≥ 0 the assumption µTF

V
< lim infr↘R inf |x|=r ϕTF

V
(x) im-

plies that the spherical average of V is nonnegative.
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On the other hand, since
(
1 + |a(R)|R−ζ

)−2
≤

(
1 + a(R)|x|−ζ

)−2
for

|x| ≥ R, we have from (43) that ν(µTF

V
) ≥ ν ′, where

ν ′ = min
|x|≥R

max
{

342−3π2|x|−3
(
1 + |a(R)|R−ζ

)−2
, µTF

V
|x|

}
= 3 · 2−3/4π1/2

(
1 + |a(R)|R−ζ

)−1/2
(µTF

V
)3/4.

This corollary immediately gives a partial converse to Theorem 4.3.

Corollary 4.8 (Upper bound on maximal ionization). If V is harmonic
and continuous for |x| > R and satisfies V (x) → 0 as |x| → ∞ and if moreover
µTF

V
< lim infr↘R inf |x|=r ϕTF

V
(x) then∫

ρTF

V
≤ lim

r→∞(4π)−1
∫
S2

rV (rω)dω.

In particular, if lim infr↘R inf |x|=r ϕTF

V
(x) > 0 (which may not necessarily be

true) we have

Nc ≤ lim
r→∞(4π)−1

∫
S2

rV (rω)dω.

Remark 4.9. The limit above of course exists since by the harmonic-
ity of V and since V tends to zero at infinity we have that

∫
S2 rV (rω)dω is

independent of r.
The difficulty in using Corollaries 4.7 and 4.8 in concrete examples lies in

establishing the condition

(47) µTF

V
< lim inf

r↘R
inf
|x|=r

ϕTF

V
(x).

5. Estimates on the standard atomic TF theory

In the usual atomic case the Coulomb potential V (x) = Z|x|−1 is harmonic
away from x = 0 and we can use Corollary 4.8 for all R > 0. Since ρTF ∗ |x|−1

is a bounded function it follows that ϕTF(x) → ∞ as x → 0. The condition
(47) is therefore satisfied if R is chosen small enough. It therefore follows
from Theorem 4.3 and Corollary 4.8 that Nc = Z. Thus the neutral atom
corresponds to µTF = 0.

Lemma 5.1. Let ϕ
TF

0 be the TF potential for the neutral atom then if ϕTF

is the potential for a general µTF ≥ 0 we have

ϕ
TF

0 (x) ≤ ϕTF(x) ≤ ϕ
TF

0 (x) + µTF.
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Proof. See Corollary 3.8 (i) and (iii) in [10].

We now easily get an upper bound agreeing with the atomic Sommerfeld
asymptotics.

Theorem 5.2 (Atomic Sommerfeld upper bound). The atomic TF po-
tential satisfies the bound

ϕTF(x) ≤ min{342−3π2|x|−4 + µTF, Z|x|−1}.

Proof. This follows immediately from and (34) and (41) together with the
fact that ρTF is nonnegative. Simply note that since ϕTF(x)|x| → Z as x → 0
we have that A(0, µTF) = 0 in (41).

Lemma 5.3 (Lower bound on the TF potential). In the atomic case we
have for all N > 0 and Z > 0

ϕTF(x) ≥ Z|x|−1 − min
{

N |x|−1,
22

(9π)2/3
Z4/3

}
.

Proof. We have by Newton’s theorem

ρTF ∗ |x|−1 = |x|−1
∫
|y|<|x|

ρTF(y)dy +
∫
|y|>|x|

ρTF(y)|y|−1dy

≤ min
{

N |x|−1,

∫
ρTF(y)|y|−1dy

}
.

From the Sommerfeld upper bound Theorem 5.2 and the TF equation (33) we
have

ρTF(x)2/3 ≤ 2(3π2)−2/3 min{342−3π2|x|−4, Z|x|−1}.

Hence
ρTF(x) ≤ min

{
c1Z

3/2|x|−3/2, c2|x|−6
}

,

where c1 := 23/2(3π2)−1 and c2 := 352−3π. Let r0 := (c2/c1)2/9Z−1/3. When
|x| = r0 the two functions, in the minimum above, are equal. Thus∫

ρTF(y)|y|−1dy ≤ 4πc1Z
3/2

∫ r0

0
t−1/2dt + 4πc2

∫ ∞

r0

t−5dt =
11π

3
c
8/9
1 c

1/9
2 Z4/3

=
22

(9π)2/3
Z4/3.

The lemma follows from the definition (34) of the TF potential.
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Theorem 5.4 (Atomic Sommerfeld Lower bound). The TF potential
satisfies

ϕTF(x) ≥



Z|x|−1 − 22(9π)−2/3Z4/3, if |x| ≤ β0Z
−1/3

max
{

342−3π2
(
1 + aZ−ζ/3|x|−ζ

)−2
|x|−4,

(Z − N)+|x|−1

}
,

if |x| ≥ β0Z
−1/3

,

where β0 = (9π)2/3

44 and ζ = (−7 +
√

73)/2 as in Theorem 4.6 and a = 43.7.

Proof. Let R = (9π)2/3Z−1/3/44. Note that for |x| ≤ R the bound we
want to prove is identical to the bound in Lemma. 5.3.

If N ≥ Z, i.e., µTF = 0 the lower bound follows from Theorem 4.6 since
a is chosen so as to make the lower bound continuous at |x| = R and at these
points we clearly have ϕTF(x) > 0 = µTF.

For general N the lower bound follows from the case N = Z because of
Lemma 5.1 and Lemma 5.3.

We end this section by giving a bound on the screened nuclear potential
ΦTF

R at radius R in the atomic TF theory.

Lemma 5.5 (Bound on ΦTF

R ). We have

ΦTF

|x|(x) ≤ 342−1π2|x|−4 + µTF.

Proof. We write ΦTF

|x|(x) = ϕTF(x) +
∫
|y|>|x| ρ

TF(y)|x − y|−1dy. From
Theorem 5.2 and the TF equation (33) we see that

ρTF(y) = 23/2(3π2)−1[ϕTF(y) − µTF]3/2
+ ≤ 2−335π|y|−6

and hence∫
|y|>|x|

ρTF(y)|x − y|−1dy ≤
∫
|y|>|x|

2−335π|y|−6|x − y|−1dy

=
∫
|y|>|x|

2−335π|y|−7dy = 2−335π2|x|−4.

The lemma follows from Theorem 5.2.

6. Separating the outside from the inside

We shall here control the energy coming from the regions far from the
nucleus. Let γHF be an HF minimizer with Tr[γHF] = N . (We are thus assuming
that N is such that a minimizer exists.)
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Definition 6.1. (The localization function). Fix 0 < λ < 1 and let
G : R3 → R be given by

G(x) =


0 if |x| ≤ 1
(π/2)(|x| − 1)

[
(1 − λ)−1 − 1

]−1 if 1 ≤ |x| ≤ (1 − λ)−1

π/2 if (1 − λ)−1 ≤ |x|.

We introduce the cut-off radius r > 0 and define the outside localization
function θr(x) = sinG(|x|/r). Then

0 ≤ θr(x)


= 0 if |x| ≤ r

≤ 1 if r ≤ |x| ≤ (1 − λ)−1r

= 1 if (1 − λ)−1r ≤ |x|

and |∇θr(x)|2 + |∇(1 − θr(x)2)1/2|2 ≤ (π/(2λr))2 (since (1 − λ)−1 − 1 ≥ λ).

We shall consider the HF minimizer restricted to the region {x : |x| > r}.
We therefore define the exterior part of the minimizer

(48) γHF

r = θrγ
HFθr

and its density ρHF

r (x) = θr(x)2ρHF(x). In order to control γHF

r we introduce
an auxiliary functional defined on all density matrices with Tr [−∆γ] < ∞ (see
Remark 2.2) by

(49) EA(γ) = Tr
[
(−1

2∆ − ΦHF

r )γ
]
+ 1

2

∫ ∫
|x|≥r
|y|≥r

ργ(x)|x − y|−1ργ(y)dx dy,

where the screened nuclear potential ΦHF

r is defined in (3) in Definition 1.1.
Note that the functional EA, in contrast to the HF functional EHF in (26), does
not contain an exchange term.

The main result in this section is that γHF

r almost minimizes EA. More
precisely, we shall prove the following theorem.

Theorem 6.2 (The outside energy). For all 0 < λ < 1 and all r > 0 we
have

(50) EA [γHF

r ] ≤ inf
{
EA(γ) : supp ργ ⊂ {y : |y| ≥ r},

∫
ργ ≤

∫
χ

+
r ρHF

}
+R,

where the error is

(51) R = Cλ(r)
∫

|x|≥(1−λ)r

ρHF(x)dx + 2L1

∫
(1−λ)r≤|x|≤(1−λ)−1r

[
ΦHF

(1−λ)r(x)
]5/2

+
dx + EX (γHF

r )
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with

Cλ(r) =

(
π2

8 (λ(1 − λ)r)2
+

π

rλ

)
.

Here L1 is the constant in the Lieb-Thirring inequality (22).

Proof. Besides θr we introduce two other localization functions

θ− = (1 − θ2
r(1−λ))

1/2 and θ(0) =
(
θ2
r(1−λ) − θ2

r

)1/2
.

Note that θ2
− + θ2

(0) + θ2
r = 1 and that

(∇θ−)2 + (∇θ(0))2 + (∇θr)2 ≤ (π/(2λ(1 − λ)r))2 .

We introduce the inside part of the HF minimizer

(52) γHF

− = θ−γHFθ−.

We shall prove (50) by showing that for all density matrices γ with supp ργ ⊂
{x : |x| ≥ r} and

∫
ργ ≤

∫
χ

+
r ρHF we have

(53) EA [γHF

r ] + EHF
[
γHF

−
]
−R ≤ EHF [γHF] ≤ EA[γ] + EHF

[
γHF

−
]
,

with R given by (51). The estimate (50) follows immediately from (53).

Proof of the upper bound in (53). Since γHF is a minimizer for EHF under
the condition Tr[γHF] ≤ N (see (29)) we have for any density matrix γ̃ with
Tr [γ̃] ≤ N that EHF (γHF) ≤ EHF (γ̃). We take

γ̃ = γHF

− + γ.

Since the support of ργ is disjoint from the support of θ− we see that γHF

− γ = 0
and hence γ̃ is a density matrix.

Note that

Tr [γ̃] = Tr
[
γHF

−
]
+

∫
ργ ≤ Tr

[
γHF

−
]
+

∫
χ

+
r ρHF =

∫
(θ2

−+χ
+
r )ρHF ≤

∫
ρHF ≤ N.

We shall compute EHF (γ̃). The only terms in EHF that are not linear in
the density matrix (and thus do not simply split into a sum of terms for γHF

−
and γ) are the exchange and direct Coulomb energies. Because of the support

properties of γHF

− and γ we have that γ̃2 =
(
γHF

−
)2

+ γ2 and therefore even the
exchange term satisfies

EX (γ̃) = EX
(
γHF

−
)
+ EX (γ) ≥ EX

(
γHF

−
)
.

We are thus left with the direct Coulomb energy. For this we find that

D (γ̃) = D
(
γHF

−
)
+ D (γ) +

∫
θ2
−(y)ρHF(y)|x − y|−1ργ(y)dy.
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By the choice of the support of θ− we have that∫
θ2
−(y)ρHF(y)|x − y|−1ργ(x)dx dy ≤

∫ (
Z

|x| − ΦHF

r (x)
)

ργ(x)dx.

We have thus proved the upper bound in (53).

Proof of the lower bound in (53). Let again the inside part of the HF
minimizer be γHF

− defined by (52) and introduce also the middle part γHF

(0)
=

θ(0)γ
HFθ(0). Since θ2

− + θ2
(0) + θ2

r = 1 we have from the IMS formula (20) that

(54)

Tr
[
−1

2∆γHF
]

= Tr
[
−1

2∆
(
γHF

− + γHF

(0)
+ γHF

r

)]
− 1

2Tr
[
γHF

(
(∇θ−)2 + (∇θ(0))2 + (∇θr)2

)]
≥ Tr

[
−1

2∆
(
γHF

− + γHF

(0)
+ γHF

r

)]
− (π2/8) (λ(1 − λ)r)−2

∫
(1−λ)r<|x|<r(1−λ)−1

ρHF(x)dx.

We now come to the lower bounds on the Coulomb terms. Note that

1 =
(
θ2
−(x) + θ2

(0)(x) + θ2
r(x)

) (
θ2
−(y) + θ2

(0)(y) + θ2
r(y)

)
≥ θ2

−(x)θ2
−(y) + θ2

r(x)θ2
r(y) + θ2

r(x)
(
θ2
−(y) + θ2

(0)(y)
)

+
(
θ2
−(x) + θ2

(0)(x)
)

θ2
r(y) + θ2

(0)(x)2θ2
−(y) + θ2

−(x)2θ2
(0)(y).

Note that θ2
−(x) + θ2

(0)(x) ≥ χr(x) and θ2
−(x) ≥ χ(1−λ)r We may therefore

estimate the Coulomb kernel from below by

|x − y|−1 ≥ Ṽ (x, y),

where

Ṽ (x, y) := θ2
−(x)|x − y|−1θ2

−(y) + θ2
r(x)|x − y|−1θ2

r(y)(55)

+θ2
r(x)|x − y|−1χr(y) + χr(x)|x − y|−1θ2

r(y)

+θ2
(0)(x)|x − y|−1χ(1−λ)r(y) + χ(1−λ)r(x)|x − y|−1θ2

(0)(y).

The function Ṽ is pointwise positive and symmetric in x and y.
Recall that γHF is a projection onto the subspace spanned by the orthonor-

mal vectors u1, u2, . . . , uN and
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(56)

D (γHF) − EX (γHF) = 1
4

∑
i,j

∫ ∫ ‖ui(x) ⊗ uj(y) − uj(x) ⊗ ui(y)‖2
C2⊗C2

|x − y| dx dy

≥ 1
4

∑
i,j

∫ ∫
‖ui(x) ⊗ uj(y) − uj(x) ⊗ ui(y)‖2

C2⊗C2 Ṽ (x, y)dx dy

= 1
2

∫ ∫
ρHF(x)Ṽ (x, y)ρHF(y)dx dy

− 1
2

∫ ∫
TrC2 |γHF(x, y)|2 Ṽ (x, y)dx dy.

We estimate these two terms independently. We obtain for the first term in (56)

1
2

∫ ∫
ρHF(x)Ṽ (x, y)ρHF(y)dx dy = D

(
γHF

−
)
+ D (γHF

r )(57)

+
∫ (

Z

|x| − ΦHF

r (x)
)

ρHF

r (x)dx + Tr
[(

Z

|x| − ΦHF

(1−λ)r(x)
)

γHF

(0)

]
.

To estimate the last term in (56) we use that for all |x| > r

θr(x)2 ≤ θr(x) ≤ (π/2)(|x|/r − 1)
(
(1 − λ)−1 − 1

)−1
.

Thus if |y| < r we have |x−y|−1θr(x)2 ≤ (π/2)r−1
(
(1 − λ)−1 − 1

)−1 and hence∫ ∫
TrC2

[
|γHF(x, y)|2

]
|x − y|−1

(
χr(y)θ2

r(x) + χ(1−λ)r(y)θ2
(0)(x)

)
dx dy

≤ π

2r

(
(1 − λ)−1 − 1

)−1 (
1 + (1 − λ)−1

) ∫ ∫
|y|≤r

|x|≥(1−λ)r

TrC2

[
|γHF(x, y)|2

]
dx dy

≤ π

rλ

∫ ∫
|y|≤r

|x|≥(1−λ)r

TrC2

[
|γHF(x, y)|2

]
dx dy.

Moreover, we only increase the last integral if we integrate over all y ∈ R3.
Thus∫ ∫

|y|≤r
|x|≥(1−λ)r

TrC2 |γHF(x, y)|2 dx dy ≤
∫

|x|≥(1−λ)r

(
TrC2

∫
γHF(x, y)γHF(y, x)dy

)
dx

=
∫

|x|≥(1−λ)r

TrC2

[
(γHF)2 (x, x)

]
dx.

If we now use that (γHF)2 = γHF and that ρHF(x) = TrC2 [γHF(x, x)] we obtain
the estimate
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1
2

∫ ∫
TrC2 |γHF(x, y)|2 Ṽ (x, y)dx dy ≤ EX

[
γHF

−
]
+ EX [γHF

r ](58)

+
π

rλ

∫
|x|≥(1−λ)r

ρHF(x)dx.

If we combine (54), (57) and (58) we obtain

EHF [γHF] ≥ EHF
[
γHF

−
]
+ EA [γHF

r ] − EX [γHF

r ] + Tr
[(
−1

2∆ − ΦHF

(1−λ)r

)
γHF

(0)

]

−
(

π2

8 (λ(1 − λ)r)2
+

π

rλ

) ∫
|x|≥(1−λ)r

ρHF(x)dx.

Since 0 ≤ γHF

(0)
≤ I and the density of γHF

(0)
is supported within the set{

x : (1 − λ)r ≤ |x| ≤ (1 − λ)−1r
}

we have from the Lieb-Thirring inequality (22) that

Tr
[(
−1

2∆ − ΦHF

(1−λ)r

)
γHF

(0)

]
≥ −2L1

∫
(1−λ)r≤|x|≤(1−λ)−1r

[
ΦHF

(1−λ)r(x)
]5/2

+
dx.

The factor of 2 above is due to the spin degrees of freedom. We have thus
proved the lower bound in (53).

As a consequence of this theorem and the Lieb-Thirring inequality (21)
we get the following bound.

Corollary 6.3 (L5/3 bound on ρHF

r ). Let K1 denote the constant in the
LT inequality (21) and e0, as in (9), denote the TF energy of a neutral atom
with unit nuclear charge and physical parameter values. Then

(59)
∫

ρHF

r (y)5/3dy ≤ 2K−1
1 R + 6

5(3π2)2/3K−2
1 e0

[
r sup
|x|=r

ΦHF

r (x)

]7/3

+

,

where R was given in (51).

Proof. Since ΦHF

r is harmonic on the set {|x| > r} and tends to zero at
infinity we get for all |y| > r that ΦHF

r (y) ≤ |y|−1r sup|x|=r ΦHF

r (x). Hence

EA [γHF

r ] ≥ K1

∫
ρHF

r (y)5/3dy −
[
r sup
|x|=r

ΦHF

r (x)

] ∫
|y|−1ρHF

r (y)dy

+ 1
2

∫ ∫
ρHF

r (y)|y − y′|−1ρHF

r (y′)dy dy′.

From standard atomic Thomas-Fermi theory it follows that the right-hand side
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is bounded below by the energy of a neutral Thomas-Fermi atom with nuclear
charge

[
r sup|x|=r ΦHF

r (x)
]
+

and with the constant K1 in front of the first term.
A simple scaling argument shows that this is

− 3
10

(3π2)2/3K−1
1

[
r sup
|x|=r

ΦHF

r (x)

]7/3

+

e0.

By repeating this argument with only a fraction of the term
∫
(ρHF

r )5/3 we
conclude that for all 0 < t < 1

(1 − t)K1

∫
ρHF

r (y)5/3dy ≤ EA [γHF

r ] + 3
10(3π2)2/3(tK1)−1e0

[
r sup
|x|=r

ΦHF

r (x)

]7/3

+

.

Since EA
[
γHF

r

]
≤ R (by choosing the trial γ = 0 in (50) ) we get (59) if we

choose t = 1/2.

We still need to show how we can control the exchange term EX
[
γHF

r

]
. This

is done using a standard inequality of Lieb [8] (or in an improved version by
Lieb and Oxford [14]). They proved the inequality for general wave functions,
but we need it here only for Hartree-Fock Slater determinants or more precisely
for density matrices. For completeness we shall give a proof (with a worse
constant) in the simple case we need here.

Theorem 6.4 (Exchange inequality). For any trace class operator γ with
0 ≤ γ ≤ I we have the estimate

EX [γ] ≤ 1.68
∫

ρ4/3
γ .

Proof. We shall here present a simple proof that the inequality holds with
1.68 replaced by 248.3. To get the much better constant one needs the more
detailed analysis in [14]. We use the representation

|x|−1 = π−1
∫ ∞

0
χr ∗ χr(x)r−5dr,

where χr again denotes the characteristic function of the ball of radius r cen-
tered at the origin. Thus we may write the exchange energy as

EX [γ] = (2π)−1
∫ ∞

0

∫
R3

Tr[γXr,zγXr,z]r−5dzdr,

where Xr,z is the multiplication operator Xr,zf(x) = χr(x − z)f(x).
We now use the two simple estimates Xr,zγXr,z ≤ X2

r,z and Xr,zγXr,z ≤
Tr[γX2

r,z]I. We obtain
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Tr[γXr,zγXr,z] = Tr[γ1/2Xr,z(Xr,zγXr,z)Xr,zγ
1/2] ≤ Tr[γX2

r,z] = ργ ∗ χr(z)

and

Tr[γXr,zγXr,z = Tr[γ1/2Xr,z(Xr,zγXr,z)Xr,zγ
1/2] ≤ Tr[γX2

r,z]
2 = (ργ ∗ χr(z))2.

If ρ∗γ denotes the Hardy-Littlewood maximal function we have ργ ∗χr(z) ≤
(4πr3/3)ρ∗γ(z). Thus with R(z) =

(
(4π/3)ρ∗γ(z)

)−1/3
we can estimate

EX [γ] ≤ (2π)−1
∫
R3

∫ R(z)

0

(
4πr3

3
ρ∗γ(z)

)2

r−5dr +
∫ ∞

R(z)

4πr3

3
ρ∗γ(z)r−5dr

 dz

= (4π/3)1/3
∫
R3

(
ρ∗γ(z)

)4/3
dz.

If we finally apply the maximal inequality ‖f∗‖p
p ≤ (48p2p/(π(p−1))‖f‖p

p,
for all p > 1 ([28], p. 58) we obtain

EX [γ] ≤ 384
π

(
8π

3

)1/3 ∫
ρ4/3

γ = 248.3
∫

ρ4/3
γ .

7. Exterior L1-estimate

The aim of this section is to control
∫
|x|>r

ρHF(x)dx, for all r > 0. As
before ρHF is the density of a Hartree-Fock minimizer γHF with Tr[γHF] = N .
Thus

∫
ρHF = N .

The difficulty in estimating
∫
|x|>r

ρHF(x)dx is that this quantity cannot
be controlled in terms of the energy EHF(γHF). More precisely,

∫
|x|>r

ργ(x)dx

can be arbitrarily large even when EHF(γ) is arbitrarily close to the absolute
minimum. The simple reason is that “adding electrons at infinity” will not
raise the energy.

Therefore, in order to control
∫
|x|>r

ρHF(x)dx, we must use the minimizing
property of γHF.

In contrast, it follows from the Lieb-Thirring inequality that∫
|x|>r

ρHF(x)5/3dx can be controlled in terms of the energy. By Hölder’s in-
equality it then also follows that the integral of ρHF over any bounded set can
be controlled by the energy.

The philosophy here will be, to use the minimizing property of γHF, to
control the integral of ρHF over an unbounded set, in terms of the integral over
a bounded set.

Our main result in this section is stated in the next lemma. The proof of
the lemma uses an idea of Lieb [13].
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Lemma 7.1 (Exterior L1-estimate). For all r > 0 and all 0 < λ < 1 the
density ρHF of an HF minimizer γHF satisfies the bound∫

|x|>(1−λ)−1r
ρHF(x)dx ≤ 1 + 2λ−1 + 2

[
sup

|x|=(1−λ)r
|x|ΦHF

(1−λ)r(x)

]
+

+

(
Kλr−1

∫
r<|x|<(1−λ)−1r

ρHF(x)dx

)1/2

,

where Kλ := (2λ
π + (1 − λ)−1)

(
π
2λ

)2. Here ΦHF

(1−λ)r is the screened nuclear
potential introduced in Definition 1.1.

Proof. Since γHF is a minimizer we know that it satisfies the Hartree-Fock
equations. For example, according to Theorem 3.11, γHF is a projection onto a
space spanned by functions u1, . . . , uN ∈ L2(R3;C2) satisfying HγHFui = εiui,
were εi ≤ 0.

Let Ξ ∈ C1(R3) have compact support away from x = 0, be real and
satisfy Ξ(x)2 ≤ 1. Then

0 ≥
N∑

i=1

εi

∫
|ui(x)|2 |x|Ξ(x)2 dx =

N∑
i=1

∫
ui(x)∗|x|Ξ(x)2HγHFui(x)dx.

From the definition (30) of the mean field operator HγHF we obtain

0 ≥
N∑

i=1

1
2

∫
∇

(
ui(x)∗|x|Ξ(x)2

)
· ∇ui(x)dx − Z

∫
ρHFΞ2(60)

+
∫ ∫ [

ρHF(x)ρHF(y) − TrC2

[
|γHF(x, y)|2

]] |y|Ξ(y)2

|x − y| dx dy.

We consider separately the different terms above. By the IMS formula (19)

Re1
2

∫
∇

(
ui(x)∗|x|Ξ(x)2

)
· ∇ui(x)dx(61)

= 1
2

∫ ∣∣∣∇ (
Ξ(x)|x|1/2ui(x)

)∣∣∣2 − 1
4 |x|

−1Ξ(x)2 |ui(x)|2 dx

−1
2

∫ (
1
2∇

(
Ξ(x)2

)
+ |x| (∇Ξ(x))2

)
|ui(x)|2 dx

≥ −1
2

∫ (
1
2∇

(
Ξ(x)2

)
+ |x| (∇Ξ(x))2

)
|ui(x)|2 dx,

where we have used Hardy’s inequality
∫
|∇f(x)|2dx ≥ 1

4

∫
|x|−2|f(x)|2dx.

For the Coulomb terms we estimate it using that

ρHF(x)ρHF(y)−TrC2

[
|γHF(x, y)|2

]
= 1

2

N∑
i,j=1

‖ui(x) ⊗ uj(y) − uj(x) ⊗ ui(y)‖2
C2⊗C2
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is nonnegative. Hence

∫ ∫ [
ρHF(x)ρHF(y) − TrC2

[
|γHF(x, y)|2

]] |y|Ξ(y)2

|x − y| dx dy

=
∫ ∫ [

ρHF(x)ρHF(y) − TrC2

[
|γHF(x, y)|2

]] |y|
(
1 − Ξ(x)2

)
Ξ(y)2

|x − y| dx dy

+ 1
2

∫ ∫ [
ρHF(x)ρHF(y) − TrC2

[
|γHF(x, y)|2

]] |x| + |y|
|x − y| Ξ(x)2Ξ(y)2dx dy,

where we expressed the last term symmetrically in x and y. If we now use the
triangle inequality and the fact

∫
TrC2

[
|γHF(x, y)|2

]
Ξ(y)2dy ≤ ρHF(x), which

follows from Ξ(x)2 ≤ 1 and (γHF)2 = γHF, we arrive at

(62)∫ ∫ [
ρHF(x)ρHF(y) − TrC2

[
|γHF(x, y)|2

]] |y|Ξ(y)2

|x − y| dx dy

≥
∫ ∫ [

ρHF(x)ρHF(y) − TrC2

[
|γHF(x, y)|2

]] |y|
(
1 − Ξ(x)2

)
Ξ(y)2

|x − y| dx dy

+ 1
2

(∫
ρHFΞ2

)2

− 1
2

∫
ρHFΞ2.

Inserting the inequalities (61) and (62) into (60) gives

(63)

0 ≥ −1
2

∫ (
1
2∇

(
Ξ(x)2

)
+ |x| (∇Ξ(x))2

)
ρHF(x)dx − Z

∫
ρHFΞ2

+
∫ ∫ [

ρHF(x)ρHF(y) − TrC2

[
|γHF(x, y)|2

]] |y|
(
1 − Ξ(x)2

)
Ξ(y)2

|x − y| dx dy

+ 1
2

(∫
ρHFΞ2

)2

− 1
2

∫
ρHFΞ2.

By an approximation argument it is clear that we can use (63) for any
real function Ξ for which Ξ2 ≤ 1 and the function

(
∇

(
Ξ(x)2

)
+ |x| (∇Ξ(x))2

)
is bounded. In particular we can choose Ξ identically equal to 1, which will
recover Lieb’s result from [13], i.e.,

∫
ρHF ≤ 2Z + 1.

We shall now choose Ξ := θr, where θr is the localization function given
in Definition 6.1. Then

(64) 1
2∇

(
Ξ(x)2

)
+ |x| (∇Ξ(x))2 ≤ π

2λr
+ (1 − λ)−1r

π2

(2λr)2
= Kλr−1



THE IONIZATION CONJECTURE IN HARTREE-FOCK THEORY 541

and∫ ∫ [
ρHF(x)ρHF(y) − TrC2

[
|γHF(x, y)|2

]] |y|
(
1 − Ξ(x)2

)
Ξ(y)2

|x − y| dx dy

≥
∫ ∫

|x|<(1−λ)r

[
ρHF(x)ρHF(y) − TrC2

[
|γHF(x, y)|2

]] |y|θr(y)2

|x − y| dx dy.

If we now use that |x| < (1−λ)r and y ∈ supp θr imply that |y||x−y|−1 ≤ λ−1

we obtain∫ ∫ [
ρHF(x)ρHF(y) − TrC2

[
|γHF(x, y)|2

]] |y|
(
1 − Ξ(x)2

)
Ξ(y)2

|x − y| dx dy(65)

≥
∫ ∫

|x|<(1−λ)r

ρHF(x)ρHF(y)
|y|θr(y)2

|x − y| dx dy − λ−1
∫

θr(y)2ρHF(y) dy,

where we have also used that
∫

TrC2

[
|γHF(x, y)|2

]
dx = ρHF(y).

If we insert (64) and (65) into (63) we arrive at

0 ≥ −Kλ

2r

∫
r<|x|<(1−λ)−1r

ρHF(x)dx −
∫

θr(y)2|y|ΦHF

(1−λ)r(y)ρHF(y)dy

+ 1
2

(∫
ρHFθ2

r

)2

−
(

1
2 + λ−1

) ∫
ρHFθ2

r .

Using now that ΦHF

(1−λ)r(y) tends to zero at infinity and is harmonic for |y| >

(1 − λ)r, which contains the support of θr, we see by a simple comparison
argument that

θr(y)2|y|ΦHF

(1−λ)r(y) ≤ θr(y)2
[

sup
|x|=(1−λ)r

|x|ΦHF

(1−λ)r(x)

]
+

.

Thus

0 ≥
(∫

ρHFθ2
r

)2

−
1 + 2λ−1 + 2

[
sup

|x|=(1−λ)r
|x|ΦHF

(1−λ)r(x)

]
+

 ∫
ρHFθ2

r

−Kλr−1
∫

r<|x|<(1−λ)−1r
ρHF(x)dx.

Finally, in order to arrive at the result of the lemma we simply use that 0 ≥
X2 − BX − C for B, C > 0 implies X ≤ B +

√
C.

8. The semiclassical estimates

In this section we derive the relevant semiclassical estimates. We do not
attempt to give optimal results. We shall be satisfied with what is needed for
the application we have in mind. In a certain sense it is misleading to refer
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to the estimates in this section as semiclassical. Usually, semiclassics refers to
the limit as Planck’s constant h̄ tends to zero. One then expands the relevant
physical quantities like energy and density in powers of h̄. In our setting there
is, however, no semiclassical parameter which could play the role of Planck’s
constant. It is rather that we consider potentials for which the semiclassical
expressions for the energy and density are approximately valid. We must then
estimate the errors directly in terms of certain norms of the potential. The
estimates are semiclassical in the sense that if one introduces a semiclassical
parameter then the errors are of smaller order than the leading semiclassical
expression.

We are interested in a semiclassical approximation to the sum of the neg-
ative eigenvalues of a Schrödinger operator

h := −1
2∆ − V,

on R3. We shall in this section always assume that the potential V : R3 → R

is locally in L1 and that its positive part satisfies that [V ]+ ∈ L5/2(R3). This
ensures (by the Lieb-Thirring inequality or even by Sobolev’s inequality) that
h is bounded below and can be defined as a Friedrichs’ extension from the
domain C∞

0 (R3). 3

The semiclassical approximation to the sum of the negative eigenvalues of
h is given by

(66) (2π)−3
∫ ∫

1
2p2−V (x)≤0

1
2p2 − V (x) dp dx = −23/2(15π2)−1

∫
[V (x)]5/2

+ dx.

Moreover, the semiclassical approximation to the density, i.e., the sum of the
absolute square of the eigenfunctions corresponding to the negative eigenvalues,
is

(67) (2π)−3
∫

1
2p2−V (x)≤0

1dp = 23/2(6π2)−1 [V (x)]3/2
+ .

Definition 8.1. For s > 0, let g : R3 → R be the ground state of the
Dirichlet-Laplacian for a ball of radius s, i.e., the function with g(x) = 0 if
|x| > s and g(x) = (2πs)−1/2|x|−1 sin(π|x|/s) if |x| ≤ s. Then

(68) 0 ≤ g ≤ 1,

∫
g2 = 1

∫
|∇g|2 = (π/s)2.

3Note that we are not including spin. The operator h is acting in the space L2(R3) and not in

the space L2(R3;C2).
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Lemma 8.2 (Semiclassical approximation). We assume about the poten-
tial that [V ]+, [V − V ∗ g2]+ ∈ L5/2(R3) with g as in Definition 8.1 above. Let
e(1) ≤ e(2) ≤ . . . < 0, denote the negative eigenvalues of h = −1

2∆ − V as an
operator on L2(R3). Then for all 0 < δ < 1, all integers N > 0, and all s > 0
we have

N∑
j=1

e(j) ≥ −23/2(15π2)−1(1 − δ)−3/2
∫

[V ]5/2
+(69)

−1
2π2s−2N − L1δ

−3/2

∥∥∥∥[
V − V ∗ g2

]
+

∥∥∥∥5/2

5/2

where L1 is the constant in the Lieb-Thirring estimate (22). If there are fewer
than N negative eigenvalues the sum on the left refers simply to the sum over
all the negative eigenvalues.

On the other hand, if also [V ]+ ∈ L3/2(R3), we can, for all s > 0, find a
density matrix γ with ργ(x) = 23/2(6π2)−1 [V ]3/2

+ ∗ g2(x) such that

(70) Tr[−1
2∆γ] = 21/2(5π2)−1

∫
[V ]5/2

+ + 1
2π2s−2

∫
23/2(6π2)−1 [V ]3/2

+ .

Remark 8.3. We are not proving that the true density of the projection
onto the negative eigenvalues of h is approximated by the semiclassical expres-
sion (67). We only claim that there is a ‘good’ trial density matrix. In the
context where we shall use the semiclassics we shall infer the approximation of
the true density by other means.

Proof of Lemma 8.2. We prove the result using the method of coherent
states (see Thirring [29] and Lieb [10]).

For u, p ∈ R3 let Πu,p be the one-dimensional projection in L2(R3), pro-
jecting onto the space spanned by the function fu,p(x) := exp(ipx)g(x − u).
We then have the coherent states identities

Tr[Πu,p] = 1, for all p, u(71)

(2π)−3
∫ ∫

Πu,pdp du = I, on L2(R3).(72)

We also have the identity

(73) Tr[−1
2∆Πu,p] = 1

2p2 + 1
2

∫
|∇g|2 = 1

2p2 + π2/(2s2),

and for all density matrices γ

Tr[−1
2∆γ] = (2π)−3

∫ ∫
1
2p2Tr[Πu,pγ]dp du − π2/(2s2)Tr[γ](74)

Tr[(V ∗ g2)γ] = (2π)−3
∫ ∫

V (u)Tr[Πu,pγ]dp du .(75)
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Proof of the lower bound (69). Let f1, f2, . . . ∈ L2(R3) denote the normal-
ized eigenfunctions of h corresponding to negative eigenvalues. It is clear that
we may without loss of generality assume that there are N negative eigenvalues.

We decompose the operator h as

h = −1
2(1 − δ)∆ − V ∗ g2 + [−1

2δ∆ − (V − V ∗ g2)].

We may then write
∑N

j=1 e(j) =
∑N

j=1(fj , hfj) = A + B, where

A :=
N∑

j=1

(fj , [−1
2(1− δ)∆−V ∗ g2]fj), B :=

N∑
j=1

(fj , [−1
2δ∆− (V −V ∗ g2)]fj).

Hence from (74) and (75) we obtain

A = (2π)−3
∫ ∫ (

1
2(1 − δ)p2 − V (u)

) N∑
j=1

(fj ,Πu,pfj)dp du − Nπ2(2s2)−1.

As a consequence of (71) we have that 0 ≤ ∑N
j=1(fj ,Πu,pfj) ≤ 1.

It is therefore clear that

A ≥ (2π)−3
∫ ∫

(1−δ)
1
2p2−V (u)≤0

(
(1 − δ)1

2p2 − V (u)
)

dp du − π2(2s2)−1N

= −23/2(15π2)−1(1 − δ)−3/2
∫

[V ]5/2
+ − π2(2s2)−1N.

The estimate (69) follows by applying the Lieb-Thirring estimate (22) to
conclude that B ≥ −L1δ

−3/2‖
[
V − V ∗ g2

]
+ ‖5/2

5/2.

Proof of the existence of γ. We shall prove that

γ := (2π)−3
∫ ∫

1
2p2−V (u)≤0

Πu,pdp du

has the desired properties. From (72) we see that γ is a density matrix, i.e.,
0 ≤ γ ≤ I. The density corresponding to γ is easily computable

ργ(x) = γ(x, x) = (2π)−3
∫ ∫

1
2p2−V (u)≤0

Πu,p(x, x)dp du = 23/2(6π2)−1 [V ]3/2
+ ∗g2(x).

From (73) we immediately obtain (70).

Although we shall use the semiclassical approximation in the form given in
the lemma we shall for completeness state a less technical semiclassical result
which follows very easily from the lemma.
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Theorem 8.4 (Semiclassical approximation). Assume that 0 ≤ V ∈
L5/2(R3) ∩ L3/2(R3) and |∇V | ∈ L5/2(R3). Let e(1) ≤ e(2) ≤ . . . < 0, denote
the negative eigenvalues of h = −1

2∆− V as an operator on L2(R3). Then we
have

∑
j

e(j) ≥ −23/2(15π2)−1
∫

V (x)5/2dx

{
1 + AL‖V ‖−

3
2

5
2

‖∇V ‖
2
3
5
2

‖V ‖
1
2
3
2

} 5
3

(76)

and ∑
j

e(j) ≤ −23/2(15π2)−1
∫

V (x)5/2dx + 2−1/2π−4/3‖V ‖ 5
2
‖∇V ‖

2
3
5
2

‖V ‖
1
2
3
2

,(77)

where AL := 9
42−9/10(15π2)3/5

(
2π2

5

)1/3
L

1/3
0 L

4/15
1 . Here L0 and L1 are the

constants in the CLR and Lieb-Thirring estimates (23) and (22) respectively.

Proof. We may estimate

∣∣∣V (u) − V ∗ g2(u)
∣∣∣ ≤

∫
R3

∫ 1

0
|∇V (u − ty)||y|g(y)2dt dy

=
∫
R3

|∇V (u − y)||y|
∫ 1

0
t−4g(y/t)2dtdy

≤ (4π)−1
∫
|y|≤s

|∇V (u − y)||y|−2dy,

where we have used that
∫ 1
0 t−4g(y/t)2dt ≤ |y|−3

∫ ∞
0 t2g(t)2dt = (4π)−1|y|−3

(identifying g with a function on R+). Hence

(78) ‖V − V ∗ g2‖5/2 ≤ (4π)−1‖∇V ‖5/2

∫
|y|≤s

|y|−2dy = s‖∇V ‖5/2.

For any density matrix γ, Tr[hγ] is an upper bound to the sum of the negative
eigenvalues of h. From (70) we find for the density matrix constructed in
Lemma 8.2 that

Tr[hγ] = −23/2(15π2)−1
∫

[V ]5/2
+

+ 23/2(6π2)−1
∫

[V (u)]3/2
+

[
V (u) − V ∗ g2(u) + 1

2π2s−2
]
du.

The bound (77) follows from applying Hölder’s inequality, (78), and optimizing
in s.

By the CLR bound (23) we know that h has only finitely many negative
eigenvalues and that their number N is bounded by N ≤ L0

∫
[V ]3/2

+ . From
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(69) and (78) we therefore obtain∑
j

e(j) ≥ −23/2(15π2)−1(1 − δ)−3/2
∫

V 5/2

− L0π
2(2s2)−1

∫
V 3/2 − L1δ

−3/2s5/2
∫

|∇V |5/2

= −23/2(15π2)−1(1 − δ)−3/2
∫

V 5/2

− 9
4

(
2
5

)5/9
L

5/9
0 L

4/9
1 π10/9δ−2/3

(∫
V 3/2

)5/9 (∫
|∇V |5/2

)4/9

,

where we have optimized in the parameter s.
We now optimize in the parameter δ. Define δ′ by (1−δ)−3/2 = (1−δ′)−2/3.

(Note that 0 < δ < 1 if and only if 0 < δ′ < 1.) Then δ−2/3 ≤ (4δ′/9)−2/3.
Thus ∑

j

e(j) ≥ −23/2(15π2)−1(1 − δ′)−2/3
∫

V 5/2

− A1δ
′−2/3

(∫
V 3/2

)5/9 (∫
|∇V |5/2

)4/9

,

where A1 :=
(

9
4

)5/3 (
2π2

5

)5/9
L

5/9
0 L

4/9
1 . Using that

min
δ′

[
(1 − δ′)−2/3a + δ′−2/3b

]
= a[1 + (b/a)3/5]5/3

we arrive at (76).

We shall need the semiclassical estimates also for the operator h restricted
to functions on the set {x : |x| ≥ r} satisfying Dirichlet boundary conditions.

Lemma 8.5 (Dirichlet boundary conditions). Let the assumptions be as
in the beginning of Lemma 8.2. For r > 0 let hr denote the restriction of
the operator h = −1

2∆ − V to functions on the set {x : |x| ≥ r} satisfying
Dirichlet boundary conditions. Denote by e(1) ≤ e(2) ≤ . . . < 0 the negative
eigenvalues of h and by e

(1)
r ≤ e

(2)
r ≤ . . . < 0 the negative eigenvalues of

hr. Then
∑

j e(j) ≤ ∑
j e

(j)
r . Moreover, if γ is a density matrix on L2(R3) we

may, for all 0 < λ < 1, find a density matrix γ̃ such that ρ
γ̃ is supported in

{x : |x| ≥ r} and ρ
γ̃ ≤ ργ and

Tr[hrγ̃] ≤ Tr[hγ] + L1

∫
|x|≤(1−λ)−1r

[V ]5/2
+ + 1

2(π/(2λr))2
∫
|x|≤(1−λ)−1r

ργ .

Proof. That the Dirichlet eigenvalues are upper bounds to the eigenvalues
on R3, is a well known simple consequence of the variational principle.
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Let θr be the localization function from Definition 6.1. We shall choose
γ̃ = θrγθr. Then by the IMS formula (20) we have

Tr[hγ] = Tr[hrθrγθr] + Tr[h(1 − θ2
r)

1/2γ(1 − θ2
r)

1/2]

− 1
2Tr[

(
(∇θr)2 + (∇(1 − θ2

r)
1/2)2

)
γ].

By the Lieb-Thirring inequality (22) we have Tr[h(1 − θ2
r)

1/2γ(1 − θ2
r)

1/2] ≥
−L1

∫
|x|≤(1−λ)−1r [V ]5/2

+ . Thus the lemma follows from the bound on the gra-
dient of θr and (1 − θ2

r)
1/2 given in Definition 6.1.

9. The Coulomb norm estimates

In this section we introduce and study the Coulomb norm.

Definition 9.1. For f, g ∈ L6/5(R3) we define the Coulomb inner product

(79) D(f, g) := 1
2

∫ ∫
f(x)|x − y|−1g(y)dx dy

and the corresponding Coulomb norm,

‖g‖C := D(g, g)1/2.

By the Hardy-Littlewood-Sobolev estimate we have

(80) ‖g‖C ≤ π−1/627/63−1/2‖g‖6/5.

In this sharp form the inequality was proved by Lieb [12]. Using the Fourier
transform we may write

(81) D(f, g) = (2π)
∫

f̂(p)ĝ(p)|p|−2dp,

from which it follows that the Coulomb norm really is a norm on L6/5(R3).
The following estimate was first used in the context of atomic problems

by Fefferman and Seco [5].

Lemma 9.2 (Coulomb norm estimate). If f ∈ L6(R3) with |∇f | ∈ L2(R3)
and g ∈ L6/5(R3) then ∣∣∣∣∫ fg

∣∣∣∣ ≤ (2π)−1/2‖∇f‖2‖g‖C.

Proof. Using Plancherel’s identity and the representation (81) we have∣∣∣∣∫ fg

∣∣∣∣ =
∣∣∣∣∫ f̂ ĝ

∣∣∣∣ ≤ ‖|p|f̂(p)‖2‖|p|−1ĝ(p)‖2 = (2π)−1/2‖∇f‖2‖g‖C.
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We shall next give some simple but very useful consequences of this esti-
mate.

Corollary 9.3. Consider f ∈ L5/3(R3)∩L6/5(R3). For all x ∈ R3 and
s > 0 we have

(82) f ∗ |x|−1 ≤ (25π2s/16)1/5(πs)1/5‖[f ]+‖L5/3(B(x,s)) + (2/s)1/2‖f‖C.

For all x ∈ R3 and all κ > 0 denote by A(|x|, κ) the annulus

A(|x|, κ) = {y : (1 − 2κ)|x| ≤ |y| ≤ |x|}

we then have∫
|y|<|x|

f(y)|x − y|−1dy ≤ 27/5π2/5(κ|x|)1/5 ‖[f ]+‖L5/3(A(|x|,κ))(83)

+ 23/2κ−1|x|−1/2‖f‖C.

Remark 9.4. Note that we do not restrict to κ ≤ 1/2. We do this to
avoid having to check this condition in the applications of the corollary.

Proof of Corollary 9.3. Consider the function ξs : R3 → R defined by

ξs(z) :=

{
s−1, if |z| ≤ s

|z|−1, if |z| ≥ s.

It satisfies ‖∇ξs‖2 = (4π/s)1/2. Hence from Lemma 9.2 we obtain

f ∗ |x|−1 ≤
∫
|y−x|≤s

[f(y)]+
(
|x − y|−1 − s−1

)
dy +

∫
R3

f(y)ξs(x − y)dy

≤ (25π4s/16)1/5‖[f ]+‖L5/3(B(x,s)) + (2/s)1/2‖f‖C,

where we have used that
∫
|y|<1(|y|−1 − 1)5/2dy = 5π2

4 .
In order to prove the second half of the corollary we introduce the function

Ξx,κ : R3 → R3 given by

Ξx,κ(z) :=


1, if |z| ≤ (1 − 2κ)|x|

1 − (|x|κ)−1(|z| − |x|(1 − 2κ)), if (1 − 2κ)|x| ≤ |z| ≤ (1 − κ)|x|
0, if (1 − κ)|x| ≤ |z|.

Then |Ξx,κ(z)| ≤ 1 and we can estimate∫
|y|<|x|

f(y)|x − y|−1dy ≤
∫

A(|x|,κ)
[f(y)]+|x − y|−1dy

+
∫
R3

f(y)|x − y|−1Ξx,κ(y)dy
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≤ ‖[f ]+‖L5/3(A(|x|,κ))

(∫
A(|x|,κ)

|x − y|−5/2dy

)2/5

+ (2π)−1/2‖f‖C

(∫ ∣∣∣∇y

(
|x − y|−1Ξx,κ(y)

)∣∣∣2 dy

)1/2

.

It remains to estimate the two integrals above. For the first integral we find
for κ ≤ 1/2∫

A(|x|,κ)
|x − y|−5/2dy = 2π|x|1/2

∫ 1

r=1−2κ

∫ 1

u=−1
(1 − 2ru + r2)−5/4r2du dr

= 2π|x|1/2α1(κ),

where

α1(κ) := 4(2κ)1/2 − (4/3)(2κ)3/2 + (4/3)
√

2[1− (1− κ)1/2(1 + 2κ)] ≤ 4(2κ)1/2.

The last inequality follows from a straightforward careful analysis of α1(κ).
For the second integral we get(∫ ∣∣∣∇y

(
|x − y|−1Ξx,κ(y)

)∣∣∣2 dy

)1/2

≤
(∫

|x−y|>κ|x|
|x − y|−4dy

)1/2

+ (κ|x|)−1

(∫
A(|x|,κ)

|x − y|−2dy

)1/2

= (4π)1/2(κ|x|)−1/2(1 + α2(κ)1/2),

with
α2(κ) := 1 + (1 − κ) ln

(
1 − κ

κ

)
≤ 1 − lnκ ≤ κ−1,

where we have used that∫
A(|x|,κ)

|x−y|−2dy = 2π|x|
∫ 1

r=1−2κ

∫ 1

u=−1
(1−2ru+r2)−1r2du dr = 4πκ|x|α2(κ).

Using (4π)1/2κ−1/2(1 + α2(κ)1/2) ≤ 4π1/2κ−1 we get (83).
The estimate holds also for κ > 1/2 since the last term in (83) can be

ignored in this case.

10. Main estimate

We now restrict attention to the case N ≥ Z. Throughout the remaining
part of this paper ρTF, ϕTF,ΦTF

R , ρHF, ϕHF and ΦHF

R always refer to the problems
with particle number N . In fact, since N ≥ Z the TF functions correspond
to the neutral atom, i.e., µTF = 0. We shall suppress the dependence on N

everywhere since it is held fixed throughout the discussion.
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From now on we shall no longer explicitly compute the constants involved
in the estimates. We shall use the notation (Const.) to refer to any universal
(in principle explicitly computable) positive constant. Thus (Const.) does not
mean the same constant in all equations or inequalities. Even within the
same equation we shall use the notation (Const.) to refer to possibly different
universal constants. Universal constants of particular importance will be given
separate names. We begin by stating the main result of this section.

Theorem 10.1 (Main estimate). Assume Z ≥ 1 and N ≥ Z. There
exist universal constants 0 < ε < 4 and CM , CΦ > 0 such that for all x ∈ R3

we have

(84)
∣∣∣ΦHF

|x|(x) − ΦTF

|x|(x)
∣∣∣ ≤ CΦ|x|−4+ε + CM .

We shall prove Theorem 10.1 by an iterative procedure. The first step is
to control “small” x.

Lemma 10.2 (Control of the region close to the nucleus). Assume Z ≥ 1
and N ≥ Z. For all β > 0 and all |x| ≤ βZ−1/3 we have∣∣∣ΦHF

|x|(x) − ΦTF

|x|(x)
∣∣∣ ≤ AΦβ49/12−ε1 |x|−4+ε1 ,

where ε1 = 1/66 and AΦ > 0 is a universal constant.

Lemma 10.3 (Iterative step). Assume N ≥ Z. For all δ, ε′, σ > 0 with
δ < δ0, where δ0 is some universal constant, there exists constants ε2, C

′
Φ > 0

depending only on δ and a constant D = D(ε′, σ) > 0 depending only on ε′, σ
with the following property. For all R0 < D satisfying that β0Z

−1/3 ≤ R1+δ
0

(where β0 = (9π)2/3

44 as in Theorem 5.4) and that

(85)
∣∣∣ΦHF

|x|(x) − ΦTF

|x|(x)
∣∣∣ ≤ σ|x|−4+ε′

holds for all |x| ≤ R0, there exists R′
0 > R0 such that

(86)
∣∣∣ΦHF

|x|(x) − ΦTF

|x|(x)
∣∣∣ ≤ C ′

Φ|x|−4+ε2

for all x with R0 < |x| < R′
0.

Lemmas 10.2 and 10.3 will allow us to control small and intermediate |x|
to control large |x| we shall need the following two lemmas.
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Lemma 10.4 (Bound on
∫
(ρHF)5/3). Assume N ≥ Z. Given 0 < ε′, σ,

there is a D > 0 such that if (85) holds for all |x| ≤ D then we have

(87)
∫
|y|>|x|

ρHF(y)5/3 dy ≤ (Const.)|x|−7,

for all |x| ≤ D.

Lemma 10.5 (Bound on
∫

ρHF). Assume that (85) holds for all |x| ≤ R

for some R > 0 and some ε′, σ > 0. Then for 0 < r ≤ R we have∣∣∣∣∣
∫
|y|<r

(ρHF(y) − ρTF(y)) dy

∣∣∣∣∣ ≤ σr−3+ε′

and ∫
|y|>r

ρHF(y)dy ≤ (Const.)(1 + σrε′)
(
r−3 + 1

)
.

We shall prove Lemma 10.2 in Section 11 and Lemmas 10.3 and 10.4 in
Section 12. We end this section with the proofs of Lemma 10.5 and the main
estimate Theorem 10.1.

Proof of Lemma 10.5. First note that for 0 < r ≤ R we have∫
|y|<r

(ρTF(y) − ρHF(y)) dy = (4π)−1r

∫
ω∈S2

∫
|y|<r

(ρTF(y) − ρHF(y)) |rω−y|−1dy dω.

Thus we have∫
|y|<r

(ρTF(y) − ρHF(y)) dy = (4π)−1r

∫
ω∈S2

ΦHF

r (rω) − ΦTF

r (rω)dω.

Together with (85) this gives the first estimate above. Moreover, we also have
that ∣∣∣∣∣

∫
r/2<|y|<r

(ρTF(y) − ρHF(y)) dy

∣∣∣∣∣ ≤ sup
|y|=r

∣∣∣ΦHF

r (y) − ΦTF

r (y)
∣∣∣

+ sup
|y|=r/2

∣∣∣ΦHF

r/2(y) − ΦTF

r/2(y)
∣∣∣

≤ (Const.)σr−3+ε′ .

The TF equation (6), and the Sommerfeld estimate in Theorem 5.2 give∫
|y|>r/2

ρTF(y) dy ≤ (Const.)r−3

and hence ∫
r/2<|y|<r

ρHF(y)dy ≤ (Const.)(1 + σrε′)r−3.
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From (85), the exterior L1-estimate Lemma 7.1 (used with λ = 1/2 and r

replaced by r/2), and Lemma 5.5 (recall that now µTF = 0) we immediately
conclude the estimate on

∫
|y|>r

ρHF(y)dy.

We finally show how to use Lemmas 10.2–10.5 to prove the main estimate
Theorem 10.1.

Proof of Theorem 10.1. We first show that we may choose δ > 0 small
enough such that if we choose R̃1+δ = β0Z

−1/3 we have for all |x| < R̃ that

(88)
∣∣∣ΦHF

|x|(x) − ΦTF

|x|(x)
∣∣∣ ≤ C ′′

Φ|x|−4+
ε1
2

for a universal constant C ′′
Φ > 0 and with ε1 given in Lemma 10.2.

To see this let β > 0 be such that
(
βZ−1/3

)1+δ
= β0Z

−1/3, i.e., β1+δ =

β0Z
δ/3. We then see from Lemma 10.2 that for all |x| < βZ−1/3 we have∣∣∣ΦHF

|x|(x) − ΦTF

|x|(x)
∣∣∣ ≤ AΦβ

49
12

− ε1
2 Z− ε1

6 |x|−4+
ε1
2

= AΦ(β0Z
δ/3)

(
49

12(1+δ)
− ε1

2(1+δ)

)
Z− ε1

6 |x|−4+
ε1
2 .

Since R̃1+δ = β0Z
−1/3, i.e. R̃ = βZ−1/3, we see that if δ is small enough and

C ′′
Φ is chosen appropriately then (88) holds for all |x| < R̃.

We now assume that δ is also small enough that we may apply Lemma 10.3.
This gives us constants ε2, C

′
Φ > 0 and for all σ, ε′ > 0 a D > 0 with the

properties stated in Lemmas 10.3 and 10.4. We may without loss of generality
assume that D ≤ 1. Now choose σ = max{C ′

Φ, C ′′
Φ} and ε′ = min{ε1/2, ε2}.

Note that σ, ε, and D are now universal constants. We shall prove that for all
|x| ≤ D we have

(89)
∣∣∣ΦHF

|x|(x) − ΦTF

|x|(x)
∣∣∣ ≤ σ|x|−4+ε′ .

Since we are assuming that D ≤ 1 it is sufficient to prove (89) with ε′ replaced
by ε1/2 or ε2. We have to prove that D belongs to the set

M = {0 < R ≤ 1 : Inequality (89) holds for all |x| ≤ R}.
If this were not true we would have D > R0 := supM. In order to reach a
contradiction we therefore assume this and hence in particular that R0 < 1.
From (88) it follows that either R̃ > 1 or R̃ ∈ M. If R̃ > 1 then R0 = supM
= 1 which contradicts our assumption. On the other hand if R̃ ∈ M then
R1+δ

0 ≥ R̃1+δ = β0Z
−1/3. It is then an immediate consequence of Lemma 10.3

that there exists R′
0 ∈ M with R′

0 > R0 and this is of course also a contradic-
tion. This establishes an inequality of the form (84) for all |x| ≤ D.

We shall now prove (84) for |x| > D. We write∣∣∣ΦHF

|x|(x) − ΦTF

|x|(x)
∣∣∣ ≤ ∣∣∣ΦHF

D (x) − ΦTF

D (x)
∣∣∣ +

∣∣∣∣∣
∫

D<|y|<|x|

(ρTF(y) − ρHF(y))
|x − y| dy

∣∣∣∣∣ .
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We shall estimate the last term using Lemma 10.4 and the similar bound∫
|y|>|x|

ρTF(y)5/3 dy ≤ (Const.)|x|−7,

which holds for all x by the Sommerfeld estimate Theorem 5.2 and the TF
equation (6). Hence using Hölder’s inequality we have∣∣∣∣∣∣∣

∫
D<|y|<|x|

(ρTF(y) − ρHF(y))
|x − y| dy

∣∣∣∣∣∣∣ ≤ (Const.)D−21/5

(∫
|x−y|<D

|x − y|−5/2dy

)2/5

+D−1
∫
|y|>D

(ρTF(y) + ρHF(y)) dy.

By Lemma 10.5 and the bound
∫
|y|>D

ρTF(y) dy ≤ (Const.)D−3, which is again
a consequence of the Sommerfeld estimate Theorem 5.2 and the TF equation
(6), we see that this last expression is bounded by a universal constant.

Since ΦHF

D (x)−ΦTF

D (x) is harmonic for |x| > D and tends to zero at infinity
we have for all |x| > D that∣∣∣ΦHF

D (x) − ΦTF

D (x)
∣∣∣ ≤ sup

|z|=D

∣∣∣ΦHF

D (z) − ΦTF

D (z)
∣∣∣ ≤ σD−4+ε′ ,

which is also bounded by a universal constant. Thus (84) holds for all x.

11. Control of the region close to the nucleus: proof of Lemma 10.2

In order to prove Lemma 10.2 we need some basic estimates.

Lemma 11.1 (Global L5/3 and Coulomb norm estimates). For all N and
Z we have the bound

(90)
∫
R3

ρHF(y)5/3dy ≤ (Const.)Z7/3.

Moreover, if Z ≥ 1

(91) ‖ρHF − ρTF‖2
C ≤ (Const.)Z7(1−ε3)/3,

with ε3 := 2/77.

Proof. Although we shall only use this result for N ≥ Z the proof is
almost as easy without this restriction, so we treat the more general case here.

We first estimate the L5/3 norm of ρHF. It is easy to see that EHF(γHF) ≤ 0.
Thus since D(γHF) − EX(γHF) ≥ 0 we have from the Lieb-Thirring inequality
(21) that

0 ≥ EHF(γHF) ≥ Tr
[(
−1

2∆ − Z|y|−1
)

γHF
]

≥
∫ (

K1ρ
HF(y)5/3 − Z|y|−1ρHF(y)

)
dy.
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If we use that
∫

ρHF = N and the inequality ab ≤ 3
5a5/3 + 2

5b5/2 we get for all
δ > 0 and all r > 0,

0 ≥
∫

(K1 − 3
5δ5/3)ρHF(y)5/3dy − 2

5

∫
|y|<r

(δ−1Z|y|−1)5/2dy − NZr−1.

Choosing δ5/3 = 5K1/6 and optimizing in r gives
∫

(ρHF)5/3 ≤ (Const.)N1/3Z2.
If we use that, since there exists an HF minimizer with particle number N , we
must have Lieb’s bound N ≤ 2Z + 1 (see Theorem 3.5) we arrive at (90).

We turn to the proof of (91). We rewrite the Hartree-Fock functional (26)
as

(92) EHF(γ) = Tr
[(
−1

2∆ − ϕTF
)

γ
]
+ ‖ρTF − ργ‖2

C − D(ρTF, ρTF) − EX(γ),

where we have used the definition ϕTF(y) = Z|y|−1 − ρTF ∗ |y|−1 and

Tr
[
(ρTF ∗ |y|−1)γ

]
= 2D(ρTF, ργ) = D(γ) + D(ρTF, ρTF) − ‖ρTF − ργ‖2

C.

From the semiclassical estimate (69) and the fact that, when γ is a density
matrix with Tr[γ] = N and h is a self-adjoint operator, then Tr[hγ] is an upper
bound on the sum of the N lowest eigenvalues of h, we find

Tr
[(
−1

2∆ − ϕTF + µTF
)

γHF
]

≥ −25/2(15π2)−1(1 − δ)−3/2
∫

[ϕTF − µTF]5/2
+

− 1
2π2s−2N − 2L1δ

−3/2

∥∥∥∥[
ϕTF − ϕTF ∗ g2

]
+

∥∥∥∥ 5
2

5
2

,

for all 0 < δ < 1 and all s > 0. Recall that the function g was given in
Definition 8.1. Here we have used the semiclassical estimate for the space
L2(R3;C2). The estimate above therefore has an extra factor of 2 in the first
and the last term compared to (69). Thus

EHF(γHF) ≥ −25/2(15π2)−1(1 − δ)−3/2
∫

[ϕTF − µTF]5/2
+ − µTFN − D(ρTF, ρTF)

+ ‖ρTF − ρHF‖2
C − 1

2π2s−2N − 2L1δ
−3/2

∥∥∥∥[
ϕTF − ϕTF ∗ g2

]
+

∥∥∥∥5/2

5/2
− EX(γHF).

Since |y|−1 − g2 ∗ |y|−1 ≥ 0 (because the function |y|−1 is superharmonic)
we have∥∥∥∥[

ϕTF − ϕTF ∗ g2
]
+

∥∥∥∥5/2

5/2
≤ Z5/2

∥∥∥|y|−1 − g2 ∗ |y|−1
∥∥∥5/2

5/2
≤ 8πZ5/2s1/2,

where we have used that |y|−1 − g2 ∗ |y|−1 is nonnegative, bounded by |y|−1,
and vanishes for |y| > s. If we insert this above and optimize in s we obtain
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(93)

EHF(γHF) ≥ −25/2(15π2)−1(1 − δ)−3/2
∫

[ϕTF − µTF]5/2
+ −µTFN−D(ρTF, ρTF)

+ ‖ρTF − ρHF‖2
C − (Const.)δ−6/5N1/5Z2 − EX(γHF).

We choose δ := 1
2Z−2/33 (this is not optimal). Then for Z ≥ 1 we have δ ≤ 1/2

and thus (1 − δ)−2/3 ≤ 1 + (25/2 − 2)δ. Hence

EHF(γHF) ≥ −25/2(15π2)−1
∫

[ϕTF − µTF]5/2
+ − µTFN − D(ρTF, ρTF)(94)

+‖ρTF − ρHF‖2
C − (Const.)Z7/3−2/33 − EX(γHF),

where we have again used N ≤ 2Z + 1 and the fact that by (90) we have

25/2(15π2)−1
∫

[ϕTF − µTF]5/2
+ = 2

3

[
(3π2)2/3 3

10

∫
(ρTF)5/3

]
≤ (Const.)Z7/3.

On the other hand, since γHF minimizes EHF among all density matrices γ

with Tr[γ] ≤ N , we can find an upper bound to EHF(γHF) by choosing an appro-
priate trial density matrix. We choose as trial matrix γ an operator which acts
identically on the two spin components. On each spin component we choose
it to be the density matrix constructed in Lemma 8.2 satisfying (70) with
V = ϕTF−µTF. Note that the Thomas-Fermi equation (6) and the properties of
γ stated in Lemma 8.2 imply that ργ = 25/2(6π2)−1 [ϕTF − µTF]3/2

+ ∗g2 = ρTF∗g2

(the extra factor of 2 compared to Lemma 8.2 is of course due to the spin de-
generacy). Thus Tr[γ] =

∫
ρTF ≤ N .

From (26) and (70) we find, since EX(γ) ≥ 0, that

EHF(γ) ≤ 23/2(5π2)−1
∫

[ϕTF − µTF]5/2
+ +1

2π2s−2N−
∫

Z|y|−1ργ(y)dy+D(ργ , ργ).

Since
∫ ∫

g(x−z)2|z−w|−1g(y−w)2dw dz ≤ |x−y|−1 we see that D(ργ , ργ) ≤
D(ρTF, ρTF). Thus from the definition (2) of ϕTF we can write

EHF(γ) ≤ 23/2(5π2)−1
∫

[ϕTF − µTF]5/2
+ −

∫
[ϕTF(y) − µTF] ρTF(y)dy − µTFN

− D(ρTF, ρTF) + 1
2π2s−2N +

∫
Z

(
|y|−1 − g2 ∗ |y|−1

)
ρTF(y)dy.

If we use the TF equation (6), the estimate ρTF(y) ≤ 23/2(3π2)−1Z3/2|y|−3/2

which follows from the TF equation, and again the facts that |y|−1 − g2 ∗ |y|−1

is nonnegative, bounded by |y|−1, and vanishes for |y| > s, we obtain after
optimizing in s

EHF(γ) ≤ −25/2(15π2)−1
∫

[ϕTF − µTF]5/2
+ − µTFN − D(ρTF, ρTF)(95)

+ (Const.)N1/5Z2.
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Comparing (94) and (95) and recalling that EHF(γ) ≥ EHF(γHF) we get
that

‖ρTF − ρHF‖2
C ≤ (Const.)Z7/3−2/15 + (Const.)Z7/3−2/33 + EX(γHF).

If we finally use the exchange inequality in Theorem 6.4 and the estimate (90)
we see that

EX(γHF) ≤ 1.68
(∫

(ρHF)5/3
)1/2 (∫

(ρHF)
)1/2

≤ (Const.)N1/2Z7/6.

Inserting this above and again using N ≤ 2Z + 1 we arrive at (91).

End of proof of Lemma 10.2. We write

ΦHF

|x|(x) − ΦTF

|x|(x) =
∫
|y|<|x|

[ρTF(y) − ρHF(y)] |x − y|−1dy.

Using the Coulomb norm estimate (83) we find∣∣∣ΦHF

|x|(x) − ΦTF

|x|(x)
∣∣∣ ≤ 27/5π2/5(κ|x|)1/5 max

{
‖ρTF‖L5/3(R3), ‖ρHF‖L5/3(R3)

}
+ 23/2κ−1|x|−1/2‖ρHF − ρTF‖C.

Thus from Lemma 11.1 and the fact that
∫

(ρTF)5/3 ≤ (Const.)Z7/3 (which can
be seen for instance from the Sommerfeld estimate Theorem 5.2 together with
the TF equation (6)) we obtain∣∣∣ΦHF

|x|(x) − ΦTF

|x|(x)
∣∣∣ ≤ (Const.)(κ|x|)1/5Z7/5 + (Const.)κ−1|x|−1/2Z7(1−ε3)/6

= (Const.)|x|1/12Z7/6+7(1−ε3)/36,

where the last equality above follows from choosing the optimal value for κ.
Hence if |x| ≤ βZ−1/3 we have∣∣∣ΦHF

|x|(x) − ΦTF

|x|(x)
∣∣∣ ≤ AΦβ49/12−7ε3/12|x|−4+7ε3/12.

The lemma follows since 7ε3/12 = 1/66.

12. Proof of the iterative step Lemma 10.3 and of Lemma 10.4

We begin by fixing some 0 < r such that (85) holds for all |x| ≤ r.
We shall proceed as for the region close to the nucleus, but instead of

directly comparing HF and TF. We shall introduce an intermediate TF theory.
Namely, the TF theory defined as in Definition 4.1 from the functional EOTF

r :=
ETF

Vr
with the exterior potential V = Vr given by

Vr(y) := χ
+
r (y)ΦHF

r (y) =

{
0, if |y| < r

ΦHF

r (y), if |y| ≥ r.
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Here again χ
+
r = 1 − χr is the characteristic function of the set {x : |x| ≥ r}.

Note that this potential is harmonic and continuous on |x| > r. Let ρOTF

r

denote the minimizer for the TF functional, EOTF

r (ρ), under the constraint∫
ρ ≤

∫
ρHFχ

+
r . Denote the corresponding TF potential by

ϕOTF

r (y) := Vr(y) − ρOTF

r ∗ |y|−1

and the corresponding chemical potential by µOTF

r . We shall prove below (see
Lemma 12.4) that if r is chosen appropriately then µOTF

r = 0.
Note that according to the Thomas-Fermi equation (33), ρOTF

r has support
on the set {y : |y| ≥ r}. Since Vr on the support of ρOTF

r is the potential
coming from the true HF density for |y| < r we may interpret ρOTF

r as the
TF approximation for only the outside region, i.e., |y| > r, of the atom. The
notation OTF refers to Outside TF.

Lemma 12.1 (Preliminary bounds on TF and OTF functions). Assume
that N ≥ Z then for all y

ϕTF(y) ≤ 342−3π2|y|−4 and ρTF(y) ≤ 352−3π|y|−6.

For all |y| ≥ β0Z
−1/3 we have

ϕTF(y) ≥ (Const.)|y|−4 and ρTF(y) ≥ (Const.)|y|−6.

Given ε′, σ > 0, and r > 0 such that (85) holds for all |x| ≤ r and σrε′ ≤ 1
then for all |y| ≥ r we have

ρOTF

r (y) ≤ (Const.)r−6 and ϕOTF

r (y) ≤ |Vr(y)| = |ΦHF

r (y)| ≤ (Const.)r−4.

Proof. The upper bounds on the TF functions follow immediately from
the Atomic Sommerfeld estimate Theorem 5.2) and the TF equation (6) if we
recall that µTF = 0. The lower bounds follow from Theorem 5.4.

Since ΦHF

r is harmonic on the set {|y| > r} and tends to zero at infinity it
follows from the assumptions on ε′, σ, r that for all |y| ≥ r we have

|ΦHF

r (y)| ≤ sup
|z|=r

|ΦHF

r (z)| ≤ (Const.)r−4,

where in the last inequality we have used the iterative assumption (85) and
Lemma 5.5 for the case µTF = 0 and the fact that ΦTF

r ≥ ϕTF ≥ 0 (see e.g.,
Theorem 5.4). The inequality ϕOTF

r (y) ≤ |Vr(y)| is trivial from the definition
of ϕOTF

r .
Finally, from the TF equation (33) we conclude that for all |y| ≥ r

ρOTF

r (y) ≤ (Const.)Vr(y)3/2 ≤ (Const.)r−6.
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Lemma 12.2 (Preliminary comparison of HF and TF).Assume that N ≥ Z.
Given ε′, σ > 0, and r > 0 such that (85) holds for all |x| ≤ r then

(96)
∫

χ
+
r (ρTF − ρHF) ≤ σr−3+ε′ .

Proof. We have∫
|y|<r

(ρTF(y) − ρHF(y)) dy = (4π)−1r

∫
S2

(
ΦHF

r (rω) − ΦTF

r (rω)
)

dω

where dω denotes the surface measure of the unit sphere S2. Thus according
to (85) we have ∣∣∣∣∣

∫
|y|<r

(ρTF(y) − ρHF(y)) dy

∣∣∣∣∣ ≤ σr−3+ε′ .

Since
∫

ρTF ≤ N =
∫

ρHF we have∫ (
χ

+
r ρTF − χ

+
r ρHF

)
≤

∫
|y|<r

(ρHF(y) − ρTF(y)) dy ≤ σr−3+ε′ .

For |x| > r we may write

(97) ΦHF

|x|(x) − ΦTF

|x|(x) = A1(r, x) + A2(r, x) + A3(r, x),

where

A1(r, x) = ϕOTF

r (x) − ϕTF(x),(98)

A2(r, x) =
∫
|y|>|x|

[ρOTF

r (y) − ρTF(y)] |x − y|−1dy,(99)

A3(r, x) =
∫

r<|y|<|x|
[ρOTF

r (y) − ρHF(y)] |x − y|−1dy.(100)

We turn first to estimating A1 and A2. Thus we need to control the
difference between the full TF approximation and the TF approximation for
the outside region. Our strategy is to first prove that ϕOTF

r (x) and ϕTF(x)
are close on the set {|x| = r}. An application of the Sommerfeld estimates in
Theorem 4.6 will then give excellent control on the difference ϕOTF

r (x)−ϕTF(x)
for all |x| > r. Controlling the behavior on the set {|x| = r} is difficult and we
begin with a weak estimate on the difference between ρOTF

r and ρTF. In fact,
we first estimate the difference in Coulomb norm.

Lemma 12.3 (Coulomb norm comparison of TF and OTF).Assume N ≥Z.
Given constants ε′, σ > 0 there exists a constant D > 0 depending only on ε′, σ
such that for all r with β0Z

−1/3 ≤ r ≤ D for which (85) holds for all |x| ≤ r

we have

(101) ‖ρOTF

r − χ
+
r ρTF‖2

C ≤ (Const.)σr−7+ε′ .
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Here again χ
+
r denotes the characteristic function of the set {y : |y| ≥ r}.

Moreover,

(102) µOTF

r ≤ (Const.)σ1/2r−4+ ε′
2 .

Proof. To prove this we make a perturbation analysis of the TF functional.
We introduce the perturbation potential

(103) W (x) = ΦHF

r (x) − ΦTF

r (x).

Then for all |x| > r

ΦTF

r (x) = Vr(x) − W (x).

Note that W is harmonic for |x| > r and tends to zero at infinity. Hence, since
we assume that the iterative assumption (85) holds for |x| = r, we have

(104) sup
|x|≥r

|W (x)| = sup
|x|=r

|W (x)| ≤ σr−4+ε′ .

We claim that there exist two functions W1, W2 with supp W1 ⊂ {x : |x| < 3r}
and supp W2 ⊂ {x : |x| > 2r} such that W (x) = W1(x) + W2(x) and

sup
|x|≥r

|W1(x)| ≤ sup
|x|=r

|W (x)| ≤ σr−4+ε′(105) ∫
|∇W2|2 ≤ 4πr sup

|x|=r
|W (x)|2 ≤ 4πσ2r−7+2ε′ .(106)

In order to prove this we let

F (x) =


0 if |x| < 2r

(|x| − 2r)r−1, if 2r ≤ |x| ≤ 3r

1 if |x| > 3r.

Set W1(x) = (1−F (x))W (x) and W2(x) = F (x)W (x). The first estimate (105)
follows immediately from (104). By a simple integration by parts, similar to the
one used to prove the IMS formula (19), we obtain (note that W (x) behaves like
c|x|−1 and |∇W (x)| behaves like c|x|−2 at infinity so there are no contributions
from infinity to the integration by parts)∫

|∇W2|2 =
∫

|∇F |2|W |2 −
∫

|F |2W∆W =
∫

|∇F |2|W |2

≤ sup
|x|≥r

|W (x)|2
∫
2r≤|x|≤3r

r−2dx = 4πr sup
|x|≥r

|W (x)|2,

where the second equality follows since W is harmonic on the support of F .
The estimate (105) now also follows from (104).

We are now ready to estimate the TF densities. We shall use χ
+
r χRρTF

for some R ≥ r (possibly R is infinity) as a trial density in EOTF

r .
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Since ρOTF

r minimizes EOTF

r (ρ) + µOTF

r

∫
ρ and µOTF

r = 0 unless
∫

ρOTF

r =∫
χ

+
r ρHF we have

(107) µOTF

r

(∫
χ

+
r ρHF −

∫
χ

+
r χRρTF

)
≤ EOTF

r

(
χ

+
r χRρTF

)
− EOTF

r (ρOTF

r ) .

We write the right side as

(108)

EOTF

r

(
χ

+
r χRρTF

)
− EOTF

r (ρOTF

r ) = EOTF

r

(
χ

+
r χRρTF

)
− EOTF

r

(
χ

+
r ρTF

)
+ EOTF

r

(
χ

+
r ρTF

)
− EOTF

r (ρOTF

r ) .

We have for the first two terms

EOTF

r

(
χ

+
r χRρTF

)
− EOTF

r

(
χ

+
r ρTF

)
(109)

=
∫

ϕTFρTFχ
+

R + ‖χ+

R
ρTF‖2

C

+
∫ (

ΦHF

r − ΦTF

r

)
χ

+

R
ρTF − 3

10(3π2)2/3
∫

χ
+

R(ρTF)5/3

≤
∫

ϕTFρTFχ
+

R + ‖χ+

R
ρTF‖2

C + σr−4+ε′
∫

χ
+

R
ρTF,

where we have used (104). For the last two terms in (108) we find

(110)

EOTF

r (χ
+
r ρTF) − EOTF

r (ρOTF

r ) =
∫

W (ρOTF

r − χ
+
r ρTF) − ‖ρOTF

r − χ
+
r ρTF‖2

C

+
∫
|y|≥r

([
3
10(3π2)2/3ρTF(y)5/3 − ϕTF(y)ρTF(y)

]
−

[
3
10(3π2)2/3ρOTF

r (y)5/3 − ϕTF(y)ρOTF

r (y)
])

dy.

Using that ρTF satisfies the TF equation (6) and that µTF = 0 we see that for
fixed y the expression

3
10(3π2)2/3t5/3 − ϕTF(y)t, t ≥ 0

takes its minimal value for t = ρTF(y). Hence we conclude that the last integral
above is negative. Thus combining (107)–(110) we have

µOTF

r

(∫
χ

+
r ρHF −

∫
χ

+
r χRρTF

)
≤

∫
W (ρOTF

r − χ
+
r ρTF) − ‖ρOTF

r − χ
+
r ρTF‖2

C

+
∫

ϕTFρTFχ
+

R + ‖χ+

R
ρTF‖2

C + σr−4+ε′
∫

χ
+

R
ρTF.

Lemma 12.1 implies that
∫

ϕTFρTFχ
+

R, ‖χ+

R
ρTF‖2

C ≤ (Const.)R−4
∫

χ
+

R
ρTF. We

thus arrive at
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(111)

µOTF

r

(∫
χ

+
r ρHF −

∫
χ

+
r χRρTF

)
≤

∫
W (ρOTF

r − χ
+
r ρTF) − ‖ρOTF

r − χ
+
r ρTF‖2

C

+
(
(Const.)R−4 + σr−4+ε′

) ∫
ρTFχ

+

R.

This is the main estimate from which we shall derive the estimates of the
lemma. We shall do this by choosing different values for R. One for the
estimate (101) another for (102). We shall choose R such that

(112)
∫

χ
+
r χRρTF ≤

∫
χ

+
r ρHF.

Let Rmax denote the largest possible R for which this holds. Then

(113)
∫

χ
+

Rmax
ρTF =

(∫
χ

+
r ρTF −

∫
χ

+
r ρHF

)
+
≤ σr−3+ε′ ,

where the last inequality follows from Lemma 12.2. By Lemma 12.1 we have
for all R ≥ r ≥ β0Z

−1/3 that

(114)
∫

χ
+

R
ρTF ≥ (Const.)R−3.

We shall now make the assumption that D is chosen so small that if r ≤ D

then σrε′ ≤ 1. Thus from (113) and (114) we conclude that

(115) R−4
max ≤ (Const.)σ4/3r−4+ 4

3
ε′ ≤ (Const.)r−4.

From (113) and (111) with R = Rmax we get, again using the above assumption
on D, that

(116) ‖ρOTF

r − χ
+
r ρTF‖2

C ≤
∫

W (ρOTF

r − χ
+
r ρTF) + (Const.)σr−7+ε′ .

We estimate the integral on the right by dividing it in two parts∫
W (ρOTF

r − χ
+
r ρTF) ≤

∫
|W1|(ρOTF

r + χ
+
r ρTF) +

∫
W2(ρOTF

r − χ
+
r ρTF)

≤ σr−4+ε′
∫

r<|x|<3r
ρOTF

r (x) + χ
+
r (x)ρTF(x)dx +

∫
W2(ρOTF

r − χ
+
r ρTF),

where we have also used (105). From Lemma 12.1 we arrive at

(117)
∫

W (ρOTF

r − χ
+
r ρTF) ≤ (Const.)σr−7+ε′ +

∫
W2(ρOTF

r − χ
+
r ρTF).

The last term in this estimate we now control using the Coulomb norm estimate
Lemma 9.2. Note that ρTF and ρOTF

r both belong to L6/5 since they are in
L5/3 ∩ L1. We find from (106) that

(118)
∫

W2(ρOTF

r − χ
+
r ρTF) ≤ (Const.)σr−

7
2
+ε′‖ρOTF

r − χ
+
r ρTF‖C.
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Inserting the last two estimates into (116) gives (recall that σrε′ ≤ 1)

‖ρOTF

r − χ
+
r ρTF‖2

C ≤ (Const.)σr−7+ε′ + (Const.)
(
σr−7+ε′

)1/2
‖ρOTF

r − χ
+
r ρTF‖C

and (101) follows immediately from this.
We now return to (111) and make a new choice for R. It follows from the

first inequality in (115) that that we can find R with R ≤ Rmax satisfying

R−4 = (Const.)σ1/2r−4+ε′/2.

Note that, since
R−4 ≤ (Const.)σ1/2Dε′/2r−4,

we can choose D small enough to ensure that r ≤ R. From (114) we have

(119)
∫

χ
+

R
ρTF ≥ (Const.)σ3/8r−3+ 3

8
ε′ .

It follows from (113) and (114) that we may assume that the constant in the
definition of R is chosen such as to ensure that

∫
χ

+

R
ρTF ≥ 2

∫
χ

+

Rmax
ρTF. Thus

since (see (113))∫
χ

+
r ρHF −

∫
χ

+
r χRρTF ≥ −

∫
χ

+

Rmax
ρTF +

∫
χ

+

R
ρTF

we have
1
2

∫
χ

+

R
ρTF ≤

∫
χ

+
r ρHF −

∫
χ

+
r χRρTF.

Thus from (119), (117), (118), (101), and (111) we conclude (102).

Using these fairly weak estimates we shall now show that the outside TF
potential and density satisfy Sommerfeld type estimates.

Lemma 12.4 (Sommerfeld estimates for OTF). Assume N ≥ Z. Given
constants ε′, σ > 0 there exists a constant D > 0 depending only on ε′, σ such
that for all r with β0Z

−1/3 ≤ r ≤ D for which (85) holds for all |x| ≤ r then
µOTF

r = 0 and for all |x| ≥ r we have

ϕOTF

r (x) ≤ 342−3π2|x|−4
(
1 + Arζ |x|−ζ

)
(120)

and
ϕOTF

r (x) ≥ 342−3π2|x|−4
(
1 + arζ |x|−ζ

)−2
,(121)

where a and A are universal constants (but not necessarily positive) and a >

−1. Here as before ζ = (−7 +
√

73)/2 ≈ 0.77.

Proof. Note first that the potential Vr satisfies the assumptions in Theo-
rem 4.6 with R = r. Hence if we can show that µOTF

r < inf |x|=r ϕOTF

r (x) the
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potential ϕOTF

r will satisfy the Sommerfeld estimates described in the theorem.
In order to control ϕOTF

r (x) for |x| = r we note that for all |x| ≥ r we have

(122) ϕOTF

r (x) = ϕTF(x) +
(
χ

+
r ρTF − ρOTF

r

)
∗ |x|−1 + W (x),

where as in (103), W = ΦHF

r − ΦTF

r . According to the Coulomb norm Corol-
lary 9.3 we get for all s > 0 that∣∣∣(χ

+
r ρTF − ρOTF

r

)
∗ |x|−1

∣∣∣
≤ (Const.)s1/5 max{‖χ+

r ρTF‖L5/3(B(x,s)), ‖ρOTF

r ‖L5/3(B(x,s))}

+ (Const.)s−1/2‖χ+
r ρTF − ρOTF

r ‖C.

From Lemma 12.1 we see that

max{‖χ+
r ρTF‖L5/3(B(x,s)), ‖ρOTF

r ‖L5/3(B(x,s))} ≤ (Const.)r−6s9/5,

where we have assumed that D is such that σrε′ ≤ 1. Inserting this and the
estimate (101) from Lemma 12.3 above we obtain that for all |x| ≥ r

(123)∣∣∣(χ
+
r ρTF − ρOTF

r

)
∗ |x|−1

∣∣∣ ≤ (Const.)r−6s2 + (Const.)s−1/2
(
σr−7+ε′

)1/2

= (Const.)σ2/5r−4+2ε′/5

where we have optimized in s in order to get the last expression. Thus from
(122), the iterative assumption (85), and Lemma 12.1 we obtain

inf
|x|=r

ϕOTF

r (x) ≥ inf
|x|=r

ϕTF(x) − (Const.)σ2/5r−4+2ε′/5

≥ (Const.)r−4 − (Const.)σ2/5r−4+2ε′/5.

We have used that since σrε′ ≤ 1 the error from (123) is worse than the error
from (85). Note that the constant in front of r−4 above is positive.

From Lemma 12.3 we know that µOTF

r ≤ (Const.)σ1/2r−4+ε′/2 Hence we
may choose D such that µOTF

r < inf |x|=r ϕOTF

r (x).
As above we of course also have

sup
|x|=r

ϕOTF

r (x) ≤ (Const.)r−4 + (Const.)σ2/5r−4+2ε′/5.

Thus (Const.)r−4 ≤ inf |x|=r ϕOTF

r (x) ≤ sup|x|=r ϕOTF

r (x) ≤ (Const.)r−4.
That µOTF

r = 0 follows from Corollary 4.7 as follows. By harmonicity of
Vr we have

lim
r′→∞

(4π)−1
∫
S2

r′Vr(r′ω)dω = (4π)−1
∫
S2

rΦHF

r (rω)dω = Z −
∫

χrρ
HF.
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Thus from Corollary 4.7 we have if µOTF

r �= 0, i.e., if
∫

ρOTF

r =
∫

χ
+
r ρHF that

0 < (µOTF

r )3/4 ≤ (Const.)
(

Z −
∫

χrρ
HF −

∫
ρOTF

r

)
= (Const.)(Z −

∫
ρHF),

which is a contradiction since
∫

ρHF = N ≥ Z.
The estimates (120) and (121) now follow from Theorem 4.6.

We are now ready to give the bounds on A1 and A2 defined in (98)
and (99).

Lemma 12.5 (Control of A1 and A2). Assume N ≥ Z. Given constants
ε′, σ > 0 there exists a constant D > 0 depending only on ε′, σ such that for
all r with β0Z

−1/3 ≤ r ≤ D for which (85) holds for all |x| ≤ r we have for all
|x| ≥ r that

(124) |A1(r, x)| ≤ (Const.)rζ |x|−4−ζ

and

(125) |A2(r, x)| ≤ (Const.)rζ |x|−4−ζ ,

with ζ = (−7 +
√

73)/2 ≈ 0.77.

Proof. Combining Theorems 5.2, 5.4, with Lemma 12.4 and recalling that
µTF = 0 immediately gives the bound on A1.

If we use the TF equation (33) we obtain from Lemma 12.4 that for all
|y| ≥ r ∣∣∣ρOTF

r (y) − 352−3π|y|−6
∣∣∣ ≤ (Const.)rζ |y|−6−ζ .

Of course we similarly have from Theorems 5.2, 5.4, and the TF equation (6)
that

ρTF(y) ≤ 352−3π|y|−6

and
ρTF(y) ≥ 352−3π|y|−6 − (Const.)Z−ζ/3|y|−6−ζ .

Since r ≥ β0Z
−1/3 we conclude that for all |y| > r

(126) |ρTF(y) − ρOTF

r (y)| ≤ (Const.)rζ |y|−6−ζ .

Thus
|A2| ≤ (Const.)

∫
|y|>|x|

rζ |y|−7−ζ dy

which gives the bound in (125).

We turn now to estimating A3. This requires estimating the difference
between ρOTF

r and ρHF. We again begin by estimating this difference in the
Coulomb norm. More precisely, we estimate in Coulomb norm the difference
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between the “outside” TF density ρOTF

r and the “outside” HF density χ
+
r ρHF

r .
This is done through a semiclassical analysis of the exterior region {|x| > r}.

Lemma 12.6 (Coulomb norm comparison of HF and OTF).Assume N ≥Z.
Given constants ε′, σ > 0 there exists a constant D > 0 depending only on ε′, σ
such that for all r with β0Z

−1/3 ≤ r ≤ D for which (85) holds for all |x| ≤ r

we have

(127) ‖ρOTF

r − χ
+
r ρHF‖C ≤ (Const.)r−

7
2
+ 1

6

and

(128)
∫ (

χ
+
r ρHF

)5/3
≤ (Const.)r−7.

Proof. Let γ be the density matrix on L2(R3;C2), but diagonal in spin,
constructed in the semiclassical approximation Lemma 8.2 for the potential
V = ϕOTF

r . Note that from Lemma 12.4 we have ϕOTF

r (y) ≥ 0 for |y| ≥ r and
from its definition ϕOTF

r (y) ≤ 0 for |y| < r. From Lemma 8.2 we have that

(129) ργ = 23/2(3π2)−1 [ϕOTF

r ]3/2
+ ∗ g2 = ρOTF

r ∗ g2,

where we have used the TF equation (33) and the fact µOTF

r = 0 proved in
Lemma 12.4. Here g was given in Definition 8.1. From Lemma 8.2 we also
have

Tr
[
−1

2∆γ
]

=
23/2

5π2

∫
[ϕOTF

r ]5/2
+ +

21/2

3
s−2

∫
[ϕOTF

r ]3/2
+(130)

≤ 3
10(3π2)2/3

∫
(ρOTF

r )5/3 + (Const.)s−2r−3.

(Note the factor of 2 in the formulas above compared to Lemma 8.2. This
is due to the fact that there was no spin in Lemma 8.2.) The last inequality
above follows from the Sommerfeld estimate for OTF given in Lemma 12.4.

According to Lemma 8.5 we may, for all 0 < λ′ < 1, choose a density
matrix γ̃ such that its density ρ

γ̃ has support in {|x| ≥ r} and such that
ρ

γ̃ ≤ ργ and

Tr
[(
−1

2∆ − Vr

)
γ̃
]

≤ Tr
[(
−1

2∆ − Vr

)
γ
]
+ (Const.)

∫
|x|≤(1−λ′)−1r

[Vr]
5/2
+

+ (Const.)(λ′r)−2
∫
|x|≤(1−λ′)−1r

ργ .

If we make the assumption that D is chosen to ensure that σrε′ ≤ 1 we may
use the estimate on Vr from Lemma 12.1 and use the same lemma to conclude
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that ργ(y) ≤ (Const.)r−6 for all y. If we recall that Vr has support for |x| ≥ r

we get that

Tr
[(
−1

2∆ − Vr

)
γ̃
]

≤ Tr
[(
−1

2∆ − Vr

)
γ
]
+ (Const.)

(
λ′r−7 + λ′−2r−5

)
= Tr

[(
−1

2∆ − Vr

)
γ
]
+ (Const.)r−7+2/3,

where we have made the choice λ′ = r2/3 and assumed that D is such that
λ′ < 1/2.

Since
∫

ρ
γ̃ ≤

∫
ργ =

∫
ρOTF

r ≤
∫

χ
+
r ρHF we see from Theorem 6.2 that in

terms of the auxiliary functional EA defined in (49)

EA [γHF

r ] ≤ EA [γ̃] + R ≤ Tr
[(
−1

2∆ − Vr

)
γ
]
+ (Const.)r−7+2/3

+ 1
2

∫ ∫
ργ(x)|x − y|−1ργ(y)dx dy + R,

where γHF

r and R were defined in (48) and (51) respectively in terms of a
parameter 0 < λ < 1 (different from the λ′ used above). We have here used
that ΦHF

r
ρ

γ̃ = Vrργ̃ , since ρ
γ̃ has support in {|x| ≥ r}, and that

1
2

∫ ∫
ρ

γ̃(x)|x − y|−1ρ
γ̃(y)dx dy ≤ 1

2

∫ ∫
ργ(x)|x − y|−1ργ(y)dx dy

since ρ
γ̃ ≤ ργ .

Since |x|−1 is superharmonic we have∫ ∫
g(x − z)2|z − w|−1g(y − w)2 dz dw ≤ |x − y|−1

and we conclude that

EA [γHF

r ] ≤ Tr
[(
−1

2∆ − Vr

)
γ
]
+ (Const.)r−7+2/3

+ 1
2

∫ ∫
ρOTF

r (x)|x − y|−1ρOTF

r (y)dx dy + R.

From (129) and (130) we find that

EA [γHF

r ] ≤ EOTF

r (ρOTF

r ) +
∫

Vr

(
ρOTF

r − ρOTF

r ∗ g2
)

+ (Const.)s−2r−3(131)

+ (Const.)r−7+2/3 + R.

We have ∫
Vr

(
ρOTF

r − ρOTF

r ∗ g2
)

=
∫ (

Vr − Vr ∗ g2
)

ρOTF

r .

Now since Vr(y) is harmonic for |y| > r we conclude that Vr ∗ g2(y) = Vr(y)
for |y| > r + s. Hence we get from Lemma 12.1 that

(132)
∫

Vr

(
ρOTF

r − ρOTF

r ∗ g2
)
≤ (Const.)r−4

∫
|y|<r+s

ρOTF

r ≤ (Const.)r−8s.
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We insert this into (131) and arrive at

(133)

EA [γHF

r ] ≤ EOTF

r (ρOTF

r ) + (Const.)(s−2r−3 + r−8s) + (Const.)r−7+2/3 + R
= EOTF

r (ρOTF

r ) + (Const.)r−7+2/3 + R,

with the choice s = r5/3.
We shall now estimate R. We shall choose the λ used to define γHF

r and
R in such a way that λ ≤ 1/2. We then see that the constant Cλ(r) in
Theorem 6.2 satisfies Cλ(r) ≤ (Const.)(λr)−2, since λ ≤ 1/2 and r ≤ 1. We see
from Lemma 10.5 that

(134)
∫
|y|>(1−λ)r

ρHF ≤ (Const.)r−3,

where we have used that r, σrε′ ≤ 1.
Moreover, from Lemma 12.1 with r replaced by (1 − λ)r we have∫

(1−λ)r<|y|<(1−λ)−1r

[
ΦHF

(1−λ)r(y)
]5/2

+
dy ≤ (Const.)r−7λ.

Hence we have

R ≤ (Const.)λ−2r−5 + (Const.)r−7λ + EX [γHF

r ] .

If we now use the exchange inequality in Theorem 6.4 and (134) we get (recall
that ρHF

r = θ2
rρ

HF is the density corresponding to γHF

r )

EX [γHF

r ] ≤ (Const.)
∫

(ρHF

r )4/3 ≤ (Const.)
(∫

ρHF

r

)1/2 (∫
(ρHF

r )5/3
)1/2

≤ (Const.)r−3/2
(
R + r−7

)1/2
,

where we have also used that according to (59) and Lemma 12.1 we have

(135)
∫

(ρHF

r )5/3 ≤ (Const.)R + (Const.)r−7.

We may therefore conclude that

(136) R ≤ (Const.)r−7(r2λ−2 + λ) + (Const.)r−5.

We may use (135) and (136) to prove (128). Recall that ρHF

r (y) = ρHF(y) if
|y| > (1 − λ)−1r. Now (128) follows if we simply observe that (135) and (136)
hold with r replaced by r/2 and λ = 1/2. We shall make a possible different
choice of λ below.
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We shall now prove a lower bound on EA
[
γHF

r

]
. We write

EA [γHF

r ] = Tr
[(
−1

2∆ − ΦHF

r

)
γHF

r

]
+ 1

2

∫ ∫
ρHF

r (x)|x − y|−1ρHF

r (y)dx dy

= Tr
[(
−1

2∆ − ΦHF

r + ρOTF

r ∗ |x|−1
)

γHF

r

]
+ ‖ρHF

r − ρOTF

r ‖2
C

−1
2

∫ ∫
ρOTF

r (x)|x − y|−1ρOTF

r (y)dx dy.

If we use that on the support of ρHF

r we have ΦHF

r = Vr we may write this as

EA [γHF

r ] = Tr
[(
−1

2∆ − ϕOTF

r

)
γHF

r

]
+ ‖ρHF

r − ρOTF

r ‖2
C(137)

−1
2

∫ ∫
ρOTF

r (x)|x − y|−1ρOTF

r (y) dx dy.

The trace may be bounded below by the sum of the first N ′ negative eigenvalues
of the operator −1

2∆ − ϕOTF

r , where N ′ is the smallest integer larger than
Tr[γHF

r ] =
∫

ρHF

r . From Lemma 8.2 (again with an extra factor of 2 due to
spin) we therefore have that for all s > 0 and all 0 < δ < 1

Tr
[(
−1

2∆ − ϕOTF

r

)
γHF

r

]
≥ − 25/2

(15π2)
(1 − δ)−3/2

∫
(ϕOTF

r )5/2
+(138)

− π2s−2
(∫

ρHF

r + 1
)

− 2L1δ
−3/2

∥∥∥∥[
ϕOTF

r − ϕOTF

r ∗ g2
]
+

∥∥∥∥5/2

5/2
.

We first estimate the last term. Since ρOTF

r ∗ |x|−1 is superharmonic we have
by the mean value property that ρOTF

r ∗ |x|−1 ≥ ρOTF

r ∗ |x|−1 ∗ g2. Thus we have

ϕOTF

r −ϕOTF

r ∗ g2 = Vr −Vr ∗ g2 + ρOTF

r ∗ |x|−1 ∗ g2 − ρOTF

r ∗ |x|−1 ≤ Vr −Vr ∗ g2.

The same argument which led to (132) gives that Vr(y)−Vr ∗ g2(y) = 0 unless
r− s ≤ |y| ≤ r + s. Since by Lemma 12.1 we have |Vr(y)| ≤ (Const.)r−4 (recall
that Vr is supported on {|y| ≥ r}) we obtain∥∥∥∥[

ϕOTF

r − ϕOTF

r ∗ g2
]
+

∥∥∥∥5/2

5/2
≤ (Const.)r−8s,

if we assume that s ≤ r. (Note that s here does not have to be chosen as in
the upper bound).

From (134) we also get that
∫

ρHF

r ≤
∫

ρHFχ
+
r ≤ (Const.)r−3.

Finally from the Sommerfeld estimate (120) and the fact that ϕOTF

r (x) is
positive only if Vr(x) > 0, i.e., only if |x| ≥ r, we find that∫

(ϕOTF

r )5/2
+ ≤ (Const.)r−7.
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We therefore see from (138) and the TF equation (33) (recall that µOTF

r = 0,
by Lemma 12.4) that if 0 < δ < 1/2 then

Tr
[(
−1

2∆ − ϕOTF

r

)
γHF

r

]
≥ 3

10(3π2)2/3
∫

(ρOTF

r )5/3 −
∫

ϕOTF

r
ρOTF

r

−(Const.)
(
δr−7 + δ−3/2r−8s

)
− (Const.)s−2r−3

= 3
10(3π2)2/3

∫
(ρOTF

r )5/3 −
∫

ϕOTF

r
ρOTF

r − (Const.)r−7+ 1
3 ,

where we have chosen δ = r−2/5s2/5 and s = r11/6, which agrees with s ≤ r.
If we insert this last estimate into (137) we obtain

EA [γHF

r ] ≥ EOTF

r (ρOTF

r ) + ‖ρHF

r − ρOTF

r ‖2
C − (Const.)r−7+ 1

3 .

If we compare this with (133) we see that

‖ρHF

r − ρOTF

r ‖2
C ≤ (Const.)r−7+ 1

3 + R.

Finally, we use the Hardy-Littlewood-Sobolev inequality (80) and (128) to
conclude that

‖χ+
r ρHF − ρHF

r ‖C

≤ (Const.)‖χ+
r ρHF − ρHF

r ‖6/5 ≤ (Const.)

(∫
r<|y|<(1−λ)−1r

ρHF(y)6/5dy

)5/6

≤ (Const.)

(∫
r<|y|

ρHF(y)5/3dy

)3/5 (∫
r<|y|<(1−λ)−1r

1dy

)7/30

≤ (Const.)λ7/30r−7/2.

We thus get from (136) that

‖χ+
r ρHF − ρOTF

r ‖C ≤ ‖χ+
r ρHF − ρHF

r ‖C + ‖ρHF

r − ρOTF

r ‖C

≤ (Const.)r−
7
2
+ 1

6 + (Const.)r−7/2(rλ−1 + λ1/2 + λ7/30)

which gives (127) if we choose λ = min{1/2, r5/7}.

We may now estimate A3 defined in (100).

Lemma 12.7 (Controlling A3). Assume N ≥ Z. Given constants ε′, σ >0
there exists a constant D > 0 depending only on ε′, σ such that for all r with
β0Z

−1/3 ≤ r ≤ D for which (85) holds for all |x| ≤ r we have for all |x| ≥ r

that

(139) |A3(r, x)| ≤ (Const.)(|x|/r)1/12r−4+ 1
36 .
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Proof. We shall use the Coulomb norm estimate (83) with f = ρOTF

r −
χ

+
r ρHF. We then immediately see from Lemma 12.6, and the fact, which follows

from Lemma 12.4 and the TF equation (33), that ρOTF

r (y) ≤ (Const.)|y|−6 , that

|A3(r, x)| ≤ (Const.)(κ|x|)1/5r−21/5 + (Const.)κ−1|x|−1/2r−
7
2
+ 1

6 .

This gives (139) if we choose κ = (Const.)(r/|x|)7/12r
5
36 .

End of proof of Lemma 10.4. For |x| ≥ β0Z
−1/3 the estimate in (87)

follows from (128). For |x| ≤ β0Z
−1/3 we get from (90) that∫

|y|>|x|
ρHF(y)5/3 dy ≤

∫
R3

ρHF(y)5/3 dy ≤ (Const.)Z7/3 ≤ (Const.)|x|−7.

End of proof of the iterative Lemma 10.3. Let D > 0 depending on σ, ε′

be the smaller of the values D occurring in Lemmas 12.5 and 12.7. We may
without loss of generality assume that D ≤ 1.

Given δ > 0. We consider R0 < D satisfying β0Z
−1/3 ≤ R1+δ

0 and we
assume that (85) holds for all |x| ≤ R0.

Set R′
0 = R1−δ

0 and r = R1+δ
0 . Then we have β0Z

−1/3 ≤ r ≤ R0 < D and
we can therefore apply Lemmas 12.5 and 12.7. Moreover R′

0 > R0. In order
to prove (86) for R0 < |x| < R′

0 we use (97) and Lemmas 12.5 and 12.7. We
obtain that for all |x| ≥ r∣∣∣ΦHF

|x|(x) − ΦTF

|x|(x)
∣∣∣ ≤ (Const.) (r/|x|)ζ |x|−4 + (Const.) (|x|/r)1/12 r−4+ 1

36 .

Moreover, for all R0 < |x| < R′
0 we have

|x|
2δ

1−δ ≤ r

|x| ≤ |x|δ

and thus ∣∣∣ΦHF

|x|(x) − ΦTF

|x|(x)
∣∣∣ ≤ (Const.)

(
|x|−4+ζδ + |x|−4+ 1

36
− 73δ

9(1−δ)

)
.

It follows that if δ is small enough there exist ε, C ′
Φ > 0 such that (86) is

satisfied.

13. Proving the main results Theorems 1.4, 1.5, 3.6, and 3.8

The main result Theorem 3.6 on the maximal number of electrons N is
a simple consequence of Lemma 10.5 and Theorem 10.1.

Proof of Theorem 3.6. We may of course assume that N ≥ Z and that
Z ≥ 1 (otherwise the result follows from Lieb’s bound Theorem 3.5). Then∫

ρTF = Z. We can then use Lemma 10.5 with R chosen so small that CM ≤



THE IONIZATION CONJECTURE IN HARTREE-FOCK THEORY 571

CΦR−4+ε, because then (85) holds with σ = 2CΦ and ε′ = ε. We conclude
from Lemma 10.5 that∫

ρHF ≤
∫
|x|<R

ρTF(x) dx+σR−3+ε′+(Const.)(1+σRε′)(1+R−3) ≤ Z+(Const.),

since now R, σ, and ε′ are universal constants. We have thus concluded the
result of Theorem 3.6.

The asymptotics of the radius of an infinite atom given in Theorem 1.5 is
a simple consequence of the main estimate Theorem 10.1 and the Sommerfeld
asymptotics.

Proof of Theorem 1.5. Note that in the neutral case N = Z we have from
the main estimate Theorem 10.1 that∣∣∣∣∣

∫
|x|>R

ρTF(x) − ρHF(x) dx

∣∣∣∣∣ =

∣∣∣∣∣
∫
|x|<R

ρHF(x) − ρTF(x) dx

∣∣∣∣∣
=

∣∣∣∣(4π)−1R

∫
S2

ΦTF

R (Rω) − ΦHF

R (Rω) dω

∣∣∣∣
≤ CΦR−3+ε + CMR.

Theorem 1.5 now easily follows from TF equation (6) and the Sommerfeld laws
Theorem 5.2 and 5.4 for the case N = Z, i.e., µTF = 0.

The potential estimate in Theorem 1.4 is somewhat more difficult to prove.

Proof of Theorem 1.4. As in the proof of the main estimate Theorem 10.1
we separately treat small |x|, intermediate |x|, and large |x|.

We first consider small |x|. Note that

ϕHF(x) − ϕTF(x) =
∫

(ρTF(y) − ρHF(y)) |x − y|−1dy.

Thus using the Coulomb norm estimate (82) we obtain∣∣∣∣∫ (ρTF(y) − ρHF(y)) |x − y|−1dy

∣∣∣∣
≤ (Const.)s1/5 max

{
‖ρTF‖L5/3(B(x,s)), ‖ρHF‖L5/3(B(x,s))

}
+(Const.)s−1/2‖ (ρTF − ρHF) ‖C.

If we use Lemma 11.1 and optimize in s we arrive at

(140) |ϕHF(x) − ϕTF(x)| ≤ (Const.)Z4/3−ε3 ≤ (Const.)|x|−4+3ε3−4δ+3δε3

for some universal ε3, if |x|1+δ < β0Z
−1/3.

We now turn to intermediate |x|. We shall choose a D > 0 such that, with
the notation of Theorem 10.1, we have CM ≤ CΦD−4+ε. Then by Theorem 10.1
we have that (85) holds for all |x| ≤ D with σ = 2CΦ and ε′ = ε. We may now
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assume that D ≤ 1 and that D is smaller than the values for D in Lemmas 12.5
and 12.6 corresponding to the above choices of σ and ε′.

Consider
(β0Z

−1/3)
1

1+δ ≤ |x| < D
1

1+δ .

Set r = |x|1+δ. Then |x| ≥ r and β0Z
−1/3 ≤ r ≤ D. We shall use the notation

from Section 12. We write

ϕHF(x) − ϕTF(x) = ϕHF(x) − ϕOTF

r (x) + ϕOTF

r (x) − ϕTF(x).

The difference between the last two terms was defined in (98) to be A1(r, x)
and this was estimated in Lemma 12.5.

We have

ϕHF(x) − ϕOTF

r (x) =
∫ (

ρOTF

r (y) − χ
+
r (y)ρHF(y)

)
|x − y|−1dy.

Exactly as above, for small |x|, we now use Theorem 10.1, Lemma 12.6 and
the Coulomb norm estimate (82) to conclude that

|ϕHF(x) − ϕOTF

r (x)| ≤ (Const.)r−4+ 1
21 ≤ (Const.)|x|(−4+ 1

21)(1+δ),

If we combine this with (124) from Lemma 12.5 we obtain

(141) |ϕHF(x) − ϕTF(x)| ≤ (Const.)
(
|x|−4+ζδ + |x|(−4+ 1

21)(1+δ)
)

.

Combining (140) and (141) we see that by choosing δ small enough we have
proved (10) for all |x| ≤ D

1
1+δ .

We turn to |x| ≥ D
1

1+δ , i.e., |x| greater than some universal constant.
Here we may write

|ϕHF(x) − ϕTF(x)| ≤
∣∣∣ΦHF

|x|(x) − ΦTF

|x|(x)
∣∣∣+∣∣∣∣∣

∫
|y|>|x|

(ρTF(y) − ρHF(y)) |x − y|−1dy

∣∣∣∣∣ .
The first term is controlled by the main estimate Theorem 10.1. If we use that
according to Lemma 10.4 we have

∫
|y|>|x| ρ

HF(y)5/3dy ≤ (Const.) and that the
same estimate holds for the TF density (see Lemma 12.1) we may estimate the
second term above as follows. Using Hölder’s inequality we have∣∣∣∣∣∣∣

∫
|x|<|y|

(ρTF(y) − ρHF(y)) |x − y|−1dy

∣∣∣∣∣∣∣ ≤ (Const.)

(∫
|x−y|<1

|x − y|−5/2dy

)2/5

+
∫
|x|<|y|

(ρTF(y) + ρHF(y)) dy ≤ (Const.),

where the last estimate follows from Lemma 10.5.

We end the paper by giving the proof of the bound on the ionization
energy in Theorem 3.8.
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Proof of Theorem 3.8. Since the HF energy is a nonincreasing function of
N we have that 0 ≤ EHF(Z − 1, Z) − EHF(Z, Z). In order to prove an upper
bound we shall construct a trial density matrix γ for EHF with Tr[γ] ≤ Z − 1.
We then clearly have that EHF [γ] ≥ EHF(Z − 1, Z). Let θ− be given in terms
of appropriate r, λ > 0 as in the beginning of the proof of Theorem 6.2. We
then choose as our trial matrix

γHF

− = θ−γHFθ−,

where γHF is the HF minimizer with Tr [γHF] = Z. According to the definition
of θ− we have

Tr
[
γHF

−
]
≤ Z −

∫
|y|>r

ρHF(y)dy.

We choose λ = 1/2. Let R > 0 be such that CM = CΦR−4+ε. We shall now
choose r satisfying r ≤ R. Then according to Theorem 10.1 we have that (85)
holds for |x| ≤ r with σ = 2CΦ and ε′ = ε. From Lemma 10.5 we therefore
conclude that∫

|y|>r
ρHF(y)dy =

∫
ρHF −

∫
|y|<r

ρHF(y)dy

=
∫
|y|<r

ρTF(y) − ρHF(y) dy +
∫
|y|>r

ρTF(y) dy

≥
∫
|y|>r

ρTF(y) dy − (Const.)r−3+ε

where we have used that
∫

ρHF =
∫

ρTF = Z.
We may of course assume that Z is larger than some fixed universal con-

stant. For Z less than a universal constant, the total energy EHF(Z, Z) and
hence the ionization energy EHF(Z−1, Z)−EHF(Z, Z) are bounded by univer-
sal constants (see Theorem 3.2). We can therefore assume that β0Z

−1/3 < R

and we shall choose β0Z
−1/3 < r. It then follows from Theorem 5.4, the

TF equation (6) (recall that we consider the case µTF = 0 and N = Z) that
ρTF(y) ≥ (Const.)|y|−6 for all |y| ≥ r. Hence

∫
|y|>r

ρHF(y)dy ≥ (Const.)r−3 − (Const.)r−3+ε.

Thus we may choose r to be a small enough universal number (assuming that
Z is large enough to allow β0Z

−1/3 < r) to ensure that
∫
|y|>r

ρHF(y)dy ≥ 1 and

hence that Tr
[
γHF

−
]
≤ Z − 1.

From the estimate (53) in the proof of Theorem 6.2 we have

EHF
[
γHF

−
]
≤ EHF [γHF] − EA [γHF

r ] + R = EHF(Z, Z) − EA [γHF

r ] + R
where as before γHF

r = θrγ
HFθr, R is given in (51), and the functional EA was

defined in (49).
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It remains to prove that

(142) −EA [γHF

r ] + R ≤ (Const.).

As in (136) we conclude that R ≤ (Const.)r−7 ≤ (Const.), where we have
used that r is a universal constant.

In order to estimate EA
[
γHF

r

]
we note that, since ΦHF

r (y) is harmonic for
|y| > r and tends to 0 at infinity, we have that for all |y| ≥ r

ΦHF

r (y) ≤ |y|−1r sup
|x|=r

ΦHF

r (x) ≤ |y|−1r sup
|x|=r

|ΦTF

r (x)| + |y|−1
(
CΦr−3+ε + rCM

)
≤ (Const.)r−3|y|−1,

where we have used the main estimate Theorem 10.1 and the bound on ΦTF

r in
Lemma 5.5 with µTF = 0. If we use that r is some universal constant we get

ΦHF

r (y) ≤ (Const.)|y|−1.

Using the Lieb-Thirring inequality (21) we see from the definition (49) of the
auxiliary functional EA that

EA [γHF

r ] ≥ K1

∫
ρHF

r (y)5/3dy − (Const.)
∫ ρHF

r (y)
|y| dy

+ 1
2

∫ ∫
ρHF

r (x)|x − y|−1ρHF

r (y)dx dy.

Here again ρHF

r = θ2
rρ

HF is the density corresponding to γHF

r . It follows from
standard atomic TF theory that

inf
ρ≥0

{
K1

∫
ρ(y)5/3dy − (Const.)

∫
ρ(y)
|y| dy + 1

2

∫ ∫
ρ(x)|x − y|−1ρ(y)dx dy

}
is some universal constant. Hence EA

[
γHF

r

]
≥ −(Const.) and we have proved

(142).
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