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Finite energy foliations of tight
three-spheres and Hamiltonian dynamics

By H. Hofer, K. Wysocki, and E. Zehnder*

Abstract

Surfaces of sections are a classical tool in the study of 3-dimensional dy-
namical systems. Their use goes back to the work of Poincaré and Birkhoff.
In the present paper we give a natural generalization of this concept by con-
structing a system of transversal sections in the complement of finitely many
distinguished periodic solutions. Such a system is established for nondegener-
ate Reeb flows on the tight 3-sphere by means of pseudoholomorphic curves.
The applications cover the nondegenerate geodesic flows on T1S

2 ≡ RP 3 via
its double covering S3, and also nondegenerate Hamiltonian systems in R4

restricted to sphere-like energy surfaces of contact type.
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1. Introduction

Pseudoholomorphic curves, in symplectic geometry introduced by Gromov
[23], are smooth maps from Riemann surfaces into almost complex manifolds
solving a system of partial differential equations of Cauchy-Riemann type. The
use of such solutions in dynamical systems was demonstrated in the proofs of
the V. I. Arnold conjectures in [15], [17] and [16] concerning forced oscilla-
tions of Hamiltonian systems on compact symplectic manifolds. The proofs
are based on the structure of pseudoholomorphic cylinders having bounded
energies and hence connecting periodic orbits. In his proof [24] of the A. We-
instein conjecture about existence of periodic orbits for Reeb flows, H. Hofer
designed a theory of pseudoholomorphic curves for contact manifolds. This
theory was extended in [35] in order to establish a global surface of section for
special Reeb flows on tight three spheres. These flows include, in particular,
Hamiltonian flows on strictly convex three-dimensional energy surfaces. In the
following we consider a larger class of Reeb flows on the tight three sphere
which do not necessarily admit a global surface of section. The aim is to con-
struct an intrinsic global system of transversal sections bounded by finitely
many very special periodic orbits of the Reeb flow. For this purpose we shall
establish a smooth foliation F of R×S3 in the nondegenerate case. The leaves
are embedded pseudoholomorphic punctured spheres having finite energies. In
order to formulate the main result and some consequences for dynamical sys-
tems we first recall the concepts from contact geometry and from the theory
of pseudoholomorphic curves in symplectizations from [32], [30] and [36].
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1.1. Concepts from contact geometry and Reeb flows. We consider a com-
pact oriented three-manifold M equipped with the contact form λ. This is a
one-form having the property that λ∧dλ is a volume form on M . The contact
form determines the plane field distribution ξ = kernel (λ) ⊂ TM , called the
associated contact structure. It also determines the so-called Reeb vector field
X = Xλ on M by

(1.1) iXλ = 1 and iXdλ = 0.

The tangent bundle

(1.2) TM = R · X ⊕ ξ

splits into a line bundle having the section X and the contact bundle ξ carrying
the symplectic structure fiberwise defined by dλ. By

π : TM → ξ

we denote the projection along the Reeb vector field X. Since the contact form
λ is invariant under the flow ϕt of the Reeb vector field, the restrictions of the
tangent maps onto the contact planes,

Tϕt(m)|ξm
: ξm → ξϕt(m)

are symplectic maps.
In the following, periodic orbits (x, T ) of the Reeb vector field X will play

a crucial role. They are solutions of ẋ(t) = X(x(t)) satisfying x(0) = x(T ) for
some T > 0. If T is the minimal period of x(t), the periodic solution (x, T )
will be called simply covered. A periodic orbit (x, T ) is called nondegenerate,
if the self map

TϕT (x(0)) |ξx(0)
: ξx(0) → ξx(0)

does not contain 1 in its spectrum. If all the periodic solutions of Xλ are
nondegenerate, the contact form is called nondegenerate. Such forms occur
in abundance, as the following proposition from [35] indicates. Later on, the
contact forms under consideration will all be nondegenerate.

Proposition 1.1. Fix a contact form λ on the closed 3-manifold M and
consider the subset Θ1 ⊂ C∞(M, (0,∞)) consisting of those f for which fλ

is nondegenerate. Let Θ2 consist of all those f ∈ Θ1 such that, in addition,
the stable and unstable manifolds of hyperbolic periodic orbits of Xfλ intersect
transversally. Then Θ1 and Θ2 are Baire subsets of C∞(M, (0,∞)).

Nondegenerate periodic orbits (x, T ) of X are distinguished by their
µ-indices, sometimes called Conley-Zehnder indices, and their self-linking num-
bers sl(x, T ). These integers are defined as follows. We take a smooth disc map
u : D → M satisfying u

(
e2πit/T

)
= x(t), where D is the closed unit disc in C.
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Then we choose a symplectic trivialization β : u∗ξ → D ×R2 and consider the
arc Φ : [0, T ] → Sp (1) of symplectic matrices Φ(t) in R2, defined by

Φ(t) = β
(
e2πit/T

)
˚ Tϕt

|ξx(0) ˚ β−1(1).

The arcs start at the identity Φ(0) = Id and end at a symplectic matrix Φ(T )
which does not contain 1 in its spectrum. To every such arc one associates
the integer µ(Φ) ∈ Z, recalled in Appendix 8.1. It describes how often nearby
solutions wind around the periodic orbit with respect to a natural framing.
The index of the periodic solution is then defined by

µ
(
x, T, [u]

)
= µ(Φ) ∈ Z.

This integer depends only on the homotopy class [u] of the chosen disc map
keeping the boundaries fixed. If, as in our study later on, M = S3, the index
is independent of all choices and will be denoted by

µ(x, T ) ∈ Z.

To define the self-linking numbers sl(x, T ) we take a disc map u as before and
a nowhere-vanishing section Z of the bundle u∗ξ → D. Then we push the loop
t �→ x(Tt) for 0 ≤ t ≤ 1 in the direction of Z to obtain a new oriented loop y(t).
The oriented intersection number of u and y is, by definition, the self-linking
number of x. This integer will be useful later on in the investigation of the
minimality of the periods.

1.2. Finite energy spheres in S3. We recall the concept of a finite energy
sphere, choosing the special manifold M = S3 dealt with later on. Here S3

is the standard sphere S3 = {z ∈ C2 | |z| = 1}, where z = (z1, z2) = (q1 +
ip1, q2 + ip2) with zj ∈ C and qj , pj ∈ R. Recalling the standard contact form
on S3,

λ0 =
1
2

2∑
j=1

(
qjdpj − pjdqj

)
|S3 ,

we choose a nondegenerate contact form λ = fλ0 on S3 and denote its Reeb
vector field by X and the contact structure by ξ. Now we choose a smooth
complex multiplication J : ξ → ξ on the contact planes satisfying

dλ(h, Jh) > 0 for all h ∈ ξ \ {0}

and abbreviate by J the set of these admissible complex multiplications. With
J ∈ J we associate a distinguished R-invariant almost complex structure J̃ on
R× S3 by extending J onto R× R · X by 1 �→ X �→ −1, in formulas,

(1.3) J̃(α, k) =
(
−λ(k), Jπk + αX

)
,
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for (α, k) ∈ T (R × S3), where π : TS3 → ξ is the projection along the Reeb
vector field X. The important property of J̃ is the invariance along the fibers R.
Denote by Σ the set of all smooth functions ϕ : R→ [0, 1] satisfying ϕ′ ≥ 0.

Definition 1.2 (Finite energy sphere). A (nontrivial) finite energy sphere
for (S3, λ, J) is a pair (Γ, ũ) consisting of a finite subset Γ of the Riemann
sphere S2 and a smooth map

ũ : S2 \ Γ → R× S3

solving the partial differential equation

(1.4) T ũ ˚ j = J̃ ˚ T ũ on S2 \ Γ

and satisfying the energy condition

0 < E(ũ) < ∞,

where

(1.5) E(ũ) = sup
ϕ∈Σ

∫
S2\Γ

ũ∗d(ϕλ),

with the one-form ϕλ on R× S3 defined by (ϕλ)(a, m)[α, k] = ϕ(a) · λ(m)[k].
We call ũ a finite energy plane if Γ = {∞}. A finite energy sphere will be called
an embedding if ũ is an embedding.

We note that for a solution ũ of equation (1.4) the integrand of the energy
(1.5) is nonnegative. The condition E(ũ) > 0 implies that ũ is not a constant
map.

A special example of a finite energy sphere is an orbit cylinder over a
periodic solution (x, T ) of X. It is parametrized by the map ũ : C \ {0} →
R× S3,

(1.6) ũ
(
e2π(s+it)

)
=

(
Ts, x(Tt)

)
∈ R× S3.

Its energy agrees with the period T = E(ũ) while its dλ-energy vanishes,∫
C\{0}

u∗dλ = 0.

The punctures are Γ = {0,∞}, where S2 = C ∪ {∞}. Orbit cylinders govern
the asymptotic behavior of finite energy spheres near the punctures Γ as we
recall next from [24], [32] and [30].

We begin with the distinction between positive and negative punctures.

Proposition 1.3. Let (Γ, ũ) be a finite energy sphere and z0 ∈ Γ. Then
one of the following mutually exclusive cases holds, where ũ = (a, u) ∈ R×S3.

• positive puncture: limz→z0 a(z) = +∞;
• negative puncture: limz→z0 a(z) = −∞;
• removable puncture: limz→z0 a(z) = a(z0) exists in R.
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In the third case one can show that ũ (U(z0) \ {z0}) is bounded for a
suitable neighborhood U(z0) and moreover, employing Gromov’s removable
singularity theorem from [23] one can extend ũ smoothly over z0. For this
reason we consider later on only positive and negative punctures, Γ = Γ+∪Γ−.
We note that Γ �= ∅ since a finite energy surface defined on S2 is necessarily
constant. Indeed, from Stokes’ theorem it follows that E(ũ) = 0. There is
always at least one positive puncture.

In order to describe the asymptotic behavior near the puncture z0 ∈ Γ
we introduce holomorphic polar coordinates. We take a holomorphic chart
h : D ⊂ C → U ⊂ S2 around z0 satisfying h(0) = z0 and define σ : [0,∞) ×
S1 → U \ {z0} by

(1.7) σ(s, t) = h
(
e−2π(s+it)

)
so that z0 = lims→∞ σ(s, t). In these coordinates the energy surface near z0

becomes the positive half cylinder

ṽ = (b, v) := ũ ˚ σ : [0,∞) × S1 → R× S3.

The map ṽ satisfies the Cauchy-Riemann equation

ṽs + J̃(ṽ)ṽt = 0

and has bounded energy E(ṽ) ≤ E(ũ) < ∞. Because of this energy bound the
following limit exists in R,

(1.8) m(ũ, z0) := lim
s→∞

∫
S1

v(s, · )∗λ.

The real number m = m(ũ, z0) is called the charge of the puncture z0 ∈ Γ.
It is positive if z0 is positive and negative for a negative puncture. Moreover,
m = 0 if the puncture is removable. The behavior of the sphere near z0 is now
determined by periodic solutions of the Reeb vector field X having periods
T = |m(ũ, z0)|. Every sequence sk → ∞ possesses a subsequence denoted by
the same letters such that

lim
k→∞

v(sk, t) = x(mt) in C∞(S1)

for an orbit x(t) of the Reeb vector field ẋ(t) = X(x(t)). Here m is the charge
of z0. If m �= 0, the solution x is a periodic orbit of X having period T = |m|.
If this periodic orbit is nondegenerate then

lim
s→∞

v(s, t) = x(mt) in C∞(S1)(1.9)

and
lim

s→∞
b(s, t)

s
= m in C∞(S1).(1.10)

Hence in the nondegenerate case there is a unique periodic orbit (x, T ) associ-
ated with the puncture z0. It has period T = |m| and is called the asymptotic



FINITE ENERGY FOLIATIONS 131

limit of z0. In the nondegenerate case, the finite energy surface ṽ approaches
the special orbit cylinder ṽ∞(s, t) =

(
sm, x(mt)

)
in R × S3 as s → ∞ in an

exponential way. The asymptotic formula is recalled in the appendix. We
visualize a finite energy sphere ũ in R× S3 by Figure 1.

R × P

S3

P

Figure 1. The figure shows a finite energy sphere with one positive
and two negative punctures.

We next introduce the main concept.

1.3. Finite energy foliations. We consider the three-manifold M equipped
with the contact form λ, choose an admissible J ∈ J and denote the associated
R-invariant almost complex structure on R× M by J̃ .

Definition 1.4. A spherical finite energy foliation for (M, λ, J) is, by def-
inition, a 2-dimensional smooth foliation F of R × M having the following
properties:

• There exists a universal constant c > 0 such that for every leaf F ∈ F
there exists an embedded finite energy sphere ũ : S2 \ Γ → R × M for
(M, λ, J) satisfying

F = ũ
(
S2 \ Γ

)
and E(ũ) ≤ c.

• The translation along the fiber R of R× M ,

Tr(F ) := r + F =
{
(r + a, m) | (a, m) ∈ F

}
,

F ∈ F and r ∈ R, defines an R-action T : R × F → F . Hence, in
particular, Tr(F ) ∈ F if F ∈ F , and either Tr(F1)∩F2 = ∅ or Tr(F1) = F2

for any two leaves in F .
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We illustrate the concept with an explicit example for (S3, λ0, i). The
Reeb vector field X on S3 ⊂ C2 is for the standard contact form λ0 given by

X(z) = 2iz, z ∈ S3.

The contact plane ξz, z ∈ S3, agrees with the complex line in TzS
3. As complex

multiplication we choose J = i|ξ and denote by J̃ the associated R-invariant
almost complex structure on R× S3. Then the inverse of the diffeomorphism
(t, z) �→ e2tz from R× S3 onto C2 \ {0} is given by

Φ : C2 \ {0} → R× S3, z �→
(

1
2

ln |z|, z

|z|

)
.

It satisfies

TΦ ˚ i = J̃ ˚ TΦ

and hence is biholomorphic. Consider the planes

Φ
(
C× {c}

)
for all c ∈ C \ {0}

and the special cylinder

F0 = Φ
(
(C \ {0}) × {0}

)
in R× S3. The union F of these sets constitutes a smooth foliation of R× S3

consisting of finite energy planes and the finite energy cylinder F0. The action
of R is represented by Tr

(
Φ

(
C × {c}

))
= Φ

(
C × {e2rc}

)
if c �= 0 while

TsF0 = F0 for every s ∈ R. Clearly, TrF ∩ F = ∅ for every r �= 0 and
F �= F0. Consequently, the only fixed point of the R-action is the cylinder
F0. It is the orbit cylinder of the special solution x0(t) = (e2it, 0) of X on S3

having period π. The map ũ : C \ {0} → R× S3 parametrizing F0 is given by
Φ

(
(e2π(s+it), 0)

)
=

(
πs, (e2πit, 0)

)
. The periodic orbit (x0, π) is the asymptotic

limit of all the finite energy planes. Indeed, Φ
(
(e2π(s+it), c)

)
→

(
πs, (e2πit, 0)

)
as s → ∞, for every c �= 0. Let now

p : R× S3 → S3

be the projection map. Then p(F0) = x0(R) and for every F �= F0, the subset
p(F ) is an embedded plane transversal to the Reeb vector field X. Moreover,
if F1 and F2 ∈ F do not belong to the same orbit of the R-action, then
p(F1)∩p(F2) = ∅. Therefore, the projection p(F) = F̂ is a singular foliation of
S3. It is a smooth foliation of S3 \x0(R) = p(F \{F0}) into planes transversal
to X and asymptotic to x0. Hence the periodic orbit x0 is the binding orbit of
an open book decomposition of S3 illustrated by Figure 2.
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x0

x0

Figure 2. The figure illustrates a section through an open book
decomposition of S3 viewed as R3 ∪ {∞}. The two black dots
represent the periodic orbit perpendicular to the plane. The curves
represent pages of an open book decomposition.

Although this example is not nondegenerate, the fact that a finite energy
foliation on R × M leads to a geometric decomposition of the manifold M is
of quite general nature as we shall see below where we strengthen the concept
of finite energy foliation. We should remark that there are other finite energy
foliations for (S3, λ0, i). For example, the collection of all cylinders R × P ,
where P runs over all Hopf circles on S3. Here a small perturbation, taking
the contact form fλ0 for f close to the constant function equal to one will
destroy most periodic orbits so that this second foliation is rather unstable.

1.4. Stable finite energy foliations, the main result. Let M = S3 be the
standard sphere equipped with the nondegenerate contact form λ = fλ0 and
consider an embedded finite energy sphere ũ = (a, u) : S2 \ Γ → R × S3 for
(S3, λ, J). The punctures Γ split into the positive and the negative punctures,
Γ = Γ+∪Γ−. With every z0 ∈ Γ we associate the index µ(z0) of its asymptotic
limit, which is a nondegenerate periodic orbit of the Reeb vector field X.
Following [30] we can associate with the sphere ũ the integer

µ(ũ) =
∑

z∈Γ+

µ(z) −
∑

z∈Γ−
µ(z).

If ũ
(
S2 \ Γ

)
=: F , we set

µ(F ) = µ(ũ) ∈ Z.
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The definition does not depend on the choices involved. Finally, we define the
index of the embedded finite energy sphere F by

(1.11) Ind(F ) := µ(F ) − χ(S2) + 	F,

where 	F = 	Γ is the number of the punctures and χ(S2) = 2 is the Euler
characteristic of the two-sphere. The integer Ind(F ) will be important in the
analysis later on. It has an interpretation as the Fredholm index describing
the dimension of the moduli space of nearby embedded finite energy spheres
having the same topological type and the same number of punctures which are
allowed to move on S2; see [36]. The following definition is crucial.

Definition 1.5 (Stable finite energy foliation). Assume the contact form
λ = fλ0 to be nondegenerate. Let F be a spherical finite energy foliation for
(S3, λ, J). We call F stable if it has the following properties:

• Every leaf of F is the image of an embedded finite energy sphere.

• For every leaf the asymptotic limits are simply covered, their Conley-
Zehnder indices are contained in {1, 2, 3} and their self-linking numbers
are equal to −1.

• Every leaf has precisely one positive puncture but an arbitrary number
of negative punctures. For every leaf F ∈ F which is not a fixed point of
the R-action, Ind(F ) ∈ {1, 2}.

We deduce some immediate consequences from this definition. Consider
a leaf F ∈ F which is not a fixed point of the R-action. Its punctures are
Γ = Γ+ ∪ Γ− = Γ+ ∪ Γ−

1 ∪ Γ−
2 ∪ Γ−

3 , where Γ−
j are the punctures having µ-

index equal to j, and where 	Γ+ = 1. Denoting by µ+ the index of the unique
positive puncture we have, recalling (1.11),

Ind(F ) = µ+ − 3	Γ−
3 − 2	Γ−

2 − 	Γ−
1 − 2 + 1 + 	Γ−

1 + 	Γ−
2 + 	Γ−

3

= µ+ − 1 − 2	Γ−
3 − 	Γ−

2 .

Since, by definition of F , Ind(F ) ≥ 1 we find 2	Γ−
3 + 	Γ−

2 ≤ µ+ − 2 from which
we conclude,

µ+ ∈ {2, 3}, 	Γ−
3 = 0, 	Γ−

2 ≤ 1.

There is no restriction on 	Γ−
1 . In order to represent different types of leaves

F ∈ F which are not fixed points of the R-action on F we introduce the vectors

α = (µ+, µ−
1 , . . . , µ−

N ).

Here N is the number of negative punctures of F , µ+ the Conley-Zehnder index
of its unique positive puncture and µ−

j the indices of the negative punctures
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ordered so that µ−
j ≥ µ−

j+1. The leaves F ∈ F with Ind(F ) ∈ {1, 2} and N

negative punctures are of the following types

α = (3, 11, . . . , 1N ), Ind(F ) = 2

α = (3, 2, 11, . . . , 1N−1), Ind(F ) = 1

α = (2, 11, . . . , 1N ), Ind(F ) = 1.

The number N of negative punctures can, of course, be zero. If this happens,
the first and the third case represent finite energy planes. The second type
represents for N = 1 a finite energy cylinder connecting a periodic orbit of
index 3 (f.e. elliptic) with a periodic orbit of index 2 (hyperbolic).

Postponing the nontrivial consequences of the definition of a stable finite
energy foliation we first formulate our main existence result.

Theorem 1.6 (Existence of a stable finite energy foliation). For every
choice of f ∈ Θ1, there exists a Baire set of admissible complex multiplications
J admitting a stable finite energy foliation F of (S3, fλ0, J) containing a finite
energy plane.

Since, by hypothesis, the energies E(ũ) are uniformly bounded and since
the periods of the asymptotic limits are bounded by the energy we conclude
from the nondegeneracy of λ, that the number of all asymptotic limits appear-
ing in F is finite. It follows from Fredholm theory that a leaf F ∈ F satisfying
Ind(F ) = 2 belongs to a 2-parameter family of leaves all having the same
asymptotic limits. One parameter is defined by R-action on F . The image of
the 2-parameter family under the projection map

p : R× S3 → S3,

where the R-action is divided out, is a 1-parameter family of embedded punc-
tured Riemann spheres. In contrast, a leaf F ∈ F satisfying Ind(F ) = 1
belongs to a 1-parameter family, namely the orbit of F under the R-action.
The projection of this orbit into S3 is an isolated embedded punctured sphere,
in the following called a rigid surface. Clearly, if F is an orbit cylinder, its
projection in S3 agrees with its asymptotic limit.

The stable finite energy foliation F of R × S3 gives rise to the following
geometric decomposition of S3.

Proposition 1.7. The stable finite energy foliation F established in
Theorem 1.6 has the following properties:

• If Tr(F ) = F for some r �= 0 and F ∈ F , then Ts(F ) = F for all s ∈ R
and F = R×P is an orbit cylinder. Hence the fixed points of the R-action
on F are orbit cylinders.
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• If two leaves F and G ∈ F do not belong to the same orbit of the action,
then p(F ) ∩ p(G) = ∅.

• If F ∈ F is not a fixed point of the R-action, the projection p(F ) is a
smooth embedded punctured two-sphere in S3 which is transversal to the
Reeb vector field X and which converges at the punctures to the asymp-
totic limits of F .

• Denote by P the finite set of asymptotic limits of F . Then the projection
p(F) is a singular foliation of S3 having the singularities P. Moreover,
p(F \ { fixed points of the R-action }) is a smooth foliation of S3 \ {P}.
The leaves of the foliation are embedded punctured spheres transversal to
X and at the punctures asymptotic to elements in P.

Important for our applications to the Reeb flows is the global system of
transversal sections of the Reeb vector field which is an immediate consequence
of Theorem 1.6 and Proposition 1.7.

Corollary 1.8 (Global system of transversal sections). If fλ0 is a
nondegenerate contact form on the standard sphere S3 with associated Reeb
vector field X, then there exists a nonempty set P consisting of finitely many
distinguished periodic orbits of X which are simply covered, have self -linking
number −1 and µ-indices in the set {1, 2, 3} so that the complement

S3 \ P
is smoothly foliated into leaves which are embedded punctured Riemann spheres,
transversal to the Reeb vector field X and converging at the punctures to peri-
odic orbits in P.

We illustrate the situation in Figure 3 which sketches the projection of a
stable finite energy foliation into S3.

The 3-sphere is viewed as R3 ∪ {∞}. The figure shows the trace of the
projection p(F) in a 2-dimensional plane. There are three distinguished asymp-
totic limits P = {P1, P2, P3}, two of them P1 and P3 have index 3 (elliptic)
and P2 with index 2 (hyperbolic). There are four rigid leaves in S3, namely
two cylinders connecting the elliptic periodic orbit with the hyperbolic orbit,
and two planes asymptotic to the hyperbolic orbit. The nonrigid leaves are
two 1-parameter families of planes.

1.5. Outline of the proof. The origin of the foliation lies in the structure
of Gromov’s pseudoholomorphic spheres homologous to CP 1 in the compact
symplectic manifold (CP 2, ω) represented as CP 2 = C2 ∪ CP 1 and equipped
with a compatible almost complex structure. It will be recalled in Section 2.4
below. Our contact manifold (S3, fλ0) can be identified with (M, λ0) where
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P1 P2 P3

P1

P2

P3

Figure 3. Stable finite energy foliation of S3.

M ⊂ C2 is a star-like hypersurface defined by the function f . Denoting by
ω0 = dλ0 the standard symplectic structure in C2, the hypersurface M is of
contact type, and an open neighborhood of the region bounded by M in C2

can be symplectically embedded into CP 2 \ CP 1 to obtain the decomposition

CP 2 = W̃ ∪ M ∪ Ṽ

into the inside W̃ of M whose closure has M as convex contact boundary
and the outside Ṽ of M , containing CP 1, whose closure has M as concave
contact boundary. Adding, for N ≥ 1, the necks [−N, N ] × M in the comple-
ment of the sphere at infinity, we obtain a sequence of symplectic manifolds
(AN , ωN ) which are symplectomorphic to (CP 2, ω) and which have compatible
almost complex structures ĴN agreeing on the necks with the distinguished
R-invariant structure J̃ . Given a point (0, m) ∈ [−N, N ] × M ⊂ AN there ex-
ists a unique ĴN -holomorphic sphere CN homologous to CP 1 and containing
the two points (0, m) and o∞ ∈ CP 1 in AN . The spheres CN are embedded
and automatically generic. Two such spheres are either identical or intersect
transversally at the point o∞ having intersection numbers equal to 1. In the
limit as N → ∞ singularities show up and the spheres CN disintegrate into a
tree of different types of punctured finite energy spheres in the target spaces
W̃ , R × M and Ṽ . In particular, one obtains leaves Cmk of the desired foli-
ation in R × M through a dense set of points (0, mk) ∈ M which are in the
complement of the periodic orbits of the Reeb vector field on M . The leaves
are embedded and either identical or disjoint. The limit procedure as N → ∞
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is based on a technical bubbling off analysis and uses our Fredholm theory for
symplectified contact manifolds and Gromov-McDuff’s intersection theory of
pseudoholomorphic curves in 4-dimensional symplectic manifolds. By means
of a second round of bubbling off analysis we find, as mk → m, leaves through
every point (0, m) ∈ R×M and translating these leaves by the R-action estab-
lishes the desired foliation of R×M into pseudoholomorphic punctured spheres
of uniformly bounded energies.

1.6. Application to dynamical systems. The system of transversal sec-
tions established is a natural generalization of the concept of a global surface
of section. Recall that a global surface of section for a vector field X on
a 3-dimensional manifold M is an embedded compact surface Σ ⊂ M whose
boundary components are periodic orbits of X, whose interior intΣ is transver-
sal to X and has the property that every orbit of X other than the boundary
components intersects intΣ in forward and backward time. The flow ϕt of
X induces a diffeomorphism ψ : intΣ → intΣ, the so called Poincaré section
map. It is defined by following a point p ∈ intΣ along its solution ϕt(p) until
the first time it hits intΣ again. This way the study of the solutions of X is
reduced to the study of the section map ψ and its iterates.

Theorem 1.9. Let F be a stable finite energy foliation for (S3, λ, J)
established in Theorem 1.6. Assume λ = fλ0 with f ∈ Θ2 as specified in
Proposition 1.1. If F has precisely one fixed point of the R-action, then the
Reeb vector field Xλ possesses a global surface of section of disc type. If F has
at least two fixed points, then Xλ possesses a hyperbolic periodic orbit and an
orbit homoclinic to this periodic orbit.

The dynamical consequences of the first alternative are the following. The
singular foliation on S3 obtained by F in this case is an open book decom-
position into pages of disc type all having the distinguished periodic orbit P

(of the fixed point of the R-action) as asymptotic limit. The index of this
periodic solution is µ(P ) = 3. Therefore, by the arguments in [35], every page
is a global surface of section. Moreover, the section map ψ is conjugated to an
area-preserving diffeomorphism ψ̂ of the open unit disc. Since the area of the
disc is finite we conclude by means of Brouwer’s translation theorem that ψ̂

possesses a fixed point p. It is the initial condition to a periodic solution of the
Reeb vector field Xλ which is different from P . If ψ̂ has another periodic point
different from the fixed point p already established, then by the remarkable
theorem of John Franks in [20], the map ψ̂ has infinitely many periodic points,
so that Xλ has infinitely many periodic solutions. Summarizing, if there is a
global surface of section, the Reeb vector field possesses either 2 or ∞ many
periodic orbits.
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Assume now that F has more than one fixed point of the R-action. In this
case the Reeb vector field Xλ possesses necessarily a hyperbolic periodic orbit
of index µ(P ) = 2 and an orbit homoclinic to this periodic orbit. The stable
and unstable invariant manifolds of the hyperbolic orbit intersect transversally
giving rise to a Bernoulli-system and hence, in particular, to infinitely many
periodic solutions. Therefore, we conclude from Theorem 1.9 the following:

Corollary 1.10. For every contact form λ = fλ0 on S3 satisfying
f ∈ Θ2 the associated Reeb vector field Xλ possesses either two or infinitely
many periodic solutions.

An interesting class of contact forms is the so-called class of dynamically
convex contact forms.

Definition 1.11. The contact form λ = fλ0 with f ∈ Θ1 is called dynam-
ically convex if µ(P ) ≥ 3 for all periodic solutions P of the associated Reeb
vector field Xλ.

It turns out that the finite energy foliation for (S3, fλ0, J) in case of a
dynamically convex contact form has precisely one fixed point of the R-action,
and we conclude from Theorem 1.9 the following corollary.

Corollary 1.12. The Reeb vector field Xλ associated with a nondegen-
erate and dynamically convex contact form λ = fλ0 possesses a global surface
of section.

It is shown in [35] that the statement holds true without the nondegener-
acy condition on the periodic orbits replacing in the definition of dynamically
convex the requirement µ(P ) ≥ 3 by µ̃(P ) ≥ 3 for the generalized index µ̃

introduced in [35].
The constructions and results are applicable to Hamiltonian systems on

(R4, ω0) restricted to sphere-like energy surfaces. Here ω0 denotes the standard
symplectic form ω0 = dλ0 with the Liouville form λ0 = 1

2

∑2
j=1(qjdpj − pjdqj).

We shall use the complex notation z = (z1, z2) = (q1 + ip1, q2 + ip2) ∈ C2 ≡ R4.
Consider a regular energy surface E = {z ∈ C2 | H(z) = constant} for the
Hamiltonian vector field XH defined by iXH

ω0 = −dH. If E is star-like, i.e., if

E =
{
z
√

f(z) | z ∈ S3
}

for some f ∈ C∞(S3,R+), then the restriction of the Hamiltonian flow on E is
equivalent to the Reeb flow on S3 associated with the contact form λ = fλ0. If
E bounds a strictly convex domain in C2, then λ = fλ0 is a dynamically convex
contact form, provided that periodic orbits on E are nondegenerate; see [35].
We conclude from Corollary 1.12 that a Hamiltonian flow on a strictly convex
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energy surface in R4 possesses a global surface of section in the nondegenerate
case. Again, the nondegeneracy requirement on the periodic solutions can be
dropped, see [35].

Theorem 1.9 is also applicable to the geodesic problem of a Riemannian
metric g on S2. The geodesic flow restricted to the unit sphere bundle T1S

2 ≡
RP 3 is a Reeb flow. The unit sphere bundle has the double covering S3 and it
can be shown that the double covered geodesic flow is equivalent to the Reeb
flow on S3 associated with a tight contact form λ = fλ0. The flow is invariant
under the symmetry z �→ −z on S3.

By the classical result due to Lyusternik and Schnirelmann there are at
least three geometrically distinct closed geodesics on S2 so that the associated
Reeb flow on S3 possesses at least three distinct periodic orbits. We therefore
conclude from Corollary 1.10 that there are ∞ many closed geodesics for a
generic metric g on S2. The result is, of course, not new and even holds true
for every Riemannian metric g as proved by V. Bangert and J. Franks [2], [20].
The new aspect in the generic case lies in the proof which shows that either
there is a disc-like surface of section (for the doubly covered geodesic flow) or
there exists a hyperbolic periodic orbit having orientable stable and unstable
manifolds intersecting transversally in a homoclinic orbit.

Conjecture 1.13. A tight Reeb flow on S3 has either precisely two or
infinitely many geometrically distinct periodic orbits.

As already mentioned, the conjecture is true for dynamically convex con-
tact forms, fλ0 for f constituting an open subset of C∞(S3, (0,∞)), and also
for every generic f ∈ Θ2, in view of Corollary 1.10.

2. The main construction

We shall identify the contact manifold (S3, fλ0) with (M, λ0|M ) where
M ⊂ C2 is a star-like hypersurface defined by means of the function f . The
hypersurface M is of contact-type in C2 equipped with the standard symplectic
structure ω0 and an open neighborhood of the domain bounded by M in C2

will be symplectically embedded in CP 2 away from its sphere at infinity S∞.
Adding the neck [−N, N ] × M to the embedded hypersurface we shall obtain
a compact manifold (AN , ωN ), symplectomorphic to (CP 2, ω), which has a
special compatible almost complex structure ĴN which in particular agrees
on the neck with the R-invariant structure J̃ . We then show that there is a
unique ĴN -holomorphic sphere in AN containing the two given points (0, m) ∈
[−N, N ]×M and o∞ ∈ S∞. The sphere is embedded and generic. The desired
finite energy foliation on R × M will be the result of a limit procedure as
N → ∞ carried out in Chapters 3–6.



FINITE ENERGY FOLIATIONS 141

For later reference we shall first collect in Section 2.1 some results on finite
energy spheres in R × M in the generic situation. The manifolds (AN , ωN ),
N ≥ 1, will be constructed in Sections 2.2 and 2.3. For the convenience of the
reader, Gromov’s theory of pseudoholomorphic curves in CP 2, homologous to
CP 1, will be outlined in Section 2.4.

2.1. The problem (M). In the following M is a closed 3-manifold equipped
with the contact form λ which is assumed to be nondegenerate in the sense of
Proposition 1.1. The aim of this section is to collect some information about
finite energy spheres in R×M . In order to formulate the generic properties of
such maps we first recall Floer’s Cε-space.

We choose a compatible complex multiplication J0 : ξ → ξ of the contact
planes and denote by J̃0 the associated R-invariant almost complex structure
on R × M . The Fréchet space C∞ consists of all smooth maps m �→ Y (m),
where m ∈ M , and

Y (m) ∈ HomR(ξm)

satisfying

(2.1) Y (m) ˚ J0(m) + J0(m) ˚ Y (m) = 0.

The map Y (m) has the following property:

(2.2) dλ
(
Y (m)h, k

)
+ dλ

(
h, Y (m)k

)
= 0

for h, k ∈ ξm. Indeed, if h �= 0 we set k = γh+ δJ0(m)h and obtain from (2.1)
(since dλ(·, J0(m)·) is an inner product on ξm)

dλ
(
Y (m)h, k

)
= γdλ

(
Y (m)h, h

)
+ δdλ

(
Y (m)h, J0(m)h

)
= −γdλ

(
h, Y (m)h

)
+ δdλ

(
h, J0(m)Y (m)h

)
= −γdλ

(
h, Y (m)h

)
− δdλ

(
h, Y (m)J0(m)h

)
= −dλ

(
h, Y (m)k

)
.

If ε = (εk) is a sequence of positive numbers converging to 0 we denote by Cε

the subspace of C∞ consisting of Y satisfying (2.1) and such that

(2.3) ‖Y ‖ε =
∞∑

k=0

εk‖Y ‖Ck < ∞.

If (εk) converges sufficiently fast to 0, the subset Cε is dense in C∞;
see A. Floer [16]. For δ > 0 we denote by Uδ the set of R-invariant almost
complex structures J̃ : T (R× M) → T (R× M) of the form

(2.4) J̃(a, m)(γ, k) =
(
−λ(m)(k), J(m)πk + γX(m)

)
,



142 H. HOFER, K. WYSOCKI, AND E. ZEHNDER

where
J(m) = J0(m) exp

[
−J0(m)Y (m)

]
,

with Y ∈ Cε satisfying ‖Y ‖ε < δ. The map Y → J̃ ∈ Uδ constitutes the global
chart for Uδ defining a separable Banach manifold structure.

We consider finite energy spheres in R × M for generic J̃ , i.e., J̃ ∈ Ξ,
where the set Ξ ⊂ Uδ is as defined in Theorem 2.1 below,

(2.5)
ũ : S2 \ Γ → R× M,

T ũ ˚ i = J̃ ˚ T ũ,

0 < E(ũ) < ∞.

Later on we shall refer to this nonlinear problem as problem (M). From Fred-
holm theory in [36] we recall that the finite energy spheres in the neighborhood
of an embedded finite energy sphere ũ are described by a nonlinear Fredholm
equation having the Fredholm index Ind(ũ) = µ(ũ) − 2 + 	Γ. The index is
computed for unparametrized spheres. This means that the positions of the
punctures Γ are allowed to vary and the group of Möbius transformations is
divided out. Due to the R-action, the kernel of the linearized Fredholm op-
erator is at least one-dimensional unless the image of ũ is a cylinder over a
periodic orbit, in which case π ˚ Tu = 0. If J̃ is generic we have the following
result, proved for embedded finite energy surfaces in [36], and for somewhere
injective surfaces in [7].

Theorem 2.1. There exists a Baire subset Ξ ⊂ Uδ such that for every
J̃ ∈ Ξ the following holds. If ũ : S2 \ Γ → R × M is a somewhere injective
finite energy sphere for J̃ , then

Ind(ũ) = µ(ũ) − 2 + 	Γ ≥ 1

provided π ˚ Tu does not vanish identically.

The number 1 on the right-hand side of the estimate stems from the R-
invariance of J̃ . Theorem 2.1 has the following consequence already mentioned
in the introduction.

Corollary 2.2. Assume J̃ ∈ Ξ. Let ũ = (a, u) : S2 \ Γ → R × M be
a somewhere injective finite energy sphere with precisely one positive puncture
and an arbitrary number of negative punctures. If all the occurring Conley-
Zehnder indices for the asymptotic limits of the punctures (computed with re-
spect to a suitable symplectic trivialization of u∗ξ) are contained in {1, 2, 3}
and if π ˚ Tu �= 0, then

	Γ2 ≤ 1.

Here Γ2 is the set of those punctures whose asymptotic limits have Conley-
Zehnder indices equal to 2.
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Proof. Denote by Γ−
j the set of negative punctures whose asymptotic lim-

its have index j ∈ {1, 2, 3}. By assumption, 	Γ = 1 + 	Γ−
1 + 	Γ−

2 + 	Γ−
3 . From

Theorem 2.1 we deduce, using the definition of µ(ũ),

1 ≤ µ+ − µ− − 2 + 	Γ

= µ+ − 	Γ−
1 − 2	Γ−

2 − 3	Γ−
3 − 2 + 	Γ

= [µ+ − 1] − 	Γ−
2 − 2	Γ−

3 .

Consequently,
	Γ−

2 + 2	Γ−
3 ≤ µ+ − 2,

which leads to the following conclusions:

1. µ+ ∈ {2, 3}.

2. If µ+ = 2, then all the negative punctures have index 1.

3. If µ+ = 3, then there is at most one negative puncture with index 2 and
all other negative punctures have index 1.

Corollary 2.3. Assume J̃ and ũ : S2 \Γ → R×M meet the hypotheses
of Corollary 2.2. Then the Fredholm index of ũ satisfies

Ind(ũ) ∈ {1, 2}.

More precisely, the following situations are possible, where µ+ is the Conley-
Zehnder index of the positive puncture:

• µ+ = 2 and every negative puncture has Conley-Zehnder index equal to 1.
In this case Ind(ũ) = 1.

• µ+ = 3 and there is one negative puncture with index equal to 2 while all
other negative punctures have index equal to 1. In this case Ind(ũ) = 1.

• µ+ = 3 and all negative punctures have indices equal to 1. In this case
Ind(ũ) = 2.

Proof. The statement is an immediate consequence of the conclusions 1, 2,
3 above and the formula Ind(ũ) = µ+−µ−−2+	Γ for the Fredholm index.

The nature of the punctures strongly influences the geometry of the finite
energy sphere. In this context it is useful to recall Proposition 4.1 in [30].

Proposition 2.4. If ũ = (a, u) : S2 \ Γ → R × M is a finite energy
sphere, the section π ˚ Tu of the bundle

HomC

(
T (S2 \ Γ), ũ∗ξ

)
→ S2 \ Γ
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either vanishes identically or has only a finite number of zeros. Every zero has
a positive index.

Denote by windπ(u) the number of zeros (counting multiplicities) of
π ˚ Tu. This integer is related to the asymptotic data of the punctures and
we recall Theorem 5.8 in [30].

Theorem 2.5. If ũ = (a, u) : S2 \ Γ → R × M is a finite energy sphere
satisfying π ˚ Tu �= 0, then

2windπ(u) ≤ µ(ũ) − 2χ(S2) + 2	Γeven + 	Γodd.

Here Γeven is the subset of Γ consisting of punctures with even Conley-Zehnder
index and Γodd the subset of punctures with odd Conley-Zehnder index, com-
puted with respect to u∗ξ. Moreover, µ(ũ) is the difference between the sum
of the indices associated with positive punctures and the sum of the indices
belonging to the negative punctures.

Theorem 2.5 is very useful whenever more information about the nature
of punctures is available as the following corollary shows.

Corollary 2.6. Assume ũ = (a, u) : S2 \ Γ → R× M is a finite energy
sphere satisfying π ˚ Tu �= 0. If Ind(ũ) ≤ 2 and 	Γeven ≤ 1, then

π ˚ Tu(z) �= 0

for every point z ∈ S2 \ Γ.

Proof. We compute, using Theorem 2.5,

2 windπ(ũ) ≤ µ(ũ) − 4 + 2	Γeven + 	Γodd

= (µ(ũ) − 2 + 	Γ) − 2 − 	Γ + 2	Γeven + 	Γodd

= Ind(ũ) − 2 + 	Γeven ≤ 2 − 2 + 1 = 1.

Hence windπ(ũ) = 0 implying the desired result.

We make use of the corollary in the proof of the following result.

Theorem 2.7. Let J̃ ∈ Ξ be generic and assume ũ := (a, u) : S2 \ Γ →
R×M is an embedded finite energy sphere with simply covered asymptotic limits
and π ˚ Tu not vanishing identically. If Ind(ũ) ∈ {1, 2} and 	Γeven ≤ 1, then
the map u : S2 \Γ → M is an embedding transversal to the Reeb vector field X.
Moreover, the image of u does not intersect the periodic orbits associated with
the punctures Γ.

Proof. By the results in [36], the given sphere ũ lies in an Ind(ũ)-dimensional
family of embedded finite energy spheres. A member of this family can be de-
scribed by means of a graph of a section of the normal bundle of ũ in R× M
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satisfying a Monge-Ampère-type equation. Clearly, a zero of the section is an
intersection point with ũ. The linearization at the zero-section is a Cauchy-
Riemann type operator L. Our first aim is to show that the family consists of
mutually disjoint spheres. Since the asymptotic limits are, by assumption, sim-
ply covered, it is sufficient to prove that the nontrivial elements in the kernel of
L do not admit any zero. Indeed, due to the special asymptotic behavior near
a puncture, a neighboring sphere can be homotoped to an element in the kernel
without introducing zeros near the punctures. Since Γ �= ∅, the normal bundle
of ũ is trivial and hence can be identified with R2. So, let h : S2 \ Γ → R2

be a nontrivial element in the kernel of L. The crucial observation now is,
that as a solution of the perturbed Cauchy-Riemann operator L, the map h

admits only isolated zeros having, in addition, positive indices. Denoting the
sum of the local indices by � it remains to show that � = 0. In order to do so,
we make use of the asymptotic behavior of h near every puncture in Γ which
is similar to the z-part studied in [32], [36]. This follows since the asymp-
totic operators near the punctures are, in suitable coordinates, the same as
those describing the sphere ũ near the punctures. Let D be a holomorphic
disc centered at a positive puncture corresponding to z = 0 and introduce
holomorphic polar coordinates σ : R+ × S1 → D \ {0} by z = e−2π(s+it). Then
v = h ˚ σ : R+ × S1 → R2 has the following asymptotic representation:

v(s, t) = e
∫ s

s0
λ+(τ)dτ

[
e+(t) + r(s, t)

]
,

where ∂αr(s, t) → 0 uniformly in t ∈ S1 for all derivatives as s → ∞ and
where λ+(s) converges to a negative eigenvalue λ+ of the asymptotic self-
adjoint operator

(2.6) −J0
d

dt
− S∞(t) on L2(S1,R2)

associated with the periodic solution of the puncture. The periodic function
e+(t + 1) = e+(t) is an eigenvector belonging to λ+. Since it does not vanish
anywhere it possesses a winding number wind(e+) ∈ Z. For the behavior of h

near a negative puncture there is an analogous formula, where s → −∞ and
λ−(s) → λ− for a positive eigenvalue λ− of (2.6) with associated eigenvector
e− and winding number wind(e−). Clearly,

(2.7) � =
∑
Γ+

wind(e+) −
∑
Γ−

wind(e−).

The winding numbers wind(e) are related to the normal Conley-Zehnder in-
dices µN computed with respect to the above trivialization of the normal bun-
dle. Recall from Theorem 3.10 in [30] the formula

(2.8) µN = 2α + p.
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Here p ∈ {0, 1} and α is the maximal winding number of eigenvectors belong-
ing to the negative eigenvalues of the asymptotic operator (2.6). Since the
winding numbers are monotone increasing with the eigenvalues we conclude
for a positive puncture 2 wind(e+) ≤ µN if µN is even and ≤ µN − 1 if µN is
odd, while for a negative puncture 2 wind(e−) ≥ µN for µN even and ≥ µN +1
for µN odd. Therefore, in view of (2.7),

2� ≤
∑
Γ+

odd

(
µN − 1

)
+

∑
Γ+

even

µN −
∑
Γ−

odd

(
µN + 1

)
−

∑
Γ−

even

µN(2.9)

=
(
µ+

N − µ−
N

)
−

(
	Γ+

odd + 	Γ−
odd

)
= µN (ũ) − 	Γodd.

The relationship between the normal Conley-Zehnder index µN (ũ) and the
usual index µ(ũ) computed with respect to a trivialization of u∗ξ is, by Theo-
rem 1.8 in [36], given by the formula

µ(ũ) = µN (ũ) + 4 − 2	Γ.

In view of Theorem 2.1,

Ind(ũ) = µ(ũ) − 2 + 	Γ.

We can estimate, using (2.9),

Ind(ũ) = µN + 2 − 	Γ

≥ 2� + 2 − 	Γ + 	Γodd

= 2� + 2 − 	Γeven.

By our assumptions, 	Γeven ≤ 1 and Ind(ũ) ≤ 2, so that 2 ≥ Ind(ũ) ≥ 2� + 1.
Consequently, � ≤ 0 and hence � = 0, as we set out to prove.

Summing up, we conclude that the spheres near ũ in the Ind(ũ)-dimensional
family are mutually disjoint. As shown in the Fredholm theory [36], the
R-action accounts for one dimension in this family. The R-action is defined
by ũc(z) := (a(z) + c, u(z)). Hence, for 0 < |c| small the intersection number
int(ũ, ũc) is well defined and 0. If c �= 0 the intersection set of ũ and ũc is com-

pact in view of the asymptotic behavior near the punctures, and by homotopy
invariance we conclude

int(ũ, ũc) = 0, c �= 0.

In view of the positivity of intersections of pseudoholomorphic curves we deduce
that the images of ũ and ũc for c �= 0 are disjoint. This implies that u is
injective. Since, by Corollary 2.6, the section π˚Tu does not vanish anywhere,
u : S2 \ Γ → M is an injective immersion transversal to X and so, by the
asymptotic behavior near the punctures, the map u must be an embedding.
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Moreover, an intersection point of u with an asymptotic limit would have to
be transversal, and hence would imply a self intersection of u contradicting the
injectivity of u. Therefore, the image of u does not intersect the asymptotic
limits of the punctures Γ and the proof of Theorem 2.7 is complete.

2.2. Gluing almost complex half cylinders over contact boundaries. Let
(A, ω) be a compact 4-dimensional symplectic manifold with boundary ∂A �= ∅,
in the following denoted by

B := ∂A.

We assume the boundary to be of contact type. This requires the existence of
a one-form λ on B satisfying

(2.10) dλ = ω|B, λ ∧ dλ = volume form on B.

In particular, λ is a contact form on the 3-manifold B and determines on B

the contact structure ξ by ξ = ker λ and the Reeb vector field X by λ(X) = 1
and dλ(X, ·) = 0, so that the tangent space

TpB = RX(p) ⊕ ξp, p ∈ B,

splits into a line bundle with section X and the plane bundle ξ → B having
the symplectic form dλ|ξ. We denote by π : TB → ξ the projection along the
Reeb vector field. The one-form λ on B can be extended to a one-form on an
open neighborhood U of B in such a way that still dλ = ω|U , where we denote
the extension by λ again; see, for example, [40]. On U we define the vector
field η by

iηω = λ.

Then iηλ = 0 and, in view of Cartan’s formula Lη = d ˚ iη + iη ˚ d for the Lie
derivative of the vector field, we have Lηω = ω and Lηλ = λ. Consequently,
the flow ϕt of η satisfies on its domain of definition in U ,

ϕ∗
t ω = etω, ϕ∗

t λ = etλ.

The vector field η is transversal to B,

TpA = Rη ⊕ TpB, p ∈ B ⊂ A,

since otherwise η ∈ TpB, leading to the contradiction 0 = dλ(η, X) = λ(X)
= 1. Conversely, of course, a vector field η on U transversal to B and satisfying
Lηω = ω, defines the one-form λ = iηω meeting the properties (2.10). The
boundary B splits into two parts

B = B+ ∪ B−,

where the vector field η points outward on B+, and inward on B−. (One of the
parts might, of course, be empty.) We shall use the flow ϕt in order to define



148 H. HOFER, K. WYSOCKI, AND E. ZEHNDER

useful collars of B±. If ε > 0 is sufficiently small we define the embeddings Φ±

by

(2.11) Φ+ : [−ε, 0] × B+ → A, (t, b+) �→ ϕt(b+)

if −ε ≤ t ≤ 0 and b+ ∈ B+;

(2.12) Φ− : [0, ε, ] × B− → A, (t, b−) �→ ϕt(b−)

if 0 ≤ t ≤ ε and b− ∈ B−. This way a neighborhood of B ⊂ A is foliated by
conformally symplectomorphic leaves

B+
τ = ϕτ (B+), −ε ≤ τ ≤ 0,

with B+
0 = B+, and analogously for B−

τ . If ϕ ∈ C∞(R,R), the two-form d(ϕλ)
on R × B evaluated at the tangent vectors (α, a) and (β, b) ∈ T(s,p)(R × B)
results in

d(ϕλ)
[
(α, a), (β, b)

]
= ϕ′(s)

[
αλ(b) − βλ(a)

]
+ ϕ(s)dλ(a, b)(2.13)

= ϕ′(s)
[
αb1 − βa1

]
+ ϕ(s)dλ(a2, b2).

We have used the representations a = a1X(p) + a2 and b = b1X(p) + b2

according to the splitting TpB = RX(p)⊕ξp. We see that d(ϕλ) is a symplectic
form if ϕ > 0 and ϕ′ > 0 on R. In particular, d(esλ) is symplectic on R × B,
and a computation shows that

(2.14) (Φ±)∗ω = d(esλ)

on [−ε, 0] × B+, resp. on [0, ε] × B−.
Recall that an almost complex structure Ĵ on A is called compatible with

ω if
g
Ĵ
(h, k) := ω(h, Ĵk)

is a Riemannian metric on A. The set of compatible almost complex structures
is nonempty and contractible. This is, of course, well known and we refer
to [40].

Definition 2.8. The almost complex structure Ĵ on A is called admissible
if it is compatible with ω and if, in addition,

TΦ+
˚ J̃ = Ĵ ˚ TΦ+ on [−ε, 0] × B+(2.15)

TΦ−
˚ J̃ = Ĵ ˚ TΦ− on [0, ε] × B−,

where J̃ is the standard R-invariant almost complex structure on R× B,

(2.16) J̃(s, p)[h, k] =
[
−λ(p)k, J(p)πk + hX(p)

]
,

[h, k] ∈ T(s,p)(R × B). Here J : ξ → ξ is an almost complex structure on the
contact planes.
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If ϕ ∈ C∞(R,R) satisfies ϕ > 0 and ϕ′ > 0, the almost complex structure
J̃ is compatible with the symplectic form d(ϕλ) on R× B. Indeed, by (2.13),

d(ϕλ)
[
(α, a), J̃(β, b)

]
= ϕ′(s)

[
αβ + a1b1

]
+ ϕ(s)dλ(a2, Jb2)

and dλ(a2, Jb2) is a symmetric and positive definite bilinear form on ξ.
It will be important for our considerations later on that an admissible Ĵ

be compatible not only with ω but with a variety of other symplectic forms.
To see this, introduce the collections Σ± of smooth functions ϕ± satisfying

ϕ+ : [−ε,∞) → (0, 1),
ϕ− : (−∞, ε] → (1,∞),

d
dsϕ

±(s) > 0,

ϕ+(s) = es if s ∈ [−ε,−ε/2],

ϕ−(s) = es if s ∈ [ε/2, ε].

Denote by Σ the collection of pairs ϕ = (ϕ+, ϕ−) with ϕ± ∈ Σ±. With
ϕ ∈ Σ we associate the following 2-form ωϕ on A:

ωϕ = ω on A \
(
Φ+([−ε/2, 0] × B+) ∪ Φ−([0, ε/2] × B−)

)
,

(Φ+)∗ωϕ = d(ϕ+λ) on Φ+ ([−ε/2, 0] × B+),

(Φ−)∗ωϕ = d(ϕ−λ) on Φ− ([0, ε/2] × B−) .

In view of (2.14) the 2-form ωϕ is a smooth symplectic form on A. Assume
now that Ĵ is admissible; then

ωϕ

(
TΦ+u, ĴTΦ+v

)
= ωϕ

(
TΦ+u, TΦ+J̃v

)
= d

(
ϕ+λ

)(
u, J̃v

)
,

and similarly for Φ−. Since J̃ is compatible with d(ϕ±λ) we have proved:

Lemma 2.9. An admissible almost complex structure Ĵ on A is compatible
with every symplectic structure ωϕ, ϕ ∈ Σ.

We next define the noncompact almost complex manifold

(Ã, Ĵ)

having no boundary. It will be constructed from A, equipped with an ad-
missible structure Ĵ , by gluing cylinders to the collars of the boundaries B±.
Recalling the symplectic embeddings from (2.11) and (2.12) we introduce the
compact manifold

Â = A \
(
Φ+([−ε/2, 0] × B+) ∪ Φ−([0, ε/2] × B−)

)
and equip the manifolds [−ε,∞)×B+ and (−∞, ε]×B− with the R-invariant
structure J̃ in (2.16). Identifying [−ε,−ε/2] × B+ with its image in A under
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Φ+, and [ε/2, ε] × B− with its image under Φ− we obtain the manifold Ã as
the disjoint union

Â ∪
(
[−ε,∞) × B+ ∪ (−∞, ε] × B−)

with the pointwise identifications:

Φ+
(
[−ε,−ε/2] × B+

)
≡ [−ε,−ε/2] × B+,

Φ−
(
[ε/2, ε] × B−

)
≡ [ε/2, ε] × B−.

In view of the compatibility conditions (2.15) we can equip Ã with an almost
complex structure Ĵ by choosing on A an admissible structure and on the two
cylindrical ends the corresponding standard structure J̃ . We denote the almost
complex manifold obtained this way by (Ã, Ĵ).

(−∞, ε) × B− (−ε,∞) × B+

η

B− B+Â

η

Figure 4. Construction of the almost complex manifold (Ã, Ĵ).

We define for ϕ ∈ Σ the closed 2-form ωϕ on Ã by the requirements

(2.17) ω
ϕ|Â = ω, ωϕ|end± = d(ϕ±λ)

where we abbreviated end+ = [−ε,∞) × B+ and end− = (−∞, ε] × B−. In
view of the compatibility condition (2.14), this defines a smooth symplectic
form on Ã which, moreover, is compatible with Ĵ . This proves the first part
of the following lemma.

Lemma 2.10. If ϕ ∈ Σ, then the map ωϕ ˚(Id×Ĵ) defines a Riemannian
metric on Ã. If, in addition,

lim
s→∞

ϕ+(s) = 1 and lim
s→−∞

ϕ−(s) = 1,

then (Ã, ωϕ) is symplectomorphic to (int(A), ω) by means of a symplectic dif-
feomorphism inducing the identity on Â.
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Proof. In order to prove the second part of the lemma we observe that, by
assumption, ϕ+(s) = eβ+(s), where the smooth function β+ : [−ε,∞) → [−ε, 0)
satisfies d

dsβ
+ > 0 and β+(s) = s if −ε ≤ s ≤ −ε/2 and β+(s) → 0 as s → ∞.

Similarly ϕ− : (−∞, ε] → R has the form ϕ−(s) = eβ−(s) with d
dsβ

− > 0 and
β−(s) = s if ε/2 ≤ s ≤ ε and β−(s) → 0 as s → −∞. Let ϕ = (ϕ+, ϕ−)
and define the diffeomorphism Ψ : (Ã, ωϕ) → ( int A, ω) by setting Ψ|Â = Id.
Moreover, using the flow ϕt of η we define Ψ : [−ε,∞) × B+ → intA at the
positive end by Ψ(s, m) = ϕβ+(s)(m). Then

Ψ∗ω = d(ϕ+λ).

Similarly, taking Ψ(s, m) = ϕβ−(s)(m) at the negative end, the statement
follows.

A general finite energy sphere in (Ã, Ĵ) is a smooth map u : S2 \ Γ → Ã

solving the partial differential equation

Tu ˚ i = Ĵ(u) ˚ Tu

and satisfying the energy requirement

0 < E(u) < ∞,

where
E(u) := sup

ϕ∈Σ

∫
S2\Γ

u∗ωϕ.

In order to describe the behavior of u near a puncture z0 ∈ Γ we ob-
serve that a suitable neighborhood U ⊂ S2 of z0 looks biholomorphically like
the closed unit disc D ⊂ C, i.e., U = ϕ(D) and z0 = ϕ(0). Introduce the
holomorphic parametrization ψ : R+ × S1 → D \ {0} by ψ(s, t) = e−2π(s+it)

and parametrize U \ {z0} by the holomorphic parametrization σ = ϕ ˚ ψ :
R+ × S1 → U \ {z0}. The composition v = u ˚ σ : R+ × S1 → Ã solves the
Cauchy-Riemann equation on R+ × S1 and has finite energy,

∂sv + Ĵ(v)∂tv = 0, E(v) < ∞.

Proposition 2.11. Consider a general finite energy sphere u : S2 \Γ → Ã

in the neighborhood U \ {z0} of the punctures z0 ∈ Γ. Then for v = u ˚ σ :
R+ × S1 → Ã one of the following three alternatives holds:

1. There exists a compact K ⊂ Ã such that v(R+ × S1) ⊂ K.

2. The image of v is unbounded and there exists R > 0 such that

v
(
[R,∞) × S1

)
⊂ R

+ × B+.
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3. The image of v is unbounded and there exists R > 0 such that

v
(
[R,∞) × S1

)
⊂ R

− × B−.

Moreover, in the first case the solution u has a smooth extension over z0. In
the second case there exist a sequence Rk → ∞ and a positive number T > 0
such that v(s, t) = (a(s, t), vB+(s, t)) ∈ R+ × B+ satisfies

a(Rk, t) → ∞, vB+(Rk, t) → x(Tt),

in C∞(S1), where x is a T -periodic solution of the Reeb vector field ẋ = X(x)
on B+. In the third case there exist a sequence Rk → ∞ and a negative number
T < 0 such that

a(Rk, t) → −∞, vB−(Rk, t) → x(Tt),

for a |T |-periodic solution of X on B−.

Definition 2.12. The puncture z0 ∈ Γ is called removable in the first case,
positive in the second and negative in the third case.

Proof. In order to estimate the derivatives of the finite energy cylinder
v : [0,∞) × S1 → Ã it is convenient to embed Ã in some R × Rm so that the
cylindrical ends have the form (−∞, 0]×B− and [0,∞)×B+. Using the metric
induced from the Euclidean inner product we first note that the gradient and all
higher order derivatives are uniformly bounded. This is proved by means of a
standard bubbling off argument precisely as in [24]. If the image of v is bounded
hence contained in the compact domain Ω, we can take a symplectic form ωϕ

restricted to Ω and apply Gromov’s removable singularity theorem from [23]
in order to conclude that v can be extended smoothly over the puncture z0.
Assume next the image of v to be unbounded and assume that there exists
a sequence sk → ∞ such that v(sk, 0) = (ak, mk) ∈ R+ × B+ and ak → ∞.
We claim that v([R,∞) × S1) ⊂ R+ × B+ for some R > 0. Indeed, arguing
indirectly we find a sequence s′k satisfying v(s′k, 0) ∈ A and, going over to
subsequences, we can assume

sk < s′k < sk+1 < s′k+1.

Take a smooth function τ : R → R satisfying τ(s) = 0 if s ≤ 0 and τ ′′(s) > 0
for s > 0. Define the smooth function H : [0,∞) × S1 → R by

H(s, t) = τ(a(s, t)) if v(s, t) = (a(s, t), w(s, t)) ∈ R+ × B+

H(s, t) = 0 if v(s, t) �∈ R+ × B+.

A straightforward calculation shows that

∆H(s, t) ≥ 0
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on R+ × S1. Using the uniform gradient bounds for v we have, however,

max
{

sup
S1

H(s′k, t), sup
S1

H(s′k+1, t)
}

< inf
S1

H(sk, t).

This contradicts the maximum principle and proves the claim. Turning to
the remaining alternative there is a sequence sk → ∞ such that v(sk, 0) =
(ak, mk) ∈ R−×B− and ak → −∞. Again the maximum principle shows that
v([R,∞)×S1) ⊂ R−×B− for some R > 0. Since in the unbounded cases, the
images v([R,∞) × S1) are completely contained in almost complex cylinders
equipped with the R-invariant standard structure J̃ , the remaining statements
of the proposition are proved in [24].

Remark 2.13 (Uniqueness of the foliation). If λ and λ1 are two contact
forms on B satisfying dλ = dλ1 = ω|B, then d(λ − λ1) = 0, so that λ − λ1 de-
fines a cohomology class in H1(B,R). We call λ and λ1 equivalent if this class
vanishes and denote by [λ] the equivalence class [λ] = {λ1 = contact form on
B | dλ1 = ω|B and λ1 = λ + dh for h : B → R}. We shall show that the equiv-
alence class [λ] determines the foliation near B up to a Hamiltonian diffeomor-
phism of A preserving the leaves.

Proposition 2.14. Assume that Φ± and Φ±
1 are two conformally sym-

plectic foliations near B associated with the equivalent contact forms λ and
λ1. Then there exist an open neighborhood U ⊂ A of B and a Hamiltonian
diffeomorphism Ψ : A → A which preserves the leaves of the foliation in U :

Ψ : Φ±(τ × B±) → Φ±
1 (τ × B±),

for τ ∈ [−ε, 0] resp. τ ∈ [0, ε].

Proof. We first prove the statement locally near one of the connected
components of the boundary which we assume to be a negative one (for λ)
and which we call B. The equivalent contact form λ1 = λ + dh satisfies
dλ1 = dλ = ω|B. If X is the Reeb vector field of λ then RX is the kernel of ω|B
and hence λ1(X) > 0 on B. Therefore, λs := λ + sdh, 0 ≤ s ≤ 1, is an arc of
contact forms connecting λ0 = λ with λ1. The associated Reeb vector fields are
denoted by Xs. Introduce the s-dependent vector field Ys := −hXs and denote
by ψs its flow, satisfying d

dsψs = Ys(ψs) and ψ0 = id. Then d
ds(ψ

∗
sλs) = 0 and

hence ψ∗
sλs = λ0 for 0 ≤ s ≤ 1. Defining the family of one-forms λ̂s on [0, ε]×B

by
λ̂s(τ, m)[α, a] = eτλs(m)[a],

0 ≤ s ≤ 1, we conclude for the induced diffeomorphisms ψ̂s : [0, ε] × B →
[0, ε] × B, defined by ψ̂s(τ, m) = (τ, ψs(m)), that

ψ̂∗
s λ̂s = λ̂0, 0 ≤ s ≤ 1.
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Next we extend the family λs of one-forms on B to the family λs = λ + sdĥ

of one-forms on a neighborhood U of B, still satisfying dλs = ω on U . Define
the family of vector fields ηs on U transversal to B by

ω(ηs, ·) = λs, 0 ≤ s ≤ 1,

and denote their flows by ϕs
t so that d

dtϕ
s
t = ηs(ϕs

t ) and ϕs
0 = id. As before,

the foliations near B are introduced by means of the maps

Φs : [0, ε] × B → U, (τ, m) �→ ϕs
τ (m),

0 ≤ s ≤ 1. Using (ϕs
t )

∗λs = etλs one verifies that Φ∗
sλs = λ̂s. Consequently,

the composition Ψs := Φs ˚ ψ̂s ˚ Φ−1
0 : U → U satisfies

(2.18) Ψ∗
sλs = λ0, 0 ≤ s ≤ 1.

Since dλs = dλ = ω on U , the maps are symplectic, Ψ∗
sω = ω. By construction,

Ψs : Φ0(τ × B) → Φs(τ × B)

for τ ∈ [0, ε] and 0 ≤ s ≤ 1. Note that Ψ0 = id so that Ψs is the flow of the
s-dependent vector field Zs on U ,

Zs(x) =
(

d

ds
Ψs

)
˚ Ψ−1

s (x), x ∈ U.

Differentiating (2.18) we obtain

0 =
d

ds

(
Ψ∗

sλs

)
= Ψ∗

s

(
LZsλs + dĥ

)
= Ψ∗

s

(
iZsω + d(iZsλs) + dĥ

)
.

Hence iZsω = −dHs, so that Zs is a time-dependent Hamiltonian vector
field. The time-one map Ψ1 is the desired local Hamiltonian diffeomorphism
on U . Carrying out the above construction near every boundary component
and extending these local Hamiltonians to a function on A we obtain a time-
dependent Hamiltonian vector field whose time-one map Ψ is the desired dif-
feomorphism.

2.3. Embeddings into CP 2, the problems (V) and (W). We consider a
hypersurface M ⊂ R4 which is star-like with respect to the origin. In complex
notation C2 = R4 it is represented by

M =
{
z
√

f(z) | z ∈ S3
}
,

for a positive smooth function f : S3 → R, with the sphere S3 = {z ∈ C2 |
|z| = 1}. Recall the standard symplectic form ω0 on C2 (viewed as a real vector
space):

ω0 =
2∑

j=1

dqj ∧ dpj .
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Then ω0 = dλ0, with the Liouville form

λ0 =
1
2

2∑
j=1

(
qjdpj − pjdqj

)
.

The star-like hypersurface M bounds the compact domain W ⊂ C2. The
boundary ∂W = M of the symplectic manifold (W, ω0) is of contact type, the
contact form on ∂W is λ0|∂W . Viewed from the inside, the boundary is convex.
Indeed, the Liouville vector field η0 on C2, defined by iη0ω0 = λ0, is equal to
η0(z) = z/2 and satisfies Lη0ω0 = ω0. Moreover, η0 is transversal to ∂W where
it points to the outside of W .

The Hamiltonian flow on M is equivalent to the Reeb flow on S3 defined
by the tight contact form λ = fλ0|S3 . Indeed, the diffeomorphism

ϕ : S3 → M

defined by ϕ(z) = z
√

f(z) satisfies

ϕ∗(λ0|M ) = fλ0|S3

and hence induces an isomorphism between kerω0|M and ker d[fλ0|S3 ]. There-
fore, the Hamiltonian flow on M is equivalent (up to reparametrization of the
orbits) to the flow of the Reeb vector field X determined by the contact form
fλ0|S3 . Multiplying f by a positive constant only changes the parametrization
of the orbits and hence does not change the structure of the flow and we may
assume that 0 < f ≤ 1/4. Hence W ⊂ D1/2(0), the closed Euclidean ball of
radius 1/2 in C2.

In the following the complex projective space CP 2 will be equipped with
the standard symplectic structure ω related to the Fubini-Study metric. There
is a symplectic diffeomorphism

Ψ : (B1(0), ω0) →
(
CP 2 \ CP 1, ω

)
,

where B1(0) ⊂ C2 is the open unit ball and where CP 1 is the sphere at ∞
so that CP 2 = C2 ∪ CP 1. In homogeneous coordinates of CP 2 the map Ψ is
given by

Ψ(z1, z2) =
[
z1, z2,

√
1 − |z1|2 − |z2|2

]
.

We shall denote the sphere at infinity by S∞; in the homogeneous coordinates
above it corresponds to [z1, z2, 0]. Identifying for convenience the symplecto-
morphic manifolds under consideration (by means of Ψ) we have the following
inclusions

M = ∂W ⊂ W ⊂ D 1
2
(0) ⊂ B1(0) ⊂ CP 2.

Introduce now V ⊂ CP 2,

(2.19) V = CP 2 \ int(W ).
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The compact symplectic manifold (V, ω) has a concave contact type boundary
∂V = M . Moreover,

(2.20) V ∩ W = M, V ∪ W = CP 2, S∞ ⊂ int(V ).

In view of the symplectic embedding Ψ we have on an open neighborhood U

of M in CP 2, a distinguished one-form λ and a vector field η transversal to M

satisfying dλ = ω and iηω = λ. We use the flow ϕt of the transversal vector
field η to define for ε sufficiently small the embedding

(2.21) Φ : [−ε, ε] × M → U ⊂ CP 2

by setting Φ(t, m) = ϕt(m), and denote its restrictions by

Φ+ : [−ε, 0] × M → W and Φ− : [0, ε] × M → V.

In the notation of Section 2.2,

[∂V ]+ = [∂W ]− = ∅ and [∂W ]+ = [∂V ]− = M.

We observe that λ|M is a contact form on M satisfying d(λ|M ) = ω|M .
Since M is diffeomorphic to S3 we conclude [τ ] = [λ|M ], for every contact form
τ on M satisfying dτ = ω|M .

Recalling the construction in Section 2.2 we shall glue half-cylinders over
the boundaries of V and W and define the associated compatible almost com-
plex structures. Identifying (M, λ0|M ) with (S3, fλ0|S3) we first fix an almost
complex structure J : ξ → ξ on the contact bundle defined by λ on M . We
choose J so that the associated R-invariant almost complex structure J̃ on
R× M is generic, i.e., J̃ ∈ Ξ (Section 2.1).

We first glue a cylinder over the boundary M of W in order to obtain a
symplectic noncompact manifold (W̃ , ωϕ) without boundary. Set Ŵ := W \
Φ+

(
(−ε/2, 0] × M

)
, take the disjoint union

Ŵ ∪
(
[−ε,∞) × M

)
and identify the points as follows:

Φ+
(
[−ε,−ε/2] × M

)
≡ [−ε,−ε/2] × M.

On W̃ we choose an admissible, almost complex structure Ĵ which agrees on
the cylindrical end [−ε,∞) × M with the R-invariant structure J̃ . Recall the
set Σ+ from Section 2.2. Then the closed two-form ωϕ on W̃ , defined by (2.17)
in Section 2.2 (with Ŵ replacing Â), is a symplectic form. If, in addition
lims→∞ ϕ(s) = 1, then

(2.22) (W̃ , ωϕ) and (W \ ∂W, ω)
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are symplectomorphic by Lemma 2.10 in Section 2.2. Similarly, a half cylinder
is glued over the boundary M of V in order to obtain the symplectic manifold
(Ṽ , ωϕ). Here V̂ := V \ Φ−([0, ε/2) × M) and in the disjoint union

V̂ ∪ (−∞, ε] × M

the points are identified by means of Φ−([ε/2, ε] × M) ≡ [ε/2, ε] × M . The
symplectic forms ωϕ on Ṽ for ϕ ∈ Σ− are defined as above. If lims→−∞ ϕ(s)
= 1, then

(2.23) (Ṽ , ωϕ) and (V \ ∂V, ω)

are symplectomorphic.

Later on we shall study in detail generalized finite energy spheres in W̃

and Ṽ referred to as problem (W) and problem (V). By definition, a generalized
finite energy sphere in W̃ , (respectively Ṽ ), is a smooth map

u : S2 \ Γ → W̃ ( resp. Ṽ )

solving the equation
Tu ˚ i = Ĵ ˚ Tu

and satisfying the estimate

E(u) := sup
ϕ∈Σ+

∫
S2\Γ

u∗ωϕ < ∞

(resp. ϕ ∈ Σ−).

Φ([−ε, ε] × M) M

{ε} × M

{ε/2} × M

{−ε/2} × M

{−ε} × M

S∞

V̂

Ŵ

η

Figure 5. Construction of the compact symplectic manifold (AR, ωϕ).
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In order to change the almost complex structure in an open neighborhood
of M ⊂ CP 2 we add a neck to M in CP 2 and define the compact symplectic
manifold (AR, ωϕ) as follows. We take

V̂ ∪ Ŵ = CP 2 \ Φ
(
(−ε/2, ε/2) × M

)
and identify in the disjoint union (V̂ ∪ Ŵ )∪ [−R− ε, R + ε]×M the points as
follows:

u = Φ(s, m) ≡ (s − R, m) if (s, m) ∈ [−ε,−ε/2] × M,(2.24)

u = Φ(s, m) ≡ (s + R, m) if (s, m) ∈ [ε/2, ε] × M.

On AR we take the almost complex structure ĴR defined by ĴR = J̃ on
[−R − ε, R + ε] × M and ĴR = Ĵ on V̂ ∪ Ŵ . These structures are compatible
in view of the identification (2.24).

If R ≥ 0, the set ΣR consists of all smooth functions ϕ : [−R−ε, R+ε] →
(0,∞) satisfying

ϕ′(s) ≥ 0

and

ϕ(s) =

{
es+R if s ∈ [−R − ε,−R − ε/2]
es−R if s ∈ [R + ε/2, R + ε].

By CR we shall abbreviate the set of all closed two-forms ωϕ on AR, with
ϕ ∈ ΣR, defined by

ωϕ = ω on CP 2 \ Φ
(
(−ε/2, ε/2) × M

)
,

ωϕ = d(ϕλ) on [−R − ε, R + ε] × M.

If ϕ ∈ ΣR has a positive derivative, the two-form ωϕ is a symplectic form on
AR compatible with ĴR and the symplectic manifolds

(2.25) (AR, ωϕ) and (CP 2, ω)

are symplectomorphic. Indeed, observe that ϕ(s) = eβ(s) with a function
β : [−R − ε, R + ε] → [−ε, ε] satisfying β′ > 0 and β(s) = s + R if s ∈
[−R − ε,−R − ε/2] and β(s) = s − R if s ∈ [R + ε/2, R + ε]. Define the map
Φ : [−R− ε, R+ ε]×M → CP 2 by Φ(s, m) = ϕβ(s)(m), where ϕt is the flow of
the transversal vector field η. Then Φ∗ω = d(ϕλ). Hence setting Φ|V̂ ∪Ŵ

= id,

the map Φ : AR → CP 2 is the desired diffeomorphism.
The energy of a ĴR-holomorphic sphere ũ : S2 → AR is defined by

E(ũ) := sup
ϕ∈ΣR

∫
S2

ũ∗ωϕ

and satisfies
E(ũ) =

∫
S2

ũ∗ωϕ
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for every ϕ ∈ ΣR as is readily verified. Later on it will be convenient that the
energy can be computed for the special functions ϕR defined as follows. Pick
a smooth function

ϕ0 : [−ε, ε] → R

satisfying

ϕ0(s) =


es if s ∈ [−ε,−ε/2]
1 if s ∈ [−ε/4, ε/4]
es if s ∈ [ε/2, ε]

and
ϕ′

0(s) ≥ 0.

If R > 0, the function ϕR is defined by

ϕR(s) =


ϕ0(s + R) if s ∈ [−R − ε,−R]
1 if s ∈ [−R, R]
ϕ0(s − R) if s ∈ [R, R + ε].

We associate with every R ≥ 0 the closed two-form ωR on AR which is
defined as above by:

ωR = ω on V̂ ∪ Ŵ ,(2.26)

ωR = d(ϕRλ) on [−R − ε, R + ε] × M.

The two-form ωR is compatible with ĴR. The energy of a ĴR-holomorphic
sphere ũ : S2 → AR becomes

E(ũ) =
∫

S2
ũ∗ωR.

2.4. Pseudoholomorphic spheres in CP 2. In this section we recall some
well known results about pseudoholomorphic spheres in CP 2, referring to [23],
[41], [43], [44], [52], [53] for more details. We consider CP 2 equipped with its
standard symplectic form ω related to the Fubini-Study metric. The almost
complex structures J on CP 2 considered are compatible with ω and, moreover,
equal to i in a neighborhood of CP 1 ⊂ CP 2. We consider J-holomorphic
spheres u : S2 → CP 2 which are homologous to CP 1 ⊂ CP 2. Their virtual
genus is defined by

g̃(u) = 1 +
1
2

[
C · C − c(u)

]
,

where C = u(S2), and C ·C is the self-intersection number of the sphere. The
latter is equal to 1. Moreover, c(u) = c1

(
u∗(TCP 2, J)

)
[S2] is the first Chern

number which is equal to 3. As a special case of the adjunction formula for
pseudoholmomorphic curves in symplectic 4-manifolds we have

g̃(u) ≥ genus(S2) = 0
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Figure 6. The functions ϕ0 and ϕR.

with equality if and only if u is an embedding; see [43]. In our case, g̃(u) = 0,
so that the pseudoholomorphic spheres homologous to CP 1 are all embedded.
Hence neighboring (unparametrized) pseudoholomorphic spheres S2 → CP 2

can be viewed as sections of the complex normal bundle of u(S2) satisfying a
nonlinear first order elliptic system, whose linearization Lu at the zero section is
a Cauchy-Riemann-type operator. Its Fredholm index is, by the Atiyah-Singer
index theorem, equal to

Ind(Lu) = 2 + 2cN (u),

with the Chern number cN (u) of the normal bundle. The total Chern number
c(u) is the sum of the normal Chern number and the Chern number of the
tangent bundle of u(S2). Since the latter is equal to 2 we have c(u) = 3 =
2 + cN (u) and hence cN (u) = 1. Consequently,

(2.27) Ind(Lu) = 4.

The results in [27] imply that the Fredholm operator Lu is surjective so that for
every J we have genericity automatically. In the parametrized description the
family of pseudoholomorphic curves is 10-dimensional since the reparametriza-
tion group of S2 is the (real) 6-dimensional Möbius group. We also note that u

defines a generator of H2(CP 2) = Z. The space of unparametrized pseudoholo-
morphic spheres homologous to CP 1 is compact. This follows from the fact
that bubbling off is not possible since there is no smaller class with positive
ω-area other than CP 1. Moreover, any two pseudoholomorphic spheres homol-
ogous to CP 1 are either identical or have precisely one transversal intersection
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point. Indeed, they are homotopic and therefore their intersection number
is equal to the self-intersection number which is equal to 1. Recall that the
intersection number is always positive.

In view of (2.27) and the surjectivity the Cauchy-Riemann type operator,
Lu has a 4-dimensional kernel K. Consider a nonvanishing section h ∈ K.
By the similarity principle the zeros of h are isolated and of positive index.
The sum of the indices has to be the Chern number cN (u) = 1 of the normal
bundle of u(S2). Consequently, a nontrivial section of the normal bundle in
K is transversal to the zero section and has one positive intersection with
the zero section of the normal bundle. Let hj , 1 ≤ j ≤ 4 be a basis of the
kernel K. Take two different points z0 and z1 of S2, and define the map
Φ : R4 → Nu(z1) ⊕ Nu(z2) by

Φ(λ1, . . . , λ4) =
(∑

λjhj(z0),
∑

λjhj(z1)
)

.

The map Φ is injective since otherwise we would have a nontrivial section in
K with two zeros, which in view of the positivity of the index contradicts the
fact that the intersection index is equal to 1.

Given two different points p and q ∈ CP 2 there exists at most one curve
passing through these points. Indeed, if there were two such curves, their
intersection number would be greater than or equal to 2. Assume now a given
curve passes through the points p and q, p �= q. Then we obtain curves passing
through nearby points p′ and q′ by means of the implicit function theorem
using the property that the map Φ is an isomorphism. Fix now p �= q in CP 2

and take a homotopy J(s) from i to J through admissible almost complex
structures. For the structure i there is a unique curve CP 1 connecting p with
q. Now changing the parameter one obtains a 1-parameter family of J(s)-
pseudoholomorphic spheres homologous to CP 1 and passing through p and q,
by means of the implicit function theorem. For s fixed the curve is unique;
moreover, it depends smoothly on p and q.

If two J-holomorphic curves homologous to CP 1 have a tangential in-
tersection they must agree, since otherwise they would have an intersection
number greater than or equal to 2. From this it follows that a point q and
a complex line in Tq(CP 2) determine a unique pseudoholomorphic curve ho-
mologous to CP 1 through the point q whose tangent space agrees with the
complex line.

We apply these results to the symplectic manifolds (AN , ωN ) which are
symplectomorphic to (CP 2, ω) and which are equipped with the compatible
almost complex structure ĴN introduced in the previous section. We de-
note by MN = M

ĴN
the space of unparametrized ĴN -holomorphic spheres
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in AN ≡ CP 2 homologous to CP 1. We may identify an element of MN with
the image of a representative which is an embedded ĴN -pseudoholomorphic
sphere. Summing up part of the above discussion we have:

Theorem 2.15. Assume N ∈ N is fixed and consider AN . Given C1 and
C2 in MN , either C1 = C2 or C1 and C2 have one point of intersection, and the
intersection index is equal to 1. In particular, the intersection is transversal.
In addition, given two different points q1 and q2 in AN , there exists precisely
one curve in MN containing q1 and q2.

3. Stretching the neck

We denote by MN = M
ĴN

the moduli space of unparametrized ĴN -
holomorphic spheres in AN ≡ CP 2 homologous to CP 1 ⊂ CP 2. We may
identify an element of MN with the image of a representative which is an
embedded ĴN -holomorphic sphere. We shall abbreviate by S∞ the sphere at
infinity. It is also ĴN -holomorphic; recall that near the sphere at infinity all
the almost complex structures under consideration coincide and are equal to i.
We now fix a point o∞ ∈ S∞ on the sphere at infinity, and denote by M0

N the
subset of all elements in MN consisting of spheres different from S∞ which
intersect S∞ at the point o∞. Hence the elements of M0

N intersect S∞ in
precisely one point, namely o∞. The intersection index is equal to 1.

The main part of the desired finite energy foliation for M will be the result
of a bubbling off analysis applied to M0

N in a limiting process as N → ∞.
We choose (r, m) ∈ R × M and denote, for N ≥ |r|, by CN the unique

sphere in M0
N containing the point (r, m). In the following we shall describe the

decomposition of a suitable subsequence of (CN ) into solutions of the Problems
(M), (V) and (W).

If C = (CN ) is the above distinguished sequence in M0
N and if ϕ : N→ N is

injective and monotone we shall abbreviate by Cϕ the subsequence (Cϕ(j))j∈N.
Let wN : S2 → AN be a ĴN -holomorphic parametrization of CN =

wN (S2). Setting S2 = C ∪ {∞} we normalize the parametrization as follows.
We require that

(3.1) wN (∞) = o∞,

and either wN (0) ∈ Ŵ , or the point wN (0) belongs to [−N, N ] × M and has
the lowest possible R-value. In addition, we require, denoting by D the closed
unit disc in C, that

(3.2)
∫

D
w∗

NωN = π − γ,



FINITE ENERGY FOLIATIONS 163

with the closed two-form ωN introduced in (2.26) and with a number 0 < γ < π.
Recall that, the sphere being homologous to CP 1 ⊂ CP 2,∫

S2
w∗

NωN =
∫
CP 1

ω = π.

The number γ is chosen as follows. It is smaller than every period T of periodic
solutions of the Reeb vector field Xλ on M . Moreover, γ is smaller than the
minimum of all numbers |T−T ′|, where T and T ′ are mutually different periods
of periodic orbits of Xλ, the periods not exceeding π. Finally, γ is smaller than
the area of a compact ĴN -holomorphic curve through a point in S∞ having its
boundary outside of a fixed open neighborhood U of S∞. This neighborhood
U is assumed to be so small that it does not intersect the image of the map Φ
defined in (2.21). We observe that on U the almost complex structure ĴN is
independent of N if U is small enough. The existence of such an area bound
is guaranteed by Gromov’s isoperimetric inequality; see [23].

We choose a Riemannian metric gN on AN which is independent of N on
the piece V̂ ∪ Ŵ and which is translation invariant on [−N, N ] × M inducing
on every {c}×M ≡ M the same metric g. On S2 we choose the Fubini-Study
metric. Let Dδ denote the closed disc centered at the origin in C of radius δ.

Lemma 3.1. For any δ > 1 there exists a constant Cδ such that

|TwN (z)| ≤ Cδ

for every z ∈ S2 \Dδ and N ≥ |r|. Moreover, for any injective monotonic map
ϕ : N→ N and a sequence (zj) ⊂ S2 such that |Twϕ(j)(zj)| → ∞ and for every
ε > 0

lim inf
j→∞

∫
Dε(zj)

w∗
ϕ(j)ωϕ(j) > γ.

Proof. In order to prove the first part of Lemma 3.1 we argue indirectly
and assume that there exists a converging sequence zj → z0 for z0 �∈ D sat-
isfying Rj := |Twϕ(j)(zj)| → ∞ for some injective monotonic function ϕ. We
choose a sequence ρj → 0 such that still

|Twϕ(j)(zj)|ρj → ∞.

By the arguments in [24, Lemma 26] we can assume that, in addition,∣∣∣Twϕ(j)(z)
∣∣∣ ≤ 2

∣∣∣Twϕ(j)(zj)
∣∣∣ if

∣∣∣z − zj

∣∣∣ ≤ ρj ,

after replacing zj by a sequence still converging to z0 and replacing ρj by
another sequence converging to 0. We have to distinguish the following three
cases:

1. There exists a subsequence such that

wϕ˚ψ(j)(zψ(j)) = (rj , mj) ∈ [−ϕ ˚ ψ(j), ϕ ˚ ψ(j)] × M and
min{|rj − ϕ ˚ ψ(j)|, |rj + ϕ ˚ ψ(j)|} → ∞.
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2. There exist a subsequence and R > 0 such that

wϕ˚ψ(j)(zψ(j)) ∈ Ŵ ∪ ([−ε − ϕ ˚ ψ(j), R − ϕ ˚ ψ(j)] × M).

3. There exist a subsequence and R > 0 such that

wϕ˚ψ(j)(zψ(j)) ∈ V̂ ∪ ([ϕ ˚ ψ(j) − R, ε + ϕ ˚ ψ(j)] × M).

Simplifying the notation we set ũj(z) = wϕ˚ψ(j)(z) and zj = zψ(j), and
ωj = ωϕ˚ψ(j). Considering first the case 1 we recall the standard bubbling off
analysis from [24]. In a small neighborhood of zj we have ũj = (aj , uj) ∈ R×M .
Introduce

δj = inf
{
δ > 0 | there exists ζj with |ζj − zj | = δ and aj(ζj) = ±ϕ ˚ ψ(j)

}
.

Note that if δj ≤ ρj , then

|aj(ζj) − aj(zj)| = |aj(ζj) − rj | ≤
[∫ 1

0
|∇aj(τζj + (1 − τ)zj)|dτ

]
|ζj − zj |

≤ 2Rjδj .

Since the left side is equal to either |rj−ϕ˚ψ(j)| or |rj +ϕ˚ψ(j)| we conclude
that Rjδj → ∞. Abbreviate εj = min{ρj , δj}. The mappings ũj = (aj , uj) :
Dεj (zj) → R× M solve the equations

∂sũj + J̃(ũj)∂tũj = 0 on Dεj (zj),

where J̃ is the R-invariant almost complex structure on R×M and z = s + it.
Moreover,

zj → z0

Rj = |T ũj(zj)| → ∞ and Rjεj → ∞,

|T ũj(z)| ≤ 2|T ũj(zj)| if |z − zj | ≤ εj .

Rescaling the sequence in increasingly smaller neighborhoods of zj we define
for z ∈ DRjεj the mappings

ṽj(z) = (bj(z), vj(z)) =

(
aj

(
zj +

z

Rj

)
− aj(zj), uj

(
zj +

z

Rj

))
.

Since J̃ is R-invariant, the sequence ṽj has the properties

∂sṽj + J̃(ṽj)∂tṽj = 0,

|T ṽj(z)| ≤ 2 on DRjεj , |T ṽj(0)| = 1.

In view of these gradient bounds we conclude, by the Arzela-Ascoli theorem,
that

ṽj → ṽ in C∞
loc(C,R× M)
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for a nonvanishing map ṽ = (a, v) : C→ R× M solving

∂sṽ + J̃(ṽ)∂tṽ = 0 on C.

From the definition of the energy E(ũj) it follows immediately that

E(ṽ) ≤ π.

Hence the map ṽ is a nontrivial finite energy plane in R × M . In order to
estimate its dλ-energy we note that it was obtained by rescaling maps defined
on small discs with area not exceeding γ (this follows from the normalization
condition (3.2) and the fact that z0 �∈ D). Hence∫

C

v∗dλ ≤ γ.

Since ṽ is nontrivial, the M -part v is asymptotic to a periodic orbit with period
0 < T ≤ γ. This, however, contradicts the definition of γ being smaller than
any period T of Xλ and shows that the first case cannot occur.

Next we consider the second case. Identifying [−ε−N, R−N ] with [−ε, R]
we represent the map ũj by ũj = (aj , uj) whenever ũj(z) ∈ R × M . Define
δj = inf{δ > 0 | there exists ζj with |ζj − zj | = δ and aj(ζj) = ϕ ˚ ψ(j)} and
set εj = min{ρj , δj}. Then the sequence of mappings ũj : Dεj (zj) → Ŵ ∪
([−ε, ϕ ˚ ψ(j)] × M) solves the equations

Ĵ(ũj) ˚ T ũj = T ũj ˚ i on Dεj (zj).

Moreover,
zj → z0,

Rj = |T ũj(zj)| → ∞ and Rjεj → ∞,

|T ũj(z)| ≤ 2|T ũj(zj)| if |z − zj | ≤ εj .

Rescaling the sequence ũj we define the mappings

ṽj(z) = ũj

(
zj +

z

Rj

)
for z ∈ DRjεj . At any point z ∈ DRjεj satisfying ṽj(z) ∈ [−ε,∞) × M ,

ṽj(z) = (bj(z), vj(z)) =

(
aj

(
zj +

z

Rj

)
, uj

(
zj +

z

Rj

))
.

The sequence ṽj has the following properties on DRjεj :

Ĵ(ṽj) ˚ T ṽj = T ṽj ˚ i, |T ṽj(z)| ≤ 2, |T ṽj(0)| = 1.

Since ṽj(0) ∈ Ŵ ∪ ([−ε, R] × M), the sequence ṽj is, in view of the gradient
bounds, uniformly bounded on compact subsets of C. By applying the Arzela-
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Ascoli theorem we obtain a nonconstant generalized finite energy plane ṽ :
C→ W̃ := Ŵ ∪

(
[−ε,∞) × M

)
,

ṽj → ṽ in C∞
loc

(
C, Ŵ ∪ ([−ε,∞) × M)

)
.

If ṽ(C) ⊂ Ŵ ∪
(
[−ε, L) × M

)
for some L > 0, then the puncture at ∞ is

removable. In this case ṽ can be extended smoothly over ∞ to the pseudoholo-
morphic map ṽ : S2 → Ŵ ∪ ([−ε, L] × M). We will show that ṽ is constant in
this case, contradicting |T ṽ(0)| = 1. Indeed, ωϕ is exact on Ŵ ∪

(
[−ε, L]×M

)
and therefore ∫

S2
ṽ∗ωϕ = 0

implying that ṽ = constant, contradicting |T ṽ(0)| = 1. The contradiction
shows that the puncture at ∞ is not removable. Arguing as in Proposition 2.11
(Section 2.2) we have

ṽ(z) ∈ [0,∞) × M

for |z| large. Since its energy is finite, ṽ is asymptotic to a T - periodic solution
of Xλ implying

(3.3)
∫
C

ṽ∗ωϕ = lim
s→∞

∫
S1

v(e2π(s+it))∗λ = T

for every ϕ ∈ Σ+ satisfying lims→∞ ϕ(s) = 1. However, the bubbling off
analysis and the normalization show that the first term in (3.3) is bounded
above by γ. Hence T ≤ γ. This contradicts the definition of γ and shows that
the second case cannot occur either.

Next we exclude case 3. Identifying [−R + N, ε + N ] with [−R, ε] we
obtain in this case a nonconstant generalized finite energy plane ṽ : C→ Ṽ =
V̂ ∪

(
(−∞, ε]×M

)
, where the points in [ε/2, ε]×M are identified with points

in V̂ via the map Φ−. As a consequence of the bubbling off analysis together
with the normalization condition we again find for the energy of ṽ the estimate

(3.4) 0 <

∫
C

ṽ∗ωϕ ≤ γ

for every ϕ ∈ Σ− satisfying lims→−∞ ϕ(s) = 1. If the puncture ∞ was remov-
able, the map ṽ would compactify to a nonconstant holomorphic sphere. This
would imply that the above integral would have a value of at least π which is
not possible. Consequently ṽ has a nonremovable puncture at ∞, which has
to be negative, since V̂ has a concave boundary. By Proposition 2.11,

(3.5) ṽ(z) ∈ (−∞, 0] × M

for |z| large. If ṽ(C) does not intersect the sphere S∞ it belongs to the comple-
ment of S∞ in Ṽ . Note that the symplectic forms ωϕ are exact on Ṽ \S∞. By
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Stokes’ theorem we obtain, in view of (3.5) and using the asymptotic behavior
described in Proposition 2.11, ∫

C

ṽ∗ωϕ = −|T |,

contradicting (3.4). So, ṽ(C) must intersect the sphere at infinity. The inter-
section number cannot exceed 1, since all the intersection numbers of CN with
this sphere are equal to 1. In view of (3.5) we therefore conclude from the last
property of γ that ∫

C

ṽ∗ωϕ > γ,

in contradiction to (3.4). This finishes the proof of the first part of Lemma 3.1.

Next we proof the second part of the lemma. We again carry out a bub-
bling off analysis for the three different cases. This time zj → z0 ∈ D because
of the first part. In case 1 we obtain a finite energy plane in R×M . In the sec-
ond case we obtain a generalized finite energy plane in W̃ and Ṽ respectively.
The energies of these planes are, in view of the asymptotic behavior and the
property γ < T , estimated as follows:

In the first case:
∫
C

ṽ∗dλ > γ.

In the second case:
∫
C

ṽ∗ω
W̃

> γ.

In the third case:
∫
C

ṽ∗ω
Ṽ

> γ.

Here, ω
W̃

= ωϕ for every ϕ ∈ Σ+ satisfying lims→∞ ϕ(s) = 1 and ω
Ṽ

= ωϕ for
ϕ ∈ Σ− satisfying lims→−∞ ϕ(s) = 1. The desired estimates in the lemma now
follow, unwinding the scaling in the bubbling off analysis from the estimates
(in the short notation from above, for j sufficiently large)∫

DR

ṽ∗j ωj ≤
∫

DRjεj

ṽ∗j ωj =
∫

Bεj (zj)
ũ∗

jωj ≤
∫

Bε(zj)
ũ∗

jωj .

The left hand side converges to the energy of the corresponding finite energy
plane as j → ∞ and then as R → ∞. The proof of Lemma 3.1 is complete.

A point z0 ∈ S2 is called a bubbling off point of the sequence wϕ(j) of map-
pings if there exists a converging sequence zj → z0 satisfying |Twϕ(j)(zj)| → ∞
as j → ∞. The proof of the previous lemma shows that a sequence admits at
most finitely many bubbling off points.
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Lemma 3.2. Assume that ϕ : N → N is an injective monotonic map.
Assume that wϕ(j) : S2 → Aϕ(j) is Ĵϕ(j)-holomorphic and homologous to CP 1,
so that it parametrizes an element in Mϕ(j). Suppose there exist sequences (zi

j)
for i = 1, . . . , m with zi

j → zi
0 for j → ∞, where the zi

0 are mutually different,
so that |Twϕ(j)(zi

j)| → ∞. Then the following estimate holds:

m · γ ≤ π.

Proof. A bubbling off analysis shows that every bubbling off point takes
a certain amount of energy away. This is dλ-energy in case 1, ω

Ṽ
-energy in the

second and ω
W̃

-energy in the third case. All these energies exceed γ. Choose
ε > 0 such that ε-discs around the points zi

0 are disjoint. Then for j sufficiently
large

π =
∫

S2
w∗

ϕ(j)ωϕ(j) ≥
m∑

i=1

∫
Dε(zi

0)
w∗

ϕ(j)ωϕ(j).

Taking the lim inf as j → ∞, the right-hand side is, by Lemma 3.1, greater or
equal to mγ hence proving the lemma.

We recall from [24] that on a compact almost complex manifold, gradient
bounds of a solution of our elliptic system imply C∞-bounds. In the case at
hand the target manifolds AN depend on a parameter and their diameters
converge to ∞ as N → ∞. Nevertheless gradient bounds imply C∞-bounds in
our case also since the metrics gN are, by construction, quite special. In order
to estimate the derivatives we embed V̂ , Ŵ into some Rm and M into Rm−1

for m sufficiently large in such a way that [−N, N ]×M lies in R×Rm−1 = Rm

for every N . If w : S2 → AN is a smooth map and p ∈ S2, then w(p) ∈ Ŵ \∂Ŵ

or w(p) ∈ V̂ \∂V̂ or w(p) ∈ (−ε−N, ε+N)×M . Using charts we may assume
that a neighborhood of p is mapped into Rm and we can apply the differential
operators Dα = ∂α1

s ∂α2
t , where s+it are suitable holomorphic coordinates near

p ∈ S2.
Using these particular embeddings, the higher order (≥ 1) derivatives of a

sequence wj near a point are understood in the usual sense. Since our system
is elliptic we conclude from Lemma 3.1, in particular:

Lemma 3.3. Given any δ > 1, the derivatives of order at least 1 of the
sequence wN : S2 → AN are uniformly bounded on S2 \ Dδ.

Assume now that the sequence wj : S2 → Aj has the finite set Γ =
{z1, . . . , zm} of bubbling off points. Then, in view of Lemma 3.3, Γ ⊂ D. In
the complement of every open neighborhood of Γ ⊂ S2 we have C∞ bounds. If
z �∈ Γ then wj(z) �∈ Ŵ for all j sufficiently large. Indeed, arguing by contradic-
tion we assume that wϕ(j)(z) ∈ Ŵ . We find a path in S2 connecting z with ∞
and avoiding the points in Γ. Since the gradients are uniformly bounded, the
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images of the path under the mappings wϕ(j) must have a uniformly bounded
length. By assumption wϕ(j)(∞) = o∞ for all j. The distance between wϕ(j)(z)
and o∞ must exceed the distance between (r, m) and o∞, and by the choice
of the metric distN ((r, m), o∞) → ∞ as N → ∞. This contradiction proves
our claim that wj(z) �∈ Ŵ if z �∈ Γ for large j. Since wj(∞) = o∞ ∈ V̂ we can
identify [−j, j] × M with [−2j, 0] × M and conclude for a subsequence

wϕ(j) → w∞ in C∞
loc

(
S2 \ Γ, Ṽ

)
.

In particular, w∞(∞) = o∞. The map w∞ : S2 \ Γ → Ṽ is a generalized finite
energy sphere and our next aim is to show that it is not constant. We first
observe that the set Γ of bubbling off points of the sequence wϕ(j) is not empty.

Lemma 3.4. The set Γ ⊂ S2 contains 0.

Proof. Assume 0 �∈ Γ, then we find a path in S2 connecting 0 with ∞
and avoiding the points in Γ. The image of the path under the mapping
wϕ(j) must have a uniformly bounded length, since the gradients are uniformly
bounded. By assumption, wϕ(j)(0) is either in Ŵ or has an R-component lower
than r. We see that distϕ(j)(wϕ(j)(0), o∞) ≥ distϕ(j)((r, m), o∞). However,
distϕ(j)((r, m), o∞) → ∞ as j → ∞. This contradiction proves the asser-

tion.

Up to this point we have found a subsequence Cϕ = (Cϕ(j)) of C, suit-
able parametrizations wϕ(j) : S2 → Aϕ(j) of Cϕ(j) with a nonempty set Γ of
bubbling off points containing 0 such that wϕ(j) → w∞ in C∞

loc(S
2 \ Γ, Ṽ ) and

w∞(∞) = o∞. Moreover, for ε > 0 sufficiently small and z ∈ Γ

(3.6) lim inf
j→∞

∫
Dε(z)

w∗
ϕ(j)ωϕ(j) > γ,

in view of Lemma 3.1.

Lemma 3.5. The generalized finite energy sphere w∞ : S2 \Γ → Ṽ is not
constant.

Proof. Arguing by contradiction we assume w∞(z) = p for all z ∈ S2 \ Γ.
We choose ε > 0 so small that the closed ε-discs around the points in Γ are
mutually disjoint. Let z ∈ Γ and recall the estimate (3.6) on Dε(z). On the
boundary Sε(z) = ∂Dε(z), the map wϕ(j) converges to the constant map p

in C∞. Hence we can extend wϕ(j)|Dε(z) to a smooth map ez,j : S2 → Aϕ(j)

satisfying ∫
S2\Dε(z)

e∗z,jωϕ(j) ≤ σj and σj → 0.

For j large the spheres ez,j have the positive area∫
S2

e∗z,jωϕ(j) > 0,
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in view of (3.6). This implies that this integral has a value which is a positive
integer multiple of π. Consequently,

π =
∫

S2
w∗

ϕ(j)ωϕ(j) ≥
∑
z∈Γ

∫
Dε(z)

w∗
ϕ(j)ωϕ(j)

=
∑
z∈Γ

∫
S2

e∗z,jωϕ(j) −
∑
z∈Γ

∫
S2\Dε(z)

e∗z,jωϕ(j)

≥ 	Γ π − 	Γ σj .

Therefore, 	Γ ≤ 1 if w∞ is constant, and so Γ = {0} by Lemma 3.4. Conse-
quently, wϕ(j) converges in C∞ on S2 \ D1/2 to the constant map p ∈ Ṽ . By
normalization,

γ =
∫

S2\D
w∗

ϕ(j)ωϕ(j).

Taking the limit as j → ∞ we find γ = 0. This contradicts the definition of γ

and Lemma 3.5 is proved.

Lemma 3.6. The punctures Γ of w∞ : S2 \ Γ → Ṽ are nonremovable.
There exists ε > 0 such that

w∞
(
Dε(Γ) \ Γ

)
⊂ R

− × M.

Proof. In view of Proposition 2.11 it is enough to show that the punctures
are not removable. Since w∞ �≡ constant we know that

(3.7)
∫

S2\Γ
w∗
∞ω

Ṽ
> 0.

Given δ > 0 we find ε0 = ε0(δ) and an integer j(δ, ε0) so that∫
S2\Dε(Γ)

w∗
ϕ(j)ωϕ(j) ≥

∫
S2\Γ

w∗
∞ω

Ṽ
− δ

provided that ε ∈ (0, ε0) and j ≥ j(δ, ε0). Assume that the bubbling off point
z ∈ Γ is a removable puncture of w∞ and hence that w∞ is defined on Dε(z).
We know from (3.6) that

lim inf
j→∞

∫
Dε(z)

w∗
ϕ(j)ωϕ(j) ≥ γ,

for every sufficiently small ε > 0. Moreover, for a given σ and ε > 0 small
enough ∫

Dε(z)
w∗
∞ω

Ṽ
≤ σ.

For j large we may slightly deform wϕ(j) near the boundary (in C∞) of Dε(z)
so that we can glue it to w∞|Dε(z) and obtain a map ej : S2 → Aϕ(j) with
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S2 e∗jωϕ(j) having the value exceeding γ − 2σ. Hence the value of

∫
S2 e∗jωϕ(j)

must be at least π. This shows that

lim
j→∞

∫
Dε(z)

w∗
ϕ(j)ωϕ(j) ≥ π

for every sufficiently small ε > 0. Hence

π =
∫

S2
w∗

ϕ(j)ωϕ(j) =
∫

S2\Dε(Γ)
w∗

ϕ(j)ωϕ(j) +
∑
e∈Γ

∫
Dε(e)

w∗
ϕ(j)ωϕ(j)

≥
∫

S2\Γ
w∗
∞ω

Ṽ
− δ +

∫
Dε(z)

w∗
ϕ(j)ωϕ(j).

Therefore, passing to the limit as j → ∞, we have

π ≥
∫

S2\Γ
w∗
∞ω

Ṽ
− δ + π.

This holds true for every δ > 0. Hence∫
S2\Γ

w∗
∞ω

Ṽ
= 0,

contradicting (3.7). Therefore, the punctures are nonremovable. Since the
map w∞ admits negative punctures only, the second statement of the lemma
follows from the asymptotics near the negative punctures. The proof of the
lemma is complete.

V̂ region

R × M region

Figure 7. The finite energy sphere w∞. In this figure there are
three negative punctures.
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We next introduce the mass m(ω∞, z0) of a puncture z0 ∈ Γ. For ε > 0
small enough we first set

mε(z0) = lim
j→∞

∫
Dε(z0)

w∗
ϕ(j)ωϕ(j).

In order to show that this limit does exist for ε small we note that the closed
two-form ωN is exact on AN \ S∞. In addition, ωN = dλN for a one-form
satisfying λN = λ on [−N, N ] × M viewing λ as a form on R× M . Moreover,
the restriction of λN onto Ŵ ∪ (V̂ \ S∞) does not depend on N . Identifying
[−2N, 0] × M with [−N, N ] × M we conclude from Lemma 3.6 for sufficiently
small ε > 0 and j ≥ j(ε) that

wϕ(j)(∂Dε(z0)) ⊂ [−ϕ(j), ϕ(j)] × M.

Therefore,∫
Dε(z0)

w∗
ϕ(j)ωϕ(j) =

∫
∂Dε(z0)

w∗
ϕ(j)λϕ(j) =

∫
∂Dε(z0)

w∗
ϕ(j)λ.

On ∂Dε(z0) the maps wϕ(j) converge in C∞ to the map w∞ so that the last
integral converges as j → ∞ to∫

∂Dε(z0)
w∗
∞λ = mε(z0).

We also see that mε(z0) is decreasing as ε → 0+, which allows us to define:

Definition 3.7. The mass of w∞ at the puncture z0 ∈ Γ is the real number

m(w∞, z0) = lim
ε→0+

mε(z0).

In view of the estimate in Lemma 3.3 we have limj→∞
∫
Dε(z0) w∗

ϕ(j)ωϕ(j)

> γ, and so,
γ < m(w∞, z0) < π.

Taking the limit j → ∞ and then ε → 0+ in

π =
∫

S2\
⋃

z∈Γ
Dε(z)

w∗
ϕ(j)ωϕ(j) +

∑
z∈Γ

∫
Dε(z)

w∗
ϕ(j)ωϕ(j),

and recalling the definitions we obtain the following formula for the energy.

Lemma 3.8. If w∞ : S2 \ Γ → Ṽ is the above generalized finite energy
sphere,

π =
∫

S2\Γ
w∗
∞ω

Ṽ
+

∑
z∈Γ

m(w∞, z).

The next lemma describes more precisely which part of AN a full neigh-
borhood of bubbling off points is mapped into under the mappings wϕ(j) :
S2 → Aϕ(j).
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Ṽ region

R × M region

o∞

Figure 8. Near the punctures in Γ the images of wϕ(j) are contained

in Ŵ ∪
(
[−ϕ(j), ϕ(j)] × M

)
.

Lemma 3.9. If zi ∈ Γ, then for every ε > 0 small and j ≥ j(ε),

wϕ(j)

(
Dε(zi)

)
⊂ Ŵ ∪

(
[−ϕ(j), ϕ(j)] × M

)
.

Proof. We fix the bubbling off point zi ∈ Γ ⊂ S2 of the sequence of Ĵϕ(j)-
holomorphic spheres wϕ(j) : S2 → Aϕ(j). Arguing by contradiction we find
(possibly going over to a subsequence denoted by the old letters) a converging
sequence ζj → zi satisfying wϕ(j)(ζj) ∈ V̂ . For the embedded spheres Cϕ(j)

we now choose different holomorphic parametrizations and define the maps
vj : S2 → Aϕ(j) by

vj(z) = wϕ(j)(τj(z)),

where the Möbius transformations τj : S2 → S2 are chosen such that the
following normalization conditions are met

vj(S2) = Cϕ(j), vj(0) = wϕ(j)(ζj),(3.8)

vj(∞) = o∞,

∫
D

v∗j ωϕ(j) = γ.

In particular, τj(0) = ζj . Carrying out a bubbling off analysis for the sequence
vj we denote by Γ′ ⊂ S2 the finite set of its bubbling off points. Then Γ′ ⊂
S2 \ int(D) in view of the last condition in (3.8). In particular, 0 �∈ Γ′. Away
from Γ′ we have uniform gradient bounds. We use them in order to show that
vj(z) �∈ Ŵ if z �∈ Γ′ provided that j is sufficiently large. Indeed, we can connect
z with 0 by a path avoiding Γ′ so that the lengths of its images under the maps
wϕ(j) are uniformly bounded. However, under the assumption vj(0) ∈ V̂ , this
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contradicts distϕ(j)(vj(0), vj(z)) → ∞ as j → ∞ if vj(z) ∈ Ŵ . Consequently,
a subsequence converges,

vj → v∞ in C∞
loc(S

2 \ Γ′, Ṽ ).

In particular, v∞(0) ∈ V̂ . We next show that Γ′ �= ∅ by proving that ∞ ∈ Γ′.
We recall for the circles Sε(zi) = ∂Dε(zi) around zi ∈ Γ that

wϕ(j)(Sε(zi)) ⊂
[
−ϕ(j), ϕ(j)

]
× M

for every ε > 0 small and j ≥ j(ε). Identifying [−ϕ(j), ϕ(j)] × M with
[−2ϕ(j), 0] × M we know in view of Lemma 3.6 that given R > 0 we can
choose ε > 0 small enough so that the R-component of wϕ(j)|Sε(zi) is smaller
than −R for j ≥ j(ε). Since τj(∞) = ∞, τj(0) = ζj , and ζj → zi we de-
duce from the fact that the mass at zi exceeds γ that the circles τ−1

j (Sε(zi))
τ−1
j (z) → ∞ converge uniformly to ∞ as j → ∞ as j → ∞. This follows

from the fourth condition in (3.8). Since, depending on ε, the R-component of
vj|τ−1

j (Sε(zi)) in Ṽ becomes arbitrarily negative and vj(∞) = o∞ we conclude

the existence of a sequence zj → ∞ on S2 satisfying |Tvj(zj)| → ∞. Hence
∞ ∈ Γ′ as claimed, and by the arguments of Lemma 3.4 (with 0 ∈ Γ replaced
by ∞ ∈ Γ′ and with the different parametrization ), the generalized finite en-
ergy sphere v∞ : S2 \Γ′ → Ṽ is not constant and has a positive ω

Ṽ
-energy. Its

punctures Γ′ are all negative.
Assume now that v∞ hits S∞. This intersection cannot be isolated since

otherwise Cϕ(j) would have (together with ∞ ∈ S2) at least two intersections
for j sufficiently large. Consequently, by the similarity principle (see [1]) the
image of v∞, denoted by C, is contained in S∞. In this case all punctures
are removable so that C is equal to S∞ with finitely many points removed. In
particular, C has ω

Ṽ
-energy equal to π. However, the mass of every puncture is

at least γ > 0 and in view of Lemma 3.8 the ω
Ṽ

-energy of C is strictly smaller
than π. This contradiction shows that v∞ does not intersect S∞. The closure
of its image lies in the complement of S∞ in Ṽ . If all the punctures Γ′ are
removable we can compactify v∞ to a sphere in Ṽ \ S∞ of positive ω

Ṽ
-energy.

On the other hand, the two-form ω
Ṽ

is exact in the complement of S∞; hence
the ω

Ṽ
-energy vanishes. This contradiction shows that not all the punctures

are removable.
The nonremovable punctures, still denoted by Γ′, are all negative. So,

we obtain by Stokes’ theorem using the asymptotic behavior of v∞ near the
punctures as described in Proposition 2.11 (Section 2.2),

0 <

∫
S2\Γ′

v∗∞ω
Ṽ

= −
∑
z∈Γ′

Tz < 0.
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Here Tz > 0 is the period of the periodic solution of Xλ on M associated
with the punctures z ∈ Γ′. With this contradiction the proof of Lemma 3.9 is
complete.

We summarize the results of the limit procedure reached so far.

Theorem 3.10. Choose a point (r, m) ∈ [−N0, N0] × M ⊂ AN0. De-
note by CN , for N ≥ N0, the unique unparametrized ĴN -holomorphic sphere
homologous to CP 1 in AN and containing the two points (r, m) and o∞ ∈ S∞.
Consider the ĴN -holomorphic parametrization wN : S2 = C ∪ {∞} → CN sat-
isfying the appropriate normalization conditions, in particular wN (∞) = o∞.
Then there exists a subsequence wϕ(j) of mappings having the following prop-
erties:

There exists a nonempty finite set Γ ⊂ S2 of bubbling off points of the
sequence wϕ(j): ( z ∈ Γ if z = lim zj and |Twϕ(j)(zj)| → ∞ as j → ∞).
Moreover, if ε > 0 is sufficiently small, then for all j ≥ j(ε) and z ∈ Γ,

wϕ(j)(Dε(z)) ⊂ Ŵ ∪
(
[−ϕ(j), ϕ(j)] × M

)
.

When [−N, N ]×M is identified with [−2N, 0]×M the sequence wϕ(j) converges

wϕ(j) → w∞ in C∞
loc(S

2 \ Γ, Ṽ )

to a nonconstant finite energy sphere w∞ : S2 \ Γ → Ṽ passing through
w∞(∞) = o∞, having the nonremovable negative punctures Γ, and the pos-
itive ω

Ṽ
-energy determined by the formula

π =
∫

S2\Γ
w∗
∞ω

Ṽ
+

∑
z∈Γ

m(w∞, z).

The mass of the puncture z ∈ Γ satisfies γ < m∞(w∞, z) < π. The behavior
near the punctures is as follows. There exists an ε > 0 such that

w∞
(
Dε(Γ) \ Γ

)
⊂ R

− × M ⊂ Ṽ

and if ϕ : D ⊂ C→ U ⊂ S2 are holomorphic coordinates near z ∈ Γ satisfying
ϕ(0) = z, then in holomorphic polar coordinates

w∞
(
ϕ(e−2π(s+it))

)
=

(
a∞(s, t), u∞(s, t)

)
for s large, and as s → ∞

a∞(s, t) → −∞
u∞(s, t) → x(−Tzt)

in C∞(R). Here x is a periodic solution of Xλ on M having the period Tz > 0.
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4. The bubbling off tree

In Section 3 we introduced the sequence wϕ(j) of maps converging to the
generalized finite energy sphere w∞ in Ṽ :

wϕ(j) → w∞ in C∞
loc(S

2 \ Γ, Ṽ ).

The nonempty finite set Γ ⊂ D of bubbling off points of the sequence wϕ(j)

consists of the negative punctures of the maps w∞. In this section we shall
look more closely at these punctures by carefully rescaling the maps wϕ(j) near
Γ. Proceeding inductively we shall produce generalized finite energy spheres in
R×M as well as in W̃ . As it will turn out, it will be convenient to describe the
combinatorial structure of all the finite energy spheres produced by means of a
graph whose vertices (dots in the figures 9 and 10) have different colors. A black
dot will represent a finite energy sphere in Ṽ , a gray dot a finite energy sphere
in R× M and a white dot a finite energy plane in W̃ . We shall draw an edge
between two such dots, if the sphere represented by “dot no. 1” has a negative
puncture z0 whose negative asymptotic limit is the periodic solution of (x0, T0)
and the “dot no. 2” has a positive puncture z1 with the same asymptotic limit
(x1, T1) = (x0, T0). Figure 9 illustrates a possible configuration. Of course,
our construction so far only justifies the configuration illustrated by Figure 10
below.

Ṽ region

R × M region

W̃ region

Figure 9. An a priori possible graph. All finite energy spheres
in R × M have either nonzero dλ-energy or at least two negative
punctures.
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z1 z2 z3 z4

Ṽ region

R × M region

W̃ region

?? ?

?

Figure 10. There are four negative punctures but the finer structure
near these points is not yet known.

We start our procedure by first collecting more information about the
behavior of the sequence wϕ(j) of maps near the punctures Γ. We fix zi ∈ Γ
and choose ε0 > 0 so small that Dε0(z

i) ∩ Dε0(z
k) = ∅ for zk ∈ Γ with k �= i.

From Lemma 3.9 we recall

wϕ(j)

(
Dε0(z

i)
)
⊂ Ŵ ∪

(
[−ϕ(j), ϕ(j)] × M

)
if ε0 is sufficiently small and j ≥ j0(ε0) large. We now choose the points γj ∈
Dε0(zi) in the following way: if wϕ(j)

(
Dε0(z

i)
)
∩ Ŵ �= ∅, then wϕ(j)(γj) ∈ Ŵ

and if wϕ(j)

(
Dε0(z

i)
)
⊂ [−ϕ(j), ϕ(j)] × M , then wϕ(j)(γj) has the smallest

R-component among the points in wϕ(j)

(
Dε0(z

i)
)
∩

(
[−ϕ(j), ϕ(j)] × M

)
.

Lemma 4.1. The sequence (γj) converges to zi.

Proof. The asymptotic behavior of w∞ : S2 \ Γ → Ṽ near the negative
puncture zi ∈ Γ is, according to Proposition 2.11 (Section 2.2), described by

w∞
(
zi + e2π(s+it)

)
→

(
Tis + d, xi(Tit)

)
∈ R− × M

as s → −∞, where (xi, Ti) is the associated periodic solution of Xλ on M .
Identifying [−N, N ]×M with [−2N, 0]×M we deduce that the R-component
aϕ(j) of wϕ(j) can be made arbitrarily negative by chosing ε > 0 small and j

large. But away from zi the sequence (aϕ(j)) is bounded, so that γj → zi as
claimed.

Fix a number σ0 ∈ (0, γ). Then the following lemma is obvious.

Lemma 4.2. There exists a sequence δj → 0 satisfying∫
Dδj

(γj)
w∗

ϕ(j)ωϕ(j) = m(w∞, zi) − σ0.
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Next we define the subsets Ωj ⊂ C by

Ωj :=
{
z ∈ C | γj + δjz ∈ Dε0(z

i)
}
.

Then DR ⊂ Ωj for j ≥ j(R) since γj → zi and δj → 0. With the help of the
distinguished parameters γj and δj we define the rescaled maps ṽj : Ωj → Aϕ(j)

by

(4.1) ṽj(z) = wϕ(j)

(
γj + δjz

)
.

These maps meet the normalization condition

(4.2)
∫

D
ṽ∗j ωϕ(j) =

∫
Dδj

(γj)
w∗

ϕ(j)ωϕ(j) = m(w∞, zi) − σ0.

Given R > 1 and σ > 0 we estimate, using δj → 0 and γj → zi,∫
DR\D

ṽ∗j ωϕ(j) =
∫

DRδj
(γj)

w∗
ϕ(j)ωϕ(j) −

∫
D

ṽ∗j ωϕ(j)

=
∫

DRδj
(γj)

w∗
ϕ(j)ωϕ(j) − m(w∞, zi) + σ0

≤
∫

Dσ(zi)
w∗

ϕ(j)ωϕ(j) − m(w∞, zi) + σ0

if j is sufficiently large. Consequently,

lim sup
j→∞

∫
DR\D

ṽ∗j ωϕ(j) ≤ mσ(w∞, zi) − m(w∞, zi) + σ0.

The estimate holds true for every σ > 0 so that

(4.3) lim sup
j→∞

∫
DR\D

ṽ∗j ωϕ(j) ≤ σ0

for every R > 1. Since σ0 < γ we conclude that there cannot exist a sequence
zj → z0, |z0| > 1, satisfying

lim sup |T ṽj(zj)| → ∞.

Indeed, by rescaling, such a sequence would allow the construction of a non-
trivial finite energy plane for problem (M) or (W ) whose energy would be
smaller than σ0 < γ in view of (4.3). However, the energy of a finite energy
plane is equal to the period T of a periodic solution and T > γ by definition
of γ. This contradiction shows that we have gradient bounds for the sequence
(ṽj) on DR \ Dr for R > r > 1. From these gradient bounds we obtain the
following uniform bounds for the higher order derivatives, in the metrics gN

on AN .

Lemma 4.3. Every subsequence of (ṽj) has uniformly bounded derivatives
of order at least 1 on DR \ Dr for every R > r > 1.
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Fixing the point 2 ∈ C we consider next the sequence ṽj(2). By Lemma
3.9 we know that ṽj(2) ∈ Ŵ ∪

(
[−ϕ(j), ϕ(j)] × M

)
. We distinguish the two

cases:

1. There exists R > 0 such that a subsequence of (ṽj(2)) satisfies

(4.4) ṽj(2) ∈ Ŵ ∪
(
[−ϕ(j),−ϕ(j) + R] × M

)
.

2. For j large we have

(4.5) ṽj(2) = (rj , mj) ∈ [−ϕ(j), ϕ(j)] × M and |rj + ϕ(j)| → ∞.

We begin with case 1. We denote by Γi the finite set of bubbling off
points of the sequence ṽj . Then Γi ⊂ D in view of Lemma 4.3. The notation
Γi refers to the study of the original sequence wϕ(j) in a neighborhood of zi ∈ Γ.
Identifying [−N, N ] × M with [0, 2N ] × M we find a subsequence ṽψ(j) of ṽj

satisfying

(4.6) ṽψ(j) → ṽ∞ in C∞
loc(C \ Γi, W̃ ).

Note that ṽψ(j) has the form

ṽψ(j) = wϕ˚ψ(j) ˚ τj ,

where τj is a sequence of Möbius transformations keeping ∞ fixed.

Lemma 4.4. Considering case 1 in (4.4), we denote by ṽ∞ : C \ Γi → W̃

the generalized finite energy sphere defined by (4.6). Then Γi = ∅ so that the
only puncture is the one at ∞. The map ṽ∞ : C → W̃ is a nonconstant
generalized finite energy plane in W̃ .

We shall prove later on that the asymptotic limit of ṽ∞ at the puncture
∞ coincides with the asymptotic limit of w∞ at its puncture zi ∈ Γ.

w̃∞

ṽ∞

zi

w̃∞

ṽ∞

Ṽ region

R × M region
?

?

Figure 11. The figure depicts the situation in case 1.
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Proof. By construction, ṽψ(j) → ṽ∞ in C∞
loc(C \ Γi, W̃ ). Take a smooth

function f : R+ → R+ satisfying

f ≡ 1 on [0, 1], f ′′(s) > 0 on (1,∞).

Define H : W̃ → R+ by

H ≡ 1 on Ŵ , H(r, m) = f(r) on R+ × M,

and introduce the functions αj : D2 → R,

αj(z) = H ˚ ṽψ(j)(z).

Since Γi ⊂ D, the sequence ṽψ(j) converges on the circle S2(0) of radius 2 to
the map ṽ∞. Hence there exists a constant c > 0 such that

αj(z) ≤ c for all |z| = 2 and j large.

At the point z such that ṽψ(j)(z) = (aj , vj)(z) ∈ [−ϕ ˚ ψ(j), ϕ ˚ ψ(j)] × M ,
which we identify with [0, 2ϕ ˚ ψ(j)] × M , we calculate

(∆αj)(z) =
[
f ′′(aj) · [(∂saj)2 + (∂taj)2] + f ′(aj)∆aj

]
≥ f ′(aj)|π∂svj |2 ≥ 0.

If ṽψ(j)(z) ∈ Ŵ , then ∆αj(z) = 0. Hence the maximum principle implies

sup αj|D2
≤ c

for all j large. If there exists a point z0 ∈ D such that |T ṽψ(j)(zj)| → ∞ for
some sequence zj → z0, then a bubbling off analysis produces a nontrivial finite
energy plane in Ŵ ∪

(
[0, c]×M

)
. Its puncture at infinity is therefore removable

and we obtain a nontrivial holomorphic sphere. This is not possible since ω
W̃

is exact on Ŵ ∪
(
[0, c] × M

)
. Thus Γi = ∅ and the lemma is proved.

We next consider case 2 in (4.5). The situation is illustrated by Figure 12.
Later on we shall prove that the negative asymptotic limit of w∞ at zi ∈ Γ
and the positive asymptotic limit of ṽ∞ at ∞ match up.

Lemma 4.5. Consider case 2 in (4.5) Then |rj − ϕ(j)| → ∞ as j → ∞.
Moreover, there exist a subsequence ṽψ(j) and a sequence cψ(j) ∈ R of constants
such that

ṽψ(j) + cψ(j) → ṽ∞ in C∞
loc(C \ Γi,R× M).

The generalized energy sphere ṽ∞ : C\Γi → R×M is not constant. Moreover,
0 ∈ Γi provided Γi �= ∅. The point at ∞ is a nonremovable puncture.
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w̃∞

ṽ∞

zi

w̃∞

ṽ∞

Ṽ region

R × M region

?

?

?

?
? ?

Figure 12. The figure depicts the situation in case 2.

Proof. We first note that under the assumption of this case ṽj(z) �∈ Ŵ

if z �∈ Γi provided that j is sufficiently large. Here Γi stands for the set of
bubbling off points of the sequence ṽj . Indeed, away from Γi we have uniform
gradient bounds. We can connect z with 2 by a path avoiding Γi so that the
lengths of its images under the maps ṽj are uniformly bounded. However, in
view of the fact that rj + ϕ(j) → ∞, this contradicts distϕ(j)

(
ṽj(2), vj(z)

)
→

∞ as j → ∞ if vj(z) ∈ Ŵ . Next we prove the first statement. We argue by
contradiction and assume (for a subsequence) that

rj − ϕ(j) → r∞ ∈ R.

This implies, after we identify [−N, N ] × M with [−2N, 0] × M and perhaps
take a subsequence, that

ṽψ(j) → ṽ∞ in C∞
loc(C \ Γi,R× M).

Since Γi ⊂ D we have, in particular,

ṽψ(j)(2) → ṽ∞(2) = (r∞, m∞).

Because of Lemma 3.9 and our assumption,

ṽ∞(C \ Γi) ⊂ (−∞, 0] × M.

This implies that the finite energy sphere ṽ∞ has no positive puncture. This
is impossible unless ṽ∞ is constant, because it would imply that the energy is
strictly negative. Hence ṽ∞ is a constant so that the mass at every puncture
in Γi is equal to 0. The sequence ṽψ(j) does not permit any gradient blow
up on D, because such a blow up would produce a puncture for ṽ∞ with a
positive mass. Consequently, Γi = ∅ and ṽψ(j) → ṽ∞ in C∞

loc(C,R− × M)
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where ṽ∞ : C→ R− × M is a constant map. We conclude using (4.2)

0 < m(w∞, zi) − σ0 =
∫

D
ṽ∗ψ(j)ωϕ˚ψ(j)

= lim
j→∞

∫
D

ṽ∗ψ(j)ωϕ˚ψ(j) =
∫

D
ṽ∗∞dλ = 0.

Here we viewed dλ as a 2-form on R× M . In fact, frequently we will write λ

or dλ for the obvious forms induced on R×M . The above contradiction shows
that indeed

|rj − ϕ(j)| → ∞.

Recall now that ṽψ(j)(2) = (rj , mj) and assume (rj) to be bounded, so
that a subsequence converges,

(rj , mj) → (r∞, m∞).

Hence
ṽψ(j) → ṽ∞ in C∞

loc(C \ Γi,R× M).

By construction, ṽψ(j)(0) is either in Ŵ or has the smallest R-component in
[−ϕ ˚ ψ(j), ϕ ˚ ψ(j)] × M . We shall show that 0 ∈ Γi if Γi �= ∅. Argu-
ing indirectly, we assume that Γi �= ∅ and 0 �∈ Γi. We can connect 0 by
a path in C to the point 2 avoiding the points in Γi. Along this path the
gradients are uniformly bounded so that ṽψ(j)(0) stays within a bounded dis-
tance to (r∞, m∞). Therefore, ṽ∞ has no negative punctures and, moreover,
ṽψ(j)(D2) ⊂ [−R, ϕ ˚ ψ(j)] × M for some R > 0. Setting ṽψ(j) = (aj , uj) on
D2 the functions aj|∂D2

are uniformly bounded in view of Lemma 4.3. Since

∆aj = |π∂suj |2 ≥ 0

on D2, the maximum principle gives a uniform bound for aj|D2
. Hence the

punctures in Γi cannot be positive either. So, the punctures being neither
positive nor negative are all removable implying as before that Γi = ∅ contrary
to our assumption. We have proved that Γi �= ∅ implies that 0 ∈ Γi.

If Γi = ∅, we can take the limit j → ∞ in the normalization condition
(4.2) to obtain ∫

D
ṽ∗∞dλ = m(w∞, zi) − σ0 > 0.

Hence ṽ∞ is not constant. If Γi �= ∅, then 0 is a nonremovable puncture so
that ṽ∞ is nonconstant in this case also.

Finally, if (rj) is not bounded then still

lim
j→∞

min
{
|rj − ϕ(j)|, |rj + ϕ(j)|

}
= ∞,
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and by a slight modification of the previous argument, namely adding suitable
constants to the R-components, we find a subsequence ṽϕ˚ψ(j) + cψ(j) converg-
ing to ṽ∞ in C∞

loc(C\Γi,R×M); moreover, ṽ∞ has the desired properties. The
proof of the lemma is complete.

Recall the definition of the mass m(w∞, zi) of the sphere w∞ at its punc-
ture zi ∈ Γ. We shall define the masses m(ṽ∞, zil) of the sphere ṽ∞ at its
punctures zil ∈ Γi if Γi �= ∅ similarly. We take our converging sequence
ṽψ(j) → ṽ∞ of maps, set

mε(ṽ∞, zil) := lim
j→∞

∫
Dε(zil)

ṽ∗ψ(j)ωϕ˚ψ(j)

for ε > 0 small, and define

m(ṽ∞, zil) := lim
ε→0

mε(ṽ∞, zil).

Recalling Γi ⊂ D we deduce from the normalization condition (4.2), the defi-
nition of γ and the bubbling off analysis, the estimate

γ < m(ṽ∞, zil) < m(w∞, zi)

for all zil ∈ Γi.

Proposition 4.6. If ṽ∞ is a solution of problem (W) (recall that Γi = ∅
in this case), then

m(w∞, zi) =
∫
C

ṽ∗∞ω
W̃

.

If ṽ∞ is a solution of problem (M), then

m(w∞, zi) =
∫
C\Γi

ṽ∗∞dλ +
∑
z∈Γi

m(ṽ∞, z).

Proof. Considering the second case we take zi ∈ Γ and assume Γi �= ∅.
Fix R > 0 and σ > 0. Since δj → 0 and γj → zi we find for j sufficiently large,∫

DR\Dε(Γi)
ṽ∗ψ(j)ωϕ˚ψ(j) +

∑
z∈Γi

∫
Dε(z)

ṽ∗ψ(j)ωϕ˚ψ(j) =
∫

DR

ṽ∗ψ(j)ωϕ˚ψ(j)

=
∫

DRδj
(γj)

w∗
ϕ˚ψ(j)ωϕ˚ψ(j)

≤
∫

Dσ(zi)
w∗

ϕ˚ψ(j)ωϕ˚ψ(j).

Hence, as j → ∞,∫
DR\Dε(Γi)

ṽ∗∞dλ +
∑
z∈Γi

mε(ṽ∞, z) ≤ mσ(w∞, zi).
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Since this holds true for every σ > 0, ε > 0, and R > 1, we deduce∫
C\Γi

ṽ∗∞dλ +
∑
z∈Γi

m(ṽ∞, z) ≤ m(w∞, zi).

Similarly, if ṽ∞ is a solution of problem (W), which implies Γi = ∅, then∫
C

ṽ∗∞ω
W̃

≤ m(w∞, zi).

It remains to prove the reversed inequalities.
Denote by A(r, R) the annulus r ≤ |z| ≤ R in C. Since σ0 < γ we deduce

from (4.3) the estimates ∫
A(r,R)

v∗j ωϕ(j) ≤ γ

for all 1 ≤ r ≤ R and j sufficiently large. Recalling the definition of the
constant γ, for large j the maps ṽj meet the hypotheses of the following lemma
from [31], illustrated by Figure 13.

ũ

R

R − h

r + h

r

Figure 13. An arbitrary finite energy cylinder defined on some
interval [r, R]×S1, with bounds on the energy and small dλ-energy,
maps [r + h, R− h]× S1 almost onto some cylinder over a suitable
periodic orbit.

Lemma 4.7. Assume there exist constants c > 0 and γ > 0 such that
all periodic orbits of X having periods T ≤ c are isolated (hence finite in
number) and, moreover, γ is strictly smaller than the differences |T2 − T1|
of two different periods in (0, c] and strictly smaller than the period of every
contractible periodic orbit. Then there exists for every ε ∈ (0, γ) a (large)
constant h > 0 such that the following holds true. If a J̃-holomorphic map
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ũ = (a, u): [r, R] × S1 → R× M satisfies∫
[r,R]×S1

u∗ dλ ≤ γ, E(ũ) ≤ c, r + h < R − h,

then ∫
[r+h,R−h]×S1

u∗ dλ ≤ ε.

Proof. Arguing by contradiction we find a number 0 < ε < γ, a sequence
of pairs (rk, Rk) with Rk − rk ≥ 2k, and a sequence of J̃-holomorphic maps
ũk = (ak, uk): [rk, Rk] × S1 → R× M satisfying

(4.7)
∂

∂s
ũk + J̃(ũk)

∂

∂t
ũk = 0,

∫
[rk,Rk]×S1

u∗
k dλ ≤ γ, E(ũk) ≤ c,

and, in addition,

(4.8)
∫
[rk+k,Rk−k]×S1

u∗
k dλ ≥ ε,

for all k. Using the R-invariance in s, we may assume that s = 0 is in the
middle of the cylinder so that rk = −Rk. We define the sequence ṽk =
(bk, vk): [−k/2, k/2] × S1 → R× M by

(4.9) ṽk(s, t) = (ak (s + rk + k, t) − ak (rk + k, 0) , uk (s + rk + k, t)) .

Clearly ṽk is J̃-holomorphic and satisfies the estimates

E(ṽk) ≤ c and
∫
[−k/2,k/2]×S1

v∗kdλ ≤ γ.

We claim that there are constants c1 and cα independent of k, such that

|∇ṽk(s, t)| ≤ c1 on
[
−k

2 + 1, k
2 − 1

]
× S1

and
|Dαṽk(s, t)| ≤ cα on

[
−k

2 + 2, k
2 − 2

]
× S1.

Indeed, otherwise a bubbling off analysis as in [24] proves, from the assumption
that the energies E(ṽk) ≤ c are bounded, the existence of a finite energy
plane having an asymptotic limit of period T ≤ γ, from (4.7). This, however,
contradicts the definition of the number γ. Therefore, ṽk has a C∞

loc converging
subsequence. Its limit ṽ = (b, v):R × S1 → R × M is a pseudoholomorphic
cylinder satisfying

(4.10) E(ṽ) ≤ c and
∫
R×S1

v∗ dλ ≤ γ.

If ṽ is not constant, we conclude in view of the results in [32] and the fact
that periodic orbits with period ≤ c are isolated, that v converges as s → ±∞
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to periodic orbits x± having periods T± bounded by c. Consequently, with
T± =

∫
x± v∗λ,

|T+ − T−| =
∫
R×S1

v∗ dλ ≤ γ.

By assumption, γ is smaller than the differences between two different periods
in (0, c]; hence T+ = T− and ∫

R×S1
v∗ dλ = 0.

This and the assumption that ṽ is not constant imply by Theorem 6.11 in [30]
that ṽ is a cylinder over a periodic orbit. Consequently, x− ≡ x+ =: z−, and

ṽ(s, t) = (T−s + c, z−(T−t + d))

for (s, t) ∈ R× S1. Therefore, setting s = 0 in (4.9), we find

vk(0, t) = uk (rk + k, t) → z−(T−t) in C∞(S1)

as k → ∞.
In the case that ṽ is constant,

vk(0, t) = uk (rk + k, t) → constant in C∞(S1).

The same arguments show that either

uk (Rk − k, t) → z+(T+t) in C∞(S1)

for a periodic solution z+ having period T+ or

uk (Rk − k, t) → constant in C∞(S1).

Using Stokes’ theorem, (4.7) and (4.8), we can estimate

γ ≥
∫
[rk+k,Rk−k]×S1

u∗
kdλ =

∫
S1

vk(rk + k, ·)∗λ −
∫

S1
vk(Rk − k, ·)∗λ ≥ ε.

Taking the limit as k → ∞, we obtain a contradiction to the definition of γ.
This contradiction proves Lemma 4.7.

We continue with the proof of Proposition 4.6 applying Lemma 4.7. Fixing
ε > 0 sufficiently small we find for every β > 0 a constant h > 0 such that for
j sufficiently large ∫

A(eh, e−h(ε/δj))
ṽ∗j ωϕ(j) ≤ β.

This implies that∫
D

e−h ε
δj

ṽ∗j ωϕ(j) =
∫

D
eh

ṽ∗j ωϕ(j) +
∫

A(eh,e−h( ε
δj

))
ṽ∗j ωϕ(j)(4.11)

≤
∫

D
eh\Dτ (Γi)

ṽ∗j ωϕ(j) +
∫

Dτ (Γi)
ṽ∗j ωϕ(j) + β.
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Here τ > 0 is sufficiently small. Unwinding the scaling of wϕ(j) and recalling
γj → zi and δj → 0 we obtain

lim
j→∞

∫
D

e−h ε
δj

ṽ∗j ωϕ(j) = lim
j→∞

∫
D

e−hε
(γj)

w∗
ϕ(j)ωϕ(j) = me−hε(w∞, zi).

In the notation ω̃ = ω
W̃

in the W -case, and ω = dλ in the M -case we obtain
from (4.11) taking the limit j → ∞,

me−hε(w∞, zi) ≤
∫

D
eh\Dτ (Γi)

ṽ∗∞ω̃ +
∑
z∈Γi

mτ (ṽ∞, z) + β.

Taking the limit τ → 0 we obtain in the W -case

(4.12) me−hε(w∞, zi) ≤
∫

D
eh

ṽ∗∞ω
W̃

+ β,

and in the M -case

me−hε(w∞, zi) ≤
∫

D
eh\Γi

ṽ∗∞dλ +
∑
z∈Γi

m(ṽ∞, z) + β(4.13)

≤
∫
C\Γi

ṽ∗∞dλ +
∑
z∈Γi

m(ṽ∞, z) + β.

Since m(w∞, zi) ≤ me−hε(w∞, zi) and since we find for every β > 0 a constant
h so that the estimates (4.12) and (4.13) hold, we conclude

m(w∞, zi) ≤
∫
C\Γi

ṽ∗∞dλ +
∑
z∈Γi

m(ṽ∞, z)

in the M -case, and

m(w∞, zi) ≤
∫
C

ṽ∗∞ω
W̃

in the W -case. This finishes the proof of Proposition 4.6.

The punctures Γ of the generalized finite energy sphere w∞ : S2 \ Γ → Ṽ

are all negative. Associated with the punctures are periodic solutions of the
Reeb vector field on M . For z near zi ∈ Γ we know that w∞(z) ∈ R− × M

and when w∞(z) = (a∞(z), u∞(z)), the asymptotic behavior of the projection
u∞ of w∞ into M is as follows:

u∞
(
zi + e2π(s+it)

)
→ xi(Tit)

as s → −∞ in C∞(R), for a Ti-periodic solution xi(t) of Xλ on M . At the
positive puncture ∞ of the sphere ṽ∞ : C \Γi → R×M (resp. W̃ ) we have, in
the notation ṽ∞ = (b∞, v∞),

v∞
(
Re2πit

)
→ x∞(T∞t)

as R → ∞ in C∞(R), the asymptotic limit being the T∞-periodic solution
of x∞.
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Proposition 4.8. The asymptotic limit of w∞ at the negative puncture
zi ∈ Γ coincides with the asymptotic limit of ṽ∞ at its positive puncture ∞.

Proof. Considering the M -case we represent ṽ∞ : C \ Γi → R × M by
ṽ∞ = (a∞, v∞). In the following we abbreviate the mass of w∞ at the puncture
zi ∈ Γ by m(zi) ≡ m(w∞, zi).

Fix ε > 0 and choose η > 0 so small that

mη(zi) ≤ m(zi) +
ε

2
.

This implies for j large enough

(4.14)
∫

Dη(zi)
w∗

ϕ(j)ωϕ(j) ≤ m(zi) + ε.

Consider the sequence ṽj → ṽ∞; then for large j,∫
DR

ṽ∗j ωϕ(j) =
∫

DR\Dε(Γi)
ṽ∗j dλ +

∫
Dε(Γi)

ṽ∗j dλ

from which we obtain, using Stokes’ theorem, in the limit j → ∞ and then
ε → 0, ∫

S1
v∞(Re2πi·)∗λ =

∫
DR\Γi

ṽ∗∞dλ +
∑
z∈Γi

m(ṽ∞, z).

Taking the limit R → ∞ we deduce using Proposition 4.6

m(zi) = lim
R→∞

∫
S1

v∞(Re2πi·)∗λ.

With ε > 0 as above we choose R0 > 1 so large that

m(zi) ≥
∫

S1
v∞

(
R0e2πi·

)∗
λ ≥ m(zi) − ε/2.

This implies

(4.15)
∫

S1
vj

(
R0e2πi·

)∗
λ ≥ m(zi) − ε

for j large enough. Setting wϕ(j) = (aj , uj) we conclude, recalling that vj is
the M -part of ṽj and is given by vj(z) = uj(γj + δjz), that∫

S1
uj

(
γj + δjR0e2πi·

)∗
λ ≥ m(zi) − ε.

Since γj → zi and δj → 0, the circles γj + δjR0e2πit, t ∈ R, are contained in
the ball Dη(zi) if j is large enough. Fix η′ ∈ (0, η). If j is large enough,∫

S1
uj

(
γj + η′e2πi·

)∗
λ ≤

∫
S1

uj

(
zi + ηe2πi·

)∗
λ ≤ m(zi) + ε,

in view of (4.14). Hence, again, if j is large enough∫
S1

vj

(
η′e2πi·/δj

)∗
λ ≤ m(zi) + ε.
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Since η′

δj
> R0 for j large, we deduce, using (4.15),

(4.16) m(zi) − ε ≤
∫

S1
vj

(
Re2πi·

)∗
λ ≤ m(zi) + ε if R ∈ [R0, η

′/δj ].

This implies

(4.17)
∫

A(R0,η′/δj)
v∗j dλ ≤ 2ε.

To summarize, for every ε > 0 there exist a large constant R0 = R0(ε) and
a small constant η′ = η′(ε) such that the estimate (4.17) holds true for every
j ≥ j0(ε). It follows that

(4.18)
∫

A(R0(ε),∞)
v∗∞dλ ≤ 2ε.

Observing that all the E-energies under consideration are bounded by π, in
particular E(ṽj) ≤ π and E(v∞) ≤ π, we see that the maps ṽj for large j and
ṽ∞ meet the assumptions of the following crucial lemma.

Lemma 4.9. Let δ > 0 and let c and γ be as in Lemma 4.7. Choose
an S1-invariant neighborhood W (in the loop space of M) of the distinguished
loops corresponding to the contractible periodic solutions x(Tt), 0 ≤ t ≤ 1,
having periods T ≤ c. Choose, also, W so small that it separates loops of these
periodic orbits. Then for any ε ∈ (0, γ) there exists a constant a > 0 such that
for every J̃-holomorphic map ũ : A(r, R) → R× M satisfying

E(ũ) ≤ c,

∫
A(r,R)

u∗dλ ≤ ε,∫
S1

u∗
(
ρe2πi·

)
λ ≥ δ for ρ ∈ [r, R], rea ≤ Re−a

the following holds:

u(ρe2πi·) ∈ W for ρ ∈ [rea, Re−a].

Hence these loops are all contained in the neighborhood component of W con-
taining the loop of one of the distinguished periodic orbits.

Proof. We work in holomorphic polar coordinates. Arguing by contra-
diction we find an ε ∈ (0, γ), a sequence (rk, Rk) with Rk − rk ≥ 2k, and a
sequence of pseudoholomorphic maps ũk = (ak, uk) : [rk, Rk] × S1 → R × M

satisfying

E(ũk) ≤ c,

∫
[rk,Rk]×S1

u∗
kdλ ≤ ε

∫
S1

uk(ρ, ·)∗λ ≥ δ for ρ ∈ [rk, Rk] and uk(sk, ·) �∈ W
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for some sequence sk ∈ [rk +k, Rk−k]. Using the R-invariance we may assume
that sk = 0 so that rk → −∞ and Rk → ∞. Define the sequence of maps
ṽk = (bk, uk) : [rk, Rk] × S1 → R× M by setting

ṽk(s, t) =
(
ak(s, t) − ak(0, 0), uk(s, t)

)
.

In view of the gradient bounds of ṽk, the sequence has a subsequence which
converges in C∞

loc to a pseudoholomorphic cylinder ṽ = (b, v) : R×S1 → R×M

which satisfies
E(ṽ) ≤ c,

∫
R×S1

v∗dλ ≤ ε

and ∫
S1

v(ρ, ·)∗λ ≥ δ for ρ ∈ R.

In particular, ṽ is nonconstant. As s → ±∞, the maps v(s, ·) converge to
periodic orbits x± having periods T± bounded by c. Applying Stokes’ theorem
we find

|T+ − T−| =
∫
R×S1

v∗dλ ≤ ε < γ.

In view of the definition of γ we deduce T− = T+ =: T and
∫
R×S1 v∗dλ = 0.

Hence x+ = x+ =: z and arguing as in Lemma 4.7 we conclude that ṽ is the
cylinder over the periodic orbit z given by ṽ(s, t) =

(
Ts+c, z(Tt+d)

)
. Setting

s = 0 we obtain

uk(0, ·) → v(0, ·) = z(T · +d) in C∞(S1).

This leads to the contradiction that uk(0, ·) �∈ W for all k, but z ∈ W. The
proof of the lemma is complete.

Continuing with the proof of Proposition 4.8 we conclude from (4.16),
(4.17) and (4.18) taking 2ε = ε0 as in Lemma 4.9 that

vj(Re2πi· ) ∈ W

if R ∈ [R0eh, e−hη′/δj ] for every h > 0 sufficiently large if j ≥ j0(h) and
moreover,

v∞
(
R0ehe2πi·

)
∈ W

for every h > 0 sufficiently large. Now, as j → ∞

vj(R0ehe2πit) → v∞(R0ehe2πit),

vj

(
η′e−he2πit/δj

)
= uj

(
γj + η′e−he2πit

)
→ u∞

(
zi + η′e−he2πit

)
in C∞(R). We conclude for every h sufficiently large that the loops v∞(R0ehe2πi·)
and u∞(zi + η′e−he2πi·) belong to the closure of the S1-neighborhood of the
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same periodic orbit x(T ·). By the asymptotic behavior near the punctures,

u∞
(
zi + η′R0e−he2πit

)
→ xi(Tit),

v∞
(
R0ehe2πit

)
→ x∞(T∞t)

as h → ∞, in C∞(R). Consequently, the loops xi(Ti·) and x∞(T∞·) also belong
to the closure of the S1-neighborhood of x(T ·). Since the neighborhood W
separates periodic orbits we conclude

xi(Tit) = x∞(T∞t + δ), t ∈ R

for some phase δ ∈ R. In particular, Ti = T∞. This completes the proof of
Proposition 4.8 in the (M) case. The (W) case is proved the same way.

Proposition 4.10. The finite energy sphere ṽ∞ : C \ Γi → R × M

produced above has the following property :

Either
∫
C\Γi

v∗∞dλ ≥ σ0

or
∫
C\Γi

v∗∞dλ = 0 and 	Γi ≥ 2.

Proof. If Γi �= ∅ then 0 ∈ Γi by Lemma 4.5. Assume Γi = ∅ or Γi = {0}.
From the normalization condition (4.2) for ṽj we obtain in the limit j → ∞,∫

S1
v∞

(
e2πi·

)∗
λ = m(w∞, zi) − σ0.

Since v∞
(
Re2πit

)
→ xi(Tit) as R → ∞ in C∞(R), in view of Proposition 4.8,

and since Ti = m(w∞, zi), we conclude from∫
DR\D

v∗∞dλ =
∫

S1
v∞

(
Re2πi·

)∗
λ −

∫
S1

v∞
(
e2πi·

)∗
λ,

in the limit R → ∞, that ∫
C\D

v∗∞dλ = σ0 > 0.

We see that the dλ-energy of ṽ∞ is positive in the cases of one puncture and no
punctures. Consequently, 	Γi ≥ 2 if the dλ-energy of ṽ∞ vanishes, as claimed
in the proposition.

In view of Proposition 4.10 we might have
∫
C\Γi v∗∞dλ = 0 provided

	Γi ≥ 2. From the classification of finite energy surfaces in R × M having
vanishing dλ-energy we know that in this case the image of ṽ∞ is necessar-
ily a multiply covered cylinder over a periodic orbit of Xλ; see the appendix
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of [30]. Since we have only one positive puncture, namely ∞, the associated
asymptotic limit in M is l-fold covered,

l =
�Γi∑
n=1

ln,

where ln, 1 ≤ n ≤ 	Γi, are the covering numbers of the negative limits. Clearly,
l ≥ 2. In the following we call such a generalized finite energy surface a
connector.

Definition 4.11. A connector is a generalized finite energy surface ũ =
(a, u) : S \Γ → R×M having precisely one positive puncture and at least two
negative punctures and satisfying∫

S\Γ
u∗dλ = 0.

We summarize our construction so far. We used the sequence wϕ(j) to
produce in the limit the generalized finite energy sphere w∞ : S2 \ Γ → Ṽ .
The nonempty finite set Γ = {z1, . . . , zk} of punctures is contained in D ⊂ S2.
These punctures are all negative. For the puncture zi ∈ Γ we constructed a
rescaled subsequence ṽj = wϕ(j) ˚ τj converging either to a generalized finite
energy plane

ṽ∞ : S2 \ {∞} = C→ W̃

or, after adding a sequence of numbers to the R-component, to a generalized
finite energy sphere

ṽ∞ : C \ Γi = S2 \
(
Γi ∪ {∞}

)
→ R× M.

In the first case the puncture ∞ of ṽ∞ is positive. In the second case ∞
is also a positive puncture, while all the punctures in Γi are negative provided
Γi �= ∅. In both cases, the asymptotic limit of the positive puncture ∞ of ṽ∞
agrees, because of Proposition 4.8, with the asymptotic limit associated with
the negative puncture zi ∈ Γ of w∞.

Now we proceed inductively. If ṽ∞ constructed in the above first step does
not have punctures, i.e., Γi = ∅, so that it is either a finite energy plane in W̃

or a finite energy plane in R×M , the induction for the puncture zi is already
finished. If Γi �= ∅, then for the negative punctures Γi = {zi1 , . . . , ziki} ⊂ D of
ṽ∞ we defined the masses m

(
ṽ∞, zil

)
satisfying

γ < m
(
ṽ∞, zil

)
< m

(
w∞, zi

)
for all 1 ≤ l ≤ 	Γi. For the negative puncture zil ∈ Γi we proceed as before
and find by rescaling the sequence ṽj near zil precisely as we did above, a
subsequence converging either to a finite energy plane C → W̃ or to a finite
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energy sphere C\Γil → R×M having the only positive puncture ∞ and a finite,
possibly empty, set Γil ⊂ D of negative punctures. Moreover, the asymptotic
limit associated with the positive puncture ∞ agrees with the asymptotic limit
of the negative puncture zil. We continue in this way. At every step either a
certain amount of energy is used or one obtains a connector, where because of
Proposition 4.6 the sum of the masses of the negative punctures is equal to the
mass of the corresponding puncture of the previous step. At every step the new
masses showing up are larger than γ but smaller than the corresponding mass
of the previous step. In case of a connector, there are at least two negative
punctures. The sum of their masses is the mass of the previous step. Due to
the lack of further punctures the inductive procedure necessarily terminates
after finitely many steps. In the last step a finite energy plane either in W̃

or in R × M is produced. The asymptotic limit of its positive puncture ∞
agrees with the limit of the negative puncture under consideration. All surfaces
produced, except of course the initial surface w∞, have precisely one positive
puncture and a finite, possibly empty, set of negative punctures. The whole
inductive procedure and its resulting configuration can be described with the
help of a graph whose vertices can have three different colors, black, gray and
white. A black vertex occurs only once. It is a solution of the problem (V) and
represents the image of w∞ in Ṽ . The gray vertex represents the image of a
solution of type (M) and a white vertex a solution of type (W). A white vertex
is always a plane. We draw an edge between two vertices if the asymptotic
limits match up. Following the inductive procedure we represent the graph as
a tree, where we do not exclude the possibility that different vertices in the
graph correspond to the same finite energy sphere. Figure 14 illustrates the
idea with an example.

z1

z2
z3

z2,1 z3,1
z3,2

z3,1,1 z3,1,2

Γ = {z1, z2, z3}

Γ1 = ∅

Γ2 = {z2,1}

Γ3 = {z3,1, z3,2}

Γ2,1 = ∅

Γ3,1 = {z3,1,1, z3,1,2}

Γ3,2 = ∅

Figure 14. The evolution of a graph during the inductive construction.
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5. Properties of bubbling off trees

5.1. Fredholm indices. In order to analyze the properties of the bubbling
off tree we first recall some facts about the Fredholm index needed later on.
We abbreviate the Riemann sphere by S = S2 and consider the finite energy
spheres

w̃ : Ṡ = S2 \ Γ → Ã

constructed in the previous section, where Ã stands for Ṽ or R × M or W̃ ,
and where Γ �= ∅. If Ã = Ṽ , then punctures are all negative, Γ = Γ−, while
Γ = Γ+ for Ã = W̃ . If w̃ is an embedding, its Fredholm index is, according to
[36], given by the formula

(5.1) Ind(w̃) = µN (w̃) + χ(S2) − 	Γ

for Ã = W̃ and Ã = R× M . Here N denotes a normal bundle to the tangent
bundle of the embedded sphere w̃(Ṡ) ⊂ Ã so that TÃ = Tw̃(Ṡ) ⊕ N . More-
over, N agrees with ξ in a neighborhood of the punctures. The normal index
µN (w̃) = µ+

N − µ−
N ∈ Z is computed in a trivialization of N as explained in

Appendix 8.1. If Ã = Ṽ we imposed the condition w̃(∞) = o∞. Therefore,
the Fredholm index decreased by 2 so that

(5.2) Ind(w̃) = µN (w̃) + χ(S2) − 	Γ − 2

for Ã = Ṽ . In this case µN (w̃) = −µ−
N (w̃) since all the punctures are negative.

Recalling that M is diffeomorphic to S3 we also have a total Conley-Zehnder
index

µ(w̃) = µ+(w̃) − µ−(w̃),

which, for every periodic orbit x(t) associated with the punctures Γ, is com-
puted in trivializations of the bundles u∗ξ, where u : D → M are disc maps
spanning the orbits so that x(Tt) = u(e2πit).

In order to establish the relation between µN and µ we define a new index
µF as follows. We choose a complex line bundle E over Ṡ which is a subbundle
of w̃∗TÃ coinciding with CX near the punctures, where X is the Reeb vector
field. In addition, we choose E so that it admits a nowhere vanishing section
which near the punctures coincides with X. Let now F be a complex subbundle
which near the punctures coincides with ξ and which complements E so that

w̃∗TÃ = E ⊕ F.

Then F is also a symplectic vector bundle of real dimension 2. Therefore, we
can compute the total Conley-Zehnder index µF (w̃) ∈ Z using a trivialization
of the bundle F .
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Concerning the computations of indices and winding numbers below it is
useful to recall from [32] and [30] the special compactification of the punctured
sphere Ṡ = S \ Γ to a compact surface S̄ with boundaries. We define this by
adding a circle for every puncture in Γ, taking polar coordinates centered at
the puncture and distinguishing positive and negative punctures. In view of its
asymptotic properties near Γ the map w̃ has a smooth extension w̄ : S̄ → R×M

for which the added circles parametrize the periodic orbits associated with
the punctures. The vector bundles over Ṡ under consideration have unique
continuous extensions to bundles over the compact surface with boundary.
The following formula holds true:

Proposition 5.1.

µN (w̃) = µF (w̃) − 2 [χ(S) − 	Γ] .

Proof. By construction,

Tw̃(Ṡ) ⊕ N = w̃∗TÃ = E ⊕ F.

Choose nowhere vanishing sections t of Tw̃(Ṡ) and n of N . Denote by e a
nowhere vanishing section of E which near the punctures agrees with X and
denote by f a nowhere vanishing section of F . Then (t(z), n(z)) is, in the
complex basis (e(z), f(z)) represented by

t(z) = α(z)e(z) + β(z)f(z),

n(z) = γ(z)e(z) + δ(z)f(z).

Near the punctures Γ, the matrix[
α(z) β(z)
γ(z) δ(z)

]
, z ∈ Ṡ,

is diagonal. The sum of the winding numbers of the complex determinant at the
positive punctures equals the sum at the negative punctures. The sum of the
winding numbers of α at the positive punctures minus the sum at the negative
punctures is equal to χ(S) − 	Γ. This implies that the sum of the winding
numbers of δ at the positive punctures minus the sum at the negative punctures
is equal to 	Γ − χ(S). Consequently, by means of the Maslov-compatibility
property of the Conley-Zehnder index in Theorem 8.1, we conclude that µN =
2[	Γ − χ(S)] + µF . This completes the proof of the proposition.

We point out that the crucial property of the bundle E lies in the fact
that it admits a nowhere vanishing section which near the punctures agrees
with X. Given any other complex subbundle of dimension 1, also admitting
a nowhere vanishing section which is X near the punctures, it is isotopic to
E through complex subbundles of w̃∗TÃ, the bundles being fixed near the
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punctures during the deformation. All these constructions hold true under
homotopies of w̃ as long as the behavior near the punctures is preserved. We
shall use these remarks in the proof of the next proposition.

Proposition 5.2.

• µF (w̃) = µ(w̃) if Ã = W̃ or Ã = R× M .

• µF (w̃) = µ(w̃) + 6 if Ã = Ṽ , provided that the embedded finite energy
sphere w̃ : Ṡ → Ṽ satisfies w̃(∞) = o∞ and the intersection number with
the sphere S∞ at infinity is equal to 1.

Proof. If Ã = R × M we can choose E to be the complex span of X so
that F can be chosen to be ξ. Then, clearly, µF = µ. If Ã = W̃ , then we
can homotope W̃ into some curve in R+ × M keeping the behavior near the
punctures fixed. The same arguments apply. Assume now that Ã = Ṽ and
assume that it intersects the sphere at infinity precisely once transversally so
that the intersection number is equal to 1. Choose the bundles E and F as
described above and assume that they coincide near the punctures with CX

and ξ respectively. Now choose a smooth map ṽ : Ṫ → W̃ which is defined
on a punctured Riemann sphere Ṫ and which near the punctures parametrizes
half-cylinders over periodic orbits. The periodic orbits in question are those
of w̃. Gluing this Riemann sphere to Ṡ along the periodic orbits we obtain
a map b from a surface Σ into W ∪ ([−R, R] × M) ∪ V ≡ CP 2 for some R

sufficiently large. The map b has the intersection number 1 with the sphere at
infinity. Moreover, it is homologous to CP 1. Therefore, c1(b∗TCP 2)[Σ] = 3. If
we choose complex line subbundles E′ and F ′ over the part belonging to Ṫ , so
that E′ admits a nonvanishing section which is X near the punctures, and so
that F ′ is ξ near the punctures, then E′ and E can be glued along the periodic
orbits to a complex line bundle Ê over Σ admitting a global nowhere vanishing
section. Moreover, F and F ′ can be glued to a complex line bundle F̂ over Σ,
so that

Ê ⊕ F̂ = b∗(TCP 2).

Since c1(Ê) = 0 we deduce

3 = c1(b∗TCP 2)([Σ])

= c1(Ê)([Σ]) + c1(F̂ )([Σ])

= c1(F̂ )([Σ]).

Consequently, µF + µF ′ = 2 · 3 = 6. By construction, µF ′ = µξ = µ−(w̃)
= −µ(w̃) and the proposition follows.
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In view of Proposition 5.1 and Proposition 5.2 we find the following for-
mulas for the Fredholm index, using the fact that χ(S) = 2:

(5.3) Ind(w̃) = µ(w̃) − 2 + 	Γ,

if Ã = W̃ or Ã = R× M , and

(5.4) Ind(w̃) = µ(w̃) + 2 + 	Γ

for our special surfaces in Ã = Ṽ .
We note that formula (5.4) can heuristically be explained by the following

argument from Fredholm theory. We take smooth disc maps ṽλ : intDλ → W̃

which parametrize near their boundaries half cylinders over the periodic orbits
Pλ associated with the punctures λ ∈ Γ. Gluing these maps to w̃ along the
periodic orbits we obtain a map w̃	

(
∪λṽλ

)
: S2 → AN for sufficiently large N ,

which is homologous to CP 1 and which intersects the sphere at infinity in the
point o∞ with intersection index 1. Hence, in view of (2.27), Ind

(
w̃	

(
∪λṽλ

))
=

4 − 2 = 2. By the gluing properties of Fredholm maps,

Ind
(
w̃	 ∪λ ṽλ

)
= Ind(w̃) +

∑
λ∈Γ

Ind(ṽλ)

and so,

Ind(w̃) = 2 −
∑
λ∈Γ

Ind(ṽλ).

Now, Ind(ṽλ) = µ(Pλ) − 1, by Theorem 2.8 in [36]. Therefore, Ind(w̃) =
2 + 	Γ − ∑

λ∈Γ µ(Pλ) = 2 + 	Γ + µ(w̃), which agrees with (5.4). Figure 15
illustrates schematically the construction. So far we have assumed that w̃ is
an embedding. This however is not needed. For a proof of this fact and also
for the proof of the following genericity statement we refer to [7].

o∞

Pλ

Dλ

Figure 15. Construction of the map w̃	 ∪λ ũλ.
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Theorem 5.3. Fix a point o∞ on the sphere CP 1 at infinity in CP 2.
Then there exists a compatible almost complex structure Ĵ on Ṽ and on W̃

which on Φ([−ε, ε] × M) coincides with J̃ , which in a neighborhood of CP 1

in V coincides with the standard complex structure i, so that the following
properties hold true:

1. For every somewhere injective finite energy sphere w̃ : Ṡ → W̃ with
respect to Ĵ ,

Ind(w̃) = µ(w̃) − 2 + 	Γ ≥ 0.

2. For every finite energy sphere w̃ : Ṡ → Ṽ with respect to Ĵ , satisfying
w̃(∞) = o∞ and intersecting the sphere at infinity once with the inter-
section number equal to 1,

Ind(w̃) = µ(w̃) + 2 + 	Γ ≥ 0.

Here µ(w̃) is the total Conley-Zehnder index computed with respect to M .
Note that in the first case µ(w̃) = µ+(w̃), so that

µ+(w̃) ≥ 2 − 	Γ

for a finite energy sphere in W̃ , while µ(w̃) = −µ−(w̃) in the second case, so
that

µ−(w̃) ≤ 2 + 	Γ

for the distinguished finite energy spheres in Ṽ .

5.2. Analysis of bubbling off trees. In Section 4 we constructed a tree of
generalized finite energy spheres of type (W), (V) and (M). We shall show
next that the asymptotic limits occurring have their Conley-Zehnder indices
in the set {1, 2, 3}, in the generic case. The Conley-Zehnder or µ-index is
computed with respect to a symplectic trivialization of the plane bundle ξ

over a natural disc spanned by the periodic orbit under consideration. Since
in our case M = S3, the index neither depends on the trivialization nor on the
choice of the disc. Recall that we always consider a generic structure J on ξ

and a generic almost complex structure Ĵ on Ŵ and V̂ which coincides near
the boundaries with the R-invariant structure J̃ determined by J .

Proposition 5.4. Consider the bubbling off tree constructed in the pre-
vious section. The bottom white dots representing generalized finite energy
planes in W̃ have at ∞ asymptotic limits whose Conley-Zehnder indices are
at least 1.

Proof. The generalized finite energy plane ũ : C → W̃ factors through a
somewhere injective finite energy plane ṽ : C→ W̃ so that

ũ = ṽ ˚ p
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for a polynomial map p : C → C; see Proposition 6.2 in [30]. Since Ĵ is
generic on W̃ we know from Theorem 5.3 that µ(ṽ) ≥ 2 − 	Γ. In the case
at hand, 	Γ = 1 and µ(ṽ) = µ+(ṽ) and hence µ+(ṽ) ≥ 1. Since a positive
µ-index cannot decrease under iteration (see Proposition 8.2 in the appendix)
we conclude µ+(ũ) ≥ µ+(ṽ) ≥ 1 as claimed.

If the plane is contained in R×M we have the following estimate from [30].

Proposition 5.5. Let ũ : C → R × M be a J̃-finite energy plane, then
µ(ũ) ≥ 2.

From the Fredholm theory in Theorem 2.1, we recall:

Proposition 5.6. If ũ : S2 \ Γ → R×M is a somewhere injective finite
energy sphere for J̃ , then its Fredholm index satisfies

Ind(ũ) = µ(ũ) − 2 + 	Γ ≥ 1

provided π ˚ Tu �= 0.

We shall use the above information in order to prove:

Proposition 5.7. Assume that J and Ĵ are generic. Then the finite
energy spheres occurring in the bubbling off tree have asymptotic limits whose
indices belong to the set {1, 2, 3}.

Proof. In order to show first that the indices are all ≥ 1 we proceed
by induction starting at the bottom of the tree and working all the way up
to w∞. The white dots and the gray dots at the bottom represent finite energy
planes in W̃ and R × M respectively. Here we know from Proposition 5.4
and Proposition 5.5 that the positive puncture has index ≥ 1. We now delete
all these dots from the graph and attach the Conley-Zehnder indices ≥ 1 to
the free edges. If there are no gray dots left with a free edge we are done.
Otherwise we look at a gray dot having one or several free edges. It represents
a finite energy sphere ũ = (a, u) : S2 \ Γ → R × M of type (M). We have to
distinguish between the cases π ˚ Tu �= 0 and π ˚ Tu = 0.

Consider the case π ˚ Tu �= 0 and denote by ṽ the underlying somewhere
injective sphere in R×M satisfying ũ = ṽ ˚ p. The polynomial p : C∪{∞} →
C ∪ {∞} maps the punctures Γ onto the punctures Γ′ of ṽ. Since J is generic
we conclude from Proposition 5.6 that

(5.5) Ind(ṽ) = µ(ṽ) − 2 + 	Γ′ ≥ 1.

Here µ(ṽ) = µ+(ṽ) − µ−(ṽ). For the computation of the indices we take a
trivialization of ξ over the disc spanning the positive limit in M which is
defined by gluing to the image of v in M suitable discs spanning the negative
limits of the previous generalized finite energy planes whose indices as we know
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already are ≥ 1. Since a periodic orbit with index at most 0 will have iterated
indices with value at most 0, it follows that ṽ has negative limits whose indices
are ≥ 1. This implies that the index µ+(ṽ) of the positive puncture of ṽ is at
least 2. Indeed, in view of (5.5) we can estimate

µ+(ṽ) ≥ µ−(ṽ) + 2 + 1 − 	Γ′

≥ (	Γ′ − 1) + 3 − 	Γ′ = 2.

Consequently, µ+(ũ) ≥ µ+(ṽ) ≥ 2 in case deg(p) = 1 and µ+(ũ) ≥ 4 if
deg(p) ≥ 2.

Next consider the case π ˚Tu = 0; then ũ is a connector and hence has at
least two negative punctures; see Definition 4.11. The map can be written as
ũ = ṽ˚p with a polynomial p as above and with ṽ

(
e2π(s+it)

)
=

(
Ts+c, x(Tt)

)
for a simply covered T -periodic solution x(t) of Xλ on M . Hence the punctures
of ũ have asymptotic limits of the form (x, kjT ). Denote by

k0 =
�Γ−∑
j=1

kj

the covering number of the positive puncture of ũ. Then k0 ≥ 2. Since the
negative punctures have indices at least 1, the positive puncture also has an
index at least 1. Indeed, by Proposition 8.2 if µ(x, kjT ) ≥ 1, then µ(x, T ) ≥ 1
so that µ(x, k0T ) ≥ 1. To summarize, the positive puncture of a finite energy
sphere ũ in R× M has an index µ+(ũ) ≥ 1.

Since the asymptotic limits of the positive punctures agree with the asymp-
totic limits of the negative punctures of the next generation up the tree we
conclude, iterating our procedure all the way up, that all indices are ≥ 1.

It remains to prove that the indices are < 4. Arguing by contradiction
we assume that a finite energy sphere in the bubbling off tree has a negative
puncture whose asymptotic limit has an index ≥ 4. We already know that all
the other negative punctures of this sphere have indices ≥ 1. Hence arguing
as above we conclude that the positive puncture of this sphere has index ≥ 4.
Iteratively working up the tree we conclude that w∞ has at least one negative
puncture with index ≥ 4 while all the other negative punctures have indices
≥ 1. Recalling the Fredholm index formula (5.4)

Ind(w∞) = µ(w∞) + 	Γ + 2

= µ(w∞) − 2 + 	Γ + 4

we obtain, in view of µ(w∞) = −µ−(w∞) the estimate

Ind(w∞) ≤ −4 − (	Γ − 1) − 2 + 	Γ + 4 = −1.

This, however, contradicts the fact that Ind(w∞) ≥ 0 for our generic Ĵ . Having
shown that all indices in the bubbling off tree are < 4 the proof of Proposition
5.7 is complete.
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From Proposition 5.7 we deduce, using Fredholm theory, the following
proposition.

Proposition 5.8. Under the genericity assumptions specified above, all
solutions of type (M) occurring in the bubbling off tree are somewhere injective,
provided π ˚ Tu �= 0.

Proof. Assume ũ : S2 \ Γ → R × M is a finite energy sphere obtained
through the bubbling off analysis and satisfying π ˚ Tu �= 0. Arguing by
contradiction we assume that ũ is not somewhere injective. Then there exist a
somewhere injective finite energy sphere ṽ : S2 \Γ′ → R×M and a polynomial
map p with deg(p) ≥ 2 satisfying ũ = ṽ ˚ p and p(Γ) = Γ′. Since ṽ is
somewhere injective we know from Proposition 5.6 that the Fredholm index of
ṽ is estimated by

Ind(ṽ) = µ(ṽ) − 2 + 	Γ′ ≥ 1.

From Proposition 5.7 we deduce that the indices of the negative punctures of
ṽ are ≥ 1. Therefore, the positive puncture has an index µ+(ṽ) ≥ (	Γ′ − 1) +
3 − 	Γ′ = 2 and hence µ+(ũ) ≥ 4 in view of deg(p) ≥ 2. This contradicts
µ+(ũ) < 4 and proves Proposition 5.8.

Another consequence of Proposition 5.7 is the following:

Proposition 5.9. Assume the solution ũ = (a, u) : S2 \ Γ → R × M of
type (M) produced through the bubbling off analysis satisfies π ˚Tu �= 0. Then
windπ(ũ) = 0, and every puncture z ∈ Γ has the asymptotic winding number

wind∞(z) = 1.

Proof. From [30, Prop. 5.6], we recall the formula

(5.6) windπ(ũ) = wind∞(ũ) − 2 + 	Γ,

where, splitting the punctures Γ = Γ+ ∪ Γ− into positive and negatives ones,

(5.7) wind∞(ũ) =
∑

z∈Γ+

wind∞(z) −
∑

z∈Γ−
wind∞(z).

If the asymptotic limits of the punctures have their indices in {1, 2, 3} the
inequalities given in (84) in [30] become

wind∞(z) ≤ 1 if z ∈ Γ+,(5.8)

wind∞(z) ≥ 1 if z ∈ Γ−.

This implies for the case at hand, in which Γ+ = {∞},

wind∞(ũ) ≤ 1 − (	Γ − 1) = 2 − 	Γ.
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From windπ(ũ) ≥ 0 we conclude

wind∞(ũ) ≥ 2 − 	Γ.

Consequently, wind∞(ũ) = 2 − 	Γ and hence windπ(ũ) = 0. Therefore, in
view of (5.7),

wind∞(∞) − 1 =
∑

z∈Γ−
wind∞(z) − 	Γ− =

∑
z∈Γ−

( wind∞(z) − 1) .

Recalling (5.8), we conclude wind∞(z) = 1 for every z ∈ Γ.

In order to establish the crucial property of the bubbling off tree we need
a result about self-linking numbers. Recalling the gluing construction in Sec-
tion 2.2 we consider a compact symplectic 4-manifold A with a convex contact
type boundary ∂A = B+, in the following denoted by B = B+. Gluing R+×B

over the boundary to A we obtain the almost complex manifold (Ã, Ĵ). On
R+ ×B the almost complex structure Ĵ agrees with the R- invariant structure
J̃ determined by the contact form λ on B as defined in (2.16).

Theorem 5.10. Consider the compact symplectic 4-manifold A with a
convex contact type boundary ∂A = B. Let (Ã, Ĵ) be the associated almost
complex manifold. Assume that ũ : (D, i) → (Ã, Ĵ) is an embedded almost
complex disc-map satisfying ũ(∂D) ⊂ {r} × B for some r > 0. Moreover,
assume that u(∂D) ⊂ B is transversal to the contact structure ξ, where ũ(z) =
(a(z), u(z)) if ũ(z) ∈ R+ × B. Assume, in addition, that ũ : D → Ã is
homotopic (with boundary fixed) to a map w̃ = (r, w) : D → {r} × B so that
ũ(z) = (r, w(z)) for z ∈ ∂D. Then the self -linking number of w(∂D) with
respect to the disc w is sl(w, w(∂D)) = −1.

Proof. Since ũ is almost complex, the symplectic vector bundle ũ∗(TÃ)
→ D admits a splitting into two complex line bundles

ũ∗(TÃ) = T
(
ũ(D)

)
⊕ N,

where T (ũ(D)) is the complex tangent bundle of ũ(D) and where N is a com-
plex line bundle isomorphic to the normal bundle ũ∗(TÃ)/T (ũ(D)) and equal
to ξ over the boundary ∂D. Abbreviate x(t) = u(e2πit) and consider the split-
ting

ũ∗(TÃ) = YC ⊕ ZC

defined by a nowhere vanishing section Y of ũ∗(TÃ) satisfying Y (e2πit) = ẋ(t)
at the boundary ∂D of D, and a nowhere vanishing section Z of ũ∗(TÃ)
belonging to ξ over ∂D, and which together with Y spans ũ∗(TÃ) over C.
If now C is a nowhere vanishing section of N and H is a nowhere vanishing
section of T (ũ(D)) → D we have Y (z) = a(z)H(z) + b(z)C(z) and Z(z) =
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c(z)H(z)+d(z)C(z) for z ∈ D. Hence we can define the map Φ : D → GL(C2)
by

z �→
[

a(z) b(z)
c(z) d(z)

]
.

If z ∈ ∂D, then b(z) = c(z) = 0. Since Φ is a disc-map, the winding number
of z �→ detΦ(z) = a(z) · d(z) ∈ C \ {0} over ∂D necessarily vanishes. At the
boundary ∂D we have Y (z) = a(z)H(z) and Y = ẋ; moreover H extends to
a trivialization of the tangent bundle of the embedded disc ũ(D). Therefore,
the winding number of a : ∂D → C \ {0} is equal to 1 and hence the winding
number of d : ∂D → C \ {0} is equal to −1.

Next we push the disc D = ũ(D) in the direction of Z to obtain the new
disc D′. By assumption, ∂D ⊂ {r}×B and since Z|∂D ⊂ ξ we may also assume
that ∂D′ ⊂ {r} × B. Clearly, ∂D ∩ ∂D′ = ∅ and we claim that

(5.9) ∂D ∩D′ = ∅ and ∂D′ ∩ D = ∅.
To prove this we shall show by means of the maximum principle that the
interiors of D and D′ lie below the level set {r} × B, i.e., in A

⋃
([0, r) × B).

Take a smooth function f : Ã → R satisfying

f = 0 on A

f(s, b) = ϕ(s) on R+ × B

where ϕ ≡ 0 near s = 0, and ϕ′′(s) > 0 otherwise. Consider the composition

α = f ˚ ũ : D → R.

If ũ(z) = (a(z), u(z)) at the points z where ũ(z) ∈ R+ × B, we conclude from
our assumptions that

α(z) = f ˚ ũ(z) = ϕ(r) if z ∈ ∂D.

Moreover, for z ∈ D near ∂D we have α(z) = f ˚ ũ(z) = ϕ(a(z)). Since ũ is a
Ĵ-holomorphic disc satisfying ũ(∂D) ⊂ R+ × B and since Ĵ = J̃ on R+ × B,
the computations in Lemma 4.4 show that

∆α ≥ 0.

Since ũ is an embedding, the function a : D → R is not constant. We therefore
conclude by means of the strong maximum principle that

α(z) < ϕ(r) for z ∈ int(D),
∂α
∂n (z) > 0 for z ∈ ∂D.

Consequently, int ũ(D) = int(D) ⊂ A
⋃(

[0, r) × B
)

as claimed. In view of
(5.9) the intersection number int(D,D′) is well-defined and we claim that

(5.10) int(D,D′) = −1.
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In order to prove this we introduce new complex coordinates in which D =
D × {0} ⊂ C × C and H(z) = (0, 1) ∈ C × C for z ∈ ∂D. Now D′ =
{(z, Z(z)) | z ∈ D} with Z : D → C. By the above discussion the winding
number of Z along ∂D is equal to −1 so that Z is homotopic to 1

z (0, 1) over
∂D. Consequently, deg(Z, D, 0) = −1 and the claim (5.10) follows.

Now we add a piece to the disc D′ above the level {r}×B to obtain the new
disc D̃′ as illustrated in Figure 16. Clearly, int(D,D′) = int(D, D̃′) since the
points of intersection remain the same. Recalling that ũ(D) is homotopic (with
boundary fixed) to w̃(D) we obtain, moving the boundary of ∂D̃′ sufficiently
high up, that int(D,D′) = int(w̃, D̃′) = −1. By assumptions, w̃(D) ⊂ {r}×B.
Hence, by homotopy and the excision, denoting by I ⊂ R+ an open interval
containing r ∈ I we obtain:

−1 = int(D,D′) = int(D, D̃′) = int(w̃, D̃′)(5.11)

= int(w̃, I × ∂D′) = int(w̃,R× ∂D′) = int({r} × w,R× ∂D′)

= int(w, ∂D′).

Recall now that Z is a section of ξ over ∂D. Therefore, the last integer in
(5.11) is, by definition , equal to the self-linking number sl(w, w(∂D)) if we
show that the section Z|∂D admits a nonvanishing extension over w∗ξ.

R
+

w̃(D)

ũ(D) = D

∂D′

D′

D̃′

{r} × B

Figure 16. Schematic construction of the disc D̃′ in the proof of
Theorem 5.10.

In order to see this we use a sequence of homotopy arguments. First ob-
serve that along the homotopy of ũ into w̃ the pair of linearly independent
sections Y and Z of ũ∗(TÃ) can be homotoped to a pair Ŷ and Ẑ of point-
wise linearly independent sections of w̃∗(TÃ) where during the homotopy the
sections over the boundary ∂D remain the same. We now have two pointwise
linearly independent sections Ŷ and Ẑ of w̃∗(TÃ) = w̃∗T (R∗×B). The loop x
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is contained in the level set {r} ×B where x is transversal to ξ such that ẋ(t)
and the Reeb vector field X(w(e2πit)) point in the same direction. Therefore,
Ŷ can be homotoped as a nowhere vanishing section into the section X(w(z))
for z ∈ D. During this homotopy we can homotope Ẑ in such a way that at any
moment we have two pointwise linearly independent sections and, moreover,
the section Ẑ is fixed at the boundary. The newly obtained section ˆ̂

Z is now
equal to Z over the boundary ∂D, and linearly independent of X(w(z)). Since

T (R×B) = C ·X ⊕ ξ, the section ˆ̂
Z can be homotoped to a nowhere vanishing

section of ξ when it is fixed over the boundary. This finishes the proof of the
theorem.

We shall make use of Theorem 5.10 in the proof of the following crucial
property of the bubbling off tree.

Proposition 5.11. Assume ũ = (a, u) : C \Γ′ → R×M is a solution of
type (M) obtained through the bubbling off analysis satisfying π ˚ Tu �= 0. De-
note the asymptotic limit associated with the puncture z ∈ Γ′ by (x0, T0). Then
T0 is the minimal period of x0 and the loop x0(R) has self -linking number −1.

Proof. We first consider a positive puncture z ∈ Γ′. By the bubbling off
analysis, there exists a sequence of Möbius transformations τj such that

ũj = w̃ϕ(j) ˚ τj → ũ = (a, u) in C∞
loc

(
C \ Γ′,R× M

)
,

where the R-components of ũj are suitably shifted. For sufficiently large R,
the loop u(SR) ⊂ M is embedded. Indeed, if the cylindrical end is not em-
bedded one concludes by the asymptotic behavior of ũ near its limit that the
surface is multiply covered contradicting the fact established in Proposition
5.8, that the surface is somewhere injective. Moreover, near the limit the loop
u(SR) is transversal to ξ. Set ũk(z) = (ak(z), uk(z)) and consider the loops
{uk(z) | ak(z) = a}. Then for k and a sufficiently large, the loop is transversal
to ξ and by construction bounds an embedded pseudoholomorphic disc satis-
fying the hypotheses of Theorem 5.10. By the invariance of the self-linking
number under deformations of loops transversal to ξ, we conclude from Theo-
rem 5.10 that the self-linking number of u(SR) is equal to −1 if R is sufficiently
large.

Recall that wind∞(∞) = 1 in view of Proposition 5.9. We now work in
the local coordinates near the asymptotic limit as described in the appendix
and use the asymptotic formula for ũ. Then up to a small isotopy irrelevant
for our arguments we may assume that

(5.12) u(s, t) = (kt, eλse(t)) ⊂ R× C.

Here k is the asymptotic covering number and λ < 0. Moreover, we can find
local coordinates such that the loop e(t) ∈ C \ {0} has winding number equal
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to 1. Note that the first component in (5.12) is to be understood mod Z.
If s0 is large, the self-linking number sl(y) of the loop y(t) = u(s0, t) as a loop
in S3 is equal to

(5.13) sl(y) = −1

as we have just concluded from Theorem 5.10. Recall that the self-linking
number is computed by shifting y in the direction of Z(y(t)) into the loop y′

disjoint from y. Here Z is a nowhere vanishing section of q∗ξ, where q : D → M

is a disc map which at the boundary ∂D satisfies

q(e2πit) = y(t).

Then sl(y) is the intersection number between q and the shifted loop y′. We
extend q to another disc map q′ by adding the closure of u([s0,∞) × S1) to
the disc q. This way we obtain a disc map whose boundary parametrizes the
asymptotic limit (x0, T0) of u. By definition of the self linking number of y′,

(5.14) sl(y) = int(q, y′) = int(q′, y′) − int
(
u([s0,∞) × S1), y′

)
and we claim that

(5.15) int
(
u([s0,∞) × S1), y′

)
= 1.

This will follow from the representation (5.12) for u. The loop y′ may be given
by (kt, eλs0e(t) + ε) for some ε �= 0 small. Hence the intersection points of
u([s0,∞) × S1) with y′ are the solutions of the equations

eλs0e
(
t + j/k

)
− eλse(t) + ε = 0

for j = 0, 1, . . . , (k − 1). The degree of the map is the difference between the
winding numbers for s large and s = s0. Since the winding number of e(t) is
equal to 1, we obtain that the mapping degree is equal to 1 if j = 0 and equal
to 0 if j = 1, . . . , (k − 1), hence proving the claim (5.15). Next we claim that

(5.16) int(q′, y′) = sl(x0, T0) + k.

Indeed, choose s1 > s0. Then

int(q′, y′) = int(q′, y) = int
(
q′, u(s0, ·)

)
= int

(
q′, u(s1, ·)

)
= int

(
q, u(s1, ·)

)
+ int

(
u([s0,∞) × S1), u(s1, ·)

)
.

Shifting x0 to x′
0 = (kt, δ) for some δ �= 0 small we obtain, by the definition of

the self-linking number of (x0, T0),

sl(x0, T0) = int(q′, x′
0) = int(q, x′

0) + int
(
u([s0,∞) × S1), x′

0

)
.

Since s1 > s0, a homotopy avoiding the boundary of q shows that

int
(
q, u(s1, ·)

)
= int(q, x′

0).
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Hence
sl(x0, T0) = int

(
q, u(s1, ·)

)
+ int

(
u([s0,∞) × S1), x′

0

)
.

Consequently,

int(q′, y′) − sl(x0, T0) = int
(
u([s0,∞) × S1), u(s1, ·)

)
− int

(
u([s0,∞) × S1), x′

0

)
= −int

(
u([s0,∞) × S1), x′

0

)
.

We have used that since the cylinder is embedded, the first term
int(u([s0,∞)×S1), u(s1, ·)) vanishes. Indeed, by shifting the loop u(s1, ·) nor-
mal to the cylinder we obtain a loop disjoint from the cylinder. It remains to
show that

(5.17) int
(
u([s0,∞) × S1), x′

0

)
= −k.

The intersection points are solutions of

eλse
(
t + j/k

)
− δ = 0,

for j = 0, 1, . . . , (k − 1). Since the winding number of e(t) is equal to 1 we
obtain for every j that the mapping degree is equal to −1 hence proving (5.17).
The claim (5.16) is proved. Summarizing we conclude from (5.13), (5.15) and
(5.16),

−1 = sl(y) = sl(x0, T0) − 1 + k

so that sl(x0, T0) = −k. On the other hand, with T0 = kT , we obtain
sl(x0, T0) = sl(x0, kT ) = k2sl(x0, T ). Combining this with our calculation
sl(x0, T0) = −k we deduce the equality

k2sl(x0, T ) = −k

which implies that k = 1 and sl(x0, T ) = −1. In particular, T0 = T so that
T0 is the minimal period of x0. The same arguments apply to the negative
punctures and the proof of Proposition 5.11 is complete.

Since its asymptotic limits are simply covered, the surface ũ constructed in
Proposition 5.11 is an embedding near the boundary. Since it is by construction
the limit of embedded curves, ũ must be an embedding by the results of McDuff
in [43]. Moreover, this ũ satisfies the hypotheses of Corollary 2.3 and Theorem
2.7. Using these results we can summarize the properties of ũ in the following
theorem.

Theorem 5.12. A solution ũ = (a, u) : C \ Γ′ → R× M of type (M) ob-
tained through our bubbling off analysis satisfying π˚Tu �= 0 has the following
properties:
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1. ũ is a proper embedding.

2. The asymptotic limits associated with the punctures Γ′ are simply covered
and have self -linking numbers equal to −1.

3. The Conley-Zehnder index of the positive puncture is equal to 2 or to 3.
The indices of the negative punctures belong to the set {1, 2}.

4. The Fredholm index of ũ satisfies Ind(ũ) ∈ {1, 2}.

5. The map u : C \ Γ′ → M is an embedding transversal to the Reeb vector
field and converging at the punctures Γ′ to the asymptotic limits of Γ′.

According to Corollary 2.2 the possible configurations projected into M

are illustrated in Figure 17.

µ+ = 2 µ+ = 3

1 2

˜Ind(u) = 1 Ind(ũ) = 2

µ+ = 3

1 1 1 1 111

Ind(u) = 1˜
Figure 17. Possible configurations of finite energy spheres projected
into M .

We point out that there are no connectors in the bubbling off tree “below”
a surface of type (M) satisfying π ˚ Tu �= 0. Indeed, a connector ũ : C \ Γ′ →
R×M satisfies π˚Tu = 0 and hence has at least 2 negative punctures because
of Proposition 4.10. Hence the asymptotic limit of the positive puncture of a
connector is always multiply covered. Therefore, it cannot be the limit of
a negative puncture of an (M)-type surface satisfying π ˚ Tu �= 0 which by
Theorem 5.12 is simply covered.

6. Construction of a stable finite energy foliation

We shall use the results from the previous sections in order to establish a
stable finite energy foliation.
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6.1. Construction of a dense set of leaves. We first recall our earlier bub-
bling off construction. Choose m ∈ M and consider, for the given point
(0, m) ∈ AN , the sequence of finite energy spheres CN ∈ M0

N uniquely
determined by (0, m) ∈ CN . Choose the ĴN -holomorphic parametrization
wN : S2 → AN used in the bubbling off analysis of Section 3 satisfying

wN (S2) = CN , wN (∞) = o∞,

∫
D

w∗
NωN = π − γ.

In addition, wN (0) either lies in Ŵ or, in case wN (S2) ∩ Ŵ = ∅, belongs to
[−N, N ]×M and has the lowest possible R-value. We constructed an injective
monotonic map ψ : N→ N satisfying

(6.1) wψ(N) → w∞ in C∞
loc(S

2 \ Γ, Ṽ ).

We can assume that ψ is already the subsequence for which all reparametrized
maps occurring during the inductive bubbling off analysis do converge. Define
the sequence ζN ∈ S2 by

wψ(N)(ζN ) = (0, m) ∈ AN .

For the limit construction in (6.1) we have identified [−N, N ] × M with
[−2N, 0] × M . Consequently, ζN → zi1 for a bubbling off point zi1 ∈ Γ. Next,
considering this puncture zi1 we constructed special sequences γN → zi1 and
δN → 0 in order to define the rescaled maps ṽN by

ṽN (z) = wψ(N)(γN + δNz);

see (4.1). Define the new sequence zN ∈ C by

ṽN (zN ) = (0, m) ∈ AN .

Then, by Lemma 4.4 and Lemma 4.5, the sequence ṽN converges to ṽ∞ either
in C∞

loc(C, W̃ ) or, modulo adding suitable constants to the R-components, in
C∞

loc(C\Γi1 ,R×M). In the first case we identified [−N, N ]×M with [0, 2N ]×
M so that |zN | → ∞. We conclude that (0, m) lies on the cylinder of the
distinguished periodic orbit which is the asymptotic limit of ṽ∞ associated
with the puncture ∞. In the second case we have three alternatives. Either
|zN | → ∞, or the sequence (zN ) remains bounded but stays away from Γi1 for
large N , or has a subsequence converging to a bubbling off point in Γi1 . If the
first alternative holds, then again (0, m) lies on the cylinder of the periodic orbit
associated with the puncture ∞. If the second alternative holds we conclude
that (0, m) ∈ image(ṽ∞) ⊂ R×M . Finally, if the third alternative holds, then
we continue with the bubbling off analysis as before and again have the three
alternatives.
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The bubbling off analysis terminates after finitely many steps due to the
lack of negative punctures. Therefore, after finitely many steps either the first
or the second alternative holds. Consequently, if m does not lie on a periodic
orbit, then there exists a sequence of Möbius transformations τN satisfying
τN (∞) = ∞ such that the maps gN := wψ(N)˚τN have the following properties.
The sequence gN converges in C∞

loc(C \ Γ′,R × M) to a finite energy sphere g

containing the point (0, m) in its image. Moreover, by Theorem 5.12 the finite
energy sphere is an embedding, its asymptotic limits are simply covered, have
self-linking numbers equal to −1 and indices belonging to the set {1, 2, 3}.
Moreover, the Fredholm index Ind(g) belongs to the set {1, 2}.

Now, since λ is nondegenerate we can choose a dense sequence mk ∈ M

so that no point in this sequence lies on a periodic orbit. For every k we take
the uniquely determined pseudoholomorphic sphere Ck

N in M0
N containing the

point (0, mk). Then we find a sequence ψk : N → N consisting of injective
monotonic maps, and finite energy spheres

Ck
∞ ⊂ R× M

such that for suitable parametrizations wk
N of Ck

ψk(N) we can pass to the limit
as N → ∞ in order to have a parametrization of Ck

∞. Moreover, (0, mk) ∈
Ck
∞. We know that each Ck

∞ is embedded, has simply covered asymptotic
limits whose self-linking numbers are equal to −1. We also know that there is
precisely one positive puncture but an arbitrary number of negative punctures.
Further, the asymptotic limits have indices in {1, 2, 3} and Ind(Ck

∞) ∈ {1, 2}.
In addition, by the positivity of intersections of pseudoholomorphic curves,
two surfaces Ci

∞ and Cj
∞ are either identical or disjoint. Indeed, if two such

surfaces intersect but are not identical, then they have an isolated intersection.
This implies, assuming i < j, that Cj

ψj(N) and Ci
ψj(N) intersect for large N in

a point different from o∞, which is not possible. We have proved the following
result.

Theorem 6.1. Consider a nondegenerate contact form λ = fλ0 on S3,
a generic admissible multiplication J : ξ → ξ and a dense sequence mk on
S3 such that mk does not lie on a periodic orbit. Then there exist a constant
c > 0 and for every point (0, mk) a finite energy sphere Ck ⊂ R × M having
the following properties:

1. The point (0, mk) belongs to Ck and E(Ck) ≤ c.

2. Ck is properly embedded and has precisely one positive puncture. The
asymptotic limits are simply covered, have self -linking numbers equal to
−1 and Conley-Zehnder indices in the set {1, 2, 3}.



FINITE ENERGY FOLIATIONS 211

3. Ind(Ck) = µ(Ck) − 2 + 	Γ ∈ {1, 2}.

4. If Ci ∩ Cj �= ∅, then Ci = Cj.

To distinguish the types of finite energy spheres we introduce the vectors
α = (µ+, µ−

1 , . . . , µ−
N ), where N is the number of negative punctures, µ+ the

Conley-Zehnder index of the positive puncture, and µ−
j the index of the jth

negative puncture ordered so that µ−
j ≥ µ−

j+1. In view of Corollary 2.3, the
following vectors are the only possibilities (see Figure 17):

α = (3, 11, 12, . . . , 1N ),

α = (3, 2, 11, 12, . . . , 1N−1),

α = (2, 11, 12, . . . , 1N ).

In the first case Ind(C) = 2 while Ind(C) = 1 in the second and the third case.
The numbers N , respectively N − 1, of negative punctures having indices
equal to 1 can, of course, be zero. If this happens, the first and the third
case correspond to finite energy planes, while the second case corresponds to a
cylinder connecting a periodic orbit of index 3 with a periodic orbit of index 2.

We next find a dense set mk for which only the first possibility occurs.

Proposition 6.2. Assume that λ and J are generic as in Theorem 6.1.
Consider, for a given c > 0 the set of embedded finite energy spheres
ũ : S2 \ Γ → R× S3 having one positive puncture and an arbitrary number of
negative punctures, satisfying π ˚ Tu �= 0 and E(ũ) ≤ c, having simply cov-
ered asymptotic limits whose indices belong to the set {1, 2, 3} and Ind(ũ) = 1.
Then this set is, modulo reparametrizations and R-action, finite.

Proof. Arguing by contradiction we find a sequence ũk : S2 \ Γk →
R × S3 of embeddings all either of type α = (3, 2, 11, . . . , 1N ) or of type
α = (2, 11, . . . , 1N ) and having the same fixed, simply covered asymptotic
limits. From the complete bubbling off analysis as carried out below, one
deduces for a subsequence that Γk → Γ with 	Γk = 	Γ, and ũk → ũ∞ in
C∞

loc(S
2 \ Γ,R × S3). Moreover, the limit ũ∞ is an embedded finite energy

surface of type α = (3, 2, 11, . . . , 1N ) resp. of type α = (2, 11, . . . , 1N ) having
the same fixed asymptotic limits as ũk. Hence Ind(ũ∞) = 1. However, this
contradicts the fact that, for generic J̃ , such an ũ∞ is (up to the R-action and
reparametrization), isolated in view of the implicit function theorem in [36],
proving the proposition.

We now delete all the points mj in Theorem 6.1 for which (0, mj) lies on a
surface as described in Proposition 6.2. The remaining sequence is, of course,
still dense. The new sequence we denote by mj again. With Cj we denote
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the finite energy surface in R× S3 guaranteed by Theorem 6.1 which contains
(0, mj). The associated vectors are now all of the form

α = (3, 11, 12, . . . , 1N ),

where N = 0 indicates a finite energy plane. We note that the bound E(Cj) ≤ c

for the energies implies the bound T ≤ c for the periods of the asymptotic
limits.

6.2. Bubbling off as mk → m. First we introduce the c-spectrum σc(λ) of
the nondegenerate contact form λ. It consists of all strictly positive numbers
of the form

(6.2) T −
N∑

k=1

Tk, N ≥ 0,

where T and Tk are periods of periodic orbits of the Reeb vector field Xλ

which are bounded above by the constant c. Since λ is nondegenerate, the
c-spectrum of λ is a finite set. In the following σ0 > 0 denotes a number which
is strictly smaller than the minimum of σc(λ). In particular, σ0 is smaller than
the minimum of all periods bounded by c.

Now, fix m ∈ S3 and choose an injective monotonic map τ : N → N

satisfying

(6.3) mτ(j) → m on S3.

To simplify the notation we shall abbreviate Cj ≡ Cτ(j) for the associated
embedded surfaces. In view of Proposition 6.2 we can assume that all these
surfaces are of type α = (3, 11, . . . , 1N ). In order to control the behavior of
the surfaces as j → ∞ we have to impose suitable normalizations for the
J̃-holomorphic embeddings

(6.4) w̃j = (aj , wj) : C \ Γj → R× S3

parametrizing Cj = w̃j(C \ Γj). Note that the set of punctures is Γj ∪ {∞}.
Since the energies are uniformly bounded we have 	Γj ≤ K < ∞ independently
of j. The normalization is as follows.

If Γj = ∅, we assume that the R-component of w̃j(0) has the smallest
value. If 	Γj = 1, we assume Γj = {0}. In both cases we require, in addition,
the normalization condition

(6.5)
∫
C\D

w∗
j dλ =

σ0

2
,

for σ0 > as introduced above, with D being the closed unit disc.
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If 	Γj ≥ 2 we assume that 0 ∈ Γj and require, in addition,

(6.6)
∫
C\Γj

w∗
j dλ =

∫
D\Γj

w∗
j dλ +

σ0

2
,

so that again most of the energy lies in D. The first consequences of these
normalizations are the following gradient bounds.

Lemma 6.3. For every ε > 0 there exists a constant C = C(ε) such that
for all j

sup
{
|∇w̃j(z)| | z ∈ C \ intD1+ε and dist(z,Γj) ≥ ε

}
≤ C.

Proof. Arguing by contradiction we find an ε > 0, a sequence of positive
numbers εj → 0 and a sequence zj ∈ C \

(
D1+ε/2 ∪ Bε/2(Γj)

)
satisfying

|∇w̃j(zj)|εj → ∞,

|∇w̃j(z)| ≤ 2|∇w̃j(zj)| for |z − zj | ≤ εj .

Here we made use of Lemma 26 in [24]. Abbreviating Rj = |∇w̃j(zj)| we
introduce the rescaled maps

ṽj(z) :=
(
aj(zj + z/Rj) − aj(zj), wj(zj + z/Rj)

)
defined on the εjRj-balls. In these balls we have gradient bounds from which
we conclude that a subsequence converges to a nonconstant finite energy plane

ṽj → ṽ �≡ constant in C∞
loc(C,R× S3).

Given R > 0, the disc DR/Rj
(zj) lies outside of D and away from the punctures

Γj , provided that j is sufficiently large. Hence, if j is large we can estimate,
using the normalization (6.6),∫

DR

ṽ∗j dλ =
∫

DR/Rj
(zj)

w̃∗
j dλ ≤

∫
C\(D∪Γj)

w̃∗
j dλ =

σ0

2
.

Consequently, as j → ∞, ∫
DR

ṽ∗dλ ≤ σ0

2
.

This holds true for every R > 0 and we obtain for the energy the estimate∫
C

ṽ∗dλ ≤ σ0

2
.

However, the energy of a nonconstant finite energy plane agrees with the period
of its asymptotic limit at ∞ which (by definition of σ0) is larger than σ0. This
contradiction proves the assertion.

As another consequence of the normalization condition we shall see that
the sets Γj ⊂ C of punctures are uniformly bounded.
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Lemma 6.4. There exists a bounded set B ⊂ C such that

Γj ⊂ B for all j.

Proof. If 	Γj = 1, the assertion is part of the required normalization. So
we assume that 	Γj ≥ 2 for all j. Arguing indirectly we find a subsequence,
denoted again by Γj , containing zj ∈ Γj and satisfying |zj | → ∞. We may
assume that

|zj | = max |Γj | → ∞.

Furthermore, going over to a subsequence we may assume that the asymptotic
limit (x∞, T∞) associated with the positive puncture ∞ stays the same for
all j. Define now the rescaled maps

ṽj(z) =
(
bj(z), vj(z)

)
=

(
aj(zjz) − aj(2zj), wj(zjz)

)
on C \ Γ̃j ,

where Γ̃j = 1
zj

Γj . Then

Γ̃j ⊂ D and 0, 1 ∈ Γ̃j .

Clearly, ∫
D1/|zj |\Γ̃j

v∗j dλ =
∫

D\Γj

w∗
j dλ.

Using (6.6) we deduce therefore

(6.7)
∫
C\Γ̃j

v∗j dλ =
∫

D1/|zj |\Γ̃j

v∗j dλ +
σ0

2
.

In other words, most of the dλ-energy of vj lies in D1/|zj | \ Γ̃j . Now by an
argument as in Lemma 6.3 and the fact that |zj | → ∞ we conclude that there
exists a finite set of bubbling off points Γ̃ ⊂ D containing 0 and 1 so that

ṽj → ṽ in C∞
loc(C \ Γ̃,R× S3).

Denoting the period of the positive asymptotic limit by T∞ we deduce from
the normalization condition (6.7) that for R > 0 large enough

T∞ − σ0 ≤
∫

SR

v∗j λ →
∫

SR

v∗λ.

Hence ṽ is not constant. In order to estimate the energy we use the normal-
ization condition (6.6) and compute∫

DR\( 1
zj

D∪Γ̃j)
v∗j dλ =

∫
D|zj |R\(D∪Γj)

w∗
j dλ =

∫
D|zj |R\Γj

w∗
j dλ −

∫
D\Γj

w∗
j dλ

≤
∫
C\Γj

w∗
j dλ −

∫
D\Γj

w∗
j dλ =

σ0

2
.
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Consequently, as j → ∞, ∫
DR\Γ̃

v∗dλ ≤ σ0

2

and so

(6.8)
∫
C\Γ̃

v∗dλ ≤ σ0

2
.

The set Γ̃ consists of negative punctures and contains 0 and 1. Moreover,
in view of the energy estimate (6.6) and Lemma 4.9, the asymptotic limit of
the positive puncture at ∞ is the periodic solution (x∞, T∞), which is simply
covered. If the energy on the left-hand side vanishes, the unique positive
puncture would be at least two-fold covered since we have at least two negative
punctures. This follows from the classification of such surfaces in [30]. We
conclude that the dλ-energy of ṽ is positive. By Stokes’ theorem it belongs to
the c-spectrum of λ and therefore has to exceed σ0. This contradiction proves
the assertion.

Consider now the sequence w̃j = w̃τ(j) of the normalized parametrizations
of Cj . Recall that the set of periods is finite by the hypotheses of nondegen-
eracy. Passing to a subsequence we may therefore assume that the asymptotic
limits associated with the punctures Γj of w̃j are the same for all j. We list
them as

(6.9) (x∞, T∞), (x1, T1), · · · , (xN , TN ),

where (x∞, T∞) is the asymptotic limit of the puncture ∞.
We may also assume that the cardinality of punctures in Γj having the

same asymptotic limit is independent of j. In view of Lemma 6.4 we find a
subsequence satisfying

(6.10) Γj → Γ ⊂ C

as j → ∞. In addition to the punctures Γj , the sequence w̃j might posses a
finite set Θ of bubbling off points disjoint from Γ. By Lemma 6.3, Θ ⊂ D. We
deduce the convergence of a subsequence

(6.11) w̃j → w̃ = (a, w) in C∞
loc(C \ (Γ ∪ Θ)).

If Γj �= ∅, then 0 ∈ Γj ; hence 0 ∈ Γ. We claim that Γ consists of nonremovable
punctures. Indeed, take γ ∈ Γ and ε0 > 0 so that Bε0(γ) ∩ Bε0(γ

′) = ∅ for all
γ′ ∈ Γ \ {γ}. Then there exists a sequence zj ∈ Γj satisfying zj → γ, and we
find, using Stokes’ theorem:∫

∂Bε0 (γ)
w∗

j λ ≥
∫

∂Bε′ (zj)
w∗

j λ ≥ σ0
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if j is large and ε′ is sufficiently small. Consequently,∫
∂Bε(γ)

w∗λ ≥ σ0

for every ε > 0, proving the claim. The punctures Γ∪Θ of w̃ are all negative.
There is a unique positive puncture, namely ∞, whose asymptotic limit is
the periodic solution (x∞, T∞). As in Section 4 this is a consequence of the
energy estimates of w̃j outside of D and of Lemma 4.9. In particular, w̃ is not
constant.

Lemma 6.5. The finite energy surface w̃ = (a, w) : C \ (Γ ∪ Θ) →
R × S3 is an embedding. The unique positive puncture ∞ has the asymptotic
limit (x∞, T∞) which is simply covered. The asymptotic limits (xγ , Tγ) of the
negative punctures γ ∈ Γ ∪ Θ are simply covered. The dλ-energy is positive:∫

C\(Γ∪Θ)
w∗dλ > 0.

Proof. We first show that the energy of w̃ is positive. If Γ ∪ Θ = ∅, then
w̃ is a nonconstant finite energy plane whose energy is equal to T∞. If Γ �= ∅,
then 0 ∈ Γ. Moreover, if Γ = ∅ and Θ �= ∅, then 0 ∈ Θ. Assume now that
	(Γ ∪ Θ) = 1, then w̃ is a cylinder having the two punctures ∞ and 0, and we
deduce from the normalization (6.6) that∫

C\D
w∗

j dλ =
σ0

2
.

Consequently, ∫
C\{0}

w∗dλ ≥ σ0

2
.

Finally, if 	(Γ∪Θ) ≥ 2, then the energy cannot vanish since the asymptotic
limit of the unique positive puncture ∞ is simply covered. We have proved
that the dλ-energy of w̃ is positive.

It follows that π ˚ Tw �= 0 and so, w̃ is not a connector. In view of the
asymptotics, w̃ is somewhere injective. Moreover, π ˚ Tw(z) �= 0 for every
z ∈ C \ (Γ ∪ Θ). Indeed, a zero z0 of π ˚ Tw(z0) = 0 is, in view of the
similarity principle, isolated and has positive index. Consequently, for j large,
the sections π˚Twj also possess zeros, which by Proposition 5.9 is not the case.
Hence w̃ is an immersion. Because a self-intersection has a positive intersection
number, w̃ cannot have any self-intersections either. Consequently, w̃ must be
an embedding.

Arguing as in Section 5 one sees that the asymptotic limits of w̃ are simply
covered. Indeed, take the orbit cylinder over an asymptotic limit (x, T ). Going
back to the origin of our construction we find a sequence of long stretched
spheres S2 in AN ≡ CP 2 approaching locally the cylinder in C∞

loc. If we cut
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the cylinder horizontally, the preimages are simply closed curves on S2. Take
the lower parts, whose images do not contain the point o∞ in CP 2. This way
we find a sequence of disc maps whose boundaries approach the asymptotic
limit. Using the arguments of Theorem 5.10 and Proposition 5.11 we conclude
that (x, T ) has self-linking number −1 and minimal period T . The proof of
the lemma is complete.

The same arguments show that all the asymptotic limits showing up in
the bubbling off analysis below are simply covered. In order to carry out the
bubbling off analysis for the subsequence w̃j we start introducing the masses
of the punctures γ ∈ Γ ∪ Θ of w̃.

If ϑ ∈ Θ we define, as before,

(6.12) m(ϑ) = lim
ε↘0

mε(ϑ), mε(ϑ) = lim
j→∞

∫
Bε(ϑ)

w∗
j dλ.

If γ ∈ Γ, then its mass m(γ) is defined as follows

(6.13) m(γ) = lim
ε↘0

mε(γ), mε(γ) = lim
j→∞

∫
Bε(γ)\Γj

w∗
j dλ.

The limit exists by Stokes’ theorem and by the C∞-convergence. For j

large and ε small,∫
Bε(γ)\Γj

w∗
j dλ =

∫
∂Bε(γ)

w∗
j λ − lim

ε′→0

∑
z∈Γj∩Bε(γ)

∫
∂Bε′ (z)

w∗
j λ

=
∫

∂Bε(γ)
w∗

j λ −
∑

z∈Γj∩Bε(γ)

Tz.

Here Tz ∈ {T1, . . . , TN} is the period of the asymptotic limit associated with
the puncture z ∈ Γj . Going over to a subsequence, we see that the last term
is independent of j, and hence

(6.14) m(γ) = Tγ −
∑

z∈Γj∩Bε(γ)

Tz,

where Tγ is the period of the periodic orbit (xγ , Tγ) associated with the punc-
ture γ ∈ Γ.

In order to evaluate the energy of w̃ we first note that by Stokes’ theorem,

T∞ −
∑
z∈Γj

Tz =
∫
C\Γj

w∗
j dλ

for every j. Going over to a subsequence, we see that the left-hand side, by
construction, does not depend on j. The right-hand side is, for j large, equal
to ∫

C\Bε(Γ∪Θ)
w∗

j dλ +
∫

Bε(Γ∪Θ)\Γj

w∗
j dλ.
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Taking the limit as j → ∞ and ε → 0 we obtain

(6.15) T∞ −
∑
z∈Γj

Tz =
∫
C\(Γ∪Θ)

w∗dλ +
∑

γ∈Γ∪Θ

m(γ).

Assume Θ �= ∅ and take the bubbling off point ϑ ∈ Θ. Then m(ϑ) ≥ σ0.
The bubbling off analysis for a bubbling off point is the same as in [36] and
will be merely sketched. We choose ε > 0 so small that Dε(ϑ) ∩ Dε(γ) = ∅
for all γ �= ϑ ∈ Γ ∪ Θ. Then choose a sequence zj having the property that
w̃j(zj) has the smallest R-component on Dε(ϑ), and choose a sequence δj > 0
satisfying

(6.16)
∫

Dδj
(zj)

w̃∗
j dλ = m(ϑ) − σ0

2
.

Thus zj → ϑ and δj → 0 and we define the rescaled maps

ṽj(z) :=
(
aj(zj + δjz) − aj(zj), wj(zj + δjz)

)
for z ∈ Dε/δj

. There exists a finite, possible empty set Θ1 ⊂ D of bubbling off
points for the sequence ṽj so that a subsequence converges,

ṽj → ṽϑ in C∞
loc(C \ Θ1,R× S3)

to a finite energy surface ṽϑ having positive energy satisfying

m(ϑ) =
∫
C\Θ1

ṽ∗ϑdλ +
∑

ϑ1∈Θ1

m(ϑ1, ṽϑ)

with m(ϑ1) ≥ σ0. The punctures Θ1 are all negative. The asymptotic limit of
the unique positive puncture ∞ agrees with the asymptotic limit of the negative
puncture ϑ of w̃ we started with. Moreover, the surface is embedded and its
asymptotic limits are simply covered. If Θ1 �= ∅ we iterate the procedure with
the punctures ϑ1 ∈ Θ1 of ṽϑ. The iteration necessarily stops after finitely many
steps due to the lack of masses and we arrive at a bubbling off tree originating
from ϑ consisting of embedded finite energy surfaces all having precisely one
positive puncture ∞, whose asymptotic limits are simply covered and whose
energies are positive. The surfaces at the bottom of the tree are finite energy
planes closing off the tree as in Figure 18. We would like to point out that our
pictures are schematic representations of the actual situation. In particular,
the directions of the approach of two surfaces to a common asymptotic limit
are linearly independent. So the surfaces near a common asymptotic limit
should be visualized as in Figure 19.
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(xϑ, Tϑ), ϑ ∈ Θ

µ(xϑ) ≥ 2

(xϑ1 , Tϑ1)

Figure 18. For a generic J̃ the Conley-Zehnder index of the periodic
orbit (xϑ, Tϑ) at the top of the tree is ≥ 2.

Figure 19. Two surfaces in the tree approach an asymptotic limit
in linearly independent directions.

If J̃ is generic, the Fredholm indices of all surfaces C in the tree are ≥ 1.
Indeed, Ind(C) = µ+ − µ− − 2 + (	Γ− + 1) ≥ 1, by Proposition 5.6. Recall
that the Conley-Zehnder index of the asymptotic limit of a finite energy plane
is ≥ 2, by Proposition 5.5. Consequently, checking successively the Fredholm
indices of all the surfaces in the tree generated by ϑ from the bottom to the top
we deduce for the periodic orbit (xϑ, Tϑ) at the top of the tree the estimate
µ(xϑ) ≥ 2. Moreover, µ(xϑ) = 2 if and only if the tree consists of a finite
energy plane whose asymptotic limit is (xϑ, Tϑ) as illustrated in Figure 20.

Consider next a puncture γ ∈ Γ, and denote the associated asymptotic
limit by (xγ , Tγ). It is simply covered, by Lemma 6.5. Then either m(γ) = 0
or m(γ) ≥ σ0 since a positive m(γ) belongs to the c-spectrum. Assume first
m(γ) > 0. Define

Γ̂j =
{
ζj ∈ Γj | ζj → γ

}
,
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(xϑ, Tϑ), ϑ ∈ Θ

µ(xϑ) = 2

Figure 20. The tree consists of a finite energy plane whose asymp-
totic limit is (xϑ, Tϑ) if and only if µ(xϑ, Tϑ) = 2.

and take a sequence zj ∈ Γ̂j . Then there exists a sequence δj → 0 satisfying∫
Dδj

(zj)\Γ̂j

w∗
j dλ = m(γ) − σ0

2
.

Choose ε0 > 0 so small that the discs Dε0(γ), γ ∈ Γ ∪ Θ, are disjoint, and
define the rescaled maps

ṽj(z) =
(
aj(zj + δjz) − aj(zj + 2δj), wj(zj + δjz)

)
for z ∈ 1

δj
Dε0 \ Γ̃j , having the punctures

Γ̃j =
1
δj

(Γ̂j − zj)

and satisfying the normalization condition∫
D\Γ̃j

ṽ∗j dλ = m(γ) − σ0

2
.

Using the fact that mε(γ) → m(γ), and choosing Dε0(γ) sufficiently small, we
deduce the estimates ∫

( 1
δj

Dε0\D)\Γ̃j

ṽ∗j dλ ≤ σ0,

for j large. It follows as in Lemma 6.3 that the gradients of ṽj are uniformly
bounded away from D and the punctures Γ̃j . Moreover, as in Lemma 6.4, the
punctures Γ̃j lie in a bounded set independent of j. Here we use the fact that
the asymptotic limit (xγ , Tγ) is simply covered. Hence we find a subsequence
satisfying

ṽj → ṽγ in C∞
loc

(
C \ (Γ1 ∪ Θ1)

)
, Γ̃j → Γ1,

where Θ1 ⊂ D is a finite, possibly empty set of bubbling off points for the
sequence ṽj . The punctures Γ1∪Θ1 of ṽγ are all negative. The unique positive
puncture ∞ has the periodic orbit (xγ , Tγ) as asymptotic limit. Moreover,

m(γ) =
∫
C\(Γ1∪Θ1)

ṽ∗γdλ +
∑

τ∈Γ1∪Θ1

m(τ, ṽτ ).
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The energy of ṽγ is positive and hence belongs to the c-spectrum. Indeed, if it
vanishes, then 	(Γ1 ∪ Θ1) ≤ 1 since the limit of the unique positive puncture
of ṽγ is simply covered. Consequently, Γ1 = {0} and Θ1 = ∅ so that ṽγ is a
cylinder over the periodic orbit having the negative puncture 0. It follows that
its mass m(0, ṽγ) vanishes so that m(γ) = 0, in contradiction to m(γ) > 0.

In the case that m(γ) = 0 we argue as follows. We find ε > 0 small enough
so that mε(γ) ≤ σ0/4. Hence for j large∫

Bε(γ)\Γj

w∗
j dλ ≤ σ0

2
.

Denoting Γ̂j = {ζj ∈ Γj | ζj → γ} we may assume that ε > 0 is so small that
Bε \ Γj = Bε \ Γ̂j . We first claim that 	Γj ∩ Bε(γ) = 1 for j large. Indeed, if
Γj ∩Bε has more than one point, we pick a point zj ∈ Γj ∩Bε(γ) and let ẑj be
a point in Γj ∩ Bε(γ) with maximal distance to zj . Then we take a sequence
(τj) of Möbius transformations satisfying

τj(zj) = 0, τj(ẑj) = 1, τj(∞) = ∞

and define
ṽj(z) =

(
aj(τj(z)) − aj(τj(2)), wj(τj(z))

)
.

Perhaps, after passing to a subsequence we may assume that

τ−1
j (Γ̂j) → Γ̃ ⊂ D,

where Γ̃ contains {0, 1}. Moreover, for evey R > 0 and j large we have

DR ⊂ τ−1
j (Bε(γ)).

Hence we may assume (modulo R-action) that

ṽj → ṽ∞ in C∞
loc(C \ Γ̃,R× S3).

We observe that ṽ∞ has at least two negative punctures, namely 0 and 1. The
dλ-energy satisfies the estimate∫

C\Γ̃
v∗∞dλ ≤ σ0

2
,

so that v∞ has to be a connector. But this contradicts the fact that the
positive asymptotic limit is simply covered. Hence Bε(γ) ∩ Γj = {zj}, and
we may assume that at the punctures zj the surfaces wj are asymptotic to
the same limit, say (xk, Tk). We arrange reparametrizations by a sequence τj

of Möbius transformations keeping ∞ fixed and converging to the identity as
j → ∞, so that zj = 0 for all j and the new puncture is γ = 0. Define now
the rescaled maps

ṽj(z) = w̃j(δjz), for z ∈ C \ 1
δj

Γj ,
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for a positive sequence δj → 0 specialized later on. From∫
A(δj ,ε/δj)

v∗j dλ =
∫

A(δ2
j ,ε)

w∗
j dλ ≤

∫
Bε(0)

v∗j dλ = mε(γ) + rj ,

where rj → 0 as j → ∞, we deduce

(6.17) lim
j→∞

∫
A(δj ,ε/δj)

v∗j dλ ≤ mε(γ)

for every ε. Since m(γ) = 0, bubbling off for the sequence ṽj is not possible in
C \ {0}. Therefore, we conclude for a subsequence,

ṽj → ṽ = (b, v) in C∞
loc(C \ {0},R× S3).

From (6.17) we deduce for the limit ṽ, with m(γ) = 0, that∫
C\{0}

v∗dλ = 0.

We claim that ṽ is not constant. From∫
S1(0)

v∗j λ =
∫

Sδj
(0)

w∗
j λ =

∫
Sε(0)

w∗
j λ −

∫
A(δj ,ε)

w∗
j dλ

we obtain
lim

j→∞

∫
S1(0)

v∗j λ =
∫

Sε(0)
w∗

j λ − mε(γ).

Consequently, ∫
S1

v∗λ = Tγ ,

proving the claim. Hence ṽ is a nonconstant cylinder over a periodic solution
x having period Tγ . Choose now an S1-invariant neighborhood W in the loop
space separating the loops of the periodic solutions of periods ≤ c from each
other. For fixed j we know that wj

(
εe2πit

)
→ xk(t) as ε → 0. We choose

δj → 0 such that wj

(
δje2πit

)
∈ W for all j. Recalling that w(εe2πit) → xγ(t)

as ε → 0 we conclude, from estimate (6.17) and Lemma 4.9 arguing as in
Section 4, that x(t) = xk(t + c) = xγ(t + d), so that ṽ is a cylinder over xγ .

If the mass of a puncture γ ∈ Γ1 in (6.16) is positive and if Θ1 �= ∅ we
repeat the process. It necessarily stops after finitely many iterations when we
reach punctures with zero mass or run out of bubbling off points. We obtain
a tree of embedded finite energy surfaces having a unique positive puncture
whose asymptotic limit agrees with the corresponding asymptotic limit of the
negative puncture belonging to the previous generation. The asymptotic limits
of the surfaces are simply covered and their energies belong to the c-spectrum.
At the bottom of the tree we find finite energy planes from branches of the
tree originating from bubbling off points, and the periodic solutions (xj , Tj) in
the list (6.9) originating from punctures. This is illustrated in Figure 21.
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(xγ , Tγ), γ ∈ Γ

ϑ1 ∈ Θ1

(xϑ1 , Tϑ1)(xγ1 , Tγ1)

γ1 ∈ Γ1

x1 x2

x3

Figure 21. Possible tree originating from a puncture having a pos-
itive mass.

Since the periodic orbits at the bottom of the tree have all µ-indices equal
to 1 and since the asymptotic limits of finite energy planes have µ-indices ≥ 2
we deduce from the estimates Ind(C) ≥ 1 for the surfaces C in the generic
case the inequality µ(xγ) ≥ 2 for the asymptotic limit (xγ , Tγ) at the top of
the tree where we started.

Carrying out the bubbling off analysis for every puncture γ ∈ Γ ∪ Θ of
w̃ we find that their asymptotic limits all have µ-indices ≥ 1. Recalling that
µ(x∞) = 3, the Fredholm index satisfies

Ind(w̃) = 3 − µ−(w̃) − 2 + (	Γ− + 1) ≥ 1

for generic J̃ , by Theorem 2.1. If Nj denotes the number of negative punctures
whose asymptotic limits have µ-indices equal to j, then µ−(w̃) =

∑l
j=1 j Nj

and 	Γ− =
∑l

j=1 Nj so that the inequality Ind(w̃ ≥ 1 becomes

l∑
j=1

(j − 1) Nj ≤ 1,

implying N2 ≤ 1 and N3 = N4 = · · · = Nl = 0. Therefore, w̃ is necessarily
either of type α = (3, 2, 1, . . . , 1) or of type α = (3, 1, 1, . . . , 1). In particular,
w̃ allows at most one negative puncture whose index is equal to 2. Hence the
complete bubbling off analysis of the sequence w̃j : C \ Γj → R× S3 results in
a bubbling off tree which belongs to one of the following three simple types.

I. The tree consists of only one surface C of type α = (3, 11, . . . , 1N ) having
the asymptotic limits listed in (6.9). Here 	Γ = N and Θ = ∅. Moreover,
Ind(C) = 2. We illustrate the situation for N = 4 in Figure 22.
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m(γ) = 0, γ ∈ Γ

Ind (C) = 2

(x∞, T∞)

(x1, T1) (x2, T2) (x3, T3) (x4, T4)

3

Figure 22. An example of a bubbling off tree of type I.

II. The tree consists of two surfaces, namely C1 of type α =
(3, 2, 11, . . . , 1N−k) and C2 of type α = (2, 1N−k+1, . . . , 1N ). Here 	Γ < N

and Θ = ∅. Moreover, Ind(Cj) = 1. This is visualized in Figure 23.

	Γ = 1 	Γ = 2 	Γ = 3

xγ

x1 x2 x3 x4

x∞3

1

2

x∞3 x∞3

22 111

1 1 1 1 1 1 1 1

x2 x3 x3 x4

xγ xγ

x1 x1 x2

Figure 23. Possible bubbling off trees of type II.

III. The tree consists of two surfaces, namely C1 of type α =
(3, 2, 11, . . . , 1N ) and the finite energy plane C2 of type α = (2, ∅). Here 	Γ = N

and 	Θ = 1. Moreover, Ind(Cj) = 1. See Figure 24.

In the special case of a sequence w̃j : C → R× S3 of finite energy planes
of type α = (3, ∅) we have two types of bubbling off trees as illustrated in
Figure 25.
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xϑ, ϑ ∈ Θ

m(γ) = 0, γ ∈ Γ

m(ϑ) = Tϑ

x1 x2 x3 x4

3

1 21 1 1

Figure 24. An example of a bubbling off tree of type III.

3

2

I. (for N = 0) III. (for N = 0)

3

Figure 25. Bubbling off trees in the special case of finite energy
planes of type α = (3, ∅).

Recall that m ∈ S3 is given and mj → m, where (0, mj) ∈ Cτ(j). We shall
show that parametrizations of a subsequence converge in C∞

loc to a parametriza-
tion of an embedded finite energy sphere Cm containing (0, m). More precisely,
using the above bubbling off analysis we shall prove the following result.

Theorem 6.6. When (0, mj) → (0, m), there exists a subsequence of Cj ,
(0, mj) ∈ Cj and parametrizations ũj of Cj satisfying

ũj(ζj) = (0, mj) and ζj → ζ

so that the set of punctures and bubbling off points of ũj stay away from ζ and,
moreover, near ζ the maps ũj converge in C∞

loc(C\ Γ̂) to a parametrized surface
ũ : C \ Γ̂ → R× S3 so that

ũ(ζ) = lim
j→∞

ũ(ζj) = (0, m).
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The map ũ is an embedding having simply covered asymptotic limits. Denote
the surface obtained this way by

Cm = ũ(C \ Γ̂), (0, m) ∈ Cm.

Then Cm is either one of the two finite energy surfaces obtained through the
bubbling off analysis or a cylinder over an asymptotic limit belonging to one of
the two surfaces obtained by the bubbling off analysis.

Proof. Take the normalized parametrizations w̃j : C \ Γj → R× S3 of Cj

introduced in the bubbling off analysis above and define the points ζj ∈ C by

w̃j(ζj) = (0, mj).

Either ζj stays away from Γ ∪ Θ ∪ {∞} and hence a subsequence converges,

ζj → ζ �∈ Γ ∪ Θ ∪ {∞}

or, there is a subsequence

ζj → ζ ∈ Γ ∪ Θ ∪ {∞}.

In the first case we conclude from w̃j → w̃ in C∞
loc

(
C \ (Γ ∪ Θ)

)
that

w̃(ζ) = lim
j→∞

w̃j(ζj) = (0, m) ∈ w̃
(
C \ (Γ ∪ Θ)

)
proving the theorem in the first case. In the second case we first study the
situation

ζj → ζ = ∞.

Reparametrizing by a sequence of Möbius transformations we define the new
sequence

ũj(z) := w̃j(ζjz), z ∈ C \ 1
ζj

Γj

so that
ũj(1) = w̃j(ζj) = (0, mj).

We claim for a subsequence that ũj → ũ in C∞
loc(C \ {0},R × S3), where ũ is

the cylinder over the asymptotic limit (x∞, T∞) of the puncture ∞. It then
follows that

ũ(1) = lim
j→∞

ũj(1) = (0, m) ∈ ũ
(
C \ {0}

)
,

proving the theorem in this case. In order to prove the claim we first observe
that due to the normalization (6.6) of w̃j ,∫

C\Γj

w∗
j dλ =

∫
D\Γj

w∗
j dλ +

σ0

2
,
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we have ∫
C\(D∪Γj)

w∗
j dλ ≤ σ0

2
.

Recalling Γj → Γ for a subsequence, we see that the punctures 1
ζj

Γj of ũj

shrink to 0 and obtain from the above energy estimates∫
C\εD

ũ∗
jdλ ≤ σ0

2

for every ε > 0 provided j is sufficiently large. The energies are so small that
the sequence ũj does not admit bubbling off points away from 0. We deduce
the convergence of a subsequence

ũj → ũ in C∞
loc(C \ {0},R× S3).

Moreover, using the above energy estimate, the behavior of wj at ∞, and the
definition of σ0, we conclude that the limit ũ = (a, u) satisfies∫

C\{0}
u∗dλ ≤ σ0

2
and lim

R→∞

∫
SR

u∗λ = T∞.

Hence, arguing as in Lemma 4.9 we obtain∫
C\{0}

ũ∗dλ = 0,

so that ũ is a nonconstant cylinder over a periodic orbit (x, T∞). Since the
asymptotic limit of the puncture ∞ of w̃j is, independent of j, equal to
(x∞, T∞) we find (x, T∞) = (x∞, T∞) as claimed. We next consider the case

ζ = γ ∈ Γ and m(γ) = 0.

In this case we find a sequence of punctures zj ∈ Γj satisfying limj→∞ zj = γ

and Bε(γ) ∩ Γj = {zj} for some ε > 0. In addition, the asymptotic limits
associated with the punctures zj of w̃j and with the puncture γ of w̃ are all
equal to the fixed periodic orbit (xk, Tk). Reparametrizing by a sequence τj of
Möbius transformations satisfying τj → Id we arrange that zj = 0 for all j, so
that the new puncture is γ = 0. Define the parametrization

ũj(z) = w̃j(ζjz), for z ∈ C \ 1
ζj

Γj .

Then ũj(1) = w̃j(ζj) = (0, mj), and ζj → 0. In view of the fact that m(γ) = 0,
one verifies that the small energies prevent the occurrence of bubbling off points
of ũj in C \ {0}. Moreover, since Γj → Γ and 0 ∈ Γ, we have 1

ζj
Γj \ {0} → ∞.

Hence a subsequence converges

ũj → ũ in C∞
loc

(
C \ {0},R× S3

)
to the cylinder over the periodic orbit (xk, Tk) and

ũ(1) = lim
j→∞

ũj(1) = lim
j→∞

(0, mj) = (0, m),
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proving the theorem in the case considered. In the case of positive mass,

ζ = γ ∈ Γ and m(γ) > 0

we denote the associated asymptotic limit by (xγ , Tγ). As a result of our
bubbling off analysis there are no bubbling off points Θ for the sequence w̃j .
Take the rescaled sequence ṽj of the second round in the bubbling off analysis,
defined by

ṽj(z) = w̃j(zj + δjz).

Here zj ∈ γj satisfies zj → γ and δj → 0. The sequence ṽj is normalized by
(6.16). Recalling ζj → ζ = γ we define ẑj by

zj + δj ẑj = ζj

where w̃j(ζj) = (0, mj). We know that the sequence ṽj has no bubbling off
points Θ1. We also know that a subsequence converges,

ṽj → ṽ in C∞
loc(C \ Γ1,R× S3).

If ẑj stays away from Γ1 and {∞}, then a subsequence converges to a point
ẑ ∈ C\Γ1. Consequently, ṽ(ẑ) = limj→∞ ṽj(ẑj) = limj→∞ w̃j(ζj) = (0, m). We
see that (0, m) belongs to the finite energy surface ṽ obtained in the second
round of the bubbling off analysis.

If |ẑj | → ∞, we introduce the parametrization

ũj(z) = ṽj(ẑjz) = w̃j(zj + δj ẑjz), z ∈ C \ 1
ẑj

Γ̂j , Γ̂j =
1
δ j

(Γj − zj).

It satisfies ũj(1) = (0, mj). Proceeding as in the first case one verifies by
estimating the dλ-energies of ũj that there is no bubbling off in C \ {0}. Since
Γ̂j → Γ1, the punctures 1

ẑj
Γ̂j move to {0} as j → ∞. It follows that for a

subsequence,
ũj → ũ in C∞

loc

(
C \ {0},R× S3

)
,

where ũ is an orbit cylinder over the asymptotic limit (xγ , Tγ). It contains
ũ(1) = limj→∞ ũj(1) = (0, m).

Finally, assume that ẑj → γ1 ∈ Γ1. By the bubbling off analysis we
know that m(γ1, ṽγ) = 0. Hence the arguments already used in the case
m(γ) = 0 for all γ ∈ Γ show that there exist reparametrizations ũj of ṽj

satisfying ũj(1) = (0, mj) and ũj → ũ in C∞
loc(C \ {0},R× S3), where ũ is the

cylinder over the orbit (xl, Tl) associated with the massless puncture γ1 of ṽ.
Again, ũ(1) = limj→∞ ũj(1) = (0, m). The remaining case, namely ζj → ζ ∈ Θ
if Θ �= ∅, is treated similarly and we omit the details. This completes the proof
of Theorem 6.6.

The possible positions of the given m in the projection of a bubbling off
tree of the sequence w̃j into S3 is illustrated by Figure 26.
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(x∞, T∞)

(xγ , Tγ)

m(γ)
>

0

w

v

(xj , Tj)

(xk, Tk)
m(γ)

=
0

Figure 26. Possible positions of a given point m in the projection
of a bubbling off tree.

The uniqueness question related to our construction will now be answered
by once more using the intersection theory of pseudoholomorphic curves in
dimension 4 due to McDuff [43] and Micallef and White [46]. We recall our
construction. Given any injective monotonic map τ : N→ N satisfying mτ(j) →
m and any injective map φ : N→ N we constructed another such map ψ : N→
N and parametrizations of the surfaces Cτ˚ϕ˚ψ(j) which converge in C∞

loc to
a parametrization of a surface C containing the point (0, m). Assume now
that we start with a different τ ′ still satisfying m(τ ′(j)) → m. Then for
every ϕ′ there exist ψ′ and parametrizations of Cτ ′

˚ϕ′
˚ψ′(j) converging to a

parametrization of a surface C ′ also containing (0, m). Hence C ∩C ′ �= ∅, and
we shall show that C = C ′. If C and C ′ are not identical they have, in view of
the asymptotic behavior and the similarity principle, an isolated intersection
which, by the positivity of intersections has a positive local intersection index.
It also follows that Cτ˚ϕ˚ψ(j) and Cτ ′

˚ϕ′
˚ψ′(j′) have an isolated intersection for

j and j′ large. However, this contradicts the fact, Theorem 6.1, that these two
surfaces are either identical or disjoint, so that indeed C = C ′. Assume that
m = mk belongs to the dense sequence of Theorem 6.1 so that (0, mk) ∈ Cmk ,
and mτ(j) → mk; then there exist parametrizations of Cτ˚ϕ˚ψ(j) converging
to a parametrization of a surface C containing (0, mk). The same argument as
above shows that C = Cmk . We have verified that the surface Cm through a
given point (0, m) is uniquely defined by our construction.

Summarizing this section, we have proved the following existence result.

Theorem 6.7. Given a nondegenerate contact form λ = fλ0 on S3, a
generic multiplication J : ξ → ξ with associated almost complex structure J̃ on
R × S3, then there exists for every m ∈ S3 an embedded finite energy sphere
Cm ⊂ R× S3 containing the point (0, m) and having the following properties.
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1. There exists a constant c > 0 such that E(Cm) ≤ c for every m ∈ S3.

2. Two surfaces Cm and Cm′
are either disjoint or identical.

3. Every Cm has precisely one positive puncture and a finite set of negative
punctures whose cardinality is bounded in terms of the c-spectrum.

4. The asymptotic limits of Cm are simply covered and have µ-indices in
{1, 2, 3}, and self -linking numbers are equal to −1.

5. If Cm is not a cylinder over the asymptotic limit, then Ind(Cm) =
µ(Cm) − 2 + 	{punctures of Cm} belongs to the set {1, 2}. In addition,
the projection of Cm into S3 is an embedded surface, transversal to the
Reeb vector field and converging at the punctures to the asymptotic limits
of Cm.

6.3. The stable finite energy foliation. We shall use the R-invariance of the
structure J̃ on R×S3 in order to extend the family {Cm | m ∈ S3} of surfaces
by means of translation in the R-direction. Let ũ = (a, u) : C \Γ → R× S3 be
a finite energy surface and r ∈ R; then the translated map

ũr(z) =
(
a(z) + r, u(z)

)
is also a finite energy surface. We can define, for every pair (r, m) ∈ R × S3,
the set

C(r,m) =
{
(r + s, x) ∈ R× S3 | (s, x) ∈ Cm

}
.

Then C(r,m) is an embedded finite energy surface parametrized by ũr if ũ is a
parametrization of Cm. Clearly,

(r, m) ∈ C(r,m) and C(0,m) = Cm.

Hence through every point in R×S3 we have an embedded finite energy surface
having the properties of Cm listed in Theorem 6.7. We abbreviate this family
of surfaces by

F :=
{
C(r,m) | (r, m) ∈ R× S3

}
.

There is a natural action T : R×F → F of R defined by the translation

Tr

(
C(s,m)

)
= C(r+s,m).

The fixed points of this R-action are the cylinders over periodic solutions be-
longing to F , as we shall see next.

Lemma 6.8. 1. If F ∈ F and r �= 0, then either

Tr(F ) ∩ F = ∅
or : Tr(F ) = F and then Ts(F ) = F for all s ∈ R and F = R× P , where P is
a periodic orbit of the Reeb vector field.
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2. If F ∈ F is not a fixed point of the R-action, then its projection p(F )
is a smooth embedded surface in S3 transversal to the Reeb vector field.
Here p : R× S3 → S3 denotes the projection onto the second factor.

Proof. Assume that F ∈ F is not a cylinder over a periodic orbit and let
ũ = (a, u) be a parametrization of F . If Tr(F ) ∩ F �= ∅, there exist two points
z1 and z2 solving (a(z1) + r, u(z1)) = (a(z2), u(z2)). By Theorem 6.7, u is an
embedding; hence z1 = z2 and r = 0. If on the other hand F is a cylinder over
a periodic orbit, then clearly Ts(F ) = F for every s proving the first statement.
The second statement follows in view of Theorem 6.7.

Lemma 6.9. Any two surfaces C(r,m) ∈ F are either disjoint or identical.

Proof. Assume that F1, F2 ∈ F satisfy F1 ∩ F2 �= ∅ and F1 �= F2. Since
F1 = Tr1(C

m1) and F2 = Tr2(C
m2) we conclude that Cm1 �= Tr(Cm2), where

r = r2 − r1. We may assume that r > 0. In view of the asymptotic behavior
of the surfaces there is an isolated intersection having a positive intersection
index. Hence Cm1 and Ts(Cm2) have an isolated intersection for all s > 0.
Consequently, Cm1 ∩ Cm2 �= ∅ and Cm1 �= Cm2 . This contradicts the fact
(Theorem 6.7) that Cm1 and Cm2 are either disjoint or identical, and the
lemma is proved.

Clearly, p(F1) = p(F2) if F1 and F2 belong to the same orbit of the R-
action.

Lemma 6.10. Assume F1 and F2 ∈ F do not belong to the same orbit of
the R-action. Then p(F1) ∩ p(F2) = ∅.

Proof. Assume Ts(F1) �= F2 for all s ∈ R, and p(F1) ∩ p(F2) �= ∅. If ũ1

and ũ2 are parametrizations of F1 and F2 we find two points z1 and z2 solving
u(z1) = u(z2). So,

(
a(z1)+r, u1(z1)

)
=

(
a2(z2), u2(z2)

)
for r = a2(z2)−a1(z1)

and hence Tr(F1) ∩ F2 �= ∅. Since, by assumption, Tr(F1) �= F2 we have a
contradiction to Lemma 6.9.

Finally, we shall show that the family F defines a foliation of R × S3.
Recall that there is a leaf F ∈ F through every point. It remains to show that
locally the leaves form a 2-dimensional family of 2-dimensional surfaces.

Assume (r0, m0) ∈ F0 and F0 is of type α = (3, 1, 1, . . . , 1) so that
Ind(F0) = 2. Using the R-action we can assume that r0 = 0. In view of
the implicit function theorem, Theorem 1.6 in [36], F0 belongs to a smooth
2-parameter family F̃0 of finite energy spheres having the same asymptotic
limits as F0. Moreover, one parameter accounts for the R-action and F̃0 is
a foliation near F0. Note that Theorem 1.6 in [36] is stated merely for the
special case of an embedded plane. However, its proof also applies for the case
at hand if we observe that for type α = (3, 1, 1, . . . , 1) surfaces ũ = (a, u) we
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have π ˚ Tu(z) �= 0 for all z ∈ S2 \ Γ, by Corollary 2.6. It is sufficient to
show that Cm ∈ F̃0 for m near m0. This is a consequence of our bubbling off
analysis. Indeed, take mk → m0 and abbreviate Ck = Cmk . Then there are
parametrizations of a subsequence Cψ(j) converging in C∞

loc to the parametriza-
tion of a surface C containing (0, m0). Consequently, C ∩ F0 �= ∅ and hence
C = F0 ∈ F because otherwise we would find an isolated intersection and
would conclude by the positivity of the intersection index, that F0 ∩Cψ(j) �= ∅
and F0 �= Cψ(j) for j large, in contradiction to Theorem 6.7. Since C = F0

we are in case I of our bubbling off analysis and conclude that there is no
bifurcation so that all the surfaces Cψ(j) have the same asymptotic limits as
F0. Therefore, by the completeness theorem, Theorem 7.1 in [36], we deduce
that indeed Cψ(j) ∈ F̃0. There are only finitely many (modulo R-action) leaves
F ∈ F satisfying Ind(F ) = 1 or F = R×P . Consequently, every piece of such
an F fits smoothly into the 2-parameter families nearby, when we use, as above,
the C∞

loc convergence and the positivity of the intersections. Having shown that
F is a foliation, the proof of our main result, Theorem 1.6, is complete.

The following three Figures 27–29 visualize examples of foliations of S3.

Figure 27. An example of a foliation by disk-like and annuli-like
surfaces. The pair of white dots represents a hyperbolic orbit of
index 2, and pairs of black dots represent periodic orbits of index 3.
There are two families of disk-like surfaces asymptotic to periodic
orbit of index 3. These families are represented by thin curves.
The bold curves represent rigid surfaces. There are two rigid sur-
faces of annuli-type which connect periodic orbits of index 3 with
the hyperbolic orbit, and two disk-like surfaces asymptotic to the
hyperbolic orbit.
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The 3-sphere is viewed as R3∪{∞}. The figures show the traces of the foliations
cut out by the plane R2 ⊂ R3. Periodic orbits are represented by dots. Two
dots of the same color belong to the same periodic orbit, and the periodic orbits
are perpendicular to the page. In these figures black dots represent periodic
orbits of index 3, white dots represent hyperbolic orbits of index 2, and grey
dots represent periodic orbits of index 1. The rigid surfaces are indicated by
bold curves, while the families of surfaces are indicated by thin curves. The
arrows indicate the Reeb flow lines.

Figure 28. Here the pair of grey dots represents a periodic orbit of
index 1. The periodic orbit of index 3 is indicated by the pair of
black dots, and the hyperbolic orbit of index 2 by the pair of white
dots. The dotted lines represent a family of annuli-like surfaces
connecting the periodic orbit of index 3 with the periodic orbit of
index 1. The thin curves constitute a family of disk-like surfaces
asymptotic to periodic orbit of index 3. The rigid surfaces, bold
curves, are of two types: the annuli-type surfaces either connecting
the periodic orbit of index 3 with the periodic orbit of index 2 or
connecting the periodic orbit of index 2 with the periodic orbit
of index 1, and of disk-type asymptotic to the periodic orbit of
index 2.
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Figure 29. In this example there are two families of annuli-like sur-
faces connecting periodic orbits of index 2 with periodic orbits of
index 1. They are represented by dotted and dashed thin curves.
There are also two families of disk-like surfaces asymptotic to pe-
riodic orbits of index 3. The two rigid surfaces of disk-type are
asymptotic to periodic orbits of index 2. The remaining rigid sur-
faces are of annuli-type. They either connect periodic orbits of
index 3 with the periodic orbits of index 2 or connect the periodic
orbits of index 2 with the periodic orbit of index 1.

7. Consequences for the Reeb dynamics

7.1. Proof of Theorem 1.9 and its corollaries. We first observe that the
foliation F constructed contains a finite energy plane.

Proposition 7.1. The foliation F contains a finite energy plane whose
asymptotic limit P has index µ(P ) ∈ {2, 3}.

Proof. For the following it is useful to recall that the foliation F is inde-
pendent of the choice of the dense sequence (0, mk) used in the construction,
as long as mk does not belong to a periodic orbit and the finite energy sur-
face containing (0, mk) has Ind(Ck) = 2. This follows from the positivity of
the intersection index as in the proofs of Theorems 6.1 and 6.7. In order to
find the finite energy plane we take a sequence of points (0, pk), pk ∈ M , such
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that the unique ĴNk
-holomorphic sphere CNk in ANk

passing through o∞ and
(0, pk) has in the part [−Nk, Nk] the lowest possible R-value equal to 0. Choose
ĴNk

-holomorphic parametrizations w̃k := w̃Nk
: S2 → ANk

satisfying

(7.1) w̃k(∞) = o∞, w̃k(0) = (0, pk),
∫

D
w̃∗

kωNk
= γ.

Then, in view of the maximum principle, we find a sequence Rk → ∞ such
that DRk

⊂ {z ∈ C | ak(z) ≤ Nk}. Define a sequence ṽk := w̃k|DRk
: DRk

→
R×M , still satisfying ṽk(0) = (0, pk) and converging in C∞

loc to a nonconstant
pseudoholomorphic map ṽ∞ : C \ Γ → R × M . In view of the normalization
in (7.1) the set of punctures Γ lies outside of D so that ṽ∞(0) = (0, p), where
p = lim pk ∈ M . The punctures Γ are necessarily negative. Since 0 is the
minimum of the R-component of ṽk, we deduce that Γ = ∅ and ṽ∞ : C→ R×M

is the desired finite energy plane. In view of the positivity of the intersections,
this plane belongs to the foliation F . The index µ(P ) of a finite energy plane
is always ≥ 2; hence µ(P ) ∈ {2, 3} as claimed.

Proposition 7.2. Assume F contains a finite energy plane of index
µ(P ) = 3. Then either F has precisely one fixed point of the R-action or F
contains also a finite energy plane of index 2. In the first case the projection of
F into M is an open book decomposition into planes having the periodic orbit
of the fixed point as binding orbit.

Proof. By the arguments in [35], the finite energy plane of index 3 is
contained in a maximal 1-parameter family of such planes all having the same
asymptotic limit P . By the uniqueness arguments in Theorems 6.1 and 6.7 all
these planes belong to the foliation F . The family is parametrized either by
an open interval I in the noncompact case or by the circle S1 in the compact
case. As shown in [35], in the compact case the projection of the S1-family
of planes into M constitutes an open book decomposition of M into planes
having P as binding orbit. Therefore, F possesses precisely one fixed point of
the R-action, whose projection into M is the binding orbit of the open book
decomposition. If, however, the family of planes, is parametrized by an open
interval, the projected surfaces degenerate towards the ends giving rise to a
periodic orbit Q having index µ(Q) = 2. More precisely, by our bubbling off
analysis, the planes converge to a broken trajectory consisting of rigid surfaces
(C−, C+), namely a cylinder C− connecting the positive limit P having index
µ(P ) = 3 with the negative limit Q having index µ(Q) = 2. This periodic
orbit is also the positive limit of a finite energy plane whose projection into M

is the rigid surface C+. This finishes the proof of Proposition 7.2.
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The situation is illustrated in Figure 30.

Figure 30. The figure illustrates the second case of Proposition 7.2.

The consequences of the open book decomposition of S3 for the flow ϕt of
the Reeb vector field X associated with λ are described in [35]. We recall that
every plane, compactified in a natural way, is a global surface of section D of
disc type whose boundary ∂D is the binding orbit P . The Poincaré section
map ψ : intD → intD is an area-preserving diffeomorphism, the area element
being dλ. The total area of intD is equal to the period T of the periodic orbit
P and hence finite. Consequently, Brouwer’s translation theorem guarantees
a fixed point p ∈ intD of the map ψ. It is the initial condition of a periodic
orbit of X different from the boundary orbit P . In addition, by a theorem of J.
Franks in [20], the map ψ possesses infinitely many periodic orbits, provided ψ

has at least one periodic orbit different from the fixed point p. We have proved
the following proposition.

Proposition 7.3. If the foliation F has precisely one fixed point of the
R-action, the Reeb vector field X on M possesses either two or infinitely many
periodic orbits.

It remains to study the dynamics of the Reeb vector field in the case where
the foliation F contains a fixed point of the R-action whose associated periodic
orbit P has index µ(P ) = 2. Such a periodic orbit is necessarily hyperbolic and,
therefore, lies in the intersection of its oriented stable manifold W+(P ) and
its oriented unstable manifold W−(P ). We shall first describe the positions of
the local invariant manifolds W±

loc(P ) near P , with respect to the rigid surfaces
having P as positive and negative limit.

The tangent spaces of W±(P ) along the periodic solution P = (x, T )
having minimal period T are spanned by the Reeb vector field X(x(t)) and
vector fields v±(t) belonging to the contact planes ξ(x(t)). In the symplectic
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trivialization of the bundle ξ over P , as used in asymptotic formula for the rigid
surfaces approaching P (see the appendix), the vectors v±(t) are the solutions
of the following boundary value problem

(7.2) −iv̇±(t) = A(t)v±(t), v+(T ) =
1
β

v+(0), v−(T ) = βv−(0)

for some β > 1. Here A(t) = A(t + T ) is real and symmetric. We shall abbre-
viate in the following the fundamental solution by Φ(t) = dϕt(x(0))|ξ(x(0)) so
that v±(t) = Φ(t)v±(0). Let e(t) be the asymptotic direction of a (necessarily
rigid) surface having P as positive or negative limit. The vector e appears
in the asymptotic formula; see the appendix. Then e is an eigenvector of the
eigenvalue problem

(7.3) −iė = A(t)e + λe, e(0) = e(T ).

Moreover, λ = λ+ < 0 if P is the positive limit and λ = λ− > 0 if P is the
negative limit. Since the winding numbers of the asymptotic directions e are
all equal, namely wind∞(e) = 1 according to Proposition 5.9, the Conley-
Zehnder index µ(P ) = 2 implies that λ+ < 0 is the largest negative eigenvalue
and λ− > 0 is the smallest positive eigenvalue of (7.3). In addition, the corre-
sponding eigenspaces are 1-dimensional. We conclude that there are precisely
two directions ±e+ for positive surfaces and two directions ±e− for negative
surfaces. Since F is a foliation it follows from the asymptotic formula in R×S3

that P is the asymptotic limit of at most four rigid leaves of F . Figure 31 il-
lustrates the situation. The vectors e+(t) and e−(t) constitute a basis of the
contact planes ξ(x(t)) = C and hence define four open quadrants in C depend-
ing on t and denoted by I, II, III and IV. See Figure 32. The positions of
the local invariant manifolds W+

loc(P ) and W−
loc(P ) with respect to the rigid

surfaces are described by the following proposition.

Proposition 7.4. v−(t) ∈ I or III and v+(t) ∈ II or IV.
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Figure 31. A hyperbolic periodic orbit may be an asymptotic limit
of at most four rigid surfaces of F .
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Figure 32. The vectors e+ and e− define four quadrants in C.

Proof. Consider a solution h(t) of −iḣ = A(t)h. Assume h(τ) = e+(τ)
for some τ . If e+(t) is the solution of (7.3) belonging to λ+ < 0 we compute,
abbreviating e+ = e and λ+ = λ,

d

dt
(hē) = ḣ · ē + h ˙̄e

= i(Ah) · ē − ih · (Ae) − iλ(hē) = B(h, e) − iλ(hē),
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where B(h, e) = B(e, h). We conclude that h(t) enters I for t > τ , and IV for
t < τ . Similarly, assuming h(τ) = e−(τ) we see that h(t) enters I for t > τ

and II for t < τ . This is illustrated in Figure 33. Hence, the solution h(t)
starting at h(0) = e+(0) satisfies h(t) ∈ I for all t > 0 and h(t) ∈ IV for all
t < 0. Representing this solution in the basis v+(t) and v−(t) and recalling
Φ(t + nT ) = Φ(t)Φ(T )n for all n ∈ Z and t ∈ R, we find

lim
n→∞

h(t + nT )
|h(t + nT )| =

v−(t)
|v−(t)| ∈ I,

lim
n→∞

h(t − nT )
|h(t − nT )| =

v+(t)
|v+(t)| ∈ IV.

A similar argument applies if the solution h(t) starts at h(0) = −e+(0). This
finishes the proof of the proposition.

e+(t)

e−(t)
I

II

III

IV

Figure 33.
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The sets W±(P ) are images of injective immersions of a cylinder. The
transversal foliation in the complement of the binding orbit allows the study
of their global behavior.

Proposition 7.5. Assume the foliation F possesses a spanning orbit of
index µ(P ) = 2. Then its unstable invariant manifold W−(P ) intersects the
stable invariant manifold W+(Q) for a possibly different spanning orbit Q of
F having index µ(Q) = 2.

Proof. In view of our bubbling off analysis a binding orbit P satisfying
µ(P ) = 2 is the positive limit of a rigid surface C+ ∈ F and the negative
limit of a rigid surface C− ∈ F . Moreover, there is a unique family of surfaces
Cτ parametrized over the interval (−1, 1) so that as τ → −1, the surfaces
decompose into the broken trajectory (C+, C−). Figure 34 visualizes such a
situation, when projected into S3 and cut by a plane.

3

2

C+

C−

Cτ

W−(P )

W−(P )

2

3
U

U C−

Figure 34. A family of surfaces Cτ decomposes as τ → 1 into the
broken trajectory (C+, C−).

On S3 we take a smooth tubular neighborhood U of the periodic orbit P

equipped with a metric having the property that the distance d(ϕ−t(w), P ) for
w ∈ W−

loc(P ) ∩ U strictly decreases with increasing time t. Here ϕt is the flow
of the Reeb vector field X. We choose U so small that ∂U ∩ W−

loc(P ) are two
smoothly embedded circles on ∂U .

Lemma 7.6. The cylinder W−
loc(P ) cuts out a smooth embedded circle Sτ

on the projected surface p(Cτ ), for τ close to the left end of the interval :

Sτ = W−
loc(P ) ∩ p(Cτ ),

where p : R× S3 → S3 is the projection.
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Proof. Let S+ be a smooth circle ∂U ∩ W−
loc(P ) contained in the family

p(Cτ ), τ ∈ (−1, 1), and denote by B the cylinder obtained by the backward
flow starting at S+,

B = {ϕt(b) | b ∈ S+, t < 0}.

We shall show that B ∩ p(Cτ ) = Sτ is a smoothly embedded circle for τ close
to −1. Recall the bubbling off analysis leading to the broken trajectories. The
surface Cτ is parametrized by a map ũτ = (aτ , uτ ), in appropriate coordinates
given by a cylinder

ũτ : Zτ = [−Rτ , Rτ ] × S1 → R× M,

with Rτ → ∞ as τ → −1. The loops uτ ({−Rτ} × S1) and uτ ({Rτ} × S1) are
close to p(C−) and p(C+) and near the limit P . In view of the choice of the
metric and Proposition 7.4 one deduces that the algebraic intersection number
is equal to

int
(
b · R−, uτ (Zτ )

)
= 1

if τ is close to −1 and b ∈ S1. Since the local intersection indices of the
pseudoholomorphic curves (s, ϕt(b)) and ũτ are equal to 1, there is precisely
one intersection point b·R−∩p(Cτ ) for every b ∈ S1. The flow being transversal
to p(Cτ ) defines a diffeomorphism of the smooth circle S+ onto the intersection
set W−

loc(P ) ∩ p(Cτ ) hence proving the lemma.

In view of the above lemma, the flow ϕt for t > 0 defines a family of
smooth embedded circles Sτ ⊂ p(Cτ ) for all −1 < τ < 1. We shall show that
these moving loops hit the stable manifold W+(Q) of a hyperbolic spanning
orbit Q of index µ(Q) = 2.

Arguing indirectly we assume that this never happens. Then as τ → −1,
the family Cτ decomposes along a binding orbit P1 into two rigid surfaces
(C+

1 , C−
1 ) and the loop cut out by the unstable manifold W−(P ) has to sit

entirely on one of the two rigid surfaces p(C+
1 ), p(C−

1 ). Recall from Lemma
5.2 in [35] in case of an odd index µ(P1), that the solutions nearby make a full
turn around the binding orbit P1 in a short interval of time. On the other side
of the rigid surface hit, the foliation continues again by a 1-dimensional family
and moving the loops along the transversal flow we can argue as before. There
are only a finite number of rigid surfaces and 1-dimensional families. Therefore,
we find a rigid surface R of the foliation hit infinitely often in forward time.
By the uniqueness of the initial value problem, the loops Sj cut out on R by
the unstable manifold W−(P ) are mutually disjoint. Since the Reeb vector
field X lies in the kernel of dλ, the λ integral over such a loop Sj is the same,
namely equal to

T =
∫

Sj

λ.
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The 2-form dλ induces on the surface R an area form for which the total area
is finite, in view of the energy estimates leading to the following contradiction.
Every circle Sj on R encloses an area on R of value

∫
Sj

λ minus the sum of the
periods of the enclosed punctures of R.

Since there are only finitely many punctures the total sum of the disjoint
areas enclosed by the circles Sj on R must be infinite. This contradiction shows
that W−(P ) necessarily intersects W+(Q) for a hyperbolic spanning orbit of
index µ(Q) = 2, hence proving the proposition. See Figure 35.

Sj

Figure 35.

Proposition 7.7. Assume λ = fλ0 is generic, i.e., f ∈ Θ2. If F has
more than one fixed point of the R-action, there exists a hyperbolic binding
orbit P0 whose stable and unstable invariant manifolds intersect each other
transversally, W+(P0) ∩ W−(P0) = {x}, in a homoclinic orbit x �= P .

Proof. By Proposition 7.5, there exists a hyperbolic binding orbit P whose
unstable invariant manifold intersects the stable invariant manifold of a hy-
perbolic binding orbit P1, also having index µ(P1) = 2. If P1 = P we are
done. Otherwise we find by repeating the construction of Proposition 7.5 a
heteroclinic chain between hyperbolic binding orbits P , P1, P2, . . . , all hav-
ing index equal to 2. There are only finitely many binding orbits and we
deduce a hyperbolic orbit P0 possessing a heteroclinic loop. Since the intersec-
tions are transversal, P0 possesses a nontrivial transversal homoclinic orbit, as
claimed.

It is well known that the existence of a generic homoclinic orbit compli-
cates the orbit structure of X considerably; see for example [47]. It allows,
in particular, the construction of an embedded Bernoulli-shift for an associ-
ated local Poincaré section map. Its infinitely many periodic points are the
initial conditions for infinitely many periodic solutions of the vector field X.
Consequently, if in the generic case, the foliation F is not an open book decom-
position, then the Reeb vector field X on S3 possesses infinitely many periodic
orbits. This completes the proof of Theorem 1.9 and its corollaries.
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7.2. Weakly convex contact forms. The foliation F has a simple descrip-
tion if there are no spanning orbits of index 1. We recall from [35] the following
definition.

Definition 7.8. A nondegenerate contact form λ on S3 is called dynami-
cally convex if for every periodic orbit (x, T ) of the associated Reeb vector field
the inequality µ(x, T ) ≥ 3 holds.

The spanning orbits of F in the case of a tight dynamically convex contact
form λ = fλ0 have indices all equal to 3. Apart from the fixed points of the
R-action, the leaves therefore appear in 1-dimensional families of finite energy
planes. Such a family is necessarily parametrized by S1. Indeed, otherwise
at the ends of the parameter interval the family necessarily splits into 2 rigid
surfaces giving rise to a spanning orbit of index 2, which is excluded. Hence,
arguing as above, we see that the foliation F possesses precisely one spanning
orbit of index 3 and the projection of F onto S3 is an open book decomposition
into planes. Moreover, if compactified by the spanning orbit P , it is a global
surface of section of disc type for the Reeb vector field. Studying the Poincaré
section map we deduce by means of the area-preserving character as before the
following result for the Reeb flow.

Theorem 7.9. The Reeb flow of a dynamically convex contact form
λ = fλ0 possesses either precisely two or infinitely many periodic orbits.

An interesting example is the Hamiltonian flow on a strictly convex energy
surface in R4. As shown in [35], such a flow is conjugated to the Reeb flow
on S3 defined by a dynamically convex tight contact form λ = fλ0, and hence
possesses, in the generic case either two or infinitely many periodic orbits. The
result actually holds true without the assumption of genericity, as shown in
[35]. We next introduce a new concept.

Definition 7.10. A nondegenerate contact form λ on S3 is called weakly
convex if for every periodic orbit (x, T ) of the associated Reeb vector field the
inequality µ(x, T ) ≥ 2 holds.

If λ = fλ0 is weakly convex the foliation F consists of finitely many fixed
points of the R-action, finitely many rigid cylinders having their origin in the
spanning orbits of index 2, and the complement is filled with a finite number of
1-parameter families of finite energy planes, parametrized over intervals. We
describe the projection of F into S3 more precisely: Every spanning orbit P

of index 2 is the boundary of precisely two disjoint rigid planes C±. Their
union C− ∪ P ∪C+ is a smoothly embedded 2-sphere S2 in S3 whose equator
is P . One of the hemispheres, C+, is the entrance set for the Reeb flow, the
other hemisphere, C−, is the exit set of the 2-sphere. Moreover, inside the
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ball and in the complement of the ball there exist binding orbits of index 3
connected with the equator P by rigid cylinders. Inside of the ball there is
possibly another rigid cylinder connecting the index 3 binding orbit with an
index 2 binding orbit inside the sphere, which again is the equator of a smaller
rigid 2-sphere inside the larger sphere already described. Proceeding this way
we end up after finitely many steps with a smallest rigid sphere containing no
further rigid spheres. The smallest sphere contains precisely one binding orbit
of index 3 connected by a rigid cylinder with the equator of the sphere and
is filled with a 1-parameter family of planes, whose boundaries agree with the
index 3 binding orbit. The dynamical consequences of such a family are not
yet worked out. We visualize the projection of F in S3 by Figure 36. In the
figure the white dots represent periodic orbits with index 2 and the black dots
periodic orbits with index 3.

3

2

C+

C−

Figure 36. An example of a foliation for a weakly convex contact
form. The figure shows the foliation by disk-like and annuli-like
surfaces projected onto S3 and the trace of a foliation cut by a
plane. The white dots represent periodic orbits of index 2 and the
black dots periodic orbits of index 3. They are perpendicular to
the page and two dots belong to the same periodic orbit. The rigid
surfaces are represented by bold curves. The arrows indicate the
Reeb flow. The 3-sphere is viewed as R3 ∪ {∞}.
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8. Appendix

8.1. The Conley-Zehnder index. For the readers’ convenience we shall col-
lect some facts about the index of a nondegenerate contractible periodic orbit
of the Reeb vector field Xλ on M . Assume (x, T ) is a T -periodic solution, which
is nondegenerate and contractible. The linearized map Tϕt(x(0)) : Tx(0)M →
Tx(t)M maps the contact plane ξx(0) onto ξx(t) and is, moreover, symplectic
with respect to dλ. We choose a smooth disc map u : D → M satisfying
u
(
e2πit/T

)
= x(t), where D = {z ∈ C | |z| ≤ 1}. Then we choose a symplectic

trivialization β : u∗ξ → D × R2 and consider the arc Φ : [0, T ] → Sp(1) of
symplectic matrices Φ(t) in R2 defined by

Φ(t) := β
(
e2πit/T

)
˚ Tϕt

|ξx(0) ˚ β−1(1).

The arc starts at the identity Φ(0) = Id and ends at Φ(T ). The integer 1 is
not an eigenvalue of Φ(T ) if and only if (x, T ) is nondegenerate. With every
such arc we shall associate an integer µ(Φ) and then define the index of the
periodic solution (x, T ) by

µ(x, T, [u]) = µ(Φ).

This index will only depend on the homotopy class [u] of the chosen disc map
having the boundary fixed. If, as in our applications, M = S3, the index is
independent of the disc map chosen.

In order to define µ(Φ) we abbreviate the set of arcs under consideration by
Σ∗(1) = {Φ : [0, T ] → Sp(1) | Φ(0) = Id and Φ(T ) ∈ Sp(1)∗}, where Sp(1)∗ =
{A ∈ Sp(1) | det(A − Id) �= 0}. We recall that the eigenvalues of A ∈ Sp(1)∗

occur in pairs, namely (λ, λ̄) ∈ S1\{1} or (λ, λ−1) ∈ R2\{(1, 1)} and λ > 0, or
(λ, λ−1) ∈ R2 and λ < 0. According to the spectrum of the end point Φ(T ) we
therefore distinguish elliptic, (+)-hyperbolic and (−)-hyperbolic arcs Φ. The
characterization of the integer µ(Φ) is as follows.

Theorem 8.1. The Conley-Zehnder index is the unique map

µ : Σ∗(1) → Z

characterized by the following four properties:

Homotopy invariance: If Φτ is a homotopy of arcs in Σ∗(1), then µ(Φτ )
does not depend on τ .

Maslov compatibility: If L : [0, T ] → Sp(1) is a loop, i.e., L(0) = L(T ) and
Φ ∈ Σ∗(1), then

µ(L · Φ) = 2 maslov(L) + µ(Φ).
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Invertibility: With Φ−1(t) = Φ(t)−1,

µ(Φ) = −µ(Φ−1)

Normalization: If Φ 1
2
(t) := eπit/T ,

µ(Φ 1
2
) = 1

In addition, the map µ : Σ∗(1) → Z is surjective.

For a proof we refer to [26]. There are several ways to present the integer
µ(Φ) and we recall first the geometric construction from [26]. We consider
a differentiable arc Φ(t). It is the resolvent of a linear Hamiltonian equation
Φ̇(t) = JA(t)Φ(t) starting at Φ(0) = Id. Let z ∈ C \ {0} and choose for the
solution z(t) = Φ(t)z a continuous argument

e2πiϕ(t) =
z(t)
|z(t)| , 0 ≤ t ≤ T,

introduce the winding number of Φ(t)z by

∆(z) = ϕ(T ) − ϕ(0) ∈ R,

and define the winding interval of the arc Φ by

I(Φ) = {∆(z) | z ∈ C \ {0}}.

The length of this interval is strictly smaller than 1/2. Indeed, for two solu-
tions z(t) and w(t), we define the curve z1(t) = z(t)w(t) in C and observe
that ∆(z1) = ∆(z) − ∆(w). Assume that |∆(z1)| ≥ 1/2. Then we find
t0 ∈ [0, T ] satisfying z1(t0) ∈ R \ {0} implying z(t0) = τw(t0) for some τ ∈
R \ {0}. Consequently, z(t) = τw(t) for all t ∈ [0, T ] and hence ∆(z) = ∆(w)
in contradiction to |∆(z) − ∆(w)| ≥ 1/2. We have proved that |I(Φ)| < 1/2.
The winding interval either lies between two consecutive integers or contains
precisely one integer and we can define

µ(Φ) =

{
2k + 1 if I(Φ) ⊂ (k, k + 1)
2k if k ∈ I(Φ),

for some integer k ∈ Z. It is proved in [26] that µ(Φ) satisfies all required
properties in Theorem 8.1.

Clearly, the winding number ∆(z0) is an integer if and only if Φ(T )z0 = λz0

and λ > 0. Hence (+)-hyperbolic arcs are characterized by even indices. For
a (−)-hyperbolic arc we have an eigenvector Φ(T )z0 = −λz0, λ > 0, so that
∆(z0) = k + 1/2 for an integer k and hence µ(Φ) = 2k + 1 is odd. The elliptic
arcs also necessarily have odd indices.



248 H. HOFER, K. WYSOCKI, AND E. ZEHNDER

Observe now that the differentiable arc Φ(t) coming from the periodic
solution (x, T ) is defined for all t ∈ R and satisfies, moreover,

Φ(t + T ) = Φ(t)Φ(T ), t ∈ R.

This allows us to define the indices µ(Φ(n)) for the iterated periodic solutions
assuming that Φ(n) are all nondegenerate. Here Φ(n) is the arc Φ(t) for 0 ≤
t ≤ nT , n ≥ 1. If z ∈ C \ {0}, the winding number can be written as the sum

(8.1) ∆(z,Φ(n)) = ∆(z) + ∆(Φ(T )z) + · · · + ∆(Φ((n − 1)T )z).

If Φ is a (+)-hyperbolic arc there is an eigenvector Φ(T )z0 = λz0 with λ > 0.
Hence k = ∆(z0) = ∆(Φ(T )z0) = · · · = ∆(Φ((n− 1)T )z0) and we deduce from
(8.1) that

(8.2) µ(Φ(n)) = nµ(Φ), for all n ≥ 1.

The same iteration formula holds for a (−)-hyperbolic arc. The iterations of
elliptic arcs is more subtle. However, in the elliptic case we conclude from (8.1)
the estimates

n[µ(Φ) − 1] + 1 ≤ µ(Φ(n)) ≤ n[µ(Φ) + 1] − 1.

We made use in previous sections of the following monotonicity property of
the index, which follows immediately from (8.1) and (8.2).

Proposition 8.2.

Either µ(Φ(n)) = 0 for all n ≥ 1
or 0 < µ(Φ) ≤ µ(Φ(2)) ≤ µ(Φ(3)) ≤ . . .

or 0 > µ(Φ) ≥ µ(Φ(2)) ≥ µ(Φ(3)) ≥ . . . .

In previous sections we also used the fact that µ(Φ) ≥ 2 implies
µ(Φ(2)) ≥ 4. This is proved as follows. If µ(Φ) = 2k, k ≥ 1, then by (8.2)
µ(Φ(2)) = 4k ≥ 4. If µ(Φ) = 2n + 1 is odd and n ≥ 1, then I(Φ) ⊂ (n, n + 1)
and hence by (8.1) I(Φ(2)) ⊂ (k, k + 1) for some k ≥ 2n. Consequently,
µ(Φ(2)) = 2k + 1 ≥ 4n + 1 ≥ 5.

We next recall that the index µ(Φ) is related to the rotation of Φ(t) in
Sp(1). There is a unique decomposition

Φ(t) = O(t) · P (t)

into an orthogonal matrix O(t) ∈ Sp(1) and a symmetric and positive definite
matrix P (t) = eA(t) ∈ Sp(1). Since Φ(0) = Id, we conclude from the uniqueness
of the decomposition that O(0) = Id and P (0) = Id. Hence with O(t) = e2πiα(t)

we obtain for the winding number ∆(z) of z ∈ C \ {0} the representation

∆(z) = ∆0 + ∆( arg[P (t)z]) =: ∆0 + δ(z),
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where ∆0 = α(T ) is the rotation of the arc O(t), for 0 ≤ t ≤ T , in Sp(1).
From (P (t)z, z) > 0 we deduce the estimate |δ(z)| < 1/2. This implies for an
eigenvector P (T )z0 = λz0 and λ > 0 that δ(z0) = 0. Hence ∆0 ∈ I(Φ).

We deform the arc Φ within Σ∗(1) by prolonging the endpoint Φ(T ),
keeping the spectrum of Φ(T ) fixed. Note that after conjugation with a suitable
orthogonal matrix u we have,

u ˚ Φ(T ) ˚ u−1 =

(
cos 2π∆0 − sin 2π∆0

sin 2π∆0 cos 2π∆0

)
·
(

λ 0
0 λ−1

)
, λ > 0,

and the eigenvalues µ ∈ σ(Φ(T )) are

µ± =
1
2

(
λ +

1
λ

)
cos 2π∆0 ±

√
1
4

(
λ +

1
λ

)2

cos2 2π∆0 − 1.

Assume at first that Φ(T ) is (+)-hyperbolic. Then

cos 2π∆0 > 0 and
1
4

(
λ +

1
λ

)2

cos2 2π∆0 − 1 > 0.

In particular, ∆0 ∈ (k − 1/4, k + 1/4) for some integer k. Denote by R(s) the
rotation with angle 2πs. We prolong Φ(T ) = O(T )eA(T ) keeping the spectrum
fixed by the arc

O(T )R(ε(s))eAs(T )

=

 cos 2π
(
∆0 + ε(s)

)
− sin 2π

(
∆0 + ε(s)

)
sin 2π

(
∆0 + ε(s)

)
cos 2π

(
∆0 + ε(s)

)  ·
(

λs 0
0 1/λs

)
,

for 0 ≤ s ≤ ε∗. Here ε(s) = [ sign(k − ∆0)]s and ε∗ = |k − ∆0|. Adding this
piece of arc we homotope Φ(t), 0 ≤ t ≤ T , within Σ∗(1) into the arc Ψ ∈ Σ∗(1),

Ψ : Id
Φ(t)−−−→Φ(T ) −→ Id ·eA0(T ).

In view of the homotopy invariance in Theorem 8.1 we conclude µ(Ψ) = µ(Φ).
The rotation of Ψ in Sp(1) is clearly an integer ∆̃ := ∆0+[ sign(k−∆0)]ε∗ = k

so that µ(Φ) = µ(Ψ) = 2∆̃ and µ(Φn) = 2n∆̃. Similarly, in the (−)-hyperbolic
case we continue the endpoint Φ(T ) keeping the spectrum fixed to the matrix
− Id ·eA0(T ). This way we homotope the arc Φ(t), 0 ≤ t ≤ T , within Σ∗(1) to
the arc Ψ ∈ Σ∗(1) given by

Ψ : Id
Φ(t)−−−→Φ(T ) −→ − Id ·eA0(T ).

This time the rotation of Ψ is equal to ∆̃ = ∆0 + β = k + 1/2 for an integer k.
Using the homotopy invariance we conclude µ(Φ) = µ(Ψ) = 2k + 1 = 2∆̃, and
µ(Φn) = 2n∆̃. Finally, if Φ(T ) is elliptic, then

1
4

(
λ +

1
λ

)2

cos2 2π∆0 − 1 < 0
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and there is a unique function ε(s), 0 ≤ s ≤ 1, satisfying ε(0) = 0, ε(1) = ε,
and |ε(s)| < 1/4 and such that the arc

O(T )R(ε(s))eAs(T ) =

 cos 2π
(
∆0 + ε(s)

)
− sin 2π

(
∆0 + ε(s)

)
sin 2π

(
∆0 + ε(s)

)
cos 2π

(
∆0 + ε(s)

) 
·

(
s + (1 − s)λ 0

0 1
s+(1−s)λ

)

has the same spectrum as O(T ) · eA(T ). Prolonging Φ(T ) by adding this piece
of arc we homotope Φ(t), 0 ≤ t ≤ T , in Σ∗(1) to the arc Ψ ∈ Σ∗(1) given by

Ψ : Id
Φ(t)−−−→Φ(T ) −→ O(T ) · R(ε)

and hence ending at a nontrivial rotation. Since the arc is elliptic, the rotation
∆̃ = ∆0 + ε satisfies k < ∆̃ < k + 1 for an integer k. Therefore, by homotopy
invariance, µ(Φ) = µ(Ψ) = 2k + 1 and hence

µ(Φ) = 2∆̃ + r1, |r1| < 1.

In order to determine the index µ(Φ(n)) of the iterated arc Φ(t), 0 ≤ t ≤ nT , in
the elliptic cases we recall that σ(Φ(T )j) ∈ S1\{1} for all iterates j ≥ 1. Using
the above prolongation of Φ(T ) in Sp∗(1) we homotope Φ(t), 0 ≤ t ≤ nT , in
Σ∗(1) to the arc Ψ of rotations,

(8.3)
Ψ : Id

O(t)−−−→ O(T )
O(t)O(T )−−−−−−→ O(T )2 −→ · · ·

O(t)O(T )n−1

−−−−−−−−−→ O(T )n (O(T )R(ε(τ)))n

−−−−−−−−−→ (O(T ) · R(ε))n,

where 0 ≤ t ≤ T and 0 ≤ τ ≤ 1. The deformation Φs of Φ is defined as
follows. We set Φs(t) = O(t)esA(t) for 0 ≤ t ≤ T and 0 ≤ s ≤ 1, and add
successively the arcs Φs(t)Φs(T )j for j = 1, 2, . . . , (n − 1), where 0 ≤ t ≤ T ,
and finally prolong the endpoint in Sp∗(1) by the arc (O(T )R(ε(t))esA(T ))n for
s ≤ t ≤ 1. From (8.3) we compute for the rotation of Ψ in Sp(1) the number
n∆0 + nε = n∆̃. By the homotopy invariance, µ(Φ(n)) = µ(Ψ). Therefore, we
obtain the following iteration formula for the index in the elliptic case

(8.4) µ(Φ(n)) = 2n∆̃ + rn, |rn| < 1.

Note that the rotation number ∆̃ ∈ R is uniquely determined by Φ(t), for
0 ≤ t ≤ T . It splits into two parts ∆̃ = ∆0 + δ0, where ∆0 = α(T ) − α(0) is
determined by the orthogonal part of Φ(t) = O(t) · P (t) over 0 ≤ t ≤ T and
δ0 is determined by the spectrum σ(Φ(T )) of the end point. The number ∆̃ is
irrational in the elliptic case, while ∆̃ = k ∈ Z for a (+)-hyperbolic arc and
∆̃ = k +1/2 for a (−)-hyperbolic arc. To summarize the index µ(x, T ) = µ(Φ)
of a periodic solution of a Reeb vector field on S3 has the following properties:
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Theorem 8.3. Assume that the periodic orbit (x, T ) and its iterates
(x, nT ), n ≥ 1, are nondegenerate.

1. If (x, T ) is (+)-hyperbolic, then

µ(X, nT ) = nµ(x, T ), n ≥ 1

and µ(x, T ) = 2k is even.

2. If (x, T ) is (−)-hyperbolic, then

µ(X, nT ) = nµ(x, T ), n ≥ 1

and µ(x, T ) = 2k + 1 is odd.

3. If (x, T ) is an elliptic periodic solution, then

µ(X, nT ) = 2n∆̃ + rn, |rn| < 1

with µ(x, T ) = 2k + 1 odd. The real number ∆̃ ∈ (k, k + 1) is irrational
and uniquely determined by (x, T ).

Crucial for the geometry of finite energy surfaces near the punctures is
the characterization of the index µ(Φ) in terms of spectral properties of the
asymptotic linear operator. The differentiable arcs Φ : R → Sp(1) satisfying
Φ(t+T ) = Φ(t)Φ(T ) and Φ(0) = Id are in one-to-one correspondence with the
linear Hamiltonian vector fields JA(t) = Φ̇(t)Φ−1(t), where A(t+T ) = A(t) is
periodic in time and a symmetric matrix in L(R2). Define the linear operator
LA in L2(S1,R2) by

LA = −J
d

dt
− A(t)

on the domain H1,2(S1,R2), where S1 = R/TZ. The operator LA is self-adjoint
and its spectrum σ(LA) consists of countably many isolated eigenvalues and is
unbounded from above and from below. Moreover, kerLA = {0} if and only if
Φ ∈ Σ∗(1).

An eigenfunction v �= 0 in L2 belonging to the eigenvalue λ ∈ σ(LA) solves
the first order boundary value problem

−Jv̇(t) − A(t)v(t) = λv(t), v(0) = v(T ).

Consequently, v(t) �= 0 for all t and hence v defines a continuous map from S1

into C \ {0} which has a winding number, denoted by w(v, λ) ∈ Z. One easily
verifies that two linearly independent eigenfunctions belonging to the same
eigenvalue λ have the same winding number, so that with every λ ∈ σ(LA) we
can associate the winding number w(λ, A) ∈ Z. For every integer k ∈ Z there
are precisely two eigenvalues (counted with multiplicities) λ1 and λ2 ∈ σ(LA)
satisfying k = w(λ1, A) = w(λ2, A); see [30, Lemma 3.6]. If there exists only
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one such eigenvalue, its multiplicity is 2. In this sense every winding number
occurs twice in σ(LA). Moreover, the map λ �→ w(λ, A) from σ(LA) onto Z is
monotonic, see [30]. Define now two integers α(A) ∈ Z and p(A) ∈ {0, 1} as
follows: α(A) is the maximum of the winding numbers w(λ, A) belonging to
the eigenvalues λ < 0 of the operator LA, and p(A) = (1 + (−1)b)/2, where
b is the number of eigenvalues (counted with multiplicity) strictly less than 0
which have winding numbers equal to α(A).

Theorem 8.4. If Φ ∈ Σ∗(1),

µ(Φ) = 2α(A) + p(A).

The proof is given in [30, Theorem 3.10]. The arc Φ is (+)-hyperbolic
if and only if p(A) = 0. We observe that µ(Φ) = 3 if and only if α(A) = 1
and p(A) = 1. Since the asymptotic behavior of a finite energy surface near a
puncture is governed by an eigenvector of the asymptotic operator LA we can
gain information about the geometry of the surface from the knowledge of the
index µ(x, T ) of the asymptotic limits, see [30].

Consider a finite energy surface ũ = (a, u) : S \Γ → R×M with the punc-
tures Γ = Γ+∪Γ− and assume the asymptotic limits are nondegenerate. Since
the surface converges to finitely many periodic orbits we can define an index
µ(ũ) as follows. We compactify the puncture surface Ṡ = S \ Γ by adding a
circle for every puncture distinguishing positive and negative punctures. Using
the asymptotic behavior of the surface, we see that the map u : S \ Γ → M

can be extended to a smooth map ū : S̄ → M such that the boundary circles
of S̄ parametrize the periodic orbits associated with the punctures. Choose a
symplectic trivialization Ψ of ū∗ξ → S̄. Then the Conley-Zehnder index µz

for the periodic solution associated with the puncture z ∈ Γ can be computed
with respect to the trivialization as above and we define the index µ(ũ) ∈ Z

by
µ(ũ) =

∑
z∈Γ+

µz −
∑

z∈Γ−
µz ∈ Z.

This integer µ(ũ) does not depend on the choices involved, in contrast to the
integers µz which depend on the choice of the trivialisation Ψ, [30, Prop. 5.5].
We point out that the integer µ(ũ) enters the formula for the Fredholm index
Ind(ũ) = µ(ũ) − χ(S) + 	Γ; see [36].

8.2. Asymptotics of a finite energy surface near a nondegenerate puncture.
From [35] and [32] we recall the behavior of a nonconstant pseudoholomorphic
curve near one of its punctures, assuming the energy to be bounded and the
contact form to be nondegenerate. In the following, M is a three manifold
equipped with the contact form λ determining the contact bundle ξ and the
Reeb vector field X. Choosing a complex multiplication J on ξ we denote by
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J̃ the associated distinguished R-invariant almost complex structure on R×M

and consider the finite energy surface

ũ = (a, u) : S \ Γ → R× M

with the nonempty finite set Γ of punctures. Near the puncture z0 ∈ Γ we
introduce holomorphic polar coordinates. We take a holomorphic chart h : D ⊂
C→ U ⊂ S around z0 satisfying h(0) = z0 and define σ : [0,∞)×S1 → U \{z0}
by

σ(s, t) = h
(
e−2π(s+it)

)
.

Then z0 = lims→∞ σ(s, t). In these coordinates, ũ becomes, near z0, the posi-
tive half cylinder

ṽ = (b, v) = ũ ˚ σ : [0,∞) × S1 → R× M.

The map ṽ solves the Cauchy-Riemann equation

ṽs + J̃(ṽ)ṽt = 0

and has bounded energy E(ṽ) ≤ E(ũ) < ∞. Because of the energy bound the
following limit exists:

m(ũ, z0) = lim
s→∞

∫
S1

v(s, ·)∗λ.

Indeed, by Stokes’ theorem,∫
S1

v(s, ·)∗λ =
∫

S1
v(0, ·)∗λ +

∫
[0,s]×S1

v∗dλ

= c0 +
1
2

∫
[0,s]×S1

[
|πvs|2J + |πvt|2J

]
dsdt

so that the map s →
∫
S1 v(s, ·)∗λ is monotonic and bounded. The real number

m = m(ũ, z0) is called the charge of the puncture z0. It is positive if z0 is a
positive puncture and negative for a negative puncture. Moreover, m = 0 if
the puncture is removable. The behavior of the surface near z0 is determined
by periodic solutions of the Reeb vector field having periods T = |m(ũ, z0)|.
Namely, every sequence sk → ∞ possesses a subsequence, still denoted by sk

such that
u(sk, t) → x(mt) in C∞(S1)

for an orbit x(t) of the Reeb vector field ẋ(t) = X(x(t)). Here m is the charge
of z0. If m �= 0 the solution is necessarily a periodic orbit of X having the
period T = |m|. If the periodic orbit is nondegenerate, hence, in particular,
isolated among periodic orbits having periods close to |m|, then

lim
s→∞

v(s, t) = x(Tm) in C∞(S1)

and
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lim
s→∞

b(s, t)
s

= m in C∞(S1).

In this case we call the uniquely determined periodic solution (x, T ) with period
T = |m| the asymptotic limit of the puncture z0.

The energy surface ṽ approaches, in the nondegenerate case as s → ∞,
the orbit cylinder ṽ∞(s, t) = (sm, x(mt)) in R × M in an exponential way.
In order to describe this in detail we represent the contact structure λ in a
tubular neighborhood of the asymptotic limit (x, T ) in a normal form. In the
following lemma we denote by

λ0 = dϑ + xdy

the contact form on S1 × R2 with coordinates (ϑ, x, y).

Lemma 8.5. Let M be a three-dimensional manifold equipped with a
contact form λ and let (x, T ) be a periodic solution of the Reeb vector field X.
Denote by τ the minimal period of x so that T = kτ for an integer k. Then
there exist open neighborhoods U of S1 × {0} ⊂ S1 × R2 and V ⊂ M of
P = x(R) ⊂ M , and a diffeomorphism ϕ : U → V mapping S1 × {0} onto P

and satisfying
ϕ∗λ = fλ0.

The smooth function f : U → (0,∞) has the properties f(ϑ, 0, 0) = τ and
df(ϑ, 0, 0) = 0 for all ϑ ∈ S1.

Working in the covering space R of S1, the curve ṽ is, in the coordinates
of the lemma, represented as a map

ṽ = (b, v) : [0,∞) × R→ R
4,(8.5)

ṽ(s, t) =
(
b(s, t), ϑ(s, t), z(s, t)

)
,

where the functions b : [0,∞)×R→ R and z : [0,∞)×R→ R2 are 1-periodic
in t, while ϑ : [0,∞) × R → R satisfies ϑ(s, t + 1) = ϑ(s, t) + k. The last
factor R2 in (8.5) is in the contact plane along the asymptotic limit in these
coordinates.

Theorem 8.6 (Asymptotics). Let z0 ∈ Γ be a nonremovable puncture of a
finite energy surface ũ : S\Γ → R×M whose charge is m(ũ, z0) = m and whose
nondegenerate asymptotic limit is (x, T ), where T = |m| = kτ with the minimal
period τ . Introduce near z0 the cylindrical coordinates [0,∞) × S1 and near
the asymptotic limit the normal form coordinates of the lemma. In these local
coordinates, the finite energy surface has the form ṽ =

(
b(s, t), ϑ(s, t), z(s, t)

)
∈

R× R× R2, where

b(s, t) = ms + c + b̂(s, t), ϑ(s, t) =
m

τ
t + d + ϑ̂(s, t)



FINITE ENERGY FOLIATIONS 255

and either z(s, t) ≡ 0 for all (s, t) ∈ [0,∞) × R with s ≥ 0, or

z(s, t) = e
∫ s

0
γ(τ)dτ

[
e(t) + r̂(s, t)

]
.

Here, c and d are two real constants, and

∂αr̂(s, t) → 0 as s → ∞

uniformly in t ∈ R and for all derivatives α = (α1, α2). In addition, there are
constants Mα > 0 and β > 0 such that∣∣∣∂αb̂(s, t)

∣∣∣, ∣∣∣∂αϑ̂(s, t)
∣∣∣ ≤ Mαe−βs

for s ≥ 0 and all derivatives α. Moreover, the smooth function γ : [0,∞) → R

converges, γ(s) → µ as s → ∞. The limit µ is a negative eigenvalue of a self -
adjoint operator A∞ in L2(S1,R2) if m > 0, while −µ is a positive eigenvalue
if m < 0. The function e(t) = e(t + 1) �= 0 represents an eigenvector belonging
to µ resp. −µ. The operator A∞ is related to the linearized flow of the Reeb
vector field X restricted to the invariant contact bundle along the periodic orbit
(x, T ).

The proofs of these statements can be found in [1], [25], [24], [32], [36],
and [38]. Also, note that the above asymptotic formula is used in the Fredholm
theory [36] for embedded finite energy surfaces. It also plays an important role
in the geometric description of finite energy surfaces in [35], [30], [31], [33].
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