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Global existence and convergence for a
higher order flow in conformal geometry

By Simon Brendle

1. Introduction

An important problem in conformal geometry is the construction of con-
formal metrics for which a certain curvature quantity equals a prescribed func-
tion, e.g. a constant. In two dimensions, the uniformization theorem assures
the existence of a conformal metric with constant Gauss curvature. More-
over, J. Moser [20] proved that for every positive function f on S2 satisfying
f(x) = f(−x) for all x ∈ S2 there exists a conformal metric on S2 whose Gauss
curvature is equal to f .

A natural conformal invariant in dimension four is

Q = −1
6

(∆R − R2 + 3 |Ric|2),

where R denotes the scalar curvature and Ric the Ricci tensor. This formula
can also be written in the form

Q = −1
6

(∆R − 6 σ2(A)),

where
A = Ric − 1

6
Rg

is the Schouten tensor of M and

σ2(A) =
1
2

(trA)2 − 1
2
|A|2

is the second elementary symmetric polynomial in its eigenvalues. Under a
conformal change of the metric

g = e2wg0,

the quantity Q transforms according to

Q = e−4w(Q0 + P0w),

where P0 denotes the Paneitz operator with respect to g0. The Gauss-Bonnet-
Chern theorem asserts that∫

M
Q dV +

∫
M

1
4
|W |2 dV = 8π2χ(M).
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Since the Weyl tensor W is conformally invariant, it follows that the expression∫
M

Q dV

is conformally invariant, too. The quantity Q plays an important role in four-
dimensional conformal geometry; see [2], [3], [5], [16] (note that our notation
differs slightly from that in [2], [3]). Moreover, the Paneitz operator plays a
similar role as the Laplace operator in dimension two; compare [2], [3], [5],
[11], [12]. We also note that the Paneitz operator is of considerable interest in
mathematical physics, see [10, SSIV.4].

T. Branson, S.-Y. A. Chang and P. Yang [2] studied metrics for which the
curvature quantity Q is constant. Since∫

M
Q dV

is conformally invariant, these metrics minimize the functional∫
M

Q2 dV

among all conformal metrics with fixed volume. In addition, these metrics are
critical points of the functional

E1[w] =
∫

M
2 w P0w dV0 +

∫
M

4 Q0 w dV0 −
∫

M
Q0 dV0 log

( ∫
M

e4w dV0

)
,

where g0 denotes a fixed metric on M and g = e2wg0.
According to the results in [2], one can construct conformal metrics of

constant Q-curvature by minimizing the functional E1[w] provided that the
Paneitz operator is weakly positive and the integral of the Q-curvature on M

is less than that on the standard sphere Sn. In dimension four, M. Gursky [17]
proved that both conditions are satisfied if

Y (g0) ≥ 0

and ∫
M

Q0 dV0 ≥ 0,

and M is not conformally equivalent to the standard sphere S4.
C. Fefferman and R. Graham [14], [15] established the existence of a con-

formally invariant self-adjoint operator with leading term (−∆)
n
2 in all even

dimensions n. Moreover, there is a curvature quantity which transforms ac-
cording to

Q = e−nw(Q0 + P0w)

for
g = e2wg0.
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This implies that the expression ∫
M

Q dV

is conformally invariant. Hence, a metric with Q = constant minimizes the
functional ∫

M
Q2 dV

among all conformal metrics with fixed volume. Finally, the analogue of the
functional E1[w] is given by

E1[w] =
∫

M

n

2
w P0w dV0 +

∫
M

n Q0 w dV0 −
∫

M
Q0 dV0 log

( ∫
M

enw dV0

)
.

Our aim is to construct conformal metrics for which the curvature quan-
tity Q is a constant multiple of a prescribed positive function f on M . This
equation is the Euler-Lagrange equation for the functional

Ef [w] =
∫

M

n

2
w P0w dV0 +

∫
M

n Q0 w dV0 −
∫

M
Q0 dV0 log

( ∫
M

enw f dV0

)
.

We construct critical points of the functional Ef [w] using the gradient flow for
Ef [w]. A similar method was used by R. Ye [25] to prove Yamabe’s theorem
for locally conformally flat manifolds. K. Ecker and G. Huisken [13] used
a variant of mean curvature flow to construct hypersurfaces with prescribed
mean curvature in cosmological spacetimes.

The flow of steepest descent for the functional Ef [w] is given by

∂

∂t
g = −

(
Q − Q f

f

)
g.

Here, Q and f denote the mean values of Q and f respectively, i.e.∫
M

(Q − Q) dV = 0 and
∫

M
(f − f) dV = 0.

This evolution equation preserves the conformal structure of M . Moreover,
since ∫

M

(
Q − Q f

f

)
dV =

∫
M

(
Q − Qf

f

)
dV = 0,

the volume of M remains constant. From this it follows that Q is constant in
time. If we write g = e2wg0 for a fixed metric g0, then the evolution equation
takes the form

∂

∂t
w = −1

2
e−nw P0w − 1

2
e−nw Q0 +

1
2

Q f

f
,



326 SIMON BRENDLE

where P0 denotes the Paneitz operator with respect to g0. Therefore, the
function w satisfies a quasilinear parabolic equation of order n involving the
critical Sobolev exponent. Moreover, the reaction term is nonlocal, since f

involves values of w on the whole of M .

Theorem 1.1. Assume that the Paneitz operator P0 is weakly positive
with kernel consisting of the constant functions. Moreover, assume that∫

M
Q0 dV0 < (n − 1)!ωn.

Then the evolution equation

∂

∂t
g = −

(
Q − Q f

f

)
g

has a solution which is defined for all times and converges to a metric with

Q

f
=

Q

f
.

On the standard sphere Sn, we have∫
M

Q dV = (n − 1)!ωn ;

hence Theorem 1.1 cannot be applied. In fact, the conclusion of Theorem 1.1
fails for M = Sn. To see this, one can consider the Kazdan-Warner identity∫

Sn
〈∇0Q,∇0xj〉 enw dV0 = 0 ;

see [3]. If f is an increasing function of xj , then∫
Sn

〈∇0Q,∇0xj〉 enw dV0 > 0.

Consequently, there is no conformal metric on Sn satisfying

Q

f
=

Q

f
.

Nevertheless, the conclusion of Theorem 1.1 holds if f(x) = f(−x) and w(x) =
w(−x) for all x ∈ Sn. This is a generalization of Moser’s theorem [20].

Theorem 1.2. Suppose that M = RPn. Then the evolution equation

∂

∂t
g = −

(
Q − Q f

f

)
g

has a solution which is defined for all times and converges to a metric with

Q

f
=

Q

f
.
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Combining Theorem 1.2 with M. Gursky’s result [17] gives

Theorem 1.3. Suppose that M is a compact manifold of dimension four
satisfying

Y (g0) ≥ 0 and
∫

M
Q0 dV0 ≥ 0.

Moreover, assume that M is not conformally equivalent to the standard sphere S4.
Then the evolution equation

∂

∂t
g = −

(
Q − Q f

f

)
g

has a solution which is defined for all times and converges to a metric with

Q

f
=

Q

f
.

Finally, we prove a compactness theorem for conformal metrics on Sn. In
two dimensions, the corresponding result was first established by X. Chen [6]
(see also [24]).

Proposition 1.4. Let gk = e2wk g0 be a sequence of conformal metrics
on Sn with fixed volume such that∫

Sn
Q2

k dVk ≤ C.

Assume that for every point x ∈ Sn there exists r > 0 such that

lim
r→0

lim
k→∞

∫
Br(x)

|Qk| dVk <
1
2

(n − 1)!ωn.

Then the sequence wk is uniformly bounded in Hn.

The evolution equation can be viewed as a generalization of the Ricci flow
on compact surfaces. In dimension four, the quantity Q plays a similar role as
the Gauss curvature in dimension two. Moreover, the energy functional E1[w]
corresponds to the Liouville energy studied by B. Osgood, R. Phillips and P.
Sarnak in [21].

It was shown by R. Hamilton [18] and B. Chow [8] that every solution of
the Ricci flow on a compact surface exists for all time and converges exponen-
tially to a metric with constant Gauss curvature. A different approach was
introduced by X. Chen [6] in his work on the Calabi flow. Similar methods
were used by M. Struwe [24] to establish global existence and exponential con-
vergence for the Ricci flow on compact surfaces, and by X. Chen and G. Tian
[7] to prove convergence of the Kähler-Ricci flow on Kähler-Einstein surfaces.
For the Ricci flow, the situation is more complicated since the Calabi energy
is not decreasing along the flow. H. Schwetlick [23] used similar arguments
to deduce global existence and convergence for a natural sixth order flow on
surfaces. The approach used in [6] and [24] is based on integral estimates and
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does not rely on the maximum principle. These ideas are also useful in our
situation. This is due to the fact that the equation studied in this paper has
higher order, hence the maximum principle is not available.

In Section 2 we derive the evolution equation for the conformal factor and
the curvature quantity Q. In Section 3 we show that the solution is bounded
in H

n
2 . In Sections 4 and 5 we show that the solution exists for all time, and

in Section 6 we prove that the evolution equation converges to a stationary
solution. Finally, the proof of Proposition 1.4 is carried out in Section 8.

The author would like to thank S.-Y. A. Chang and J. Viaclovsky for
helpful comments.

2. The evolution equations for w and Q − Q f

f

Since the evolution equation preserves the conformal structure, we may
write g = e2w g0 for a fixed metric g0 and some real-valued function w. Then
we have the formula

Q = e−nw (Q0 + P0w),

where P0 denotes the Paneitz operator with respect to the metric g0. Hence,
the function w obeys the evolution equation

∂

∂t
w = −1

2
e−nw P0w − 1

2
e−nw Q0 +

1
2

Q f

f
.

Differentiating both sides with respect to t, we obtain

∂

∂t

(
Q − Q f

f

)
= −1

2
P

(
Q − Q f

f

)
+

n

2
Q

(
Q − Q f

f

)
+

Q f

f 2

d

dt
f,

where P = e−nw P0 is the Paneitz operator with respect to the metric g. It
follows from the evolution equation for w that

d

dt
f = −

∫
M

n

2
f

(
Q − Q f

f

)
dV.

This implies

∂

∂t

(
Q − Q f

f

)
= −1

2
P

(
Q − Q f

f

)
+

n

2
Q

(
Q − Q f

f

)

−n

2
Q f

f

∫
M

f

f

(
Q − Q f

f

)
dV,

where P denotes the Paneitz operator with respect to the metric g.
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3. Boundedness of w in H
n
2

We consider the functional

Ef [w] =
∫

M

n

2
w P0w dV0 +

∫
M

n Q0 w dV0 −
∫

M
Q0 dV0 log

( ∫
M

f enw dV0

)
.

Since P0 is self-adjoint,

d

dt
Ef [w] =

∫
M

n

2
∂

∂t
w P0w dV0 +

∫
M

n

2
w P0

∂

∂t
w dV0 +

∫
M

n Q0
∂

∂t
w dV0

−
∫

M
n

Q f

f

∂

∂t
w dV

=
∫

M
n P0w

∂

∂t
w dV0 +

∫
M

n Q0
∂

∂t
w dV0 −

∫
M

n
Q f

f

∂

∂t
w dV

=
∫

M
n Q

∂

∂t
w dV −

∫
M

n
Q f

f

∂

∂t
w dV

=
∫

M
n

(
Q − Q f

f

)
∂

∂t
w dV.

Since the time derivative of w is given by

∂

∂t
w = −1

2

(
Q − Q f

f

)
,

we obtain
d

dt
Ef [w] = −

∫
M

n

2

(
Q − Q f

f

)2

dV.

In particular, the functional Ef [w] is decreasing under the evolution equation.
This implies

Ef [w] ≤ C.

In the first step, we consider the case∫
M

Q0 dV0 < 0.

Using Jensen’s inequality we obtain

log
( ∫

M
en(w−w) dV0

)
≥ −C.

This implies

Ef [w] ≥
∫

M

n

2
w P0w dV0 +

∫
M

n Q0 w dV0

−
∫

M
Q0 dV0 log

( ∫
M

enw dV0

)
− C
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=
∫

M

n

2
w P0w dV0 +

∫
M

n Q0 (w − w) dV0

−
∫

M
Q0 dV0 log

( ∫
M

en(w−w) dV0

)
− C

≥
∫

M

n

2
w P0w dV0 +

∫
M

n Q0 (w − w) dV0 − C

≥ 2δ

∫
M

(
(−∆0)

n
4 w

)2
dV0 +

∫
M

n Q0 (w − w) dV0 − C

≥ δ

∫
M

(
(−∆0)

n
4 w

)2
dV0 − C.

In the second step, we consider the case

0 ≤
∫

M
Q0 dV0 < (n − 1)!ωn.

Since the Paneitz operator P0 is self-adjoint and weakly positive, it has a square

root P
1
2
0 . Moreover, the kernel of P

1
2
0 coincides with the kernel of P0, which

consists of the constant functions. Thus, we conclude that

w(y) − w =
∫

M
P

1
2
0 w(z)H(y, z) dV0(z)

for a suitable function H(y, z). The leading term in the asymptotic expansion
of the kernel H(y, z) coincides with that of the Green’s function for the oper-
ator (−∆)

n
4 in Rn. Hence, we can apply an inequality of D. Adams (see [1,

Theorems 1 and 2]). This implies

∫
M

e

2nπnn
ωn−1

(w−w)2∫
M

(P
1
2
0

w)2 dV0 dV0 ≤ C,

hence ∫
M

e

2nπnn
ωn−1

(w−w)2∫
M

w P0w dV0 dV0 ≤ C.

Since

ωn−1ωn =
2n+1πn

(n − 1)!
,

we obtain ∫
M

en(w−w) dV0 ≤ C e
∫

M
n

2(n−1)! ωn
w P0w dV0 .

From this it follows that

Ef [w] ≥
∫

M

n

2
w P0w dV0 +

∫
M

n Q0 w dV0

−
∫

M
Q0 dV0 log

( ∫
M

enw dV0

)
− C



GLOBAL EXISTENCE 331

=
∫

M

n

2
w P0w dV0 +

∫
M

n Q0 (w − w) dV0

−
∫

M
Q0 dV0 log

( ∫
M

en(w−w) dV0

)
− C

≥
(

1 −
∫
M Q0 dV0

(n − 1)!ωn

) ∫
M

n

2
w P0w dV0 +

∫
M

n Q0 (w − w) dV0 − C

≥ 2δ

∫
M

(
(−∆0)

n
4 w

)2
dV0 +

∫
M

4 Q0 (w − w) dV0 − C

≥ δ

∫
M

(
(−∆0)

n
4 w

)2
dV0 − C.

Since Ef [w] is bounded from above, we conclude that∫
M

(
(−∆0)

n
4 w

)2
dV0 ≤ C;

hence
‖w − w‖

H
n
2
≤ C.

Using an inequality of N. Trudinger, we obtain∫
M

eα(w−w) dV0 ≤ C

for all real numbers α. In particular, we have∫
M

en(w−w) dV0 ≤ C.

Since
∫
M enw dV0 = 1, we conclude that e−nw ≤ C; hence −C ≤ w ≤ C. This

implies ‖w‖
H

n
2
≤ C and

∫
M eαw dV0 ≤ C for all real numbers α. Since the

functional Ef [w] is bounded from below, we finally obtain
∫ T

0

∫
M

(
Q − Q f

f

)2

dV dt ≤ C.

4. Boundedness of w in Hn for 0 ≤ t ≤ T

Let T be a fixed, positive real number. We claim that

‖w‖Hn ≤ C

for all 0 ≤ t ≤ T . For the sake of brevity, we put

v = −1
2

e
nw
2

(
Q − Q f

f

)
= e

nw
2

∂

∂t
w

= −1
2

e−
nw
2 P0w − 1

2
e−

nw
2 Q0 +

1
2

e
nw
2

Q f

f
.
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This implies

∂

∂t
w = e−

nw
2 v and P0w = −2 e

nw
2 v − Q0 + enw Q f

f
.

From this it follows that

d

dt

( ∫
M

(P0w)2 dV0

)
= −

∫
M

4 (e
nw
2 v)P0(e−

nw
2 v) dV0

−
∫

M
2 Q0 P0(e−

nw
2 v)

+
∫

M

2 Q

f
(enw f)P0(e−

nw
2 v) dV0.

This implies

d

dt

( ∫
M

(P0w)2 dV0

)
= −

∫
M

4 (−∆0)
n
4 (e

nw
2 v) (−∆0)

n
4 (e−

nw
2 v) dV0

−
∫

M
2 P0Q0 (e−

nw
2 v)

+
∫

M

2 Q

f
(−∆0)

n
4 (enw f) (−∆0)

n
4 (e−

nw
2 v) dV0

+ lower order terms.

Here, we adopt the convention that

(−∆0)m+ 1
2 = ∇0 (−∆0)m

for all integers m (see [1]). The right-hand side involves derivatives of v and
w of order at most n

2 . Moreover, the total number of derivatives is at most n.
Therefore, we obtain

d

dt

( ∫
M

(P0w)2 dV0

)
= −

∫
M

4
(
(−∆0)

n
4 v

)2
dV0

+C
∑

k1,...,km

∫
M

|∇k1
0 v| · |∇k2

0 v| · |∇k3
0 w| · · · |∇km

0 w| dV0

+C
∑

l1,...,lm

∫
M

|∇l1
0 v| · |∇l2

0 w| · · · |∇lm
0 w| eαw dV0.

The first sum is taken over all m-tuples k1, . . . , km with m ≥ 3 satisfying the
conditions

0 ≤ ki ≤
n

2
for 1 ≤ i ≤ 2,

1 ≤ ki ≤
n

2
for 3 ≤ i ≤ m,

and
k1 + · · · + km ≤ n.
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To estimate this term, we choose real numbers p1, . . . , pm ∈ [2,∞[ such that

ki ≤
n

pi
for 1 ≤ i ≤ 2,

n

pi
< ki for 3 ≤ i ≤ m

and
1
p1

+ · · · + 1
pm

= 1.

Moreover, we define real numbers θ1, . . . , θm by

θi =
ki − n

pi
+ n

2
n
2

∈ [0, 1] for 1 ≤ i ≤ 2

and

θi =
ki − n

pi

n
2

∈ ]0, 1[ for 3 ≤ i ≤ m.

Then we have θ1 + · · · + θm ≤ 2; hence

θ3 + · · · + θm ≤ (1 − θ1) + (1 − θ2).

Since w is bounded in H
n
2 , this implies

−
∫

M
2

(
(−∆0)

n
4 v

)2
dV0

+C
∑

k1,...,km

∫
M

|∇k1
0 v| · |∇k2

0 v| · |∇k3
0 w| · · · |∇km

0 w| dV0

≤ −‖v‖2

H
n
2

+ C
∑

k1,...,km

‖∇k1
0 v‖Lp1 · ‖∇k2

0 v‖Lp2 · ‖∇k3
0 w‖Lp3 · · · ‖∇km

0 w‖Lpm

≤ −‖v‖2

H
n
2

+ C
∑

k1,...,km

‖v‖
H

k1− n
p1

+ n
2

·‖v‖
H

k2− n
p2

+ n
2
· ‖w‖

H
k3− n

p3
+ n

2
· · · ‖w‖

H
km− n

pm
+ n

2

≤ −‖v‖2

H
n
2

+ C
∑

k1,...,km

‖v‖(1−θ1)+(1−θ2)
L2

·‖v‖θ1+θ2

H
n
2

‖w‖(1−θ3)+···+(1−θm)

H
n
2

‖w‖θ3+···+θm
Hn

≤ −‖v‖2

H
n
2

+ C
∑

k1,...,km

‖v‖(1−θ1)+(1−θ2)
L2 ‖v‖θ1+θ2

H
n
2

‖w‖θ3+···+θm
Hn

≤ C
∑

k1,...,km

‖v‖2
L2 ‖w‖

2(θ3+···+θm)

(1−θ1)+(1−θ2)

Hn

≤ C ‖v‖2
L2 (‖w‖2

Hn + 1).
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The second sum is taken over all m-tuples l1, . . . , lm with m ≥ 1 satisfying the
conditions

0 ≤ l1 ≤ n

2
,

1 ≤ li ≤
n

2
for 2 ≤ i ≤ m

and
l1 + · · · + lm ≤ n.

To estimate this term, we choose real numbers q1, . . . , qm ∈ [2,∞[ such that

l1 ≤ n

q1
,

n

qi
< li for 2 ≤ i ≤ m

and
1
2
≤ 1

q1
+ · · · + 1

qm
< 1.

Moreover, we define real numbers ρ2, . . . , ρm by

ρ1 =
l1 − n

q1
+ n

2
n
2

∈ [0, 1]

and

ρi =
li − n

qi

n
2

∈ ]0, 1[ for 2 ≤ i ≤ m.

Then we have ρ1 + · · · + ρm ≤ 2; hence ρ2 + · · · + ρm ≤ 2 − ρ1. Since w is
bounded in H

n
2 , this implies

−
∫

M
2

(
(−∆0)

n
4 v

)2
dV0 + C

∑
l1,...,lm

∫
M

|∇l1
0 v| · |∇l2

0 w| · · · |∇lm
0 w| eαw dV0

≤ −‖v‖2

H
n
2

+ C
∑

l1,...,lm

‖∇l1
0 v‖Lq1 · ‖∇l2

0 w‖Lq2 · · · ‖∇lm
0 w‖Lqm

≤ −‖v‖2

H
n
2

+ C
∑

l1,...,lm

‖v‖
H

l1− n
q1

+ n
2
· ‖w‖

H
l2− n

q2
+ n

2
· · · ‖w‖

H
lm− n

qm
+ n

2

≤ −‖v‖2

H
n
2

+ C
∑

l1,...,lm

‖v‖1−ρ1

L2 ‖v‖ρ1

H
n
2
‖w‖(1−ρ2)+···+(1−ρm)

H
n
2

‖w‖ρ2+···+ρm

Hn

≤ −‖v‖2

H
n
2

+ C
∑

l1,...,lm

‖v‖1−ρ1

L2 ‖v‖ρ1

H
n
2
‖w‖ρ2+···+ρm

Hn

≤ C
∑

l1,...,lm

‖v‖
2−2ρ1
2−ρ1

L2 ‖w‖
2(ρ2+···+ρm)

2−ρ1
Hn

≤ C (‖v‖2
L2 + 1) (‖w‖2

Hn + 1).

Thus, we conclude that

d

dt

( ∫
M

(P0w)2 dV0

)
≤ C (‖v‖2

L2 + 1) (‖w‖2
Hn + 1).
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From the positivity of P0 it follows that

‖w‖2
Hn ≤ C

∫
M

(P0w)2 dV0.

Moreover, the function v satisfies

‖v‖2
L2 =

∫
M

1
4

enw
(

Q − Q f

f

)2

dV0 =
∫

M

1
4

(
Q − Q f

f

)2

dV.

Therefore, we obtain

d

dt

( ∫
M

(P0w)2 dV0 + 1
)
≤ C

( ∫
M

(P0w)2 dV0 + 1
) ( ∫

M

(
Q− Q f

f

)2

dV + 1
)

.

Since ∫ T

0

∫
M

(
Q − Q f

f

)2

dV dt ≤ C,

we deduce that ∫
M

(P0w)2 dV0 ≤ C for all 0 ≤ t ≤ T.

This implies
‖w‖Hn ≤ C

for all 0 ≤ t ≤ T . Using the Sobolev inequality, we obtain

|w| ≤ C for all 0 ≤ t ≤ T.

5. Boundedness of w in H2k for 0 ≤ t ≤ T

We now establish bounds for the higher order derivatives:

d

dt

( ∫
M

|(−∆0)kw|2 dV0

)
≤ −

∫
M

e−nw |(−∆0)k+n
4 w|2 dV0

+C
∑

k1,...,km

∫
M

|∇k1
0 w| · · · |∇km

0 w| dV0 ;

hence
d

dt

( ∫
M

|(−∆0)kw|2 dV0

)
≤ − 1

C

∫
M

|(−∆0)k+n
4 w|2 dV0

+C
∑

k1,...,km

∫
M

|∇k1
0 w| · · · |∇km

0 w| dV0.

Here, the sum is taken over all m-tuples k1, . . . , km, with m ≥ 3, which satisfy
the conditions

1 ≤ ki ≤ 2k +
n

2
and k1 + · · · + km ≤ 4k + n.
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We now choose real numbers p1, . . . , pm ∈ [2,∞[ such that

ki ≤ 2k +
n

pi
and

1
p1

+ · · · + 1
pm

= 1.

Moreover, we define real numbers θ1, . . . , θm by

θi = max

{
ki − n

pi
− n

2

2k − n
2

, 0

}
.

Since m ≥ 3, we can choose p1, . . . , pm ∈ [2,∞[ such that

θ1 + · · · + θm < 2.

From this it follows that
d

dt
‖w‖2

H2k ≤ − 1
C

‖w‖2

H2k+ n
2

+ C
∑

k1,...,km

‖∇k1
0 w‖Lp1 · · · ‖∇km

0 w‖Lpm

≤ − 1
C

‖w‖2

H2k+ n
2

+ C
∑

k1,...,km

‖w‖
H

k1− n
p1

+ n
2
· · · ‖w‖

H
km− n

pm
+ n

2

≤ − 1
C

‖w‖2

H2k+ n
2

+ C
∑

k1,...,km

‖w‖(1−θ1)+···+(1−θm)
Hn ‖w‖θ1+···+θm

H2k+ n
2

≤ − 1
C

‖w‖2

H2k+ n
2

+ C
∑

k1,...,km

‖w‖θ1+···+θm

H2k+ n
2

≤ − 1
C

‖w‖2

H2k+ n
2

+ C

≤ − 1
C

‖w‖2
H2k + C

for all 0 ≤ t ≤ T . Thus, we conclude that

‖w‖H2k ≤ C for all 0 ≤ t ≤ T.

Therefore, the evolution equation has a solution which is defined for all time.

6. Convergence

For the sake of brevity, we put

y(t) =
∫

M

(
Q − Q f

f

)2

dV

and we show that
y(t) → 0 for t → ∞.

Let ε be an arbitrary positive number. We choose t0 ≥ 0 such that y(t0) ≤ ε.

We claim that y(t) ≤ 3ε for all t ≥ t0. Otherwise, we define

t1 = inf{t ≥ t0 : y(t) ≥ 3ε}.
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This implies y(t) ≤ 3ε for all t0 ≤ t ≤ t1. From this it follows that∫
M

e−nw (Q0 + P0w)2 dV0 ≤ C

for all t0 ≤ t ≤ t1. Moreover, it follows from results in Section 3 that∫
M

e3nw dV0 ≤ C for all t0 ≤ t ≤ t1.

Using Hölder’s inequality, we obtain

∫
M

|Q0 + P0w| 32 dV0 ≤
( ∫

M
e−nw (Q0 + P0w)2 dV0

) 3
4

( ∫
M

e3nw dV0

) 1
4

.

From this it follows that∫
M

|P0w| 32 dV0 ≤ C for all t0 ≤ t ≤ t1.

Using the Sobolev inequality, we obtain

|w| ≤ C for all t0 ≤ t ≤ t1.

We have shown in Section 2 that the function Q−Q f

f
satisfies the evolution

equation

∂

∂t

(
Q − Q f

f

)
= −1

2
P

(
Q − Q f

f

)
+

n

2
Q

(
Q − Q f

f

)

−n

2
Q f

f

∫
M

f

f

(
Q − Q f

f

)
dV,

where P denotes the Paneitz operator with respect to the metric g. From this
it follows that

d

dt

( ∫
M

(
Q − Q f

f

)2

dV

)
= −

∫
M

(
Q − Q f

f

)
P

(
Q − Q f

f

)
dV

+
∫

M

n

2

(
Q − Q f

f

)3

dV.

+
∫

M
n

Q f

f

(
Q − Q f

f

)2

dV

−n Q

( ∫
M

f

f

(
Q − Q f

f

)
dV

)2

.

Using the Gagliardo-Nirenberg inequality, we can bound
∥∥∥∥Q − Q f

f

∥∥∥∥
L3

≤ C

∥∥∥∥Q − Q f

f

∥∥∥∥
2
3

L2

∥∥∥∥Q − Q f

f

∥∥∥∥
1
3

H
n
2

,
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where the norms are taken with respect to the background metric g0. This
implies∫

M

(
Q − Q f

f

)3

dV0

≤ C

( ∫
M

(
Q − Q f

f

)2

dV0

) ( ∫
M

(
Q − Q f

f

)
P0

(
Q − Q f

f

)
dV0

) 1
2

.

Since w is uniformly bounded for t0 ≤ t ≤ t1, we obtain∫
M

(
Q − Q f

f

)3

dV

≤ C

( ∫
M

(
Q − Q f

f

)2

dV

) ( ∫
M

(
Q − Q f

f

)
P

(
Q − Q f

f

)
dV

) 1
2

.

Thus, we conclude that

d

dt

( ∫
M

(
Q − Q f

f

)2

dV

)
≤ C

( ∫
M

(
Q − Q f

f

)2

dV

)2

+C

( ∫
M

(
Q − Q f

f

)2

dV

)
;

hence
d

dt
y(t) ≤ C y(t)2 + C y(t).

Therefore, we obtain

2ε ≤ y(t1) − y(t0) ≤ C

∫ t1

t0
y(t) dt.

If we choose t0 large enough, then we have

C

∫ ∞

t0
y(t) dt ≤ ε.

Hence, we obtain 2ε ≤ ε which is a contradiction. Thus, we conclude that

y(t) → 0 for t → ∞.

From this it follows that

|w| ≤ C for all t ≥ 0.

Moreover, we have ∫
M

e−nw (Q0 + P0w)2 dV0 ≤ C

for all t ≥ 0. From this it follows that∫
M

(Q0 + P0w)2 dV0 ≤ C;
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hence
‖w‖Hn ≤ C

for all t ≥ 0. Arguing as above, we obtain

‖w‖Hk ≤ C for all t ≥ 0.

It remains to show that the flow converges to a metric satisfying

Q

f
=

Q

f
.

The evolution equation
∂

∂t
g = −

(
Q − Q f

f

)
g

is the gradient flow for the functional

Ef [w] =
∫

M

n

2
w P0w dV0 +

∫
M

n Q0 w dV0 −
∫

M
Q0 dV0 log

( ∫
M

enw f dV0

)
.

Since the functional Ef [w] is real analytic, the assertion follows from a general
result of L. Simon [22].

7. The case M = RPn

In this section, we consider the special case M = RPn. We normalize the
metric such that the volume of M is equal to 1

2 ωn and the mean value of the
function Q is equal to (n − 1)!. By Theorem 1.1, the flow converges to a limit
metric g satisfying

Q

f
=

(n − 1)!
f

.

In particular, for every positive function f on RPn, there exists a metric g on
RPn such that

Q

f
=

(n − 1)!
f

.

We now consider the case f = 1. In this case, the limit metric g satisfies
Q = (n − 1)!. It follows from a result of S.-Y. A. Chang and P. Yang [4]
(see also C. S. Lin’s paper [19]) that the limit metric is the standard metric
on RPn.

We claim that the flow converges exponentially. To show this, we denote
by g0 the standard metric on RPn. Then the conformal factor satisfies the
evolution equation

∂

∂t
w = −1

2
e−nw P0w +

1
2

(n − 1)! (1 − e−nw).
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Linearizing this equation, we obtain

∂

∂t
w = −1

2
P0w +

1
2

n!w.

The Paneitz operator on RPn is given by

P0 =

n
2∏

k=1

(−∆0 + (k − 1)(n − k)).

The first eigenvalue of the Laplace operator −∆0 on RPn is strictly greater
than n. Hence, the first eigenvalue of the Paneitz operator P0 is strictly greater
than n!. Therefore, the first eigenvalue of the linearized operator is strictly
less than 0. Thus, we conclude that the flow converges exponentially to the
standard metric on RPn.

8. A compactness result for conformal metrics on Sn

In this section, we give a proof for Proposition 1.4. Let gk = e2wk g0 be a
sequence of conformal metrics on Sn with fixed volume such that∫

Sn
Q2

k dVk ≤ C.

Since
Qk = e−nwk (Q0 + P0wk),

we obtain ∫
Sn

e−nwk (Q0 + P0wk)2 dV0 ≤ C.

Moreover, we have ∫
Sn

|Qk| dVk ≤ C.

Hence ∫
Sn

|P0wk| dV0 ≤ C.

Finally, we have

lim
r→0

lim
k→∞

∫
Br(x)

|Qk| dVk <
1
2

(n − 1)!ωn.

This implies

lim
r→0

lim
k→∞

∫
Br(x)

|P0wk| dV0 <
1
2

(n − 1)!ωn.

Choosing r sufficiently small, we obtain

lim
k→∞

∫
Br(x)

|P0wk| dV0 <
1
2

(n − 1)!ωn.
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Let
Ik =

∫
Br(x)

|P0wk| dV0.

We now use the formula

wk(y) − wk =
∫

Sn
P0wk(z)K(y, z) dV0(z).

This implies

np(wk(y) − wk) ≤
∫

Br(x)
np |P0wk(z)| |K(y, z)| dV0(z) + C

for all y ∈ B r
2
(x). Using Jensen’s inequality, we obtain

enp(wk(y)−wk) ≤ C

Ik

∫
Br(x)

|P0wk(z)| enpIk |K(y,z)| dV0(z)

for all y ∈ B r
2
(x). Since

lim
k→∞

Ik <
1
2

(n − 1)!ωn,

we can find a real number p > 1 such that

lim
k→∞

pIk <
1
2

(n − 1)!ωn.

We now use an asymptotic formula of the function K(y, z) for |y − z| → 0. To
derive this formula, we use the identity

(−∆)
n
2 log |y − z| = −2n−2

((n − 2
2

)
!
)2

ωn−1 δ(y − z).

This implies

(−∆)
n
2 log |y − z| = −1

2
(n − 1)!ωn δ(y − z).

Therefore, we obtain

1
2

(n − 1)!ωn K(y, z) ∼ − log |y − z|;

hence
e

1
2

(n−1)! ωn |K(y,z)| ∼ 1
|y − z| .

From this it follows that ∫
Sn

enpIk |K(y,z)| dV0(y) ≤ C.

Since
1
Ik

∫
Br(x)

|P0wk| dV0 = 1,
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we conclude that ∫
B r

2
(x)

enp(wk(y)−wk) dV0(y) ≤ C.

Covering Sn with finitely many balls B r
2
(x), we obtain∫

Sn
enp(wk−wk) dV0 ≤ C

for some p > 1. In particular, we have∫
Sn

en(wk−wk) dV0 ≤ C.

Since
∫
Sn enwk dV0 = 1, we conclude that e−nwk ≤ C; hence −C ≤ wk ≤ C.

This implies ∫
Sn

enpwk dV0 ≤ C.

By Hölder’s inequality,
∫

Sn
|Q0+P0wk|

2p
p+1 dV0 ≤

( ∫
Sn

e−nwk (Q0+P0wk)2 dV0

) p
p+1

( ∫
Sn

enpwk dV0

) 1
p+1

.

From this it follows that ∫
Sn

|P0wk|
2p

p+1 dV0 ≤ C.

Using the Sobolev inequality, we obtain |wk| ≤ C. Thus, we conclude that∫
Sn

|P0wk|2 dV0 ≤ C.

Therefore, the sequence wk is uniformly bounded in Hn.
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of Élie Cartan (Lyon, 1984), Astérisque (1985), 95–116.
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