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The best constant for the centered
Hardy-Littlewood maximal inequality

By Antonios D. Melas

Abstract

We find the exact value of the best possible constant C for the weak-type
(1, 1) inequality for the one-dimensional centered Hardy-Littlewood maximal
operator. We prove that C is the largest root of the quadratic equation 12C2−
22C + 5 = 0 thus obtaining C = 1.5675208 . . . . This is the first time the best
constant for one of the fundamental inequalities satisfied by a centered maximal
operator is precisely evaluated.

1. Introduction

Maximal operators play a central role in the theory of differentiation of
functions and also in Complex and Harmonic Analysis. In general one consid-
ers a certain collection of sets C in Rn and then given any locally integrable
function f , at each x one measures the maximal average value of f with respect
to the collection C, translated by x. Then it is of fundamental importance to
obtain certain regularity properties of this operators such as weak-type inequal-
ities or Lp-boundedness. These properties are well known if C, for example,
consists of all αD where α > 0 is arbritrary and D ⊆ Rn is a fixed bounded
convex set containing 0 in its interior. Such maximal operators are usually
called centered.

However little is known about the deeper properties of centered maximal
operators even in the simplest cases. And one way to acquire such a deeper
understanding is to start asking for the best constants in the corresponding
inequalities satisfied by them. In this direction let us mention the result of
E. M. Stein and J.-O. Strömberg [13] where certain upper bounds are given for
such constants in the case of centered maximal operators as described above,
and the corresponding still open question raised there (see also [3, Problem
7.74b]), on whether the best constant in the weak-type (1, 1) inequality for
certain centered maximal operators in Rn has an upper bound independent
of n.
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The simplest example of such a maximal operator is the centered Hardy-
Littlewood maximal operator defined by

(1.1) M f(x) = sup
h>0

1
2h

∫ x+h

x−h
|f |

for every f ∈ L1(R). The weak-type (1, 1) inequality for this operator says
that there exists a constant C > 0 such that for every f ∈ L1(R) and every
λ > 0,

(1.2) |{M f > λ}| ≤ C

λ
‖f‖1 .

However even in this case not much was known for the best constant C in the
above inequality. This must be contrasted with the corresponding uncentered
maximal operator defined similarly to (1.1) but by not requiring x to be the
center but just any point of the interval of integration. Here the best constant
in the analogous to (1.2) inequality is equal to 2 which corresponds to a single
dirac delta. The proof follows from a covering lemma that depends on a simple
topological property of the intervals of the real line and can be extended to
the case of any measure of integration, not just the Lebesgue measure (see [2]).
Moreover in this case the best constants in the corresponding Lp inequalities
are also known (see [5]).

However in the case of the centered maximal operator the behavior is
much more difficult and it seems to not only depend on the Lebesgue measure
but to also involve a much deeper geometry of the real line. A. Carbery
proposed that C = 3/2 ([3, Problem 7.74c]), a joint conjecture with F. Soria
which also appears in [14] and corresponds to sums of equidistributed dirac
deltas. This conjecture has been refuted by J. M. Aldaz in [1] who actually

obtained the bounds 1.541 . . . =
37
24

≤ C ≤ 9 +
√

41
8

= 1.9253905 . . . < 2
which also implies that C is strictly less than the constant in the uncentered
case, thus answering a question that was asked in [14]. Then J. Manfredi
and F. Soria improved the lower bound proving that ([9]; see also [1]): C ≥
5
3
− 2

√
7

3
sin

(
arctan(3

√
3)−1

3

)
= 1.5549581 . . . .

The proofs of these results use as a starting point the discretization tech-
nique introduced by M. de Guzmán [6] as sharpened by M. Trinidad Menárguez-
F. Soria (see Theorem 1 in [14]). To describe it we define for any finite measure
σ on R the corresponding maximal function

(1.3) M σ(x) = sup
h>0

1
2h

∫ x+h

x−h
|dσ| .
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Then the best constant C in inequality (1.2) is equal to the corresponding
best constant in the inequality

(1.4) |{M µ > λ}| ≤ C

λ

∫
R

dµ

where λ > 0 and µ runs through all measures of the form
∑n

i=1 δti where
n ≥ 1 and t1, . . . , tn ∈ R. This technique allows us to apply arguments of
combinatorial nature to get information or bounds for this constant.

The author (see [10]) using also this technique, obtained the following
improved estimates for C:

(1.5) 1.5675208 . . . =
11 +

√
61

12
≤ C ≤ 5

3
= 1.66 . . .

and also made the conjecture that the lower bound in (1.5) is actually the exact
value of C. Recently in [11] the author found the best constant in a related
but more general covering problem on the real line. This implies the following

improvement of the upper bound in (1.5): C ≤ 1 +
1√
3

= 1.57735 . . . . None

of these however tells us what the exact value of C is.
In this paper we will prove that the above conjecture is correct thus settling

the problem of the computation of the best constant C completely. We will
prove the following.

Theorem 1. For the centered Hardy-Littlewood maximal operator M , for
every measure µ of the form k1δy1 + · · ·+ kynδyn where ki > 0 for i = 1, . . . , n

and y1 < · · · < yn and for every λ > 0 we have

(1.6) |{M µ > λ}| ≤ 11 +
√

61
12λ

‖µ‖

and this is sharp.

We will call the measures µ that appear in the statement of the above
theorem, positive linear combinations of dirac deltas.

In view of the discretization technique described above Theorem 1 implies
the following.

Corollary 1. For every f ∈ L1(R) and for every λ > 0 we have

(1.7) |{M f > λ}| ≤ 11 +
√

61
12λ

‖f‖1

and this is sharp.

Hence

(1.8) C =
11 +

√
61

12
= 1.5675208 . . .
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is the largest solution of the quadratic equation

(1.9) 12C2 − 22C + 5 = 0.

By the lower bound in (1.5) proved in [10] we only have to prove inequality
(1.6) to complete the proof of Theorem 1. The number appearing in equality
(1.8) is probably not suggesting anything, nor is the equation (1.9). However
this number is what one would get in the limit by computing the corresponding
constants in the measures that are produced by applying an iteration based
on the construction in [10] that leads to the lower bound. These measures,
although rather complicated (much more complicated than single or equidis-
tributed dirac deltas), have a very distinct inherent structure (see the appendix
here). Thus it would be probably better to view Theorem 1 as a statement
saying that this specific structure actually is one that produces configurations
with optimal behavior.

Then, in a completely analogous manner as the result in [6], [14], we will
also prove the following.

Theorem 2. For any finite Borel measure σ on R and for any λ > 0 we
have

(1.10) |{M σ > λ}| ≤ 11 +
√

61
12λ

‖σ‖ .

We have included this here because it is then natural to ask whether there
exists a function f ∈ L1(R), or more generally a measure σ, and a λ > 0 for
which equality holds in the corresponding estimate (1.7) and (1.10). We will
show here that such an extremal cannot be found in the class of all positive
linear combinations of dirac deltas.

Theorem 3. For any measure µ that is a positive linear combination of
dirac deltas and for any λ > 0 we have

(1.11) |{M µ > λ}| <
11 +

√
61

12λ
‖µ‖ .

For the proof of Theorem 1, that is of inequality (1.6), our starting point
will be the related covering and overlapping problems that were introduced
in [10] using the discretization technique. This proof is divided into several
sections and will contain a mixture of combinatorial, geometric and analytic
arguments. We start from the assumption that this upper bound is not correct
and fix a certain combination of dirac deltas that violates it and contain the
least possible number of positions. Then using the related covering problem
from [10], studied in more detail here, we will prove that this assumed measure
will contain, or can be used to produce, segments that share certain structural
similarities with the examples leading to the lower bound. This needs some
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work and is better described if we further discretize the corresponding cov-
ering problem by assuming that all masses and positions of this measure are
integers. Then elaborating on the structure of these segments combined with
the assumed violation of (1.6) we will obtain a certain estimate for the central
part of these segments. This estimate will then lead to a contradiction using
the assumption that any measure of fewer positions will actually satisfy (1.6).
This will complete the proof of Theorem 1. Then we will give the proofs of
Theorems 2 and 3 and in the Appendix we will briefly describe the construc-
tion from [10] that leads to the lower bound and we will compare it with the
proof of the upper bound.

Acknowledgements. The author would like to thank Professors A. Carbery,
L. Grafakos, J.-P. Kahane and F. Soria for their interest in this work.

2. Preliminaries

We will start here by describing our basic reduction of the problem as was
introduced in [10], where also further details and proofs can be found. We will
consider measures µ of the form

(2.1) µ =
n∑

i=1

kiδyi

where n is a positive integer, k1, . . . , kn > 0 are its masses and y1 < · · · < yn

are its positions.
For any such measure as in (2.1) we define the intervals

(2.2) Ii,j = Ii,j(µ) = [ yj − ki − · · · − kj , yi + ki + · · · + kj ],

for 1 ≤ i ≤ j ≤ n (where [a, b] = ∅ if b < a) and the set

(2.3) E (µ) =
⋃

1≤i≤j≤n

Iij(µ) .

This set can be seen to be equal to {x : M µ(x) ≥ 1/2} (see [10]).
It will be convenient throughout this paper to use the following notation:

We define

(2.4) Kj
i = ki + · · · + kj

if 1 ≤ i < j ≤ n, Ki
i = ki if 1 ≤ i ≤ n and Kj

i = 0 if j < i. Thus we can write
Ii,j(µ) = [ yj − Kj

i , yi + Kj
i ].

We will say that µ satisfies the separability inequalities if:

(2.5) yi+1 − yi > ki + ki+1
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for all i = 1, . . . , n − 1. If this happens then it is easy to see that for any
1 ≤ i < j ≤ n we have

(2.6) Ii,j(µ) ⊆ (yi, yj)

(in fact this is equivalent to Kj
i < yj − yi which follows by adding certain

inequalities from (2.5)) and therefore E(µ) ⊆ [y1 − k1, yn + kn].
We also set

(2.7) R (µ) =
|E(µ)|
2 ‖µ‖ =

|E(µ)|
2(k1 + · · · + kn)

=
|E(µ)|
2Kn

1

.

Then we have the following (see [10]).

Proposition 1. (i) The best constant C in the Hardy-Littlewood max-
imal inequality (1.2) is equal to the supremum of all numbers R (µ) when µ

runs through all positive measures of the form (2.1) that satisfy (2.5).

(ii) C is also equal to the supremum of all numbers R (µ) when µ runs
through all positive measures as in (i) that also satisfy the condition:

(2.8) E(µ) = [y1 − k1, yn + kn].

Any such measure that satisfies the conditions in Proposition 1(ii), that
is the separability inequalities and the connectedness of E(µ), will be called
admissible. It is clear that for any admissible µ the intervals Ii,j(µ), 1 ≤ i ≤
j ≤ n form a covering of the interval [y1 − k1, yn + kn].

We will also use the following lemma whose proof is essentialy given in
[10] (see also [1]).

Lemma 1. Suppose µ is a measure containing n ≥ 2 positions that does
not satisfy all separability inequalities (2.5), that is for at least one i we have
yi+1 − yi ≤ ki+1 + ki. Then there exists an admissible measure µ∗ containing
at most n − 1 positions and such that R(µ∗) ≥ R(µ).

Hence, unless otherwise stated, we will only consider measures µ that
satisfy all inequalities (2.5). It is easy then to see that for any such µ the
intervals Ii,i(µ) for 1 ≤ i ≤ n are pairwise disjoint. We define the set of
covered gaps of µ as follows:

(2.9) G(µ) = E(µ)\
n⋃

i=1

Ii,i(µ).

This is the set of points that must be covered by the intervals Ii,j(µ) for
i < j that come from interactions of distant masses and are nonempty if their
positions are, in some sense, close together. We also have

(2.10) R(µ) = 1 +
|G(µ)|
2Kn

1

.
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To proceed further let us now fix an admissible measure µ as in (2.1). An
important device that can describe efficiently the covering properties Ii,j(µ)
for i < j is the so called gap interval of µ that was introduced in [10]. We
consider the positive numbers

(2.11) xi = yi+1 − yi − ki+1 − ki

for 1 ≤ i ≤ n, the points

(2.12) a1 = 0, a2 = x1, a3 = x1 + x2, . . . , an = x1 + · · · + xn−1

and define the gap interval J(µ) of µ as follows

(2.13) J(µ) = [a1, an].

The gap interval can be obtained from E(µ) = [y1 − k1, yn − kn] by collapsing
the central intervals Ii,i(µ) = [yi − ki, yi + ki], 1 ≤ i ≤ n into the points ai.
This can be described by defining a (measure-preserving and discontinuous)
mapping

(2.14) Q = Qµ : J(µ) → G(µ)

that satisfies Q(x) = yi + ki + (x − ai) whenever x ∈ (ai, ai+1), 1 ≤ i < n.
Thus Q maps each subinterval (ai, ai+1) of J(µ) onto the corresponding gap
(yi + ki, yi+1 − ki+1) of G(µ). It is also trivial to see that the mapping Q is
distance nondecreasing and so Q−1 is distance nonincreasing.

We also consider the intervals

(2.15) Ji = Ji(µ) = [ai − ki, ai + ki]

around each of the points ai, 1 ≤ i ≤ n, of J(µ), let

(2.16) F(µ) = {J1(µ), . . . , Jn(µ)}

denote the corresponding family of all these intervals and let

(2.17) J+
i = J+

i (µ) = [ai, ai + ki] and J−
i = J−

i (µ) = [ai − ki, ai]

denote the right and left half of Ji respectively. We also consider the families
of intervals

(2.18) F+(µ) = {J+
1 (µ), . . . , J+

n (µ)} and F−(µ) = {J−
1 (µ), . . . , J−

n (µ)}.

The elements of F+(µ) will be called right intervals and the elements of F−(µ)
will be called left intervals.

Remark. Most of our results and definitions will be given for right intervals
only. The corresponding facts for left intervals can be easily obtained in a
symmetrical way or by applying the given ones to the reflected measure µ̃ =∑n

i=1 kiδ−yi .
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The role of the gap interval in the covering properties of the Ii,j ’s can be
seen by the following (see [10]):

Proposition 2. (i) Let 1 ≤ i < j ≤ n. Then Ii,j 	= ∅ if and only if
J+

i ∩ J−
j 	= ∅.

(ii) If aj /∈ J+
i and ai /∈ J−

j then |Ii,j | =
∣∣∣J+

i ∩ J−
j

∣∣∣.
(iii) If µ is admissible then |J(µ)| = |G(µ)| and J(µ) ⊆ J1 ∪ · · · ∪ Jn.

Any interval Ii,j as in Proposition 2(ii) will be called special. We also have
the following.

Lemma 2. The interval Ii,j 	= ∅ is special if and only if |Ii,j | < min(ki, kj).

Proof. It is easy to see that |Ii,j | = max(ki + kj − (aj − ai), 0). Hence if
nonempty it would be special if and only if aj > ai + ki and ai < aj − kj and
this easily completes the proof.

To proceed further for each fixed i we set li = min{l ≤ i : al ∈ J−
i },

ri = max{r ≥ i : ar ∈ J+
i } and define the intervals

(2.19) Fi = Fi(µ) = [yi − Ki
li , yi + Kri

i ].

Then the following holds (see [10]).

Proposition 3. (i)We have Fi = Ili,i∪Ii,li+1∪· · ·∪Ii,i∪Ii,i+1∪· · ·∪Ii,ri.

(ii) For any i the nonempty of the closed intervals I1,i, . . . , Ili−1,i and
Ii,ri+1, . . . , Ii,n (if any) are pairwise disjoint and each of them is disjoint from
Fi.

(iii) The set E(µ) is covered by the n main intervals Fi, 1 ≤ i ≤ n together
with the nonempty (if any) special intervals Ip,q where aq /∈ J+

p and ap /∈ J−
q .

By exploiting the above structure of the gap interval we will prove the
following basic for our developments (see also [11]).

Proposition 4. (i) The set G(µ) can be covered by appropriately placing
certain parts of the nonempty of the intervals J+

i ∩ J−
j over [yi + ki, yj − kj ]

for 1 ≤ i < j ≤ n, each such part used at most once.

(ii) In particular if µ is admissible J(µ) can be also covered as in (i), where
each used part of J+

i ∩ J−
j is placed appropriately over [ai, aj ].

Proof. (i) Consider an i with 1 ≤ i ≤ n. If ai /∈ Js for every li ≤ s ≤ ri

with s 	= i, then clearly |J+
i ∩ J−

s | = ks for any i < s ≤ ri (respectively
|J+

s ∩ J−
i | = ks for any li ≤ s < i) and so writing Ĩi,s = [yi + Ks−1

i , yi + Ks
i ]

⊆ Ii,s (respectively Ĩs,i = [yi − Ki
s, yi − Ki

s+1] ⊆ Is,i) we easily conclude that
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these intervals cover Fi\Ii,i and have lengths equal to |J+
i ∩ J−

s | (respectively
|J+

s ∩ J−
i |) and using (2.6) each such Ĩi,s (respectively Ĩs,i) is contained in

[yi, ys] (respectively [ys, yi]).
Now assume that there is a largest possible s such that i < s ≤ ri and

ai ∈ J−
s . Then since also as ∈ J+

i we conclude that [ai, as] = J+
i ∩ J−

s and so
the part of G(µ) that lies in [yi +ki, ys −ks] can be obviously covered by using
certain parts of just J+

i ∩ J−
s . The remaining part of the Fi ∩ (yi,+∞) that is

Fi\(−∞, ys + ks) (if any) has length

(yi + Kri
i ) − (ys + ks) = Kri

i − (as − ai + 2Ks
i − ki) < Kri

s+1

and is thus covered by the intervals

Ĩi,j = [yi + Kj−1
i , yi + Kj

i ] ⊆ Ii,j

where s < j ≤ ri each contained in the corresponding [yi, yj ] and having length∣∣∣J+
i ∩ J−

j

∣∣∣ since ai /∈ Jj for every s < j ≤ ri. Similar considerations can be
applied if ai ∈ J+

s for some li ≤ s < i.
Finally for any special interval Ip,q where aq /∈ J+

p and ap /∈ J−
q we know

that |Ip,q| =
∣∣∣J+

p ∩ J−
q

∣∣∣.
These, combined with Proposition 3(iii), complete the proof of (i), obser-

ing that any part of any used piece that is contained in

n⋃
i=1

Ii,i =
n⋃

i=1

[yi − ki, yi + ki]

can be ignored.

(ii) If µ is admissible then all gaps in [y1 − k1, yn + kn]\(I1,1 ∪ · · · ∪ In,n)
are covered and so |G(µ)| = |J(µ)|. Therefore we can via the mapping Q−1

transport the way G(µ) is covered to cover J(µ) and this completes the proof
observing that any piece placed over [yi +ki, yj −kj ] when transported via Q−1

will lie over [ai, aj ].

Remarks. (i) When the covering of G(µ) that is described in the above
proof is transported via Q−1 to cover J(µ) some intervals might shrink due to
existence of intermediate masses. Here the fact that Q−1 is distance nonin-
creasing is used.

(ii) It is evident from the proof of Proposition 4 that in the case aj ∈ J+
i

and ai ∈ J−
j the whole part [ai, aj ] of the gap interval is equal and hence

completely covered by J+
i ∩ J−

j . However due to the possible existence of
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masses between yi and yj , it might be necessary to break J+
i ∩ J−

j into several
pieces before placing it over [yi + ki, yj − kj ]. Actually this is the only case
where such a breaking occurs.

It would be important to keep track of exactly how the parts of the J+
i ∩

J−
j ’s are placed to cover G(µ) and J(µ). This has been more or less analysed in

the above proof except for the case of special intervals. Related to this we have
the following (where by l(I), r(I) we will denote the left and right endpoints
of the interval I).

Lemma 3. Suppose that 1 ≤ i ≤ n, that ri ≤ r < s and that both Ii,r and
Ii,s are nonempty. Then

(2.20) l(Ii,s) − r(Ii,r) = dist(as, Ji) + Ks−1
r+1

and a similar relation holds when s < r ≤ li.

Proof. We have l(Ii,s)−r(Ii,r) = (ys−Ks
i )−(yi+Kr

i ) and using the relation
ys − yi = as − ai + ki + 2ki+1 + · · ·+ 2ks−1 + ks we easily get l(Ii,s)− r(Ii,r) =
as − ai − ki + kr+1 + · · ·+ ks−1 = as − r(Ji) + Ks−1

r+1 which completes the proof
since as > ai and as /∈ Ji.

Remarks. (i) Clearly l(Ii,r) = l(Fi) if r = ri. Thus Lemma 3 shows where
the special intervals are located after the related Fi’s. For example it shows
that there is a gap between Fi and the first special interval of the form Ii,s (if
any) that is at least dist(as, Ji) and in case µ is admissible has to be covered
by intervals of the form Ip,q where p 	= i and q 	= i. This exact location will be
important in our proof of Theorem 1.

(ii) Actually the above results show how one can read off the covering
properties of the family of intervals Ii,j(µ) for i < j from the corresponding
overlappings of the families F+(µ) and F−(µ) over the gap interval. In par-
ticular they show that the length and exact location in E(µ) of the special
intervals Ii,r (if any) depend only on the behavior of the gap interval and the
corresponding J−

m’s that are located to the right of the right endpoint of J+
i .

Notation. (i) In this paper we will use the notation |· · ·| in two different
contexts: If S is a subset of R (which will ususaly be the union of finitely
many closed intervals) then |S| will denote its Lebesgue measure. If on the
other hand T is a finite set (that will usually consist of a finite number of
intervals) then |T | will denote the cardinality of T .

(ii) For every family U of intervals by
⋃U we will denote the union of all

elements of U .

(iii) As above for any interval I ⊆ R by l(I), r(I) we will denote its left
and right endpoints respectively.
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3. The measure µ

Let

(3.1) γ =
−1 +

√
61

12
= 0.5675208 . . .

be the positive solution of the quadratic equation

(3.2) 12γ2 + 2γ − 5 = 0.

Assuming that C > 1+γ there must exist measures µ as in (2.1) such that
R(µ) > 1+γ. We then consider the smallest possible integer n such that there
exists a measure µ =

∑n
i=1 kiδyi such that R(µ) > 1 + γ. Then R(ν) ≤ 1 + γ

for any measure as in (2.1) that contains less than n positions. Hence using
Lemma 1 and Proposition 1(ii) we may assume that µ is admissible; that is, it
satisfies (2.5) and (2.6).

Moreover we may assume that all the yi’s and all the ki’s are positive
integers. Indeed we can find rational numbers k′

i > ki and y′i for 1 ≤ i ≤ n

such that 0 < y′i+1 − y′i < yi+1 − yi, the y′i and k′
i satisfy (2.5) and the (as it

is easy to see) admissible measure µ′ =
∑n

i=1 k′
iδ

′
yi

still satisfies R(µ′) > 1 + γ.
Then by multiplying all y′i and k′

i by an appropriate integer we get a measure
with all entries integers.

From now on we will fix such a measure µ and let its gap interval J(µ)
and its corresponding cover F(µ) = {J1, . . . , Jn} be as in Section 2.

Then we write

(3.3) J(µ) = [0, N ] = ω1 ∪ · · · ∪ ωN ,

where N is a positive integer and ωp = [p − 1, p] for p = 1, 2, . . . , N . Each ωp

will be called a place in the gap interval J(µ). Also since the corresponding
xi and ki’s are integers to each such ωp there correspond three nonnegative
integers h+

p , h−
p and hp such that

(3.4) h+
p =

n∑
i=1

χJ+
i

(x), h−
p =

n∑
i=1

χJ−
i

(x) and hp = h+
p + h−

p

for any x ∈ int(ωp). Clearly

(3.5) 2Kn
1 =

n∑
i=1

|Ji| ≥ h1 + · · · + hN .

(We write ≥ since J1 ∪ · · · ∪ Jn might contain points outside J(µ).)
We will be considering that over each place ωp there are hp distinct inter-

vals of length 1 which we call bricks h+
p corresponding to the right intervals

that contain ωp and h−
p to the left. It is clear that h1 + · · · + hN is the total

number of bricks.
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We also let

(3.6) P = {a1, . . . , an}

denote the set of all positions (centers of the Ji’s) in the gap interval.
Now we consider the set of places

(3.7) E1 = {ωp ⊆ J(µ) : hp = 1}

over which exactly one interval from the family F+(µ) ∪ F−(µ) passes. It is
then easy to see, using (3.5) and Proposition 2(iii) that the places in E1 are
the only ones that have the property of pushing R(µ) to something bigger
than 1

2 . Thus it would be important to analyze the behavior of the intervals of
F+(µ)∪F−(µ) that contain such places. We will consider only right intervals
the corresponding statements for left intervals being symmetrical. It is clear,
by Proposition 4(ii), that if a J+

i contains an ωp ∈ E1 then ωp can be covered
only through the involvement of this J+

i .
There are essentially two cases to consider. The first is treated in the

following.

Proposition 5. Suppose that for some i ≥ 1 there exist ωp ∈ E1 and
x ∈ int(ωp) ⊆ J+

i such that Q(x) ≤ r(Fi). Then we have

(3.8) (ai, x] ∩ P = ∅

and

(3.9) ai+1 − ai ≤ Kri
i+1 = |Fi\(−∞, yi + ki)| .

Proof. Suppose that (ai, x]∩P = {ai+1, . . . , as} 	= ∅ and so as ≤ x < as+1.
Since hp = 1 it is clear that no interval other than J+

i contains x and so by
Proposition 2(i) we have Is,r = ∅ whenever r > s. Hence moving ksδys to
the left by as − as−1 will not change the connectivity of E(µ) since this mass
does not interact with any mass to its left, since the inequality Q(x) ≤ r(Fi)
implies that ys belongs to Fi that will hence not change, as long as as ∈ J+

i ,
and since this movement can only enlarge the intervals Il,s for l < i. But
then the resulting measure µ′ will have the same E(µ′) but will not satisfy
the separability condition (2.5) for the s − 1 position. However in view of
Lemma 1 this implies that there is a measure µ′′ containing at most n − 1
positions with R(µ′′) ≥ R(µ′) = R(µ) and this contradicts our choice of µ.
Hence (ai, x] ∩ P = ∅.

Next we will show that r(Fi) < yi+1 − ki+1 is impossible. Indeed if this
happened then since x < ai+1 it is easy to see that Il,s = ∅ whenever l <

i < s and so the interval [r(Fi), r(Fi) + 1] must be covered by some Ii,s where
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necessarily s > ri and so Ii,s is a special interval. Thus l(Ii,s) ≤ r(Fi) which
contradicts Lemma 3. Hence r(Fi) = yi+Kri

i ≥ yi+1−ki+1 and since yi+1−yi =
ai+1 − ai + ki+1 + ki we get (3.9).

If for the right interval J+
i there exist ωp ∈ E1 and x ∈ int(ωp) ⊆ J+

i such
that Q(x) ≤ r(Fi) (and so (ai, x] ∩ P = ∅) then the right interval J+

i will be
called clean. A symmetrical definition applies for the left intervals J−

j .
Suppose now that for some m ≥ 1 the right interval J+

m contains at least
one place from E1 but is not clean. Then defining

(3.10) w = min{q : ωq+1 ⊆ J+
m and hq+1 = 1} ≥ am

we must have (am, w] ∩ P 	= ∅. Indeed if (am, w] ∩ P = ∅ then clearly
w+1 ≤ am+1 and moreover since [w, w+1] ∈ E1 the interval Q((am, w+1]) ⊆
[ym, ym+1] must be covered only by intervals of the form Im,r for r > m (be-
cause by Proposition 2(i), Il,r = ∅ whenever l < m < m + 1 ≤ r). However
Proposition 3(ii) now implies that we must have Q((am, w + 1]) ⊆ Fm and so
Q(w + 1

2) < r(Fm), which contradicts the assumption that J+
m is not clean.

Hence we may write

(3.11) (am, w] ∩ P = {am+1, . . . , as} 	= ∅.

Clearly hp ≥ 2 for all am ≤ p ≤ w. Now let

(3.12) g(J+
m) = as − am, K(J+

m) = Ks
m+1.

Then we have the following.

Lemma 4. The interval (ys + ks, ys + ks +1] must be covered by a special
interval Im,t for some t > rm. Moreover we must have

(3.13) g(J+
m) + K(J+

m) ≥ dist(at, Jm) + Kt−1
s+1.

Proof. By a similar reasoning as in the proof of Proposition 5, we conclude
that Fm cannot cover the point ys + ks + 1

2 . Since for any l ≤ s < r we have
Il,r = ∅ unless l = m we conclude that it must be covered by some special
interval Im,t for some t > rm and so at > am + km = r(Jm). Since the yl’s and
the kl’s are integers we have

(3.14) ys + ks ≥ l(Im,t) = yt − km − · · · − kt.

Writing now

ys + ks = ym + as − am + km + 2km+1 + · · · + 2ks

and
yt − km − · · · − kt = ym + at − am + km+1 + · · · + kt−1

we get (3.13).
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Remark. In the above lemma we may actually assume that equality holds
in (3.14) and hence also in (3.13). Indeed clearly the mass ksδys interacts with
no mass to the right of it (meaning that Is,j = ∅ for every j > s). Hence as in
the proof of Proposition 5 it can be moved to the left until either equality in
(3.14) occurs or the separability inequality (2.5) for i = s − 1 is violated. But
as in the proof of that proposition the second alternative cannot happen.

4. Further covering properties of µ

By Proposition 4 and since µ is admissible to each ωp we can associate an
ωc(p) and certain i(p) < j(p) such that ωp ∈ [ai(p), aj(p)], ωc(p) ⊆ J+

i(p) ∩ J−
j(p)

and such that the part ωc(p) of J+
i(p) ∩ J−

j(p) is used (corresponds to the part of
Ii(p),j(p) used) to cover ωp ⊆ J(µ) (equivalently Q(ωp) ⊆ [y1, yn]) according to
above mentioned proposition. Moreover it is clear that the mapping

(4.1) p → (c(p), i(p), j(p))

is one-to-one. We will write ωc(p) → ωp and we will say that that ωc(p) covers
ωp. Also to indicate the exact way this covering takes place we will say that
ωp is covered by (ωc(p), J

+
i(p), J

−
j(p)) and we will say that ωp is covered by ωc(p)

through the interaction of the right interval J+
i(p) with the left interval J−

j(p).

Remark. It may happen that ωp is covered by more than one way ac-
cording to Proposition 4. In such a case we choose exactly one of these ways
arbitrarily to make the mapping c well defined.

For any ωp that covers at least one place we let

(4.2) l(p) = min{i : ωp ⊆ J+
i } < r(p) = max{j : ωp ⊆ J−

j }
(both well defined) and we define the intervals

(4.3) Lp = J+
l(p) and Rp = J−

r(p).

Now except for E1 we will more generally consider for any nonnegative
integers s, t the sets

(4.4) Es,t = {ωp ⊆ J(µ) : h+
p = s and h−

p = t}
and

(4.5) Et = {ωp ⊆ J(µ) : hp = t} =
⋃

a+b=t

Ea,b.

We have the following.

Lemma 5. (i) ωp ∈ Ea,b can cover at most a.b places in J(µ).

(ii) Any ωp can cover at most hp − 1 places in E1 ∪ E1,1.
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Proof. For (i) obviously a.b is equal to the number of all possible pairs
(A, B) of a right interval A and a left interval B such that ωp ⊆ A ∩ B.
We will now prove (ii). If ωp covers at least one place then l(p), r(p) are
well defined. Suppose that for some i, j with l(p) < i < j < r(p) a place
ωq ∈ E1 ∪ E1,1 is covered through (ωp, J

+
i , J−

j ). Then we have ωq ⊆ [ai, aj ].
However ωp ⊆ J+

i ∩ J−
j so it is clear that χJ+

i
+ χJ+

l(p)
≥ 2 on [ai, p] and

χJ−
j

+χJ−
r(p)

≥ 2 on [p−1, aj ]. Therefore h+
q ≥ 2 if q ≤ p and h−

q ≥ 2 if q ≥ p−1

and both lead to a contradiction. Hence the possible ωq ∈ E1∪E1,1 covered by
ωp can come only from interactions in which at least one of the intervals Lp and
Rp is involved and it easy to see that there are (h+

p −1)+(h−
p −1)+1 = hp−1

such interactions.

Remark. This lemma in particular implies that an ωp in E1 does not
cover any place, an ωp in E2 covers at most one place (and this can happen
only if h+

p = h−
p = 1) and an ωp in E3 covers at most two places. Also an

ωp ∈ E3,1 ∪E1,3 can cover at most three places whereas an ωp ∈ E2,2 can cover
at most four places at most three of which can belong to E1 ∪ E1,1.

We will introduce now the following notation: Suppose, for example, that
an ωp ∈ E3 covers an ωq ∈ E1 and also an ωa ∈ E1,1 ⊆ E2 that in turn covers
an ωb ∈ E1. Then we will say that ωp is the head of an E3 → (E1, (E2 → E1))
pattern. We will consider the following nine types of such patterns:

Type 1 : E1

Type 2 : E2 → E1

Type 3 : E2 → E2 → E1

Type 4 : E2 → E2 → E2 → E1

Type 5 : E2 → (E3 → (E1, E1))
Type 6 : E3 → (E1, E1)
Type 7 : E3 → ((E2 → E1), E1)
Type 8 : E1,3 ∪ E3,1 → (E1, E1, E1)
Type 9 : E4 → ((E3 → (E1, E1)), (E2 → E1), E1, E1).

It is required that the E1’s appearing in the Types 5, 6, 8 and 9 patterns are
referring to distinct places. It is also clear that if ωp is the head of a Type j

pattern then for 1 ≤ j ≤ 5 we must have ωp ∈ E1,1 and for j = 6, 7 we must
have ωp ∈ E1,2 ∪ E2,1. The possibility ωp ∈ E2,2 has been excluded from the
Type 8 pattern.

Moreover we have the following.

Lemma 6. Consider any Type j pattern where 1 ≤ j ≤ 9 and let T be
the set of all places involved in it. Then:

(i) All places indicated in this pattern are distinct; hence T has as many
elements as the Et’s appearing in the pattern.
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(ii) No ωq ∈ T can cover any place outside T .

(iii) If an ωq covers the head of this pattern, then ωq /∈ T .

(iv) Given ωq ∈ T and a pair (A, B) of a right interval A and a left interval
B such that ωq ⊆ A ∩ B then there exists ωs ∈ T such that (ωq, A, B)
covers ωs.

Proof. For (i) it obviously suffices to consider only places in the same Et

that are covered by places in the same Es. Hence by the requirements set for
the Types 5, 6, 8 and 9 it only remains to treat the Types 3 and 4. Suppose
for example that a Type 4 pattern involves ωa → ωb → ωp → ωq but ωa = ωp.
Then ωa ∈ E2 would have to cover the two different places ωb ∈ E2 and ωq ∈ E1

contradicting Lemma 5 The proof for the other cases is similar. The assertion
(ii) follows again by Lemma 5, (iii) can be proved in a similar way as (i) and
(iv) can be proved by examining each considered pattern.

Let uj denote the number of places in a Type j pattern and vj the cor-
responding number of bricks. Then clearly u1 = v1 = 1, u2 = 2, v2 = 3,
u3 = u6 = 3, v3 = v6 = 5, u4 = u5 = u7 = u8 = 4, v4 = v5 = v7 = v8 = 7,
u9 = 8 and v9 = 14. Also for 1 ≤ j ≤ 9 let

(4.6) λj = uj − γvj .

It is easy to see that

(4.7) 0 < λ4 = λ5 = λ7 = λ8 < λ9 < λ3 = λ6 < λ2 < λ1.

Now for any ωp that is not the head of any Type j pattern for any 1 ≤ j ≤ 9
we let Tp be the set that consists of ωp and all places from all (maximal)
patterns whose head is covered by ωp and let

(4.8) Hp =
∑

ωs∈Tp

hs

be the corresponding number of bricks that lie over all such places.
If now ωp is the head of a Type j pattern for some 1 ≤ j ≤ 9 we let Tp be

the set of all places involved in this pattern, so |Tp| = uj , but let

(4.9) Hp = vj + 1

in this case (instead of vj). This modification, whose use will be made clear
later, results in the following estimate

(4.10) |Tp| ≤
8
15

Hp < γHp

whenever ωp is the head of such a pattern.
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We also define Tp = ∅ and Hp = 0 if ωp does not fall into one of the above
two categories (for example an ωp ∈ E2 that say covers an ωq ∈ E4).

We now have the following.

Lemma 7. For any p 	= q the sets Tp and Tq (if defined) are either
disjoint or one of them is contained in the other.

Proof. We will associate to each ωs ∈ Tp an integer r = r(s), called its
rank, to be the length of the chain ωp → · · · → ωs that leads to ωs. This
is well defined since Lemma 6 implies that exactly one such chain can exist.
Then if Tp ∩ Tq were nonempty we choose an ωs ∈ Tp ∩ Tq whose rank in Tp

is as small as possible. It is then clear that ωc(s) cannot be contained in both
Tp and Tq. Suppose that ωc(s) /∈ Tp (the argument will show that the other
case is impossible by the choice of ωs). Then ωs cannot be contained in any
Type j pattern whose head is covered by ωq since this would easily imply that
ωc(s) is either contained in the same pattern or is equal to ωq and in both cases
ωc(s) ∈ Tp. The only alternative is that ωs = ωq and so that ωq ∈ Tp must be
the head of a Type j pattern. This easily implies that Tq ⊆ Tp and completes
the proof.

In the next two propositions we will show that any set Tp will not con-
tribute significally to R(µ) > 2(1 + γ) unless Lp and Rp satisfy certain strong
restrictions in relation with the set E1.

Proposition 6. If ωp is not the head of a Type j pattern for any 1 ≤
j ≤ 9 and is such that at least one of the intervals Lp and Rp does not contain
any place from E1, then we have

(4.11) |Tp| < γHp.

Proof. We may assume that Rp does not contain any place from E1, the
proof for Lp being symmetrical. Let h+

p = a+1 and h−
p = b+1 and number the

the right intervals containing ωp as A0 = Lp, A1, . . . , Aa and the left intervals
containing ωp as B0 = Rp, B1, . . . , Bb so that

(4.12) l(A0) < l(A1) < · · · < l(Aa) and r(B0) > r(B1) > · · · > r(Bb).

Suppose first that a, b > 0. By Lemma 5(ii), ωp can cover the head of a
Type j pattern with 1 ≤ j ≤ 5 only if A0 or B0 is involved (of course other
patterns could also be so covered). However since χA0 + χA1 + χB0 ≥ 2 on
[l(A1),min(r(A1), r(B0))] the triples (ωp, Ai, B0) for i ≥ 1 cannot cover an E1

(since it should be contained in B0). Also since for any ωq that is the head of a
Type 6, 7 or 9 pattern there are exactly two intervals of the same direction that
contain it we conclude, using a similar argument as in the proof of Lemma 5,
that ωp can cover the head of such a pattern only if at least one of the intervals
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A0, A1, B0, B1 is involved. However if i ≥ 2 (so b > 1) and (ωp, A1, Bi) covers
the head ωq of a Type 6 pattern then we must have ωq ∈ A1\B2 (and so q < p)
since h+

q ≥ 2 if l(A1) ≤ q ≤ p and h−
q ≥ 3 if p − 1 ≤ q ≤ r(B2). Therefore

ωq would be contained in A0 and A1 and in exactly one other interval J of
the opposite direction and moreover (ωp, A1, J) must cover a place in E1. But
since B0 doesn’t contain places from E1 we clearly must have r(J) > r(B0)
and since q < p this implies that also ωp ∈ J . This contradicts the choice of
B0 = Rp. Hence (ωp, A1, Bi) can cover only in Types 7, 8 or 9.

Now similarly ωp covers the head of a Type 8 pattern only if at least
one of the intervals A0, A1, A2, B0, B1, B2 is involved. However if i ≥ 2 then
(ωp, Ai, B2) cannot cover the head of a Type 9 pattern since h+

q ≥ 3 if l(A2) ≤
q ≤ p and h−

q ≥ 3 if p − 1 ≤ q ≤ r(B2). Also if i ≥ 3 then (ωp, A2, Bi)
cannot cover the head of a Type 8 (or 9) pattern for as before this would
imply that this place must be in A2\Bi and this leads in a similar manner to
a contradiction.

Hence the patterns covered by ωp fall into exactly one of the following
categories:

(1) With A0 involved ωp covers at most b + 1 patterns of Type 1–9.

(2) With B0, but not A0, involved ωp covers at most a patterns of Type 2–9.

(3) With B1, but not A0, involved ωp covers at most a patterns of Type 6–9.

(4) With A1, but not B0, B1, involved ωp covers at most b − 1 patterns of
Type 7–9.

(5) With B2, but not A0, A1, involved ωp covers at most a − 1 patterns of
Type 8.

Let now di,j the number of heads of Type j patterns covered by ωp in the
way described in category (i) where 1 ≤ i ≤ 5, 1 ≤ j ≤ 9. Some of those are of
course 0 as explained above, for example d4,6 = d5,9 = 0. Also we have given
bounds for all five sums

∑
j di,j , for example

∑
j d4,j ≤ b − 1. Now it is clear

that

(4.13) |Tp| = 1 +
∑
i,j

ujdi,j and Hp = a + b + 2 +
∑
i,j

vjdi,j .

Hence using (4.7) the bounds for the sums
∑

j di,j and the zero di,j ’s we have

|Tp| − γHp = 1 +
∑
i,j

λjdi,j − γ(a + b + 2)

≤ 1 + λ1

∑
j

d1,j + λ2

∑
j

d2,j + λ6

∑
j

d3,j + λ9

∑
j

d4,j

+λ7

∑
j

d5,j − γ(a + b + 2) ≤ (9 − 16γ)(a + b) − (10 − 18γ)
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and so if a + b ≥ 3 we have

(4.14) |Tp| − γHp ≤ 17 − 30γ < 0.

If on the other hand a = b = 1 and so ωp ∈ E2,2 examining the five categories it
is easy to see that |Tp| − γHp < 0 unless d1,1 = 2, d2,2 = d3,6 = 1 which implies
that ωp is the head of a Type 9 pattern, thus contradicting our assumption.

Suppose now that a = 0 (the case b = 0 is similar). Then ωp covers at most
b + 1 places and if dj of them are heads of Type j patterns then

∑
j dj ≤ b + 1

and in a similar way we have

|Tp| − γHp = 1 +
∑
j

λjdj − γ(b + 2)

= 1 − γ − (2γ − 1)(d1 + 2d2 + 3(d3 + d6) + 4(d4 + d5 + d7 + d8))

− (15γ − 8)d9 − γ

b + 1 −
∑
j

dj


and this would be negative unless

∑
j dj = b + 1 and

d1 + 2d2 + 3(d3 + d6) + 4(d4 + d5 + d7 + d8) + 3.5d9 ≤ 3

(and so b ≤ 2) since
15γ − 8
2γ − 1

> 3.5,
1 − γ

2γ − 1
< 3.3 and the dj ’s are integers.

These however easily imply that ωp must be the head of one of the Types 1–8
pattern which is a contradiction. This completes the proof.

Proposition 7. If ωp is not the head of a Type j pattern for any 1 ≤
j ≤ 9 and is such that there is no ωs ∈ Lp ∩Rp such that (ωs, Lp, Rp) covers a
place in E1, then we have

(4.15) |Tp| < γHp.

Proof. By Propostion 6 both Lp and Rp contain places from E1. Also by
the proof of that proposition we may assume that h+

p = a + 1 ≥ 2 and h−
p =

b + 1 ≥ 2. We number the the right and left intervals containing ωp as A0 =
Lp, A1, . . . , Aa and B0 = Rp, B1, . . . , Bb as in the proof of that proposition. By
our assumption (ωp, A0, B0) cannot cover the head of a Type 1 pattern.

Suppose now that for some i ≥ 1, (ωp, A1, Bi) covers the head ωq of a
Type j pattern for some 1 ≤ j ≤ 9. If ωq ⊆ A1\B0 then clearly h+

q ≥ 2 and so
hq ≥ 3 and also there is no left interval F such that (ωq, A1, F ) covers a place
in E1 (since the only possible such F would be B0 which does not contain ωq).
A similar statement holds if ωq ⊆ B1\A0. If ωq ⊆ A0 ∩ B0 then also hq ≥ 3
(since ωq ⊆ A1 ∪ B1) and by our assumption (ωq, A0, B0) cannot cover any
place in E1. Therefore the only possible values for j are 7, 8 or 9 and a similar
statement holds if (ωp, Ai, B1) covers the head ωq of a Type j pattern.
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Suppose now that for some i ≥ 2, (ωp, A2, Bi) or (ωp, Ai, B2) covers the
head ωq of a Type j pattern for some 1 ≤ j ≤ 9. Then h+

q ≥ 3 or h−
q ≥ 3 and

so j = 8. If ωq ⊆ (A2\B0) ∪ (B2\A0) then as before it cannot happen that
all places covered by ωq are in E1, contradiction. Also if ωq ⊆ A0 ∩ B0 then
(ωq, A0, B0) cannot cover any place in E1. Hence no such covering can occur.

Therefore the patterns covered by ωp fall into exactly one of the following
categories:

(1) With A0 or B0, but not both, involved ωp covers at most a + b patterns
of Type 1–9.

(2) With both A0 and B0 involved ωp covers at most 1 pattern of Type 2−9.

(3) With A1 or B1 (or both), but not A0 or B0, involved ωp covers at most
a + b − 1 patterns of Type 7–9.

Letting now di,j denote the number of heads of Type j patterns covered
by ωp in the way described in category (i) where 1 ≤ i ≤ 3, 1 ≤ j ≤ 9 and
using (4.7) the bounds for the sums

∑
j di,j and the zero di,j ’s we have, as in

the proof of Proposition 6,

|Tp| − γHp ≤ 1 + λ1

∑
j

d1,j + λ2

∑
j

d2,j + λ9

∑
j

d3,j − γ(a + b + 2)

≤ (9 − 16γ)(a + b) − (5 − 9γ) ≤ 13 − 23γ < 0

since a + b ≥ 2. This completes the proof.

Remark. The above proofs explain why we have only considered only
those nine types of patterns. For example it is now easy to show that if ωp

covers the head of a pattern looking like E2,2 → (E1, E1, E1, ∗) (which has not
been included) then Lp and Rp will have the properties mentioned in the above
propositions.

5. Good pairs

We will say that a pair (A, B) of a right interval A ∈ F+(µ) and a left
interval B ∈ F−(µ) is good if there exists ωp ⊆ A ∩ B such that A = Lp,
B = Rp and

(5.1) |Tp| − γHp > 0.

Using Propositions 6 and 7 we now conclude that any good pair (A, B) must
satisfy the following:

(i) Both A and B contain places from E1.

(ii) There exists ωs ⊆ A ∩ B such that (ωs, A, B) covers an ωt ∈ E1.
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Suppose now that (A, B) is a good pair. Then clearly A uniquely deter-
mines B and vice versa. We define

(5.2) w(A) = min(A ∩ ⋃
E1) < w(B) = max(B ∩ ⋃

E1).

Clearly by (i) above we must have ωp ⊆ A ∩ B ⊆ (w(A), w(B)). Moreover we
have the following.

Lemma 8. Suppose (A, B) is a good pair. Then:

(i) No ωq ⊆ [l(A), w(A)] ∪ [w(B), r(B)] can be the head of a Type j pattern
for any 1 ≤ j ≤ 9.

(ii) For every ωq ⊆ [w(A), w(B)] we have
⋃

Tq ⊆ [w(A), w(B)].

(iii) Suppose that ωq ⊆ [l(A), w(A)] covers the head of a Type j pattern for
some 1 ≤ j ≤ 9. Then this can happen only through the involvement of
Lq, which is then uniquely determined. A symmetrical statement holds if
ωq ⊆ [w(B), r(B)]. (Here Rq must be involved .)

Proof. (i) Suppose ωq ⊆ [l(A), w(A)]. Clearly hp ≥ 2 and ωq ⊆ A. Using
Lemma 6 it easily follows that there must exist a left interval I1 such that
(ωq, A, I1) covers an ωq1 that is the head of a Type 1, 2, 3 or 6 pattern. Since
q ≤ w(A) and [w(A), w(A)+1] ∈ E1 we must have r(I1) ≤ w(A) and therefore
ωq1 ⊆ [l(A), w(A)]. Arguing similarly there must exist an ωq2 ⊆ [l(A), w(A)]
(covered by ωq1) that is the head of a Type 1 or 2 pattern and hence an
ωq3 ⊆ [l(A), w(A)]∩⋃

E1, which is a contradiction. The proof for [w(B), r(B)]
is similar.

(ii) Let G, H be a pair such that (ωq, G, H) covers ωs which is the head
of some pattern. It is clear that G ∪ H ⊆ A ∪ B and so ωs ∈ [l(A), r(B)].
But also by (i) ωs cannot be contained in [l(A), w(A)] ∪ [w(B), r(B)]. Hence
ωs ⊆ [w(A), w(B)] and this completes the proof.

(iii) Suppose that there is a right interval I different from Lq and so with
l(Lq) < l(I) and a left interval H such that (ωq, I, H) covers an ωs which is
the head of some pattern. As in (i) r(H) ≤ w(A) and so ωs ⊆ [l(I), w(A)].
However (i) now implies that ωs ⊆ [l(I), l(A)] ⊆ I. As in (i) there must exist
a right interval H1 such that (ωs, I, H1) covers an ωs1 which is the head of
a Type 1, 2, 3 or 6 pattern. Again we get ωs1 ⊆ [l(I), w(A)] and so by (i)
ωs1 ⊆ [l(I), l(A)] ⊆ I. Now as in (i) there must exist an ωt ⊆ [l(I), l(A)]∩⋃

E1

and this is a contradiction since χI + χLq = 2 on [l(I), l(A)]. Thus in any such
covering Lq must be involved.
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To show that Lq is uniquely defined suppose that for some other ωq′ ⊆
[l(A), w(A)] that covers the head of some pattern we had Lq 	= Lq′ . We may
assume that l(Lq) < l(Lq′). Then as before ωq′ must cover the head ωs of some
pattern, where ωs ⊆ [l(Lq′), l(A)] and this leads to a similar contradiction.
Hence Lq, if it exists, is uniquely defined.

Remark. If an ωq as in Lemma 8(iii) exists then it is easy to see that
there is no left interval G such that (Lq, G) is a good pair. Indeed if such a G

existed then Lq ∩ G ⊆ [w(Lq), w(G)] and so since ωq ∈ Lq ∩ A we must have
G = J−

r for some r with ar < w(A) which implies that G ⊆ Lq ∩A and this is
a contradiction.

Suppose now that (A, B) is a good pair and define

(5.3) T (A, B) = {ωs : ωs ⊆ A ∪ B}

and so |T (A, B)| = r(B) − l(A) = |A ∪ B|.
Next we consider A. If A is clean then let g(A) = K(A) = K∗(A) = 0. If

A is not clean then we write (see §3) P ∩ (l(A), w(A)] = {as, . . . , at} 	= ∅ (and
so A = J+

s−1) and with

(5.4) g(A) = at − l(A) and K(A) = ks + · · · + kt

we now define K∗(A) as follows:

(i) if there exists at least one ωq ⊆ [l(A), w(A)] as in the statement of
Lemma 8(iii), K∗(A) is equal to the total number of bricks that correspond to
the left intervals J−

t , . . . , J−
s or to right intervals J+

l with l < i and lie over
[l(A), w(A)]\Lq plus the length of the interval Lq ∩A (note that Lq is uniquely
determined and that we must have r(Lq) ≤ w(A)), and

(ii) if no such ωq exists, K∗(A) is equal to the total number of bricks that
lie over [l(A), w(A)] and correspond to either the left intervals J−

t , . . . , J−
s or

to right intervals J+
l with l < i.

Note that in both cases bricks that correspond to A are not counted in
K∗(A).

We also consider B and define g(B), K(B), K∗(B) in a completely sym-
metrical way.

Regarding the masses that lie in (w(A), w(B)) we set

(5.5) K(A, B) =
∑

w(A)<ar<w(B)

kr

and now we define

(5.6) H(A, B) = |A|+ K∗(A) + K(A) + 2K(A, B) + K(B) + K∗(B) + |B| .
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It is easy to see that by our construction

(5.7) H(A, B) ≤
∑

ωp⊆A∪B

hp.

(For example if ar ∈ (w(A), w(B)) then we must have Jr ⊆ (w(A), w(B)) and
so all the 2kr bricks corresponding to Jr lie over A ∪ B.) Also if A is not
clean then K∗(A) > 0 and each place in [l(A), w(A)] contributes at least two
bricks in H(A, B) (one from A and at least one counted in K∗(A) + K(A)), in
particular K∗(A) + K(A) ≥ g(A).

The main thing now is to prove the following basic.

Proposition 8. There exists at least one good pair (A, B) such that

(5.8) |T (A, B)| > γH(A, B).

Proof. First of all we have the following.

Lemma . Given any two good pairs (A, B) and (A′, B′) with l(A) < l(A′)
we must have

(5.9) r(B) ≤ l(A′).

Proof. Assume that A = J+
i , B = J−

j , A′ = J+
s and B′ = J−

r and
moreover that ai < as but aj > as. We must have aj < ar; otherwise, since
both A∩B and A′ ∩B′ are nonempty we would have χA +χB +χA′ +χB′ ≥ 2
on [as, ar] contradiction. Considering now the symmetric of A′ and B intervals
H = J−

s and G = J+
j we have χH + χA′ + χB′ ≥ 1 on [as − ks, ar] and

χG + χA + χB ≥ 1 on [ai, aj + kj ]. Consider now an ωq ∈ E1 contained in B.
Then we must have q ≤ as − ks and so aj − kj = l(B) < q ≤ as − ks. In a
similar way we obtain as +ks > aj +kj . These give aj −as < kj −ks < as −aj

contradiction since aj > as. This completes the proof.

In view of the above lemma we can number all the good pairs of µ (if
any) as (A1, B1), . . . , (Ad, Bd) so that r(Bi) ≤ l(Ai+1) for i = 1, . . . , d−1. This
implies that the sets T (A1, B1), . . . , T (Ad, Bd) are pairwise disjoint. Let

(5.10) W = {ω1, . . . , ωN}\
d⋃

i=1

T (Ai, Bi)

and consider the collection S of all Tp’s where either: (i) ωp ∈ W and is not
the head of any Type j pattern for any 1 ≤ j ≤ 9 or (ii) ωp is the head
of some such pattern but there is 1 ≤ i ≤ d such that ωp is covered by an
ωq ⊆ [l(Ai), w(Ai)] ∪ [w(Bi), r(Bi)] (through the involvement of Lq). We then
have the following.
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Lemma 10. (i) Any Tp ∈ S is disjoint from
⋃d

i=1 T (Ai, Bi).

(ii) We have

(5.11) E1 ⊆
⋃

Tp∈S
Tp ∪

d⋃
i=1

T (Ai, Bi).

(iii) For every Tp ∈ S we have |Tp| < γHp.

Proof. (i) Suppose that Tp ∈ S and ωq ∈ Tp ∩ T (Ai, Bi) for some i. If
q = p then Lemma 8 and the definition of S easily imply that Tp /∈ S. If q 	= p

then ωq is the head of some Type j pattern and so by Lemma 8 we must have
ωq ⊆ [w(Ai), w(Bi)]. But then it is easy to see that ωq can be covered only
if Ai,Bi or some of the masses corresponding to positions in [w(Ai), w(Bi)]
are involved and this would give ωc(q) ∈ T (Ai, Bi). Continuing this (for at
most three steps) we conclude that ωp ∈ T (Ai, Bi) which as we have seen is a
contradiction.

(ii) Suppose that ωq0 ∈ E1\
⋃d

i=1 T (Ai, Bi) and let q1 = c(q0), q2 = c(q1), . . .
(that is ωq is covered by ωq1 which is covered by ωq2 and so on). Clearly
hqr ≥ 2 for all r ≥ 1. Let m ≥ 1 be the smallest possible integer such that
ωqm is not the head of a Type j pattern for any 1 ≤ j ≤ 9 (note that ωq0

is the head of a Type 1 pattern). Such an m exists since each such pattern
contains at most eight places and by Lemma 6 no cycles (that is chains of
the form ωp1 → ωp2 → · · · → ωps = ωp1). By Lemma 8 we conclude that
ωqr ∈ W for all 0 ≤ r ≤ m − 1. If ωqm ∈ T (Ai, Bi) for some i then we must
have ωqm ⊆ [l(Ai), w(Ai)] ∪ [w(Bi), r(Bi)] (otherwise Lemma 8(ii) would im-
ply that ωq0 ∈ Tqm ⊆ T (Ai, Bi)) and so ωq0 ∈ Tqm−1 ∈ S. If ωqm ∈ W then
ωq0 ∈ Tqm ∈ S.

(iii) Consider Tp ∈ S . Suppose that ωp ∈ W is not the head of any Type
j pattern. Then by (i), (Lp, Rp) is not a good pair hence we have |Tp| < γHp.
If ωp ∈ W is the head of such a pattern then the definition of Hp (see (4.9))
shows that |Tp| < γHp.

We next let

(5.12) D = {ω1, . . . , ωN}\
 ⋃

Tp∈S
Tp ∪

d⋃
i=1

T (Ai, Bi)


and note that by Lemma 10(ii) we have hq ≥ 2 for every ωq ∈ D. Then by
letting Tp1 , . . . , Tpm be all the maximal Tp’s from S, which by Lemma 7 are
pairwise disjoint and cover

⋃
Tp∈S Tp we have

(5.13) |J(µ)| = N =
m∑

r=1

|Tpr | +
d∑

i=1

|T (Ai, Bi)| + |D| .
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Now the following holds.

Lemma 11. We have

(5.14)
N∑

p=1

hp ≥
m∑

r=1

Hpr +
d∑

i=1

H(Ai, Bi) + 2 |D| .

Proof. It is enough to show that the right-hand side of (5.14) is at most
as large as the total number of bricks that lie over all ωs’s. Using that hp ≥ 2
for all ωp ∈ D, Lemma 9, Lemma 10(i), (5.7), the remark following Lemma 8
and the definitions of the Hp’s and the H(Ai, Bi)’s we easily see that the only
case that should be considered is when ωp is the head of a Type j pattern and
is covered by an ωq ⊆ [l(Ai), w(Ai)] ∪ [w(Bi), r(Bi)] for some i in which case
Hp counts one more brick than the ones involved. Assume ωq ⊆ [l(Ai), w(Ai)].
Then Lq is uniquely determined and ωq can cover at most as many such heads
ωp as there are bricks lying over ωq ⊆ Lq that correspond to left intervals whose
right endpoints are contained in [l(Ai), w(Ai)]. However by the definition of
K∗(Ai) it is clear that all these bricks are not counted in H(Ai, Bi). A similar
reasoning for the case ωq ⊆ [w(Bi), r(Bi)] completes the proof of (5.14).

Now since R(µ) > 1 + γ we have 2γ
∑N

p=1 hp ≤ 2γKn
1 < |J(µ)| and so

using Lemma 10(iii), (5.13) and (5.14) we conclude that there must exist at
least one i (hence at least one good pair) such that |T (Ai, Bi)| > γH(Ai, Bi).
This completes the proof of the proposition.

6. The core of a good pair

Now, using the theorem, we can find and fix a good pair (A, B) that
satisfies (5.8).

Lemma 12. The interval A∩B (corresponding to the pair (A, B)) cannot
cover places in both A∩⋃

E1 and B ∩⋃
E1. Moreover if it covers at least one

place in A ∩ ⋃
E1 then it cannot cover any place in B\A.

Proof. Suppose A = J+
i and B = J−

j . Then clearly Ii,j(µ) is a special
interval; therefore |Ii,j(µ)| = |A ∩ B| and so A∩B is placed, without breaking
it, over E(µ). Going to the gap interval J(µ) if x, y ∈ J(µ) are covered by
A∩B then since Q is distance nondecreasing we must have |x − y| ≤ |A ∩ B|.
However if ωp ⊆ A∩⋃

E1 and ωq ⊆ B ∩⋃
E1, or ωq ⊆ B\A, then it is easy to

see that |q − p| > |A ∩ B| and this completes the proof.

In view of the above lemma and the properties shared by any good pair
we may assume that A ∩ B covers at least one place in A ∩ ⋃

E1 and so no
place in B ∩ ⋃

E1 or B\A.
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We then let

(6.1) z = z(A, B) = max{s : ωs ⊆ A ∩
⋃

E1} > w(A).

Since A∩B does not contain any place from E1 we have A∩B ⊆ [z(A, B), w(B)].
Next we write

(6.2) [z(A, B), w(B)] ∩ P = {ap, ap+1, . . . , aq}

and define the core of (A, B) to be the measure

(6.3) σ = σ(A, B) =
q∑

r=p

krδyr

that corresponds to these positions.

Remark. (i) The set [z(A, B), w(B)] ∩ P must be nonempty. If it were
empty then B would not interact with any right interval other than A to the
left of w(B) and also A would not interact with any left interval other than B

after z. This would imply that A ∩ B ⊆ [z(A, B), w(B)] must be covered only
by the intersection A ∩ B. But this is impossible since A ∩ B must cover at
least one place in E1 and this place must be outside A ∩ B.

(ii) Note the nonsymmetrical way with respect to A and B the core interval
is defined (a max for right intervals would correspond to a min for left intervals).
This is forced because of the location of the special interval corresponding to
(A, B) (see also the construction in the Appendix).

We will now show that without affecting the core of (A, B) we may assume
that both intervals A and B are clean. This would be important in the next
section and is furnished by the following.

Proposition 9. For the good pair (A, B) considered above there exists an
admissible measure µ̄ (which in general might contain more positions than µ)
and a good pair (Ā, B̄) associated to the families F±(µ̄) corresponding to the
gap interval of µ̄ such that :

(i)
∣∣T (Ā, B̄)

∣∣ > γH(Ā, B̄).

(ii) Both the right interval Ā and the left interval B̄ are clean.

(iii) The core σ(Ā, B̄) of the good pair (Ā, B̄) is identical to the core σ(A, B)
of (A, B).

(iv) For any measure ν formed from masses of µ̄ whose associated positions in
J(µ̄) are contained in the interior of Ā∪B̄ we have |E(ν)| ≤ 2(1+γ) ‖ν‖.
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Proof. If both A and B are clean there is nothing to prove. Suppose that
A is not clean. Define then w(A), g = g(A), K = K(A) and K∗ = K∗(A) as in
Section 5, write A = J+

p and suppose that for some i > p

(6.4) (w(A),+∞) ∩ P = {ai+1, . . . , an}

(it is obviously nonempty) and so K = K(A) = Ki
p+1. We will not change

anything in the part of the gap interval of µ that lies to the right of w(A). Let
s ≥ i be such that

(6.5) as ≤ l(A) = ap + kp < as+1.

Then the considerations in Section 3 and Lemma 4 imply that [yi+ki, yi+ki+1]
is covered by a special interval Ip,t(µ) for some t > s and moreover using the
remark following Lemma 4 we may and will assume that

(6.6) yi + ki = l(Ip,t(µ)) = yt − kp − K − Kt
i+1

and so

(6.7) g + K = dist(A, at) + Kt−1
i+1 .

Now we fix an admissible measure τ all whose entries are rational numbers
such that

E(τ) = [yi + ki − dist(A, at) − Kt−1
s+1, yi + ki],(6.8)

|E(τ)| = 2(1 + γ − ε) ‖τ‖ ,(6.9)

where ε > 0 is small to be fixed later and such that the maximum (individual)
mass appearing in the positions of τ is so small that no mass of τ interacts
with any krδr for any r > i. Such a measure can be constructed for example by
the proceedure that leads to the lower bound for C (see [10] or the Appendix
here) and an appropriate scaling-translation.

Let

(6.10) K̄ = ‖τ‖ and ḡ = |G(τ)| = |E(τ)| − 2K̄ = 2(γ − ε)K̄ = |J(τ)| .

Next we define

(6.11) k̄p = kp + K − K̄,

noticing that k̄p > 0 since 2K̄ < g + K < kp + K.
Consider now the measure

(6.12) µ̄ = k̄pδyp + τ +
n∑

r=i

krδyr .

Here the index p is used for convenience only, since we have no control on the
number of positions in τ . Consequently we will not associate indices to the
positions of τ .
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Also by multiplying all entries in µ and µ̄ by the same appropriately chosen
large integer we may assume that all such entries are integers.

Also consider in the gap interval J(µ̄) the pair (Ā, B) (B as before) where

(6.13) Ā = J+
p (µ̄)

is the right interval corresponding to k̄pδyp . We will show that µ̄ is admissible,
that the pair (Ā, B) is good with Ā clean and also that (i), (iii) and (iv) are
satisfied. This will actually complete the proof since in case B is also not clean
we can apply a similar symmetrical construction with B and the measure µ̄ to
satisfy all conditions.

Since yp and yt have not been altered and since k̄p + K̄ = kp + K(A) we
have

(6.14) Ip,t(µ) = Ip,t(µ̄).

Consequently in view of Lemma 2 and since Ip,t(µ) is a special interval we
conclude that Ip,t(µ̄) must also be a special interval (with respect to µ̄) and
therefore in the gap intervals J(µ) and J(µ̄) the right endpoints r(A) and r(Ā)
must respectively be located at the same point of J−

t (µ) and J−
t (µ̄). This in

view of Proposition 2(ii) and Lemma 3 and, since we have not altered µ to the
right of yi, implies that we must have

(6.15) Ip,r(µ) = Ip,r(µ̄)

for every r ≥ t and since (the nonempty of) these intervals together with
E(

∑n
r=i+1 krδr) cover the space [yi + ki, yn] of E(µ) (note that Il,r(µ) = ∅ if

l ≤ i < r with l 	= p and that the nonempty, if any, of the intervals Ip,r(µ) for
r < t are located to the right of yi + ki) we conclude that

(6.16) [yi + ki, yn] ⊆ E(µ̄).

Also it is clear that E(τ) ⊆ E(µ̄). Now as remarked above in the gap interval
of µ̄ the interval Ā = J+

p (µ̄) must contain all positions that correspond to the
masses ki+1δi+1, . . . , ksδs (and obviously all the positions corresponding to τ)
we have

(6.17) r(Fp(µ̄)) = yp + k̄p + K̄ + Ks
i+1 = yp + kp + K + Ks

i+1.

Hence in view of (6.7) and (6.8)

(6.18) l(E(τ)) − r(Fp(µ̄)) = yi + ki − g − K − yp − kp − K = 0

and this now implies that E(µ̄) is connected, therefore that µ̄ is admissible
(the separability inequalities being here obvious).

Now by the way τ is chosen (iv) is satisfied and also, since nothing has
changed after w(A), it is clear, using also Lemma 8(ii), that the pair (Ā, B) is
good and that its core satisfies σ(Ā, B) = σ(A, B).
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To prove (i) we form the gap intervals of µ and µ̄ simultaneously shrinking
the corresponding central intervals Ir,r of µ and µ̄ in such a way that in both
cases the point b = yi + ki is kept fixed. In this way in both gap intervals
the segments that lie in [b, +∞) are identical and also r(A) = r(Ā). Now in
µ, as we already know, a gap of exactly g will be formed between l(A) and b.
In µ̄ however E(τ) will shrink to the interval [b − |J(τ)| , b] and between l(Ā)
and b − |J(τ)| a gap of exactly K̄ + Ks

i+1 will be formed, proving thus that in
particular Ā is clean (since the individual masses of τ have been chosen very
small). Hence it is easy to see that

(6.19) X =
∣∣T (Ā, B)

∣∣ − |T (A, B)| = K̄ + Ks
i+1 + ḡ − g

and

(6.20) Y =
∣∣H(Ā, B)

∣∣−|H(A, B)| = K̄ +Ks
i+1 + ḡ +2K̄ − g− (K +K∗).

In view of (5.8) to prove (i) it is enough to show that X > γY . We have

(6.21) X − γY = (1− γ)Ks
i+1 + γ(K +K∗)− (1− γ)g +(1− γ)ḡ− (3γ − 1)K̄.

Using (6.8) it is now easy to compute that

(6.22) (1 − γ)ḡ − (3γ − 1)K̄ =
(

1
2
− γ − ε′

)
(Kt−1

s+1 + dist(A, at))

where ε′ =
ε

2(γ − ε + 1)
. Moreover we have K + K∗ ≥ g, since obviously each

place in g contributes at least one brick counted in K + K∗. Hence (since
γ > 1

2),

(6.23) γ(K + K∗) − (1 − γ)g ≥
(

γ − 1
2

)
(g + K + K∗).

Now using (6.22), (6.23) and (6.7) in (6.21) and observing that we must have
K∗ > 0 we get

X − γY ≥ (1 − γ)Ks
i+1 +

(
1
2
− γ − ε′

)
(Kt−1

s+1 + dist(A, at))(6.24)

+
(

γ − 1
2

)
(Kt−1

i+1 + dist(A, at) + K∗)

=
1
2
Ks

i+1 +
(

γ − 1
2

)
K∗ − ε′(Kt−1

s+1 + dist(A, at)) > 0

if ε > 0 has been choosen small enough. This completes the proof.
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7. The basic estimate for the core

We will now consider a good pair (A, B) in which both A and B are clean
and is such that (5.8) is satisfied. This pair can be a part of µ or be produced
as in Proposition 9. In both cases its core σ(A, B) is a part of µ and contains
less n positions. For convenience we will change the numbering of the yi, ai

and ki’s, introducing negative indices and also introduce if necessary (at most)
two positions in µ (or µ̄) with masses 0 in such a way that

(7.1) σ = σ(A, B) =
m∑

i=1

kiδyi ,

where m ≤ n and moreover so that there are 1 ≤ r < s ≤ n (r < s since A∩B

covers at least one place) with

(7.2) r(A) = as and l(B) = ar.

It is easy to see that these new zero mass positions will not affect any of the cov-
ering properties of F(µ) or related estimates, but will make our computations
easier.

We will also use the following notation: For any i < j we will let

(7.3) αj
i = aj − ai

and we will let αj
i = 0 if j ≤ i.

Now the gap interval of σ is J(σ) = [a1, am]. Doing that we would have

(7.4) A = J+
−p

for some integer p > 0 and we will also consider the intermediate measure

(7.5) ν =
0∑

i=−p+1

kiδyi .

As for B since it is also clean it is easy to see that Proposition 5 implies
that

(7.6) B = J−
m+1 and S = am+1 − am ≤ Km

r .

We will now analyse A. Let

(7.7) ρ =

∣∣∣∣∣∣E(ν)\
0⋃

i=−p+1

Ii,i(ν)

∣∣∣∣∣∣ and K =
0∑

i=−p+1

ki = ‖ν‖ .

Since [a−p+1, a0] ⊆ A is surrounded by places in E1 we conclude that no interval
of F(ν) interacts with any interval other than A and the interactions with A

produce an interval of length K in F−p\(−∞, y−p+k−p] (where F−p = F−p(µ)).
Actually we have

(7.8) |F−p\(−∞, y−p + k−p]| = K + Ks
1 .
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The interval I−p,m+1(µ) (or µ̄) that corresponds to A ∩ B can cover, by
Lemma 12, only points x ∈ G(µ) such that Q−1(x) ∈ A and moreover it
covers at least one place of G(µ) that corresponds to some place in A ∩ ⋃

E1.
In particular,

(7.9) I−p,m+1(µ) ⊆ (−∞, ys].

Therefore denoting by D the part of I−p,m+1(µ) that lies in (−∞, y1] and also
corresponds to the places in (−∞, a1) in the gap interval covered by A ∩ B

and by h the part that lies in [y1, ys], that is the, possibly empty, space in
[y1, ys]\E(σ) covered by I−p,m+1(µ), we have (since Q is distance nondecreas-
ing)

(7.10) D > 0 and D + h ≤ |A ∩ B| = αs
r.

Now we thus have l(I−p,m+1(µ)) < y1 − k1 and by Lemma 3 we see that

(7.11) g = l(I−p,m+1(µ))−r(F−p) = dist(am+1, J−p)+Km
s+1 = αm

s +S+Km
s+1,

where (7.11) defines g. Hence by the above considerations and Proposition
3(iii) the interval (r(F−p), l(I−p,m+1(µ))) in E(µ) must be covered by E(ν) and
some of the nonempty special intervals I−p,j(µ) for s+1 ≤ j ≤ m. Hence there
is λ ≥ 0 such that

(7.12) λ ≤
m∑

j=s+1

∣∣∣A ∩ J−
j

∣∣∣ and g = λ + |E(ν)| = λ + ρ + 2K.

This in turn implies that the total space in the gap interval E(µ), between
a−p + K + Ks

1 and a1 − D, is at most λ + ρ. Hence

(7.13) α1
−p = a1 − a−p ≤ K + Ks

1 + D + λ + ρ.

Moreover since ν has less than n positions (or see Proposition 9(iv)) we have
|E(ν)| ≤ 2(1 + γ)N(ν) and so

(7.14)
ρ

2K
≤ γ.

Turning now to the core σ we have that since no mass of σ interacts with
any mass outside σ other than those corresponding to A and B and since all
nonempty I−p,j(µ) for s + 1 ≤ j ≤ m are situated to the left of I−p,m+1(µ)
whose left endpoint is smaller than y1 − k1, the interval [y1 − k1, ym + km] can
be covered only by E(σ), the part h of I−p,m+1(µ) and possibly some of the
nonempty special intervals Ii,m+1(µ) for 1 ≤ i ≤ r − 1. Hence denoting by
u ≥ 0 the measure of [y1, ym]\(E(σ) ∪ I−p,m+1(µ)) we have

(7.15) u ≤
r−1∑
j=1

∣∣∣B ∩ J+
j

∣∣∣ and (ym + km) − (y1 − k1) ≤ |E(σ)| + u + h.
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Therefore since σ contains less than n (nonzero mass) positions we have |E(σ)| ≤
2(1 + γ) ‖σ‖ and so

(7.16) αm
1 ≤ 2γKm

1 + u + h.

Now to use the above information efficiently we introduce the estimate
(5.8) satisfied by the pair (A, B). This gives

am+1 − a−p = T (A, B) > γH(A, B)(7.17)

≥ γ(am+1 − ar + as − a−p + 2K + 2Km
1 )

and so

(7.18) (1 − γ)(S + αm
1 + α1

−p) > γ(2K + 2Km
1 + αs

r).

Using now the estimates (7.10) and (7.13) and since γ < 1 we get

(1 − γ)(Ks
1 + S + λ + αm

1 − h) + (1 − γ)ρ − (3γ − 1)K(7.19)

> 2γKm
1 + (2γ − 1)αs

r.

Moreover using (7.12) and (7.14) we may write

(7.20) ρ = η(g − λ) and K =
1 − η

2
(g − λ),

where

(7.21) η ≤ γ

γ + 1
,

and so by (7.11)

(7.22) (1−γ)ρ−(3γ−1)K ≤
(

1
2
− γ

)
(g−λ) =

(
1
2
− γ

)
(αm

s +S+Km
s+1−λ).

Putting this into (7.19) and using (7.6) we obtain the following estimate

(1 − γ)αr
1 + (2 − 3γ)as

r +
(

3
2
− 2γ

)
αm

s >
1
2
(Km

s+1 − λ)(7.23)

+ (3γ − 1)Kr−1
1 +

5
2
(2γ − 1)Km

r + (1 − γ)h.

Multiplying (7.16) by (2 − 3γ) > 0 and subtracting from (7.23), and noticing
that 5

2(2γ − 1) = 2γ(2 − 3γ) we obtain
(7.24)

(2γ − 1)(αr
1 − h) +

(
γ − 1

2

)
αm

s + (2− 3γ)u >
1
2
(Km

s+1 − λ) +
(

3
2
− 2γ

)
Kr−1

1 ,

and dividing by 2γ − 1 > 0 and using the, equivalent to (3.2), equations

(3γ + 1)(2γ − 1) =
3
2
− 2γ, (3γ +

1
2
)(2γ − 1) = 2− 3γ and (6γ + 4)(2γ − 1) = 1

we obtain the following basic estimate for the (two tails of the) core measure σ:

(7.25) [ar
1 − h + (3γ + 1)(u−Kr−1

1 )] +
1
2
[αm

s − u + (6γ + 4)(λ−Km
s+1)] > 0,



THE BEST CONSTANT IN MAXIMAL INEQUALITY 679

where we have added and subtracted the term 1
2u for reasons that will become

clear in the next section.
This estimate will lead to a contradiction and thus will prove Theorem 1.

We will do this in the following section.

8. End of the proof of Theorem 1

Here we will show that both terms in brackets in (7.25) must be nonposi-
tive. This contradicts (7.25) and will thus prove Theorem 1.

Consider any measure τ of the form

(8.1) τ =
m∑

i=1

k̄iδzi ,

where k̄1, . . . , k̄m > 0 and the z1 < z2 < · · · < zm satisfy the separability
inequalities zi+1 − zi > k̄i+1 + k̄i for all 1 ≤ i ≤ m − 1 and suppose that the
number of positions m in τ is at most n (the n we have defined in §3). The
set E(τ) is not assumed connected. Consider the set

(8.2) G(τ) = E(τ)\
m⋃

i=1

Ii,i(τ) ⊆ [z1, zm]

that is covered by the nonempty of the intervals Ii,j(τ) where 1 ≤ i < j ≤ m.
Define the K̄j

i similarly to (2.4). Then we have the following.

Lemma 13. For every h such that 1 < h ≤ m we have

(8.3) |G(τ) ∩ [z1, zh]| ≤ (2γ + 1)K̄h−1
1 .

Proof. The set G(τ) ∩ [z1, zh] is covered by certain intervals Ii,j(τ) where
1 ≤ i < j ≤ m. However we know that Ii,j(τ) ⊆ (zi, zj) if i < j and so it would
be disjoint from [z1, zh] unless i < h. Therefore

(8.4) G(τ) ∩ [z1, zh] ⊆
⋃

1≤i<j≤h−1

Ii,j(τ) ∪
⋃

1≤i≤h−1<j

Ii,j(τ).

Consider the measure τ ′ =
∑h−1

i=1 k̄iδzi . Then
⋃

1≤i<j≤h−1 Ii,j(τ) = G(τ ′) and
since τ ′ contains less than n positions we have

(8.5)

∣∣∣∣∣∣
⋃

1≤i<j≤h−1

Ii,j(τ)

∣∣∣∣∣∣ =
∣∣G(τ ′)

∣∣ ≤ 2γK̄h−1
1 .

Now for the other part consider any interval of the form Ii,j(τ) where 1 ≤ i ≤
h − 1 < j. We have, since τ satisfies the separability inequalities,

(8.6) l(Ii,j(τ)) = zj − K̄j
i > zh + k̄h + 2K̄j−1

h+1 + k̄j − K̄j
i ≥ zh − K̄h−1

1
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if j > h and

(8.7) l(Ii,h(τ)) = zh − k̄h − K̄h−1
i ≥ zh − k̄h − K̄h−1

1 .

Therefore since G(τ) ∩ [z1, zh] ⊆ [z1, zh − k̄h] we have

(8.8) G(τ) ∩ [z1, zh] ∩
⋃

1≤i≤h−1<j

Ii,j(τ) ⊆ [zh − k̄h − K̄h−1
1 , zh − k̄h]

and so its measure is at most K̄h−1
1 . Combining (8.8) with (8.4) and (8.5) we

get (8.3).

Remarks. (i) A analogous symmetrical statement holds for G(τ)∩ [zh, zm]
if 1 ≤ h < m.

(ii) After Theorem 1 is proved, the above lemma holds for any measure,
without the restriction on the number of positions, and as it can be easily seen
is best possible.

Now we can show that both terms in (7.25) are nonpositive.

Lemma 14. For the core measure σ we have

(8.9) αr
1 − h + (3γ + 1)(u − Kr−1

1 ) ≤ 0.

Proof. We may assume that r > 1 otherwise there is nothing to prove.
We have by (7.15)

(8.10) u ≤
r−1∑
i=1

max(ai + ki − ar, 0).

Let

(8.11) q = min{i : 1 ≤ i ≤ r and ai + ki ≥ ar}.

(Note that if q = r then u = 0.) Then using (8.10) it is easy to see that

(8.12) ar − aq + u ≤ Kr−1
q .

Therefore we have

(8.13) αr
1 − h + (3γ + 1)(u − Kr−1

1 ) ≤ αq
1 − h − (3γ + 1)Kq−1

1 .

But then, from the considerations in Section 7 and since the definition of q

implies that Ii,m+1(µ) = ∅ for all 1 ≤ i < q, it follows that the space in [y1, yq]
not covered by E(σ) has measure at most h. Therefore using Lemma 13 we
have αq

1 − h ≤ (2γ + 1)Kq−1
1 , which in view of (8.13) easily implies (8.9).
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In a similar symmetrical manner we prove that

(8.14) αm
s − u + (6γ + 4)(λ − Km

s+1) ≤ 0,

noticing that the part of [ys, ym] not covered by E(σ) has measure at most u

(in view of (7.9)) and using (7.12).
But now the inequalities (8.9) and (8.14) contradict the basic core estimate

(7.25). Therefore this completes the proof of Theorem 1.

9. Proof of Theorem 2

It is clearly sufficient to fix a finite positive Borel measure σ and prove
(1.10) for λ = 1. The functions F+(x) = σ((−∞, x]) and F−(x) = σ((−∞, x))
are measurable as nondecreasing. Hence for each h > 0 the set

(9.1) A(h) = {x : σ([x − h, x + h]) > 2h}
is measurable. Letting E = {x : Mσ(x) > 1} it is easy to see that

(9.2) E =
⋃
h>0

A(h) =
⋃

{A(h) : h ∈ Q and h > 0}.

Hence setting

(9.3) En =
⋃ {

A(h) : h ∈ Q and h >
1
n

}
we conclude that E is the union of the increasing sequence (En) of measurable
sets. Thus it is enough to show that for any fixed large n > 1 and every
compact set K ⊆ En we have

(9.4) |K| ≤ C(1 +
1
n

) ‖σ‖

where C is the constant given in (1.8).
Fixing n and K as above we can find an interval [a, b] containing K and

such that b − supK, inf K − a > ‖σ‖ and σ({a, b}) = 0 and a partition

(9.5) a = c0 < c1 < · · · < cN = b

of this interval such that

(9.6) max
1≤j≤N

(cj − cj−1) <
1
n2

and σ({c0, c1, . . . , cN}) = 0.

This is possible since there are at most countably many x ∈ R such that
σ({x}) > 0.

Consider now the following positive linear combination of dirac deltas

(9.7) µ =
N∑

j=1

σ([cj−1, cj ])δ cj−1+cj
2 .
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Then for every x ∈ K there exists an h >
1
n

such that

(9.8) σ([x − h, x + h]) > 2h.

Clearly h < ‖σ‖ and so [x − h, x + h] ⊆ (a, b). Choose j and s such that
cj < x − h ≤ cj+1 and cs−1 ≤ x + h < cs and let h′ = max(cs − x, x − cj) > h.

Clearly h′ − h <
1
n2

. We have

(9.9) µ([x − h′, x + h′]) ≥ σ([cj , cs] ≥ σ([x − h, x + h]) > 2h > 2
n

n + 1
h′

and so

(9.10) K ⊆ {x : Mµ(x) >
n

n + 1
}

and so since ‖µ‖ ≤ ‖σ‖ by applying Theorem 1 we get (9.4). This completes
the proof of Theorem 2.

10. Proof of Theorem 3

To prove Theorem 3 we assume (in view of Theorem 1) that there exists
an admissible positive linear combination of dirac deltas µ such that

(10.1) |E(µ)| = 2C ‖µ‖

and such that |E(ν)| < 2C ‖ν‖ for every positive linear combination of dirac
deltas ν that contains less positions than µ, where C is the constant given in
(1.8).

Now we fix an integer n > 1 and consider the set
(10.2)
Ω = {b = (y1, . . . , yn; k1, . . . , kn) ∈ R2n : y1 ≤ · · · ≤ yn and k1, . . . , kn ≥ 0}.

Then to every b = (y1, . . . , yn; k1, . . . , kn) ∈ Ω we associate the measure

(10.3) σ(b) =
n∑

i=1

kiδyi

and the intervals

(10.4) Ii,j(b) = [yj − ki − · · · − kj , yi + ki + .. + kj ]

for all 1 ≤ i ≤ j ≤ n (where as usual [a, b] = ∅ if b < a).
Of course the mapping b → σ(b) is not one-to-one. But it is easy to see

(for example using a limiting argument) that for any measure τ =
∑m

i=1 hiδzi

where z1 < · · · < zm and h1, . . . , hm > 0 and for any b ∈ Ω such that τ = σ(b)
we have E(τ) =

⋃
1≤i≤j≤n Ii,j(b).

We will use the following well-known lemma.
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Lemma 15. Let C be a finite collection of closed intervals in R such that
their union

⋃ C is an interval [x, y] where x < y. Then there is a subcollection
C0 = {[a1, b1], . . . , [aN , bN ]} of C such that

⋃ C0 =
⋃ C, satisfying the following

(10.5) a = a1 < a2 < · · · < aN = y

and

(10.6) a2 ≤ b1 < b2, . . . , aN ≤ bN−1 < bN .

As it is well known to prove the above lemma it suffices to pick C0 of
minimal cardinality among all subcollections C′ of C satisfying

⋃ C′ =
⋃ C, and

so no element of C0 is contained in any union of other elements of C0. The
intervals of C0 can be arranged so that (10.5) is satisfied; then (10.6) follows
easily from the fact that

⋃ C0 is the interval [x, y].
Then we will apply the following proposition.

Proposition 10. Let τ be an admissible positive linear combination of
dirac deltas containing exactly n > 1 positions such that R(ν) < R(τ) for every
positive linear combination of dirac deltas ν that contains less than n positions.
Then there exists an admissible measure

(10.7) τ∗ =
n∑

i=1

k∗
i δy∗

i
,

where all k∗
1, . . . , k

∗
n > 0 and all y∗1 < · · · < y∗n are rational numbers and such

that

(10.8) R(τ∗) ≥ R(τ).

Proof. Suppose that τ = σ(b0) where

b0 = (y(0)
1 , . . . , y(0)

n ; k(0)
1 , . . . , k(0)

n ) ∈ Ω

is uniquely determined. By scaling we may assume that

(10.9) E(τ) = [y(0)
1 − k

(0)
1 , y(0)

n + k(0)
n ] = [0, 1].

Note that then k
(0)
1 + · · · + k

(0)
n = ‖τ‖ ≤ 1 for otherwise R(τ) < R(δ0).

Now applying Lemma 15 to the collection C = {Ii,j(τ) : 1 ≤ i ≤ j ≤ n

and Ii,j(τ) 	= ∅} we can find a subcollection {Ii1,j1(τ), . . . , IiN ,jN (τ)} of C that
still covers [0, 1] and satisfies

(10.10) 0 = l(Ii1,j1(τ)) < · · · < l(IiN ,jN (τ)) = 1

and

(10.11) l(Iip,jp(τ)) ≤ r(Iip−1,jp−1(τ)) < r(Iip,jp(τ))
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for all p = 2, . . . , N . It is easy to see that we must have (i1, j1) = (1, 1)
and (iN , jN ) = (n, n). Fixing the set of pairs {(i1, j1), . . . , (iN , jN )} we now
consider the following set

Ω∗ = {b = (y1, . . . , yn; k1, . . . , kn) ∈ Ω : y1 − k1 = 0, yn + kn = 1,(10.12)

yjp − K
jp

ip
≤ yjp+1 − K

jp+1

ip+1
for all 1 ≤ p ≤ N − 1,

yjp − K
jp

ip
≤ yip−1 + K

jp−1

ip−1
≤ yip + K

jp

ip
for all 2 ≤ p ≤ N and

k1 + · · · + kn ≤ 1}.
It is easy to see that Ω∗ is a nonempty (since b0 ∈ Ω∗) compact convex
polyhedron contained in a codimension 2 affine subspace of R2n. Moreover,
it is easy to find nonzero vectors v1, . . . ,vM such that all the conditions that
define Ω∗ (including the conditions defining Ω) can be written as

(10.13) v1.b = 0, v2.b = 1, v3.b ≤ 0, . . . ,vM .b ≤ 0,

and, moreover, v1 = e1 − en+1, v2 = en + e2n, and all the entries in all
v1, . . . ,vM are from the set {−1, 0, 1}. Considering the linear functional F

with

(10.14) F (b) = k1 + · · · + kn = (en+1 + · · · + e2n).b

and applying the standard result from the theory of linear programming we
conclude that there exists an extreme point (vertex) b∗ = {y∗1, . . . , y∗n; k∗

1, . . . , k
∗
n}

of Ω∗ such that

(10.15) F (b∗) = min{F (b) : b ∈ Ω∗}≤F (b0).

Let now m1 = 1 < m2 = 2 < · · · < ms ≤ M be all the indices such that
equality holds in the corresponding relation from (10.13) when b is replaced
by b∗. Then it is clear that since b∗ is a vertex of Ω∗ the linear system

(10.16) vm1 .b = 0,vm2 .b = 1,vm3 .b = 0, . . . ,vms .b = 0

must have b∗ as its unique solution and since all coefficients are integers we
conclude that all the 2n coordinates of b∗ must be rational numbers.

Consider now the measure τ∗ = σ(b∗). Since b∗ ∈ Ω∗ it is easy to see
that

(10.17) [0, 1] ⊆
⋃

1≤i≤j≤n

Ii,j(b∗) = E(τ∗);

moreover,

(10.18) ‖τ∗‖ = F (b∗) ≤ F (b0) = ‖τ‖ .

Hence R(τ∗) ≥ R(τ) and the assumptions on τ combined with Lemma 1 (and
its proof given in [10]) now imply that τ∗ must contain exactly n positions
and may assumed admissible (without changing its basic property that all its
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positions and masses are rational). This completes the proof of the proposi-
tion.

Using now the above proposition we can find an admissible measure µ∗

whose masses and positions are rational numbers and such that R(µ∗) ≥ 2C.
But then R(µ∗) > 2C violates Theorem 1 and also R(µ∗) = 2C leads to a
contradiction since R(µ∗) must be a rational number whereas C is irrational.
This completes the proof of Theorem 3.

11. Appendix

Here we will briefly sketch the construction from [10] that leads to the
lower bound in (1.5) thus showing that the inequality in Theorem 1 is actually
best possible.

For any admissible measute µ as in (2.1) we consider the following modified
norm

(11.1) ‖µ‖∗ = k0 + 2k1 + · · · + 2kn + kn+1

and the corresponding modified ratio
(11.2)

R∗(µ) =
|E(µ)| − k0 − kn+1

‖µ‖∗ =
yn+1 − y0

k0 + 2k1 + · · · + 2kn + kn+1
.

It is easy to see that R∗(µ) > R(µ) > 1 for any admissible µ. Moreover by
applying a reflection-translation procedure one can show (see [10]) that for
any admissible measure µ and every ε > 0 there exists a measure µ̃ such that
R(µ̃) ≥ R∗(µ)−ε. This measures µ̃ will consist of a large number of translated
copies of µ (and its symmetric one). Hence any admissible measure µ also
satisfies R∗(µ) ≤ C.

Then we consider any measure ν that satisfies the separability condition
(2.5). We do not assume that E(ν) is connected. Writing ν as

∑n
i=1 kiδyi where

ki > 0 and y1 < · · · < yn, we fix integers 1 ≤ s, r ≤ n and define the measure

(11.3) Ts,rν = k0δy0 + ν + kn+1yn+1,

where

(11.4) y0 = 2y1 − ys − 2k1 − ks , k0 = ys − y1 − Ks−1
2

and

(11.5) yn+1 = 2yn − yr + 2kn + kr, kn+1 = yn − yr − Kn−1
r+1 .

It is easy to show (see [10]) that E(Ts,rν) does not have more gaps than
E(ν). That is, the added intervals (y0, y1 − k1), (yn + kn, yn+1) are contained
in E(Ts,rν). Hence the operation Ts,r does not create any new gaps. However
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we have the advantage of using the special interval I0,n+1(Ts,rν), which will
be nonempty if s > t, to possibly cover gaps of our initial set E(ν). For this
purpose we argue as follows.

Let µ be any, admissible now, measure written as µ =
∑m

i=1 k′
iδzi where

k′
i > 0 and z1 < · · · < zn where for simplicity we assume that z1 = 0. Fixing

now two positive real numbers A, α > 0 we consider the scaled measure α.µ

defined by

(11.6) α.µ =
m∑

i=1

αk′
iδαzi .

Clearly the measure α.µ is also admissible and so the measure

(11.7) ν = µ + traslA(α.µ) =
m∑

i=1

k′
iδzi +

m∑
i=1

αk′
iδαzi+A =

n∑
i=1

kiδyi ,

where n = 2m, satisfies the separability inequalities as long as A > k′
m + αk′

1.
We will next take as s the last position of µ, so s = n = 2m, and as r the first
position of the translated α.µ, so t = m + 1 and consider the measure

(11.8) Tµ = T2m,m+1ν.

Then in [10] it is shown that by choosing

(11.9) α = 2R(µ) and A = (α2 − α) ‖µ‖ + (α − 1)k′
1

the measure Tµ will be admissible (hence E(Tµ) is connected) and moreover

(11.10) R∗(Tµ) =
20R(µ)2 − 4R(µ)

12R(µ)2 − 2R(µ) + 1
.

Let now f(x) =
20x2 − 4x

12x2 − 2x + 1
. Starting from the admissible measure

µ0 = δ0 + δ3 we define the sequence of positive linear combinations of dirac
deltas (µp)p≥0 (all whose masses and positions are rational numbers) as follows.
Having defined µp consider Tµp and apply the reflection-translation procedure
to obtain a measure µp+1 such that R(µp+1) ≥ R∗(Tµp) − εp = f(R(µp)) − εp

where the εp > 0 tend to 0 sufficiently fast. Then we will have R(µp) →
11 +

√
61

12
= 1.5675208 . . . as p → ∞. This implies the lower bound in (1.5).

After the first few steps these measures will be rather complicated.
However each such measure µp will contain a large number of translated

copies of Tµp−1 (and its symmetric one) so it will have a specific structure.
To study this structure let us consider the gap interval [a0, an+1] of the mea-
sure Tµ defined in (11.8). It is easy to see that it starts with a1 − a0 =
(1 + α) ‖µ‖ followed by a copy of J(µ), then by a gap of length α |J(µ)| (that
is completely covered by I0,n+1(Tµ)), then by a copy of J(α.µ) = αJ(µ) and



THE BEST CONSTANT IN MAXIMAL INEQUALITY 687

then by an+1 − an = α ‖µ‖. These easily imply that the pair (J+
0 , J−

n+1) has
the same structure as the good pairs described in Section 5 and that both of
its intervals are clean. Moreover its core is equal to a copy of the measure
a.µ and the µ corresponds to the intermediate measure ν considered in Sec-
tion 7. Also (assuming all positions and masses integers), it is easy to see that∣∣∣T (J+

0 , J−
n+1)

∣∣∣ = |J(Tµ)| and H(J+
0 , J−

n+1) = ‖µ‖∗; thus their ratio is equal to
R∗(Tµ) − 1. So compared with the considerations in Section 7 we conclude
that Tµ shows, in a sense, the tightest possible structure.

In our proof of Theorem 1 we have actually shown that certain measures τ

with R(τ) > C must have (or can be used to produce) segments that behave in
a structurally similar fashion as the Tµ’s. However to prove the sharp upper
bound we had to consider the effect of the more general operator Ts,r with
r < s which makes it necessary to also study certain aspects of the internal
structure of the core, which leads to the basic core estimate (7.25). The fact
that in a sense r must be as small as possible and s as large as possible is
reflected by the inability to satisfy (7.25). This is what actually leads to the
proof of the upper bound.
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