Spectral gaps without the pressure condition

Abstract

For all convex co-compact hyperbolic surfaces, we prove the existence of an essential spectral gap, that is, a strip beyond the unitarity axis in which the Selberg zeta function has only finitely many zeroes. We make no assumption on the dimension $\delta $ of the limit set; in particular, we do not require the pressure condition $\delta \leq {1\over 2}$. This is the first result of this kind for quantum Hamiltonians. \par Our proof follows the strategy developed by Dyatlov and Zahl. The main new ingredient is the fractal uncertainty principle for $\delta $-regular sets with $\delta <1$, which may be of independent interest.

  • [Aleman] Go to document A. Aleman, N. S. Feldman, and W. T. Ross, The Hardy Space of a Slit Domain, Birkhäuser Verlag, Basel, 2009.
    @BOOK{Aleman,
      author = {Aleman, Alexandru and Feldman, Nathan S. and Ross, William T.},
      title = {The {H}ardy Space of a Slit Domain},
      series = {Frontiers in Math.},
      publisher = {Birkhäuser Verlag, Basel},
      year = {2009},
      pages = {xx+124},
      isbn = {978-3-0346-0097-2},
      mrclass = {30H10 (46E15 47B20)},
      mrnumber = {2548414},
      mrreviewer = {Dragan Vukotić},
      doi = {10.1007/978-3-0346-0098-9},
      zblnumber = {1188.30003},
      }
  • [ZworskiPRL] Go to document S. Barkhofen, T. Weich, A. Potzuweit, H. Stöckmann, U. Kuhl, and M. Zworski, "Experimental observation of the spectral gap in microwave $n$-disk systems," Phys. Rev. Lett., vol. 110, iss. 16, p. 164102, 2013.
    @ARTICLE{ZworskiPRL,
      author = {Barkhofen, Sonja and Weich, Tobias and Potzuweit, Alexander and Stöckmann, Hans-Jürgen and Kuhl, Ulrich and Zworski, Maciej},
      title = {Experimental observation of the spectral gap in microwave $n$-disk systems},
      journal = {Phys. Rev. Lett.},
      fjournal = {Physical Review Letters},
      volume = {110},
      number = {16},
      year = {2013},
      pages = {164102},
      numpages = {5},
      zblnumber = {},
      doi = {10.1103/PhysRevLett.110.164102},
      }
  • [Beardon] Go to document A. F. Beardon, "Inequalities for certain Fuchsian groups," Acta Math., vol. 127, pp. 221-258, 1971.
    @ARTICLE{Beardon,
      author = {Beardon, A. F.},
      title = {Inequalities for certain {F}uchsian groups},
      journal = {Acta Math.},
      fjournal = {Acta Mathematica},
      volume = {127},
      year = {1971},
      pages = {221--258},
      issn = {0001-5962},
      mrclass = {30.49 (10.00)},
      mrnumber = {0286996},
      mrreviewer = {B. Maskit},
      doi = {10.1007/BF02392054},
      zblnumber = {0235.30022},
      }
  • [Beurling-Malliavin] Go to document A. Beurling and P. Malliavin, "On Fourier transforms of measures with compact support," Acta Math., vol. 107, pp. 291-309, 1962.
    @ARTICLE{Beurling-Malliavin,
      author = {Beurling, A. and Malliavin, P.},
      title = {On {F}ourier transforms of measures with compact support},
      journal = {Acta Math.},
      fjournal = {Acta Mathematica},
      volume = {107},
      year = {1962},
      pages = {291--309},
      issn = {0001-5962},
      mrclass = {42.25},
      mrnumber = {0147848},
      mrreviewer = {G. Maltese},
      doi = {10.1007/BF02545792},
      zblnumber = {0127.32601},
      }
  • [BorthwickNum] Go to document D. Borthwick, "Distribution of resonances for hyperbolic surfaces," Exp. Math., vol. 23, iss. 1, pp. 25-45, 2014.
    @ARTICLE{BorthwickNum,
      author = {Borthwick, David},
      title = {Distribution of resonances for hyperbolic surfaces},
      journal = {Exp. Math.},
      fjournal = {Experimental Mathematics},
      volume = {23},
      year = {2014},
      number = {1},
      pages = {25--45},
      issn = {1058-6458},
      mrclass = {58J50 (65E05)},
      mrnumber = {3177455},
      mrreviewer = {Emil Saucan},
      doi = {10.1080/10586458.2013.857282},
      zblnumber = {1321.58021},
      }
  • [BorthwickBook] Go to document D. Borthwick, Spectral Theory of Infinite-Area Hyperbolic Surfaces, Second ed., Birkhäuser/Springer, [Cham], 2016, vol. 318.
    @BOOK{BorthwickBook,
      author = {Borthwick, David},
      title = {Spectral Theory of Infinite-Area Hyperbolic Surfaces},
      series = {Progr. Math.},
      volume = {318},
      edition = {Second},
      publisher = {Birkhäuser/Springer, [Cham]},
      year = {2016},
      pages = {xiii+463},
      isbn = {978-3-319-33875-0; 978-3-319-33877-4},
      mrclass = {58J50 (11F72 30F35 35B34 47A40 47F05)},
      mrnumber = {3497464},
      mrreviewer = {Semyon Dyatlov},
      doi = {10.1007/978-3-319-33877-4},
      zblnumber = {1351.58001},
      }
  • [Borthwick-Weich] Go to document D. Borthwick and T. Weich, "Symmetry reduction of holomorphic iterated function schemes and factorization of Selberg zeta functions," J. Spectr. Theory, vol. 6, iss. 2, pp. 267-329, 2016.
    @ARTICLE{Borthwick-Weich,
      author = {Borthwick, David and Weich, Tobias},
      title = {Symmetry reduction of holomorphic iterated function schemes and factorization of {S}elberg zeta functions},
      journal = {J. Spectr. Theory},
      fjournal = {Journal of Spectral Theory},
      volume = {6},
      year = {2016},
      number = {2},
      pages = {267--329},
      issn = {1664-039X},
      mrclass = {58J50 (30F50 37C30 37F20)},
      mrnumber = {3485944},
      mrreviewer = {A. N. Bezen},
      doi = {10.4171/JST/125},
      zblnumber = {1366.37053},
      }
  • [hyperfup] Go to document J. Bourgain and S. Dyatlov, "Fourier dimension and spectral gaps for hyperbolic surfaces," Geom. Funct. Anal., vol. 27, iss. 4, pp. 744-771, 2017.
    @ARTICLE{hyperfup,
      author = {Bourgain, Jean and Dyatlov, Semyon},
      title = {Fourier dimension and spectral gaps for hyperbolic surfaces},
      journal = {Geom. Funct. Anal.},
      fjournal = {Geometric and Functional Analysis},
      volume = {27},
      year = {2017},
      number = {4},
      pages = {744--771},
      issn = {1016-443X},
      mrclass = {37C30 (11B30 37F30)},
      mrnumber = {3678500},
      doi = {10.1007/s00039-017-0412-0},
      zblnumber = {06766918},
      }
  • [BGS] Go to document J. Bourgain, A. Gamburd, and P. Sarnak, "Generalization of Selberg’s $\frac{3}{16}$ theorem and affine sieve," Acta Math., vol. 207, iss. 2, pp. 255-290, 2011.
    @ARTICLE{BGS,
      author = {Bourgain, Jean and Gamburd, Alex and Sarnak, Peter},
      title = {Generalization of {S}elberg's {$\frac{3}{16}$} theorem and affine sieve},
      journal = {Acta Math.},
      fjournal = {Acta Mathematica},
      volume = {207},
      year = {2011},
      number = {2},
      pages = {255--290},
      issn = {0001-5962},
      mrclass = {11F72 (11N36)},
      mrnumber = {2892611},
      mrreviewer = {Ben Joseph Green},
      doi = {10.1007/s11511-012-0070-x},
      zblnumber = {1276.11081},
      }
  • [BGH] Go to document N. Burq, C. Guillarmou, and A. Hassell, "Strichartz estimates without loss on manifolds with hyperbolic trapped geodesics," Geom. Funct. Anal., vol. 20, iss. 3, pp. 627-656, 2010.
    @ARTICLE{BGH,
      author = {Burq, Nicolas and Guillarmou, Colin and Hassell, Andrew},
      title = {Strichartz estimates without loss on manifolds with hyperbolic trapped geodesics},
      journal = {Geom. Funct. Anal.},
      fjournal = {Geometric and Functional Analysis},
      volume = {20},
      year = {2010},
      number = {3},
      pages = {627--656},
      issn = {1016-443X},
      mrclass = {58J50 (35B45 35J10 35R01 47F05)},
      mrnumber = {2720226},
      mrreviewer = {Atanas G. Stefanov},
      doi = {10.1007/s00039-010-0076-5},
      zblnumber = {1206.58009},
      }
  • [Christianson] Go to document H. Christianson, "Applications of cutoff resolvent estimates to the wave equation," Math. Res. Lett., vol. 16, iss. 4, pp. 577-590, 2009.
    @ARTICLE{Christianson,
      author = {Christianson, Hans},
      title = {Applications of cutoff resolvent estimates to the wave equation},
      journal = {Math. Res. Lett.},
      fjournal = {Mathematical Research Letters},
      volume = {16},
      year = {2009},
      number = {4},
      pages = {577--590},
      issn = {1073-2780},
      mrclass = {58J45 (35R01 47F05)},
      mrnumber = {2525026},
      mrreviewer = {Herbert Koch},
      doi = {10.4310/MRL.2009.v16.n4.a3},
      zblnumber = {1189.58012},
      }
  • [CdV1] Go to document Y. Colin de Verdière, "Pseudo-laplaciens. I," Ann. Inst. Fourier (Grenoble), vol. 32, iss. 3, p. xiii, 275-286, 1982.
    @ARTICLE{CdV1,
      author = {Colin de Verdière, Yves},
      title = {Pseudo-laplaciens. {I}},
      journal = {Ann. Inst. Fourier (Grenoble)},
      fjournal = {Université de Grenoble. Annales de l'Institut Fourier},
      volume = {32},
      year = {1982},
      number = {3},
      pages = {xiii, 275--286},
      issn = {0373-0956},
      mrclass = {58G25 (10D12)},
      mrnumber = {0688031},
      mrreviewer = {P. Günther},
      doi = {10.5802/aif.890},
      zblnumber = {0489.58034},
      }
  • [CdV2] Go to document Y. Colin de Verdière, "Pseudo-laplaciens. II," Ann. Inst. Fourier (Grenoble), vol. 33, iss. 2, pp. 87-113, 1983.
    @ARTICLE{CdV2,
      author = {Colin de Verdière, Yves},
      title = {Pseudo-laplaciens. {II}},
      journal = {Ann. Inst. Fourier (Grenoble)},
      fjournal = {Université de Grenoble. Annales de l'Institut Fourier},
      volume = {33},
      year = {1983},
      number = {2},
      pages = {87--113},
      issn = {0373-0956},
      mrclass = {58G25 (10D12)},
      mrnumber = {0699488},
      mrreviewer = {P. Günther},
      doi = {10.5802/aif.917},
      zblnumber = {0496.58016},
      }
  • [Conway] Go to document J. B. Conway, Functions of One Complex Variable. II, Springer-Verlag, New York, 1995, vol. 159.
    @BOOK{Conway,
      author = {Conway, John B.},
      title = {Functions of One Complex Variable. {II}},
      series = {Grad. Texts in Math.},
      volume = {159},
      publisher = {Springer-Verlag, New York},
      year = {1995},
      pages = {xvi+394},
      isbn = {0-387-94460-5},
      mrclass = {30-01},
      mrnumber = {1344449},
      mrreviewer = {P. Lappan},
      doi = {10.1007/978-1-4612-0817-4},
      zblnumber = {0887.30003},
      }
  • [Kiril] Go to document K. Datchev, "Local smoothing for scattering manifolds with hyperbolic trapped sets," Comm. Math. Phys., vol. 286, iss. 3, pp. 837-850, 2009.
    @ARTICLE{Kiril,
      author = {Datchev, Kiril},
      title = {Local smoothing for scattering manifolds with hyperbolic trapped sets},
      journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      volume = {286},
      year = {2009},
      number = {3},
      pages = {837--850},
      issn = {0010-3616},
      mrclass = {58J50 (35P25 47G30 58J40)},
      mrnumber = {2472019},
      mrreviewer = {Tanya J. Christiansen},
      doi = {10.1007/s00220-008-0684-1},
      zblnumber = {1189.58016},
      }
  • [Dolgopyat] Go to document D. Dolgopyat, "On decay of correlations in Anosov flows," Ann. of Math. (2), vol. 147, iss. 2, pp. 357-390, 1998.
    @ARTICLE{Dolgopyat,
      author = {Dolgopyat, Dmitry},
      title = {On decay of correlations in {A}nosov flows},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {147},
      year = {1998},
      number = {2},
      pages = {357--390},
      issn = {0003-486X},
      mrclass = {58F11 (58F15)},
      mrnumber = {1626749},
      mrreviewer = {Luis M. Barreira},
      doi = {10.2307/121012},
      zblnumber = {0911.58029},
      }
  • [ifwl] S. Dyatlov, Improved fractal Weyl bounds for hyperbolic manifolds, 2015.
    @MISC{ifwl,
      author = {Dyatlov, Semyon},
      title = {Improved fractal {W}eyl bounds for hyperbolic manifolds},
      note = {with an appendix with David Borthwick and Tobias Weich, to appear in \emph{J. Eur. Math. Soc.}},
      arxiv = {1512.00836},
      year = {2015},
      zblnumber = {1338.35316},
      }
  • [oqm] Go to document S. Dyatlov and L. Jin, "Resonances for open quantum maps and a fractal uncertainty principle," Comm. Math. Phys., vol. 354, iss. 1, pp. 269-316, 2017.
    @ARTICLE{oqm,
      author = {Dyatlov, Semyon and Jin, Long},
      title = {Resonances for open quantum maps and a fractal uncertainty principle},
      journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      volume = {354},
      year = {2017},
      number = {1},
      pages = {269--316},
      issn = {0010-3616},
      mrclass = {81Q12},
      mrnumber = {3656519},
      doi = {10.1007/s00220-017-2892-z},
      zblnumber = {1372.81101},
      }
  • [regfup] S. Dyatlov and L. Jin, Dolgopyat’s method and the fractal uncertainty principle.
    @MISC{regfup,
      author = {Dyatlov, Semyon and Jin, Long},
      title = {Dolgopyat's method and the fractal uncertainty principle},
      key={DJ18},
      sortyear = {2018},
      note={to appear in \emph{Anal. PDE},
      2018},
      }
  • [hgap] Go to document S. Dyatlov and J. Zahl, "Spectral gaps, additive energy, and a fractal uncertainty principle," Geom. Funct. Anal., vol. 26, iss. 4, pp. 1011-1094, 2016.
    @ARTICLE{hgap,
      author = {Dyatlov, Semyon and Zahl, Joshua},
      title = {Spectral gaps, additive energy, and a fractal uncertainty principle},
      journal = {Geom. Funct. Anal.},
      fjournal = {Geometric and Functional Analysis},
      volume = {26},
      year = {2016},
      number = {4},
      pages = {1011--1094},
      issn = {1016-443X},
      mrclass = {58J50 (28A80)},
      mrnumber = {3558305},
      doi = {10.1007/s00039-016-0378-3},
      zblnumber = {06656978},
      }
  • [tug] S. Dyatlov and M. Zworski, Fractal uncertainty for transfer operators, 2018.
    @MISC{tug,
      author = {Dyatlov, Semyon and Zworski, Maciej},
      title = {Fractal uncertainty for transfer operators},
      arxiv = {1710.05430},
      year = {2018},
      note={to appear in \emph{IMRN},
      2018},
      }
  • [GaspardRice] Go to document P. Gaspard and S. A. Rice, "Scattering from a classically chaotic repellor," J. Chem. Phys., vol. 90, iss. 4, pp. 2225-2241, 1989.
    @ARTICLE{GaspardRice,
      author = {Gaspard, Pierre and Rice, Stuart A.},
      title = {Scattering from a classically chaotic repellor},
      journal = {J. Chem. Phys.},
      fjournal = {The Journal of Chemical Physics},
      volume = {90},
      year = {1989},
      number = {4},
      pages = {2225--2241},
      issn = {0021-9606},
      mrclass = {58F13 (58F15 70K50 81F99)},
      mrnumber = {0980392},
      mrreviewer = {Muthusamy Lakshmanan},
      doi = {10.1063/1.456017},
      zblnumber = {},
      }
  • [GuillarmouAH] Go to document C. Guillarmou, "Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds," Duke Math. J., vol. 129, iss. 1, pp. 1-37, 2005.
    @ARTICLE{GuillarmouAH,
      author = {Guillarmou, Colin},
      title = {Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {129},
      year = {2005},
      number = {1},
      pages = {1--37},
      issn = {0012-7094},
      mrclass = {58J50 (35P25 47F05)},
      mrnumber = {2153454},
      mrreviewer = {David Borthwick},
      doi = {10.1215/S0012-7094-04-12911-2},
      zblnumber = {1099.58011},
      }
  • [GuillarmouNaudDecay] Go to document C. Guillarmou and F. Naud, "Wave decay on convex co-compact hyperbolic manifolds," Comm. Math. Phys., vol. 287, iss. 2, pp. 489-511, 2009.
    @ARTICLE{GuillarmouNaudDecay,
      author = {Guillarmou, Colin and Naud, Frédéric},
      title = {Wave decay on convex co-compact hyperbolic manifolds},
      journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      volume = {287},
      year = {2009},
      number = {2},
      pages = {489--511},
      issn = {0010-3616},
      mrclass = {58J45 (11M36 35L05 35P05 58J50)},
      mrnumber = {2481747},
      mrreviewer = {Tanya J. Christiansen},
      doi = {10.1007/s00220-008-0706-z},
      zblnumber = {1196.58011},
      }
  • [GuillopeZworskiAA] Go to document L. Guillopé and M. Zworski, "Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature near infinity," Asymptotic Anal., vol. 11, iss. 1, pp. 1-22, 1995.
    @ARTICLE{GuillopeZworskiAA,
      author = {Guillopé, Laurent and Zworski, Maciej},
      title = {Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature near infinity},
      journal = {Asymptotic Anal.},
      fjournal = {Asymptotic Analysis},
      volume = {11},
      year = {1995},
      number = {1},
      pages = {1--22},
      issn = {0921-7134},
      mrclass = {58G25},
      mrnumber = {1344252},
      mrreviewer = {Christopher M. Judge},
      zblnumber = {0859.58028},
      doi = {10.3233/ASY-1995-11101},
      }
  • [Havin-Book] Go to document V. Havin and B. Jöricke, The Uncertainty Principle in Harmonic Analysis, Springer-Verlag, Berlin, 1994, vol. 28.
    @BOOK{Havin-Book,
      author = {Havin, Victor and Jöricke, Burglind},
      title = {The Uncertainty Principle in Harmonic Analysis},
      series = {Ergeb. Math. Grenzgeb.},
      volume = {28},
      publisher = {Springer-Verlag, Berlin},
      year = {1994},
      pages = {xii+543},
      isbn = {3-540-56991-X},
      mrclass = {42-02 (31B35 42A16 43A45)},
      mrnumber = {1303780},
      mrreviewer = {Vladimir Logvinenko},
      doi = {10.1007/978-3-642-78377-7},
      zblnumber = {0827.42001},
      }
  • [HintzVasyGreat] P. Hintz and A. Vasy, The global non-linear stability of the Kerr–de Sitter family of black holes, 2018.
    @MISC{HintzVasyGreat,
      author = {Hintz, Peter and Vasy, András},
      title = {The global non-linear stability of the {K}err--de {S}itter family of black holes},
      arxiv = {1606.04014},
      note={to appear in \emph{Acta Math.},
      2018},
      year = {2018},
      }
  • [Ikawa] Go to document M. Ikawa, "Decay of solutions of the wave equation in the exterior of several convex bodies," Ann. Inst. Fourier (Grenoble), vol. 38, iss. 2, pp. 113-146, 1988.
    @ARTICLE{Ikawa,
      author = {Ikawa, Mitsuru},
      title = {Decay of solutions of the wave equation in the exterior of several convex bodies},
      journal = {Ann. Inst. Fourier (Grenoble)},
      fjournal = {Université de Grenoble. Annales de l'Institut Fourier},
      volume = {38},
      year = {1988},
      number = {2},
      pages = {113--146},
      issn = {0373-0956},
      mrclass = {35B40 (35L05 35P25)},
      mrnumber = {0949013},
      mrreviewer = {N. D. Kazarinoff},
      zblnumber = {0636.35045},
      doi = {10.5802/aif.1137},
      }
  • [Ito-McKean] K. Itô and H. P. McKean Jr., Diffusion Processes and their Sample Paths, Springer-Verlag, Berlin-New York, 1974, vol. 125.
    @BOOK{Ito-McKean,
      author = {Itô, Kiyosi and McKean, Jr., Henry P.},
      title = {Diffusion Processes and their Sample Paths},
      note = {second printing, corrected},
      series = {Grundlehren Math. Wiss.},
      volume = {125},
      publisher = {Springer-Verlag, Berlin-New York},
      year = {1974},
      pages = {xv+321},
      mrclass = {60J60 (60G17 60J70)},
      mrnumber = {0345224},
      zblnumber = {0285.60063},
      }
  • [Jakobson-Naud2] Go to document D. Jakobson and F. Naud, "On the critical line of convex co-compact hyperbolic surfaces," Geom. Funct. Anal., vol. 22, iss. 2, pp. 352-368, 2012.
    @ARTICLE{Jakobson-Naud2,
      author = {Jakobson, Dmitry and Naud, Frédéric},
      title = {On the critical line of convex co-compact hyperbolic surfaces},
      journal = {Geom. Funct. Anal.},
      fjournal = {Geometric and Functional Analysis},
      volume = {22},
      year = {2012},
      number = {2},
      pages = {352--368},
      issn = {1016-443X},
      mrclass = {30F35 (11F72 58J50)},
      mrnumber = {2929068},
      mrreviewer = {José Javier Etayo},
      doi = {10.1007/s00039-012-0154-y},
      zblnumber = {1284.30035},
      }
  • [JinZhang] L. Jin and R. Zhang, Fractal uncertainty principle with explicit exponent, 2017.
    @MISC{JinZhang,
      author = {Jin, Long and Zhang, Ruixiang},
      title = {Fractal uncertainty principle with explicit exponent},
      arxiv = {1710.00250v1},
      year = {2017},
      }
  • [Lax-Phillips67] P. D. Lax and R. S. Phillips, Scattering Theory, Academic Press, New York, 1967, vol. 26.
    @BOOK{Lax-Phillips67,
      author = {Lax, Peter D. and Phillips, Ralph S.},
      title = {Scattering Theory},
      series = {Pure Appl. Math.},
      volume = {26},
      publisher = {Academic Press, New York},
      year = {1967},
      pages = {xii+276 pp. (1 plate)},
      mrclass = {35.55},
      mrnumber = {0217440},
      mrreviewer = {Teruo Ikebe},
      zblnumber = {0186.16301},
      }
  • [Lax-Phillips89] P. D. Lax and R. S. Phillips, Scattering Theory, , 1989, vol. 26.
    @BOOK{Lax-Phillips89,
      author = {Lax, Peter D. and Phillips, Ralph S.},
      title = {Scattering Theory},
      series = {Pure Appl. Math.},
      note = {second edition, Academic Press, New York},
      year = {1989},
      zblnumber = {0697.35004},
      mrnumber = {1037774},
      volume = {26},
      }
  • [MOW] Go to document M. Magee, H. Oh, and D. Winter, "Uniform congruence counting for Schottky semigroups in $\SL_2(\mathbb Z)$," J. Reine Angew. Math..
    @ARTICLE{MOW,
      author = {Magee, Michael and Oh, Hee and Winter, Dale},
      title = {Uniform congruence counting for {S}chottky semigroups in {$\SL_2(\mathbb Z)$}},
      note = {with an appendix by Jean Bourgain, Alex Kontorovich, and Michael Magee, published online 2017-01-12},
      journal = {J. Reine Angew. Math.},
      volume = {},
      sortyear = {2017},
      pages = {},
      zblnumber = {},
      doi = {10.1515/crelle-2016-0072},
      }
  • [Havin] Go to document D. Mashregi, F. L. Nazarov, and V. P. Khavin, "The Beurling-Malliavin multiplier theorem: The seventh proof," Algebra i Analiz, vol. 17, iss. 5, pp. 3-68, 2005.
    @ARTICLE{Havin,
      author = {Mashregi, Dzh. and Nazarov, F. L. and Khavin, V. P.},
      title = {The {B}eurling-{M}alliavin multiplier theorem: {T}he seventh proof},
      journal = {Algebra i Analiz},
      fjournal = {Rossiĭskaya Akademiya Nauk. Algebra i Analiz},
      volume = {17},
      year = {2005},
      number = {5},
      pages = {3--68},
      issn = {0234-0852},
      mrclass = {42B20 (44A15 46E22 47A15)},
      mrnumber = {2241422},
      mrreviewer = {Hans-Jürgen Schmeisser},
      doi = {10.1090/S1061-0022-06-00926-5},
      zblnumber = {},
      }
  • [MazzeoMelrose] Go to document R. R. Mazzeo and R. B. Melrose, "Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature," J. Funct. Anal., vol. 75, iss. 2, pp. 260-310, 1987.
    @ARTICLE{MazzeoMelrose,
      author = {Mazzeo, Rafe R. and Melrose, Richard B.},
      title = {Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature},
      journal = {J. Funct. Anal.},
      fjournal = {Journal of Functional Analysis},
      volume = {75},
      year = {1987},
      number = {2},
      pages = {260--310},
      issn = {0022-1236},
      mrclass = {58G25 (11F72 35P05)},
      mrnumber = {0916753},
      mrreviewer = {Stephan Rempel},
      doi = {10.1016/0022-1236(87)90097-8},
      zblnumber = {0636.58034},
      }
  • [NaudGap] Go to document F. Naud, "Expanding maps on Cantor sets and analytic continuation of zeta functions," Ann. Sci. École Norm. Sup. (4), vol. 38, iss. 1, pp. 116-153, 2005.
    @ARTICLE{NaudGap,
      author = {Naud, Frédéric},
      title = {Expanding maps on {C}antor sets and analytic continuation of zeta functions},
      journal = {Ann. Sci. École Norm. Sup. (4)},
      fjournal = {Annales Scientifiques de l'École Normale Supérieure. Quatrième Série},
      volume = {38},
      year = {2005},
      number = {1},
      pages = {116--153},
      issn = {0012-9593},
      mrclass = {37C30 (37A45 37B10 37C35 37D35 37D40 37F50)},
      mrnumber = {2136484},
      mrreviewer = {Dieter H. Mayer},
      doi = {10.1016/j.ansens.2004.11.002},
      zblnumber = {1110.37021},
      }
  • [Nonnenmacher] Go to document S. Nonnenmacher, "Spectral problems in open quantum chaos," Nonlinearity, vol. 24, iss. 12, p. r123-r167, 2011.
    @ARTICLE{Nonnenmacher,
      author = {Nonnenmacher, Stéphane},
      title = {Spectral problems in open quantum chaos},
      journal = {Nonlinearity},
      volume = {24},
      number = {12},
      year = {2011},
      pages = {R123--R167},
      zblnumber = {1229.35223},
      doi = {10.1088/0951-7715/24/12/R02},
      }
  • [NonnenmacherZworskiActa] Go to document S. Nonnenmacher and M. Zworski, "Quantum decay rates in chaotic scattering," Acta Math., vol. 203, iss. 2, pp. 149-233, 2009.
    @ARTICLE{NonnenmacherZworskiActa,
      author = {Nonnenmacher, Stéphane and Zworski, Maciej},
      title = {Quantum decay rates in chaotic scattering},
      journal = {Acta Math.},
      fjournal = {Acta Mathematica},
      volume = {203},
      year = {2009},
      number = {2},
      pages = {149--233},
      issn = {0001-5962},
      mrclass = {58J51 (35P25 35S05 37D20 81Q20 81Q50)},
      mrnumber = {2570070},
      mrreviewer = {Dieter H. Mayer},
      doi = {10.1007/s11511-009-0041-z},
      zblnumber = {1226.35061},
      }
  • [NonnenmacherZworskiAMRX] Go to document S. Nonnenmacher and M. Zworski, "Semiclassical resolvent estimates in chaotic scattering," Appl. Math. Res. Express. AMRX, vol. 2009, iss. 1, pp. 74-86, 2009.
    @ARTICLE{NonnenmacherZworskiAMRX,
      author = {Nonnenmacher, Stéphane and Zworski, Maciej},
      title = {Semiclassical resolvent estimates in chaotic scattering},
      journal = {Appl. Math. Res. Express. AMRX},
      fjournal = {Applied Mathematics Research Express. AMRX},
      year = {2009},
      volume={2009},
      number = {1},
      pages = {74--86},
      issn = {1687-1200},
      mrclass = {58J51 (35P05 47A40 47F05 81Q20 81Q50 81U10)},
      mrnumber = {2581379},
      mrreviewer = {Dieter H. Mayer},
      zblnumber = {1181.81055},
      doi = {10.1093/amrx/abp003},
     }
  • [OhWinter] Go to document H. Oh and D. Winter, "Uniform exponential mixing and resonance free regions for convex cocompact congruence subgroups of ${ SL}_2(\Bbb{Z})$," J. Amer. Math. Soc., vol. 29, iss. 4, pp. 1069-1115, 2016.
    @ARTICLE{OhWinter,
      author = {Oh, Hee and Winter, Dale},
      title = {Uniform exponential mixing and resonance free regions for convex cocompact congruence subgroups of {${\rm SL}_2(\Bbb{Z})$}},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {29},
      year = {2016},
      number = {4},
      pages = {1069--1115},
      issn = {0894-0347},
      mrclass = {37D35 (11F72 11N45 22E40 37A25 37D40 37F30)},
      mrnumber = {3522610},
      mrreviewer = {Dominik Kwietniak},
      doi = {10.1090/jams/849},
      zblnumber = {1360.37083},
      }
  • [Patterson3] Go to document S. J. Patterson, "The limit set of a Fuchsian group," Acta Math., vol. 136, iss. 3-4, pp. 241-273, 1976.
    @ARTICLE{Patterson3,
      author = {Patterson, S. J.},
      title = {The limit set of a {F}uchsian group},
      journal = {Acta Math.},
      fjournal = {Acta Mathematica},
      volume = {136},
      year = {1976},
      number = {3-4},
      pages = {241--273},
      issn = {0001-5962},
      mrclass = {30A58 (10D10 20H10)},
      mrnumber = {0450547},
      mrreviewer = {B. Maskit},
      doi = {10.1007/BF02392046},
      zblnumber = {0336.30005},
      }
  • [Phillips-Sarnak] Go to document R. S. Phillips and P. Sarnak, "On cusp forms for co-finite subgroups of $PSL(2,\mathbb{R})$," Invent. Math., vol. 80, iss. 2, pp. 339-364, 1985.
    @ARTICLE{Phillips-Sarnak,
      author = {Phillips, R. S. and Sarnak, P.},
      title = {On cusp forms for co-finite subgroups of $PSL(2,\mathbb{R})$},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {80},
      year = {1985},
      number = {2},
      pages = {339--364},
      issn = {0020-9910},
      mrclass = {11F72 (58G25)},
      mrnumber = {0788414},
      mrreviewer = {A. B. Venkov},
      doi = {10.1007/BF01388610},
      zblnumber = {0558.10017},
      }
  • [PetkovStoyanov] Go to document V. Petkov and L. Stoyanov, "Analytic continuation of the resolvent of the Laplacian and the dynamical zeta function," Anal. PDE, vol. 3, iss. 4, pp. 427-489, 2010.
    @ARTICLE{PetkovStoyanov,
      author = {Petkov, Vesselin and Stoyanov, Luchezar},
      title = {Analytic continuation of the resolvent of the {L}aplacian and the dynamical zeta function},
      journal = {Anal. PDE},
      fjournal = {Analysis \& PDE},
      volume = {3},
      year = {2010},
      number = {4},
      pages = {427--489},
      issn = {2157-5045},
      mrclass = {35P25 (37C30 37D50)},
      mrnumber = {2718260},
      mrreviewer = {Leonardo Marazzi},
      doi = {10.2140/apde.2010.3.427},
      zblnumber = {1251.37031},
      }
  • [SarnakThin] P. Sarnak, "Notes on thin matrix groups," in Thin Groups and Superstrong Approximation, Cambridge Univ. Press, Cambridge, 2014, vol. 61, pp. 343-362.
    @INCOLLECTION{SarnakThin,
      author = {Sarnak, Peter},
      title = {Notes on thin matrix groups},
      booktitle = {Thin Groups and Superstrong Approximation},
      series = {Math. Sci. Res. Inst. Publ.},
      volume = {61},
      pages = {343--362},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {2014},
      mrclass = {11F06 (20H25 22E40)},
      mrnumber = {3220897},
      mrreviewer = {B. Sury},
      zblnumber = {1365.11039},
      }
  • [Selberg] A. Selberg, "Remarks on the distribution of poles of Eisenstein series," in Festschrift in Honor of I. I. Piatetski-Shapiro on the Occasion of his Sixtieth Birthday, Part II, Weizmann, Jerusalem, 1990, vol. 3, pp. 251-278.
    @INCOLLECTION{Selberg,
      author = {Selberg, Atle},
      title = {Remarks on the distribution of poles of {E}isenstein series},
      booktitle = {Festschrift in Honor of {I}. {I}. {P}iatetski-{S}hapiro on the Occasion of his Sixtieth Birthday, {P}art {II}},
      venue = {{R}amat {A}viv, 1989},
      series = {Israel Math. Conf. Proc.},
      volume = {3},
      pages = {251--278},
      publisher = {Weizmann, Jerusalem},
      year = {1990},
      mrclass = {11F72 (11M26 11M41)},
      mrnumber = {1159119},
      mrreviewer = {Antonia Wilson Bluher},
      zblnumber = {0712.11034},
      }
  • [Stoyanov1] Go to document L. Stoyanov, "Spectra of Ruelle transfer operators for Axiom A flows," Nonlinearity, vol. 24, iss. 4, pp. 1089-1120, 2011.
    @ARTICLE{Stoyanov1,
      author = {Stoyanov, Luchezar},
      title = {Spectra of {R}uelle transfer operators for {A}xiom {A} flows},
      journal = {Nonlinearity},
      fjournal = {Nonlinearity},
      volume = {24},
      year = {2011},
      number = {4},
      pages = {1089--1120},
      issn = {0951-7715},
      mrclass = {37D20 (37C30 37D40)},
      mrnumber = {2776112},
      mrreviewer = {Boris Hasselblatt},
      doi = {10.1088/0951-7715/24/4/005},
      zblnumber = {1230.37040},
      }
  • [Sullivan] Go to document D. Sullivan, "The density at infinity of a discrete group of hyperbolic motions," Inst. Hautes Études Sci. Publ. Math., vol. 50, iss. 1, pp. 171-202, 1979.
    @ARTICLE{Sullivan,
      author = {Sullivan, Dennis},
      title = {The density at infinity of a discrete group of hyperbolic motions},
      journal = {Inst. Hautes Études Sci. Publ. Math.},
      fjournal = {Institut des Hautes Études Scientifiques. Publications Mathématiques},
      volume = {50},
      number = {1},
      year = {1979},
      pages = {171--202},
      issn = {0073-8301},
      mrclass = {58F17 (22E40 28C10 30C85)},
      mrnumber = {0556586},
      mrreviewer = {Troels J\o rgensen},
      doi = {10.1007/BF02684773},
      zblnumber = {0439.30034},
      }
  • [WangJian] J. Wang, Strichartz estimates for convex co-compact hyperbolic surfaces, 2017.
    @MISC{WangJian,
      author = {Wang, Jian},
      title = {Strichartz estimates for convex co-compact hyperbolic surfaces},
      arxiv = {1707.06310},
      year = {2017},
      zblnumber = {},
      }
  • [e-z] Go to document M. Zworski, Semiclassical Analysis, Amer. Math. Soc., Providence, RI, 2012, vol. 138.
    @BOOK{e-z,
      author = {Zworski, Maciej},
      title = {Semiclassical Analysis},
      series = {Grad. Stud. Math.},
      volume = {138},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {2012},
      pages = {xii+431},
      isbn = {978-0-8218-8320-4},
      mrclass = {58J40 (35P05 35S05 81Q20)},
      mrnumber = {2952218},
      mrreviewer = {David Borthwick},
      doi = {10.1090/gsm/138},
      zblnumber = {1252.58001},
      }
  • [ZworskiReview] Go to document M. Zworski, "Mathematical study of scattering resonances," Bull. Math. Sci., vol. 7, iss. 1, pp. 1-85, 2017.
    @ARTICLE{ZworskiReview,
      author = {Zworski, Maciej},
      title = {Mathematical study of scattering resonances},
      journal = {Bull. Math. Sci.},
      fjournal = {Bulletin of Mathematical Sciences},
      volume = {7},
      year = {2017},
      number = {1},
      pages = {1--85},
      issn = {1664-3607},
      mrclass = {81U10 (35P25 47A40 58J50 74J20 78A45)},
      mrnumber = {3625851},
      mrreviewer = {Jens Wirth},
      doi = {10.1007/s13373-017-0099-4},
      zblnumber = {1368.35230},
      }

Authors

Jean Bourgain

Institute for Advanced Study, Princeton, NJ

Semyon Dyatlov

Massachusetts Institute of Technology, Cambridge, MA

Current address:

University of California, Berkeley, Berkeley, CA