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Abstract

We show that, for every compact n-dimensional manifold, n ≥ 1, there is
a residual subset of Diff1(M) of diffeomorphisms for which the homoclinic class
of any periodic saddle of f verifies one of the following two possibilities: Either
it is contained in the closure of an infinite set of sinks or sources (Newhouse
phenomenon), or it presents some weak form of hyperbolicity called dominated
splitting (this is a generalization of a bidimensional result of Mañé [Ma3]). In
particular, we show that any C1-robustly transitive diffeomorphism admits a
dominated splitting.

Résumé

Généralisant un résultat de Mañé sur les surfaces [Ma3], nous montrons
que, en dimension quelconque, il existe un sous-ensemble résiduel de Diff1(M)
de difféomorphismes pour lesquels la classe homocline de toute selle périodique
hyperbolique possède deux comportements possibles : ou bien elle est incluse
dans l’adhérence d’une infinité de puits ou de sources (phénomène de New-
house), ou bien elle présente une forme affaiblie d’hyperbolicité appelée une
décomposition dominée. En particulier nous montrons que tout difféomorphisme
C1-robustement transitif possède une décomposition dominée.

Introduction

Context. The Anosov-Smale theory of uniformly hyperbolic systems has
played a double role in the development of the qualitative theory of dynamical
systems. On one hand, this theory shows that chaotic and random behavior
can appear in a stable way for deterministic systems depending on a very small
number of parameters. On the other hand, the chaotic systems admit in this
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theory a quasi-complete description from the ergodic point of view. Moreover
the hyperbolic attractors satisfy very simple statistical properties (see [Si],
[Ru], and [BoRu]): For Lebesgue almost every point in the topological basin
of the attractor, the time average of any continuous function along its orbit
converges to the spatial average of the function by a probability measure whose
support is the attractor.

However, since the end of the 60s, one knows that this hyperbolic theory
does not cover a dense set of dynamics: There are examples of open sets of
nonhyperbolic diffeomorphisms. More precisely,

• For every compact surface S there exist nonempty open sets of Diff2(S) of
diffeomorphisms whose nonwandering set is not hyperbolic (see [N1]).

• Given any compact manifold M , with dim(M) ≥ 3, there are nonempty
open subsets of Diff1(M) of diffeomorphisms whose nonwandering set is
not hyperbolic (see, for instance, [AS] and [So] for the first examples).

In the 2-dimensional case, at least in the C1-topology, the heart of this
phenomenon is closely related to the appearance of homoclinic tangencies:
For every compact surface S the set of C1-diffeomorphisms with homoclinic
tangencies is C1-dense in the complement in Diff1(S) of the closure of the
Axiom A diffeomorphisms (that is a recent result in [PuSa]).

Even if in this work we are concerned with the C1-topology, let us recall
that Newhouse showed (see [N1]) that generic unfoldings of homoclinic tangen-
cies create C2-locally residual subsets of Diff2(S) of diffeomorphisms having an
infinite set of sinks or sources. In this paper, by Cr-Newhouse phenomenon
we mean the coexistence of infinitely many sinks or sources in a Cr-locally
residual subset of Diffr(M).

The main motivation of this article comes from the following result of
Mañé (see [Ma3] (1982)), which gives, for C1-generic diffeomorphisms of
surfaces, a dichotomy between hyperbolic dynamics and the Newhouse
phenomenon:

Theorem (Mañé). Let S be a closed surface. Then there is a residual sub-
set R ⊂ Diff1(S), R = R1

∐R2, such that every f ∈ R1 verifies the Axiom A
and every f ∈ R2 has infinitely many sinks or sources.

Recall that a diffeomorphism of a manifold M is transitive if it has a dense
orbit in the whole manifold. Such a diffeomorphism is called Cr-robustly tran-
sitive if it belongs to the Cr-interior of the set of transitive diffeomorphisms.
Since transitive diffeomorphisms have neither sinks nor sources, a direct con-
sequence from Mañé’s result is the following:

Every C1-robustly transitive diffeomorphism on a compact surface admits
a hyperbolic structure on the whole manifold ; i.e., it is an Anosov diffeo-
morphism.
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Let us observe that Mañé’s result has no direct generalization to higher
dimensions: For every n ≥ 3 there are compact n-dimensional manifolds sup-
porting C1-robustly transitive nonhyperbolic diffeomorphisms (in particular,
without sources and sinks). All the examples of such diffeomorphisms, succes-
sively given by [Sh] (1972) on the torus T 4, by [Ma2] (1978) on T 3, by [BD1]
(1996) in many other manifolds (those supporting a transitive Anosov flow or
of the form M × N , where M is a manifold with an Anosov diffeomorphism
and N any compact manifold), by [B] (1996) and [BoVi] (1998) examples in
T 3 without any hyperbolic expanding direction and examples in T 4 without
any hyperbolic direction, present some weak form of hyperbolicity, the newer
the examples the weaker the form of hyperbolicity, but always exhibiting some
remaining weak form of hyperbolicity. Let us be more precise.

Recall first that an invariant compact set K of a diffeomorphism f on a
manifold M is hyperbolic if the tangent bundle TM |K of M over K admits
an f∗-invariant continuous splitting TM |K = Es ⊕Eu, such that f∗ uniformly
contracts the vectors in Es and uniformly expands the vectors in Eu. This
means that there is n ∈ N such that ‖fn

∗ (x)|Es(x)‖ < 1/2 and ‖f−n
∗ (x)|Eu(x)‖

< 1/2 for any x ∈ K (where || · || denotes the norm).
The examples of C1-robustly transitive diffeomorphisms f in [Sh] and

[Ma2] let an invariant splitting TM = Es ⊕ Ec ⊕ Eu, where f∗ contracts uni-
formly the vectors in Es and expands uniformly the vectors in Eu. Moreover,
this splitting is dominated (roughly speaking, the contraction (resp. expan-
sion) in Es (resp. Eu) is stronger than the contraction (resp. expansion) in Ec;
for details see Definition 0.1 below), and the central bundle Ec is one dimen-
sional. The examples in [BD1] admit also such a nonhyperbolic splitting, but
the central bundle may have any dimension. The diffeomorphisms in [B] have
no stable bundle Es and admit a splitting Ec ⊕ Eu, where the restriction of
f∗ to Ec is not uniformly contracting, but it uniformly contracts the area.
Finally, [BoVi] gives examples of robustly transitive diffeomorphisms on T 4

without any uniformly stable or unstable bundles: They leave invariant some
dominated splitting Ecs ⊕ Ecu, where the derivative of f contracts uniformly
the area in Ecs and expands uniformly the area in Ecu.

Roughly speaking, in this paper we see that, if a transitive set does not
admit a dominated splitting, then one can create as many sinks or sources
as one wants in any neighbourhood of this set. In particular, C1-robustly
transitive diffeomorphisms always admit some dominated splitting.

Before stating our results more precisely, let us mention two previous
results on 3-manifolds which are the roots of this work:

• [DPU] shows that there is an open and dense subset of C1-robustly tran-
sitive 3-dimensional diffeomorphisms f admitting a dominated splitting
E1 ⊕E2 such that at least one of the two bundles is uniformly hyperbolic
(either stable or unstable). In that case, by terminology, f is partially
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hyperbolic. Moreover, [DPU] also gives a semi-local version of this result
defining C1-robustly transitive sets. Given a C1-diffeomorphism f , a com-
pact set K is C1-robustly transitive if it is the maximal f -invariant set in
some neighbourhood U of it and if, for every g C1-close to f , the maximal
invariant set Kg =

⋂
Z gn(U) is also compact and transitive.

• [BD2] gives examples of diffeomorphisms f on 3-manifolds having two sad-
dles P and Q with a pair of contracting and expanding complex (nonreal)
eigenvalues, respectively, which belong in a robust way to the same tran-
sitive set Λf . Clearly, this simultaneous presence of complex contracting
and expanding eigenvalues prevents the transitive set Λf from admitting
a dominated splitting! Then [BD2] shows that, for a C1-residual subset of
such diffeomorphisms, the transitive set Λf is contained in the closure of
the (infinite) set of sources or sinks.

The results of these two papers seem to go in opposite directions, but here
we show that they describe two sides of the same phenomenon. In fact,we give
here a framework which allows us to unify these results and generalize them
in any dimension: In the absence of weak hyperbolicity (more precisely, of a
dominated splitting) one can create an arbitrarily large number of sinks or
sources.

In the nonhyperbolic context, the classical notion of basic pieces (of the
Smale spectral decomposition theorem) is not defined and an important prob-
lem is to understand what could be a good substitute for it. The elemen-
tary pieces of nontrivial transitive dynamics are the homoclinic classes of hy-
perbolic periodic points, which are exactly the basic sets in Smale theory.
Actually, [BD2] shows that, C1-generically, two periodic points belong to the
same transitive set if and only if their two homoclinic classes are equal 1. The
hyperbolic-like properties of these homoclinic classes are the main subject of
this paper.

Finally, we also see that some of our arguments can be adapted almost
straightforwardly in the volume-preserving setting. Let us now state our results
in a precise way.

Statement of the results. Our first theorem asserts that given any hy-
perbolic saddle P its homoclinic class either admits an invariant dominated
splitting or can be approximated (by C1-perturbations) by arbitrarily many
sources or sinks.

1Recently, some substantial progress has been made in understanding the elementary pieces of

dynamics of nonhyperbolic diffeomorphisms. In [Ar1] and [CMP] it is shown that, for C1-generic

diffeomorphims or flows, any homoclinic class is a maximal transitive set. Moreover, any pair of

homoclinic classes is either equal or disjoint. On the other hand, [BD3] constructs examples of C1-

locally generic 3-dimensional diffeomorphisms with maximal transitive sets without periodic orbits.
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Definition 0.1. Let f be a diffeomorphism defined on a compact manifold
M , K an f -invariant subset of M , and TM |K = E⊕F an f∗-invariant splitting
of TM over K, where the fibers Ex of E have constant dimension. We say
that E ⊕ F is a dominated splitting (of f over K) if there exists n ∈ N such
that

‖fn
∗ (x)|E‖ ‖f−n

∗ (fn(x))|F ‖ < 1/2.

We write E ≺ F , or E ≺n F if we want to emphasize the role of n, and we
speak of n-dominated splitting.

Let us make two comments on this definition. First, the invariant set K is
not supposed to be compact and the splitting is not supposed to be continuous.
However, if K admits a dominated splitting, it is always continuous and can be
extended uniquely to the closure K̄ of K (these are classical results; for details
see Lemma 1.4 and Corollary 1.5). Moreover, the existence of a dominated
splitting is equivalent to the existence of some continuous strictly-invariant
cone field over K̄; this cone field can be extended to some neighbourhood U

of K̄ and persists by C1-perturbations. Thus there is an open neighbourhood
of f of diffeomorphisms for which the maximal invariant set in U admits a
dominated splitting. In that sense, the existence of a dominated splitting is a
C1-robust property.

Given a hyperbolic saddle P of a diffeomorphism f we denote by H(P, f)
the homoclinic class of P , i.e. the closure of the transverse intersections of
the invariant manifolds of P . This set is transitive and the set Σ of hyperbolic
periodic points Q ∈ H(P, f) of f , whose stable and unstable manifolds intersect
transversally the invariant manifolds of P , is dense in H(P, f).

Theorem 1. Let P be a hyperbolic saddle of a diffeomorphism f defined
on a compact manifold M . Then

• either the homoclinic class H(P, f) of P admits a dominated splitting,

• or given any neighbourhood U of H(P, f) and any k ∈ N there is g

arbitrarily C1-close to f having k sources or sinks arbitrarily close to P ,
whose orbits are included in U .

If P is a hyperbolic periodic point of f then, for every g C1-close to f ,
there is a hyperbolic periodic point Pg of g close to P (this point is given
by the implicit function theorem), called the continuation of P for g. From
Theorem 1 we get the following two corollaries.

Corollary 0.2. Under the hypotheses of Theorem 1, one of the following
two possibilities holds:

• either there are a C1-neighbourhood U of f and a dense open subset
V ⊂ U such that H(Pg, g) has a dominated splitting for any g ∈ V,
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• or there exist diffeomorphisms g arbitrarily C1-close to f such that H(Pg, g)
is contained in the closure of infinitely many sinks or sources.

Corollary 0.3. There exists a residual subset R of Diff1(M) such that,
for every f ∈ R and any hyperbolic periodic saddle P of f , the homoclinic
class H(P, f) satisfies one of the following possibilities:

• either H(P, f) has a dominated splitting,

• or H(P, f) is included in the closure of the infinite set of sinks and sources
of f .

Problem. Is there a residual subset of Diff1(M) of diffeomorphisms f such
that the homoclinic class of any hyperbolic periodic point P is the maximal
transitive set containing P (i.e. every transitive set containing P is included in
H(P, f))? Moreover, when is H(P, f) locally maximal?2

Actually, we prove a quantitative version of Theorem 1 relating the strength
of the domination with the size of the perturbations of f that we consider to
get sinks or sources (see Proposition 2.6). This quantitative version is one of
the keys for the next two results.

Note first that the creation of sinks or sources is not compatible with the
C1-robust transitivity of a diffeomorphism. We apply Hayashi’s connecting
lemma (see [Ha] and Section 2) to get, by small perturbations, a dense homo-
clinic class in the ambient manifold. Then using the quantitative version of
Theorem 1 we show:

Theorem 2. Every C1-robustly transitive set (or diffeomorphism) ad-
mits a dominated splitting.

Mañé’s theorem for surface diffeomorphisms mentioned before gives a
C1-generic dichotomy between hyperbolicity and the C1-Newhouse
phenomenon. It is now natural to ask what happens, in any dimension, far
from the C1-Newhouse phenomenon.

Theorem 3. Let f be a diffeomorphism such that the cardinal of the
set of sinks and sources is bounded in a C1-neighbourhood of f . Then there
exist l ∈ N and a C1-neighbourhood V of f such that, for any g ∈ V and every
periodic orbit P of g whose homoclinic class H(P, g) is not trivial, H(P, g)
admits an l-dominated splitting.

2Observe that the first part of the problem was positively answered in [Ar1] and [CMP] (recall

footnote 1). Using these results, [Ab] shows that there is a C1-residual set of diffeomorphisms such

that the number of homoclinic classes is well defined and locally constant. Moreover, if this number is

finite, the homoclinic classes are locally maximal sets and there is a filtration whose levels correspond

to homoclinic classes.
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A long term objective is to get a spectral decomposition theorem in the
nonuniformly hyperbolic case for diffeomorphisms far from the Newhouse phe-
nomenon. Having this goal in mind, we can reformulate Theorem 3 as follows:

Under the hypotheses of Theorem 3, for every g sufficiently C1-close to f

there are compact invariant sets Λi(g), i ∈ {1, . . . ,dim(M) − 1}, such that :

• Every Λi(g) admits an l-dominated splitting Ei(g) ≺l Fi(g) with
dim(Ei(g)) = i,

• every nontrivial homoclinic class H(Q, g) is contained in some Λi(g).

Unfortunately, this result has two disadvantages. First, the Λi(g) are
supposed to be neither transitive nor disjoint. Moreover, the nonwandering set
Ω(g) is not a priori contained in the union of the Λi(g) (but every homoclinic
class of a periodic orbit in (Ω(g) \⋃

i Λi(g)) is trivial). So we are still far away
from a completely satisfactory spectral decomposition theorem3. In view of
these comments the following problem arises in a natural way.

Problem. Let U ⊂ Diff1(M) be an open set of diffeomorphisms for which
the number of sinks and sources is uniformly bounded. Is there some subset
U0 ⊂ U , either dense and open or residual in U , of diffeomorphisms g such
that Ω(g) is the union of finitely many disjoint compact sets Λi(g) having a
dominated splitting?

Let us observe that the Newhouse phenomenon is not incompatible with
the existence of a dominated splitting if we do not have any additional
information on the action of f∗ on the subbundles of the splitting. Actually,
using Mañé’s ergodic closing lemma (see [Ma3]) we will get some control of the
action of the derivative f∗ on the volume induced on the subbundles. For that
we need to introduce dominated splittings having more than two bundles. An
invariant splitting TM |K = E1 ⊕ · · · ⊕ Ek is dominated if

⊕j
1 Ei ≺

⊕k
j+1 Ei

for every j. In this case we use the notation E1 ≺ E2 ≺ · · · ≺ Ek.
By Proposition 4.11, there is a unique dominated splitting, called finest

dominated splitting, such that any dominated splitting is obtained by regroup-
ing its subbundles by packages corresponding to intervals.

Theorem 4. Let Λf (U) be a C1-robustly transitive set and E1⊕· · ·⊕Ek,
E1 ≺ · · · ≺ Ek, be its finest dominated splitting. Then there exists n ∈ N such
that (f∗)n contracts uniformly the volume in E1 and expands uniformly the
volume in Ek.

3Fortunately, the results in footnote 2 gave a spectral decomposition for generic diffeomorphisms

with finitely many homoclinic classes.
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This result synthesizes previous results in lower dimensions of [Ma3] and
[DPU] on robustly transitive diffeomorphisms (or sets) and it shows that, in
the list of robustly transitive diffeomorphisms above, each example corresponds
to the worst pathological case in the corresponding dimension. Observe that
if E1 or Ek has dimension one, then it is uniformly hyperbolic (contracting or
expanding). Then, for robustly transitive diffeomorphisms, we have:

• In dimension 2 the dominated splitting has necessarily two 1-dimensional
bundles, so that the diffeomorphism is hyperbolic and then Anosov
(Mañé’s result above).

• In dimension 3 at least one of the bundles has dimension 1 and so it is
hyperbolic and the diffeomorphism is partially hyperbolic (see [DPU]).
In this dimension, the finest decomposition can contain a priori two or
three bundles and in the list above there are examples of both of these
possibilities.

• In higher dimensions the extremal subbundles may have dimensions strictly
bigger than one and so they are not necessarily hyperbolic: This is ex-
actly what happens in the examples in [BoVi].

Theorem 4 motivates us to introduce the notions of volume hyperbolicity
and volume partial hyperbolicity, as the existence of dominated splittings, say
E ≺ G and E ≺ F ≺ G, respectively, such that the volume is uniformly
contracted on the bundle E and expanded on G. We think that this notion
could be the best substitute for the hyperbolicity in a nonuniformly hyperbolic
context.

The volume partial hyperbolicity is clearly incompatible with the exis-
tence of sources or sinks. However, in the proof of Theorem 4 , at least for the
moment, we need the robust transitivity to obtain the partial volume hyper-
bolicity. Bearing in mind this comment and our previous results, let us pose
some questions:

Problems. 1. In Theorem 1, is it possible to replace the notion of domi-
nated splitting by the notion of volume partial hyperbolicity?4

2. Is the notion of volume hyperbolicity (or volume partial hyperbol-
icity) sufficient to assure the generic existence of finitely many Sinai-Ruelle-
Bowen (SRB) measures whose basins cover a total Lebesgue measure set? More
precisely:

4In this direction, using the techniques in this paper, [Ab] shows the volume hyperbolicity of

the homoclinic classes of generic diffeomorphisms having finitely many homoclinic classes.
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Let f be a C1-robustly transitive diffeomorphism of class C2 on a
compact manifold M . Does there exist g close to f having finitely
many SRB measures such that the union of their basins has total
Lebesgue measure in M?

For ergodic properties of partially hyperbolic systems (mainly existence
of SRB measures) we refer the reader to [BP], [BoVi], and [ABV].

Let us observe that in the measure-preserving setting (also volume-pre-
serving) the notion of stably ergodicity (at least in the case of C2-diffeo-
morphisms) seems to play the same role as the robust transitivity in the topo-
logical setting. See the results in [GPS] and [PgSh] which, in rough terms,
show that weak forms of hyperbolicity may be necessary for stable ergodicity
and go a long way in guaranteeing it. Actually, in [PgSh] it is conjectured that
stably ergodic diffeomorphisms are open and dense among the partially hy-
perbolic C2-volume-preserving diffeomorphisms. See [BPSW] for a survey on
stable ergodicity and [DW] for recent progress on the previous conjecture. Our
next objective is precisely the study of C1-volume-preserving diffeomorphisms.

Although this paper is not devoted to conservative diffeomorphisms some
of our results have a quite straightforward generalization into the conserva-
tive context. This means that the manifold is endowed with a smooth volume
form ω; then we can speak of conservative (i.e. volume-preserving) diffeomor-
phisms. We denote by Diff1

ω(M) the set of C1-conservative diffeomorphisms.
A first challenge is to get a suitable version of the generic spectral decom-

position theorem by Mañé (dichotomy between hyperbolicity and the New-
house phenomenon) for conservative diffeomorphisms. Obviously, since con-
servative diffeomorphisms have neither sinks nor sources, one needs to re-
place sinks and sources by elliptic points (i.e. periodic points whose derivatives
have some eigenvalue of modulus one). Very little is known in this context.
First, there is an unpublished result by Mañé (see [Ma1]) which says that
C1-generically, area-preserving diffeomorphisms of compact surfaces are either
Anosov or have Lyapunov exponents equal to zero for almost every orbit (see
also [Ma4] for an outline of a possible proof).5 Mañé also announced a ver-
sion of his theorem in higher dimensions for symplectic diffeomorphisms; see
[Ma1].6 Unfortunately, as far as we know, there are no available complete
proofs of these results. See also the results by Newhouse in [N2] where he
states a dichotomy between hyperbolicity (Anosov diffeomorphisms) and exis-
tence of elliptic periodic points.

Related to the announced results of Mañé, there is the following question
in [He]:

5Recently, [Bc] gave a complete proof of this result. For a generalization to higher dimensions,

see [BcVi1].
6See [Ar2] for progress on this subject in dimension four.
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Conjecture (Herman). Let f ∈ Diff1
ω(M) be a conservative diffeomor-

phism of a compact manifold M . Assume that there is a neighbourhood U of f

in Diff1
ω(M) such that for any g ∈ U and every periodic orbit x of g the ma-

trix gn
∗ (x) (where n is the period of x) has at least one eigenvalue of modulus

different from one. Then f admits a dominated splitting.

The following results give partial answers to this question:

Theorem 5. Let f ∈ Diff1
ω(M) be a conservative diffeomorphism of an

N -dimensional manifold M . Then there is l ∈ N such that,

• either there is a conservative ε−C1-perturbation g of f having a periodic
point x of period n ∈ N such that gn

∗ (x) = Id,

• or for any conservative diffeomorphism g ε − C1-close to f and every
periodic saddle x of g the homoclinic class H(x, g) admits an l-dominated
splitting.

Theorem 6. Let f be a conservative diffeomorphism defined on a com-
pact N -dimensional manifold. Then there are two possibilities:

• Either given any k ∈ N there is a conservative diffeomorphism g arbi-
trarily C1-close to f having k periodic orbits whose derivatives are the
identity.

• Or the manifold M is the union of finitely many (less than N − 1) in-
variant compact (a priori nondisjoint) sets having a dominated splitting.

Observe that if in Theorem 6 above the diffeomorphism f is transitive
and the second possibility of the dichotomy occurs, then one of the invariant
compact sets has to be the whole manifold (one of them contains a dense orbit).
This means that, in the transitive case, Theorem 6 gives a complete positive
answer to Herman’s conjecture:

Corollary 0.4. Let f ∈ Diff1
ω(M) be a conservative transitive diffeo-

morphism of a manifold M . Assume that there is a neighbourhood U of f in
Diff1

ω(M) such that for any g ∈ U and every periodic orbit x of g the ma-
trix gn

∗ (x) (where n is the period of x) has at least one eigenvalue of modulus
different from one. Then f admits a dominated splitting.

Let us observe that if f is transitive and there is some periodic point x

of f such that fn
∗ (x) = Id, n is the period of x, then given any ε > 0 there

is a C1-perturbation g ∈ Diff1
ω(M) of f such that its totally elliptic points

(derivative equal to the identity) are ε-dense in M .
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A conservative diffeomorphism f ∈ Diff1
ω(M) is robustly transitive in

Diff1
ω(M) if there is ε > 0 such that every ε− perturbation g ∈ Diff1

ω(M)
of f is transitive. Observe that a priori the robust transitivity in Diff1

ω(M)
does not imply the robust transitivity in Diff1(M).

Conjecture. Let f be a robustly transitive diffeomorphism in Diff1
ω(M).

Then f admits a nontrivial dominated splitting defined on the whole of M .

In view of Corollary 0.4, to prove this conjecture one needs to show that
a robustly transitive diffeomorphism f cannot have periodic points x whose
derivative fn

∗ (x) is the identity.
Finally, we observe that the control of the volume in the subbundles is

almost straightforward for conservative systems:

Proposition 0.5. Let f be a conservative diffeomorphism and E ⊕ F ,
E ≺ F , be a dominated splitting of TM . Then f∗ contracts uniformly the
volume in E and expands uniformly the volume in F .

Main ideas of the proofs. Mañé’s paper [Ma3] combines two main ingredi-
ents: systems of matrices and the ergodic closing lemma. He first considers the
linear maps induced by the derivative of a diffeomorphism f over the orbits of
its periodic points, thus obtaining a system of matrices. He shows that (in his
context) a system of matrices admits a dominated splitting if it is not possible
to perturb it to get a matrix with some eigenvalue of modulus one. By a lemma
of Franks, see [F] and Section 1, each perturbation of the system of matrices
over a finite number of periodic orbits corresponds to a C1-perturbation of f

and vice versa. Hence the existence of a dominated splitting also holds for
C1-diffeomorphisms. Finally, to get the uniform expansion and contraction on
the subbundles of the splitting he uses his ergodic closing lemma (see [Ma3]).

Our proof uses these two tools introduced by Mañé. Using Franks’ lemma
we translate the problem of the existence of a dominated splitting for diffeo-
morphisms into the same problem for abstract linear systems. However, the
systems of matrices in [Ma3] do not contain one relevant dynamical informa-
tion about f that we need. Actually, the solution of this difficulty is probably
the subtlest point of our arguments, so let us be somewhat more precise:

On one hand, in the context of [Ma3], all the periodic points have the
same index (dimension of the stable bundle); thus the system of matrices has
a natural splitting (the one corresponding to the stable and unstable bundles
of f∗). Then if this splitting is not dominated one gets a perturbation of it
having one eigenvalue of modulus 1. On the other hand, in our case there
are points having different indices. Moreover, points having eigenvalues of
modulus 1 are not forbidden. So we need some extra arguments to conclude
our proof. In fact, we need to control all the eigenvalues to create sources or
sinks.



366 C. BONATTI, L. J. Dı́AZ, AND E. R. PUJALS

The additional argument, that comes from the dynamics, is a property of
our linear systems called transitions. Given two periodic points P and Q in the
same homoclinic class (i.e. their invariant manifolds intersect transversally)
there are periodic orbits passing first arbitrarily close to P , and thereafter
arbitrarily close to Q, and so on. These orbits can be chosen upon arbitrary
sequences of times (the orbit spends k1 iterates close to P then, after a bounded
number of iterates, it becomes close to Q and remains k2 iterates close to Q,
and so on). So we define a structure we call transitions which translates this
dynamical behavior into the world of the abstract linear systems. This property
allows us to consider the product of matrices of the system corresponding to
different orbits as a matrix of the system. In fact, the transitions endow the
linear system with a “semigroup-like” structure. Clearly, this is not the case
for general linear systems.

Finally, after we introduce the linear systems with transitions, the proof
of the existence of a dominated splitting involves only arguments of linear
algebra. Precisely, this algebraic approach has allowed us to improve previous
results by stating them in higher dimensions and by eliminating the robust
transitivity hypothesis.

The problem of the existence of points with different indices already ap-
peared in [DPU], where it was solved by considering only robustly transitive
sets; thus any perturbation of the dynamics remains transitive. This addi-
tional hypothesis in [DPU] allows us to jump from the dynamical world to the
abstract linear world, here do some perturbation, and then jump back to the
dynamical world to do a new perturbation, and so on. In our context we have
no control of the variation of a homoclinic class after dynamical perturbations.
So it is crucial for Theorem 1 that all the perturbations we do “live in the
world of abstract linear systems” and do not modify the underlying dynamics
(that is here possible because Mañé’s linear systems have been enriched with
the transitions).

In our proof, assuming that there is no dominated splitting, we perform
a series of perturbations of the linear system; as a final result of such per-
turbations we get a linear system having a homothety. It is only then that
we realize this linear system as a diffeomorphism using Franks’ lemma, and
the point corresponding to the homothety becomes a sink or a source of the
diffeomorphism.

Finally, for the control of the volume in the extremal subbundles (Theo-
rem 4) we use the ergodic closing lemma, which gives a dynamical perturbation
having a periodic point reflecting the lack of volume expansion or contraction
of the bundles. Unfortunately, without any additional hypothesis, this point
has a priori nothing to do with the initial homoclinic class. This explains why
Theorem 4 only holds for robustly transitive systems.
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6.2. Mañé’s ergodic closing lemma: Proof of Proposition 6.2

7. The conservative case
7.1. Proof of Theorem 6
7.2. Volume properties of dominated splittings of conservative systems

1. Linear systems with transitions

Let f be a diffeomorphism. By Franks’ lemma below (see for instance
[F]), to any perturbation A of the derivative f∗ along the orbits of finitely
many periodic points corresponds a diffeomorphism g, C1-close to f , such that
g∗ = A along these orbits. This lemma allows us to consider perturbations
of the derivative f∗ keeping unchanged the dynamics of f , in order to get a
suitable derivative along some periodic orbits. The aim of this section is to
define in details the framework (periodic linear systems) which gives a precise
meaning of this kind of perturbations, and to translate into this language the
dynamical properties that we will need (specially the notion of transitions, see
Definition 1.6). Finally, we prove that the homoclinic classes define a periodic
linear system with transitions (Lemma 1.9) and we state an easy (but typical)
consequence of the existence of transitions (Lemma 1.10).

Before beginning this section let us state precisely Franks’ lemma:

Lemma (Franks). Suppose the E is a finite set and B is an ε-perturbation
of f∗ along E. Then there is a diffeomorphism g ε-C1-close to f , coinciding
with f out of an arbitrarily small neighbourhood of E, equal to f in E, and
such that g∗ coincides with B in E.

Let us point out that Franks’ lemma is the key which allows us to translate
results on linear systems to the dynamical context and it will often be used in
this paper.

1.1. Linear systems: Topology and linear changes of coordinates. Let Σ
be a topological space and f a homeomorphism defined on Σ. Consider a
locally trivial vector bundle (of finite dimension) E over Σ. Denote by Ex the
fiber of E at x ∈ Σ. We assume that the dimension of the fibers Ex, dim(Ex),
does not depend on x ∈ Σ. In what follows, we call this number dimension of
the bundle E, denoted by dim(E).

A euclidian metric | · | on the bundle E is a collection of euclidian metrics
on the fibers Ex, x ∈ Σ, a priori not depending continuously on x.

We denote by GL(Σ, f, E) the set of maps A: E → E such that for every
x ∈ Σ the induced map A(x, ·) is a linear isomorphism from Ex → Ef(x), thus
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A(x, ·) belongs to L(Ex, Ef(x)) and is invertible. For each x ∈ Σ the euclidian
metrics on Ex and Ef(x) induce a norm (always denoted by | · |) on L(Ex, Ef(x)):

|B(x, ·)| = sup{|B(x, v)|, v ∈ Ex, |v| = 1}.
Let now A ∈ GL(Σ, f, E) and define |A| = supx∈Σ |A(x, ·)|. Observe that,

for any A ∈ GL(Σ, f, E), its inverse A−1 belongs to GL(Σ, f−1, E). So we
can define |A−1| in the same way. Finally, the norm of a A ∈ GL(Σ, f, E) is
‖A‖ = sup{|A|, |A−1|}.

Definition 1.1. A linear system7 is a 4-uple (Σ, f, E , A) where Σ is a
topological space, f is a homeomorphism of Σ, E is a euclidean bundle over Σ,
A belongs to GL(Σ, f, E), and ‖A‖ < ∞.

In what follows, for the sake of simplicity, we sometimes denote by A a
linear system (Σ, f, E , A) if there is no ambiguity on Σ, f , and E .

Example 1. Let f be a diffeomorphism defined on a riemannian manifold
M and Σ ⊂ M an f -invariant subset. Consider the restriction to Σ of the
tangent bundle, E = TM |Σ. The riemannian metric on M induces a euclidean
structure on E . Then (Σ, f |Σ, E , f∗|E) is the natural linear system induced by
f over Σ.

We denote by GL∞(Σ, f, E) the space of linear systems over (Σ, f, E) such
that ||A|| < ∞ is endowed with the distance defined by

d(A, B) = sup{|A − B|, |A−1 − B−1|}, A, B ∈ GL∞(Σ, f, E).

We can now define an ε-perturbation of A as a linear system Ã, defined over
(Σ, f, E), such that d(A, Ã) < ε.

Very elementary arguments of linear algebra show that any perturbation
of a linear system can be obtained by composing it with linear maps close to
the identity. More precisely, let A ∈ GL∞(Σ, f, E) and consider some linear
system E ∈ GL∞(Σ, IdΣ, E). Then E ◦ A and A ◦ E (defined in the obvious
way) belong to GL∞(Σ, f, E). Moreover, if E is close to the identity linear
system (Σ, IdΣ, E , IdE), then E ◦ A and A ◦ E are also close to A.

Consider now some change of the euclidean metrics on the fibers. Assume
that the matrices of the changes of coordinates (from an orthonormal basis of
the initial metric to an orthonormal basis of the new metric) and their inverses
are uniformly bounded on Σ. Then every linear system in the initial metric
induces a new system (for the new metric). Moreover, this change of metrics
keeps invariant the topology of the set of linear systems. Let us be a little bit
more precise.

7After writing this paper, we realized that this notion corresponds to the classical concept of

linear cocycle over the homeomorphism f .
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Let E denote a euclidean bundle on a topological space Σ endowed with
the euclidean metric | · |. Denote by E1 the same bundle, but now endowed
with a different euclidean metric | · |1. Denote by P : E → E1 the identity
map considered as a morphism of bundles. Using the metrics | · | and | · |1
we can define the norms |P | and |P−1|. Write ‖P‖ = sup{|P |, |P−1|}. If
‖P‖ < ∞, the canonical bijection Id:GL(Σ, f, E) → GL(Σ, f, E1) induces a
homeomorphism from GL∞(Σ, f, E) (with the distance d) to GL∞(Σ, f, E1)
(with the corresponding distance d1). These two simple facts are put together
in the following lemma.

Lemma 1.2. 1. Given K > 0 and ε > 0 there is δ > 0 such that for
any linear system (Σ, f, E , A), A ∈ GL∞(Σ, f, E) and ‖A‖ < K, and every
δ-perturbation of the identity (Σ, idΣ, E , E), E◦A and A◦E are ε-perturbations
of A.

2. For every K > 0, K0 > 0, and ε > 0 there are K1 > 0, δ > 0 satisfying
the following property :

Consider a pair of euclidean bundles E and E1 over Σ endowed with the
metrics | · | and | · |1, and the isomorphism of bundles P : E → E1 induced by the
identity on Σ (i.e. given x ∈ Σ the map P (x, ·) is a linear isomorphism from
Ex to (E1)x). Assume that ‖P‖ < K0. Let (Σ, f, E , A) be a linear system such
that ‖A‖ is bounded by K.

Let B = P ◦A ◦ P−1, then (Σ, f, E1, B) is a linear system bounded by K1.
Moreover, any δ-perturbation of B is conjugate by P to some ε-perturbation
of A.

Let (Σ, f, E , A) be a linear system and n ∈ N. The n-th iterate of A,
denoted by A(n), is the linear system over (Σ, fn, E) defined by A(n)(x) =
A(fn−1(x)) ◦ · · · ◦ A(f(x)) ◦ A(x).

Consider an f -invariant subset Σ′ of Σ and the restriction of the linear
bundle E to Σ′, then A induces canonically a linear system over (Σ′, f |Σ′ , E|Σ′)
called the linear subsystem induced by A over Σ′.

1.2. Special linear systems. Along this work, the linear systems we con-
sider will often be endowed with some additional structures: In some cases they
are continuous, and most of them are periodic. We also consider systems of
matrices. Finally, the most important additional structure we will introduce is
the notion of transitions. Let us now present the three first quite natural struc-
tures. Due to its specific and subtle nature we postpone to the next paragraph
the notion of transition. This key definition will deserve special attention and
care.
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In the sequel, Σ is a topological space, f a homeomorphism of Σ, and E
a locally trivial vector bundle over Σ endowed with a euclidean metric | · | on
the fibers. A linear system (Σ, f, E , A) is continuous if the euclidean structure
on the fibers varies continuously and the function A: E → E is continuous.

The linear system (Σ, f, E , A) is periodic if all the orbits of f are periodic.
In this case we let MA(x): Ex → Ex be the product of the A(f i(x)) along the
orbit of x. More precisely, let p(x) be the period of x ∈ Σ, then

MA(x) = A(fp(x)−1(x)) ◦ · · · ◦ A(x) = A(p(x))(x).

Finally, (Σ, f, E , A) is a system of matrices if the euclidean bundle E is
the trivial bundle Σ×RN , where RN is endowed with the canonical euclidean
metric. In this case every linear map A(x) is canonically identified with an
element of GL(N,R).

Let (Σ, f, E , A) be an (a priori noncontinuous) linear system. It will
sometimes be useful to fix an orthonormal basis on each fiber Ex (this basis
does not depend, in general, continuously on the point x ∈ Σ). These bases
give an (a priori noncontinuous) trivialization of the Euclidean bundle E . So
in these new coordinates A can be considered as a system of matrices. Two
systems of matrices define the same linear system if at each point there exists
an orthonormal change of coordinates conjugating the two systems.

1.3. Dominated splittings. The definition of dominated splitting for an
invariant set of a diffeomorphism (see Definition 0.1) can be directly generalized
for linear systems as follows. Let (Σ, f, E , A) be a linear system, an invariant
subbundle is a collection of linear subspaces F (x) ⊂ Ex whose dimensions do
not depend on x and such that A(F (x)) = F (f(x)). An A-invariant splitting
F ⊕ G is given by two invariant subbundles such that Ex = F (x) ⊕ G(x) at
each x ∈ Σ.

Definition 1.3. Let (Σ, f, E , A) be a linear system and E = F ⊕G an A-
invariant splitting. We say that F ⊕ G is a dominated splitting if there exists
n ∈ N such that

‖A(n)(x)|F ‖ ‖A(−n)(fn(x))|G‖ < 1/2

for every x ∈ Σ. We write F ≺ G.
If we want to emphasize the role of n then we say that F ⊕ G is an

n-dominated splitting and write F ≺n G .
Finally, the dimension of the dominated splitting is the dimension of the

subbundle F .

Suppose now that (Σ, f, E , A) is a continuous linear system, then any
dominated splitting can be obtained by considering subsystems induced by A

over dense subsets Σ′ ⊂ Σ. More precisely,
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Lemma 1.4. Let (Σ, f, E , A) be a continuous linear system such that
there is a dense f -invariant subset Σ1 ⊂ Σ whose corresponding linear subsys-
tem admits an l-dominated splitting. Then (Σ, f, E , A) admits an l-dominated
splitting.

More generally, suppose that there is a sequence of (not necessarily con-
tinuous) systems (Σ, f, E , Ak) converging to (Σ, f, E , A) such that for every k

there is a dense invariant subset Σk ⊂ Σ where Ak admits an l-dominated
splitting. Then A admits an l-dominated splitting in the whole Σ.

Finally, any dominated splitting of a continuous linear system is continu-
ous.

Proof. Given x ∈ Σ consider a sequence (xk), xk ∈ Σk, converging to x.
For a fixed k we have an l-dominated splitting Ek ⊕Fk. Taking a subsequence
we can assume that the dimensions of these spaces are independent of k and
that the sequences Ek(xk) and Fk(xk) converge to some subspaces E(x) and
F (x).

By definition of l-dominance, given any k, uk ∈ Ek(xk), and vk ∈ Fk(xk),
we have

2
‖Al

k(uk)‖
‖uk‖

≤ ‖Al
k(vk)‖
‖vk‖

.

By the continuity of A and the convergences of Ak → A, xk → x, Ek(xk) →
E(x), and Fk(xk) → F (x), we get

2
‖Al(u)‖
‖u‖ ≤ ‖Al(v)‖

‖v‖
for every u ∈ E(x) and v ∈ F (x). So these two spaces are transverse.

Finally, it remains to check that these two spaces are uniquely defined and
give an invariant splitting. Observe first that A(E(x)) and A(F (x)) are the
limits of the (same) subsequences before Ek(f(xk)) and Fk(f(xk)). Then for
any m ∈ Z we get

2m ‖Aml(u)‖
‖u‖ ≤ ‖Aml(v)‖

‖v‖
for every u ∈ E(x) and v ∈ F (x). Now a standard dynamical argument
asserts that the spaces E(x) and F (x) verifying this inequality are uniquely
determined by their dimensions.

To complete the proof, observe that the unicity of the dominated splitting
above gives the continuity.

Corollary 1.5. Let f be a diffeomorphism defined on a compact man-
ifold M and Λ an f -invariant set. Assume that there are l ∈ N, i ∈ 1, . . . ,

dim(M) − 1, and a sequence of diffeomorphisms fn converging to f in the
C1-topology such that
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• every fn has a periodic orbit xn such that H(xn, fn) admits an l-dominated
splitting of dimension i,

• the set Λ is included in the topological upper limit set of the H(xn, fn),
i.e.

lim sup
n→∞

(H(xn, fn)) =
∞⋂

n=1

closure(
⋃
i>n

H(xn, fn)).

Then Λ admits an l-dominated splitting of dimension i.

Proof. Consider the topological set

I = {0} ∪ { 1
n

, n ∈ N \ {0}}.

In M × I we consider the union

(Λ × {0}) ∪
+∞⋃
1

(H(xn, fn) × { 1
n
}).

The differentials of f and fn define in a natural way a linear system on this set,
which is continuous because the fn converge to f in the C1-topology. Moreover,⋃+∞

1 (H(xn, fn)×{ 1
n} is a dense subset (because Λ is contained in the topologi-

cal upper limit set of the H(xn, fn)) and the system over
⋃+∞

1 (H(xn, fn)×{ 1
n}

admits an l-dominated splitting. To finish the proof it is now enough to apply
Lemma 1.4.

1.4. Periodic linear systems with transitions. Saddles P and Q of the same
index which are linked by transverse intersections of their invariant manifolds
(i.e. they are homoclinically related) belong to the same transitive hyperbolic
set. So they are accumulated by other periodic orbits which spend an arbitrar-
ily long time close to P , thereafter close to Q, and so on. In fact, the existence
of Markov partitions shows that for any fixed finite sequence of times there is
a periodic orbit expending alternately the times of the sequence close to P and
Q, respectively. Moreover, the transition time (between a neighbourhood of P

and a neighbourhood of Q) can be chosen to be bounded. This property will
allow us to scatter in the whole homoclinic class of P some properties of the
periodic points Q of this class.

We aim in this section to translate this property into the language of linear
systems, introducing the concept of linear system with transitions. Then we
shall deduce some direct consequences of the existence of such transitions. Let
us go into the details of our constructions. We begin by giving some definitions.

Given a set A, a word with letters in A is a finite sequence of elements of
A, its length is the number of letters composing it. The set of words admits
a natural semi-group structure: The product of the word [a] = (a1, . . . , an) by
[b] = (b1, . . . , bk) is [a][b] = (a1, . . . , an, b1, . . . , bk). We say that a word [a] is
not a power if [a] �= [b]k for every word [b] and k > 1.
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In this section (Σ, f, E , A) is a periodic linear system of dimension N :
Recall that every x ∈ Σ is periodic for f , p(x) denotes its period, and MA(x)
denotes the product A(p(x))(x) of A along the orbit of x.

If (Σ, f, A) is a periodic system of matrices (in GL(N,R)), then for any
x ∈ Σ we write [M ]A(x) = (A(fp(x)−1(x)), . . . , A(x)); which is a word with
letters in GL(N,R). Hence the matrix MA(x) is the product of the letters of
the word [M ]A(x).

Definition 1.6. Given ε > 0, a periodic linear system (Σ, f, E , A) admits
ε-transitions if for every finite family of points x1, . . . , xn = x1 ∈ Σ there is an
orthonormal system of coordinates of the linear bundle E (so that (Σ, f, E , A)
can now be considered as a system of matrices (Σ, f, A)), and for any (i, j) ∈
{1, . . . , n}2 there exist k(i, j) ∈ N and a finite word [ti,j ] = (ti,j1 , . . . , ti,jk(i,j)) of
matrices in GL(N,R), satisfying the following properties:

1. For every m ∈ N, ι = (i1, . . . , im) ∈ {1, . . . , n}m, and a = (α1, . . . , αm)
∈ Nm consider the word

[W (ι, a)] = [ti1,im ][MA(xim)]αm [tim,im−1 ][MA(xim−1)]
αm−1 · · · [ti2,i1 ][MA(xi1)]

α1 ,

where the word w(ι, a) = ((xi1 , α1), . . . , (xim , αm)) with letters in M ×N is not
a power. Then there is x(ι, a) ∈ Σ such that

• The length of [W (ι, a)] is the period p(x(ι, a)) of x(ι, a).

• The word [M ]A(x(ι, a)) is ε-close to [W (ι, a)] and there is an ε-pertur-
bation Ã of A such that the word [M ]Ã(x(ι, a)) is [W (ι, a)].

2. One can choose x(ι, a) such that the distance between the orbit of
x(ι, a) and any point xik is bounded by some function of αk which tends to
zero as αk goes to infinity.

Given ι and a as above, the word [ti,j ] is an ε-transition from xj to xi. We
call ε-transition matrices the matrices Ti,j which are the product of the letters
composing [ti,j ].

Remark 1.7. Consider points x1, . . . , xn−1, xn = x1 ∈ Σ and ε-transitions
[ti,j ] from xj to xi. Then

1. for every positive α ≥ 0 and β ≥ 0 the word ([M ]A(xi))α [ti,j ] ([M ]A(xj))β

is also an ε-transition from xj to xi,

2. for any i, j, and k the word [ti,j ][tj,k] is an ε-transition from xk to xi.

3. As a consequence of the two items above, the words W (ι, α) in Defini-
tion 1.6 are ε-transitions from xi1 to itself. Moreover, the set of such
ε-transitions forms a semigroup.
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Definition 1.8. We say that a periodic linear system admits transitions
if for any ε > 0 it admits ε-transitions.

The following lemma justifies the introduction of the notion of transition
for studying homoclinic classes:

Lemma 1.9. Let P be a hyperbolic saddle of index k (dimension of its
stable manifold). The derivative f∗ induces a continuous periodic linear system
with transitions on the set Σ of hyperbolic saddles in H(P, f) of index k and
homoclinically related to P .

Proof. Fix any ε > 0 and a finite family x1, . . . , xn in Σ. As the xi are
homoclinically related to P , there is a compact transitive hyperbolic subset K

of H(P, f) containing all the xi. So this set K can be covered by a Markov
partition with arbitrarily small rectangles. We can now choose orthonormal
systems of coordinates in Tx(M), x ∈ K, such that the orthonormal bases
depend continuously on x when the points are in the same rectangle.

Let (K, f, A) be the system of matrices defined on K by writing f∗ in this
system of coordinates. Now, using the continuity of f∗, and by subdividing if
necessary the rectangles of the Markov partition, we can assume that, for any
x and y in the same rectangle,

‖A(x) − A(y)‖ < ε and ‖A−1(x) − A−1(y)‖ < ε.

The transitions from xi to xj are now obtained by consideration of the deriva-
tive of f along any orbit in K going from the rectangle containing xi to the
rectangle containing xj .

The next lemma shows how a property at one point of a system with
transitions can scatter to a dense subset:

Lemma 1.10 (Scattering Property). Let (Σ, f, E , A) be a periodic lin-
ear system with transitions. Fix ε > ε0 > 0 and assume that there exist an
ε0-perturbation Ã of A and x ∈ Σ such that MÃ(x) is either a dilation (i.e.
all its eigenvalues have modulus bigger than 1) or a contraction (i.e. all its
eigenvalues have modulus less than 1).

Then there are a dense f -invariant subset Σ̃ of Σ and an ε-perturbation
Â of A such that for any y ∈ Σ̃ the linear map MÂ(y) is either a dilation or a
contraction (according to the choice before).

Proof. Write ε1 = ε − ε0, take some point z in Σ, and consider two ε1-
transitions Tx,z (from z to x) and Tz,x (from x to z). For a fixed δ > 0, by
definition of transitions, there is n(z, δ) such that for any n > 0 there are
yn ∈ Σ, with d(yn, z) < δ, and an ε1-deformation A′ of A along the orbit of yn

such that
MA′(yn) = Tz,x ◦ MA(x)n ◦ Tx,z ◦ M(z)n(z,δ).
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Define M̂n by
M̂n = Tz,x ◦ MÃ(x)n ◦ Tx,z ◦ M(z)n(z,δ).

We can now choose n big enough so that M̂n is either a dilation or a contraction
(according to MÃ(x)). Thus by an ε1-perturbation Â of A′ along the orbit of
yn we can get MÂ(y) = M̂n.

Since we are not requiring the continuity of Â, we can build it as above,
that is, orbit by orbit considering points in a dense subset. This ends the proof
of the lemma.

2. Quantitative results: Proofs of the theorems

In this section we state, in terms of linear systems (Proposition 2.1) and
in terms of diffeomorphisms (Proposition 2.6), quantitative results on the ex-
istence of dominated splittings (giving the strength of the dominance).

Proposition 2.1 gives a dichotomy between the existence of a dominated
splitting for a linear system and the existence of perturbations of the system
with homotheties. This proposition is divided into two main steps: Propo-
sition 2.4, asserting that the lack of dominance allows us to create complex
eigenvalues, and Proposition 2.5, which says that sufficiently many complex
eigenvalues allow us to get homotheties. These propositions will be proved in
the next two sections.

In this section we deduce from Proposition 2.1 most of the results an-
nounced in the introduction.

2.1. Reduction of the study of the dynamics to a problem on linear systems.

Proposition 2.1. For any K > 0, N > 0, and ε > 0 there is l > 0 such
that any continuous periodic N -dimensional linear system (Σ, f, E , A) bounded
by K (i.e. ‖A‖ < K) and having transitions satisfies the following :

• either A admits an l-dominated splitting,

• or there are an ε-perturbation Ã of A and a point x ∈ Σ such that MÃ(x)
is an homothety.

The proof of Proposition 2.1 is divided in two main steps: In the first one,
we show that, if (Σ, f, E , A) is a linear system with transitions such that no
dense subsystem of it admits an l-dominated splitting, then we can perturb A

to get a lot of complex eigenvalues. In the second step, we see that, if we can
obtain sufficiently many complex eigenvalues, then we can perturb the system
to get a homothety (which will be either a contraction or a dilation). Let us
state precisely these two steps. We begin with some definitions.
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Definition 2.2. Let M ∈ GL(N,R) be a linear isomorphism of RN such
that M has some complex eigenvalue λ, i.e. λ ∈ C \R. We say that λ has rank
(i, i + 1) if there is an M -invariant splitting of RN , F ⊕ G ⊕ H, such that:

• Every eigenvalue σ of M |F (resp. M |H) has modulus |σ| < |λ| (resp.
|σ| > |λ|),

• dim(F ) = i − 1 and dim(H) = N − i − 1,

• the plane G is the eigenspace of λ.

Definition 2.3. A periodic linear system (Σ, f, E , A) has a complex eigen-
value of rank (i, i + 1) if there is x ∈ Σ such that the matrix MA(x) has a
complex (nonreal) eigenvalue of rank (i, i + 1).

Proposition 2.1 is a direct consequence of Propositions 2.4 and 2.5 below:

Proposition 2.4. For every ε > 0, N ∈ N, and K > 0 there is l ∈ N

satisfying the following property :

Let (Σ, f, E , A) be a continuous periodic N -dimensional linear system with
transitions such that its norm ‖A‖ is bounded by K. Assume that there exists
i ∈ {1, . . . , N − 1} such that every ε-perturbation Ã of A has no complex
eigenvalues of rank (i, i+1). Then (Σ, f, E , A) admits an l-dominated splitting
F ⊕ G, F ≺l G, with dim(F ) = i.

Proposition 2.5. Let (Σ, f, E , A) be a periodic linear system with tran-
sitions. Given ε > ε0 > 0 assume that, for any i ∈ {1, . . . , N − 1}, there is an
ε0-perturbation of A having a complex eigenvalue of rank (i, i+1). Then there
are an ε-perturbation Ã of A and x ∈ Σ such that MÃ(x) is a homothety with
ratio of modulus different from 1.

The key of the proof of Proposition 2.4 is a 2-dimensional argument of
Mañé that we present in Section 3. The proof in higher dimensions consists of
an inductive argument which allows us to reduce the dimension of the linear
space by considering some quotients (roughly speaking, considering projec-
tions). Using this inductive procedure we finally arrive at a two-dimensional
space. The lemmas in Section 4.1 allow us to make these successive reductions
of dimension. The proofs of Propositions 2.4 and 2.5 are in Section 5.

Now using Proposition 2.1 we prove most of the results announced in the
introduction.

2.2. Proofs of the theorems. Let us first explain why Proposition 2.1 im-
plies Theorem 1. Actually, this proposition implies the following quantitative
version of Theorem 1, which is our main (but a little bit technical) result:
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Proposition 2.6. For every K > 0, N > 0, and ε > 0 there is
l(ε, K, N) ∈ N such that for any diffeomorphism f defined on a riemannian
N -dimensional manifold M such that the derivatives f∗ and f−1

∗ are bounded
by K, and any saddle P of f with a nontrivial homoclinic class H(P, f), the
following holds:

• Either the homoclinic class H(P, f) admits an l(ε, K, N)-dominated split-
ting,

• or for every neighbourhood U of H(P, f) and k ∈ N there is g ε-C1-close
to f having k sources or sinks whose orbits are contained in U .

2.2.1. Proofs of Theorem 1 and Proposition 2.6. As Proposition 2.6 im-
plies Theorem 1 directly, it remains to see that Proposition 2.6 follows from
Proposition 2.1.

For that, consider a diffeomorphism f , such that ‖f∗‖ and ‖f−1
∗ ‖ are

bounded by K, and a periodic saddle P of f with a nontrivial homoclinic
class. Let

Σ = H(P, f), E = TM |Σ, and A = (f∗)|Σ.

Then (Σ, f, E , A) is a continuous linear system. Denote by Σ′ ⊂ Σ the set of
saddles homoclinically related to P (in particular, having the same index as P ).
Observe that Σ′ is a dense f -invariant subset of Σ. Moreover, by Lemma 1.9,
the subsystem induced by A over Σ′ admits transitions.

If A admits an l−dominated splitting over Σ′ then, by Lemma 1.4, such
a splitting can be extended to an l-dominated splitting on the whole Σ =
H(P, f), and we are done.

Now take the constant l > 0 given by Proposition 2.1 corresponding to
K, N = dim(M), and ε/2. If A does not admit an l-dominated splitting over
Σ′, then Proposition 2.1 says that there is an ε/2-perturbation Ã of A and
a point x ∈ Σ′ such that MÃ(x) is a homothety. We can suppose that (up
to an arbitrarily small perturbation) this homothety is either a dilation or a
contraction. Assume, for instance, the first possibility.

As the system admits transitions, by Lemma 1.10, there is a dense subset
of Σ′ of points y admitting ε-deformations Â along their orbits such that the
corresponding linear map MÂ(y) is a dilation. Choose now an arbitrarily large
(but finite) number of such points y, and denote by E this set of periodic
orbits.

The proofs of Proposition 2.6 (thus of Theorem 1) follows now immediately
from Franks’ lemma.

We now prove the corollaries of Theorem 1 in the introduction.
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2.2.2. Proof of Corollary 0.2. Let P be a hyperbolic saddle of a diffeo-
morphism f and U a neighbourhood of f where P admits a continuation Pg

for every g ∈ U .
Denote by DS the set of diffeomorphisms g ∈ U for which H(Pg, g) admits

a dominated splitting. If the closure of the interior of DS, cl(int(DS)), is a
neighbourhood of f then the first possibility in the corollary holds and we are
done. Otherwise, for any ε > 0 there is g1, ε/2-close to f in the C1-topology, in
the complement of cl(int(DS)). Thus g1 has an open neighbourhood U1 such
that for any g ∈ U1 there is h arbitrarily close to g such that H(Ph, h) does
not admit any dominated splitting.

Given a set E ⊂ M and δ > 0, let V (E, δ) be the set of points of M at
distance strictly less than δ from E. We now construct inductively sequences
εi > 0 and gi ∈ U1 satisfying the following properties:

1. H(Pgi , gi) has no dominated splitting,

2. gi+1 is εi/2-close to gi in the C1-topology,

3. there is a finite set Si+1 of periodic sinks or sources of gi+1 such that
H(Pgi , gi) ⊂ V (Si+1, εi/2),

4. εi+1 < εi/2,

5. for all g εi+1-close to gi+1 the set of sinks or sources Si+1 has a continu-
ation Si+1(g) such that H(Pgi , gi) ⊂ V (Si+1(g), εi).

Let us first end the proof of the corollary using the sequences (εi) and (gi)
above. The sequence (gi) is a Cauchy sequence in Diff1(M), so it converges to
some C1-diffeomorphism h. Moreover, from εi+1 < εi/2 and the εi/2-proximity
of gi+1 to gi, we get that h is εi-close to gi for all i. Therefore, by item (5), the
set of sources or sinks Si+1(h) is well defined and H(Pgi , gi) ⊂ V (Si+1(h), εi)
for every i.

Consider now the set S(h) =
⋃∞

1 (Si(h)) consisting of sinks or sources. By
construction, the closure of S(h) contains the topological upper limit set of the
H(Pgi , gi); that is,

closure (S(h)) ⊃ lim sup
i→∞

H(Pgi , gi) =
∞⋂
i=1

closure (
⋃
j>i

H(Pgj , gj)).

Finally, by definition of homoclinic class and since the transverse intersections
vary continuously, this upper limit set contains H(Ph, h), so that H(Ph, h) is
contained in the closure of the set of sinks or sources of h. Thus h is the
diffeomorphism in the statement of the corollary.

To end the proof of the corollary it remains to build the sequences (εi)
and (gi) above. We proceed inductively, assuming that εj and gj are defined
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for every j ≤ i. Consider some finite set Σi ⊂ H(Pgi , gi) of saddles such
that H(Pgi , gi) ⊂ V (Σi, εi). By item (1), applying Theorem 1 finitely many
times, we can create a sink or a source close to each point of Σi, obtaining a
diffeomorphism gi+1 which is εi/2-close to gi and has a set of sinks or sources
Si+1 containing H(Pi, gi) in its εi/2-neighbourhood V (Si+1, εi/2). Thus gi+1

satisfies items (2) and (3). Having in mind the definition of U1, we can suppose
(after a new perturbation if necessary) that H(Pgi+1 , gi+1) has no dominated
splitting, i.e. gi+1 satisfies item (1). Then, using the continuous variation of the
finite set Si+1(g) in a small neighbourhood of gi+1, we can choose εi+1 < εi/2
(item (4)) verifying item (5) above. This ends the proof of the corollary.

2.2.3. Proof of Corollary 0.3. Recall first that there are dense open subsets
On of Diff1(M) of diffeomorphisms f for which the set P(f, n) of periodic points
of period less than n is finite and hyperbolic. Note also that the cardinal of
P(f, n) is locally constant in On and that the set P(f, n) depends continuously
on f .

Denote by Σ(n, f) ⊂ P(f, n) the set of saddles with nontrivial homoclinic
class. Then there is a dense open subset Õn ⊂ On of diffeomorphisms f such
that Σ(n, f) has locally constant cardinal and depends continuously on f .

Claim. There is a residual subset Rn ⊂ Õn of diffeomorphisms f such
that for any P ∈ Σ(n, f) either H(P, f) admits a dominated splitting or P

belongs to the closure of the set of sinks or sources.

Proof of the claim. Consider any open subset O ⊂ Õn where the periodic
points in Σ(n, f) are continuous functions of f . So let us denote by Σn the
(finite) set of these functions: Given P ∈ Σn and f ∈ O we denote by Pf the
corresponding periodic point of f .

For a fixed P ∈ Σn let DS(P ) be the set of f ∈ O such that H(Pf , f)
admits a dominated splitting. Let U(P ) be the complement in O of the closure
of the interior of DS(P ). Let U(P, i) be the set of f ∈ U(P ) for which there is
a sink or a source Qf (of any period) with d(Pf , Qf ) < 1/i: This set is open
and, by Theorem 1, dense in U(P ). Therefore the intersection

Rn(P ) =
∞⋂
i=1

(U(P, i) ∪ int(DS(P )))

is a residual subset of O. We write

Rn(O) =
⋂

P∈Σn

Rn(P ),

by construction, noting that the set Rn(O) is a residual subset of O consisting
of diffeomorphisms f satisfying the conclusion in the claim. Thus to end the
proof of the claim it suffices to consider the set Rn obtained as the union (over
all the open sets O ⊂ Õn) of the Rn(O).
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We are now ready to end the proof of the corollary. Consider R =⋂
n∈NRn. By the claim, the set R is a residual subset of Diff1(M) of dif-

feomorphisms f such that for any saddle P of f there are two possibilities,
either H(P, f) has a dominated splitting, or P is in the closure of the set S(f)
of sinks or sources of f (remark that if the homoclinic class of P is trivial then
it admits a dominated splitting because P is hyperbolic).

In the first case we are done. In the second one, we need to check that the
whole homoclinic class of P is contained in the closure of the sinks or sources.
So assume that H(P, f) does not admit any dominated splitting. Observe that
for every saddle Q homoclinically related to P one has H(Q, f) = H(P, f),
thus H(Q, f) has no dominated splitting. As f ∈ R, we have just seen that
Q is in the closure of S(f). Since the set of saddles homoclinically related to
P is dense in H(P, f) we have that H(P, f) itself is contained in the closure
of S(f). So R is the residual set announced in Corollary 0.3 and the proof is
complete.

2.2.4. Proof of Theorem 2. Let us first prove this theorem in the case of
robustly transitive diffeomorphisms. There are two reasons for that. First, the
proof of this case is simpler than the proof in the case of transitive sets (i.e.
the general case). Second, proceeding in this way can emphasize the additional
difficulties and subtleties of the proof for transitive sets.

Proof of Theorem 2 for robustly transitive diffeomorphisms. Consider a
C1-robustly transitive diffeomorphism f and an open neighbourhood U of f

such that any g ∈ U is transitive. Reducing the size of U if necessary, we can
assume that there are K > 0 and ε > 0 such that every ε-perturbation h of
any g ∈ U is transitive and the differentials h∗ and h−1

∗ are bounded by K.
Recall that by Pugh’s closing lemma [P] there is a residual subset of

Diff1(M) of diffeomorphisms whose nonwandering set is the closure of the
hyperbolic periodic points. So there is a residual subset R0 of U of diffeo-
morphisms g having a dense set of hyperbolic saddles (note that due to the
transitivity the diffeomorphisms in U have neither sinks nor sources).

Moreover, [BD2, Th. B] says that there is a residual set R1 of Diff1(M)
of diffeomorphisms f such that two periodic points of f belong to the same
transitive set if and only if their homoclinic classes are equal. Thus for any
g ∈ R = R0∩R1 and every periodic point Pg of g the homoclinic class H(Pg, g)
is the whole manifold M .

By the robust transitivity of the g, given by the choice of ε, it is not
possible to create a sink or a source by an ε-perturbation of any g ∈ R. So
Proposition 2.6 gives l such that every g ∈ R admits an l-dominated splitting
on M = H(Pg, g). Finally, choosing a sequence gn ∈ R converging to f ,
Corollary 1.5 ensures that f admits an l-dominated splitting, ending the proof
of the theorem for robustly transitive diffeomorphisms.
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Proof of Theorem 2, general case. Let Λf =
⋂+∞

−∞ f i(Ū) ⊂ U be a
C1-robustly transitive set in some open set U . Assume that Λf is not reduced
to a single hyperbolic orbit (in that case we have nothing to do).

The proof follows essentially along the arguments in the robust transitive
case above, but we need to pay special attention to the following fact: In the
transitive case (U = M) all the orbits we consider are automatically in Λf = M

(that is, a tautology), but a priori this does not happen when U �= M . Let us
go into the details of the proof of this case.

Let U be a C1-open neighbourhood of f such that, for every g ∈ U ,
the maximal invariant set Λg =

⋂+∞
−∞ gi(Ū) is transitive. As above, using

Pugh’s closing lemma and [BD2, Th. B], we get a residual subset R0 of U of
diffeomorphisms g such that the hyperbolic periodic points of Λg are dense in
Λg and have the same homoclinic classes. Thus, for every g ∈ R0, the set Λg

is included in the homoclinic class H(P, g) of some periodic point P . However,
that is the special difficulty of this case; we do not know a priori if H(P, g) is
contained in U (in the robust transitive case that is obvious: U = M !)

To solve this problem denote by H(P, g, U) the points of the closure of the
transverse intersections of the invariant manifolds of P whose orbits remain
in U . We call this set the homoclinic class of P in U . So H(P, g, U) is a
transitive compact subset of Λg and, since Λf ⊂ U , it is far from the boundary
of U .

Lemma 2.7. There is a residual set R2 of U such that for any g ∈ R2

there is a periodic point P such that H(P, g, U) = Λg.

Proof. The proof is identical to that in [BD2, Th. B] by the following
version of Hayashi’s connecting lemma. So we do not go into the details.

Theorem (Hayashi’s Connecting Lemma). Let M be a compact man-
ifold, U an open set of M , V an open set relatively compact in U , and f a
diffeomorphism defined on M .

Assume that there are periodic saddles P and Q whose orbits are contained
in U , a sequence of points xi converging to some point x ∈ W u

loc(P, f), and
a sequence of positive integers ni such that fni(xi) converges to some y ∈
W s

loc(Q, f). Suppose also that for any i and every m ∈ {0, . . . , ni} one has
fm(xi) ∈ V .

Then there is g arbitrarily C1-close to f such that x ∈ W u(P, g)∩W s(Q, g).
Moreover, the whole orbit of x is contained in U and gn(x) = y for some n > 0.

To prove Theorem 2 we apply Proposition 2.6, so we need to see that the
sets Λg = H(Pg, g, U) given by Lemma 2.7 are not all reduced to the single
periodic orbit Pg.
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Lemma 2.8. There is g arbitrarily C1-close to f having at least two
different hyperbolic periodic orbits contained in U .

By Lemma 2.7, this implies that one can choose g such that Λg = H(Pg, g, U)
is not reduced to the periodic orbit Pg.

Proof. We are assuming that Λf is not reduced to a single periodic orbit
(this is just the trivial case). Hence, if f has at least two periodic orbits the
result is immediate: After perturbation we can make these orbits hyperbolic
ones.

So it remains to consider the case where f has no periodic orbits. We
know that there are diffeomorphisms g close to f having periodic orbits. We
argue by contradiction: suppose that every g (with periodic points) close to f

has only one periodic orbit Q. Then considering an isotopy from g to f we get
a bifurcation of this periodic orbit. After a perturbation, we get a saddle-node,
a flip, or a Hopf bifurcation. In these three cases, a new perturbation gives
two periodic orbits: A saddle-node and a flip split into two hyperbolic periodic
points, and a Hopf point into a periodic point and an invariant circle (in this
case to get a new periodic point it is enough to modify the rotation number of
the restriction of the map to the invariant circle).

By definition of robust transitivity, there are no perturbations of f having
sinks or sources whose orbits are contained in U . Take a sequence gn → f of
diffeomorphisms such that Λgn = H(Pgn , gn, U) is nontrivial. Proposition 2.6
implies that there is l ∈ N such that Λgn admits an l-dominated splitting for
any n large enough. Corollary 1.5 now implies that these dominated splittings
induce an l-dominated splitting on lim supn→∞(Λgn), and so on Λf . Now the
proof of the theorem is complete.

2.2.5. Proof of Theorem 3. This theorem is a direct consequence of Propo-
sition 2.6. We argue as follows: let m ∈ N, K > 0, and ε > 0 such that any
diffeomorphism g which is ε-close to f has less than m sinks and sources,
and g∗ and (g∗)−1 are both uniformly bounded by K. Let l0 be the constant
l(K, ε/2, dim(M)) given by Proposition 2.6. Then, for every g ε/2-close to f

and any saddle P of g having a nontrivial homoclinic class H(P, g), we have
that H(P, g) has an l0-dominated splitting.

To prove Theorem 4 we need new arguments of a very different nature:
the notion of finest dominated splitting and the ergodic closing lemma of Mañé;
so let us postpone its proof until Section 6 of this paper.

We also postpone until the end of the paper (Section 7) the results about
conservative diffeomorphisms.
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3. Two-dimensional linear systems

In this section we give a version (Proposition 3.1) of Proposition 2.1 for
two-dimensional systems (without requiring transitions) following an argument
essentially due to Mañé in [Ma3]. In the next sections, using an argument of
reduction of the dimension of the system (quotients and restrictions of lin-
ear systems; see Section 4.1) we deduce from this two-dimensional result the
general version of it (see Section 5).

Proposition 3.1. Given any K > 0 and ε > 0 there is l ∈ N such that
for every two-dimensional linear system (Σ, f, E , A), with norm ‖A‖ bounded
by K and such that the matrices MA(x) preserve the orientation,

• either A admits an l-dominated splitting,

• or there are an ε-perturbation Ã of A and x ∈ Σ such that MÃ(x) has a
complex (nonreal) eigenvalue.

The difference between Proposition 3.1 and Proposition 2.1 (in the case
of 2-dimensional systems) is that here we get a complex eigenvalue instead of
a homothety. In fact, if the system admits transitions then one can use this
complex eigenvalue to get homotheties (this will be done later in any dimension,
see Proposition 2.5).

We begin the proof of Proposition 3.1 by a very elementary lemma whose
proof we omit:

Lemma 3.2. For every α > 0 and every matrix M ∈ GL+(2,R) having
two different eigenspaces E1 and E2 whose angle is less than α, there is s ∈
[−1, 1] such that Rs α◦M has a complex (nonreal) eigenvalue (here Rt α denotes
the rotation of angle t α).

In what follows, for notational simplicity, let us write Iµ =

(
1 µ

0 1

)
.

Lemma 3.3. For every α > 0 and µ > 0 there is c > 1 verifying the
following property : Consider the matrices

B =

(
b1 0
0 b2

)
andC =

(
c1 0
0 c2

)
such that

|b1|
|b2|

> c and
|b1 c1|
|b2 c2|

< 1.

Then the angle between the eigenvectors of the matrix D = B ◦ Iµ ◦ C is less
than α.

Proof. Observe first that (1, 0) is an eigenvector of the matrix D. The
heuristic idea of the proof is very simple: Consider the vector (1, β), for some
small β ≤ 2/(c µ) fixed. As |b1/b2| and |c2/c1| are large (i.e. greater than c)
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the vectors B−1(1, β) and C(1, β) are almost vertical (angle with the vertical
less than µ). The role of the matrix Iµ now is to send the direction of C(1, β)
into the direction of B−1(1, β), thus (1, β) is an eigenvector of D.

The precise calculations are not more complicated: Let (1, β), β �= 0, be
some eigenvector of D not parallel to (1, 0) (i.e. associated to the eigenvalue
b2 c2). Then β satisfies

|β| =
|b2 c2 − b1 c1|

|µ b1 c2|
=

|b2/b1 − c1/c2|
µ

<
2

c µ
.

This completes the proof of the lemma.

Consider a periodic system of matrices (Σ, f, A) in GL+(2,R) such that
all the matrices of the system are diagonal. Thus the canonical splitting R2 =
R ⊕ R is invariant. Given x ∈ Σ denote by σ(x) and λ(x) the eigenvalues
of MA(x) associated with the vertical direction ({0} × R) and the horizontal
direction ({0}×R), respectively. Up to a trivial change of coordinates, one can
assume that for any x ∈ Σ, the eigenvalue σ(x) of MA(x) is bigger in modulus
than the eigenvalue λ(x).

Lemma 3.4. For any ε > 0, α > 0, and K > 0 there is l ∈ N with the
following property :

Consider a periodic system (Σ, f, A) of diagonal matrices in GL+(2,R) as
above, bounded by K such that |σ(x)| ≥ |λ(x)| for every x ∈ Σ.

Suppose that the splitting R2 = R⊕R is not l-dominated. Then there are
an ε-perturbation Ã of A and x ∈ Σ such that the angle between the eigenspaces
of MÃ(x) is less than α.

Proof. Let us write

A(x) =

(
a(x) 0

0 b(x)

)
.

Observe that if the splitting R2 = R⊕ R is l-dominated then for every x ∈ Σ
one has

2 |
l−1∏
0

a(f i(x))| < |
l−1∏
0

b(f i(x))|.

Recall that, by Lemma 1.2, there is µ > 0 (depending on ε and K) such that
multiplying matrices A(x) by diagonal matrices µ-close to the identity one gets
ε/3-perturbations of A.

Suppose first that there is x in Σ such that

|σ(x)| ≤ (1 + µ)2 p(x) |λ(x)|, where p(x) is the period of x.

Then multiplying the matrices A(f i(x)) by some matrix of the form(
1 + ν 0

0 1/(1 + ν)

)
, for some ν ∈ [0, µ],
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we get an ε/3-perturbation A′ of A such that MA′(x) is an homothety. So given
any pair of (different) directions of R2, there is an arbitrarily small perturbation
Ã of A′ such that MÃ(x) has two eigenvectors parallel to such directions. This
ends the proof of the lemma in this first case.

So we can now assume that

|σ(x)| > (1 + µ)2p(x) |λ(x)| for every x ∈ Σ.

Consider the constant c, given by Lemma 3.3, associated to α and µ, and l

such that
(1 + µ)l > 2 c.

We show that, for any system of matrices (Σ, A, f) bounded by K, l is the
constant announced in the statement of the lemma.

Recall the observation in the beginning of the proof of the lemma; since
the canonical splitting R2 = R⊕R is not l-dominated, there is x ∈ Σ such that

2 |
l−1∏
0

a(f i(x))| ≥ |
l−1∏
0

b(f i(x))|.

Assume first that l < p(x). Given y ∈ Σ let

ã(y) = (1 + µ) a(y) if y = f i(x), i ∈ {0, · · · , l − 1},
ã(y) = a(y) if i ∈ {l, . . . , p(x) − 1}.

Consider now the ε/3-perturbation Ã of A given by

Ã(y) =

(
ã(y) 0

0 b(y)

)
.

Let B = Ã(l)(x) (the product of the matrices of the system Ã along the orbit
of x from time 0 to time l − 1) and C = Ã(p(x)−l)(f l(x)). Then, we get

MÃ(x) = C ◦ B and MÃ(f l(x)) = B ◦ C.

Observe that B and C verify the hypotheses of Lemma 3.3, so that the angle
between the eigenvectors of the matrix D = B ◦ Iµ ◦ C is less than α.

Denote by Ā the ε/3-perturbation of Ã obtained modifying only the
matrix Ã(f−1(x)) = A(f−1(x)) by replacing this matrix by Ā(f−1(x)) =
Iµ ◦A(f−1(x)). Then the angle between the eigenvectors of MĀ(f l(x)) = D is
less than α.

To finish the proof of Lemma 3.4 the case l ≥ p(x) remains. Remark that
l cannot be a multiple of p(x), hence l = k p(x) + l0, for some k ≥ 1 and
1 ≤ l0 < p(x). By hypothesis,

(1 + µ)2 p(x) |
p(x)−1∏

0

a(f i(x))| < |
p(x)−1∏

0

b(f i(x))|.
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Since we are assuming that the splitting is not l-dominated, we also have

2 |
l−1∏
0

a(f i(x))| ≥ |
l−1∏
0

b(f i(x))|.

So we get that

|
l0−1∏

0

a(f i(x))| >
(1 + µ)2 k p(x)

2
|
l0−1∏

0

b(f i(x))|.

Finally, note that 2 k p(x) > l and recall the choice of l (i.e. (1 + µ)l > 2 c);
thus

(1 + µ)2 k p(x)

2
>

(1 + µ)l

2
> c.

Now, as in the previous case, we can apply Lemma 3.3 to the matrices B =
A(l0)(x) and C = A(k p(x)−l0)(f l0(x)). This completes the proof of the lemma.

3.1. Proof of Proposition 3.1. The proof of Proposition 3.1 follows almost
directly from Lemmas 1.2, 3.2, and 3.4. Let us go into the details.

For a fixed ε > 0 and K > 0, consider a system of matrices (Σ, f, A)
in GL+(2,R), bounded by K, such that it is not possible to create a com-
plex eigenvalue by an ε−perturbation of A. We prove that such a system is
l-dominated. This clearly implies the proposition.

By Lemma 1.2, there is α = α(K, ε) > 0 such that the composition of
the system with a rotation of angle less than α gives an ε/2-perturbation of
the system. So Lemma 3.2 ensures that for any x ∈ Σ the angle between the
eigenspaces of MA(x) is bigger than α. This means that there are K0 = K0(α)
and a family of matrices P (x), x ∈ Σ, with P (x) and P−1(x) bounded by K0,
such that the eigenspaces of P (x) ◦ MA(x) ◦ P (x)−1 are orthogonal.

Let B = P ◦ A ◦ P−1 be the system defined by B(x) = P (f(x)) ◦ A(x) ◦
P (x)−1. By Lemma 1.2, there are K1 = K1(K, K0) and δ = δ(K, K0, ε) such
that B and B−1 are bounded by K1 and any δ-perturbation of B is obtained
by conjugating by P some ε-perturbation of A.

By construction, all the eigenspaces of the matrices MB(x) are orthogo-
nal. Thus, by an orthonormal change of coordinates, we can assume that B

left invariant the canonical splitting R2 = R ⊕ R, and that the eigenvalue of
MB(x) corresponding to the vertical direction is bigger (in modulus) than the
eigenvalue associated to the horizontal direction. Finally, there is no possibility
to create a complex eigenvalue by a δ-perturbation of B.

Fix K2 = K2(K1) such that any δ-perturbation of B is bounded by K2.
Consider now α2 = α2(K2) such that the composition by a rotation of angle
at most α2 of a linear system bounded by K2 gives a δ/3-perturbation. Then
(following Lemma 3.2) given any δ/3-perturbation B̃ of B the angles between
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the eigenspaces of MB̃(x), x ∈ Σ, are bigger than α2. So, from Lemma 3.4, we
get l0(δ, K1, α2) such that B is l0-dominated.

Using the fact that A = P−1 ◦ B ◦ P , where P is bounded by K0, we get
l(l0, K0) such that A is l-dominated.

Now, to conclude the proof it is enough to remark that all the constants
introduced in the proof are functions of K and ε.

4. Invariant subbundles: Reduction of the dimension
and the finest dominated splitting

4.1. Quotient of linear systems and restriction to subbundles. The proof
of Proposition 2.4 uses successively Proposition 3.1 on 2-dimensional subbun-
dles. Our construction also involves an argument (considering quotient spaces)
that allows us to reduce the dimension of the ambient space. We pay special
attention to the invariant subbundles of a linear system, and we will often need
to compare the action of the system on them. This motivates the introduction
of the notions of restriction and quotient of a linear system.

Let (Σ, f, E , A) be a linear system and F an invariant subbundle of E
(with constant dimension). We denote by AF the restriction of A to F and
by A/F the quotient of A along F endowed with the metric of the orthogonal
complement F⊥ of F ; i.e., given a class [v] we let

|[v]| = |v⊥F |, where v = v⊥F + vF , v⊥F ∈ F⊥, and vF ∈ F .

Write A in blocks of the form(
AF B

0 C

)
.

Since C = A/F = (PF⊥ ◦ A)/F , where PF⊥ is the orthogonal projection on
F⊥, we have the following lemma:

Lemma 4.1. Given any ε > 0,

• every ε-perturbation of AF is the restriction of an ε-perturbation of A keep-
ing invariant the other eigenvalues (but not necessarily the eigenspaces).
Actually, A/F is not modified.

• Any ε-perturbation of A/F is the quotient of an ε-perturbation of A with
AF invariant.

The definition of domination of a linear system (recall Definition 1.3) has
a direct generalization for pairs of invariant subbundles. Suppose that E and
F are two invariant subbundles of a linear system (Σ, f, E , A); we say that E

is l-dominated by F if for every x ∈ Σ,

‖A(l)
E (x)‖ ‖A(−l)

F (f l(x))‖ < 1/2.
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In this case we write E ≺ F or E ≺l F . It is easy to see that this dominance
implies that for any x ∈ Σ the intersection E(x)∩F (x) is reduced to the zero-
vector. So this definition is equivalent to saying that E ⊕ F is an l-dominated
splitting of the system AE⊕F .

In what follows we will often use the next very easy lemma whose proof
we omit:

Lemma 4.2. For any K > 0 and l > 0 there are K0 > 0, l0 > 0, and
K1 > 0 satisfying the following property.

Consider a linear system (Σ, f, E , A) bounded by K with an invariant split-
ting E ≺l F . Then there is a linear change of coordinates P , bounded by K0,
such that the bundles P (E) and P (F ) are orthogonal and invariant by the sys-
tem defined by B = P ◦ A ◦ P−1. Moreover, P (E) ≺l0 P (F ) (for B) and B is
bounded by K1.

One of the main difficulties in the proof of Proposition 2.4 comes from
the fact that the dominance has not a good behavior if one consider sums of
dominated subbundles. The following remark illustrates this difficulty:

Remark 4.3. There exist linear maps and invariant bundles E = E⊕F⊕G

such that E ≺ F and E ≺ G, but the splitting E ⊕ (F ⊕G) is not dominated.

This difficulty comes from the relationship between dominance and angles
(the angles between two bundles of a dominated splitting cannot be very small),
and the following easy geometric observation: One can have simultaneously big
angles between E and F , �(E, F ), and E and G, �(E, G), but an arbitrarily
small angle �(E, F⊕G). See the next example, and Lemma 4.2 and Remark 4.5
below.

Example 2. Consider the quotient Σ of Z × N by the relation (n, m) =
(n + 3m, m) and the map f : Σ → Σ given by (n, m) �→ (n + 1, m). Denote by
E the trivial bundle of fiber R3. Define the linear map A (acting on R3) by

A(n, m) =





 1 0 0

0 4 0
0 0 4


 if −m ≤ n < 0, ,


 1 0 0

0 1/4 0
0 0 4


 if 0 ≤ n < m,


 1 0 0

0 64 0
0 0 4


 if m ≤ n < 2m.

Then (Σ, f, E , A) is a periodic linear system.
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Observe that the directions e1R, (e2 + e3)R, and e3R define a splitting of
E(0, m) by eigenspaces of the matrix MA(0, m). We now define E, F , and G

at the point (n, m) as the images of these spaces by An.
By construction, E0 = E ⊕ F ⊕ G is an invariant splitting and A induces

an isometry on E and a dilation of ratio bigger than 2 on G and F . So
we get E ≺1 F and E ≺1 G. However, this system does not admit any
dominated splitting: There are vectors e2 ∈ F ⊕G which are contracted during
an arbitrarily large time.

The following lemma explains how we solve the difficulty above.

Lemma 4.4. With any K > 0 and l ∈ N, there exists L with the following
property : Given any linear system (A, f, E , Σ) such that ‖A‖ is bounded by K

with an invariant splitting E ⊕ F ⊕ G, one has

1. (E ≺l F and E/F ≺l G/F ) ⇒ E ≺L (F ⊕ G),

2. (F ≺l G and E/F ≺l G/F ) ⇒ (E ⊕ F ) ≺L G).

Proof. Observe that Lemma 4.2 allows us to assume that (up to a bounded
change of coordinates) E is orthogonal to F and E/F is orthogonal to G/F

(in the quotient space). This means that E is orthogonal to PF⊥(G); thus E

is also orthogonal to G.
Hence at each point x ∈ Σ we can choose an orthonormal basis (ei(x)) of Ex

such that ei(x) ∈ E(x) for i ≤ dim(E(x)), and ei(x) ∈ F (x) for dim(E(x)) <

i ≤ dim(E(x)) + dim(F (x)). Moreover, G(x) is contained in the subspace
spanned by the ei(x) for i > dim(E(x)). So this subspace is F (x) ⊕ G(x) and
it is invariant by A. Using the basis (ei(x)) we can write the matrices of the
system A as follows,

A(x) =


 AE(x) 0 0

0 AF (x) B(x)
0 0 C(x)


 ,

where C is A/(E ⊕F ) and B is bounded by a constant K1 depending only on
K and l. Write

D = AF⊕G =

(
AF B

0 C

)
.

We can now consider D as a linear system over F ⊕ G, which allows us to
iterate D. We prove that there is L (depending on K and l) such that

‖AL
E(x)‖ ‖D−L(x)‖ < 1/2;
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that is exactly the first assertion in the lemma (E ≺L F ⊕ G). To prove this
claim observe that

D−l =

(
A−l

F H

0 C−l

)
, where H = −

l∑
j=1

A−j
F ◦ B ◦ Cj−l−1.

Therefore all the matrices in the definition of D−l are bounded by some con-
stant K2 depending on K and K1, and so depending on K and l. An elementary
calculation shows that for i ≥ 1

D−i l =

(
A−i l

F

∑i−1
0 A−j l

F ◦ H ◦ C(j+1−i) l

0 C−i l

)
.

By the hypotheses,

‖Al
E‖ ‖A−l

F ‖ < 1/2 and ‖Al
E‖ ‖C−l‖ < 1/2,

the last inequality follows immediately from E/F ≺l G/F . Thus

sup{‖A−i l
F ‖, ‖C−i l‖} <

1
2i ‖Ai l

E‖
.

An elementary estimate shows that the norm of a matrix of the form

(
X Y

0 Z

)

is bounded by sup{‖X‖, ‖Z‖} + ‖Y ‖. So we get that

‖D−i l‖ ≤ 1
2i ‖Ai l

E‖
(1 + 2 i K1) .

It is now immediate that

‖Ai l
E‖ ‖D−i l‖ <

1
2i

(1 + (2 i K1)).

Taking i big enough, this product is clearly less than 1/4, ending the proof of
our claim. This completes the first part of the lemma, the second one follows
analogously, so we omit it.

Remarks 4.5.

• The relations ≺ and ≺l are (strict and partial) order relations on the set
of A-invariant subbundles of a linear system (Σ, f, E , A): The transitivity
and the strict antisymmetry of these relations are clear.

• Let E and G be two subbundles of E , the angle �(E, G) between E and
G is the infimum of the angles (u, v), where u ∈ Ex, v ∈ Gx, x ∈ Σ. By
Lemma 4.2, if E ≺l G then the angle �(E, G) between E and G is greater
than some constant α depending on K and l.
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• Let E and F be two subbundles such that E ≺ F for AE⊕F . Let G be
an A-invariant subbundle such that G ∩ E = G ∩ F = 0 and that the
angles �(E, G) and �(F, G) are bigger than some α > 0. Then E/G is
dominated by F/G. Moreover, the constant of domination depends only
on the bound K of A, the constant of domination of the splitting E ≺ F ,
and the angle α. The easy idea of the proof is the following: As the angle
�(E, G) is greater than α, the metrics of E/G (i.e. the metric in G⊥)
and of E are obtained by a bounded change of coordinates. The same is
true for F . It is now enough to go back to the definition of domination.

As a corollary we now get,

Lemma 4.6. Let K > 0 and l ∈ N. There is L such that for any linear
system (Σ, f, E , A) bounded by K and any invariant subbundles E, F , and G,
such that E ≺l F and F ≺l G, one has E ≺L F ⊕ G and E ⊕ F ≺L G.

Proof. As E ≺l F and F ≺l G there is a constant α (depending only on
K and l) such that the angles �(E, F ) and �(F, G) are greater than α. By
transitivity of the relation ≺l one has E ≺l G. So, by the third part of the
remark, we get l1 (depending on K, l, and α) such that E/F ≺l1 G/F . Now
the corollary follows directly from Lemma 4.4.

4.2. The finest dominated splitting. Lemma 4.4 allows us to define the
notions of undecomponible and finest dominated splittings. Let us recall that
an invariant splitting E = E1 ⊕ · · · ⊕ Ek is dominated if for any 1 ≤ j ≤ k − 1
one has

⊕j
1 Ei ≺

⊕k
j+1 Ei.

Corollary 4.7. A splitting E =
⊕k

i=1 Ei is dominated if and only if
Ei ≺ Ei+1 for every i ∈ {1, . . . , k − 1} .

Proof. Observe that if E =
⊕k

i=1 Ei is dominated then one has Ei ≺
Ei+1 straightforwardly from the definition. To prove the converse we argue
inductively (on the number k of subbundles of the splitting). For k = 3 the
corollary is exactly Lemma 4.6. Assume now that the lemma is true for k − 1.

We have to prove that if Ei ≺ Ej for every i < j then the splitting is
dominated; that is,

⊕i
1 Ej ≺ ⊕k

i+1 Ej for all 0 < i < k. Assume first that
i > 1. Applying the induction hypothesis to the restrictions of A to

⊕k
2 Ej

and
⊕i

1 Ej , we get
⊕i

2 Ej ≺ ⊕k
i+1 Ej and E1 ≺ ⊕i

2 Ej . Now the dominance⊕i
1 Ej ≺ ⊕k

i+1 Ej follows when we apply Lemma 4.6 to the subbundles E1,⊕i
2 Ej , and

⊕k
i+1 Ej .

Finally, if i = 1 we apply the induction hypothesis to
⊕k−1

1 Ej and
⊕k

2 Ej .
This gives E1 ≺ ⊕k−1

2 Ej and
⊕k−1

2 Ej ≺ Ek. Now the conclusion follows as
above applying Lemma 4.6 to these three subbundles.
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Corollary 4.7 above allows us to use the notation E1 ≺ E2 ≺ · · · ≺ Ek to
denote a dominated splitting

⊕k
1 Ej .

Lemma 4.8. Let E1 ≺ · · · ≺ Ek ≺ F ≺ G1 · · · ≺ Gm be a dominated
splitting such that AF admits a dominated splitting F1 ≺ F2. Then E1 ⊕ · · · ⊕
Ek ⊕ F1 ⊕ F2 ⊕ G1 ⊕ · · · ⊕ Gm is a dominated splitting.

Proof. It suffices to verify that Ek ≺ F1 and F2 ≺ G1.

Definition 4.9. Let
⊕k

1 Ei and
⊕m

1 Fj be two dominated splittings of E ,
E =

⊕k
1 Ei and

⊕m
1 Fj . We say that the splitting

⊕m
1 Fj is finer than

⊕k
i Ei

if every Ei is the direct sum of some of the Fj , i.e. Ei =
⊕j2

j1
Fj . In this case

we write
⊕m

1 Fj �
⊕k

1 Ei.

Remark 4.10. Let (Σ, f, E , A) be a linear system of dimension N .

• The relation � is an order relation on the set of dominated splittings of
a linear system (Σ, f, E , A).

• Given any finite sequence ni with
∑

i ni = N , there is at most one domi-
nated splitting E1 ≺ · · · ≺ Ek such that dimEi = ni for every i (actually
this easy assertion is a direct consequence of the next lemma). As a con-
sequence, the set of dominated splittings of (Σ, f, E , A) is finite. So there
are splittings which are minimal for the relation �, these splittings are
called undecomponible. Moreover, given any splitting we can subdivide
it to get a minimal one, i.e. every splitting is bigger, �, than at least one
undecomponible splitting.

• Following Lemma 4.8, a dominated splitting
⊕k

1 Ei is undecomponible if
and only if none of the subsystems AEi admits dominated decomposition.

Proposition 4.11. For every linear system (Σ, f, E , A) there is a unique
undecomponible dominated splitting, called the finest dominated splitting.

Proof. The first step to prove this proposition is the following lemma.

Lemma 4.12. Let E1 ≺ · · · ≺ Ek and F1 ≺ · · · ≺ Fm be two dominated
splittings of E. Then either E1 ⊂ F1 and

⊕m
2 Fi ⊂ ⊕k

2 Ei, or F1 ⊂ E1 and⊕k
2 Ei ⊂

⊕m
2 Fi. As a consequence, if E1 �= F1 then either E1 or F1 admits a

dominated splitting.

Proof. First we prove that for any x ∈ Σ one of the linear spaces E1(x)
and F1(x) is contained in the other one. We argue by contradiction: suppose,
contrary to our hypotheses, that there are

x ∈ Σ, u ∈ (E1(x) \ F1(x)), and v ∈ (F1(x) \ E1(x)).
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As
⊕k

1 Ei is dominated, and u ∈ E1 and v /∈ E1, for every i big enough we get

‖A(i)(x)(u)‖
‖u‖ ≤ ‖A(i)(x)(v)‖

2 ‖v‖ .

Similarly, the dominance of
⊕m

1 Fi, u /∈ F1(x), and v ∈ F1(x) imply (for big i)

‖A(i)(x)(v)‖
‖v‖ ≤ ‖A(i)(x)(u)‖

2‖u‖ .

These two inequalities give a contradiction. So we have proven that for any
x ∈ Σ one has E1(x) ⊂ F1(x) or vice versa. As the dimensions of these spaces
do not depend on x, we have that either E1 ⊂ F1 or F1 ⊂ E1.

The same arguments give the other inclusion; that is, either
⊕m

2 Fi ⊂⊕k
2 Ei, or

⊕k
2 Ei ⊂

⊕m
2 Fi.

Finally, assume now that E1 �= F1 and, for instance, E1 ⊂ F1. Then F1 is
transverse to

⊕k
2 Ei, so that we get a splitting F1 = E1 ⊕ (F1 ∩

⊕k
2 Ei). This

splitting is clearly invariant and dominated. This finishes the proof.

We are now ready to prove Proposition 4.11:
Let

⊕k
1 Ei and

⊕m
1 Fj be two undecomponible dominated splittings. Using

Lemma 4.12 above we get that E1 = F1 and that
⊕k

2 Ei =
⊕m

2 Fj . Consider
now the restriction B = A⊕m

2
Fj

. Now E2 ≺ · · · ≺ Ek and F2 ≺ · · · ≺ Fm are
two undecomponible dominated splittings of B, so E2 = F2. We conclude the
proof repeating k times this argument.

4.3. Transitions and invariant spaces.

Lemma 4.13. Let (Σ, f, E , A) be a periodic linear system with ε-transitions
and ε0 > ε. Consider an invariant subset Σ0 ⊂ Σ such that there is a dom-
inated splitting E1 ≺ · · · ≺ Ek defined over Σ0. Then for every finite subset
Λ = {x1, . . . , xm} of Σ0 there are ε0-transitions such that the corresponding
linear maps (transitions) Txj ,xi map El(xi) on El(xj) for any l ∈ {1, . . . , k}
and xj, xi ∈ Λ.

Before proving this lemma let us observe that as a direct consequence of
it we get the following corollary.

Corollary 4.14. Let (Σ, f, E , A) be a periodic linear system with tran-
sition and E ⊕F a dominated splitting. Then the induced systems AE and AF

admit transitions.
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Proof. By hypothesis, there are ε-transitions [t0xj ,xi
] from xi to xj for every

pair of points in Λ. By Remark 1.7, for any n1, n2 ≥ 0 the word

[M ]A(xj)n2 [t0xj ,xi
] [M ]A(xi)n1

is also a transition. Moreover, any (ε0 − ε)-perturbation of an ε-transition is
also an ε0-transition.

Taking an arbitrarily small perturbation of [t0xj ,xi
] we can assume that its

corresponding matrix T̃ 0
j,i maps Ek(xi) transversally to

⊕k−1
1 Em(xj). Thus,

by the dominance
⊕k−1

1 Em ≺ Ek, taking n2 large enough, we have that(
(MA(xj))n2 ◦ T̃ 0

j,i

)
(Ek(xi)) is arbitrarily close to Ek(xj).

So there is a small perturbation MÃ(xj) of MA(xj) such that(
MÃ(xj) ◦ (MA(xj))n2 ◦ T̃ 0

j,i

)
(Ek(xi)) = Ek(xj).

Denote by T 1
j,i the linear map corresponding to this new transition. Now we

consider the pre-image of Ek(xj) by T 1
j,i and observe that(

MA(xi)−n1 ◦ (T 1
j,i)

−1
)

(Ek(xj)) = Ek(xi).

As above, since
⊕k−1

1 Em ≺ Ek, for n1 sufficiently large,

(
MA(xi)−n1 ◦ (T 1

j,i)
−1

)
(
k−1⊕
1

Em(xj)) is arbitrarily close to
k−1⊕
1

Em(xi).

So, arguing as before, the announced transition Tj,i is obtained composing (at
the right) T 1

j,i ◦MA(xi)n1 with a small perturbation of MA(xi) mapping Ek(xi)

into itself and
⊕k−1

1 Em(xi) into
(
MA(xi)−n1 ◦ (T 1

j,i)
−1

)
(
⊕k−1

1 Em(xj)).

Next we consider the restriction of A to
⊕k−1

1 Em to get a new pertur-
bation of the transition mapping Ek(xi), Ek−1(xi), and

⊕k−2
1 Em(xi) into the

corresponding spaces for xj . The inductive pattern of our construction is now
clear.

4.4. Diagonalizable systems.

Definition 4.15. A periodic linear system (Σ, f, E , B) of dimension N

is diagonalizable if for every x ∈ Σ the matrix MB(x) has only real positive
eigenvalues with multiplicity 1.

Denote by λ1(x) < · · · < λN (x) the eigenvalues of MB(x) and by Ei(x)
the one-dimensional eigenspace corresponding to λi(x). Then E =

⊕N
1 Ei is

an invariant splitting of B.

The next result says that every periodic system with transitions can be
approximated by a diagonalizable subsystem (defined on a dense subset). More
precisely,
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Lemma 4.16. Let (Σ, f, E , A) be a periodic linear system with transitions.
Then for any ε > 0 there is a diagonalizable ε-perturbation Ã of A defined on
a dense invariant subset Σ̃ of Σ.

Proof. Observe first that any matrix M ∈ GL(n,R) can be perturbed (by
an arbitrarily small perturbation) to get M̃ having only eigenvalues (complex
or real) with multiplicity one and such that any pair of eigenvalues with the
same modulus are complex and conjugate, having rational argument. So there
is k such that M̃k has only real positive eigenvalues, but some of them may
have multiplicity 2 (those coming from a complex eigenvalue of M̃). As above,
by a small perturbation of M̃k, we get a matrix M1 having only real positive
eigenvalues with multiplicity 1.

Take x ∈ Σ and write M = MA(x). By the comments above, there is
an ε/10-perturbation M̃ of M having only multiplicity one eigenvalues. De-
note by M1 the perturbation of an appropriate power of M̃ as the one built
above (i.e having only real eigenvalues with multiplicity one). Let T be an
ε/10-transition matrix from x into itself. So for any positive n1 and n2 there
are y ∈ Σ and a 3ε/10-perturbation Ã of A along the orbit of y such that

MÃ(y) = Mn2
1 ◦ T ◦ Mn1

1 .

So, taking n1 and n2 sufficiently big, we can now repeat the proof of Lemma 4.13
to get a 4ε/10-transition T1 preserving all the eigenspaces of M1. These spaces
are 1-dimensional, thus they are the eigenspaces of T1 and their corresponding
eigenvalues are real.

Recall (see Remark 1.7) that if T1 is a transition from x into itself then T 2
1

is also a transition. Therefore, replacing if necessary T1 by T 2
1 , we can assume

that T1 has only real positive eigenvalues with multiplicity one. Observe that
T1 and M1 have the same one-dimensional eigenspaces; thus T1 commutes
with M1. So, for k big enough, Mk

1 ◦T1 has only positive real eigenvalues with
multiplicity 1. Moreover, there are a point z (whose orbit passes arbitrarily
close to x) and an ε/2-perturbation Â of A along the orbit of z such that

MÂ(z) = Mk
1 ◦ T1.

This proves that the set Σ̃ of points z ∈ Σ admitting an ε-perturbation along
its orbits such that MÂ(z) has only positive real eigenvalues with multiplicity
1 is dense in Σ, ending the proof of the lemma.

In what follows, to prepare the proof of Theorem 4, we will give some
volume controlling versions of our lemmas, as we do in the next remark:

Remark 4.17. Let (Σ, f, E , A) be a linear system with transitions such
that there is some point x0 ∈ Σ such that the modulus of the jacobian of the
matrix MA(x0), denoted by J(MA(x0)), is greater than one. Then we can
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choose the diagonalizable ε-perturbation Ã of A given by Lemma 4.16 such
that the modulus of the jacobian J(MÃ(p)) is bigger than one for every p in
the dense subset Σ̃ of Σ.

Proof. First, by using the transitions and the existence of the point x0

with J(MA(x0)) > 1, we get a dense subset Σ̂ of Σ such that J(MA(x)) > 1
for all x ∈ Σ̂. Now we can repeat the proof of Lemma 4.16 above: Taking the
exponents n1 and n2 large enough we get that (in the proof of the lemma) the
moduli of the jacobian of the corresponding matrices MÃ(y) are greater than
one.

5. Dominated splittings, complex eigenvalues
of rank (i, i + 1), and homotheties

In this section we prove Propositions 2.4 and 2.5. To prove Proposi-
tion 2.4, we use Lemma 4.4 and consider successive quotients of linear systems
in order to get complex eigenvalues (obtained by using the arguments of the
2-dimensional case, see Section 3). Then the transitions and the existence of
complex eigenvalues of any rank allow us to “mix all the eigenvalues” of some
matrix, obtaining the homothety announced in Proposition 2.5.

5.1. Getting complex eigenvalues of any rank.

Lemma 5.1. Given K > 0 and ε > 0 there is l ∈ N such that for any
diagonalizable linear periodic system (Σ, f, E , B) of dimension N and bounded
by K, and any 1 ≤ i ≤ N − 1 one has:

• Either there is an ε-perturbation of B having a complex eigenvalue of
rank (i, i + 1),

• or
Ej/(Ej+1 ⊕ · · · ⊕ Ek) ≺l Ek+1/(Ej+1 ⊕ · · · ⊕ Ek)

for every j ≤ i ≤ k.

Proof. Fix ε > 0 and let l be the dominance constant given by Propo-
sition 3.1. If Ej/(Ej+1 ⊕ · · · ⊕ Ek) is l-dominated by Ek+1/(Ej+1 ⊕ · · · ⊕ Ek)
we are done. Otherwise, by Proposition 3.1, we can perturb the quotient to get
eigenvalues λ̃j = λ̃k+1 = α. Moreover, by Lemma 4.1, this perturbation of the
quotient gives a perturbation B̃ of B having a pair of eigenvalues λ̃j = λ̃k+1 = α

and preserving the eigenvalues of the restriction of B to Ej+1 ⊕ · · · ⊕ Ek (we
denote such eigenvalues by λi).



398 C. BONATTI, L. J. Dı́AZ, AND E. R. PUJALS

Consider a small isotopy Bt producing this perturbation (i.e. B0 = B and
B1 = B̃) and denote by λj,t and λk+1,t the continuations of the eigenvalues λj

and λk+1 at time t, so that

λj,0 = λj , λj,1 = λ̃j , λk+1,0 = λk+1, and λk+1,1 = λ̃k+1.

Moreover, we can assume that for every 0 ≤ t < 1 one has λj,t < λk+1,t

(otherwise we stop the isotopy at the first t such that λj,t = λk+1,t). Then, by
continuity, following this isotopy there are three possibilities:

• at some stage t of the isotopy, λj,t = λi+1 ≤ λk+1,t,

• at some stage t of the isotopy, λj,t ≤ λi = λk+1,t,

• for t = 1, λi < λj,1 = α = λk+1,1 < λi+1.

In each of these cases a small perturbation gives a complex eigenvalue of rank
(i, i + 1), ending the proof of the lemma.

To deduce Proposition 2.4 from Lemma 5.1 above we will apply succes-
sively Lemma 4.4. Even if the arguments in the proof of the proposition are
rather simple and the main difficulty of it is of combinatorial type, for clearness
and to organize the combinatorics, we divide the proof into two steps:

Lemma 5.2. For any K > 0, N > 0, and ε > 0 there is L0 ∈ N such
that for every diagonalizable periodic linear system (Σ, f, E , B), of dimension
N and bounded by K, and for any 1 ≤ i ≤ N − 1:

• Either B admits an ε-perturbation having a complex eigenvalue of rank
(i, i + 1)

• or

Ej/⊕i

j+1
Em

≺L0

N⊕
i+1

Ek/⊕i

j+1
Em

for every j ≤ i.

Before proving the lemma observe that if j = i the second item of the
lemma means that Ei ≺L0

⊕N
i+1 Ek.

Proof. Assume that every ε-perturbation of B has no complex eigenvalues
of rank (i, i + 1). From Lemma 5.1, taking k = i and k = i + 1 we get l such
that for every j < i one has

Ej/⊕i

j+1
Em

≺l Ei+1/⊕i

j+1
Em

and Ej/⊕i+1

j+1
Em

≺l Ei+2/⊕i+1

j+1
Em

.
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We now apply Lemma 4.4 taking

E = Ej/⊕i

j+1
Em

, F = Ei+1/⊕i

j+1
Em

, and G = Ei+2/⊕i

j+1
Em

.

Observe first that

E/F = Ej/⊕i+1

j+1
Em

and G/F = Ei+2/⊕i+1

j+1
Em

.

By the comments above, E ≺l F and E/F ≺l G/F . Thus by Lemma 4.4 there
is l1 such that

Ej/⊕i

j+1
Em

≺l1 (Ei+1 ⊕ Ei+2)/⊕i

j+1
Em

.

Moreover, this holds for every j ≤ i. Taking k = i + 2 in Lemma 5.1, one gets

Ej/⊕i+2

j+1
Em

≺l Ei+3/⊕i+2

j+1
Em

.

As before, applying Lemma 4.4 to

E = Ej/⊕i

j+1
Em

, F = (Ei+1 ⊕ Ei+2)/⊕i

j+1
Em

, and G = Ei+3/⊕i

j+1
Em

,

one gets l2 such that

Ej/⊕i

j+1
Em

≺l2 (Ei+1 ⊕ Ei+2 ⊕ Ei+3)/⊕i

j+1
Em

.

The inductive procedure to prove the lemma is now clear.

Lemma 5.3. For any K > 0, N > 0, and ε > 0 there is L ∈ N such
that for every diagonalizable periodic system (Σ, f, E , B), of dimension N and
bounded by K, and any 1 ≤ i ≤ N − 1:

• Either B admits an ε-perturbation having a complex eigenvalue of rank
(i, i + 1),

• or
i⊕
1

Ej ≺L

N⊕
i+1

Ej .

Proof. Assume that it is not possible to perturb B to get a complex eigen-
value of rank (i, i + 1). Once more, the proof is an inductive argument using
alternately Lemmas 5.2 and 4.4 above.

By Lemma 5.2, applied to j = i and to j = i − 1, one knows

Ei ≺L0

N⊕
i+1

Ek and Ei−1/Ei ≺L0

N⊕
i+1

Ek/Ei.



400 C. BONATTI, L. J. Dı́AZ, AND E. R. PUJALS

So Lemma 4.4 gives L1 such that (Ei−1 ⊕ Ei) ≺L1

⊕N
i+1 Ek. By Lemma 5.2,

taking j = i − 2, one gets

Ei−2/(Ei−1 ⊕ Ei) ≺L0

N⊕
i+1

Ek/(Ei−1 ⊕ Ei).

Thus applying Lemma 4.4 to Ei−2, Ei−1 ⊕ Ei, and
⊕N

i+1 Ek one obtains

(Ei−2 ⊕ Ei−1 ⊕ Ei) ≺L1

N⊕
i+1

Ek.

The lemma now follows by a very simple induction.

5.2. End of the proof of Proposition 2.4. Recall that Proposition 2.4 says
that if there is no perturbation of the system with a complex eigenvalue of
rank (i, i + 1) then the system has an l-dominated splitting of dimension i.

Let (Σ, f, E , A) be a continuous periodic linear system, of dimension N

and bounded by K, having transitions. Assume that there are ε > 0 and i ∈
{1, . . . , N −1} such that every ε-perturbation of A has no complex eigenvalues
of rank (i, i + 1).

Choose a sequence εn such that ε/2 > εn → 0. As the system (Σ, f, E , A)
has transitions, using Lemma 4.16 we get dense subsets Σn of Σ and diagonaliz-
able εn-perturbations Bn of A defined on Σn. Note that Bn is a diagonalizable
periodic linear system of dimension N bounded by K1 = K + ε/2. Thus, by
hypotheses, it is impossible to create complex eigenvalues of rank (i, i + 1) by
(ε/2)-perturbations of it.

By Lemma 5.3, there is L = L(K1, ε/2, N) such that every system Bn

above admits an L-dominated splitting En ⊕ Fn, with En ≺L Fn and
dim(En) = i. Finally, as the system A is continuous, the sets Σn are dense in
Σ, and ‖Bn−A‖ → 0, Lemma 1.4 ensures that A admits an L-dominated split-
ting E ≺L F with dim(E) = i. The proof of the proposition is now complete.

5.3. Proof of Proposition 2.5. The naive idea of the proof of Proposi-
tion 2.5 is to use the transitions to multiply matrices corresponding to differ-
ent points of Σ having complex eigenvalues of different rank. In this way one
distributes homogeneously the action of the eigenvalues in the whole fibers,
obtaining homotheties. The main step of the proof is the following lemma:

Lemma 5.4. Let (Σ, f, E , A) be a continuous periodic linear system of
dimension N with transitions. Fix 0 < ε0 and assume that for any i ∈
{1, . . . , N − 1} there is an ε0-perturbation of A having a complex eigenvalue of
rank (i, i + 1).
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Then for every 0 < ε1 < ε0 there is a point p ∈ Σ such that for every
1 ≤ i < N there is an ε1-transition [ti] from p to itself with the following
properties:

• There is an ε1-perturbation [M ]Ã(p) of the word [M ]A(p) such that the
corresponding matrix MÃ(p) has only real positive eigenvalues with mul-
tiplicity 1. Denote by λ̃1 < · · · < λ̃N such eigenvalues and by Ei(p) their
respective (1-dimensional) eigenspaces.

• There is an (ε0 + ε1)-perturbation [t̃i] of the transition [ti] such that the
corresponding matrix T̃ i satisfies

– T̃ i(Ej(p)) = Ej(p) if j /∈ {i, i + 1},
– T̃ i(Ei(p)) = Ei+1(p) and T̃ i(Ei+1(p)) = Ei(p).

In fact we have also a stronger (volume controlling) version of this lemma:

Remark 5.5. Under the hypotheses of Lemma 5.4, suppose in addition
that there is a point x ∈ Σ such that the modulus of the jacobian J(MA(x))
is bigger than one. Then we can choose the point p and the perturbation Ã in
the lemma such that J(MÃ(p)) > 1.

Before proving Lemma 5.4 and Remark 5.5 let us deduce Proposition 2.5
from them.

5.3.1. End of the proof of Proposition 2.5. The hypotheses of the propo-
sition (existence of ε0-perturbations with complex eigenvalues of any rank)
imply that we can apply Lemma 5.4 to the system (Σ, f, E , A) for all i ∈
{1, . . . , N −1}. To prove the proposition we show that for any ε > ε0 there are
an ε-perturbation Â of A and a point x ∈ Σ for which MÂ(x) is a homothety.

Choosing 0 < ε1 < (ε − ε0)/10, let p and [ti], i ∈ {1, . . . , N − 1}, be the
point and the ε1-transition, from p to itself, given by Lemma 5.4.

Observe that the action of the perturbed transition T̃ i (which are (ε0+ε1)-
perturbations of Ti) on the finite set {Ei(p)}1≤j≤N of eigenspaces of MÃ(p)
is the transposition (i, i + 1) which interchanges Ei(p) and Ei+1(p), keeping
invariant the others Ej(p). Recall that a transposition is an order 2 permu-
tation; thus it is equal to its inverse. Moreover, the transpositions (i, i + 1),
i ∈ {1, . . . , N − 1}, generate the group of (all) permutations of the finite set
{Ej(p)}1≤j≤N .

Given 0 ≤ k < N denote by σk the cyclic permutation defined by
σk(Ej(p)) = Ej+k(p), where the sum i + j is considered in the cyclic group
Z/NZ.
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As a direct consequence of the previous comments, we have that for every
0 < k < N there exists an element [S̃k] in the semi-group generated by the
transitions [t̃i] such that its action on the finite set {Ej(p)}1≤j≤N is the per-
mutation σk, i.e. if S̃k is the matrix corresponding to the word [S̃k] then one
has S̃k(Ej(p)) = σk(Ej(p)).

Let [Sk] be the word of matrices corresponding to the perturbation [S̃k]
in the semi-group generated by the initials [tj ]. As the [tj ] are ε1-transitions
from p to itself, any word in the semi-group generated by the [tj ] is also an ε1-
transition (recall Remark 1.7). In particular, the [Sk] are ε1-transitions from
p to itself. (For completeness let us write [S0] = [SN ] the empty word whose
corresponding matrix is by convention the identity.)

By definition of transitions, for any n ∈ N there is a point xn ∈ Σ such
that the word [M ]A(xn) is ε1-close to the word [Wn] defined by

[Wn] = [S1] [M ]nA(p) [SN−1] [S1] [SN−1] [S2] [M ]nA(p) [SN−2] [S2] [SN−2] · · ·
· · · [SN−2] [M ]nA(p) [S2] [SN−2] [S2] [SN−1] · · ·
· · · [SN−1][M ]nA(p) [S1] [SN−1] [S1] [M ]nA(p).

Let us state some properties justifying the introduction of this word:

i) Given any i, the matrix S̃N−i ◦ S̃i acts trivially on the set of spaces
{Ej(p)}. Let us denote by µi,j the eigenvalue of S̃N−i ◦ S̃i corresponding
to the eigenspace Ej(p).

ii) Recall that S̃i maps Ej(p) into Ei+j(p) and that MÃ(p) is diagonal in
the basis corresponding to the directions Ek(p) and denote by λ̃k the
eigenvalue of MÃ(p) corresponding to such a direction. Hence every Ej(p)
is an eigenspace of S̃N−i ◦ (MÃ(p))n ◦ S̃i whose corresponding eigenvalue
is µi,j λ̃n

j+i.

iii) By the two items before, for every j the space Ej(p) is an eigenspace of
the matrix

W̃i,n = S̃N−i ◦ (MÃ(p))n ◦ S̃i ◦ S̃N−i ◦ S̃i

whose corresponding eigenvalue is µ2
i,j λ̃n

j+i. (Recall that W̃0,n = MÃ(p)n

by convention.)

Proposition 2.5 is now an immediate consequence of the following claim:

Claim. For every n > n0 sufficiently large there is an ε-perturbation Â

of A along the orbit of xn such that MÂ(xn) is a homothety of ratio Λ̃n, where

Λ̃ =
N∏
1

λ̃i = J(MÃ(p)).



A C
1
-GENERIC DICHOTOMY FOR DIFFEOMORPHISMS 403

Proof. Denote by [W̃n] the word obtained from [Wn] by putting a ·̃ above
any letter S and A; this word is an (ε0 + ε1)-perturbation of the word [Wn],
so it is an (ε0 + 2 ε1)-perturbation of the word [M ]A(xn). Moreover, using the
notation in item (iii) above, we see that the corresponding matrix W̃n is the
product

W̃n = W̃N−1,n ◦ · · · ◦ W̃1,n ◦ W̃0,n.

So, by item (iii) above, for every j, the one-dimensional space Ej(p) is an
eigenspace of W̃n and its corresponding eigenvalue λ̃j,n is

λ̃j,n =
N−1∏
i=0

λ̃n
j+i

N−1∏
i=0

µ2
i,j =

N∏
i=1

λ̃n
i

N−1∏
i=0

µ2
i,j .

Writing

Cj =
N−1∏
i=0

µ2
i,j > 0 and Λ̃ =

N∏
1

λ̃i,

we get that, for any n ∈ N, the eigenvalue λ̃j,n is

λ̃j,n = Cj Λ̃n.

This means that the matrix W̃n is the product of a homothety (Λ̃n · Id)
with a matrix B which does not depend on n and leaves invariant every one-
dimensional space Ei(p). So the matrix B commutes with every W̃i,n. Finally,
by construction, all the eigenvalues of B are positive.

Denote by
Cn,j = (Cj)−

1
n .

Clearly, when n becomes very large the Cn,j are arbitrarily close to 1. Con-
sider the matrix Bn having the Ej(p) as eigenspaces and the Cn,j as the corre-
sponding eigenvalues. Denote by [M ]Â(p) the word obtained from [M ]Ã(p) by
replacing its first letter Ã(p) (at the right) by Ã(p) ◦ Bn. For n large enough
this new word is an ε1-perturbation of [M ]Ã(p), so by item (i) of Lemma 5.4
it is also a 2 ε1-perturbation of [M ]A(p). Now, the matrix corresponding to
[M ]Â(p) is MÃ(p) ◦ Bn. As Bn commutes with MÃ(p), and by the definitions
of Bn and Cn,j , we get that

(MÃ(p) ◦ Bn)n = Mn
Ã
(p) ◦ B−1.

As a conclusion, the word [Ŵn] obtained by changing the initial subword
[M ]n

Ã
(p) of W̃n by [M ]Â(p) is (ε0 + 2 ε1) < ε close to the word [M ]A(xn),

and its corresponding matrix Ŵn = W̃n ◦ B−1 = Λ̃n · Id is a homothety. This
ends the proof of the claim.

After reading carefully the proof before, one has the following remark
which will play a key role in controlling the volume in the next section.
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Remark 5.6. Under the hypotheses of Proposition 2.5, suppose in addi-
tion that there is x0 ∈ Σ such that the modulus of the jacobian J(MA(x0)) is
bigger than one. Then we can choose the perturbation Ã of A and the point
x ∈ Σ in the proposition such that MÃ(x) is a homothety with ratio of modulus
bigger than one.

Proof. It is enough to repeat the proof of Proposition 2.5 bearing in mind
the volume controlling Remark 5.5: So the point p and the first perturbation
Ã can be chosen such that 1 < J(MÃ(p)) = Λ̃. To conclude the proof, it is
now enough to recall that (with the notation of the proof of Proposition 2.5)
J(MÂ(xn)) = Λ̃n (see the claim in this proof).

To end the proof of Proposition 2.5 it remains to prove Lemma 5.4. This
is done in the next section.

5.3.2. Proof of Lemma 5.4 (and Remark 5.5). The proof of Lemma 5.4
follows from the ideas of the proof of Lemma 4.13, based on the following fact:
Given a vector v, a pair of matrices T and M , and the eigenvector w associated
to the largest (in modulus) eigenvalue of M , it is very easy to map v into w by
an arbitrarily small perturbation of Mn ◦T , if n is large enough. So, using this
fact, given a dominated splitting, a simple inductive argument allows us to get
transitions preserving it. The difficulty here is that we want to get a transition
interchanging two spaces of a dominated splitting (in our case the eigenspaces
of a diagonal matrix). For that we will use the complex eigenvalues, which
enable us to map an arbitrary vector into the eigenvector corresponding to the
weaker eigenvalue. Let us explain all that in detail.

Fix any 0 < ε1 < ε0. We now build some ε1/10-perturbation Ã of A, mod-
ifying the initial system along a finite number of orbits. In the next paragraphs
we describe this perturbation along each orbit.

First, by Lemma 4.16, there are a point p ∈ Σ and a perturbation Ã of A

along the orbit of p such that the corresponding matrix MÃ(p) is diagonalizable
and has only positive real eigenvalues with multiplicity 1. Denote by λ1 < · · · <

λN such eigenvalues and by Ej(p) the corresponding eigenspaces. Moreover,
by Remark 4.17, if the linear system A satisfies the hypothesis of Remark 5.5,
i.e. existence of some point with jacobian greater than one, one can choose
the point p and the perturbation Ã such that J(MÃ(p)) =

∏N
i=1 λi is strictly

bigger than one.
By hypotheses, there is a point pi ∈ Σ (whose orbit is disjoint from the

one of p) and an ε0-perturbation Ã (along the orbit of pi) such that the matrix
MÃ(pi) has a complex eigenvalue of rank (i, i+1). Now we fix ε1/10-transitions
[ti,0] and [t0,i] from p to pi and from pi to p.

To simplify the notation, we write [M ] = [M ]A(p), [Mi] = [M ]A(pi), and
M and Mi for the corresponding matrices. We also write [M̃ ], [M̃i], M̃ , and
M̃i for the corresponding perturbations of the words and matrices.
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Observe, once more by Remark 1.7, that for every i and positive n1, n2,
and n3 the word

[ti(n1, n2, n3)] = ([M ])n3 [t0,i]([Mi])n2 [ti,0][M ]n1

is also an ε1/10-transition from p to itself of the system A.
The proof of Lemma 5.4 (and of Remark 5.5) now follows immediately

from the next result:

Lemma 5.7. There are n1 ≥ 0, n2 ≥ 0, and n3 ≥ 0 such that the
word [ti(n1, n2, n3)] defined above admits an (ε0 + ε1)-perturbation such that
the corresponding matrix T̃i(n1, n2, n3) left invariant every Ej, j /∈ {i, i + 1},
and interchanges Ei and Ei+1.

Proof. For a fixed i ∈ {1, . . . , N} consider the ε0-perturbation Ã of A

along the orbit of pi constructed above and denote by E(pi) ⊕ F (pi) ⊕ G(pi)
its invariant splitting (over the orbit of pi) where F (pi) is the 2-dimensional
eigenspace corresponding to the complex (conjugate) eigenvalues of M̃i and
E(pi) ≺ F (pi) ≺ G(pi). Since MÃ(p) is diagonalizable we have the splitting

E(p) =
i−1⊕
1

Ej(p), F (p) = Ei(p) ⊕ Ei+1(p), and G(p) =
N⊕

i+2

Ej(p),

where Ej(p) is the eigenspace associated to λj .
As in Lemma 4.13, replacing, if necessary, the transitions [t0,i] and [ti,0]

by words of the form [M ]n[t0,i][Mi]n and [Mi]n[ti,0][M ]n for some big n, we
can assume that [ti,0] admits an (ε0 + ε1/10)-perturbation [t̃i,0] such that the
corresponding matrix T̃i,0 maps the splitting E(p) ≺ F (p) ≺ G(p) into E(pi) ≺
F (pi) ≺ G(pi). Conversely, we can also suppose that the matrix T̃0,i of the
(ε0+ε1/10)-perturbation [t̃0,i] of [ti,0] maps E(pi) ≺ F (pi) ≺ G(pi) into E(p) ≺
F (p) ≺ G(p).

Our next objective is to get two different one-dimensional subspaces of
F (pi) and a perturbation of M̃i interchanging such subspaces. For that write

Ei(pi) = T̃−1
0,i (Ei(p)) and Ei+1(pi) = T̃i,0(Ei+1(p)).

As Ei(p) is a subspace of F (p), Ei(pi) is a (noninvariant!) subspace of F (pi).
The same argument shows that Ei+1(pi) is also a noninvariant subspace of
F (pi).

Recall that M̃i has a pair of complex (nonreal) eigenvalues whose eigenspace
is F (pi). So it is an exercise to get m > 0 and an ε1/10-perturbation M̂i of
M̃i, preserving the splitting E(pi)⊕F (pi)⊕G(pi), such that M̂m

i (Ei+1(pi)) =
Ei(pi).

Consider now the linear map

B0 = T̃0,i ◦ M̂m
i ◦ T̃i,0: Ep → Ep,
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and recall that Ep denotes the fiber of p. By construction

i) B0 preserves the splitting E(p) ⊕ F (p) ⊕ G(p),

ii) B0(Ei+1(p)) = Ei(p),

iii) B0(Ei(p)) is a straight line (in the plane F (p)) different from Ei(p) and
so transverse to Ei(p).

Observe that these three properties also hold for M̃k ◦B0 for every k > 0.
Recalling that Ei(p)⊕Ei+1(p) is a dominated splitting over the orbit of p

(for the perturbed system whose matrix is M̃), using the transversality in item
(iii), we have that if k > 0 is large enough then M̃k(Ei(p)) is arbitrarily close
to Ei+1(p). So we can choose k > 0 and an ε1/10-perturbation M̂ of M̃ such
that B1 = M̂ ◦ M̃k ◦ B0 satisfies the following two properties:

• B1 preserves the splitting E(p) ⊕ F (p) ⊕ G(p),

• B1(Ei(p)) = Ei+1(p) and B1(Ei+1(p)) = B1(Ei(p).

Note that these properties of B1 are also verified by every map of the
form M̃k1 ◦B1 ◦ M̃k2 (k1 and k2 > 0). Applying the arguments of the proof of
Lemma 4.13 to the restrictions of B1 to E(p) and G(p) we get k1 and k2 > 0,
and ε1/10-perturbations [N1] of the word [M̃ ]k1 , and [N2] of [M̃ ]k2 , coinciding
with [M̃ ]k1 and [M̃ ]k2 on F (p), such that

N1 ◦ B1 ◦ N2(Ej(p)) = Ej(p) for every j /∈ {i, i + 1}.

To finish the proof of the lemma it suffices to observe that, by construction,
the matrix N1 ◦ B1 ◦ N2 corresponds to a word which is an (ε0 + 3 ε1/10)-
perturbation (ε0 + 3ε1/10 < ε0 + ε1) of

[M̃ ]k1 [M̃ ] · · · [M̃ ] [t0,i] [M̃i]k [ti,0] [M̃ ] · · · [M̃ ] [M̃ ]k2 .

Thus this word is an ε1-perturbation of [ti(n1, n2, n3)] for some n1, n2, and n3.
Now the proof of the lemma is complete.

6. Finest dominated splitting and control of the jacobian
in the extremal bundles: Proof of Theorem 4

6.1. Control of the jacobian over periodic points. Let (Σ, f, E , A) be a
periodic linear system with transitions. Suppose that F1⊕F2⊕· · ·⊕Fk−1⊕Fk,
F1 ≺ F2 ≺ · · · ≺ Fk−1 ≺ Fk, is the finest dominated splitting of this system.
We call F1 and Fk extremal bundles of the dominated splitting. Denote by Ai
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the restriction of A to the subbundle Fi. The goal of this section is to prove
some estimates on the determinant of Ai. Let us begin with the following
result:

Lemma 6.1. For any K > 0, N ∈ N, L ∈ N, and ε > 0 there is l > 0 with
the following property :

Consider a periodic linear system (Σ, f, E , A), of dimension N and bounded
by K, having an L-dominated splitting E ⊕ F such that

• the subbundle E does not admit any nontrivial l-dominated splitting, and

• there is a point p ∈ Σ such that det(MAE
(p)) > 1.

Then there are an ε-perturbation Ã of A and x ∈ Σ such that all the eigenvalues
of MÃ(x) have modulus strictly bigger than 1.

Clearly, there is a version of this lemma where the bundle F has no
l-dominated splitting and det(MAF

(p)) < 1; then the moduli of the eigen-
values of the perturbation Ã are strictly smaller than 1.

We will apply this lemma twice to the finest dominated splitting of a
system, first taking E = F1 and F = F2 ⊕ · · · ⊕ Fk, and second taking E =
F1 ⊕ · · · ⊕ Fk−1 and F = Fk. Let us now prove the lemma.

Proof. Note first that there is δL > 0 such that, for every system C

δL-close to A, we can define the continuation EC ⊕ FC of the splitting E ⊕ F ,
which is also dominated (recall the comments after Definition 0.1).

Let τ = inf{ε, δL}. Consider the l0 > 0 given by Proposition 2.4 associated
to τ/2, and fix l = 2 l0.

Now take a system (Σ, f, E , A) satisfying the hypotheses of the lemma.
From Corollary 4.14, the system AE induced by A on the subbundle E ad-
mits transitions and, by hypothesis, does not admit any l-dominated split-
ting. In particular, by Proposition 2.4, for every 0 ≤ i < dim(E), there is a
τ/2-perturbation Bi of AE having a complex eigenvalue of rank (i, i + 1), i.e.
there is xi ∈ Σ such that MBi(xi) has a complex eigenvalue of rank (i, i + 1).

Moreover, by hypothesis, there is a point p ∈ Σ for which the modulus of
the jacobian J(MAE

)(p) is strictly bigger than one.
The previous comments mean that taking ε0 = τ/2 , the system

(Σ, f, E, AE) satisfies all the hypotheses of Proposition 2.5 and Remark 5.6.
So there is a τ -perturbation ÃE of AE and a point x ∈ Σ such that MÃE

(x) is
a homothety of ratio bigger than one.

Finally, by Lemma 4.1, ÃE is the restriction to E of some τ -perturbation
Ã of A which coincides with A over F . Since the splitting E ⊕F is dominated
for Ã, we get that all the eigenvalues of MÃ(x) associated to F necessarily
have modulus bigger than one. This ends the proof of the lemma.
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Theorem 4 follows from the next proposition that is a consequence of
the ergodic closing lemma in [Ma3] and whose proof (very similar to Mañé’s
argument in [Ma3] to get hyperbolicity) we postpone until the next subsection:

Proposition 6.2. Let f be a diffeomorphism and Λf (U) an f -invariant
compact set which is maximally invariant in some neighbourhood U of it. Sup-
pose that E ⊕ F , E ≺ F , is a dominated splitting of TΛf (U)M for f∗.

By shrinking U , if necessary, there is a C1-neighbourhood U of f such that
for every g ∈ U the maximal invariant set Λg(U) of g ∈ U has a dominated
splitting Eg ⊕ Fg which is the continuation of E ⊕ F . Then one has that

• either there are an arbitrarily small C1-perturbation g of f and a hy-
perbolic periodic point p ∈ Λg(U) such that g∗ expands the volume on
Eg(p),

• or f∗|E contracts the volume uniformly.

Let us now end the proof of Theorem 4.

Proof of Theorem 4. Let Λf (U) be a (nontrivial) robustly transitive set.
Denote by N the dimension of the ambient manifold and let K be a strict
upper bound of the norms of f∗ and f−1

∗ . Take ε > 0 such that for every g

ε − C1-close to f the set Λg(U) is transitive and the norms of g∗ and g−1
∗ are

bounded by K.
The proof is by contradiction. Let F1⊕F2⊕· · ·⊕Fk be the finest dominated

splitting of f∗. Write E = F1 and F = F2 ⊕ · · · ⊕ Fk, and fix L such that the
splitting E ⊕ F is 2L-dominated. Now let l > 0 be the constant associated to
K, N , 2L, and ε/2 in Lemma 6.1.

If f∗|E does not uniformly contract the volume in E then, by Proposi-
tion 6.2, there are g arbitrarily close to f and a hyperbolic periodic point
p ∈ Λg(U) such that g∗ expands the volume in Eg(p). Since, by hypothe-
sis, Λg(U) is C1-robustly transitive, using Lemma 2.7 we can assume (after a
perturbation) that the relative homoclinic class H(p, g, U) of p is the whole
Λg(U).

Consider the dense subset Σ ⊂ Λg(U) consisting of all the hyperbolic
periodic points of Λg(U) homoclinically related to p. Then g induces the
periodic linear system (Σ, g, TΣM, g∗), of dimension N and bounded by K,
with transitions, see Lemma 1.9.

Moreover, if g is close enough to f , E(g)⊕F (g) is an L-dominated splitting
of this system and the bundle E(g) does not admit any l-dominated splitting
(this last assertion follows from Lemma 1.4). So applying Lemma 6.1, we
get an ε/2-perturbation B of (Σ, g, TΣM, g∗) and a periodic point q ∈ Σ such
that all the eigenvalues of MB(q) are bigger than one (in modulus). Using
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Franks’ lemma we get that the (nontrivial) maximal invariant set in U of
some ε-perturbation g of f contains a repeller (precisely the point q). This
contradicts the choice of ε (robust transitivity of Λg(U)).

To end the proof of the theorem it remains to get the uniform expansion
of the volume in Fk, this follows as above by replacing f by f−1.

6.2. Mañé’s ergodic closing lemma: Proof of Proposition 6.2.

Definition 6.3. Let f be a diffeomorphism defined on a compact manifold
M endowed with a Riemannian metric d. A point x is well closable (for f) if
for every ε > 0 there are g ε − C1-close to f and a periodic point y of g such
that d(f i(x), gi(y)) < ε for every 0 ≤ i < k(y), where k(y) is the period of y.
We denote by W(f) the set of well closable points of f .

We have the following result (see [Ma3]),

Theorem (ergodic closing lemma). Let f be a diffeomorphism and µ

an f -invariant probability. Then µ-almost every point is well closable, i.e.
µ(W(f)) = 1.

Suppose now that Λf (U) is a locally maximal set in a neighborhood U of
it and that E⊕F , E ≺ F , is a dominated splitting of f∗ over TΛf (U)M . Recall
that the bundle E is continuous (see Lemma 1.4); thus (Λf (U), f, E, f∗|E) is a
continuous linear system.

Since E is endowed with a continuous Euclidian metric, we can define
the modulus of the determinant of f∗|E , the jacobian of f on E, denoted by
|J(f, E)|: Λf (U) → R, which is a continuous (and so integrable) positive func-
tion. Thus log(|J(f, E)|): Λf (U) → R is well defined and continuous. More-
over, by shrinking U , if necessary, we have that for every g close enough to
f there is defined a dominated continuation Eg ⊕ Fg of the splitting E ⊕ F .
Thus we can define the function log(|J(g, Eg)|) depending continuously on g

(observe that the subbundles Eg and Fg depend continuously on g).
The first step to prove Proposition 6.2 is the following lemma.

Lemma 6.4. Assume there is an f -invariant probability measure µ sup-
ported on Λf (U) such that

∫
log(|J(f, E)|) dµ ≥ 0.

Then there are g arbitrarily C1-close to f and a periodic orbit y ∈ Λg(U) of g

where g∗ expands the volume of Eg, i.e.

|J(gk, Eg)(y)| > 1, where k is the period of y.
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Proof. Observe first that we can assume that µ is ergodic: Otherwise it
is enough to consider the decomposition of µ into ergodic invariant measures;
then for at least one of them the integral of log(|J(f, E)|) is also positive.

By the ergodic closing lemma, there is a µ-generic point x which is well
closable. If x is periodic we have nothing to do. In the other case, there are
sequences of diffeomorphisms gn converging to f in the C1-topology, of periodic
points yn (of period kn) of gn, and of numbers εn → 0, such that

d(f i(x), gi
n(yn)) < εn, for every 0 ≤ i < kn − 1.

In particular, if εn is small enough, this ensures that the point yn belongs to
Λgn(U). Moreover,

1
kn

kn−1∑
0

log(|J(gn, Egn |)(gi
n(yn)) →

∫
log(|J(f, E)|) dµ ≥ 0.

So given any δ > 1, taking n large enough, we have that the linear system
defined over the orbit of yn obtained by multiplying (gn)∗|Egn by the scalar
δ expands the volume on Egn(yn). The conclusion in the lemma now follows
immediately by Franks’ lemma (see the very beginning of Section 1).

Using Lemma 6.4 we have that Proposition 6.2 (thus Theorem 4) is a
direct consequence of:

Lemma 6.5. Let E⊕F , E ≺ F , be a dominated splitting of f over Λf (U).
Assume that for any N ∈ N the jacobian |J(fN , E)| is not bounded uniformly
from above by one. Then there is an f -invariant measure µ such that

∫
log(|J(f, E)|) dµ ≥ 0.

Proof. By hypothesis, given any N > 0 there exists some point xN ∈
Λf (U) such that |J(fN , E)(x)| ≥ 1. Write

µN =
1
N

N−1∑
0

δ(f i(xN )),

where δ(z) is the Dirac measure at the point z. As the space of probabilities
is compact for the weak topology, there is a subsequence Ni such that µNi

converges weakly to some probability measure µ.
A classical elementary argument proves that µ is f -invariant: f∗(µ) − µ

is the weak limit of 1
Ni

(δ(fNi(xNi)) − δ(xNi)), which converges to 0. Finally,
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observing that
∫

log(|J(f, E)|) dµN =
1
N

N−1∑
0

log(|J(f, E)(f i(xN ))|)

=
1
N

log(|J(fN , E)(xN )|) ≥ 0,

one deduces immediately that
∫

log(|J(f, E)| dµ ≥ 0.

7. The conservative case

In this section we translate some of our constructions into the conservative
context (volume-preserving C1-diffeomorphisms).

In what follows the compact manifold M is endowed with a smooth volume
form ω, and we denote by Diff1

ω(M) the set of C1-diffeomorphisms preserving
this volume form ω endowed with the usual C1-topology. Following the tradi-
tional terminology, a conservative diffeomorphism is an element of Diff1

ω(M).
Here we only consider manifolds of dimension N strictly bigger than one.

Observe that, given a linear system (Σ, f, E , A), using the Euclidian metric
on the bundle E , we can define the modulus of the determinant of the linear
maps A(x), denoted by JA(x) = |det A(x)|.

Definition 7.1. A periodic linear system (Σ, f, E , A) is conservative if
JA(x) = 1 for all x ∈ Σ.

Remark 7.2. Given a linear system (Σ, f, E , A) of dimension N we define
its conservative part Ac by

Ac(x) = JA(x)
−1
N · A(x).

Clearly, if A is conservative then A = Ac. The map A �→ Ac is continuous.
Therefore for any K > 0 and ε > 0 there is ε1 > 0 such that if A is a
conservative system bounded by K and B is a (a priori nonconservative) ε1-
perturbation of it, then Bc is ε-close to A.

Finally, if the initial system A is continuous, periodic, and with transitions,
then the same holds for its conservative part Ac.

We begin with a straightforward corollary of Proposition 2.1:

Proposition 7.3. For any K > 0, N > 0, and ε > 0 there is l > 0
such that for every continuous periodic conservative linear system (Σ, f, E , A),
of dimension N and bounded by K, with transitions one has that,

• either A admits an l-dominated splitting,

• or there is a conservative ε-perturbation Ã of A such that MÃ(x) is the
identity for some x ∈ Σ.
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Proof. According to Proposition 2.1, there is l with the following property:
Let A be a continuous periodic conservative linear system, of dimension N

and bounded by K, and admitting transitions. If A does not admit any
l-dominated splitting then there is an ε1-perturbation B of A such that the
matrix MB(x) is a homothety for some x ∈ Σ. Then, by Remark 7, Bc is a con-
servative ε-perturbation of A and MBc(x) is a homothety with determinant 1
(because the system is conservative); thus it is the identity. This completes
the proof of the proposition.

To proceed with our proofs in the conservative setting we need suitable
versions of our perturbation lemmas (Franks’ lemma and Hayashi’s connecting
lemma) for volume-preserving diffeomorphisms.

Proposition 7.4 (conservative version of Franks’ lemma). Consider a
conservative diffeomorphism f and a finite f -invariant set E. Assume that B is
a conservative ε-perturbation of f∗ along E. Then for every neighbourhood V of
E there is a conservative diffeomorphism g arbitrarily C1-close to f coinciding
with f on E and out of V , and such that g∗ is equal to B on E.

As we did not find any precise reference for this probably well-known
result, let us give here the sketch of its proof:

Proof. The proof is based on the following elementary fact of linear
algebra:

Lemma 7.5. For any N > 1 and ε > 0 there is a neighbourhood G of the
identity in SL(N,R) such that any matrix A ∈ G can be written as a product
B1 ◦ B2 ◦ · · · ◦ B4N−4, where the Bi = Pi ◦ Ri ◦ P−1

i , Pi and Ri are ε-close to
the identity in SL(N,R), and Ri is a rotation.

Proof. We just give the main steps of the proof. All the matrices we
consider will be in SL(N,R). We have the following properties:

• Every matrix A close to identity can be written in the form L ◦ L−1 ◦ A,
where L is diagonal with real eigenvalues of multiplicity one and close to 1,
L−1 ◦A is diagonalizable and has eigenvalues close to 1, and the matrix of
change of coordinates is close to identity.

• Any diagonal matrix in SL(N,R) can be written as the product of N − 1
diagonal matrices whose eigenvalues are equal to one, except for two of
them (inverse one to the other).

• Any diagonal matrix D close to the identity, D ∈ SL(2,R), can be written
as R ◦ R−1 ◦ D, where R is a rotation, R−1 ◦ D is conjugate to a rotation
by some matrix P , and the matrices R, R−1 ◦ D, and P are close to the
identity.

The lemma follows immediately from these three properties.
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Observe that Franks’ lemma consists of local perturbations around finitely
many points. Taking local charts at these points we can consider that the
volume is the Lebesgue measure (Leb), see for instance [Mo]. So Franks’ con-
servative lemma follows from the next lemma:

Lemma 7.6. For every N ∈ N and ε > 0 there is a neighbourhood G of
the identity in SL(N,R) such that for every A ∈ G there is h ∈ Diff1

Leb(R
N )

satisfying the following properties:

• h coincides with the identity outside the unit ball at the origin,

• h(0) = 0 and h∗(0) = A,

• ‖h∗ − Id‖ < ε.

To prove this lemma it is enough to see that its proof is very easy if A is
a rotation or conjugate to a rotation. Since Lemma 7.5 allows us to write A as
the product of 4N − 4 of such maps, all them close to the identity, the general
case follows from the simple first case.

Exactly as Proposition 2.6 follows from Franks’ lemma and Proposition 2.1,
we deduce from Proposition 7.4 (conservative version of Franks’ lemma) and
Propositions 7.3 the following conservative version of Proposition 2.6:

Proposition 7.7. Given any K > 0, N > 0, and ε > 0 there is l(ε, K)
∈ N such that for every conservative diffeomorphism f on a Riemannian
N -dimensional manifold M , with derivatives f∗ and f−1

∗ bounded by K, and
any saddle p of f having a nontrivial homoclinic class H(p, f), one has that :

• Either the homoclinic class H(p, f) admits an l(ε, K)-dominated splitting,

• or for every neighbourhood U of H(p, f) and k ∈ N there are a con-
servative diffeomorphism g ε-C1-close to f and k periodic points xi of
g arbitrarily close to p, whose orbits are contained in U , such that the
derivatives gni∗ (xi) are the identity (ni is the period of x).

Observe that this proposition implies Theorem 5 (in fact, it is a quantita-
tive version of Theorem 5).

7.1. Proof of Theorem 6. The first step is the following lemma:

Lemma 7.8. There is a residual subset R ⊂ Diff1
ω(M) of diffeomorphisms

f such that the nontrivial homoclinic classes of hyperbolic periodic points of f

are dense in M .

Proof. Let us begin by recalling that, for conservative diffeomorphisms,
the recurrent points are dense in M . Moreover, using the C1-closing lemma in
the conservative case (see [Rb]), one has that the conservative diffeomorphisms
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whose periodic orbits are hyperbolic and dense in the ambient manifold form
a dense subset of Diff1

ω(M). Moreover, by the continuity of the hyperbolic
periodic orbits, this dense subset is in fact residual.

Suppose that p is a hyperbolic periodic point of a diffeomorphism g such
that its periodic points are hyperbolic and dense in the manifold. Then, given
fundamental domains Ds and Du of W s(p, g) and W u(p, g), there is a sequence
of periodic points qi converging to some z ∈ Du such that gki(qi) → y ∈ Ds

for some sequence ki → +∞. This implies that the invariant manifolds of
any periodic point p of g satisfy the hypotheses of the conservative connecting
lemma of Xia [X]:

Theorem (conservative connecting lemma). Let M be a compact mani-
fold, g a conservative diffeomorphism, and p a hyperbolic periodic point of g ∈
Diff1

ω(M).
Suppose that there are sequences of points (xi), xi → z ∈ W u(p), and

integers (ni) such that ni → ∞ and gni(xi) → y ∈ W s(p).
Then there is h ∈ Diff1

ω(M) arbitrarily C1-close to g such that W u(ph, h)
intersects transversely W s(ph, h) at z and hk(z) = y for some k > 0.

Now, a classical argument (see, for instance, the proof of [BD2, Prop. 1.1])
gives that there is a dense open subset Rn of Diff1

ω(M), a diffeomorphism whose
nontrivial homoclinic classes are 1

n -dense. To end the proof of the lemma it is
enough to take R =

⋂
n>0 Rn.

Now to end the proof of Theorem 6 consider a diffeomorphism f ∈ Diff1
ω(M)

and ε > 0 such that there is no ε-perturbation of f having periodic points whose
derivative is the identity. Thus, by Proposition 7.7, there is l such that every
nontrivial homoclinic class of any conservative ε/2-perturbation g of f admits
an l-dominated splitting. For such a g we define Λi(g), i = 1, . . . , N −1, as the
closure of the union of the nontrivial homoclinic classes with an l-dominated
splitting E ≺ F of dimension i (i.e. dim(E) = i). By Lemma 1.4, this invariant
compact set Λi(g) has an l-dominated splitting.

Using Lemma 7.8, we can take a sequence of diffeomorphisms gn ∈ R as
above converging to f . Then, for each n, the union of the Λi(gn) is the whole
manifold. We define Ki(f) as the topological upper limit set of the Λi(gn), i.e.

Ki(f) = lim sup
n→∞

Λi(gn) =
⋂
k

closure(
⋃
n≥k

Λi(gn)).

Again by Lemma 1.4, the set Ki(f) admits an l-dominated splitting. Finally,
by construction, the manifold M is the union of the Ki(f).

The argument above shows that, if f does not admit any ε-pertubation
with a periodic orbit whose derivative is the identity, then M is the union of
finitely many invariant compact sets with l-dominated splittings. Otherwise,
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there are a conservative perturbation g of f and a homoclinic class of a periodic
point of g whose induced periodic linear system can be perturbed to get one
point such that its linear map is the identity. Using the transitions we can get
an arbitrarily large number of such points. Now the result follows from the
conservative version of Franks’ lemma (Proposition 7.4).

7.2. Volume properties of dominated splittings of conservative systems.
We end this paper by giving some volume properties of dominated splitting of
conservative linear systems.

Proposition 0.5 is a direct consequence of the following lemma:

Lemma 7.9. Let (Σ, f, E , A) be a conservative linear system with an
l-dominated splitting E ⊕ F , E ≺l F . Then

|det(Al
E)(x))| ≤ 1√

2
and |det(Al

F )(x))| ≥
√

2,

for every x ∈ Σ; recall that Al(x) = A(f l−1(x)) ◦ · · · ◦ A(x).

Proof. Since the system is conservative,

|det(Al
E)(x) det(Al

F )(x)| = 1.

In particular, the second inequality in the lemma follows from the first one.
We argue by contradiction. If the conclusion in the lemma does not hold

then there is x ∈ Σ such that |det((Al
E)(x))| > 1√

2
. Thus the modulus of the

determinant of the matrix (
√

2)
1

dim(E) · Al
E(x) is bigger than 1. So this matrix

expands at least one vector. Thus there is some unit vector u ∈ E(x) such
that

‖Al
E(x)(u)‖ > 2−

1
2 dim(E) .

As the system is l-dominated, given any unit vector v ∈ F (x) we have

‖Al
F (x)(v)‖ > 21− 1

2 dim(E) ≥
√

2.

In particular,(
|det Al

F (x)| >
√

2
dim(F ) ≥

√
2
)

=⇒
(
|det(Al

E)(x) det(Al
F )(x)| > 1

)
,

contradicting that the system is conservative.

The next lemma immediately implies Proposition 0.5:

Lemma 7.10. Let f be a conservative diffeomorphism with a dominated
splitting E ⊕ F , E ≺ F . Then there is � such that

|det(f �
∗(x)|E)| <

1
2

and |det(f−�
∗ (x))|F | >

1
2

for every x ∈ M .
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Proof. Observe first that, using the conservative version of the closing
lemma, after a perturbation, we can assume that for every k the periodic
points of f of period bigger than k are dense in M .

The proof now is by contradiction. Suppose that the thesis is false; then
for every t > 0 there is gt ∈ Diff1

ω(M) close to f and a periodic point Pt such
that

gn
t (Pt) = Pt and det((gn

t )∗(Pt)|E) > (1 − t)n.

It is not hard to see that we can assume that the periods of the points Pt go
to infinity as t → 0 (otherwise, after perturbation, one gets a linear system
A and periodic point x such that MA(x) has an eigenvalue of modulus bigger
than 1 in E and an eigenvalue of modulus less than 1 in F , contradicting the
dominance of the splitting).

Taking t = 1/n, arguing as in Lemma 7.10, we perturb each (g1/n)∗ along
the orbit of P1/n to get a linear system B close to f∗ such that E ⊕ F is a
dominated splitting of B which does not satisfies Lemma 7.9. This gives a
contradiction.
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Ann. Sci. École Norm. Sup. Paris 32 (1999), 135–150.

[BD3] , On maximal transitive sets of generic diffeomorphisms, Publ. Math. I.H.E.S .,
to appear.

[BoVi] Ch. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose
central direction is mostly contracting, Israel J. Math. 115 (2000), 157–193.

[BoRu] R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29
(1975), 181–202.

[BP] M. I. Brin and Ya. Pesin, Partially hyperbolic dynamical systems, Izv. Akad. Nauk
SSSR Ser. Mat . 38 (1974), 170–212.

[BPSW] K. Burns, C. Pugh, M. Shub, and A. Wilkinson, Recent results about stable ergod-
icity, in Smooth Ergodic Theory and Its Applications (Seattle, WA, 1999), Proc.
Sympos. Pure Math. 69, 327–366, A. M. S., Providence, RI, 2001.

[CMP] C. Carballo, C. Morales, and M. J. Pacifico, Homoclinic classes for generic C1

vector fields, preprint, 2001.
[DPU] L. J. D́ıaz, E. Pujals, and R. Ures, Partial hyperbolicity and robust transitivity,

Acta Math. 183 (1999), 1–43.
[DW] D. Dolgopyat and A. Wilkinson, Stable accessibility is C1-dense, Astérisque, to
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