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Convergence or generic divergence
of the Birkhoff normal form

By Ricardo Pérez-Marco

Abstract

We prove that the Birkhoff normal form of hamiltonian flows at a nonres-
onant singular point with given quadratic part is always convergent or generi-
cally divergent. The same result is proved for the normalization mapping and
any formal first integral.

Introduction

In this article we study analytic (R or C-analytic) hamiltonian flows

ẋk = +
∂H

∂yk
,

ẏk = − ∂H

∂xk
,

where xk, yk ∈ C (resp. R), k = 1, 2, . . . n, and H is an analytic hamiltonian
with power series expansion at 0 beginning with quadratic terms (so that 0 is
a singular point of the analytic vector field). We shall restrict our attention
to those H having nonresonant quadratic parts: If (λ1, . . . , λ2n) are the eigen-
values of the matrix JQ where 1

2(x, y)Q(x, y)t is the quadratic part of H with
λn+1 = −λ1, . . . λ2n = −λn, there is no relation of the form

i1λ1 + . . . + inλn = 0

with integral coefficients i1, . . . , in except for the trivial case i1 = . . . = in = 0.
Due to some confusion in some of the literature on the distinction between the
problem of convergence of the Birkhoff normal form and Birkhoff transforma-
tion, we start with a brief historical overview.

The normal form of a hamiltonian flow near a singular point has been
studied since the origins of mechanics. The long time evolution of the sys-
tem near the equilibrium position is better controlled in variables oscullating
those of the normal form that corresponds to a completely integrable system.
This idea is at the base of many computations in celestial mechanics. Its im-
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portance, both practical and theoretical, cannot be overestimated. One can
consult the reference memoir “Les méthodes nouvelles de la mécanique céleste”
by H. Poincaré ([Po]) to get an idea of the central place that the perturbative
approach played in the XIXth century. A highlight was the discovery of Nep-
tune by U. Le Verrier (and J. C. Adams) based on perturbative analysis of the
orbit of Uranus. The theory of perturbations can be traced back to the origins
of mechanics in the “Principia” of I. Newton (as noted by F. R. Moulton in
[Mou] in the historical notes at the ends of Chapters IX and X).

Assuming that the eigenvalues of the quadratic part of H present no res-
onances, we have a simple, formal, normal form. This result goes back to
C. E. Delaunay [De] and A. Lindstedt [Li] (also see [Po], [Si2]). Nowadays this
normal form is named after Birkhoff. The Birkhoff normal form is the starting
point of most of the studies of stability near the equilibrium point: the first
studies by E. T. Whittaker [Wh], T. M. Cherry [Ch], G. D. Birkhoff [Bi1], [Bi2],
and C. L. Siegel [Si1], [Si2], K.A.M. theory ([Ko], [Ar], [Mo]), Nehoroshev’s
diffusion estimates [Ne], ... .

The dream of an analytic conjugacy to the normal form (uniform on the
quadratic part of H) was quickly dissipated after the work of H. Poincaré ([Po,
vol.I, chapitre V]). Poincaré’s divergence theorem is the starting point of his
difficult proof of the nonexistence of nontrivial local first integrals in the three
body problem for some particular configuration of masses.

Research then focused on understanding the divergence of the conjuga-
tion mapping (normalization mapping) with a fixed nonresonant quadratic
part for H. The normal form is unique. The normalization mapping is not
unique, but appropriate normalizations determine it uniquely. Different results
showed with increasing strength that the normalization mapping was generi-
cally divergent. We refer to the book of C. L. Siegel and J. Moser ([Si-Mo,
Chap. 30]) for an overview. The strongest result on divergence was proved
by Siegel in 1954 ([Si2]) and showed the generic divergence of the normaliza-
tion, the quadratic part of the hamiltonian being fixed but otherwise arbitrary.
A. D. Bruno [Br] and H. Rüssman [Ru2], [Ru3] proved the convergence of the
normalization when the Birkhoff normal form for the hamiltonian is quadratic
and the eigenvalues satisfy Bruno’s arithmetic condition (other proofs can be
found in [El2], [E-V]).

Despite this progress, the most natural question remains untouched. The
question is not the convergence or divergence of the normalizing map, but
actually the convergence or divergence of the Birkhoff normal form itself. If in
the first place the Birkhoff normal form is diverging, then there is no point in
trying to conjugate to the normal form. Also, in this case, the normalization
is necessarily diverging.

Very surprisingly, there seems to be no significant result on this funda-
mental question. It appears to be a very hard question. The author first
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learned about it from H. Eliasson. The references in the literature are scarce.
H. Eliasson points out in the introduction of his article [El1] that

“...if the normal form itself is convergent or divergent is not known...”,

and he points out in [El2],

“...Generically (...) the formal transformation is divergent (if the
normal form itself also is generically divergent is not known).”

These are the only citations in the literature that the author is aware of
(despite the title of [It] what is really proved there is the convergence of the
normalization). On the other hand, one frequently finds in some literature the
wrong claim “Birkhoff normal form is generically diverging” in place of the
“Birkhoff transformation is generically diverging”... .

More surprisingly, not a single example is known of an analytic hamilto-
nian having a divergent Birkhoff normal form. The main result in this article
is that the existence of a single example with divergent Birkhoff normal form
forces generic divergence. To be more precise we need to introduce the no-
tion of a pluripolar subset of Cn. This is the −∞ locus of plurisubharmonic
functions in Cn. This notion generalizes to higher dimension the notion of a
polar set in dimension 1 (that is, a set with logarithmic capacity 0). An impor-
tant property, as in dimension 1, is that a pluripolar set E ⊂ Cn is Lebesgue
and Baire thin; i.e., E has zero Lebesgue measure and is of the first category
(a countable union of nowhere dense sets). A pluripolar set is small in all
senses. For example, in dimension 1 it has Hausdorff dimension 0. In higher
dimension n there are even smooth arcs which are not pluripolar.

In order to talk about generic properties we define a natural Baire space.
We consider the Fréchet space H of Hamiltonians holomorphic in the unit ball,
endowed with the topology of uniform convergence on compact subsets of the
unit ball. We choose this natural complete metric space as a working setting.
The proof goes through other richer or poorer topologies. The meaning of the
result is then different. A generic set contains a dense Gδ. Thus if the topology
is richer, then it is easier to be open, so to be Gδ but harder to be dense. The
opposite happens for poorer topologies. Similar results hold for C-analytic and
R-analytic hamiltonians.

We can now state:

Theorem 1. Consider the subspace of HQ ⊂ H of analytic hamiltonians

H =
+∞∑
l=2

Hl

with fixed nonresonant quadratic part H2 given by the symmetric matrix Q.
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If there exists one hamiltonian H0 ∈ HQ with divergent Birkhoff normal
form (resp. normalization), then a generic hamiltonian in HQ has divergent
Birkhoff normal form (resp. normalization).

More precisely , all hamiltonians in any complex (resp. real) affine fi-
nite-dimensional subspace V of HQ have a convergent Birkhoff normal form
(or normalization), or only an exceptional pluripolar (resp. of Lebesgue mea-
sure 0) subset of hamiltonians in V has this property.

Observe that the second scenario holds for all affine subspaces containing
H0. The result obtained in the real analytic case is stronger than stated. When
V is a real-dimensional affine line, the exceptional set has zero capacity in the
complexification of V . So the exceptional set has even Hausdorff dimension
zero. A popular particular case worth pointing out is the case of the perturbed
hamiltonian H0 + εH1 where both H0 and H1 are independent of ε and H1 is
a perturbation of order 3 or more. Then these hamiltonians are all integrable,
or the set of values of ε ∈ C yielding integrable hamiltonians has 0 capacity
in C.

The important issue that remains unsettled is thus the existence of hamil-
tonians with diverging Birkhoff normal form for any nonresonant quadratic
part. The prevalent opinion among specialists is that there is generic diver-
gence for all nonresonant quadratic parts. This feeling is probably motivated
by the divergence results on the normalization, which, it is worth noting,
are independent of the quadratic part. The author knows no reason against
the convergence of Birkhoff normal forms, in particular when the eigenvalues
of the quadratic part of H enjoy good arithmetic properties. If we fix the
quadratic part of the hamiltonian, the answer may depend on the arithmetic
of its eigenvalues.1

On the other hand, by standard methods of small divisors, it is not difficult
to exhibit hamiltonians with diverging normalizations using Liouville eigenval-
ues for the quadratic part. Combining this construction with the previous
theorem, one recovers with a simple proof Siegel’s result ([Si2]) on the generic
divergence of the normalization mapping for some fixed quadratic parts.

Note that fixing the quadratic part of the hamiltonian makes the problem
much harder, not allowing one to take any advantage of the arithmetic of the
eigenvalues. One can find in the literature results without fixing the quadratic
part ([Po, vol. I, Ch. V], [Koz]). One may ask about the reason for studying

1After the appearance of the preprint version of this paper, L. Stolovitch announced the proof of

this result in [Sto3]. Unfortunately the manuscript of L. Stolovitch is erroneous, as I pointed out to

the author. After thinking more about the problem, I saw that there may be reasons to indicate that

the Birkhoff normal form could be diverging independently of the arithmetic nature of the quadratic

part. Also A. Jorba has shown to me numerical evidence that points to the divergence of the Birkhoff

normal form.
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hamiltonians with fixed quadratic part. Note that for systems with particles,
the masses enter directly into the quadratic part of the hamiltonian through
the kinetic energy. Thus if one, for example, wants to show the nonintegrability
of a given system with given masses then families of hamiltonians with fixed
quadratic part arise naturally. One can cite at this juncture the strict criticism
of A. Wintner of Poincaré’s proof of nonintegrability of the three body problem
([Wi, p. 241]):

...Poincaré has established a result which concerns the nonexistence
of additional integrals Nevertheless, his result, as well as its for-
mal refinement obtained by Painlevé, is not satisfactory (...) In
fact, these negative results do not deal with the case of fixed, but
rather with unspecified, values of the masses mi (...) Clearly, these
assumptions in themselves do not allow any dynamical interpre-
tation, since a dynamical system is determined by a fixed set of
positive numbers mi...

Without sharing this strict view, one cannot deny some point in Wintner’s
criticism.

The problem of convergence of the Birkhoff normal form arises also in
geometric quantification, in the so-called EBK, for Einstein-Brillouin-Keller,
quantification. Bohr-Sommerfeld semi-classical quantification provides a set of
rules to obtain the energy levels of the quantification of some classical system.
A. Einstein [Ein] studied, in a somewhat forgotten article, which systems ad-
mit a Bohr-Sommerfeld quantification procedure. He pointed out the link to
complete integrability. Later J. B. Keller [Kel] rediscovered the Einstein arti-
cle and extended the procedure to non-completely integrable systems. For the
hamiltonian systems considered here, if K denotes the Birkhoff normal form,
the discrete energy levels of the quantified system should be approximated by

E(l1, . . . , ln) = K((l1 + 1/2)h, . . . , (ln + 1/2)h)

where h is Planck’s constant and l1, . . . , ln are positive integers. This corre-
sponds to the quantification of the actions. Thus the above implicitly assumes
that the Birkhoff normal form is convergent and has infinite radius of conver-
gence. In practice the normal form must be truncated at some appropriate
order, and the general interpretation should be in terms of asymptotic expan-
sions. But the convergence of the Birkhoff normal form may be the correct
condition to ensure EBK quantification. For more on this topic we refer the
reader to M. C. Gutzwiller’s book [Gu].

We prove a second theorem on the divergence of first integrals. The classi-
cal approach to integrability of hamiltonian systems is based on first integrals.
A first integral P is a convergent power series in the 2n variables x1, . . . , yn
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such that
{P, H} = 0

where the Poisson bracket is defined by

{P, H} =
n∑

k=1

(
∂P

∂xk

∂H

∂yk
− ∂P

∂yk

∂H

∂xk

)
.

The equation {P, H} = 0 is equivalent to Ṗ = 0, that is to the conservation
of P . By E. Noether’s theorem, symmetries of the hamiltonian generate first
integrals. Two first integrals, P1 and P2, are in involution (or functionally
independent) if their Poisson bracket vanishes

{P1, P2} = 0 .

At a nonsingular point of the hamiltonian, Liouville’s theorem shows that the
hamiltonian system is integrable by quadratures if there exist n first integrals
in involution. The case of a nonresonant singular point as considered here is
more involved. It has been shown by H. Rüssman [Ru1] for n = 2 and in
general by J. Vey [Ve] and H. Ito [It] that the existence of n first integrals in
involution forces the convergence of the normalization to Birkhoff normal form
(H. Eliasson settled the analogue of Vey’s theorem in the C∞ case [El1], [El3]).
L. Stolovitch gave a unified approach to Bruno’s theorem cited before and Vey’s
and Ito’s theorems ([St1], [St2]). Once all symmetries of a system have been
used to find first integrals in involution, the natural question is are there any
others. Multiple approaches to nonintegrability have been developed starting
from H. Poincaré. We refer to [Koz] for an overview of classical methods.
R. de la Llave has proved that Poincaré’s conditions are necessary and sufficient
for uniform integrability ([Ll]; see also the paper by G. Gallavotti [Ga]). We
refer to [Mor] for an account of recent methods of S. L. Ziglin, J. Morales Ruiz
and J.-P. Ramis. In the smooth nonanalytic setting we refer to the work of
R. C. Robinson ([Rob]).

It is natural to define the degree of integrability of a hamiltonian as the
maximal number 1 ≤ ι(H) ≤ n of functionally independent first integrals in
involution. When the normalization is convergent, ι(H) = n, so the study
of convergent first integrals can be seen as a refinement of the study of the
convergence of the normalization.

Theorem 2. In the space HQ, with a hamiltonian H0 ∈ HQ, there is a
generic hamiltonian H ∈ HQ, such that

ι(H) ≤ ι(H0) .

More precisely, let P be a universal formal first integral. In any complex (resp.
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real) affine finite-dimensional subspace V of HQ all hamiltonians H ∈ V have
converging P (H), or only an exceptional pluripolar (resp. Lebesgue measure
zero) set in V has this property.

We give in Section 1 a precise definition of a universal formal first integral.
This theorem reduces the proof of the generic divergence of a given formal first
integral in a family of hamiltonians, to the divergence for one hamiltonian.
Also, given a family V , the minimum degree of integrability in V ,

ιV = min
H∈V

ι(H)

is attained for a generic H ∈ V .
The families V in Theorems 1 and 2 can be more general than finite-

dimensional affine subspaces. The same proof gives the results for example
when V is parametrized polynomially by Cm. It is interesting to note how in
these theorems the complexification of the problem sheds new light on the real
analytic case.

The main idea of this article has also been applied to other problems of
small divisors ([PM1], [PM2]).

Acknowledgements. The author is grateful to A. Chenciner, H. Eliasson
and A. Jorba for conversations on the subject. A. Jorba showed to the author
numerical evidence on the divergence of Birkhoff normal forms. H. Eliasson
provided corrections to the original version. Many thanks also to N. Sibony,
E. Bedford and N. Levenberg for pointing out that the correct smallness con-
dition to be used is pluripolarity and not Γ-capacity 0 which was used in the
first version. The author thanks the referee for his careful reading, suggestions
and corrections.

1. The Birkhoff normal form and first integrals

a) The Birkhoff normal form. We review briefly in this section the con-
struction of the Birkhoff normal form following [Si-Mo]. We need to pay partic-
ular attention to the polynomial dependence of the transformation and Birkhoff
normal form on the original coefficients of the hamiltonian function. More
precisely, it is important for our purposes to keep track of the degrees of the
polynomial dependence. We use the sub-index notation for partial derivatives.

There is an analytic hamiltonian (R or C analytic)

H(x, y) =
+∞∑
l=2

Hl(x, y)

where Hl is the homogeneous part of degree l in the real or complex variables
x1, . . . , xn, y1, . . . , yn. We can assume, by means of a preliminary linear change
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of variables, that H2 is already in diagonal form ([Bi1, §III.7]):

H2(x, y) =
n∑

k=1

λkxkyk .

We look for a simpler normal form of the system

ẋk = Hyk
,

ẏk = −Hxk

and consider symplectic transformations that leave unchanged the hamiltonian
character of the system of differential equations. The new variables (ξ, η) are
related to the old ones (x, y) by the canonical transformation

xk = ϕk(ξ, η) = ξk +
+∞∑
l=2

ϕkl(ξ, η),

yk = ψk(ξ, η) = ηk +
+∞∑
l=2

ψkl(ξ, η)

where ϕkl and ψkl are the homogeneous parts of degree l. These canonical
transformations are defined by a generating function

v(x, η) =
+∞∑
l=2

vl(x, η)

where vl is the homogeneous part of degree l, and v2(x, η) =
∑+∞

k=1 xkηk. Then
the canonical transformation is defined by the equations

ξk = vηk
(x, η) = xk +

+∞∑
l=3

vl,ηk
(x, η),

yk = vxk
(x, η) = ηk +

+∞∑
l=3

vl,xk
(x, η).

Thus

xk = ξk − ∑+∞
l=3 vlηk

(ϕ(ξ, η), η),

yk = ηk +
∑+∞

l=3 vlxk
(ϕ(ξ, η), η),

and

ϕkl(ξ, η) = −vl+1,ηk
(ξ, η) −

{∑l
j=3 vj,ηk

(ϕ(ξ, η), η)
}

l
,

ψkl(ξ, η) = vl+1,xk
(ξ, η) +

{∑l
j=3 vj,xk

(ϕ(ξ, η), η)
}

l
,

where {.}l indicates the l homogeneous part of the expression within brack-
ets. From these expressions we have that the coefficients of ϕkl and ψkl are
polynomials with integer coefficients on the coefficients of v3, . . . , vl, vl+1.
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To each coefficient of vl we assign a degree l − 2 (next, we will choose a
canonical transformation so that the coefficients of the vl’s are polynomials of
the coefficients of H of degree l − 2 at most). By induction, we show that the
degree of ϕkl is at most l − 1. For l = 2 it is clear. Then by induction, the
degree of the coefficients of the homogeneous part of degree l of a homogeneous
monomial

n∏
k=1

(ϕk(ξ, η))αkηβk
k

of total degree j (
∑

αk +
∑

βk = j) is at most l − j. Thus the degree of the
coefficients of the homogeneous part of degree l of

vj,ηk
(ϕ(ξ, η), η)

is at most (j − 2) + (l − j + 1) = l − 1, and this finishes the induction. The
same discussion applies to ψ and the coefficient ψkl has degree l − 1.

Now the canonical transformation generated by v transforms the differen-
tial system into

ξ̇k = Kηk

η̇k = −Kξk

where

K(ξ, η) =
+∞∑
l=2

Hl(ϕ(ξ, η), ψ(ξ, η)) =
+∞∑
l=2

Kl(ξ, η)

and Kl is the l-homogeneous part.
Our aim is to construct a canonical transformation which gives a hamil-

tonian K only depending on power series of the products ωk = ξkηk. The
coefficients of v are constructed by induction on the degree l of the homoge-
neous part. Assume that the choices for v3, . . . , vl−1 have been done so that
the new hamiltonian has monomials of degree ≤ l − 1 only depending on the
ωk’s. We consider a monomial of degree l

P =
n∏

k=1

ξαk
k ηβk

k .

We want to choose the coefficient γ of P in vl(ϕ(ξ, η), η) such that the new
hamiltonian does not contain the monomial P . Note that

Kl(ξ, η) =
n∑

k=1

λk (ξkvlxk
(ϕ(ξ, η), η) − ηkvlηk

(ϕ(ξ, η), η)) + A

where the first term comes from the expansion of H2(φ(ξ, η), ψ(ξ, η)) and the
second term A collects everything coming from higher order. The coefficients
in the expression A are polynomials in the coefficients of v3, . . . , vl−1 and linear
functions in the coefficients of H3, . . . Hl.
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By induction we prove at the same time that the coefficients of vl are
polynomials of degree l − 2 of the coefficients of H3, . . . , Hl, and also the coef-
ficients of Kl are polynomials of degree l − 2 of the coefficients of H3, . . . , Hl.
Assuming the induction hypothesis, we have as before that the right-hand side
in the above formula for Kl is a polynomial of degree ≤ l−2 of the coefficients
of H3, . . . , Hl.

Now we have
n∑

k=1

λk(ξkPξk
− ηkPηk

) =

(
n∑

k=1

λk(αk − βk)

)
P.

Thus if λ =
∑n

k=1 λk(αk − βk) �= 0, and

γ = − 1
λ
{A}P

(where brackets indicate that we extract the P monomial) the new hamiltonian
will not contain the monomial P . Note that by the nonresonance condition,
λ = 0 only happens when αk = βk for k = 1, . . . , n. In that way we determine
all coefficients of vl except those of the monomials which are a product of
ωk’s. Note also that by induction these coefficients are polynomials on the
coefficients of H3, . . . , Hl of degree ≤ l − 2.

In order to determine the coefficients of vl for the remaining monomials
one takes the normalization that no product of powers of ωk’s appears in

Φ =
n∑

k=1

(ξkyk − ηkxk)

when expressed in (ξ, η) variables. One checks that this determines uniquely
v and thus the canonical transformation that transforms the hamiltonian into
its Birkhoff normal form. When H is real analytic, it is easy to check ([Si-Mo])
that the previous construction yields a real formal canonical transformation
and a real Birkhoff normal form. We summarize this discussion in the following
proposition.

Proposition 1.1. Given a hamiltonion flow

ẋk = Hyk

ẏk = −Hxk

with H(x, y) =
∑+∞

l=2 Hl(x, y) and with nonresonant quadratic part H2, there
exists a unique formal canonical transformation defined by a formal generating
series

v(x, η) =
+∞∑
l=2

vl(x, η)



BIRKHOFF NORMAL FORM 567

such that in the new variables (ξk, ηk) the differential system takes the form

ξ̇k = Kηk

η̇k = −Kξk

where the new hamiltonian K is a formal power series in the products ωk =
ξkηk, and the expression

Φ =
n∑

k=1

(ξkyk − ηkxk)

contains no product of the ωk in the (ξ, η) variables. Moreover, the coefficients
of the homogeneous part of K of degree l and of vl are polynomials of degree
l − 2 in the coefficients of H3, . . . , Hl.

b) First integrals. We review some classical facts about first integrals (see
[Si1]).

If the normalization is converging, then all expressions

ωk = ξkηk

are first integrals since

{ωk, K} = ηkKηk
− ηkKξk

= ξkηk(K ′ − K ′) = 0 .

Expressing ωk in terms of the initial variables (x, y) we get n formal first
integrals

Pk(x, y) = ξk(x, y)ηk(x, y) .

Observe that

ηk = yk −
+∞∑
l=3

vl,xk
(x, η) .

So if

ηk(x, y) = yk +
+∞∑
l=2

ηkl(x, y)

where ηkl is the l-homogeneous part of η, then by induction the coefficients of
ηkl are polynomial on the coefficients of H3, . . . , Hl+1 of degree l − 1.

We reach the same conclusion for ξk using the fact that

ξk(x, y) = vηk
(x, η) = xk +

+∞∑
l=3

vl,ηk
(x, η) .

Now, we have the following formal lemma ([Si1, Lemma 1]):

Lemma 1.2. Any formal integral P can be represented as a formal power
series in the n first integrals ω1, . . . , ωn.
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Thus we can identify the set of formal first integrals with the formal power
series in n variables.

Definition 1.3. A universal formal first integral P (H) = F (ω1, . . . , ωn)
where F is a formal power series in n variables.

Corollary 1.4. Any universal formal first integral P (H) has coeffi-
cients that are monomials of degree l depending polynomially on the coefficients
of H3, . . . , Hl+1 with degree ≤ l − 1.

2. Proof of the theorems

a) Potential and pluripotential theory. Since the present article presents
a possible interest to researchers working in hamiltonian dynamics who are
maybe less familiar with potential theory, following the suggestion of the referee
we give some background material.

We refer to [Ra] (or [Tsu] for a more encyclopedic exposition) for potential
theory in dimension 1. We refer to [Kli, Ch. 5] for proofs and supplementary
material on pluripotential theory.

We recall that a function u of one complex variable defined in an open
subset U ⊂ C is subharmonic if u is upper semi-continuous and satisfies the
local sub-mean inequality; i.e., given z ∈ U , there exists ρ > 0 such that for
any 0 ≤ r < ρ,

u(z) ≤ 1
2π

∫ 1

0
u(z + re2πit) dt .

A function u defined on an open subset of Cm is plurisubharmonic if the
restriction of u to any complex line is subharmonic.

Basic examples of subharmonic functions in C are log |f | where f is an
entire function or the potential of a finite Borel measure µ with compact sup-
port

pµ(z) =
∫

log |z − w| dµ(w) .

The energy of such a measure is defined as

I(µ) =
∫

pµ(z) dµ(z) =
∫ ∫

log |z − w| dµ(z) dµ(w) .

The logarithmic capacity (or capacity in short) of a subset E ∈ C is then
defined by

cap(E) = sup
µ

eI(µ)
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where the supremum is taken over Borel probability measures with compact
support in E. This supremum is attained for compact sets E (there exists an
equilibrium measure maximizing the supremum). Capacity is a useful notion
that enjoys good set function properties (see for example [Ra, Ch. 5]).

A polar set is a set with 0 capacity. It is easy to prove from the definition
that a countable union of polar sets is polar. Closed polar sets in C are the
locus where subharmonic functions are −∞ ([Ra, 3.5.4]). Polar sets in C have
area 0. The notion of thinness at a point ([Ra, 3.8]), or barriers, can be used as
a geometric characterisation of polarity. In particular they imply that closed
polar sets are totally disconnected.

In higher dimension different notions of capacity are possible (see [Ce]).
Pluripolarity is defined via plurisubharmonic functions generalizing a possible
definition in dimension 1.

A set E ⊂ Cm is locally pluripolar if for each z ∈ E there is a neighborhood
U of z and a plurisubharmonic function u defined on U such that

E ∩ U ⊂ u−1(−∞) .

A set E ⊂ Cm is pluripolar if it is locally pluripolar. There is a nontrivial
theorem (Josefson’s theorem, [Kli, Th. 4.7.4]) that in such a case there exists a
global plurisubharmonic function u such that E ⊂ u−1(−∞). Pluripolar sets
in Cm have 2m-dimensional Lebesgue measure 0. For m = 1 this is the usual
notion of polar set, that is the same as having zero logarithmic capacity.

We consider the set L of plurisubharmonic functions u defined in Cm and
of minimal growth, i.e. u(z)−log ||z|| is bounded above when ||z|| → ∞. Given
a subset E ⊂ Cm, we define

VE(z) = sup{u(z);u ∈ L, u/E ≤ 0} .

The upper semi-continuous regularization V ∗
E of VE is called the pluri-sub-

harmonic Green function of E. This function V ∗
E is either plurisubharmonic or

identically +∞. We are in the former case when E is not pluripolar, when V ∗
E

has logarithmic growth at ∞; that is, V ∗
E(z) − log ||z|| is bounded above when

z → ∞.

The Bernstein-Walsh lemma. The following is a classical lemma in poten-
tial theory and approximation theory (see [Ra, p. 156] for the one-dimensional
version and some applications). It plays a crucial role in the proof of Theorems
1 and 2.

Lemma (Bernstein-Walsh). If E ⊂ Cm is not pluripolar, and P is a
polynomial of degree d, then for z ∈ Cm,

|P (z)| ≤ ||P ||C0(E) edVE(z) .
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Proof. The plurisubharmonic function

u(z) =
1

degP
log

(
P (z)

||P ||C0(E)

)

has minimal growth and u ≤ 0 on E; thus u ≤ VE .

For later reference, we note that a countable union of pluripolar sets is
pluripolar.

b) Proof of Theorem 1. The result about the divergence of the normaliza-
tion mapping follows the same lines as the case of the Birkhoff normal form.
The convergence or divergence of the normalizing transformation is equivalent
to the convergence or divergence of the generating function. Then the proof
proceeds in the same way as below if we use the polynomial dependence of the
generating function on the coefficients of H (Prop. 1.1).

For the elementary construction of hamiltonians with divergent normal-
ization mentioned at the end of the introduction, we refer the reader to the
end of Section 30 of [Si-Mo], and to Siegel’s article [Si1].

We consider the problem of convergence or divergence of the Birkhoff nor-
mal form. The first assertion of the theorem follows from the second. Actually,
consider the set Fn ⊂ HQ of hamiltonians in HQ having a converging Birkhoff
normal form with radius of convergence ≥ 1/n, and bounded by 1 in the open
ball of center 0 and radius 1/n. We claim that this set Fn is closed. To prove
this, consider a sequence of hamiltonians (Hi) in Fn converging uniformly
on compacts sets to H ∈ HQ. Denote (KHi) the corresponding sequence of
Birkhoff normal forms. They are all bounded by 1 in the open ball of center
0 and radius 1/n; thus they form a normal family. Moreover, any limit point
of the sequence (KHi) must be KH because of the coefficient convergence (the
coefficients of the Hi converge to those of H, and so the ones of KHi converge
to those of KH). Thus KH has radius of convergence ≥ 1/n and is bounded
by 1 in the open ball of center 0 and radius 1/n. Now,

F =
⋃
n≥1

Fn

is the set of all hamiltonians in HQ having a convergent Birkhoff normal form
(so this set is an Fσ-set). Moreover, the open set HQ −Fn is dense. Otherwise
let H1 be a hamiltonian in the interior of Fn. Considering the complex (resp.
real) affine subspace V = {(1 − t)H0 + tH1; t ∈ C(resp.R)} ⊂ HQ we have,
according to the second assertion in Theorem 1, that the set of hamiltonians
with converging Birkhoff normal form must have capacity zero (resp. Lebesgue
measure 0). But on the other hand it contains a neighborhood of 1. Contra-
diction. Note that for this argument we only needed to use the second part of
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the theorem for a one-dimensional subspace V (thus the reader only interested
in this first part, only needs classical potential theory and not pluripotential
theory in higher dimension).

The real analytic result follows from the C-analytic one by the observation
that the intersection of a pluripolar set in Cn with Rn ⊂ Cn has Lebesgue
measure 0 (see [Ro, Lemma 2.2.7, p. 90]).

We consider a complex finite-dimensional affine subspace V of H, V ≈ Cm.
We can parametrize linearly the coefficients of hamiltonians H ∈ V with a
complex parameter t ∈ Cm, and we denote Ht the corresponding hamiltonian
in V . Note that the coefficients of Ht are linear functions of t.

We assume that the Birkhoff normal form of hamiltonians Ht correspond-
ing to a set of values t ∈ F ⊂ Cm, with F not pluripolar, are converging. We
want to prove that all the other hamiltonians in V have converging Birkhoff
normal form.

Now
F =

⋃
n≥1

Fn

where Fn is the set of parameters t ∈ Cm such that the hamiltonian Ht has
a Birkhoff normal form Kt with radius of convergence larger or equal to 1/n

where Kt is bounded by 1 in this polydisk of radius 1/n. Now, if F is not
pluripolar, we have for some n ≥ 1 that Fn is not pluripolar (and this set is
also closed). If we denote

Kt(ξ, η) =
∑

i

Ki(t)(ξ, η)i ,

then, according to Proposition 1.1, the coefficients Ki(t) depend polynomially
on t with degree ≤ |i|−2 (for |i| ≥ 3). Now, by Cauchy inequality, there exists
ρ0 > 0 such that for all t ∈ Fn,

ϕ(t) = sup
i

|Ki(t)|ρ−|i|
0 < +∞ .

The function ϕ is lower semicontinuous, and

Fn =
⋃
m

Lm

where Lm = {z ∈ Fn;ϕ(t) ≤ m} is closed 2. For some m, Lm has positive
capacity. Finally we found a compact set C ⊂ Lm of positive capacity such
that there exists ρ1 > 0 such that for any t ∈ C and and all i,

|Ki(t)| ≤ ρ
|i|
1 .

2The closedness is not really necessary but we prefer to work with closed sets.
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Using the Bernstein-Walsh lemma and Proposition 1.1 we get that for any
compact set C0 ⊂ Cm, for |i| ≥ 3,

||Ki||C0(C0) ≤ e(|i|−2) maxt∈C0
VC(t)ρ

|i|
1 ≤ ρ|i|−2ρ

|i|
1 ,

for some constant ρ depending only on C0. Thus Kt is converging for any
t ∈ Cm.

Remark. Note that in the case of convergence, the proof gives an explicit
lower bound for the radius of convergence for all t ∈ Cm. More precisely, using
the sub-exponential growth at ∞ of VC we get that there exists a constant
C1 > 0 such that

R(Kt) ≥
C1

1 + ||t|| .

c) Proof of Theorem 2. The proof of Theorem 2 follows exactly the same
lines as the proof of Theorem 1 once the polynomial dependence of universal
formal first integrals has been proved (Corollary 1.4).
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