Blocks of symmetric groups, semicuspidal KLR algebras and zigzag Schur-Weyl duality

Abstract

We prove Turner’s conjecture, which describes the blocks of the Hecke algebras of the symmetric groups up to derived equivalence as certain explicit Turner double algebras. Turner doubles are Schur-algebra-like `local’ objects, which replace wreath products of Brauer tree algebras in the context of the Broué abelian defect group conjecture for blocks of symmetric groups with non-abelian defect groups. The main tools used in the proof are generalized Schur algebras corresponding to wreath products of zigzag algebras and imaginary semicuspidal quotients of affine KLR algebras.

Note: To view the article, click on the URL link for the DOI number.

  • [Alperin] J. L. Alperin, "Weights for finite groups," in The Arcata Conference on Representations of Finite Groups, Amer. Math. Soc., Providence, RI, 1987, vol. 47, pp. 369-379.
    @INCOLLECTION{Alperin,
      author = {Alperin, J. L.},
      title = {Weights for finite groups},
      booktitle = {The {A}rcata {C}onference on {R}epresentations of {F}inite {G}roups},
      venue = {{A}rcata, {C}alif., 1986},
      series = {Proc. Sympos. Pure Math.},
      volume = {47},
      pages = {369--379},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {1987},
      mrclass = {20C20},
      mrnumber = {0933373},
      mrreviewer = {Jorn B. Olsson},
      zblnumber = {0657.20013},
      }
  • [Ariki] Go to document S. Ariki, "On the decomposition numbers of the Hecke algebra of $G(m,1,n)$," J. Math. Kyoto Univ., vol. 36, iss. 4, pp. 789-808, 1996.
    @ARTICLE{Ariki,
      author = {Ariki, Susumu},
      title = {On the decomposition numbers of the {H}ecke algebra of {$G(m,1,n)$}},
      journal = {J. Math. Kyoto Univ.},
      fjournal = {Journal of Mathematics of Kyoto Univ.},
      volume = {36},
      year = {1996},
      number = {4},
      pages = {789--808},
      issn = {0023-608X},
      mrclass = {20C20 (20G99)},
      mrnumber = {1443748},
      mrreviewer = {Meinolf Geck},
      doi = {10.1215/kjm/1250518452},
      url = {https://doi.org/10.1215/kjm/1250518452},
      zblnumber = {0888.20011},
      }
  • [Abook] Go to document S. Ariki, Representations of Quantum Algebras and Combinatorics of Young Tableaux, Amer. Math. Soc., Providence, RI, 2002, vol. 26.
    @BOOK{Abook,
      author = {Ariki, Susumu},
      title = {Representations of Quantum Algebras and Combinatorics of {Y}oung Tableaux},
      series = {Univ. Lecture Ser.},
      volume = {26},
      note = {translated from the 2000 Japanese edition and revised by the author},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {2002},
      pages = {viii+158},
      isbn = {0-8218-3232-8},
      mrclass = {17B37 (05E10 14M15 17B67 20C08)},
      mrnumber = {1911030},
      mrreviewer = {Andrew Mathas},
      doi = {10.1090/ulect/026},
      url = {https://doi.org/10.1090/ulect/026},
      zblnumber = {1003.17008},
      }
  • [Broue] M. Broué, "Isométries parfaites, types de blocs, catégories dérivées," Astérisque, iss. 181-182, pp. 61-92, 1990.
    @ARTICLE{Broue,
      author = {Broué, Michel},
      title = {Isométries parfaites, types de blocs, catégories dérivées},
      journal = {Astérisque},
      fjournal = {Astérisque},
      number = {181-182},
      year = {1990},
      pages = {61--92},
      issn = {0303-1179},
      mrclass = {20C20 (16S34 20C05)},
      mrnumber = {1051243},
      mrreviewer = {Burkhard Külshammer},
      zblnumber = {0704.20010},
      }
  • [BK] Go to document J. Brundan and A. Kleshchev, "Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras," Invent. Math., vol. 178, iss. 3, pp. 451-484, 2009.
    @ARTICLE{BK,
      author = {Brundan, Jonathan and Kleshchev, Alexander},
      title = {Blocks of cyclotomic {H}ecke algebras and {K}hovanov-{L}auda algebras},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {178},
      year = {2009},
      number = {3},
      pages = {451--484},
      issn = {0020-9910},
      mrclass = {20C08 (16G99 20F55)},
      mrnumber = {2551762},
      mrreviewer = {Andrew Mathas},
      doi = {10.1007/s00222-009-0204-8},
      url = {https://doi.org/10.1007/s00222-009-0204-8},
      zblnumber = {1201.20004},
      }
  • [BKllt] Go to document J. Brundan and A. Kleshchev, "Graded decomposition numbers for cyclotomic Hecke algebras," Adv. Math., vol. 222, iss. 6, pp. 1883-1942, 2009.
    @ARTICLE{BKllt,
      author = {Brundan, Jonathan and Kleshchev, Alexander},
      title = {Graded decomposition numbers for cyclotomic {H}ecke algebras},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {222},
      year = {2009},
      number = {6},
      pages = {1883--1942},
      issn = {0001-8708},
      mrclass = {20C08 (17B37 20C20 20F55)},
      mrnumber = {2562768},
      mrreviewer = {Andrew Mathas},
      doi = {10.1016/j.aim.2009.06.018},
      url = {https://doi.org/10.1016/j.aim.2009.06.018},
      zblnumber = {1241.20003},
      }
  • [BKW] Go to document J. Brundan, A. Kleshchev, and W. Wang, "Graded Specht modules," J. Reine Angew. Math., vol. 655, pp. 61-87, 2011.
    @ARTICLE{BKW,
      author = {Brundan, Jonathan and Kleshchev, Alexander and Wang, Weiqiang},
      title = {Graded {S}pecht modules},
      journal = {J. Reine Angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
      volume = {655},
      year = {2011},
      pages = {61--87},
      issn = {0075-4102},
      mrclass = {20C08},
      mrnumber = {2806105},
      mrreviewer = {Nicolas Jacon},
      doi = {10.1515/CRELLE.2011.033},
      url = {https://doi.org/10.1515/CRELLE.2011.033},
      zblnumber = {1244.20003},
      }
  • [CK] Go to document J. Chuang and R. Kessar, "Symmetric groups, wreath products, Morita equivalences, and Broué’s abelian defect group conjecture," Bull. London Math. Soc., vol. 34, iss. 2, pp. 174-184, 2002.
    @ARTICLE{CK,
      author = {Chuang, Joseph and Kessar, Radha},
      title = {Symmetric groups, wreath products, {M}orita equivalences, and {B}roué's abelian defect group conjecture},
      journal = {Bull. London Math. Soc.},
      fjournal = {The Bulletin of the London Mathematical Society},
      volume = {34},
      year = {2002},
      number = {2},
      pages = {174--184},
      issn = {0024-6093},
      mrclass = {20C20 (18E30 20C30)},
      mrnumber = {1874244},
      mrreviewer = {Gerhard Hiss},
      doi = {10.1112/S0024609301008839},
      url = {https://doi.org/10.1112/S0024609301008839},
      zblnumber = {1033.20009},
      }
  • [CR] Go to document J. Chuang and R. Rouquier, "Derived equivalences for symmetric groups and $\mathfrak{s}\mathfrak{l}_2$-categorification," Ann. of Math. (2), vol. 167, iss. 1, pp. 245-298, 2008.
    @ARTICLE{CR,
      author = {Chuang, Joseph and Rouquier, Raphaël},
      title = {Derived equivalences for symmetric groups and {$\mathfrak{s}\mathfrak{l}_2$}-categorification},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {167},
      year = {2008},
      number = {1},
      pages = {245--298},
      issn = {0003-486X},
      mrclass = {20C08 (17B10 18E15 20C33)},
      mrnumber = {2373155},
      mrreviewer = {Bogdan Ion},
      doi = {10.4007/annals.2008.167.245},
      url = {https://doi.org/10.4007/annals.2008.167.245},
      zblnumber = {1144.20001},
      }
  • [Evseev] Go to document A. Evseev, "RoCK blocks, wreath products and KLR algebras," Math. Ann., vol. 369, iss. 3-4, pp. 1383-1433, 2017.
    @ARTICLE{Evseev,
      author = {Evseev, Anton},
      title = {Ro{CK} blocks, wreath products and {KLR} algebras},
      journal = {Math. Ann.},
      fjournal = {Mathematische Annalen},
      volume = {369},
      year = {2017},
      number = {3-4},
      pages = {1383--1433},
      issn = {0025-5831},
      mrclass = {20C08 (20C30)},
      mrnumber = {3713545},
      doi = {10.1007/s00208-016-1493-z},
      url = {https://doi.org/10.1007/s00208-016-1493-z},
      zblnumber = {06798249},
      }
  • [EK] Go to document A. Evseev and A. Kleshchev, "Turner doubles and generalized Schur algebras," Adv. Math., vol. 317, pp. 665-717, 2017.
    @ARTICLE{EK,
      author = {Evseev, Anton and Kleshchev, Alexander},
      title = {Turner doubles and generalized {S}chur algebras},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {317},
      year = {2017},
      pages = {665--717},
      issn = {0001-8708},
      mrclass = {20G43 (16G30 16T10 20C08)},
      mrnumber = {3682681},
      mrreviewer = {Jun Hu},
      doi = {10.1016/j.aim.2017.07.012},
      url = {https://doi.org/10.1016/j.aim.2017.07.012},
      zblnumber = {06759197},
      }
  • [Green] Go to document J. A. Green, Polynomial Representations of ${ GL}_{n}$, augmented ed., Springer, Berlin, 2007, vol. 830.
    @BOOK{Green,
      author = {Green, J. A.},
      title = {Polynomial Representations of {${\rm GL}_{n}$}},
      series = {Lecture Notes in Math.},
      volume = {830},
      edition = {augmented},
      note = {with an appendix on Schensted correspondence and Littelmann paths by K. Erdmann, Green and M. Schocker},
      publisher = {Springer, Berlin},
      year = {2007},
      pages = {x+161},
      isbn = {978-3-540-46944-5; 3-540-46944-3},
      mrclass = {20G05 (05E15)},
      mrnumber = {2349209},
      mrreviewer = {David John Hemmer},
      zblnumber = {1108.20044},
      doi = {10.1007/3-540-46944-3},
      }
  • [Gr] I. Grojnowski, Affine $\mathfrak{sl}_p$ controls the representation theory of the symmetric group and related Hecke algebras, 1999.
    @MISC{Gr,
      author = {Grojnowski, I.},
      title = {Affine $\mathfrak{sl}_p$ controls the representation theory of the symmetric group and related {H}ecke algebras},
      arxiv = {math.RT/9907129},
      year = {1999},
      zblnumber = {},
      }
  • [HK] Go to document R. S. Huerfano and M. Khovanov, "A category for the adjoint representation," J. Algebra, vol. 246, iss. 2, pp. 514-542, 2001.
    @ARTICLE{HK,
      author = {Huerfano, Ruth Stella and Khovanov, Mikhail},
      title = {A category for the adjoint representation},
      journal = {J. Algebra},
      fjournal = {Journal of Algebra},
      volume = {246},
      year = {2001},
      number = {2},
      pages = {514--542},
      issn = {0021-8693},
      mrclass = {17B37 (16G10)},
      mrnumber = {1872113},
      mrreviewer = {Iain G. Gordon},
      doi = {10.1006/jabr.2001.8962},
      url = {https://doi.org/10.1006/jabr.2001.8962},
      zblnumber = {1026.17015},
      }
  • [Hu] Go to document J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Univ. Press, Cambridge, 1990, vol. 29.
    @BOOK{Hu,
      author = {Humphreys, James E.},
      title = {Reflection Groups and {C}oxeter Groups},
      series = {Cambridge Stud. Adv. Math.},
      volume = {29},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {1990},
      pages = {xii+204},
      isbn = {0-521-37510-X},
      mrclass = {20-02 (20F32 20F55 20G15 20H15)},
      mrnumber = {1066460},
      mrreviewer = {Louis Solomon},
      doi = {10.1017/CBO9780511623646},
      url = {https://doi.org/10.1017/CBO9780511623646},
      zblnumber = {0725.20028},
      }
  • [JK] G. James and A. Kerber, The Representation Theory of the Symmetric Group, Addison-Wesley Publishing Co., Reading, Mass., 1981, vol. 16.
    @BOOK{JK,
      author = {James, Gordon and Kerber, Adalbert},
      title = {The Representation Theory of the Symmetric Group},
      series = {Encyclopedia Math. Appl.},
      volume = {16},
      note = {with a foreword by P. M. Cohn, With an introduction by Gilbert de B. Robinson},
      publisher = {Addison-Wesley Publishing Co., Reading, Mass.},
      year = {1981},
      pages = {xxviii+510},
      isbn = {0-201-13515-9},
      mrclass = {20-02 (20C30)},
      mrnumber = {0644144},
      mrreviewer = {A. O. Morris},
      zblnumber = {1159.20012},
      }
  • [Kac] Go to document V. G. Kac, Infinite-Dimensional Lie Algebras, third ed., Cambridge Univ. Press, Cambridge, 1990.
    @BOOK{Kac,
      author = {Kac, Victor G.},
      title = {Infinite-Dimensional {L}ie Algebras},
      edition = {third},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {1990},
      pages = {xxii+400},
      isbn = {0-521-37215-1; 0-521-46693-8},
      mrclass = {17B65 (17B67 17B68 58F07)},
      mrnumber = {1104219},
      doi = {10.1017/CBO9780511626234},
      url = {https://doi.org/10.1017/CBO9780511626234},
      zblnumber = {0716.17022},
      }
  • [KK] Go to document S. Kang and M. Kashiwara, "Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras," Invent. Math., vol. 190, iss. 3, pp. 699-742, 2012.
    @ARTICLE{KK,
      author = {Kang, Seok-Jin and Kashiwara, Masaki},
      title = {Categorification of highest weight modules via {K}hovanov-{L}auda-{R}ouquier algebras},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {190},
      year = {2012},
      number = {3},
      pages = {699--742},
      issn = {0020-9910},
      mrclass = {17B67 (17B37)},
      mrnumber = {2995184},
      mrreviewer = {Volodymyr Mazorchuk},
      doi = {10.1007/s00222-012-0388-1},
      url = {https://doi.org/10.1007/s00222-012-0388-1},
      zblnumber = {1280.17017},
      }
  • [KL1] Go to document M. Khovanov and A. D. Lauda, "A diagrammatic approach to categorification of quantum groups. I," Represent. Theory, vol. 13, pp. 309-347, 2009.
    @ARTICLE{KL1,
      author = {Khovanov, Mikhail and Lauda, Aaron D.},
      title = {A diagrammatic approach to categorification of quantum groups. {I}},
      journal = {Represent. Theory},
      fjournal = {Representation Theory. An Electronic Journal of the Amer. Math. Soc.},
      volume = {13},
      year = {2009},
      pages = {309--347},
      issn = {1088-4165},
      mrclass = {17B37},
      mrnumber = {2525917},
      mrreviewer = {Fan Xu},
      doi = {10.1090/S1088-4165-09-00346-X},
      url = {https://doi.org/10.1090/S1088-4165-09-00346-X},
      zblnumber = {1188.81117},
      }
  • [Kbook] Go to document A. Kleshchev, Linear and Projective Representations of Symmetric Groups, Cambridge Univ. Press, Cambridge, 2005, vol. 163.
    @BOOK{Kbook,
      author = {Kleshchev, Alexander},
      title = {Linear and Projective Representations of Symmetric Groups},
      series = {Cambridge Tracts in Math.},
      volume = {163},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {2005},
      pages = {xiv+277},
      isbn = {0-521-83703-0},
      mrclass = {20C30 (20C08)},
      mrnumber = {2165457},
      mrreviewer = {Christine Bessenrodt},
      doi = {10.1017/CBO9780511542800},
      url = {https://doi.org/10.1017/CBO9780511542800},
      zblnumber = {1080.20011},
      }
  • [Kcusp] Go to document A. Kleshchev, "Cuspidal systems for affine Khovanov-Lauda-Rouquier algebras," Math. Z., vol. 276, iss. 3-4, pp. 691-726, 2014.
    @ARTICLE{Kcusp,
      author = {Kleshchev, Alexander},
      title = {Cuspidal systems for affine {K}hovanov-{L}auda-{R}ouquier algebras},
      journal = {Math. Z.},
      fjournal = {Mathematische Zeitschrift},
      volume = {276},
      year = {2014},
      number = {3-4},
      pages = {691--726},
      issn = {0025-5874},
      mrclass = {20C08 (20C30)},
      mrnumber = {3175157},
      mrreviewer = {Anton Cox},
      doi = {10.1007/s00209-013-1219-9},
      url = {https://doi.org/10.1007/s00209-013-1219-9},
      zblnumber = {1314.20003},
      }
  • [KM] Go to document A. Kleshchev and R. Muth, "Imaginary Schur-Weyl duality," Mem. Amer. Math. Soc., vol. 245, iss. 1157, p. xvii, 2017.
    @ARTICLE{KM,
      author = {Kleshchev, Alexander and Muth, Robert},
      title = {Imaginary {S}chur-{W}eyl duality},
      journal = {Mem. Amer. Math. Soc.},
      fjournal = {Memoirs of the Amer. Math. Soc.},
      volume = {245},
      year = {2017},
      number = {1157},
      pages = {xvii+83},
      issn = {0065-9266},
      isbn = {978-1-4704-2249-3; 978-1-4704-3603-2},
      mrclass = {17B67 (05E10 17B22 20G43)},
      mrnumber = {3589160},
      mrreviewer = {Aleksandr Nikolaevich Sergeev},
      doi = {10.1090/memo/1157},
      url = {https://doi.org/10.1090/memo/1157},
      zblnumber = {1384.20006},
      }
  • [KM1] Go to document A. Kleshchev and R. Muth, "Stratifying KLR algebras of affine ADE types," J. Algebra, vol. 475, pp. 133-170, 2017.
    @ARTICLE{KM1,
      author = {Kleshchev, Alexander and Muth, Robert},
      title = {Stratifying {KLR} algebras of affine {ADE} types},
      journal = {J. Algebra},
      fjournal = {Journal of Algebra},
      volume = {475},
      year = {2017},
      pages = {133--170},
      issn = {0021-8693},
      mrclass = {17B67 (05E10 16G30 17B22 20C30 20G43)},
      mrnumber = {3612467},
      doi = {10.1016/j.jalgebra.2016.07.006},
      url = {https://doi.org/10.1016/j.jalgebra.2016.07.006},
      zblnumber = {06690396},
      }
  • [KM2] Go to document A. Kleshchev and R. Muth, Affine zigzag algebras and imaginary strata for KLR algebras, 2017.
    @MISC{KM2,
      author = {Kleshchev, Alexander and Muth, Robert},
      title = {Affine zigzag algebras and imaginary strata for {KLR} algebras},
      journal = {Trans. Amer. Math. Soc.},
      arxiv = {1511.05905},
      year = {2017},
      zblnumber = {},
      note = {\emph{Trans. Amer. Math. Soc.},
      electronically published on November 30, 2017 (to appear in print)},
      doi = {doi.org/10.1090/tran/7464},
      }
  • [KRhomog] Go to document A. Kleshchev and A. Ram, "Homogeneous representations of Khovanov-Lauda algebras," J. Eur. Math. Soc. (JEMS), vol. 12, iss. 5, pp. 1293-1306, 2010.
    @ARTICLE{KRhomog,
      author = {Kleshchev, Alexander and Ram, Arun},
      title = {Homogeneous representations of {K}hovanov-{L}auda algebras},
      journal = {J. Eur. Math. Soc. (JEMS)},
      fjournal = {Journal of the European Mathematical Society (JEMS)},
      volume = {12},
      year = {2010},
      number = {5},
      pages = {1293--1306},
      issn = {1435-9855},
      mrclass = {20C08 (17B67)},
      mrnumber = {2677617},
      mrreviewer = {Andrew Mathas},
      doi = {10.4171/JEMS/230},
      url = {https://doi.org/10.4171/JEMS/230},
      zblnumber = {1241.20005},
      }
  • [LLT] Go to document A. Lascoux, B. Leclerc, and J. Thibon, "Hecke algebras at roots of unity and crystal bases of quantum affine algebras," Comm. Math. Phys., vol. 181, iss. 1, pp. 205-263, 1996.
    @ARTICLE{LLT,
      author = {Lascoux, Alain and Leclerc, Bernard and Thibon, Jean-Yves},
      title = {Hecke algebras at roots of unity and crystal bases of quantum affine algebras},
      journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      volume = {181},
      year = {1996},
      number = {1},
      pages = {205--263},
      issn = {0010-3616},
      mrclass = {17B37 (20C20)},
      mrnumber = {1410572},
      mrreviewer = {Thomas M. Halverson},
      doi = {10.1007/BF02101678},
      zblnumber = {0874.17009},
      }
  • [LV] Go to document A. D. Lauda and M. Vazirani, "Crystals from categorified quantum groups," Adv. Math., vol. 228, iss. 2, pp. 803-861, 2011.
    @ARTICLE{LV,
      author = {Lauda, Aaron D. and Vazirani, Monica},
      title = {Crystals from categorified quantum groups},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {228},
      year = {2011},
      number = {2},
      pages = {803--861},
      issn = {0001-8708},
      mrclass = {17B37},
      mrnumber = {2822211},
      mrreviewer = {Peter W. Tingley},
      doi = {10.1016/j.aim.2011.06.009},
      url = {https://doi.org/10.1016/j.aim.2011.06.009},
      zblnumber = {1246.17017},
      }
  • [Van] Go to document L. Le Bruyn, M. Van den Bergh, and F. Van Oystaeyen, Graded Orders, Birkhäuser Boston, Inc., Boston, MA, 1988.
    @BOOK{Van,
      author = {Le Bruyn, L. and Van den Bergh, M. and Van Oystaeyen, F.},
      title = {Graded Orders},
      publisher = {Birkhäuser Boston, Inc., Boston, MA},
      year = {1988},
      pages = {vi+208},
      isbn = {0-8176-3360-X},
      mrclass = {16A03 (11R54 12E15 16A18)},
      mrnumber = {1003605},
      mrreviewer = {Jean-Pierre van Deuren},
      doi = {10.1007/978-1-4612-3944-4},
      url = {https://doi.org/10.1007/978-1-4612-3944-4},
      zblnumber = {},
      }
  • [McNAff] Go to document P. J. McNamara, "Representations of Khovanov-Lauda-Rouquier algebras III: symmetric affine type," Math. Z., vol. 287, iss. 1-2, pp. 243-286, 2017.
    @ARTICLE{McNAff,
      author = {McNamara, Peter J.},
      title = {Representations of {K}hovanov-{L}auda-{R}ouquier algebras {III}: symmetric affine type},
      journal = {Math. Z.},
      fjournal = {Mathematische Zeitschrift},
      volume = {287},
      year = {2017},
      number = {1-2},
      pages = {243--286},
      issn = {0025-5874},
      mrclass = {16W50 (16T05)},
      mrnumber = {3694676},
      mrreviewer = {Volodymyr Mazorchuk},
      doi = {10.1007/s00209-016-1825-4},
      url = {https://doi.org/10.1007/s00209-016-1825-4},
      zblnumber = {06796834},
      }
  • [RoTh] R. Rouquier, Represéntations et catégories dérivées, Rapport d’habilitation, Université de Paris VII, 1998.
    @MISC{RoTh,
      author = {Rouquier, R.},
      title = {Represéntations et catégories dérivées, {R}apport d'habilitation, {U}niversité de {P}aris {VII}},
      year = {1998},
      zblnumber = {},
      }
  • [R] R. Rouquier, $2$-Kac-Moody algebras, 2008.
    @MISC{R,
      author = {Rouquier, R.},
      title = {$2$-{K}ac-{M}oody algebras},
      year = {2008},
      arxiv = {0812.5023},
      zblnumber = {},
      }
  • [SVV] Go to document P. Shan, M. Varagnolo, and E. Vasserot, "On the center of quiver Hecke algebras," Duke Math. J., vol. 166, iss. 6, pp. 1005-1101, 2017.
    @ARTICLE{SVV,
      author = {Shan, P. and Varagnolo, M. and Vasserot, E.},
      title = {On the center of quiver {H}ecke algebras},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {166},
      year = {2017},
      number = {6},
      pages = {1005--1101},
      issn = {0012-7094},
      mrclass = {20C08 (14D21 17B67 18E05)},
      mrnumber = {3635899},
      mrreviewer = {Changlong Zhong},
      doi = {10.1215/00127094-3792705},
      url = {https://doi.org/10.1215/00127094-3792705},
      zblnumber = {1380.20005},
      }
  • [SY] Go to document A. Skowroński and K. Yamagata, Frobenius Algebras. I, European Mathematical Society (EMS), Zürich, 2011.
    @BOOK{SY,
      author = {Skowroński, Andrzej and Yamagata, Kunio},
      title = {Frobenius Algebras. {I}},
      series = {EMS Textbk. Math.},
      note = {Basic representation theory},
      publisher = {European Mathematical Society (EMS), Zürich},
      year = {2011},
      pages = {xii+650},
      isbn = {978-3-03719-102-6},
      mrclass = {16-01 (16Dxx 16E30 16Gxx 16K20 16T05)},
      mrnumber = {2894798},
      mrreviewer = {Jörg Feldvoss},
      doi = {10.4171/102},
      url = {https://doi.org/10.4171/102},
      zblnumber = {1260.16001},
      }
  • [Turner] Go to document W. Turner, "Rock blocks," Mem. Amer. Math. Soc., vol. 202, iss. 947, p. viii, 2009.
    @ARTICLE{Turner,
      author = {Turner, W.},
      title = {Rock blocks},
      journal = {Mem. Amer. Math. Soc.},
      fjournal = {Memoirs of the Amer. Math. Soc.},
      volume = {202},
      year = {2009},
      number = {947},
      pages = {viii+102},
      issn = {0065-9266},
      isbn = {978-0-8218-4462-5},
      mrclass = {20C30 (20C08 20G43)},
      mrnumber = {2553536},
      mrreviewer = {Andrew Mathas},
      doi = {10.1090/S0065-9266-09-00562-6},
      url = {https://doi.org/10.1090/S0065-9266-09-00562-6},
      zblnumber = {1269.20010},
      }
  • [TurnerT] Go to document W. Turner, "Tilting equivalences: from hereditary algebras to symmetric groups," J. Algebra, vol. 319, iss. 10, pp. 3975-4007, 2008.
    @ARTICLE{TurnerT,
      author = {Turner, W.},
      title = {Tilting equivalences: from hereditary algebras to symmetric groups},
      journal = {J. Algebra},
      fjournal = {Journal of Algebra},
      volume = {319},
      year = {2008},
      number = {10},
      pages = {3975--4007},
      issn = {0021-8693},
      mrclass = {16G20 (16S37 18E30 20C30)},
      mrnumber = {2407889},
      mrreviewer = {Grzegorz Bobiński},
      doi = {10.1016/j.jalgebra.2008.02.015},
      url = {https://doi.org/10.1016/j.jalgebra.2008.02.015},
      zblnumber = {1148.16007},
      }
  • [TurnerCat] Go to document W. Turner, "Bialgebras and caterpillars," Q. J. Math., vol. 59, iss. 3, pp. 379-388, 2008.
    @ARTICLE{TurnerCat,
      author = {Turner, W.},
      title = {Bialgebras and caterpillars},
      journal = {Q. J. Math.},
      fjournal = {The Quarterly Journal of Mathematics},
      volume = {59},
      year = {2008},
      number = {3},
      pages = {379--388},
      issn = {0033-5606},
      mrclass = {16W30},
      mrnumber = {2444068},
      mrreviewer = {Gastón Andrés Garc\'\i a},
      doi = {10.1093/qmath/ham041},
      url = {https://doi.org/10.1093/qmath/ham041},
      zblnumber = {1215.16025},
      }
  • [Webster] Go to document B. Webster, "Knot invariants and higher representation theory," Mem. Amer. Math. Soc., vol. 250, iss. 1191, p. v, 2017.
    @ARTICLE{Webster,
      author = {Webster, Ben},
      title = {Knot invariants and higher representation theory},
      journal = {Mem. Amer. Math. Soc.},
      fjournal = {Memoirs of the Amer. Math. Soc.},
      volume = {250},
      year = {2017},
      number = {1191},
      pages = {v+141},
      issn = {0065-9266},
      isbn = {978-1-4704-2650-7; 978-1-4704-4206-4},
      mrclass = {57M27 (17B10 18D05 57M25)},
      mrnumber = {3709726},
      doi = {10.1090/memo/1191},
      url = {https://doi.org/10.1090/memo/1191},
      zblnumber = {},
      }

Authors

Anton Evseev

University of Birmingham, Birmingham, UK

Alexander Kleshchev

University of Oregon, Eugene OR