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Classification of simple C*-algebras and
higher dimensional noncommutative tori

By Huaxin Lin*

Abstract

We show that unital simple C∗-algebras with tracial topological rank zero
which are locally approximated by subhomogeneous C∗-algebras can be classi-
fied by their ordered K-theory. We apply this classification result to show that
certain simple crossed products are isomorphic if they have the same ordered
K-theory. In particular, irrational higher dimensional noncommutative tori of
the form C(Tk) ×θ Z are in fact inductive limits of circle algebras.

Introduction

In recent years there has been rapid progress in classification of nuclear
simple C∗-algebras. In the case that C∗-algebras are of real rank zero and fi-
nite, Elliott and Gong ([EG]) have proved that simple inductive limits of finite
direct sums of homogeneous C∗-algebras (AH for brevity) of slow dimension
growth with real rank zero can be completely classified up to isomorphism by
their scaled ordered K-theory (with the reduction of dimension growth proved
by [G2] and [D]). In their remarkable paper ([EG]), they also showed that
the class of AH-algebras that they classified exhausts all possible invariants.
So any general classification theorem for simple C∗-algebras of real rank zero
and stable rank one with weakly unperforated K0 will not expand their class.
However, many interesting simple C∗-algebras, which are important in applica-
tions, do not arise as inductive limits of finite direct sums of homogeneous C∗-
algebras. Therefore, it is extremely important to have a classification theorem
which covers C∗-algebras that are not assumed to be AH-algebras. The main
purpose of this paper is to establish such a theorem. Our general classification
result covers at least some of the well-known interesting simple C∗-algebras
that are not known to be AH-algebras.
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For example, certain simple C∗-algebras arising as dynamical systems with
minimal diffeomorphisms can be classified by their ordered K-theory. More
specifically, let Xi (i = 1, 2) be a smooth manifold (X1 and X2 may be the
same) and σi : Xi → Xi be a minimal diffeomorphism. Suppose that (Xi, σi)
(i = 1, 2) is uniquely ergodic. Then the resulting crossed products C(Xi)×σi Z

are simple C∗-algebras with unique traces and are isomorphic if they have the
same scaled ordered K-theory (which is determined by σi only). A consequence
of this is that the noncommutative tori of the form C(Tk)×θ Z, where θ is an
irrational rotation, are isomorphic to unital simple inductive limits of circle
algebras. This also generalizes an important result of Elliott and Evans that
every irrational rotation algebra is an inductive limit of circle algebras ([EE]).

To classify a class of C∗-algebras, one often needs to establish a so-called
uniqueness theorem and an existence theorem. Uniqueness is used to describe
two maps from one C∗-algebra to another as approximately equivalent in an
appropriate sense if they carry the same K-theory (or KK-theory) data. Ex-
istence is often involved in showing that given K-theory data (or KK-data)
α, there is a map φ from one C∗-algebra to another which carries α.

In [Ln2], [Ln3] and [Ln4], we show that a uniqueness theorem holds for
all nuclear C∗-algebras with a reasonable and mild restriction which, together
with a “half” existence theorem (see also [DE]), gives a number of classification
results which do not require that C∗-algebras considered to be AH-algebras.
The “ half” existence theorem we mentioned above does give us a map which
carries most of the required KK-data but not all. The missing part is the
order information from the required KK-data.

Suppose that A is a unital simple C∗-algebra with TR(A) = 0 (see 3.5).
Then, in [Ln3], we show that A is always an inductive limit of An, where
each An is a residually finite-dimensional C∗-algebra. If ρAn : K0(An) →
Aff(T (An)) is the homomorphism given by the traces of An, and every finitely
generated subgroup of ρAn can be order-embedded into Zk for some integer
k, then the needed existence theorem holds. This certainly appears to be a
very technical condition. However every AH-algebra obviously satisfies this
condition. We show that if A is an inductive limit of subhomogeneous C∗-
algebras, then this condition is also satisfied. In fact, a much broader class
of C∗-algebras satisfies this condition. Combining this with our other recent
results, we are able to prove that simple C∗-algebras with TR(A) = 0 can be
classified up to isomorphism by their scaled ordered K-theory provided that
they are locally approximated by subhomogeneous C∗-subalgebras. The recent
results of Q. Lin and N. C. Phillips show that every simple C∗-algebra arising
from a dynamical system of minimal diffeomorphisms is in fact an inductive
limit of subhomogeneous C∗-algebras. Therefore, the general classification
result mentioned above can be applied to those simple C∗-algebras when they
have real rank zero.
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The paper is organized as follows. In Section 1, we revisit AH-algebras.
A few refinements of known results will be presented. These refinements are
needed for construction of some maps that possess certain required KK-data.
In Section 2, we present results which enable us to extend some positive homo-
morphisms from ordered subgroups of Zk to some other ordered groups which
are not assumed to be divisible. In Section 3, we use results from Sections 1
and 2 together with the “half” existence theorem in [Ln4] (see also [DE]) to
prove a full existence theorem. We then combine our recent results to estab-
lish the main classification theorem (3.9). A few examples of applications are
presented at the end of the paper.

Acknowledgements. We would like to acknowledge that we have benefited
from conversations with N. C. Phillips and Guihua Gong.

1. AH-algebras revisited

The main purpose of this section is to prove Lemma 1.8.

Lemma 1.1. Let G = limn→∞(Gn, αn) be a countable unperforated simple
ordered group with the Riesz interpolation property, where Gn = ⊕l(n)

i=1D
(n)
i ,

D
(n)
i = Z and αn is an order homomorphism. Suppose that αm,∞(D(m)

i ) �= {0}
for every i and m.

Then for any 0 < m1 < m2, there is an integer N = N(m1, m2) > m2

satisfying the following : if πk◦αm2,N (Gm2) �= {0}, then πk◦αm1,N (Dm1
j ) �= {0}

for 1 ≤ j ≤ l(m1) and for all k ≤ l(N), where πk : GN → DN
k is the standard

projection.

Proof. Let gi ∈ D
(m2)
i be the positive generator of D

(m2)
i (∼= Z), i =

1, 2, . . . , l(m2). Let xi = αm2,∞(gi). Let sj be the positive generators for D
(m1)
j

and let fj = αm1,∞(sj), j = 1, 2, . . . , l(m1). From the assumption, fj �= 0.

Since G is simple, there are positive integers kij such that kijfj ≥ xi for
i = 1, 2, . . . , l(m2). Therefore, there is N = N(m1, m2) such that

kijαm1,N (sj) ≥ αm2,N (gi),

i = 1, 2, . . . , l(m2). Fix k ≤ l(N), define πk : GN → D
(N)
k to be the standard

projection. If for some k, πk ◦αm2,N (gi) > 0, then kijπk ◦αm1,N (si) > 0. Since
{g1, g2, . . . , gl(m2)} is a set of generators, we see that the conclusion holds.

Let G be a countable unperforated simple ordered group and T be the
state space of G. Let ρG : G → AffT be the map defined by evaluation, i.e.,
ρG(g)(t) = t(g) (g ∈ G and t ∈ T ). It is known that

G+ = {g : ρ(g)(t) > 0 for all t ∈ T} ∪ {0}.
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In the following lemma, it is known that one can require that αi,j
n have

multiplicity at least 2 or αi,j
n = 0 ([Ell2]). So the only thing new is that we can

always assume for every j, αi,j
n has multiplicity at least 2 (not zero) for some i.

Lemma 1.2. Let G be a countable unperforated simple ordered group with
the Riesz interpolation property. Suppose that kerρ = 0. Then there are {Gn},
where Gn is a finite sum of Z with the usual order, and positive homomorphisms
αn : Gn → Gn+1 such that G = limn→∞(Gn, αn). Furthermore, nonzero αi,j

n

has multiplicity at least 2, and for each j, there is at least one αi,j
n �= 0, and for

each i, there is at least one αi,j
n �= 0, where αi,j

n : D
(n)
i → D

(n+1)
j is the partial

map of α and D
(m)
i is the ith summand of Gm (D(m)

i
∼= Z).

Proof. The first part of the lemma follows from [EHS]. It is the last part
which needs a proof. We write Gn = ⊕m(n)

i=1 D
(n)
i , where D

(n)
i

∼= Z. Without
loss of generality, we may assume that

αm,∞(D(m)
i ) �= {0}

for all i and m. By [Ell2], we may also assume that αi,j
n is either zero or has

multiplicity at least 2.
Let G′

1 = G1 and let G′
2 = ⊕{D(2)

j : αi,j
1 �= 0 for some i}. If G′

n is defined,
define

G′
n+1 = ⊕{D(n+1)

j : αi,j
n �= 0 for some i such that D

(n)
i ∈ G′

n}.

Set βn = (αn)|G′
n
. It is important to note that each nonzero partial map (αj,i

n )
of βn has multiplicity at least 2 and for each j, at least one αi,j

n �= 0.

Let G′ = limn→∞(G′
n, βn). It suffices to show that G′ is order isomor-

phic to G. We will use αn,m (m > n) for αm ◦ αm−1 ◦ · · · ◦ αn and βn,m for
βm ◦ βm−1 ◦ · · · ◦ βn. Clearly βn,m = (αn,m)|G′

n
.

Define φ1 = β1 : G′
1 → G2. By Lemma 1.1, there exists an integer

N(1, 2) > 0 such that the conclusion of 1.1 holds for m1 = 1 and m2 = 2.

Let k(2) = N(1, 2). Define ψ2 = α2,k(2). The conclusion of 1.1 shows that ψ2

maps G2 to G′
k(2) and ψ2 ◦ φ1 = β1,k(2).

Define φ2 = βk(2) : G′
k(2) → Gk(2). By definition of ψ2, α2,k(2) = φ2 ◦ ψ2.

By applying 1.1 again, we obtain an integer k(3) = N(1, k(2)) such that the
conclusion of 1.1 holds for 1 and k(2). Define ψ3 = αk(2),k(3). The conclusion
of 1.1 shows that ψ3 maps Gk(2) to G′

k(3). Also, βk(2),k(3) = ψ3 ◦ φ2. Thus we
obtain the following commutative diagram:

G′
1

β1,k(1)−→ G′
k(2)

βk(2),k(3)−→ G′
k(3)

↓φ1 ↗ψ2 ↓φ2 ↗ψ3

G2

α2,k(2)−→ Gk(2)

αk(2),k(3)−→ Gk(3).
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Continuing this construction, we obtain the next commutative diagram:

G′
1

β1,k(1)−→ G′
k(2)

βk(2),k(3)−→ G′
k(3)

βk(3),k(4)−→ · · ·−→ G′

↓φ1 ↗ψ2 ↓φ2 ↗ψ3 ↓φ3 ↗ψ4

G2

α2,k(2)−→ Gk(2)

αk(2),k(3)−→ Gk(3)

αk(3),k(4)−→ · · ·−→ G.

Therefore G ∼= G′. Since each φn and ψn is positive, this isomorphism is
in fact an order isomorphism.

Definition 1.3. Let f : S1 → S1 be a degree k map (k > 1), i.e., a
continuous map with winding number k. We let (following 4.2 in [EG]) TII,k =
D2∪fS1, the finite connected CW complex obtained by attaching a 2-cell D2 to
S1 via the map f. Note that K0(C(TII,k)) = Z⊕Z/kZ and K1(C(TII,k)) = {0}.
Let g : S2 → S2 be a degree k map (k > 1). Let TIII,k = D3∪gS

2 be the
connected finite CW complex obtained by attaching a 3-cell D3 to S2 via the
map g. Note that K0(C(TIII,k)) = Z and K1(C(TIII,k)) = Z/kZ (see 4.2 in
[EG]).

Definition 1.4. Let C = PMn(C(X))P, where P ⊂ Mn(C(X)) is a pro-
jection with rank r(x) at point x. Note that if X is connected, r(x) is a con-
stant. Let B be another C∗-algebra. A map ω : C → B is said to be a
point-evaluation, if ω = h ◦ πx, where x ∈ X is a point, πx(f) = f(x) maps
C to Mr(x) and h : Mr(x) → B is a homomorphism. Suppose that e ∈ Mr(x)

is a minimal projection. We say that ω is a point-evaluation with a minimal
projection h(e).

The following is a refinement of a result in [EG]. Only part (3) is new.

Theorem 1.5. For any countable simple weakly unperforated scaled or-
dered group (G, G+, [u]) with the Riesz interpolation property and any countable
abelian group F, there exists a unital simple C∗-algebra A of real rank zero with
the following properties:

(1) A = limn→∞(An, hn), where each An is a finite direct sum of
PiMm(i)(C(Xi))Pi, where Xi = Y1∨Y2∨· · ·Ym and each Yi = S1, S2, TII,k,

TIII,l, or a point ;

(2) (K0(A), K0(A)+, [1A]) = (G, G+, u) and K1(A) = F and

(3) kerρK0(A) = limn→∞(kerρK0(An), (hn)∗).

Proof. Let G0 = ρG(G). Then G0 is an unperforated ordered group. By
Lemma 1.2, we may write G0 = limn→∞(Gn, αn), where Dm = ⊕l(m)

i=1 Z with
the usual order and α

(i,j)
n : D

(n)
i → D

(n+1)
j has order at least 2 and satisfies
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the rest of the requirements of 1.2. Let kerρG = limn→∞(Hn, βn) and let
F = limn→∞(Fn, γn), where Hn and Fn are finitely generated abelian groups.
Let G̃n = αn,∞(Gn). We may write G̃n ⊂ G̃n+1, n = 1, 2, . . . .

Let S̃n be the subgroup of G generated by kerρG and G′
n such that

ρG(G′
n) = G̃n. Since G̃n is free, we may write S̃n = G̃n ⊕ kerρG. Let ın :

S̃n → S̃n+1 be the embedding. Then ın(g ⊕ h) = g ⊕ (ı(0)n (g) + h), where
ı
(0)
n : G̃n → kerρ is a homomorphism (note that if G = G0 ⊕ kerρ, then one
may choose ı

(0)
n = 0). Set Sn = Gn ⊕ kerρG. Define jn : Sn → Sn+1 by

jn(g ⊕ h) = αn(g)⊕ (α(0)
n (g) + h), where α

(0)
n = ı

(0)
n ◦αn,∞. Then the following

is commutative:
S̃n

ın→ S̃n+1

↑αn,∞ ↑αn+1,∞

Sn
jn→ Sn+1.

Set ηn = (jn)|Gn and δn = ηn ⊕ βn. Set

(Gn ⊕ Hn)+ = {(g, x) : g > 0, x ∈ Hn} ∪ {0}.
Note that (G, G+) = limn→∞(Gn ⊕ Hn, (Gn ⊕ Hn)+, δn).

Let Xn = Y1 ∨ Y2 ∨ · · · ∨ Yt(n), where Yi = S1, S2, TII,k or TIII,l, such that
K0(C(Xn)) = Z⊕ Hn with

kerρC(Xn) = Hn,

K0(C(Xn))+ ⊂ {(z, x) : z > 0, x ∈ Hn} ∪ {0},
{(y, x) : y ≥ 3, x ∈ Hn} ⊂ K0(C(Xn))+

(see 4.17 in [EG]) and K1(C(Xn)) = Fn. Suppose that u = δn(un) and that
πj(un) ≥ 4, where πj : Gn → Z is the projection to the jth coordinate.

Let A1 = P1Ms(1)(C(X1))P1 ⊕ B1, where B1 = ⊕l(1)−1M2, P1 ∈
Mr(1)(C(X1,1)) is a projection so that [P1] = π1(u1) (s(1) > π1(u1)). We
have

K0(A1) = G1 ⊕ H1,

kerρA1 = H1,

K0(A1)+ ⊂ {(g, x) : g ∈ (G1)+} ⊕ {0},
{(g, x) : g ∈ 3(D(1)

1 )+} ⊂ K0(A1)+,

and
K1(A1) = Fn.

Set C1 = P1Mr(1)(C(X1))P1. Denote by r(1, 1) the rank of P1 (r(1, 1) ≤ r(1)),
and let r(1, i) = 2 for 2 ≤ i ≤ l(1).

Let N be the required integer in Lemma 3.27 in [EG] corresponding to the
space X1 and ε < 1/4. Using 1.2, choose k2 such that each nonzero partial map
αi,j

1,k2
has multiplicity N + 3. Since, for each j, αi,j

1,k2
�= 0 for some i, πj(uk2) ≥
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N + 3 for all j. Let P2 be a projection in Mr(2)(C(Xk2)) for some integer
r(2) so that [P2] = π1(uk(2)) and Q2 ≤ P2 be a projection with rank = the
multiplicity of α1,1

1,k2
times r(1, 1). Since the rank of Q2 is at least (N +3)r(1, 1),

we may assume that P2 − Q2 is a trivial projection. Set B2 = ⊕l(k2)−1
i=1 Mr(2,i),

where r(2, i) =
∑l(1)

j=1 m1,j,ir(1, i) and m1,j,i is the multiplicity of αj,i
1,k2

. Set
C2 = P2Mr(2)(C(Xk2))P2.

Define h1,2 : C1 → B2 by

h1,2(f) =
l(k2)−1∑

j=1

ω1,j(f),

where ω1,j : C1 → Mr(2,j) is the point evaluation at a point x1 ∈ X1 with
minimal projection having rank m1,j,i (see 1.4). Define h1,1 : B1 → B2 ac-
cording to the multiplicity ((l(1)− 1)× (l(k2)− 1)) matrix (αi,j

1,k2
)l(1)−1,l(k2)−1
i=2,j=1 .

Define h2,1 : B1 → C2 according to the multiplicity of αi,1
1,k2

so that the minimal
projections are trivial.

We define h2,2 : C1 → C2 by applying 3.27 in [EG]. Write Q2 = Q2,0⊕Q2,1

with Q2,1 having rank 12 × r(1, 1) and Q2,0 a trivial projection. Define h2,2 :
C1 → C2 by h2,2 = φ1,2 ⊕ φ0,2, where

φ0,2(f) =




ωx1(f)
ωx2(f)

. . .
ωxK1

(f)
ω′

x1
(f)




,

where {x1, . . . , xK1} is 1/4-dense in X1, ωxi is the point-evaluation at xi

such that the minimal projection is a trivial projection in C2 of rank 12,
i = 1, 2, . . . , K1, and ω′

x1
is the point-evaluation at xi such that the mini-

mal projection is a trivial projection and ωx1(1C1) = Q2,0 − ∑K1
i=1 ωxi(1C1).

Furthermore, φ1,2 : C1 → Q2,1C2Q2,1 is given by the map φ1 as described
in the proof of 3.27 in [EG] so that φ1,2(1C1) = Q2,1, [φ1,2]|H1 = β1,k2 and
[φ1,2]K1(C1) = γ1,k2 (K1(C1) = F1).

Define Φ1,2 : A1 → A2 by

Φ1,2 =

(
h1,1 h1,2

h2,1 h2,2

)

according to the decomposition A1 = B1 ⊕ C1 and A2 = B2 ⊕ C2. From the
above construction, we verify that

[Φ1,2]|K0(A1) = δ1,k2 and [Φ1,2]|K1(A1) = γ1,k2 .

By continuing this construction, we obtain {An} and Φn,n+1. Then A =
limn→∞(An,Φn,n+1) has real rank zero and (K0(A), K0(A)+, [1A]) = (G, G+, u)
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(see the proof of 4.18 in [EG] for example) and K1(A) = F. The simplicity of G

also implies that A is simple. This also follows the fact that the multiplicity
of each α

(i,j)
n is at least 4. So (1) and (2) follow. Part (3) also follows from the

fact that [Φ1,2]|K0(A1) = δ1,k2 .

Definition 1.6. Let Cn be a commutative C∗-algebra with K0(Cn) =
Z/nZ and K1(Cn) = 0. Suppose that A is a C∗-algebra. Then Ki(A,Z/kZ) =
Ki(A⊗Ck). Let P(A) be the set of all projections in M∞(A), M∞(C(S1)⊗A),
M∞((A⊗Cm)̃) and M∞((C(S1)⊗A⊗Cm)̃). We have the following commutative
diagram ([Sc]):

K0(A) → K0(A,Z/kZ) → K1(A)
↑k ↓k

K0(A) ← K1(A,Z/kZ) ← K1(A).

As in [DL], we use the notation

K(A) =
⊕

i=0,1,n∈Z+

Ki(A;Z/nZ).

By HomΛ(K(A), K(B)) we mean all homomorphisms from K(A) to K(B)
which respect the direct sum decomposition and the so-called Bockstein opera-
tions (see [DL]). It follows from [DL] that if A satisfies the Universal Coefficient
Theorem, then HomΛ(K(A), K(B)) = KL(A, B).

Let A and B be two C∗-algebras and L : A → B a completely positive
linear map. Then L induces maps from A⊗Cm to B⊗Cm, from C(S1)⊗A⊗Cm

to C(S1) ⊗ B ⊗ Cm, namely, L ⊗ id. For convenience, we will also denote the
induced map by L. Let A and B be C∗-algebras, let L : A → B be a contractive
completely positive linear map, let ε > 0 and let F ⊂ A be a subset. Now, L

is said to be F-ε-multiplicative, if

‖L(xy) − L(x)L(y)‖ < ε

for all x, y ∈ F . Given a projection p ∈ P(A), if L is G-ε-multiplicative with
sufficiently large G and sufficiently small ε, L(p) is close to a projection. Let
L(p)′ be that projection. Fix a finite subset P1 ⊂ P(A). It is easy to see that
L(p)′ and L(q)′ are in the same equivalence class of projections of P(A), if p

and q are in P1 and are in the same equivalence class of projections of P(A),
provided that F is sufficiently large and ε is sufficiently small. We use [L](p)
for the class of projections containing [L](p)′. In what follows, whenever we
write [L](p), we assume that F is sufficiently large and ε is sufficiently small so
that [L](p) is well-defined on P1. Furthermore, abusing the language, we write
[L]([p]) as well as [L](p), where [p] is the equivalence class containing p.

Suppose that q is in P(A) with [q] = k[p] for some integer k; by adding suf-
ficiently many elements (partial isometries) in F , we can assume that [L](q) =
k[L](p). Suppose that G is a finitely generated group generated by P and
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G = Zn ⊕ Z/k1Z ⊕ · · ·Z/kmZ. Let g1, g2, . . . , gn be free generators of Zn and
ti ∈ Z/kiZ be the generator with order ki, i = 1, 2, . . . , m. Since every element
in K0(C) (for any unital C∗-algebra C) may be written as [p1]− [p2] for projec-
tions p1, p2 ∈ A⊗Ml, for some l > 0, with sufficiently large F and sufficiently
small ε, one can define [L](gj) and [L](ti). Moreover (with sufficiently large F
and sufficiently small ε), the order of [L](ti) divides ki. Then we can define a
map [L]|G by defining [L](

∑n
i nigi +

∑m
j mjtj) =

∑k
i ni[L](gi)+

∑m
j mj [L](tj).

Thus [L] is a group homomorphism on G. Note, in general, that [L]|P may not
coincide with [L]|G on P. However, if F is large enough and ε is small enough,
they coincide. In what follows, if P is given, we say [L]|G is well-defined and
write [L]|G if [L]|P is well-defined, [L]|G is well-defined and is a homomorphism
and [L]|P = [L]|G on P.

Definition 1.7. We denote by C the family of all unital simple C∗-algebras
of real rank zero which are direct limits of finite direct sums of unital hereditary
C∗-subalgebras of Mn(C(X)) (for various n), where X is a connected finite CW
complex of dimension no more than 3 (and X may be different in the sums).
This is precisely the class of simple C∗-algebras classified in [EG].

Lemma 1.8. Let A be a unital simple C∗-algebra in C. Let G0 be a
finitely generated subgroup of K0(A) with decomposition G0 = G00⊕G01, where
G00 ⊂ kerρA and G01 is a finitely generated free group such that (ρA)|G01 is
injective. Suppose that P ⊂ K(A) is a finite subset which generates a subgroup
G such that G ∩ K0(A) = G0.

Then, for any ε > 0, any finite subset F ⊂ A, any 1 > r > 0, and
any integer K, there is an F-ε-multiplicative map L : A → A satisfying the
following :

(1) [L]|P and [L]|G are well -defined and [L]|G is positive on G,

(2) [L]|G∩kerρA
= id|G∩kerρA

, [L]|G∩K0(A,Z/kZ) = id|G∩K0(A,Z/kZ), [L]|G∩K1(A)

= id|G∩K1(A) and [L]|G∩K1(A,Z/kZ) = id|G∩K1(A,Z/kZ) for those k with
G ∩ Ki(A,Z/kZ) �= ∅ (i = 0, 1),

(3) |ρA ◦ [L](g)| ≤ r|ρA(g)| for all g ∈ G ∩ K0(A).

(4) Let g1, g2, .., gl be positive generators of G01. Then, there are f1, . . . , fl ∈
K0(A)+ such that

gi − [L](gi) = Kfi, i = 1, 2, . . . , l.

Proof. We may write A = limn→∞(An, φn,n+1), where An = ⊕m(n)
i=1 Bn,i,

each
Bn,i = Pn,iMJ(n,i)(C(Xn,i))Pn,i
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for some connected finite CW complex Xn,i with dimXn,i ≤ 3 and Pn,i ∈
MJ(n,i)(C(Xn,i)) is a projection, and φn,n+1 : An → An+1 is a homomorphism,
as constructed in 1.5. In particular, (3) in 1.5 holds.

Let φn,i,j : Bn,i → Bn+1,j be the partial map determined by φn,n+1. Fix
0 < r < 1. By the proof of 1.5, we may assume that

φn,i,j(f) = diag(φ̃n,i,j(f), ψn,i,j(f)),

where φ̃n,i,j(1Bn,i) has rank no more than 12 × rank(1Bn,i) and

ψn,i,j(f) =
l(n,i,j)∑

s=1

ωn,i,j,s(f),

where ωn,i,j,s is a point-evaluation (see 1.4) such that ωn,i,j,s(1Bn,i) = qn,i,j,s,
{qn,i,j,s} is a set of mutually orthogonal projections in Bn+1,j and {qn,i,j,s} are
equivalent (trivial) projections in Bn+1,j with rank at least 12× rank(1Bn,i) for
s = 2, . . . , l(n, i, j), and qn,i,j,1 has rank rank1Bn+1,j − 12 × l(n, i, j)1Bn,i .

By choosing larger n, we may assume that F ⊂ φn,∞(An). Furthermore,
we may also assume that

G ⊂ [φn,∞](K(An)).

Let G′ be a finitely generated subgroup of K(An) such that [φn,∞](G′)
= G. To save notation without loss of generality, we may assume that G0 =
[φn,∞](K0(An)). Write K0(An) = F0 ⊕ F1, where F0 = kerρAn . By (3) of 1.5,
we may assume, without loss of generality, that [φn,∞](F0) = G00. Let K0 be
the integer such that

G′ ∪ Ki(A,Z/kZ) = {0}

whenever k ≥ K0 and i = 0, 1. Put K1 = K(K0)!. By replacing n + 1 by a
larger integer, if necessary, we may assume that

l(n, i, j) > (K1 + 1)K1(1/r) for all n, i, j.

Let
l(n, i, j) − 1 = K1v(n, i, j)′ + r(n, i, j),

where v(n, i, j) and r(n, i, j) are nonnegative integers with r(n, i, j) < K1.

Define

Φn,i,j(f) = diag(φ̃n,i,j(f), ψ′
n,i,j(f)), where ψ′

n,i,j(f) =
1+r(n,i,j)∑

s=1

ωn,i,j,s(f)

and define

Φ′
n,i,j(f) =

l(n,i,j)∑
s=2+r(n,i,j)

ωn,i,j,s(f) for all f ∈ Bn,i.
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Define Φ(f) = ⊕i,jΦn,i,j(f) and Φ′(f) = ⊕i,jΦ′
n,i,j(f) for f ∈ An. Since Φ′ has

finite-dimensional range, we know that

[Φ′]|K0(An)∩kerρAn
= 0 and [Φ′]|K1(An) = 0.

For each i and j, Φ′
n,i,j(f) is a direct sum of K1v(n, i, j) many point-evaluations.

Since Xn,i is connected and (K0)!|K1, by considering each [Φ′
n,i,j ], we conclude

that (for k = 2, . . . , K0)

[Φ′]|K0(An,Z/kZ) = 0 and [Φ′]|K1(An,Z/kZ) = 0.

Therefore

[Φ]|F0 = [φn,n+1]|F0 , [Φ]|K0(An,Z/kZ) = [φn,n+1]|K0(An,Z/kZ),

[Φ] |K1(An) = [φn,n+1]|K1(An) and [Φ] |K1(An,Z/kZ) = [φn,n+1] |K1(An,Z/kZ)

for every k = 1, 2, . . . , K0. Thus

[φn+1,∞ ◦ Φ]|F0 = [φn,∞]|F0 ,

[φn+1,∞ ◦ Φ]|K0(An,Z/kZ) = [φn,∞]|K0(An,Z/kZ),

[φn+1,∞ ◦ Φ] |K1(An) = [φn,∞]|K1(An)

and
[φn+1,∞ ◦ Φ]|K1(An,Z/kZ) = [φn,∞]|K1(An,Z/kZ)

for every k = 1, 2, . . . , K0. It is clear that

kerφn+1,∞ ◦ Φ = kerφn,n+1.

(In fact, we could assume that kerφn+1,∞ ◦ Φ = kerφn,n+1 = {0}.) Thus,
φn+1,∞ ◦ Φ induces a map Ψ : φn,∞(An) → A. Set A′

n = φn,∞(An). Denote by
ı : A′

n → A the embedding. From above, we have

[Ψ]|kerρA′
n

= [ı]kerρA′
n
, [Ψ]|K1(A′

n) = [ı]K1(A′
n),

[Ψ]|K0(A′
n,Z/kZ) = [ı]K0(A′

n,Z/kZ), and [Ψ]|K1(A′
n,Z/kZ) = [ı]K1(A′

n,Z/kZ)

for k = 1, 2, . . . .

Since A is unclear, for any finite subset F1 ⊂ A and δ > 0, there exists
(see 4.1 in [Ln4]) a completely positive linear map L : A → A such that

‖L(a) − Ψ(a)‖ < δ

for all a ∈ F1. We may assume that F ⊂ F1 and δ < ε. Furthermore, by
choosing even larger F1 and small δ, we may assume that

[L]|G00 = id|G00 , [L]|G∩K1(A) = id|G∩K1(A)

[L]|G∩K0(A,Z/kZ) = id|G∩K0(A,Z/kZ) and [L]|G∩K1(A,Z/kZ) = id|G∩K1(A,Z/kZ)
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for all k so that G ∩ Ki(A,Z/kZ) �= ∅ (i = 0, 1). From l(n, i, j) ≥
(K1 + 1)K1(1/r) we conclude that

τ(L(a))) < rτ(a)

for all a ∈ A and τ ∈ T (A). This implies that L satisfies (1), (2) and (3). For
s ≥ 2, [ωn,i,j,s] = [ωn,i,j,2]. Since, for any z ∈ K0(Bn,i),

[φn,i,j ](z) − [Φn,i,j ](z) = K(K0)!v(n, i, j)[ωn,i,j,2](z),

(4) also follows.

2. Extensions of positive homomorphisms on ordered groups

Let G be a group, G0 be a subgroup of G and F be another group.
In general, to extend a homomorphism φ : G0 → F to a homomorphism
φ̃ : G → F requires F to be divisible. If G is an ordered group and φ is
positive, much more is required of F to obtain a positive extension. In this
section, we will present a positive extension theorem which neither requires
divisibility nor completeness of F. This result is rather special but is essential
for us to construct maps in 3.4.

Lemma 2.1. Let G ⊂ Zk be an ordered subgroup and let

e1 = (1, 0, . . . , 0), . . . , ek = (0, . . . , 0, 1) ∈ Zk.

Suppose that S ⊂ {1, 2, . . . , k} such that if i ∈ S, then there exists a positive
integer mi such that miei ∈ G and if i �∈ S, then mei �∈ G for any m ∈ Z \ {0}.
Then for any positive homomorphism φ : G → R with φ(G+ \{0}) ⊂ R+ \{0},

inf{φ(g)/n : g ∈ G, g ≥ nei} > sup{φ(g)/m : g ∈ G, g ≤ mei} > 0

for all i �∈ S.

Proof. This follows from Lemma 2.10 in [Ln6].

Lemma 2.2. Let G ⊂ Zk, let

e1 = (1, 0, . . . , 0), . . . , ek = (0, . . . , 0, 1) ∈ Zk,

and S ⊂ {1, 2, . . . , k} be as in Lemma 2.1. Let T be a Choquet simplex and
F ⊂ Aff(T ) be a dense subgroup such that f ∈ F+ \ {0}, f(t) > 0 for all t ∈ T.

Suppose that φ : G → F is a positive homomorphism. Let

Uj(t) = inf{φ(g)(t)/n : n ∈ N, g ∈ G, nej ≤ g},

Lj(t) = sup{φ(g)(t)/n : n ∈ N, g ∈ G, g ≤ nej}
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and Hj(t) = Uj(t) − Lj(t). Then

lim inf
t→t0

Hj(t) > 0

for every t0 ∈ T, if j �∈ S.

Proof. Clearly Hj(t) ≥ 0 for all t ∈ T. Suppose that j �∈ S. By Lemma 2.1,
if Hj(t) = 0 for some t ∈ T, then j ∈ S. Therefore Hj(t) > 0 for every t ∈ T.

We extend φ on QG by defining φ(rg) = rφ(g) for all r ∈ Q and g ∈ G.

Note that, since QG is finite-dimensional, if {xn} ⊂ QG is a bounded
sequence, so is {φ(xn)}. Note also that Hj(t) > 0 for all t ∈ T. Without loss of
generality, to simply notation, we may assume that j = 1. There are gn ∈ QG

with gn ≥ e1, gn = (1, r
(n)
1 , r

(n)
2 , . . . , r

(n)
k ), where r

(n)
i ∈ Q+ for i = 2, 3, . . . , k

and tn ∈ T such that tn → t0 and φn(gn)(tn)(t) → lim inft→t0 Uj(t); and,
there are yn ∈ QG with yn ≤ e1, yn = (1, q

(n)
1 , . . . , q

(n)
k ), where −q

(n)
i ∈ Q+ for

i = 2, 3, . . . , k and sn ∈ T such that sn → t0 and φ(yn)(sn) → lim supt→t0 Lj(t).
By 2.9 in [Ln6], for each t ∈ T, there exist αi > 0, i = 1, 2, . . . , k, such

that φ(z)(t) = 〈z, ω〉 for z ∈ G, where ω = (α1, . . . , αk). Therefore {r(n)
i }

is a bounded sequence for every i = 2, . . . , k. Similarly, {q(n)
i } is a bounded

sequence for every i = 2, . . . , k. Thus {φ(gn)} and {φ(yn)} are (uniformly)
bounded (on T ). Since QG is finite-dimensional, {φ(gn)} and {φ(yn)} are pre-
compact subsets of Aff(T ). Thus, without loss of generality, we may assume
that φ(gn) → g and φ(yn) → x uniformly on T , where g, x ∈ Aff(T ). Since
each gn ≥ e1 and yn ≤ e1, we conclude that g(t) ≥ Uj(t) > 0 and x(t) ≤ Lj(t)
for all t ∈ T. Furthermore,

g(t0) = lim inf
t→t0

Uj(t) and x(t0) = lim sup
t→t0

Lj(t).

We assume that Hj(t) > 0 for all t ∈ T. Therefore g(t) > x(t) for all t ∈ T.

Since x and g are continuous and T is compact,

inf{g(t) − x(t) : t ∈ T} > 0.

This implies that

lim inf
t→t0

Hj(t) > 0 for all, t0 ∈ T.

Lemma 2.3. In Lemma 2.2, if K > 0 is a previously given integer, then
there exists f ∈ F ⊂ Aff(T ) such that

Lj(t) < Kf < Uj(t)

for all t ∈ T.
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Proof. Since T is compact and Hj is upper semi-continuous,
lim inft→t0 Hj(t) > 0 for all t0 ∈ T and the fact that Hj(t) > 0 for all t ∈ T

implies that inf{Hj(t) : t ∈ T} > 0. Let a = (1/32) inf{Hj(t) : t ∈ T} > 0.

Then 0 < 31a < lim inft′→t Hj(t′) for all t ∈ T. Fix t0 ∈ T, let g and x be as in
the proof of 2.2. Then

lim sup
t′→t0

Lj(t′) < x(t0) + a/8 < x(t0) + a/4

< g(t0) − a/2 < g(t0) − a/4 < lim inf
t′→t0

Uj(t′).

We have
x(t′) ≤ Lj(t′) and Uj(t′) ≤ g(t′)

for any t′ ∈ T. So, in particular,

x(t′) ≤ g(t′)

for all t′ ∈ T. Therefore there is a neighborhood O(t0) such that the following
holds:

Lj(t′) < lim sup
t′′→t

Lj(t′′) + a/16 < x(t′) + a/8 < x(t′) + a/4 < g(t′) − a/2

< g(t′) − a/4 < lim inf
t′′→t

U(e1)(t′′) − a/8 < U(e1)(t′)

for all t′ ∈ O(t0).
Since T is compact, there are O(t1), O(t2), . . . , O(tl), such that ∪l

i=1O(tl)
⊃ T. Note that (with xi and gi corresponding to O(ti)) xi(t) + a/4, gi − a/2 ∈
Aff(T ), i = 1, 2, . . . , l. Set

x̌ = (x1 + a/4) ∨ (x2 + a/4) ∨ · · · (xl + a/4)

and
ĝ = (g1 − a/2) ∧ (g2 − a/2) ∧ · · · (gl − a/2).

Since xi ≤ Lj and Uj ≤ gi for i, j = 1, 2, . . . , l, x̌ ≤ ĝ. Since T is a Choquet
simplex, Aff(T ) has the Riesz interpolation property (see II.3.11 in [Alf]). Thus
there is h ∈ Aff(T ) such that

x̌ ≤ h ≤ ĝ.

Therefore (by considering each O(ti)), we have

Lj(t) + a/16 < x̌(t) ≤ h(t) ≤ ĝ(t) < Uj(t) − a/16

for all t ∈ T. Hence,

Lj(t) < h(t) − a/32 < h(t) < Uj(t) − a/16.

Since F is dense in Aff(T ), there exists f ∈ F such that

‖f − (1/K)h‖ < a/128K.
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Therefore,

Lj(t) < h(t) − a/32 < Kf(t) < h(t) + a/32 < Uj(t)

for all t ∈ T.

Lemma 2.4. Let G and D be ordered groups. Suppose that there is a
surjective homomorphism ρ : G → D such that g ≥ 0 if and only if ρ(g) ≥ 0.

Then, for any other ordered group G′ and a homomorphism ψ : G′ → G, ψ is
positive if and only if ρ ◦ ψ is positive.

Proof. This is evident.

Lemma 2.5. Let G ⊂ Zk be an ordered subgroup, T be a Choquet simplex
and F ⊂ Aff(T ) be an ordered dense subgroup with the strict ordering (i.e.,
f ∈ F+ \ {0} implies f(t) > 0 for all t ∈ T ). Suppose that G′ is an ordered
group with a surjective map ρ : G′ → F such that g ∈ G′

+ if and only if ρ(g) ∈
F+. There exists an integer K depending only on G satisfying the following :
Suppose that φ : G → G′ is a positive homomorphism such that φ(g) > 0 for all
g ∈ G+\{0} and such that φ(gi) = Kfi for the generating set {g1, . . . , gm} ⊂ G,

where fi ∈ G′; then there is a positive homomorphism φ̃ : Zk → G′ such that
φ̃|G = φ and ρ◦ φ̃(ej) ∈ G′

+ \{0}, where e1 = (1, 0, . . . , 0), . . . , ek = (0, . . . , 0, 1)
are the standard generators of Zk.

Proof. Let Pj : Zk → Zj be the projection on the first j coordinates. Let
Gj be the subgroup generated by Pj(Zk) and G, j = 1, 2, . . . , k. Set G0 = G.

Let S0 be the subset of {1, 2, . . . , k} such that there is a positive integer mt

with mtet ∈ G0 whenever t ∈ S0. We may assume that S0 = {1, 2, . . . , l}
(l ≥ 0). Let

Iji = {m ∈ Z : miei ∈ Gj}.
Then Iji is a subgroup of Z. Let mji = min{|m| ∈ Iji \ {0}} and

Kj =
∏
i∈Sj

mji.

Set J =
∏k

j=0 Kj and K = Jk.

This integer does not depend on φ but only on G. Let {g1, g2, . . . , gn}
be a generating set for G. Suppose that there are f1, . . . , fn ∈ G such that
φ(gi) = Kfi, i = 1, 2, . . . .

The condition that φ(gi)=Kfi for some fi∈G′ implies that (1/K)φ(miei)
∈ G′ for some positive mi and for all i ≤ l. So we define φ̃(ei) = (1/mi)φ(miei)
(i = 1, 2, . . . , l). Note that (1/Jk−1)φ̃(g) ∈ G′

+ for g ∈ G+. Since (for j ≤ l)

sup{ρ ◦ φ(g)/m : g ∈ G, m > 0 and g ≤ mej} > 0,

sup{ρ ◦ φ̃(g)/m : g ∈ Gl, m > 0 and g ≤ mej} > 0.

So ρ ◦ φ̃ maps (Gl)+ \ {0} ⊂ F+ \ {0}.



536 HUAXIN LIN

It follows from 2.3 that there is f ∈ F+ such that

Ll+1(t) < Kf(t) < Ul+1(t)

for all t ∈ T, where

Ll+1(t) = sup{ρ ◦ φ̃(g)/m : m ∈ N, g ∈ Gl and g ≤ mel+1}

and
Ul+1(t) = inf{ρ ◦ φ̃(g)/m : m ∈ N, g ∈ Gl and g ≥ mel+1}.

Let g ∈ G′ such that ρ(g) = f. Define φ̃(el+1) = Kg. It follows from [GH]
that φ̃ extends φ and ρ ◦ φ̃ is positive. By 2.4, φ̃ is positive. Furthermore,
ρ ◦ φ̃ maps (Gl+1)+ \ {0} into F+ \ {0}. Let S1 be a subset of {1, 2, . . . , k}
such that mtet ∈ Gl+1 for some positive integer mt whenever t ∈ S1. Note
that for any g ∈ (Gl+1)+, (1/Jk−1)φ̃(g) ∈ G′

+. If l + 2 ∈ S2, define φ̃(el+2) =
(1/ml+1)φ̃(ml+1el+2). Otherwise, by 2.3, there is fl+2 ∈ F+ such that

Ll+2(t) < Kfl+2 < Ul+2(t)

for all t ∈ T. Choose gl+2 ∈ G′ such that ρ(gl+2) = fl+2. Define φ̃(el+2) =

Kgl+2. In either case we obtain a positive extension φ̃ on Gl+2 and (1/Jk−2)φ̃(g)
∈ F+ for all g ∈ (Gl+1)+. So by an induction argument we obtain φ̃ : Zk → G′

as desired.

3. A classification theorem for simple nuclear C∗-algebras
with tracial topological rank zero

Definition 3.1. A C∗-algebra A is said be in BD if there is an integer
k > 0 such that every irreducible representation of A is finite-dimensional
and its dimension is no more than k. The integer k is called the bound. A
C∗-algebra A is said be in LBD (locally BD) if for any ε > 0 and any finite
subset F ⊂ A, there exists B ∈ BD such that

dist(x, B) < ε for all x ∈ F .

Lemma 3.2.Let A be a unital separable C∗-algebra in BD with the bound k,

let 1 = f1, f2, . . . , fm ∈ ρA(K0(A)+) and let G be the subgroup generated
by f1, . . . , fm. Then there exists finite-dimensional irreducible representations
π1, π2, . . . , πN of A such that

g �→ (tr ◦ (π1)∗(g), . . . , tr ◦ (πN )∗(g)))

is an order embedding from G to QN , where tr is the normalized trace on matrix
algebras.
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Remark 3.3. In Lemma 3.2, set x = max{tr ◦ πi([1A]) : i = 1, . . . , N}.
Then the composition

g �→ (tr ◦ (π1)∗(g), . . . , tr ◦ (πN )∗(g)) �→ x(tr ◦ (π1)∗(g), . . . , tr ◦ (πN )∗(g))

gives an order embedding from G into ZN .

Proof of Lemma 3.2. This is proved in [Ln7]. Denote by s(A) the set of
normalized traces on A defined by t(a) = tr ◦π(a) (a ∈ A), where π is a finite-
dimensional irreducible representation of A and tr is the standard normalized
trace on matrix algebras, equipped with the weak*-topology. It follows from
Corollary 2.7 in [Ln7] that the closure of the convex hull of s(A) is T (A), the
tracial space of A. Therefore the map f �→ f |s(A) is an order embedding from
Aff(T (A)) to C(s(A)). Let DA : K0(A) → C(s(A)) be defined by p �→ p(t)
(t ∈ s(A)), where p is a projection in A⊗K. Then DA is a positive homomor-
phism. Therefore the map from ρA(K0(A)) (⊂ Aff(T (A))) to DA(K0(A)+)
defined by restriction is an order isomorphism. The lemma then follows from
Lemma 2.4 in [Ln7].

Lemma 3.4. Let A be a unital C∗-algebra in LBD which is a simple
C∗-algebra with stable rank one and weakly unperforated K0(A) and let B ∈ C
which is a unital simple C∗-algebra with real rank zero. Suppose that α ∈
HomΛ(K(A), K(B)) which gives an order isomorphism from (K0(A), K0(A)+,
[1A], K1(A)) to (K0(B), K0(B)+, [1B], K1(B)). Then there is a sequence of con-
tractive completely positive linear maps Ln : A → B such that, for any finite
subset P ⊂ P(A),

[Ln]|P = α|P

for all sufficiently large n and

‖Ln(ab) − Ln(a)Ln(b)‖ → 0

for all a, b ∈ A.

Proof. Fix a finite subset F ⊂ A and a finite subset P ⊂ P(A). Since A

is in LBD, we may assume that there exists Am ⊂ A such that Am ∈ BD,

F ⊂ Am and P ⊂ [j](G), where G ⊂ P(Am) is a finite subset and j : Am → A

is the embedding. Set α = β ◦ [j] ∈ HomΛ(K(Am), (K(B))+. Since both A and
B are simple, and α|K0(A) is an order isomorphism, for any g ∈ K0(A) \ {0},
ρB ◦ β(g) �= 0. Note that Am satisfies the Universal Coefficient Theorem. It
follows from 5.9 in [Ln4] that there exist a sequence of contractive completely
positive linear maps ψn : Am → B⊗K and a homomorphism Hn : Am → B⊗K
with finite-dimensional range such that

(e3.1) [ψn]|G = β|G + [Hn]|G .



538 HUAXIN LIN

Let G′ = K0(Am) ∩ G, where G = G(G) is the finitely generated subgroup
generated by G. We may assume that there are projections p1, . . . , pl ∈ Mk(Am)
for some k such that G′ is generated by [p1], . . . , [pl]. We may assume that
(e3.1) above holds for G′. Let G0 = ρAm(G′). It follows from 3.2 (and 3.3)
that G0 ⊂ K0(π(Am)) ⊂ Zk for some integer k > 0, where π : Am → C is
a (surjective) homomorphism from Am to a finite-dimensional C∗-algebra C.

Let K be the integer associated with G0 defined by 2.5.
Let K1 be the integer such that G ∩ K0(A,Z/kZ) = ∅ for all k > K1.

Let Ψn = ψn ⊕Hn ⊕ · · · ⊕Hn, the direct sum of K(K1)!− 1 copies of Hn.

Thus
[Ψn]|G = α|G + K(K1)![Hn]|G .

If F is a finite-dimensional C∗-algebra then one has the following commutative
diagram:

K0(F ) −−−→ K0(F,Z/kZ) −−−→ K1(F )� �
K0(F ) ←−−− K1(F,Z/kZ) ←−−− K1(F )

where K0(F,Z/kZ) = K0(F )/kK0(F ), K1(F ) = 0, K1(F,Z/kZ) = 0. Since
Hn factors through a finite-dimensional C∗-subalgebra, it is easy to check that

[Hn]|K1(A)∩G = 0, [Hn]|K1(A,Z/kZ)∩G = 0 and [Hn]|kerρA(K0(A))∩G = 0.

Moreover,
(K1)![Hn]|K0(A,Z/kZ)∩G = 0 (k ≤ K1).

Therefore

[Ψn]|K1(A)∩G = α|
1(A)∩G,

[Ψn] |K1(A,Z/kZ)∩G = α|K1(A,Z/kZ)∩G

[Ψn] |kerρA(K0(A))∩G = α|kerρA(K0(A))∩G

and
[Ψn]|K0(A,Z/kZ)∩G = α|K0(A,Z/kZ)∩G.

Choose r > 0 such that r < 1
JK(K1)!+1 , where J is an integer so that [Hn(1A)] ≤

[1MJ (B)]. Set G′
1 = [Ψn](G). Let ei be projections such that [ēi] = [Ψn]([pi])−[q̄i]

(= α([pi])), where [q̄i] = K(K1)![Hn]([pi]), i = 1, 2, . . . , l. Set G1 = [Ψn]G) ∪
{[ēi], α([pi]), [q̄i], i = 1, . . . , l}.

Let L : B → B be as described in 1.8 associated with G1 (with ε > 0 and
F to be determined later). Set Φn = L ◦ Ψn. Then

[Φn]|K1(Am)∩G = α|
1(Am)∩G,

[Φn] |K1(Am,Z/kZ)∩G = α|K1(Am,Z/kZ)∩G

[Φn] |kerρAm (K0(Am))∩G = α|kerρAm (K0(Am))∩G
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and

[Φn]|K0(Am,Z/kZ)∩G = α|K0(Am,Z/kZ)∩G.

We also have

ρB ◦ [Ψn](g) ≤ rρB ◦ α(g) for g ∈ K0(A) ∩ G

and
α([pi]) − [Φn]([pi]) = K(K1)![pi], i = 1, . . . , l,

where fi ∈ K0(B). Note that (α − [Ψn])(g) > 0 for all G0 \ {0}, since r <

1/(KJ(K1)! + 1). Note that also with the order embedding G0 ⊂ K0(π(A))
⊂ Zk and the choice of K, by 2.5, there is a positive homomorphism Ψ :
K0(π(Am)) → K0(B) such that

Ψ|G0 = (α − [Φn])|G0 .

Since B has real rank zero and stable rank one, we obtain a homomorphism
hn : π(Am) → (1 − p)B(1 − p) such that [hn] = Ψ, where p = 1B − Φn(1A)
(we may assume that Ψn(1A) ≤ 1B, since r < 1/2(KJ(K1)! + 1)). We set
Ln = Φn ⊕hn ◦π with sufficiently small ε (depends on n) and the finite subset
F1 (which is larger than Φn(F)). Now

[Ln]|P = α|P .

Definition 3.5. Recall ([Ln6]) that a unital simple C∗-algebra A has
tracial topological rank zero (written TR(A) = 0) if, for any ε > 0, any finite
subset F and any nonzero positive element a, there exists a nonzero projection
p ∈ A and a finite-dimensional C∗-subalgebra B ⊂ A with 1B = p such that

(1) ‖px − xp‖ < ε for all x ∈ F ,

(2) pxp ∈ε B for all x ∈ F and

(3) 1 − p is equivalent to q ∈ aAa.

In [Ln3], a simple unital C∗-algebra A with TR(A) = 0 is called TAF. It
is shown in [Ln3] that a simple C∗-algebra A with TR(A) = 0 is quasidiago-
nal and has real rank zero, stable rank one and weakly unperforated K0(A).
Every simple AH-algebra A with slow dimension growth and real rank zero
has TR(A) = 0 (this was proved in [EG]. See 2.6 in [Ln3]).

One could prove the following result directly. But this follows from the
main result in [Ln5].

Theorem 3.6 (cf. [Ln5]). Let A ∈ LBD be a unital separable simple
C∗-algebra with unique normalized trace. Suppose that A has real rank zero,
stable rank one and weakly unperforated K0(A). Then TR(A) = 0.
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Definition 3.7. Let L1, L2 : A → B be two linear maps, ε > 0 and F ⊂ A

be a subset. We write
L1 ≈ε L2 on F

if ‖L1(x) − L2(x)‖ < ε for all x ∈ F .

Theorem 3.8 (Theorem 2.3 in [Ln4]). Let A be a separable unital nuclear
simple C∗-algebra with TR(A) = 0 satisfying the UCT. Then, for any ε > 0,

and any finite subset F ⊂ A, there exist δ > 0, a finite subset P ⊂ P (A) and
a finite subset G ⊂ A satisfying the following : for any unital C∗-algebra B of
real rank zero and stable rank one with weakly unperforated K0(B), and any
two G-δ-multiplicative morphisms L1, L2 : A → B with

[L1]|P = [L2]|P ,

there exists a unitary U ∈ B such that

ad(U) ◦ L1 ≈ε L2 on F .

Theorem 3.9. Let A and B be two unital C∗-algebras in LBD with
TR(A) = TR(B) = 0 satisfying the UCT. Suppose that there is an order iso-
morphism α : (K0(A), K0(A)+, [1A], K1(A)) → (K0(B), K0(B)+, [1B], K1(B)),
then there is an isomorphism h : A → B such that h∗ = α.

Proof. Since A satisfies the UCT, there is an (invertible) element z ∈
KK(A, B) such that z|Ki(A) = α. We will use α for the corresponding element
in KL(A, B).

Fix a dense sequence {xn} of the unit ball of A and a dense sequence
{yn} of the unit ball of B. Set εn = 1/2n. Let P1 = P(ε1/2, {x1}) ⊂ P(A),
δ1 = δ(ε1/2, {x1}) > 0 and F1 = G(ε1/2, {x1}) be as in 3.8 associated with
ε1/2 > 0 and finite subset {x1}. We assume that x1 ∈ F1. By 3.4, there is a
contractive completely positive linear map L1 : A → B such that

‖L1(ab) − L1(a)L1(b)‖ < δ1/2

for all a, b ∈ F1 and [L1]|P1 = α|P1 . Let F ′
1 = L1(F1) ∪ {y1}. Let Q1 =

P(ε2/2,F ′
1) ⊂ P(A), G1 = G(ε2/2,F ′

1) ⊂ B and d1 = δ(ε2/2,F ′
1) > 0 be as in

3.8 (for B) associated with ε2/2 and F ′
1. We may assume that Q1 ⊃ [L1](P1),

G1 ⊃ F ′
1 and d1 < min{ε2/2, δ1/2).

By 3.4, there exists Ψ′
1 : B → A such that

‖Ψ′
1(cd) − Ψ′

1(c)Ψ
′(d)‖ < d1/2

for all c, d ∈ F ′
1 and [Ψ′

1]|Q1 = α−1|Q1 . Then Ψ′
1 ◦ L1 is δ1-multiplicative on

F1 and [Ψ′
1 ◦L1]|P1 = [id]P1 . It follows from 3.8 that there is a unitary u1 ∈ A

such that
adu1 ◦ (Ψ′

1 ◦ L1) ≈ε1/2 idA on {x1}.
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Define Ψ1 = adu1 ◦ Ψ′
1. Set S2 = Ψ1(G1) ∪ {x1, x2}. Let F2 = G(ε2/2,S2),

P2 = P(ε2/2,S2) and δ2 = δ(ε2/2,S2) > 0 (for A) associated with ε2/2 and
S2. We may assume that F2 ⊃ S2, P2 ⊃ [Ψ1](Q1) and δ2 < min{ε2/2, d1/2).

It follows from 3.4 that there exists L′
2 : A → B such that

‖L′
2(ab) − L′

2(a)L′
2(b)‖ < δ2/2

for all a, b ∈ F2 and
[L′

2]|P2 = α|P2 .

Note that α(α−1) = [id]. By 3.8 there is a unitary v2 ∈ B such that

adv1 ◦ L′
2 ◦ Ψ1 ≈ε2/2 idB on G1.

Set L2 = adv1 ◦ L′
2.

Let F ′
2 = L2(F2) ∪ {y1, y2}. Let G2 = G(ε3/2,F ′

2), Q2 = P(ε3/2,F ′
2) and

d2 = δ(ε3/2,F ′
2) be as in 3.8 (for B) associated with ε3/2 and F ′

2. We may
assume that F ′

2 ⊃ F ′
2, G2 ⊃ [L2](P2) and d2 < min{ε3/2, δ2/2}.

It follows from 3.4 that there is a contractive completely positive linear
map Ψ′

2 : B → A such that

‖Ψ′
2(cd) − Ψ′

2(c)Ψ
′
2(d)‖ < d2/2

for all c, d ∈ G2 and
[Ψ′

2]|Q2 = α−1|Q2 .

By 3.8 there is a unitary u2 ∈ A such that

adu2 ◦ Ψ′
2 ◦ L2 ≈ε3/2 idA on F2.

Set Ψ2 = adu2 ◦ Ψ2.

Continuing in this fashion, we construct a sequence of contractive com-
pletely positive linear maps Ln : A → B and Ψn : B → A such that the
following diagram

A
idA−→ A

idA−→ A
idA−→ · · ·A

↓L1 ↗Ψ1 ↓L2 ↗Ψ2 ↓L3 ↗Ψ3

B
idA−→ B

idA−→ B
idA−→ · · ·B

is approximately intertwining. It follows from an argument of Elliott (see for
example 2.1, 2.2 and 2.3 in [Ell1] and also 3.1 in [Ln1] for the case that the
maps are not homomorphisms) that there are isomorphisms h : A → B and
h−1 : B → A (each determined by {Ln} and {Ψn}).

Theorem 3.10. Let A and B be two unital C∗-algebras which are induc-
tive limits of C∗-algebras in BD with TR(A) = TR(B) = 0. Suppose that there
is an order isomorphism

α : (K0(A), K0(A)+, [1A], K1(A)) → (K0(B), K0(B)+, [1B], K1(B));

then there is an isomorphism h : A → B such that h∗ = α.
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Proof. Since each C∗-algebra is in BD, both A and B satisfy the UCT.
So the theorem follows from 3.9.

Recently, it was shown by Q. Lin and N.C. Phillips that the following
structure theorem about smooth minimal dynamical systems holds:

Theorem 3.11 (Q. Lin and N.C. Phillips [LP]). Let M be a com-
pact manifold and δ : M → M be a minimal diffeomorphism. Then A =
C∗(Z, M, δ), the simple crossed product arising from the smooth minimal dy-
namical system, is in LBD. In fact, A is a direct limit of subhomogeneous
C∗-algebras. Furthermore A has stable rank one and K0(A) is weakly unper-
forated.

Thus we have the following:

Theorem 3.12. Let M1 and M2 be compact manifolds, δi : Mi → Mi be
a minimal diffeomorphism (i = 1, 2) and let Ai = C∗(Z, Mi, hi). Suppose that
TR(A) = 0. Then A1

∼= A2 if and only if

(K0(A1), K0(A1), [1A1 ], K1(A1)) ∼= (K0(A2), K0(A2)+, [1A2 ], K1(A2)).

An important case for dynamical systems is the unique ergodic case, where
systems admit unique invariant measures. The resulting simple crossed prod-
ucts admit unique normalized traces.

Corollary 3.13. Let M1 and M2 be compact manifolds, hi : Mi → Mi

be a minimal diffeomorphism (i = 1, 2). Let Ai = C∗(Z, Mi, hi). Suppose that
(Mi, hi) has a unique invariant measure (i = 1, 2) and the range of K0(Ai)
under the trace is dense in R. If

(K0(A1), K0(A1), [1A1 ], K1(A1)) ∼= (K0(A2), K0(A2)+, [1A2 ], K1(A2)),

then
A1

∼= A2.

Proof. By [LP], the Ai are simple C∗-algebras that have stable rank one
and have weakly unperforated K0(Ai). It follows from [Ph] that both Ai have
real rank zero. Thus the corollary follows from 3.6 and 3.12.

There is a class of exciting unital simple C∗-algebras called (higher) ir-
rational noncommutative tori. The irrational rotation C∗-algebra Aθ is gen-
erated by two unitaries u and v with relation uv = eiπθvu, where θ is irra-
tional, and is a very interesting unital simple C∗-algebra. It was shown that
it is a direct limit of circle algebras with real rank zero (see [EE]). There-
fore TR(Aθ) = 0. Also Aθ can be realized as the crossed product C(T) ×θ Z
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resulting from the minimal and unique ergodic dynamical system by a diffeo-
morphism α : T→ T which maps z to zeiπθ, where θ is irrational. One class of
k + 1-dimensional noncommutative tori called unital simple crossed products
C(Tk) ×θ Z result from a minimal and unique ergodic dynamical system by a
diffeomorphism α : Tk → Tk which maps (z1, . . . , zk) to (z1e

iπθ1 , . . . , zke
iπθk),

where θi are irrational.
We have the following theorem:

Theorem 3.14. Let A = C(Tk) ×θ Z and B = C(Tk) ×α Z be two
irrational noncommutative k + 1-tori. Then A ∼= B if and only if [α] = [θ] on
Ki(C(Tk)) (i = 0, 1 ). Furthermore, A is an inductive limit of circle algebras.

Proof. By [PV], Ki(A) = Ki(B) (i = 0, 1). It follows from 3.13 that
A ∼= B. They are also isomorphic to a unital simple C∗-algebra in C. Since
Ki(A) are torsion free (i = 0, 1), they are isomorphic to an inductive limit of
circle algebras.

Remark 3.15. One should note that the condition that Am are subho-
mogeneous in 3.4 is not necessary. It suffices to have the following: any finitely
generated subgroup G ⊂ ρAn(K0(A)) can be embedded into Zk for some in-
teger k > 0 as an ordered subgroup. It remains open whether this condi-
tion is automatically satisfied by residually finite-dimensional algebras, or any
simple nuclear C∗-algebras which can be written as inductive limits of RFD
C∗-algebras satisfying this condition.
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