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Large Riemannian manifolds
which are flexible

By A. N. Dranishnikov, Steven C. Ferry, and Shmuel Weinberger*

Abstract

For each k ∈ Z, we construct a uniformly contractible metric on Euclidean
space which is not mod k hypereuclidean. We also construct a pair of uniformly
contractible Riemannian metrics on Rn, n ≥ 11, so that the resulting mani-
folds Z and Z ′ are bounded homotopy equivalent by a homotopy equivalence
which is not boundedly close to a homeomorphism. We show that for these
spaces the C∗-algebra assembly map K lf

∗ (Z) → K∗(C∗(Z)) from locally fi-
nite K-homology to the K-theory of the bounded propagation algebra is not a
monomorphism. This shows that an integral version of the coarse Novikov con-
jecture fails for real operator algebras. If we allow a single cone-like singularity,
a similar construction yields a counterexample for complex C∗-algebras.

1. Introduction

This paper is a contribution to the collection of problems that surrounds
positive scalar curvature, topological rigidity (a.k.a. the Borel conjecture), the
Novikov, and Baum-Connes conjectures. Much work in this area (see e.g. [14],
[4], [3], [15]) has focused attention on bounded and controlled analogues of
these problems, which analogues often imply the originals. Recently, success
in attacks on the Novikov and Gromov-Lawson conjectures has been achieved
along these lines by proving the coarse Baum-Connes conjecture for certain
classes of groups [23], [27], [28]. A form of the coarse Baum-Connes conjec-
ture states that the C∗-algebra assembly map μ : K lf

∗ (X) → K∗(C∗(X)) is an
isomorphism for uniformly contractible metric spaces X with bounded geom-
etry [21].

Using work of Gromov on embedding of expanding graphs in groups Γ with
BΓ a finite complex [16], the epimorphism part of the coarse Baum-Connes con-
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jecture was disproved [17]. In this paper we will show that the monomorphism
part of the coarse Baum-Connes conjecture (i.e. the coarse Novikov conjec-
ture) does not hold true without the bounded geometry condition. We will
construct a uniformly contractible metric on R8 for which μ is not a monomor-
phism. Thus, a coarse form of the integral Novikov conjecture fails even for
finite-dimensional uniformly contractible manifolds. In fact we will prove more:
our uniformly contractible R8 is not integrally hypereuclidean, which is to say
that it does not admit a degree one coarse Lipschitz map to euclidean space.
Also in this paper, we will produce a uniformly contractible Riemannian man-
ifold, abstractly homeomorphic to Rn, n ≥ 11, which is boundedly homotopy
equivalent to another such manifold, but not boundedly homeomorphic to it.
This disproves one coarse analog of the rigidity conjecture for closed aspherical
manifolds. We will also show that for each k ∈ Z some of these manifolds are
not mod k hypereuclidean.

Our construction is ultimately based on examples of Dranishnikov [5], [6]
of spaces for which cohomological dimension disagrees with covering dimension,
and the consequent phenomenon, using a theorem of Edwards (see [25]), of cell-
like maps which raise dimension.

Definition 1.1. We will use the notation Br(x) to denote the ball of radius
r centered at x. A metric space (X, d) is uniformly contractible if for every r

there is an R ≥ r so that for every x ∈ X, Br(x) contracts to a point in BR(x).
The main examples of this are the universal cover of a compact aspherical
polyhedron and the open cone in Rn of a finite subpolyhedron of the boundary
of the unit cube. There is a similar notion of uniformly n-connected which says
that any map of an n-dimensional CW complex into Br(x) is nullhomotopic
in BR(x).

Definition 1.2. We will say that a Riemannian manifold Mn is integrally
(mod k, or rationally) hypereuclidean if there is a coarsely proper coarse Lips-
chitz map f : M → Rn which is of degree 1 (of degree ≡ 1 mod k, or of nonzero
integral degree, respectively). See Section 4 for definitions and elaborations.

Here are our main results:

Theorem A. For any given k and n ≥ 8, there is a Riemannian mani-
fold Z which is diffeomorphic to Rn such that Z is uniformly contractible and
rationally hypereuclidean but is not mod k (or integrally) hypereuclidean.

Definition 1.3. (i) A map f : X → Y is a coarse isometry if there is a K

so that |dY (f(x), f(x′))− dX(x, x′)| < K for all x, x′ ∈ X and so that for each
y ∈ Y there is an x ∈ X with dY (y, f(x)) < K.

(ii) We will say that uniformly contractible Riemannian manifolds Z and
Z ′ are boundedly homeomorphic if there is a homeomorphism f : Z → Z ′ which
is a coarse isometry.
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Theorem B. There is a coarse isometry between uniformly contractible
Riemannian manifolds Z and Z ′ which is not boundedly close to a homeomor-
phism.

An easy inductive argument shows that a coarse isometry of uniformly
contractible Riemannian manifolds is a bounded homotopy equivalence, so this
gives a counterexample to a coarse form of the Borel conjecture.

Theorem C. There is a uniformly contractible singular Riemannian
manifold Z such that the assembly map (see [20])

K�f
∗ (Z) → K∗(C∗(Z))

fails to be an integral monomorphism. Z is diffeomorphic away from one point
to the open cone on a differentiable manifold M .

It was shown in [8] that Z has infinite asymptotic dimension in the sense of
Gromov. This fact cannot be derived from [27] since Z does not have bounded
geometry.

When we first discovered these results, we thought a way around these
problems might be to use a large scale version of K-theory in place of the
K-theory of the uniformly contractible manifold. Yu has observed that even
that version of the (C∗-analytic) Novikov conjecture fails in general (see [28]),
although not for any examples that arise from finite dimensional uniformly
contractible manifolds. On the other hand, bounded geometry does suffice to
eliminate both sets of examples.

In the past year, motivated by Gromov’s observation that spaces which
contain expander graphs cannot embed in Hilbert space, several researchers
(see [17] and the references contained therein), have given examples of vari-
ous sorts of counterexamples to general forms of the Baum-Connes conjecture.
Using the methodolgy of Farrell and Jones, Kevin Whyte and the last author
have observed that some of these are not counterexamples to the correspond-
ing topological statements. Thus the examples of this paper remain the only
counterexamples to the topological problems.

2. Weighted cones on uniformly k-connected spaces

The open cone on a topological space X is the topological space OX =
X × [0,∞)/X × 0.

Definition 2.1. A compact metric space (X, d) is locally k-connected if
for every ε > 0 there is a δ > 0 such that for each k-dimensional simplicial
complex Kk and each map α : Kk → X with diam(α(Kk)) < δ there is a map
ᾱ : Cone(K) → X extending α with diam(ᾱ(Cone(K))) < ε. Here, Cone(K)
denotes the ordinary closed cone.
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Lemma 2.2. Let (X, d) be a compact metric space which is locally
k-connected for all k. For each n, the open cone on X has a complete uniformly
n-connected metric. We will denote any such metric space by cX.1

Proof. We will even produce a metric which has a linear contraction func-
tion. Its construction is based on the weighted cone often used in differential
geometry. Draw the cone vertically, so that horizontal slices are copies of X.

x t( ,

(x, t)

(x, t )

t

t

t

x t( ,

Choose a continuous strictly increasing function φ : [0,∞) → [0,∞) with
φ(0) = 0. Let d be the original metric on X and define a function ρ′ by

(i) ρ′((x, t), (x′, t)) = φ(t)d(x, x′).

(ii) ρ′((x, t), (x, t′)) = |t − t′|.

We then define ρ : OX × OX → [0,∞) to be

ρ((x, t), (x′, t′)) = inf
�∑

i=1

ρ′((xi, ti), (xi−1, ti−1))

where the sum is over all chains

(x, t) = (x0, t0), (x1, t1), . . . , (x�, t�) = (x′, t′)

and each segment is either horizontal or vertical. It pays to move towards 0
before moving in the X-direction, so chains of shortest length have the form
pictured above. The function ρ is a metric on OX. The natural projection
OX → [0,∞) decreases distances, so Cauchy sequences are bounded in the
[0,∞)-direction. It follows that the metric on OX is complete. We write cX

for the metric space (OX, ρ).
It remains to define φ so that cX is uniformly n-contractible. We will

define φ(1) = 1 and φ(i + 1) = Ni+1φ(i) for i ∈ Z, where the sequence {Ni}
will be specified below. For nonintegral values of t, we set

φ(t) = φ([t]) + (t − [t])φ([t] + 1).

1The “c” notation in cX refers to a specific choice of weights. There probably should be an “n”

in our notation, but we leave it out for simplicity.
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Since X is locally n-connected, there is an infinite decreasing positive
sequence {ri} such that for every x the inclusions . . . ⊂ Bd

ri+1
(x) ⊂ Bd

ri
(x) ⊂

Bd
ri−1

(x) are nullhomotopic on n-skeleta. Refine the sequence so that actually
inclusions Bd

iri
(x) ⊂ Bd

ri−1
(x) are nullhomotopic on n-skeleta. We set Ni =

ri−1

ri
.
Now consider the ball Bρ

1(x, i) ⊂ cX. First, we note that Bρ
1(x, i) ⊂

Bd
1

Ni−1

(x) × [i − 1, i + 1] and that Bρ
1(x, i) contracts in itself to Bρ

1(x, i)

∩ (X × [i − 1, i]) ⊂ Bd
1

Ni−1

(x) × [i − 1, i]. But Bρ
3(x, i) ⊃ Bd

1
Ni−2

(x) × {i − 2}

so Bρ
1(x, i) n-contracts in Bρ

3 (x, i) by pushing down to the (i − 2)-level and
performing the n-contraction there.

For balls of radius 2 the same reasoning applies if the center is at least
3 away from the vertex. We continue in this way and observe that for any
given size ball, centered sufficiently far out, one obtains a n-contractibility
function of f(r) = r + 2 as required. The whole space is therefore uniformly
contractible.

3. Designer compacta

Definition 3.1. A map f : M → X from a closed manifold onto a compact
metric space is cell -like or CE if for each x ∈ X and neighborhood U of f−1(x)
there is a neighborhood V of f−1(x) in U so that V contracts to a point in U .

The purpose of this section is to give examples of CE maps f : M → X so
that f∗ : Hn(M ;L(e)) → Hn(X;L(e)) has nontrivial kernel. The argument
given below is a modification of the first author’s construction of infinite-
dimensional compacta with finite cohomological dimension. Here is the result
which we will use in proving Theorems A, B, and C of the introduction.

Theorem 3.2. Let Mn be a 2-connected n-manifold, n ≥ 7, and let
α be an element of K̃O∗(M ;Zm). Then there is a CE map q : M → X with
α ∈ ker(q∗ : K̃O∗(M ;Zm) → K̃O∗(X;Zm)). It follows that if α ∈ H∗(M ;L(e))
is an element of order m, m odd, then there is a CE map c : M → X so that
c∗(α) = 0 in H∗(X;L(e)).

We begin the proof of this theorem by recalling the statement of a major
step in the construction of infinite-dimensional compacta with finite cohomo-
logical dimension.

Theorem 3.3. Suppose that h̃∗(K(Z, n)) = 0 for some generalized ho-
mology theory h∗. Then for any finite polyhedron L and any element α ∈ h̃∗(L)
there exist a compactum Y and a map f : Y → L so that

(1)c-dimZ Y ≤ n.

(2) α ∈ Im(f∗).
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Remark 3.4. In [5], [6] the analogous result was proven for cohomology
theory. The proof is similar for homology theory. See [9].

Theorem 3.3 also has a relative version:

Theorem 3.3′. Suppose that h̃∗(K(Z, n)) = 0. Then for any finite
polyhedral pair (K, L) and any element α ∈ h̃∗(K, L) there exist a compactum
Y and a map f : (Y, L) → (K, L) so that

(i) c-dimZ (Y − L) ≤ n.

(ii) α ∈ Im(f∗).

(iii) f |L = idL.

The proof is essentially the same. Here is the key lemma in the proof of
Theorem 3.2. In what follows, K̃∗ will refer to reduced complex K-homology
and K̃O∗ will refer to reduced real K-homology.

Lemma 3.5. Let Mn be a 2-connected n-manifold, n ≥ 7, and let α be
an element in K̃O∗(M ;Zm), m ∈ Z. Then there exist compacta Z ⊃ M and
Y ⊃ M along with a CE map g : (Z, M) → (Y, M) so that

(1) g|M = idM .

(2) dim(Z − M) = 3.

(3) j∗(α) = 0, where j : M → Y is the inclusion.

Proof. By [26], K̃O∗(K(Zk, n);Zm) = 0 for n ≥ 3. We can now apply The-
orem 3.3′ to the pair (Cone(M), M) and the element ᾱ ∈ K̃O∗+1(Cone(M), M)
with ∂ᾱ = α in the long exact sequence of (Cone(M), M), obtaining a space
Y ⊃ M with cdim(Y −M) = 3 so that there is a class ᾱ′ ∈ K̃O∗+1(Y, M) with
∂ᾱ′ = α and a CE map g : (Z, M) → (Y, M) with dim(Z −M) = 3. The exact
sequence:

K̃O∗+1(Y, M) ∂→ K̃O∗(M)
j∗→ K̃O∗(Y )

shows that j∗(α) = 0.

Next, we construct a particularly nice retraction Z → M .

Lemma 3.6. Let (Z, M) be a compact pair with dim(Z −M) = 3 and M

a 2-connected n-manifold, n ≥ 7. Then there is a retraction r : Z → M with
r|(Z − M) one-to-one.

Proof. The existence of the retraction follows from obstruction theory
applied to the nerve of a fine cover of Z. The rest is standard dimension
theory using the Baire category theorem.
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Lemma 3.7. Let r : Z → M be a retraction which is one-to-one on
(Z − M) and let g : (Z, M) → (Y, M) be a CE map which is the identity over
M . Then the decomposition of M whose nondegenerate elements are r(g−1(y))
is upper semicontinuous.

Proof. We need to show that if F is an element of this decomposition and
U ⊃ F then there is a V with F ⊂ V ⊂ U such that if F ′ is a decomposition
element with F ′ ∩ V = ∅, then F ′ ⊂ U .

Case I. F = r(G), G = g−1(y). Then G ∩ M = ∅. For U ⊃ F , let
d = dist(F, M − U). Since r is a retraction, there is an open neighborhood
O ⊂ Z of M so that for all G′ such that G′ ∩ Ō �= ∅, diam z(G′) < d

2 . We may
assume that O has been chosen so small that Ō ∩ G = ∅. By continuity of g,
there is an open V ′ with G ⊂ V ′ ⊂ (Z − Ō) ∩ Z−1(U). Since r is one-to-one
and Z − O is compact, r(V ′) is open in r(Z − O). This means that there is
an open W ⊂ M so that W ∩ r(Z − O) = r(V ′). Let V = W∩) d

2
(F ) ⊂ U . If

F ′ ∩ V �= ∅ then F ′ ⊂ U , since F ′ is either a singleton, a set with diameter
< d

2 , or r(G′) with G ⊂ Z − Ō, and all three cases are accounted for above.

M
G Z

r

U

M
F = r (G)

Case II. F is a singleton, F = {x} with F /∈ z(Z −M). Let x ∈ U and let
d = dist(x, M −U). By continuity of g, there is a compact C ⊂ Z −M so that
if G ⊂ C, then diam(Z(G)) < d

2 . Let ρ = dist(x, r(C)) and define V = Bτ (x)
where τ = min{ρ, d

2}.

Proof of Theorem 3.2. Consider the coefficient sequence

→ K̃O∗+1(M ;Zm) ∂→ K̃O∗(M) ×m→ K̃O∗(M) → .

If α ∈ K̃O∗(M) is of order m, then α = ∂ᾱ, where ᾱ ∈ K̃O∗+1(M ;Zm). We
choose g : Z → Y as in Lemma 3.5 so that j∗ᾱ = 0. This gives us a diagram

M
r←− Z

i←− M⏐⏐�f

⏐⏐�g

⏐⏐�id

X
r′←− Y

j←− M

where f : M → X is the CE map induced by the decomposition {r(G)|G =
g−1(y), y ∈ Y } and r′ is the induced map from Y to X. It follows immediately
from this diagram that f∗(ᾱ) = 0. It then follows from the ladder of coefficient
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sequences

K̃O∗+1(M ;Zm) −→ K̃O∗(M) −→ K̃O∗(M)
f∗

⏐⏐� f∗

⏐⏐� f∗

⏐⏐�
K̃O∗+1(X;Zm) −→ K̃O∗(X) −→ K̃O∗(X)

that f∗(α) = 0. The L-theory statement in Theorem 2 now follows from the
fact that KO[12 ] = L(e)[12 ].

4. The proof of Theorem A

We begin by stating some definitions.

Definition 4.1.

(i) A map f : X → Y between metric spaces is said to be coarse Lipschitz
if there are constants C and D so that dY (f(x), f(x′)) < CdX(x, x′)
whenever dX(x, x′) > D. Notice that coarse Lipschitz maps are not
necessarily continuous. In fact, if diam X < ∞, every map defined on
X is coarse Lipschitz.

(ii) A map f : X → Y is coarsely proper if for each bounded set B ⊂ Y ,
f−1(B) has compact closure in X.

The following corollary constructs the Riemannian manifolds appearing
in all of our main theorems.

Proposition 4.2. If X is the cell -like image of a compact manifold and n

is given, then for some suitable choice of weights, cX is uniformly n-connected.

Proof. The CE image of any compact ANR (absolute neighborhood re-
tract) is locally n-connected for all n, so the proposition follows from Lemma
2.2. See [19] for references.

Corollary 4.3. Let f : Sk−1 → X be a cell -like map. Then Rk has a
uniformly contractible Riemannian metric which is coarsely equivalent to cX,
where the cone is weighted as in Proposition 4.2.

Proof. Consider cf : cSk−1 → cX. This induces a pseudometric on Rk.
The basic lifting property for cell-like maps (see [19]) shows that Rk with this
pseudometric is uniformly n-connected if and only if cX is. If n ≥ k − 1, this
means that the induced pseudometric on Rk is uniformly contractible. Adding
any sufficiently small metric to this pseudometric — the metric from Rk ∼=

◦
Dk
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will do — produces a uniformly contractible metric on Rk which is quasi-
equivalent to cX. Since X is locally connected, a theorem of Bing [1] says that
X has a path metric. If we start with a path metric on X, the metric on cX is
also a path metric and the results of [11] allow us to construct a Riemannian
metric on cSk−1 which is uniformly contractible and coarse Lipschitz equivalent
to cX.

We have constructed a Riemannian manifold Zn homeomorphic to Rn

so that Z is coarsely isometric to a weighted open cone on a “Dranishnikov
space” X. By Theorem 3.2, we can choose c : Sn−1 → X so that c does
not induce a monomorphism in K( ;Zk)-homology and such that the map
c × id : Rn → cX is a coarse isometry, where we are using polar coordinates
to think of Rn as the cone on Sn−1. In this notation, “c × id” refers to a map
which preserves levels in the cone structure and which is equal to c on each
level.

We need to see that Z is not hypereuclidean. The next lemma should be
comforting to readers who find themselves wondering about the “degree” of a
map which is not required to be continuous.

Lemma 4.4. If Z is any metric space and f : Z → Rn (with the euclidean
metric) is coarse Lipschitz, then there is a continuous map f̄ : Z → Rn which
is boundedly close to f . If f is continuous on a closed Y ⊂ Z, then we can
choose f̄ |Y = f |Y .

Proof. Choose an open cover U of X by sets of diameter < 1. For each
U ∈ U , choose xU ∈ U . Let {φU} be a partition of unity subordinate to U and
let

f̄(x) =
∑
U∈U

φU (x)f(xu).

By the coarse Lipschitz condition, there is a K such that

d(x, x′) < 1 ⇒ d(f(x), f(x′)) < K.

Since d(xU , x) < 1 for all U with φU (x) �= 0, f̄(x) ∈ BK(f(x)), so d(f, f̄)
< K.

Continuing with the proof of Theorem A, let f ′ : Z → Rn be a coarsely
proper coarse Lipschitz map. Since Z is coarsely isomorphic to cX, there is a
coarse Lipschitz map f : cX → Rn. By the above, we may assume that f is
continuous.

Since f is coarsely proper, f−1(B) is a compact subset of cX, where B is
the unit ball in Rn. Choose T so large that

(X × [T,∞)) ∩ f−1(B) = ∅.
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Now consider the composition

Sn−1 (c×id)|−−−−→ X × {T} −→ (Rn − B)
x
|x|−→ Sn−1 = ∂B.

This composition is degree one because the original coarse Lipschitz map W →
Rn was degree one. This is a contradiction, since degree one maps of spheres
are homotopy equivalences and the first map Sn−1 → X × {T} has kernel
in K̃O( ;Zk)-homology. We conclude that W is not mod k (or integrally)
hypereuclidean.

Proposition 4.5. If f : Sn → X is a cell -like map, there is a map
g : X → Sn such that the composition g ◦ f has nonzero degree.

Proof. By [10], there exist a finite polyhedron Q and a map p : X → Q so
that the composition p◦f : Sn → Q is (2n+3)-connected. Since Q is a rational
homology sphere, there is an essential map q : Q → K(Q, n). If n is odd, this
finishes the proof, since K(Q, n) is a telescope of maps between spheres and
compactness implies that the image of X lies in a finite subtelescope, which is
homotopy equivalent to Sn.

If n = 2k is even, there is a fibration sequence T → K(Q, n) → K(Q, 2n),
where T is a rational sphere (and therefore a telescope) and the map K(Q, n) →
K(Q, 2n) is induced by squaring in cohomology. Since the square of the gen-
erator of Hn(Q) is zero, the essential map Q → K(Q, n) lifts to an essential
map Q → T and the argument from the odd-dimensional case completes the
proof.

Theorem 4.6. Let f : Sn → X be a cell -like map and let Rn+1
Φ be diffeo-

morphic to Rn+1 with a Riemannian metric quasi -isometric to cX, where c is
a weight function tending to infinity. Then Rn+1

Φ is rationally hypereuclidean.

Proof. We will denote the Higson-Roe compactification of a proper metric
space Y by Y and we will let ν(Y ) denote the remainder, Y −Y , which is called
the Higson corona. For general results about the Higson-Roe compactification,
see chapter 5 of [20]. By results of Roe as modified in Lemma 3.4 of [7], it
suffices to produce a map ν(Rn+1

Φ ) → Sn which has nonzero degree in the sense
that the composite

Hn(Sn;Q) → Hn(νRn+1
Φ );Q) → Hn+1(Rn+1

Φ , ν(Rn+1
Φ );Q)

is nonzero. The Higson corona is a coarse invariant, so the map cf : Rn+1
Φ → cX

induced by f extends to a map

(Rn+1
Φ , ν(Rn+1

Φ )) → (cX, ν(cX))
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which is a homeomorphism on the Higson coronas. This gives us a diagram

Hn(cX;Q) −→ Hn(ν(cX);Q) −→ Hn+1(cX, ν(cX);Q)⏐⏐�cf∗ homeo

⏐⏐�cf∗ ∼=
⏐⏐�cf∗

Hn(Rn+1
Φ ;Q) −→ Hn(ν(Rn+1

Φ );Q) −→ Hn+1(Rn+1
Φ ), ν(Rn+1

Φ );Q)

in which the rightmost vertical map is an isomorphism by the Vietoris-Begle
theorem and the leftmost vertical map is an isomorphism by the five lemma.
Let the map g : X → Sn be constructed as in Proposition 4.5. The diagram
shows that it suffices to find a map ν(cX) → X so that the composition

Hn(Sn;Q)
g∗→ Hn(X,Q) −→ Hn(ν(cX);Q) −→ Hn+1(cX, ν(cX);Q)

is nonzero.
By the universal property of the Higson-Roe compactification, there is a

map of pairs (cX, ν(cX)) → (Cone(X), X), where Cone(X) is the closed cone
on X. Compare with example 5.28 of [20]. As in that example, elementary
algebraic topology gives us a diagram

Hn(Sn;Q)
g∗−−−−→ Hn(X;Q)

∼=−−−−→ Hn+1(Cone(X), X;Q)⏐⏐� ⏐⏐�∼=

Hn(cX;Q) −−−−→ Hn(ν(cX);Q) −−−−→ Hn(cX, ν(cX);Q).

Since f∗ ◦ g∗ �= 0, g∗(1) �= 0 in Hn(X;Q), so the proof is complete.

5. The proof of Theorem B

In this section, we will exploit properties of a CE map f : Sk−1 → X

which does not induce a surjection on periodic KO[12 ]-homology. The manifold
Z ∼= Rk will be constructed as above to be coarsely equivalent to cX.

We will produce Z ′ coarsely equivalent to Z by using the bounded version
of the Sullivan-Wall surgery exact sequence [24] which is established in [12].
A structure on a closed manifold M is a pair (N, f) where f : N → M is a
simple homotopy equivalence. Two structures (N, f) and (N ′, f ′) are equiva-
lent if there is a homeomorphism φ : N → N ′ so that f ′ ◦ φ ∼ f . For n ≥ 5,
the classical surgery exact sequence studies S(M), the collection of equiva-
lence classes of structures on M. A functorial version of the sequence in the
topological category is

. . . −→ Hn+1(M ;L(e)) −→ Ln+1(Zπ) −→ STop(Mn)

−→ Hn(M ;L(e)) −→ Ln(Zπ)



930 A. N. DRANISHNIKOV, STEVEN C. FERRY, AND SHMUEL WEINBERGER

where π is the fundamental group of M , L(e) is the 4-periodic surgery spec-
trum, which is isomorphic to BO away from 2, and the 4-periodic groups
L∗(Zπ) are Wall’s surgery obstruction groups ([24]). The structure set in this
functorial version of the surgery sequence is bigger by a Z or less than the
geometric structure set described above. As shown in [2], the structure set in
this stabilized surgery sequence corresponds geometrically to a structure set
which contains certain nonmanifolds.

For manifolds bounded over a space X, there is a similar sequence with
the L-group replaced by a bounded L-group. (In full generality, one has to also
take into account the fundamental group of M over X. In this paper, though,
we will always be dealing with bounded surgery which is “simply connected”
in the fiber direction.) The appropriate bounded Wall groups were described
in [12]. Here is a piece of the bounded surgery exact sequence from [12].

0 = H�f
k+1(Z;L(e)) −→ Lbdd

k+1, cX(e) −→ Sbdd
(

Z
↓

cX

)

It follows immediately from this sequence that Sbdd

(
Z
↓

cX

)
is nonzero if

Lbdd
k+1, cX(e) is nonzero. Such a structure gives us the desired manifold Z ′ and a

bounded homotopy equivalence Z ′ → Z which is not boundedly homotopic over
cX to a homeomorphism. The structures arising from this construction are
manifolds because they come from our original manifold via Wall realization.

Proposition 5.1. For k ≥ 11 and an appropriate choice of X, Lbdd
k+1, cX(e)

is not 0.

Proof. Let 1 ∈ K̃Or(Sr) ∼= Z be a generator, r ≥ 7, and let 1 also denote
the corresponding generator of K̃Or(Sr;Zp), with p odd. As in Section 3, we
can construct a cell-like map f : Sr → Z so that 1 ∈ ker(f∗ : K̃Or(Sr;Zp) →
K̃Or(Z;Zp)). By Proposition 4.5, there is a map g : Z → Sr so that (g ◦ f)∗
has degree � �= 0. We have a commuting diagram:

.

By the condition on K̃Or(Sr;Zp), f∗(1) = pα for some α ∈ K̃Or(Z). Here, 1
is the generator of K̃Or(Sr) ∼= Z. Since (g ◦ f)∗(1) = � · 1, we have g∗(α) �= 0.
Moreover, α projects to an odd torsion element [α] in K̃Or(Cf ). The image
of [α] in K̃Or(Cg◦f ) is nontrivial – the image of pα is � times the generator of
K̃Or(Sr) ∼= Z and the image of α is therefore �/q · 1, which is not in the image
of the previous term in the lower exact sequence.
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Next, we consider Sr ⊂ Sk−1 and form a cell-like map f̄ : Sk → X =
Sk−1 ∪f Z. Let q : Sn → Q = Sk−1 ∪g◦f̄ Sr. We have a similar-looking
diagram:

�

.

The inclusion maps Cf ↪→ Cf̄ and Cg◦f ↪→ Cg◦f̄ = Cq induce isomorphisms
on K̃O∗-homology, so there is an odd torsion element in K̃Or(Cf̄ ) which maps
to a nontrivial odd torsion element of K̃Or(Cq).

.

Now, set k = r + 4. This is what forces us to take k ≥ 11. Away from 2, K̃O∗
is 4-periodic, so K̃Or(Y ) ∼= K̃Ok(Y ) for any space Y . This gives us a diagram:

.

Since K̃Ok(Sk−1) = 0 and K̃Ok−1(Sk−1) ∼= Z, it follows that the induced
homomorphism K̃Ok(X) → K̃Ok(Q) is nontrivial at p.

We have a commuting diagram of assembly maps

H�f
k+1(cX;L(e)) −−−−→ Lbdd

k+1,cX(e)⏐⏐� ⏐⏐�
H�f

k+1(cQ;L(e))
∼=−−−−→ Lbdd

k+1,cQ(e)

which shows that Lbdd
k+1,cX(e) is nontrivial, where the isomorphism on the bot-

tom follows from [12]. (Strictly speaking, we should be working with standard
cones and coarse Lipschitz maps to cite [12], but one can use coarse homo-
topies as in [21] to extend the theory to warped cones and arbitrary continuous
maps.)
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6. The proof of Theorem C

Choose a 2-connected (n − 1)-manifold Mn, n ≥ 7, and a CE map ρ :
M

CE−→ X which is not injective on K-homology. Such maps were constructed
in Section 3. Construct a uniformly n-connected weighted cone cX as above
and let M̄ be a uniformly contractible singular Riemannian manifold coarsely
isomorphic to cX. The assembly map

K lf
∗ (M̄) → K∗(C∗(M̄))

factors through2 a natural map

K lf
∗ (M̄) → KX∗(M̄) ∼= KX∗(cX).

By the main theorem of Section 7, KX∗(cX) ∼= K∗−1(X), so the assembly map
K�f

∗ (M̄) → KX∗(M̄) has kernel.

Remark 6.1. In particular, Conjecture 6.28 of [20] is incorrect. The map
c does induce rational isomorphisms, so the rational version of the conjecture
is still open.

The same procedure shows that both injectivity and surjectivity asser-
tions in a bounded analog (for uniformly contractible spaces) of the General-
ized Borel Conjecture of Ferry-Rosenberg-Weinberger [13] are false. A regular
neighborhood of a suitable suspension of a Moore space provides a manifold
with boundary which has odd torsion in its L(e)-homology. This can be killed
by a CE map as in Section 3 and the rest of the construction proceeds as
above. We could get a counterexample to the integral isomorphism conjecture
on a manifold diffeomorphic to euclidean space by performing our construction
starting with a CE map ρ : Sn → X where the induced map on K∗ was multi-
plication by k. Such a CE map would be the result of applying the procedure
of Section 3 to a kill the mod k reduction of an integral class in K∗(Sn). Using
real, rather than complex K-theory, we could get counterexamples of the same
sort to the analogous injectivity conjecture.

Remark 6.2. All of our examples are based on the difference between K lf

and KX. Consequently, if one is careful to assert all conjectures for general
metric spaces in terms of KX rather than K lf , one obtains statements which
are not contradicted by these examples. In case the manifold Z has bounded
geometry — in particular, if Z is the universal cover of closed manifold — it
is not difficult to show that K�f

∗ (Z) → KX∗(Z) is a monomorphism, so no
contradiction to Conjecture 6.28 arises from our construction in that case.

2See [18].



LARGE RIEMANNIAN MANIFOLDS WHICH ARE FLEXIBLE 933

7. KX∗ of weighted open cones

John Roe [20] has introduced the following notion of coarse homology:

Definition 7.1. If X is a complete locally compact metric space, a se-
quence {Ui} of locally finite covers of X by relatively compact open sets is
called an Anti-Čech system if there are numbers Ri → ∞ such that

(i) diam(U) < Ri for all U ∈ Ui.

(ii) Ri is a Lebesgue number for Ui.

The coarse homology of X with coefficients in S is

HX∗(X;S) = lim−→ H lf
∗ (N(Ui);S),

where N(Ui) is the nerve of the open cover Ui and H lf
∗ (P ;S) is the Steenrod

S-homology of the 1-point compactification of P , rel infinity. S, of course, is
a spectrum.

It is not difficult to construct anti-Čech systems of covers, at least when X

is a complete locally compact metric space. For some ε > 0, choose a maximal
collection of disjoint open ε balls in X and consider the collection of R-balls on
the same centers. For R > 2ε, this is a cover with Lebesgue number at least
R − 2ε. If {Ri} is any monotone sequence approaching infinity, this allows
us to construct a sequence of coarse covers {Ui} with diameters < Ri. Any
anti-Čech system is cofinal, so HX∗ is well-defined.

An interesting question in metric topology is to find conditions under
which HX∗(X;S) is equal to the S-homology of X at infinity. In such cases
HX∗ is a topological invariant, rather than a metric invariant. The usual sort of
nerve argument gives a proper map X → N(Ui) for each i and therefore a map
H lf

∗ (X;S) → HX∗(X;S). Even when X is uniformly contractible, the results
of this paper show that this map need be neither an integral monomorphism
nor an integral epimorphism. We do, however, have the following:

Theorem 7.2. If X is compact metric and cX is a weighted cone on X,
then H lf

∗ (cX;S) → HX∗(cX;S) is an isomorphism for any spectrum S.

The analogous result has been proven by Higson and/or Roe for many
uniformly contractible spaces. We will give a proof for weighted cones which
includes the infinite-dimensional case.

Proof. Let R be given and consider levels kR in the weighted cone cX.
Pack each of these levels with εk-balls on centers cki as above, εk small, and
draw radial arcs from each cki to the point below it in level (k − 1)R. Now
take 1

3(1 + 1
k )R-neighborhoods of the arcs.
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�

Vi
Uj

(k-1)R

(k+1)R

kR

This gives a cover OR of cX by open sets of diameter � 5
3R with Lebesgue

number � 1
3R. Consider the nerve of this cover, restricting attention for the

moment to two consecutive levels as in the picture above. We will call the
open cover corresponding to points in the (k + 1)R-level U and the cover
corresponding to points at the kR-level V.

For U ∈ U and V ∈ V, we will let U− and V− denote the intersections of
U and V with the part of cX between the cone point and the kR-level.

Lemma 7.3. If U1 ∩ . . . ∩ Uk ∩ V1 ∩ . . . ∩ V� �= ∅, then U1− ∩ . . . ∩ Uk− ∩
V1− ∩ . . . ∩ V�− �= ∅.

Proof. This is clear, since if a point x above the kR-level is in the first
intersection, then following the cone lines back to the kR-level gives a point in
the second intersection.

For {εk} small, there is a map φ : U → V so that

(∗) U− ⊂ φ(U)− for all U ∈ U
which is defined by choosing φ(U) to be an element V ∈ V so that U ∩ kR ⊂
V ∩ kR. Define a map ρ : N (U ∪ V) → N (V) by ρ(V ) = V and ρ(U) = φ(U).

Proposition 7.4. The map ρ defines a simplicial strong deformation
retraction.

Proof. To see that ρ is simplicial, suppose that we have a simplex

〈U1, . . . , Un, V1, . . . , Vk〉 ∈ N (U ∪ V).

By definition,
U1 ∩ . . . ∩ Un ∩ V1 ∩ . . . ∩ Vk �= ∅,

so
U1− ∩ . . . ∩ Un− ∩ V1− ∩ . . . ∩ Vk− �= ∅;

whence (∗) guarantees that

φ(U1) ∩ . . . ∩ φ(Un) ∩ V1 ∩ . . . ∩ Vk �= ∅,
so ρ defines a simplicial map.
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To see that ρ is a strong deformation retraction, we begin by noting that
N (U ∪ V) = N (U− ∪ V−), where U− = {U− | U ∈ U} and V− = {V− | V ∈ V}.
Since U− ⊂ φ(U)−, the situation is not difficult to analyze.

Lemma 7.5. If V is a finite open cover of a space X and U ⊂ X is an
open set such that U ⊂ V for some V ∈ V, then N (V) is a strong deformation
retract of N (V ∪ {U}).

Proof. Consider the link of 〈U〉 in N (V ∪{U}). This consists of simplices
〈V0, . . . , Vn〉 such that

U ∩
(

n⋂
i=0

Vi

)
�= ∅.

If V is a particular element of V containing U , this means that

V ∩
(

n⋂
i=0

Vi

)
�= ∅,

which means that the link is contractible (even collapsible!), since it is a cone
from 〈V 〉. But then N (V∪{U}) collapses to N (V), since the cone on a collapsi-
ble complex collapses to its base.This completes the proof of the lemma.

This collapse sends 〈U〉 to 〈V 〉, so removing elements of U− one at a time
gives a collapse from N (U− ∪ V−) to N (U−), completing the proof that ρ is a
strong deformation retraction.

We will need the following well-known lemma.

Lemma 7.6. If f : (X, X0) → (Y, Y0) is a map of CW pairs so that f and
f |X0 are homotopy equivalences, then f is a homotopy equivalence of pairs.

Proof. Form the mapping cylinder and construct strong deformation re-
traction of pairs by retracting the smaller mapping cylinder first and then
retracting the larger one.

Lemma 7.7. N (U ∪ V) is homotopy equivalent rel N (U) ∪ N (V) to the
mapping cylinder of ρ.

Proof. Let M(ρ) be the mapping cylinder of ρ. We have an “identity”
map N (U)∪N (V) → N (U ∪V). By the lemma above, it suffices to show that
this map extends to all of M(ρ). But this map is homotopic to the map which
is the identity on N (V) and which sends N (U) to N (V) via ρ. Collapsing
M(ρ) to its base and including into N (U ∪V) give an extension of this map to
all of M(ρ), so by the homotopy extension theorem, the original map extends
to all of M(ρ).
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It follows from all of this that the nerve of the cover OR constructed above
is proper homotopy equivalent to the mapping telescope of the nerves of the
Uk which correspond to arcs connecting levels kR and (k + 1)R in cX. We
will show that for all R, this telescope is proper homotopy equivalent to the
complement of X in the Hilbert cube. It follows that for any locally finite
Steenrod homology theory, the locally finite homology of the telescope is equal
to the homology of X with a dimension shift, as desired.

Lemma 7.8. If X is a compact metric space, and Ūi is a sequence of
open covers of X such that Ū0 = {X}, Ūi+1 refines Ūi, and mesh(Ūi) → 0,
then the mapping telescope of the nerves N (Ūi) is proper homotopy equivalent
to Q − X, where X is embedded in the Hilbert cube Q as a Z-set.

Proof. This is a form of Chapman’s Complement Theorem [22], which says
that the homeomorphism type of the complement of a Z-embedded compactum
X in the Hilbert cube depends only on the shape of X. The point is that the
mapping telescope can be completed to a contractible ANR by adding a copy
of the inverse limit of the N (Ūi)’s at infinity. Crossing with Q gives a copy of
Q containing a Z-set X ′ which is shape equivalent to X. The complement of
X ′ is the product of the telescope with Q.

One should be careful here, since a little bit of thought gives examples
where X is the unit interval and X ′ is the Hilbert cube. The argument of [22]
shows that if {Ki, αi} is an inverse system with K0 = pt, then the mapping
telescope of {Ki, αi} is proper homotopy equivalent (even infinite simple equiv-
alent!) to the mapping telescope of any system {Li, βi} equivalent to {Ki, αi}
in pro-homotopy. If X = lim−→{Ki, αi}, it is easy to construct a sequence of
covers Ui of X so that N (Ui) is PL homeomorphic to Ki and so that the maps
induced by refinement are homotopic to the αi’s. Since all such sequences are
easily seen to be pro-equivalent, Lemma 7.8 follows.

Finally, we note that the sequence of nerves N (Uk) and bonding maps
above is cofinal with a sequence as in the statement of Lemma 7.8. This
completes the proof of Theorem 7.2.
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