Convergence of Ricci flows with bounded scalar curvature

Abstract

In this paper we prove convergence and compactness results for Ricci flows with bounded scalar curvature and entropy. More specifically, we show that Ricci flows with bounded scalar curvature converge smoothly away from a singular set of codimension $\geq 4$. We also establish a general form of the Hamilton-Tian Conjecture, which is even true in the Riemannian case.

These results are based on a compactness theorem for Ricci flows with bounded scalar curvature, which states that any sequence of such Ricci flows converges, after passing to a subsequence, to a metric space that is smooth away from a set of codimension $\geq 4$. In the course of the proof, we will also establish $L^{p < 2}$-curvature bounds on time-slices of such flows.

  • [Chen-Wang-IIa] Go to document X. Chen and B. Wang, "Space of Ricci flows (II)—part A: moduli of singular Calabi-Yau spaces," Forum Math. Sigma, vol. 5, p. 32, 2017.
    @ARTICLE{Chen-Wang-IIa,
      author = {Chen, Xiuxiong and Wang, Bing},
      title = {Space of {R}icci flows ({II})---part {A}: moduli of singular {C}alabi-{Y}au spaces},
      journal = {Forum Math. Sigma},
      fjournal = {Forum of Mathematics. Sigma},
      volume = {5},
      year = {2017},
      pages = {e32, 103},
      issn = {2050-5094},
      mrclass = {53C25 (53C23)},
      mrnumber = {3739253},
      doi = {10.1017/fms.2017.28},
      url = {https://doi.org/10.1017/fms.2017.28},
      zblnumber = {1385.53033},
      }
  • [Chen-Wang-IIb] X. Chen and B. Wang, Space of Ricci flows (II)—part B: weak compactness of the flows, 2017.
    @MISC{Chen-Wang-IIb,
      author = {Chen, Xiuxiong and Wang, Bing},
      title = {Space of {R}icci flows ({II})---part {B}: weak compactness of the flows},
      note = {to appear in \emph{J. Differential Geom.}},
      year = {2017},
      }
  • [Chen-Wang-II] Go to document X. Chen and B. Wang, "Space of Ricci flows I," Comm. Pure Appl. Math., vol. 65, iss. 10, pp. 1399-1457, 2012.
    @ARTICLE{Chen-Wang-II,
      author = {Chen, Xiuxiong and Wang, Bing},
      title = {Space of {R}icci flows {I}},
      journal = {Comm. Pure Appl. Math.},
      fjournal = {Communications on Pure and Applied Mathematics},
      volume = {65},
      year = {2012},
      number = {10},
      pages = {1399--1457},
      issn = {0010-3640},
      mrclass = {53C44 (14J45 35K55)},
      mrnumber = {2957704},
      mrreviewer = {Julien Keller},
      doi = {10.1002/cpa.21414},
      zblnumber = {1252.53076},
      }
  • [MR684900] Go to document F. J. Almgren Jr., "$Q$ valued functions minimizing Dirichlet’s integral and the regularity of area minimizing rectifiable currents up to codimension two," Bull. Amer. Math. Soc. (N.S.), vol. 8, iss. 2, pp. 327-328, 1983.
    @ARTICLE{MR684900,
      author = { Almgren, Jr., F. J.},
      title = {{$Q$} valued functions minimizing {D}irichlet's integral and the regularity of area minimizing rectifiable currents up to codimension two},
      journal = {Bull. Amer. Math. Soc. (N.S.)},
      fjournal = {American Mathematical Society. Bulletin. New Series},
      volume = {8},
      year = {1983},
      number = {2},
      pages = {327--328},
      issn = {0273-0979},
      mrclass = {49F10 (53A10)},
      mrnumber = {0684900},
      doi = {10.1090/S0273-0979-1983-15106-6},
      zblnumber = {0557.49021},
      }
  • [MR999661] Go to document M. T. Anderson, "Ricci curvature bounds and Einstein metrics on compact manifolds," J. Amer. Math. Soc., vol. 2, iss. 3, pp. 455-490, 1989.
    @ARTICLE{MR999661,
      author = {Anderson, Michael T.},
      title = {Ricci curvature bounds and {E}instein metrics on compact manifolds},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {2},
      year = {1989},
      number = {3},
      pages = {455--490},
      issn = {0894-0347},
      mrclass = {53C20 (53C25 58D17 58G30)},
      mrnumber = {0999661},
      mrreviewer = {Maung Min-Oo},
      doi = {10.2307/1990939},
      zblnumber = {0694.53045},
      }
  • [MR1074481] Go to document M. T. Anderson, "Convergence and rigidity of manifolds under Ricci curvature bounds," Invent. Math., vol. 102, iss. 2, pp. 429-445, 1990.
    @ARTICLE{MR1074481,
      author = {Anderson, Michael T.},
      title = {Convergence and rigidity of manifolds under {R}icci curvature bounds},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {102},
      year = {1990},
      number = {2},
      pages = {429--445},
      issn = {0020-9910},
      mrclass = {53C23 (53C21 58D27)},
      mrnumber = {1074481},
      mrreviewer = {Gudlaugur Thorbergsson},
      doi = {10.1007/BF01233434},
      zblnumber = {0711.53038},
      }
  • [Bamler-CGN] Go to document R. H. Bamler, "Structure theory of singular spaces," J. Funct. Anal., vol. 272, iss. 6, pp. 2504-2627, 2017.
    @ARTICLE{Bamler-CGN,
      author = {Bamler, Richard H.},
      title = {Structure theory of singular spaces},
      journal = {J. Funct. Anal.},
      fjournal = {Journal of Functional Analysis},
      volume = {272},
      year = {2017},
      number = {6},
      pages = {2504--2627},
      issn = {0022-1236},
      mrclass = {53C23 (53C21 53C25)},
      mrnumber = {3603307},
      mrreviewer = {Nan Li},
      doi = {10.1016/j.jfa.2016.10.020},
      zblnumber = {06680863},
      }
  • [Bamler-Zhang-Part2] R. H. Bamler and Q. S. Zhang, Heat kernel and curvature bounds in Ricci flows with bounded scalar curvature — Part II, 2015.
    @misc{Bamler-Zhang-Part2,
      author = {Richard H. Bamler and Qi S. Zhang},
      title = {Heat kernel and curvature bounds in {R}icci flows with bounded scalar curvature --- {P}art {II}},
      ARXIV={1506.03154},
      year = {2015},
      }
  • [Bamler-Zhang-Part1] Go to document R. H. Bamler and Q. S. Zhang, "Heat kernel and curvature bounds in Ricci flows with bounded scalar curvature," Adv. Math., vol. 319, pp. 396-450, 2017.
    @ARTICLE{Bamler-Zhang-Part1,
      author = {Bamler, Richard H. and Zhang, Qi S.},
      title = {Heat kernel and curvature bounds in {R}icci flows with bounded scalar curvature},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {319},
      year = {2017},
      pages = {396--450},
      issn = {0001-8708},
      mrclass = {53C44 (58J35)},
      mrnumber = {3695879},
      doi = {10.1016/j.aim.2017.08.025},
      zblnumber = {06776230},
      }
  • [Cheeger-Colding-Cone] Go to document J. Cheeger and T. H. Colding, "Lower bounds on Ricci curvature and the almost rigidity of warped products," Ann. of Math. (2), vol. 144, iss. 1, pp. 189-237, 1996.
    @ARTICLE{Cheeger-Colding-Cone,
      author = {Cheeger, Jeff and Colding, Tobias H.},
      title = {Lower bounds on {R}icci curvature and the almost rigidity of warped products},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {144},
      year = {1996},
      number = {1},
      pages = {189--237},
      issn = {0003-486X},
      mrclass = {53C21 (53C20 53C23)},
      mrnumber = {1405949},
      mrreviewer = {Joseph E. Borzellino},
      doi = {10.2307/2118589},
      zblnumber = {0865.53037},
      }
  • [Cheeger-Colding-structure-II] Go to document J. Cheeger and T. H. Colding, "On the structure of spaces with Ricci curvature bounded below. II," J. Differential Geom., vol. 54, iss. 1, pp. 13-35, 2000.
    @ARTICLE{Cheeger-Colding-structure-II,
      author = {Cheeger, Jeff and Colding, Tobias H.},
      title = {On the structure of spaces with {R}icci curvature bounded below. {II}},
      journal = {J. Differential Geom.},
      fjournal = {Journal of Differential Geometry},
      volume = {54},
      year = {2000},
      number = {1},
      pages = {13--35},
      issn = {0022-040X},
      mrclass = {53C21 (49Q15 53C20 53C23)},
      mrnumber = {1815410},
      mrreviewer = {Man Chun Leung},
      doi = {10.4310/jdg/1214342145},
      zblnumber = {1027.53042},
      }
  • [MR1937830] Go to document J. Cheeger, T. H. Colding, and G. Tian, "On the singularities of spaces with bounded Ricci curvature," Geom. Funct. Anal., vol. 12, iss. 5, pp. 873-914, 2002.
    @ARTICLE{MR1937830,
      author = {Cheeger, J. and Colding, T. H. and Tian, G.},
      title = {On the singularities of spaces with bounded {R}icci curvature},
      journal = {Geom. Funct. Anal.},
      fjournal = {Geometric and Functional Analysis},
      volume = {12},
      year = {2002},
      number = {5},
      pages = {873--914},
      issn = {1016-443X},
      mrclass = {53C21 (53C20)},
      mrnumber = {1937830},
      mrreviewer = {Zhongmin Shen},
      doi = {10.1007/PL00012649},
      zblnumber = {1030.53046},
      }
  • [SDC2015-I] Go to document X. Chen, S. Donaldson, and S. Sun, "Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities," J. Amer. Math. Soc., vol. 28, iss. 1, pp. 183-197, 2015.
    @ARTICLE{SDC2015-I,
      author = {Chen, Xiuxiong and Donaldson, Simon and Sun, Song},
      title = {Kähler-{E}instein metrics on {F}ano manifolds. {I}: {A}pproximation of metrics with cone singularities},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {28},
      year = {2015},
      number = {1},
      pages = {183--197},
      issn = {0894-0347},
      mrclass = {53C55 (14J45 32Q20 32W20 53C25)},
      mrnumber = {3264766},
      mrreviewer = {Julius Ross},
      doi = {10.1090/S0894-0347-2014-00799-2},
      zblnumber = {1312.53096},
      }
  • [SDC2015-II] Go to document X. Chen, S. Donaldson, and S. Sun, "Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than $2\pi$," J. Amer. Math. Soc., vol. 28, iss. 1, pp. 199-234, 2015.
    @ARTICLE{SDC2015-II,
      author = {Chen, Xiuxiong and Donaldson, Simon and Sun, Song},
      title = {Kähler-{E}instein metrics on {F}ano manifolds. {II}: {L}imits with cone angle less than {$2\pi$}},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {28},
      year = {2015},
      number = {1},
      pages = {199--234},
      issn = {0894-0347},
      mrclass = {53C55 (53C25)},
      mrnumber = {3264767},
      mrreviewer = {Julius Ross},
      doi = {10.1090/S0894-0347-2014-00800-6},
      zblnumber = {1312.53097},
      }
  • [SDC2015-III] Go to document X. Chen, S. Donaldson, and S. Sun, "Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches $2\pi$ and completion of the main proof," J. Amer. Math. Soc., vol. 28, iss. 1, pp. 235-278, 2015.
    @ARTICLE{SDC2015-III,
      author = {Chen, Xiuxiong and Donaldson, Simon and Sun, Song},
      title = {Kähler-{E}instein metrics on {F}ano manifolds. {III}: {L}imits as cone angle approaches {$2\pi$} and completion of the main proof},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {28},
      year = {2015},
      number = {1},
      pages = {235--278},
      issn = {0894-0347},
      mrclass = {53C55 (53C25)},
      mrnumber = {3264768},
      mrreviewer = {Julius Ross},
      doi = {10.1090/S0894-0347-2014-00801-8},
      zblnumber = {1311.53059},
      }
  • [MR3061773] Go to document J. Cheeger, R. Haslhofer, and A. Naber, "Quantitative stratification and the regularity of mean curvature flow," Geom. Funct. Anal., vol. 23, iss. 3, pp. 828-847, 2013.
    @ARTICLE{MR3061773,
      author = {Cheeger, Jeff and Haslhofer, Robert and Naber, Aaron},
      title = {Quantitative stratification and the regularity of mean curvature flow},
      journal = {Geom. Funct. Anal.},
      fjournal = {Geometric and Functional Analysis},
      volume = {23},
      year = {2013},
      number = {3},
      pages = {828--847},
      issn = {1016-443X},
      mrclass = {53C44},
      mrnumber = {3061773},
      mrreviewer = {Nam Q. Le},
      doi = {10.1007/s00039-013-0224-9},
      zblnumber = {1277.53064},
      }
  • [MR1094458] Go to document B. Chow, "The Ricci flow on the $2$-sphere," J. Differential Geom., vol. 33, iss. 2, pp. 325-334, 1991.
    @ARTICLE{MR1094458,
      author = {Chow, Bennett},
      title = {The {R}icci flow on the {$2$}-sphere},
      journal = {J. Differential Geom.},
      fjournal = {Journal of Differential Geometry},
      volume = {33},
      year = {1991},
      number = {2},
      pages = {325--334},
      issn = {0022-040X},
      mrclass = {53C21 (35K55 58G11 58G30)},
      mrnumber = {1094458},
      mrreviewer = {Thomas H. Otway},
      url = {http://projecteuclid.org/euclid.jdg/1214446319},
      zblnumber = {0734.53033},
      }
  • [Cheeger-Naber-quantitative] Go to document J. Cheeger and A. Naber, "Lower bounds on Ricci curvature and quantitative behavior of singular sets," Invent. Math., vol. 191, iss. 2, pp. 321-339, 2013.
    @ARTICLE{Cheeger-Naber-quantitative,
      author = {Cheeger, Jeff and Naber, Aaron},
      title = {Lower bounds on {R}icci curvature and quantitative behavior of singular sets},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {191},
      year = {2013},
      number = {2},
      pages = {321--339},
      issn = {0020-9910},
      mrclass = {53C21 (32Q20 53C23 53C25)},
      mrnumber = {3010378},
      mrreviewer = {Leonid V. Kovalev},
      doi = {10.1007/s00222-012-0394-3},
      zblnumber = {1268.53053},
      }
  • [MR3043387] Go to document J. Cheeger and A. Naber, "Quantitative stratification and the regularity of harmonic maps and minimal currents," Comm. Pure Appl. Math., vol. 66, iss. 6, pp. 965-990, 2013.
    @ARTICLE{MR3043387,
      author = {Cheeger, Jeff and Naber, Aaron},
      title = {Quantitative stratification and the regularity of harmonic maps and minimal currents},
      journal = {Comm. Pure Appl. Math.},
      fjournal = {Communications on Pure and Applied Mathematics},
      volume = {66},
      year = {2013},
      number = {6},
      pages = {965--990},
      issn = {0010-3640},
      mrclass = {58E20 (49Q15 53C43 58A25)},
      mrnumber = {3043387},
      mrreviewer = {Leonid V. Kovalev},
      doi = {10.1002/cpa.21446},
      zblnumber = {1269.53063},
      }
  • [Cheeger-Naber-Codim4] Go to document J. Cheeger and A. Naber, "Regularity of Einstein manifolds and the codimension 4 conjecture," Ann. of Math. (2), vol. 182, iss. 3, pp. 1093-1165, 2015.
    @ARTICLE{Cheeger-Naber-Codim4,
      author = {Cheeger, Jeff and Naber, Aaron},
      title = {Regularity of {E}instein manifolds and the codimension 4 conjecture},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {182},
      year = {2015},
      number = {3},
      pages = {1093--1165},
      issn = {0003-486X},
      mrclass = {53C25 (53C23)},
      mrnumber = {3418535},
      mrreviewer = {Luis Guijarro},
      doi = {10.4007/annals.2015.182.3.5},
      zblnumber = {1335.53057},
      }
  • [Colding-vol-conv] Go to document T. H. Colding, "Ricci curvature and volume convergence," Ann. of Math. (2), vol. 145, iss. 3, pp. 477-501, 1997.
    @ARTICLE{Colding-vol-conv,
      author = {Colding, Tobias H.},
      title = {Ricci curvature and volume convergence},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {145},
      year = {1997},
      number = {3},
      pages = {477--501},
      issn = {0003-486X},
      mrclass = {53C21 (53C23)},
      mrnumber = {1454700},
      mrreviewer = {Zhongmin Shen},
      doi = {10.2307/2951841},
      zblnumber = {0879.53030},
      }
  • [MR3061942] Go to document X. Chen and B. Wang, "On the conditions to extend Ricci flow(III)," Int. Math. Res. Not. IMRN, iss. 10, pp. 2349-2367, 2013.
    @ARTICLE{MR3061942,
      author = {Chen, Xiuxiong and Wang, Bing},
      title = {On the conditions to extend {R}icci flow({III})},
      journal = {Int. Math. Res. Not. IMRN},
      fjournal = {International Mathematics Research Notices. IMRN},
      year = {2013},
      number = {10},
      pages = {2349--2367},
      issn = {1073-7928},
      mrclass = {53C44},
      mrnumber = {3061942},
      mrreviewer = {James McCoy},
      doi = {10.1093/imrn/rns117},
      zblnumber = {1317.53082},
      }
  • [MR2886712] Go to document J. Enders, R. Müller, and P. M. Topping, "On type-I singularities in Ricci flow," Comm. Anal. Geom., vol. 19, iss. 5, pp. 905-922, 2011.
    @ARTICLE{MR2886712,
      author = {Enders, Joerg and Müller, Reto and Topping, Peter M.},
      title = {On type-{I} singularities in {R}icci flow},
      journal = {Comm. Anal. Geom.},
      fjournal = {Communications in Analysis and Geometry},
      volume = {19},
      year = {2011},
      number = {5},
      pages = {905--922},
      issn = {1019-8385},
      mrclass = {53C44},
      mrnumber = {2886712},
      mrreviewer = {Juan-Ru Gu},
      doi = {10.4310/CAG.2011.v19.n5.a4},
      zblnumber = {1244.53074},
      }
  • [MR664497] Go to document R. S. Hamilton, "Three-manifolds with positive Ricci curvature," J. Differential Geom., vol. 17, iss. 2, pp. 255-306, 1982.
    @ARTICLE{MR664497,
      author = {Hamilton, Richard S.},
      title = {Three-manifolds with positive {R}icci curvature},
      journal = {J. Differential Geom.},
      fjournal = {Journal of Differential Geometry},
      volume = {17},
      year = {1982},
      number = {2},
      pages = {255--306},
      issn = {0022-040X},
      mrclass = {53C25 (35K55 58G30)},
      mrnumber = {0664497},
      mrreviewer = {J. L. Kazdan},
      doi = {10.4310/jdg/1214436922},
      zblnumber = {0504.53034},
      }
  • [MR954419] Go to document R. S. Hamilton, "The Ricci flow on surfaces," in Mathematics and General Relativity, Amer. Math. Soc., Providence, RI, 1988, vol. 71, pp. 237-262.
    @INCOLLECTION{MR954419,
      author = {Hamilton, Richard S.},
      title = {The {R}icci flow on surfaces},
      booktitle = {Mathematics and General Relativity},
      venue = {{S}anta {C}ruz, {CA},
      1986},
      series = {Contemp. Math.},
      volume = {71},
      pages = {237--262},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {1988},
      mrclass = {53C20 (35K55 58G11)},
      mrnumber = {0954419},
      mrreviewer = {Dennis M. DeTurck},
      doi = {10.1090/conm/071/954419},
      zblnumber = {},
      }
  • [MR1333936] Go to document R. S. Hamilton, "A compactness property for solutions of the Ricci flow," Amer. J. Math., vol. 117, iss. 3, pp. 545-572, 1995.
    @ARTICLE{MR1333936,
      author = {Hamilton, Richard S.},
      title = {A compactness property for solutions of the {R}icci flow},
      journal = {Amer. J. Math.},
      fjournal = {American Journal of Mathematics},
      volume = {117},
      year = {1995},
      number = {3},
      pages = {545--572},
      issn = {0002-9327},
      mrclass = {53C21 (58E11 58G30)},
      mrnumber = {1333936},
      mrreviewer = {Ben Andrews},
      doi = {10.2307/2375080},
      zblnumber = {0840.53029},
      }
  • [MR1375255] R. S. Hamilton, "The formation of singularities in the Ricci flow," in Surveys in Differential Geometry, Vol. II, Int. Press, Cambridge, MA, 1995, pp. 7-136.
    @INCOLLECTION{MR1375255,
      author = {Hamilton, Richard S.},
      title = {The formation of singularities in the {R}icci flow},
      booktitle = {Surveys in Differential Geometry, {V}ol. {II}},
      venue = {{C}ambridge, {MA},
      1993},
      publisher = {Int. Press, Cambridge, MA},
      year = {1995},
      pages = {7--136},
      zblnumber = {0867.53030},
      mrnumber = {1375255},
      }
  • [MR2846384] Go to document R. Haslhofer and R. Müller, "A compactness theorem for complete Ricci shrinkers," Geom. Funct. Anal., vol. 21, iss. 5, pp. 1091-1116, 2011.
    @ARTICLE{MR2846384,
      author = {Haslhofer, Robert and Müller, Reto},
      title = {A compactness theorem for complete {R}icci shrinkers},
      journal = {Geom. Funct. Anal.},
      fjournal = {Geometric and Functional Analysis},
      volume = {21},
      year = {2011},
      number = {5},
      pages = {1091--1116},
      issn = {1016-443X},
      mrclass = {53C21 (53C23 53C25 53C44)},
      mrnumber = {2846384},
      mrreviewer = {Yuguang Zhang},
      doi = {10.1007/s00039-011-0137-4},
      zblnumber = {1239.53056},
      }
  • [MR3373942] Go to document R. Haslhofer and R. Müller, "A note on the compactness theorem for 4d Ricci shrinkers," Proc. Amer. Math. Soc., vol. 143, iss. 10, pp. 4433-4437, 2015.
    @ARTICLE{MR3373942,
      author = {Haslhofer, Robert and Müller, Reto},
      title = {A note on the compactness theorem for 4d {R}icci shrinkers},
      journal = {Proc. Amer. Math. Soc.},
      fjournal = {Proceedings of the American Mathematical Society},
      volume = {143},
      year = {2015},
      number = {10},
      pages = {4433--4437},
      issn = {0002-9939},
      mrclass = {53C25 (53C44)},
      mrnumber = {3373942},
      mrreviewer = {Hung Thanh Tran},
      doi = {10.1090/proc/12648},
      zblnumber = {1323.53046},
      }
  • [MR3245102] Go to document H. Hein and A. Naber, "New logarithmic Sobolev inequalities and an $\epsilon$-regularity theorem for the Ricci flow," Comm. Pure Appl. Math., vol. 67, iss. 9, pp. 1543-1561, 2014.
    @ARTICLE{MR3245102,
      author = {Hein, Hans-Joachim and Naber, Aaron},
      title = {New logarithmic {S}obolev inequalities and an {$\epsilon$}-regularity theorem for the {R}icci flow},
      journal = {Comm. Pure Appl. Math.},
      fjournal = {Communications on Pure and Applied Mathematics},
      volume = {67},
      year = {2014},
      number = {9},
      pages = {1543--1561},
      issn = {0010-3640},
      mrclass = {35A23 (35R01 53C23 53C44)},
      mrnumber = {3245102},
      mrreviewer = {Yu Ding},
      doi = {10.1002/cpa.21474},
      zblnumber = {1297.53046},
      }
  • [MR2460872] Go to document B. Kleiner and J. Lott, "Notes on Perelman’s papers," Geom. Topol., vol. 12, iss. 5, pp. 2587-2855, 2008.
    @ARTICLE{MR2460872,
      author = {Kleiner, Bruce and Lott, John},
      title = {Notes on {P}erelman's papers},
      journal = {Geom. Topol.},
      fjournal = {Geometry \& Topology},
      volume = {12},
      year = {2008},
      number = {5},
      pages = {2587--2855},
      issn = {1465-3060},
      mrclass = {53C44 (57M40)},
      mrnumber = {2460872},
      mrreviewer = {Gérard Besson},
      doi = {10.2140/gt.2008.12.2587},
      zblnumber = {1204.53033},
      }
  • [MR2666905] Go to document R. J. McCann and P. M. Topping, "Ricci flow, entropy and optimal transportation," Amer. J. Math., vol. 132, iss. 3, pp. 711-730, 2010.
    @ARTICLE{MR2666905,
      author = {McCann, Robert J. and Topping, Peter M.},
      title = {Ricci flow, entropy and optimal transportation},
      journal = {Amer. J. Math.},
      fjournal = {American Journal of Mathematics},
      volume = {132},
      year = {2010},
      number = {3},
      pages = {711--730},
      issn = {0002-9327},
      mrclass = {53C44 (49Q20)},
      mrnumber = {2666905},
      mrreviewer = {Sara Daneri},
      doi = {10.1353/ajm.0.0110},
      zblnumber = {1203.53065},
      }
  • [MR2328895] Go to document L. Ni, "Mean value theorems on manifolds," Asian J. Math., vol. 11, iss. 2, pp. 277-304, 2007.
    @ARTICLE{MR2328895,
      author = {Ni, Lei},
      title = {Mean value theorems on manifolds},
      journal = {Asian J. Math.},
      fjournal = {Asian Journal of Mathematics},
      volume = {11},
      year = {2007},
      number = {2},
      pages = {277--304},
      issn = {1093-6106},
      mrclass = {58J35 (35J65 53C44)},
      mrnumber = {2328895},
      mrreviewer = {Xi Ping Zhu},
      doi = {10.4310/AJM.2007.v11.n2.a6},
      zblnumber = {1139.58018},
      }
  • [PerelmanI] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, 2002.
    @MISC{PerelmanI,
      author = {Perelman, Grisha},
      title = {The entropy formula for the {R}icci flow and its geometric applications},
      year = {2002},
      arxiv = {math/0211159},
      }
  • [PerelmanII] G. Perelman, Ricci flow with surgery on three-manifolds, 2003.
    @MISC{PerelmanII,
      author = {Perelman, Grisha},
      title = {Ricci flow with surgery on three-manifolds},
      arxiv = {math/0303109},
      year = {2003},
      }
  • [Sesum:2005] Go to document N. vSevsum, "Curvature tensor under the Ricci flow," Amer. J. Math., vol. 127, iss. 6, pp. 1315-1324, 2005.
    @ARTICLE{Sesum:2005,
      author = {Šešum, Nataša},
      title = {Curvature tensor under the {R}icci flow},
      journal = {Amer. J. Math.},
      fjournal = {American Journal of Mathematics},
      volume = {127},
      year = {2005},
      number = {6},
      pages = {1315--1324},
      issn = {0002-9327},
      mrclass = {53C44},
      mrnumber = {2183526},
      mrreviewer = {Bennett Chow},
      doi = {10.1353/ajm.2005.0042},
      zblnumber = {1093.53070},
      }
  • [MR2255013] Go to document N. Sesum, "Convergence of the Ricci flow toward a soliton," Comm. Anal. Geom., vol. 14, iss. 2, pp. 283-343, 2006.
    @ARTICLE{MR2255013,
      author = {Sesum, Natasa},
      title = {Convergence of the {R}icci flow toward a soliton},
      journal = {Comm. Anal. Geom.},
      fjournal = {Communications in Analysis and Geometry},
      volume = {14},
      year = {2006},
      number = {2},
      pages = {283--343},
      issn = {1019-8385},
      mrclass = {53C44},
      mrnumber = {2255013},
      mrreviewer = {Peng Lu},
      doi = {10.4310/CAG.2006.v14.n2.a4},
      zblnumber = {1106.53045},
      }
  • [Simon:2015-extending] M. Simon, Extending four dimensional Ricci flows with bounded scalar curvature, 2015.
    @MISC{Simon:2015-extending,
      author = {Simon, Miles},
      title = {Extending four dimensional {R}icci flows with bounded scalar curvature},
      arxiv = {1504.02910},
      year = {2015},
      }
  • [Simon:2015-bounds] M. Simon, Some integral curvature estimates for the Ricci flow in four dimensions, 2015.
    @MISC{Simon:2015-bounds,
      author = {Simon, Miles},
      title = {Some integral curvature estimates for the {R}icci flow in four dimensions},
      arxiv = {1504.02623},
      year = {2015},
      }
  • [Sesum-Tian:2008] Go to document N. Sesum and G. Tian, "Bounding scalar curvature and diameter along the Kähler Ricci flow (after Perelman)," J. Inst. Math. Jussieu, vol. 7, iss. 3, pp. 575-587, 2008.
    @ARTICLE{Sesum-Tian:2008,
      author = {Sesum, Natasa and Tian, Gang},
      title = {Bounding scalar curvature and diameter along the {K}ähler {R}icci flow (after {P}erelman)},
      journal = {J. Inst. Math. Jussieu},
      fjournal = {Journal of the Institute of Mathematics of Jussieu. JIMJ. Journal de l'Institut de Mathématiques de Jussieu},
      volume = {7},
      year = {2008},
      number = {3},
      pages = {575--587},
      issn = {1474-7480},
      mrclass = {53C44 (53C55)},
      mrnumber = {2427424},
      mrreviewer = {Julien Keller},
      doi = {10.1017/S1474748008000133},
      zblnumber = {1147.53056},
      }
  • [Sturm-super-RF] K. Sturm, Super-Ricci flows for metric measure spaces, 2016.
    @MISC{Sturm-super-RF,
      author = {Sturm, Karl-Theodor},
      title = {Super-{R}icci flows for metric measure spaces},
      arxiv = {1603.02193},
      year = {2016},
      }
  • [Tian:2012mq] Go to document G. Tian, "K-stability and Kähler-Einstein metrics," Comm. Pure Appl. Math., vol. 68, iss. 7, pp. 1085-1156, 2015.
    @ARTICLE{Tian:2012mq,
      author = {Tian, Gang},
      title = {K-stability and {K}ähler-{E}instein metrics},
      journal = {Comm. Pure Appl. Math.},
      fjournal = {Communications on Pure and Applied Mathematics},
      volume = {68},
      year = {2015},
      number = {7},
      pages = {1085--1156},
      issn = {0010-3640},
      mrclass = {53C55 (53C25)},
      mrnumber = {3352459},
      mrreviewer = {Matthew B. Stenzel},
      doi = {10.1002/cpa.21578},
      zblnumber = {1318.14038},
      }
  • [MR2572247] Go to document P. Topping, "$\mathcal{L}$-optimal transportation for Ricci flow," J. Reine Angew. Math., vol. 636, pp. 93-122, 2009.
    @ARTICLE{MR2572247,
      author = {Topping, Peter},
      title = {{$\mathcal{L}$}-optimal transportation for {R}icci flow},
      journal = {J. Reine Angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
      volume = {636},
      year = {2009},
      pages = {93--122},
      issn = {0075-4102},
      mrclass = {53C44 (35R01 49Q20 58E35)},
      mrnumber = {2572247},
      mrreviewer = {Yuxin Ge},
      doi = {10.1515/CRELLE.2009.083},
      zblnumber = {1187.53072},
      }
  • [Tian-ZLZhang:2013-announcement] Go to document G. Tian and Z. Zhang, "Regularity of the Kähler-Ricci flow," C. R. Math. Acad. Sci. Paris, vol. 351, iss. 15-16, pp. 635-638, 2013.
    @ARTICLE{Tian-ZLZhang:2013-announcement,
      author = {Tian, Gang and Zhang, Zhenlei},
      title = {Regularity of the {K}ähler-{R}icci flow},
      journal = {C. R. Math. Acad. Sci. Paris},
      fjournal = {Comptes Rendus Mathématique. Académie des Sciences. Paris},
      volume = {351},
      year = {2013},
      number = {15-16},
      pages = {635--638},
      issn = {1631-073X},
      mrclass = {53C44 (32Q20)},
      mrnumber = {3119891},
      mrreviewer = {Julien Keller},
      doi = {10.1016/j.crma.2013.07.005},
      zblnumber = {1278.53073},
      }
  • [Tian-Zhu:2013] Go to document G. Tian and X. Zhu, "Convergence of the Kähler-Ricci flow on Fano manifolds," J. Reine Angew. Math., vol. 678, pp. 223-245, 2013.
    @ARTICLE{Tian-Zhu:2013,
      author = {Tian, Gang and Zhu, Xiaohua},
      title = {Convergence of the {K}ähler-{R}icci flow on {F}ano manifolds},
      journal = {J. Reine Angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
      volume = {678},
      year = {2013},
      pages = {223--245},
      issn = {0075-4102},
      mrclass = {32Q20 (53C44)},
      mrnumber = {3056108},
      mrreviewer = {Julien Keller},
      zblnumber = {1276.14061},
      doi = {10.1515/crelle.2012.021},
      }
  • [Tian-Zhang:2013] Go to document G. Tian and Z. Zhang, "Regularity of Kähler-Ricci flows on Fano manifolds," Acta Math., vol. 216, iss. 1, pp. 127-176, 2016.
    @ARTICLE{Tian-Zhang:2013,
      author = {Tian, Gang and Zhang, Zhenlei},
      title = {Regularity of {K}ähler-{R}icci flows on {F}ano manifolds},
      journal = {Acta Math.},
      fjournal = {Acta Mathematica},
      volume = {216},
      year = {2016},
      number = {1},
      pages = {127--176},
      issn = {0001-5962},
      mrclass = {53C44 (32Q15 53C55)},
      mrnumber = {3508220},
      mrreviewer = {Shouwen Fang},
      doi = {10.1007/s11511-016-0137-1},
      zblnumber = {1356.53067},
      }
  • [MR2946223] Go to document B. Wang, "On the conditions to extend Ricci flow(II)," Int. Math. Res. Not. IMRN, iss. 14, pp. 3192-3223, 2012.
    @ARTICLE{MR2946223,
      author = {Wang, Bing},
      title = {On the conditions to extend {R}icci flow({II})},
      journal = {Int. Math. Res. Not. IMRN},
      fjournal = {International Mathematics Research Notices. IMRN},
      year = {2012},
      number = {14},
      pages = {3192--3223},
      issn = {1073-7928},
      mrclass = {53C44},
      mrnumber = {2946223},
      mrreviewer = {Christine Guenther},
      doi = {10.1093/imrn/rnr141},
      zblnumber = {1251.53040},
      }
  • [MR1465365] Go to document B. White, "Stratification of minimal surfaces, mean curvature flows, and harmonic maps," J. Reine Angew. Math., vol. 488, pp. 1-35, 1997.
    @ARTICLE{MR1465365,
      author = {White, Brian},
      title = {Stratification of minimal surfaces, mean curvature flows, and harmonic maps},
      journal = {J. Reine Angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
      volume = {488},
      year = {1997},
      pages = {1--35},
      issn = {0075-4102},
      mrclass = {49Q05 (49Q20 53C42 58E20)},
      mrnumber = {1465365},
      mrreviewer = {Harold Parks},
      doi = {10.1515/crll.1997.488.1},
      zblnumber = {0874.58007},
      }
  • [ZZhang:2010] Go to document Z. Zhang, "Scalar curvature behavior for finite-time singularity of Kähler-Ricci flow," Michigan Math. J., vol. 59, iss. 2, pp. 419-433, 2010.
    @ARTICLE{ZZhang:2010,
      author = {Zhang, Zhou},
      title = {Scalar curvature behavior for finite-time singularity of {K}ähler-{R}icci flow},
      journal = {Michigan Math. J.},
      fjournal = {Michigan Mathematical Journal},
      volume = {59},
      year = {2010},
      number = {2},
      pages = {419--433},
      issn = {0026-2285},
      mrclass = {53C44 (32W20)},
      mrnumber = {2677630},
      mrreviewer = {Julien Keller},
      doi = {10.1307/mmj/1281531465},
      zblnumber = {1198.53079},
      }
  • [MR2923189] Go to document Q. S. Zhang, "Bounds on volume growth of geodesic balls under Ricci flow," Math. Res. Lett., vol. 19, iss. 1, pp. 245-253, 2012.
    @ARTICLE{MR2923189,
      author = {Zhang, Qi S.},
      title = {Bounds on volume growth of geodesic balls under {R}icci flow},
      journal = {Math. Res. Lett.},
      fjournal = {Mathematical Research Letters},
      volume = {19},
      year = {2012},
      number = {1},
      pages = {245--253},
      issn = {1073-2780},
      mrclass = {53C44},
      mrnumber = {2923189},
      mrreviewer = {En-Tao Zhao},
      doi = {10.4310/MRL.2012.v19.n1.a19},
      zblnumber = {1272.53056},
      }

Authors

Richard H. Bamler

University of California, Berkeley, CA