Blocks of symmetric groups, semicuspidal KLR algebras and zigzag Schur-Weyl duality

Abstract

We prove Turner’s conjecture, which describes the blocks of the Hecke algebras of the symmetric groups up to derived equivalence as certain explicit Turner double algebras. Turner doubles are Schur-algebra-like ‘local’ objects, which replace wreath products of Brauer tree algebras in the context of the Broué abelian defect group conjecture for blocks of symmetric groups with non-abelian defect groups. The main tools used in the proof are generalized Schur algebras corresponding to wreath products of zigzag algebras and imaginary semicuspidal quotients of affine KLR algebras.

Authors

Anton Evseev

School of Mathematics, University of Birmingham, Birmingham B15 2TT, United Kingdom

Alexander Kleschev

Department of Mathematics, University of Oregon, Eugene, OR 97403