Universal hierarchical structure of quasiperiodic eigenfunctions

Abstract

We determine exact exponential asymptotics of eigenfunctions and of corresponding transfer matrices of the almost Mathieu operators for all frequencies in the localization regime. This uncovers a universal structure in their behavior, governed by the continued fraction expansion of the frequency, explaining some predictions in physics literature. In addition it proves the arithmetic version of the frequency transition conjecture. Finally, it leads to an explicit description of several non-regularity phenomena in the corresponding non-uniformly hyperbolic cocycles, which is also of interest as both the first natural example of some of those phenomena and, more generally, the first non-artificial model where non-regularity can be explicitly studied.

  • [AFK] Go to document A. Avila, B. Fayad, and R. Krikorian, "A KAM scheme for ${ SL}(2,\Bbb R)$ cocycles with Liouvillean frequencies," Geom. Funct. Anal., vol. 21, iss. 5, pp. 1001-1019, 2011.
    @article {AFK,
      author = {Avila, Artur and Fayad, Bassam and Krikorian, Rapha\Óel},
      TITLE = {A {KAM} scheme for {${\rm SL}(2,\Bbb R)$} cocycles with {L}iouvillean frequencies},
      JOURNAL = {Geom. Funct. Anal.},
      FJOURNAL = {Geometric and Functional Analysis},
      VOLUME = {21},
      YEAR = {2011},
      NUMBER = {5},
      PAGES = {1001--1019},
      ISSN = {1016-443X},
      MRCLASS = {37J40 (37E20)},
      MRNUMBER = {2846380},
      MRREVIEWER = {Helge Krüger},
      DOI = {10.1007/s00039-011-0135-6},
      ZBLNUMBER = {1277.37089},
      }
  • [HY] Go to document X. Hou and J. You, "Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems," Invent. Math., vol. 190, iss. 1, pp. 209-260, 2012.
    @article {HY,
      author = {Hou, Xuanji and You, Jiangong},
      TITLE = {Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems},
      JOURNAL = {Invent. Math.},
      FJOURNAL = {Inventiones Mathematicae},
      VOLUME = {190},
      YEAR = {2012},
      NUMBER = {1},
      PAGES = {209--260},
      ISSN = {0020-9910},
      MRCLASS = {37J40 (34C20 35Q41 37C55)},
      MRNUMBER = {2969277},
      MRREVIEWER = {Mikhail B. Sevryuk},
      DOI = {10.1007/s00222-012-0379-2},
      ZBLNUMBER = {1294.37027},
      }
  • [aw] Go to document A. G. Abanov, J. C. Talstra, and P. B. Wiegmann, "Hierarchical structure of Azbel-Hofstadter problem: strings and loose ends of Bethe ansatz," Nuclear Phys. B, vol. 525, iss. 3, pp. 571-596, 1998.
    @ARTICLE{aw,
      author = {Abanov, A. G. and Talstra, J. C. and Wiegmann, P. B.},
      title = {Hierarchical structure of {A}zbel-{H}ofstadter problem: strings and loose ends of {B}ethe ansatz},
      journal = {Nuclear Phys. B},
      fjournal = {Nuclear Physics. B. Theoretical, Phenomenological, and Experimental High Energy Physics. Quantum Field Theory and Statistical Systems},
      volume = {525},
      year = {1998},
      number = {3},
      pages = {571--596},
      issn = {0550-3213},
      mrclass = {82B23 (81R50)},
      mrnumber = {1639312},
      mrreviewer = {Rinat M. Kashaev},
      doi = {10.1016/S0550-3213(98)00346-0},
      zblnumber = {1047.82511},
      }
  • [aa] S. Aubry and G. André, "Analyticity breaking and Anderson localization in incommensurate lattices," in Group Theoretical Methods in Physics, Hilger, Bristol, 1980, vol. 3, pp. 133-164.
    @INCOLLECTION{aa,
      author = {Aubry, Serge and André, Gilles},
      title = {Analyticity breaking and {A}nderson localization in incommensurate lattices},
      booktitle = {Group Theoretical Methods in Physics},
      venue = {{P}roc. {E}ighth {I}nternat. {C}olloq., {K}iryat {A}navim, 1979},
      series = {Ann. Israel Phys. Soc.},
      volume = {3},
      pages = {133--164},
      publisher = {Hilger, Bristol},
      year = {1980},
      mrclass = {82A55},
      mrnumber = {0626837},
      zblnumber = {0943.82510},
      }
  • [AYZ2] A. Avila, J. You, and Q. Zhou, Dry Ten Martini Problem in the non-critical case.
    @MISC{AYZ2,
      author = {Avila, Artur and You, J. and Zhou, Q.},
      title = {Dry {T}en {M}artini {P}roblem in the non-critical case},
      note = {preprint},
      zblnumber = {},
      }
  • [art1] A. Avila, Almost reducibility and absolute continuity I, 2010.
    @MISC{art1,
      author = {Avila, Artur},
      title = {Almost reducibility and absolute continuity {I}},
      arxiv = {1006.0704},
      year = {2010},
      }
  • [avila2008absolutely] A. Avila, The absolutely continuous spectrum of the almost Mathieu operator, 2008.
    @MISC{avila2008absolutely,
      author = {Avila, Artur},
      title = {The absolutely continuous spectrum of the almost {M}athieu operator},
      arxiv = {0810.2965},
      year = {2008},
      }
  • [AJalmost] Go to document A. Avila and S. Jitomirskaya, "Almost localization and almost reducibility," J. Eur. Math. Soc. (JEMS), vol. 12, iss. 1, pp. 93-131, 2010.
    @ARTICLE{AJalmost,
      author = {Avila, Artur and Jitomirskaya, Svetlana},
      title = {Almost localization and almost reducibility},
      journal = {J. Eur. Math. Soc. (JEMS)},
      fjournal = {Journal of the European Mathematical Society (JEMS)},
      volume = {12},
      year = {2010},
      number = {1},
      pages = {93--131},
      issn = {1435-9855},
      mrclass = {47B36 (39A70 47A10 47B39 47B80 81Q10)},
      mrnumber = {2578605},
      mrreviewer = {Helge Krüger},
      doi = {10.4171/JEMS/191},
      zblnumber = {1185.47028},
      }
  • [ajz] Go to document A. Avila, S. Jitomirskaya, and Q. Zhou, "Second phase transition line," Math. Ann., vol. 370, iss. 1–2, pp. 271-285, 2018.
    @ARTICLE{ajz,
      author = {Avila, Artur and Jitomirskaya, Svetlana and Zhou, Q.},
      title = {Second phase transition line},
      journal = {Math. Ann.},
      volume = {370},
      number = {1--2},
      pages = {271--285},
      year = {2018},
      zblnumber = {},
      doi = {10.1007/s00208-017-1543-1},
      mrnumber = {3747487},
     }
  • [avila2009ten] Go to document A. Avila and S. Jitomirskaya, "The Ten Martini Problem," Ann. of Math. (2), vol. 170, iss. 1, pp. 303-342, 2009.
    @ARTICLE{avila2009ten,
      author = {Avila, Artur and Jitomirskaya, Svetlana},
      title = {The {T}en {M}artini {P}roblem},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {170},
      year = {2009},
      number = {1},
      pages = {303--342},
      issn = {0003-486X},
      mrclass = {47B80 (37A99 39A70 47A10 47B36 81Q10)},
      mrnumber = {2521117},
      mrreviewer = {David Damanik},
      doi = {10.4007/annals.2009.170.303},
      zblnumber = {1166.47031},
      }
  • [AYZ] Go to document A. Avila, J. You, and Q. Zhou, "Sharp phase transitions for the almost Mathieu operator," Duke Math. J., vol. 166, iss. 14, pp. 2697-2718, 2017.
    @ARTICLE{AYZ,
      author = {Avila, Artur and You, Jiangong and Zhou, Qi},
      title = {Sharp phase transitions for the almost {M}athieu operator},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {166},
      year = {2017},
      number = {14},
      pages = {2697--2718},
      issn = {0012-7094},
      mrclass = {47B36 (37C55 39A70 47B39 81Q10 82B26)},
      mrnumber = {3707287},
      doi = {10.1215/00127094-2017-0013},
      zblnumber = {06803180},
      }
  • [as] Go to document J. Avron and B. Simon, "Singular continuous spectrum for a class of almost periodic Jacobi matrices," Bull. Amer. Math. Soc. (N.S.), vol. 6, iss. 1, pp. 81-85, 1982.
    @ARTICLE{as,
      author = {Avron, Joseph and Simon, Barry},
      title = {Singular continuous spectrum for a class of almost periodic {J}acobi matrices},
      journal = {Bull. Amer. Math. Soc. (N.S.)},
      fjournal = {American Mathematical Society. Bulletin. New Series},
      volume = {6},
      year = {1982},
      number = {1},
      pages = {81--85},
      issn = {0273-0979},
      mrclass = {47B37 (81Cxx)},
      mrnumber = {0634437},
      doi = {10.1090/S0273-0979-1982-14971-0},
      zblnumber = {0491.47014},
      }
  • [azbel] Go to document M. ~Y. Azbel, "Energy spectrum of a conduction electron in a magnetic field," Sov. Phys. JETP, vol. 19, iss. 3, pp. 634-645, 1964.
    @ARTICLE{azbel,
      author = {Azbel, M.~Y.},
      title = {Energy spectrum of a conduction electron in a magnetic field},
      journal = {Sov. Phys. JETP},
      volume = {19},
      number = {3},
      year = {1964},
      pages = {634--645},
      zblnumber = {},
      url = {http://www.jetp.ac.ru/cgi-bin/dn/e_019_03_0634.pdf},
      }
  • [pesinbook] Go to document L. Barreira and Y. Pesin, Nonuniform Hyperbolicity, Cambridge Univ. Press, Cambridge, 2007, vol. 115.
    @BOOK{pesinbook,
      author = {Barreira, Luis and Pesin, Yakov},
      title = {Nonuniform Hyperbolicity},
      series = {Encyclopedia Math. Appl.},
      volume = {115},
      note = {Dynamics of systems with nonzero {L}yapunov exponents},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {2007},
      pages = {xiv+513},
      isbn = {978-0-521-83258-8; 0-521-83258-6},
      mrclass = {37D25 (34D08 37A25 37C40 37D10)},
      mrnumber = {2348606},
      mrreviewer = {Ian Melbourne},
      doi = {10.1017/CBO9781107326026},
      zblnumber = {1144.37002},
      }
  • [bars] Go to document L. Barreira and J. Schmeling, "Sets of “non-typical” points have full topological entropy and full Hausdorff dimension," Israel J. Math., vol. 116, pp. 29-70, 2000.
    @ARTICLE{bars,
      author = {Barreira, Luis and Schmeling, Jörg},
      title = {Sets of ``non-typical'' points have full topological entropy and full {H}ausdorff dimension},
      journal = {Israel J. Math.},
      fjournal = {Israel Journal of Mathematics},
      volume = {116},
      year = {2000},
      pages = {29--70},
      issn = {0021-2172},
      mrclass = {37C45 (37A25 37D35 37F99)},
      mrnumber = {1759398},
      mrreviewer = {Benoit Saussol},
      doi = {10.1007/BF02773211},
      zblnumber = {0988.37029},
      }
  • [bel] Go to document J. Bellissard, R. Lima, and D. Testard, "A metal-insulator transition for the almost Mathieu model," Comm. Math. Phys., vol. 88, iss. 2, pp. 207-234, 1983.
    @ARTICLE{bel,
      author = {Bellissard, J. and Lima, R. and Testard, D.},
      title = {A metal-insulator transition for the almost {M}athieu model},
      journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      volume = {88},
      year = {1983},
      number = {2},
      pages = {207--234},
      issn = {0010-3616},
      mrclass = {82A57 (39B10 47B39 81C10 82A65)},
      mrnumber = {0696805},
      mrreviewer = {W. Kirsch},
      doi = {10.1007/BF01209477},
      zblnumber = {0542.35059},
      }
  • [bc] Go to document M. Benedicks and L. Carleson, "The dynamics of the Hénon map," Ann. of Math. (2), vol. 133, iss. 1, pp. 73-169, 1991.
    @ARTICLE{bc,
      author = {Benedicks, Michael and Carleson, Lennart},
      title = {The dynamics of the {H}énon map},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {133},
      year = {1991},
      number = {1},
      pages = {73--169},
      issn = {0003-486X},
      mrclass = {58F12 (58F13)},
      mrnumber = {1087346},
      mrreviewer = {Feliks Przytycki},
      doi = {10.2307/2944326},
      zblnumber = {0724.58042},
      }
  • [berezanskii1968expansions] J. M. Berezanscprimekiui, Expansions in Eigenfunctions of Selfadjoint Operators, American Mathematical Society, Providence, R.I., 1968, vol. 17.
    @BOOK{berezanskii1968expansions,
      author = {Berezans{\cprime}ki\u\i, Ju. M.},
      title = {Expansions in Eigenfunctions of Selfadjoint Operators},
      note = {translated from the Russian by R. Bolstein, J. M. Danskin, J. Rovnyak and L. Shulman},
      series = {Transl. Math. Monogr.},
      volume = {17},
      publisher = {American Mathematical Society, Providence, R.I.},
      year = {1968},
      pages = {ix+809},
      mrclass = {47.65 (34.00)},
      mrnumber = {0222718},
      zblnumber = {},
      }
  • [bj] Go to document K. Bjerklöv, "The dynamics of a class of quasi-periodic Schrödinger cocycles," Ann. Henri Poincaré, vol. 16, iss. 4, pp. 961-1031, 2015.
    @ARTICLE{bj,
      author = {Bjerklöv, Kristian},
      title = {The dynamics of a class of quasi-periodic {S}chrödinger cocycles},
      journal = {Ann. Henri Poincaré},
      fjournal = {Annales Henri Poincaré. A Journal of Theoretical and Mathematical Physics},
      volume = {16},
      year = {2015},
      number = {4},
      pages = {961--1031},
      issn = {1424-0637},
      mrclass = {37D25 (37E10)},
      mrnumber = {3317790},
      mrreviewer = {Jairo Bochi},
      doi = {10.1007/s00023-014-0330-8},
      zblnumber = {1312.81061},
      }
  • [bg] Go to document J. Bourgain and M. Goldstein, "On nonperturbative localization with quasi-periodic potential," Ann. of Math. (2), vol. 152, iss. 3, pp. 835-879, 2000.
    @ARTICLE{bg,
      author = {Bourgain, J. and Goldstein, M.},
      title = {On nonperturbative localization with quasi-periodic potential},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {152},
      year = {2000},
      number = {3},
      pages = {835--879},
      issn = {0003-486X},
      mrclass = {39A70 (35J10 47N20 60F10 60H25 82B05)},
      mrnumber = {1815703},
      mrreviewer = {Kalyan B. Sinha},
      doi = {10.2307/2661356},
      zblnumber = {1053.39035},
      }
  • [bourgain2002continuity] Go to document J. Bourgain and S. Jitomirskaya, "Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential," J. Statist. Phys., vol. 108, iss. 5-6, pp. 1203-1218, 2002.
    @ARTICLE{bourgain2002continuity,
      author = {Bourgain, J. and Jitomirskaya, S.},
      title = {Continuity of the {L}yapunov exponent for quasiperiodic operators with analytic potential},
      note = {Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays},
      journal = {J. Statist. Phys.},
      fjournal = {Journal of Statistical Physics},
      volume = {108},
      year = {2002},
      number = {5-6},
      pages = {1203--1218},
      issn = {0022-4715},
      mrclass = {47B39 (47B36 47N50 81Q10 82B44)},
      mrnumber = {1933451},
      doi = {10.1023/A:1019751801035},
      zblnumber = {1039.81019},
      }
  • [dam] Go to document D. Damanik, "Schrödinger operators with dynamically defined potentials," Ergodic Theory Dynam. Systems, vol. 37, iss. 6, pp. 1681-1764, 2017.
    @ARTICLE{dam,
      author = {Damanik, David},
      title = {Schrödinger operators with dynamically defined potentials},
      journal = {Ergodic Theory Dynam. Systems},
      fjournal = {Ergodic Theory and Dynamical Systems},
      volume = {37},
      year = {2017},
      number = {6},
      pages = {1681--1764},
      issn = {0143-3857},
      mrclass = {81Q12 (35Q41 37D99 37H15)},
      mrnumber = {3681983},
      doi = {10.1017/etds.2015.120},
      zblnumber = {06823048},
      }
  • [eli] Go to document L. H. Eliasson, "Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum," Acta Math., vol. 179, iss. 2, pp. 153-196, 1997.
    @ARTICLE{eli,
      author = {Eliasson, L. H.},
      title = {Discrete one-dimensional quasi-periodic {S}chrödinger operators with pure point spectrum},
      journal = {Acta Math.},
      fjournal = {Acta Mathematica},
      volume = {179},
      year = {1997},
      number = {2},
      pages = {153--196},
      issn = {0001-5962},
      mrclass = {47B39 (34L40 47N50 81Q10 82B44)},
      mrnumber = {1607554},
      mrreviewer = {Michael P. Lamoureux},
      doi = {10.1007/BF02392742},
      zblnumber = {0908.34072},
      }
  • [busl] Go to document A. A. Fedotov, "The monodromization method in the theory of almost periodic equations," Algebra i Analiz, vol. 25, iss. 2, pp. 203-233, 2013.
    @ARTICLE{busl,
      author = {Fedotov, A. A.},
      title = {The monodromization method in the theory of almost periodic equations},
      journal = {Algebra i Analiz},
      fjournal = {Rossi{\u\i}skaya Akademiya Nauk. Algebra i Analiz},
      volume = {25},
      year = {2013},
      number = {2},
      pages = {203--233},
      issn = {0234-0852},
      mrclass = {39A24},
      mrnumber = {3114856},
      doi = {10.1090/S1061-0022-2014-01292-7},
      zblnumber = {},
      }
  • [fk] Go to document A. Fedotov and F. Klopp, "Pointwise existence of the Lyapunov exponent for a quasi-periodic equation," in Mathematical Results in Quantum Mechanics, World Sci. Publ., Hackensack, NJ, 2008, pp. 66-78.
    @INCOLLECTION{fk,
      author = {Fedotov, Alexander and Klopp, Frédéric},
      title = {Pointwise existence of the {L}yapunov exponent for a quasi-periodic equation},
      booktitle = {Mathematical Results in Quantum Mechanics},
      pages = {66--78},
      publisher = {World Sci. Publ., Hackensack, NJ},
      year = {2008},
      mrclass = {39A12 (39A30 47B36 47B80 81Q05)},
      mrnumber = {2466679},
      mrreviewer = {Helge Krüger},
      doi = {10.1142/9789812832382_0006},
      zblnumber = {1156.81370},
      }
  • [fsw] Go to document J. Fröhlich, T. Spencer, and P. Wittwer, "Localization for a class of one-dimensional quasi-periodic Schrödinger operators," Comm. Math. Phys., vol. 132, iss. 1, pp. 5-25, 1990.
    @ARTICLE{fsw,
      author = {Fröhlich, J. and Spencer, T. and Wittwer, P.},
      title = {Localization for a class of one-dimensional quasi-periodic {S}chrödinger operators},
      journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      volume = {132},
      year = {1990},
      number = {1},
      pages = {5--25},
      issn = {0010-3616},
      mrclass = {35J10 (34L05 34L40 35P05 81Q10)},
      mrnumber = {1069198},
      doi = {10.1007/BF02277997},
      zblnumber = {0722.34070},
      }
  • [furman1997multiplicative] Go to document A. Furman, "On the multiplicative ergodic theorem for uniquely ergodic systems," Ann. Inst. H. Poincaré Probab. Statist., vol. 33, iss. 6, pp. 797-815, 1997.
    @ARTICLE{furman1997multiplicative,
      author = {Furman, Alex},
      title = {On the multiplicative ergodic theorem for uniquely ergodic systems},
      journal = {Ann. Inst. H. Poincaré Probab. Statist.},
      fjournal = {Annales de l'Institut Henri Poincaré. Probabilités et Statistiques},
      volume = {33},
      year = {1997},
      number = {6},
      pages = {797--815},
      issn = {0246-0203},
      mrclass = {28D05},
      mrnumber = {1484541},
      mrreviewer = {Oliver Knill},
      doi = {10.1016/S0246-0203(97)80113-6},
      zblnumber = {0892.60011},
      }
  • [gordon] Go to document . Y. A. Gordon, "The point spectrum of the one-dimensional Schrödinger operator," Uspekhi Mat. Nauk, vol. 31, iss. 4(190), pp. 257-258, 1976.
    @ARTICLE{gordon,
      author = {Gordon, {\relax A. Ya}},
      title = {The point spectrum of the one-dimensional {S}chrödinger operator},
      journal = {Uspekhi Mat. Nauk},
      fjournal = {Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk},
      volume = {31},
      year = {1976},
      number = {4(190)},
      pages = {257--258},
      issn = {0042-1316},
      mrclass = {47E05 (34B25)},
      mrnumber = {0458247},
      mrreviewer = {S. T. Kuroda},
      zblnumber = {0342.34012},
      url = {http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=rm&paperid=3813&option_lang=eng},
     }
  • [hjy] R. Han, S. Jitomirskaya, and F. Yang, Universal hierarchical structure of eigenfunctions of the Maryland model.
    @MISC{hjy,
      author = {Han, R. and Jitomirskaya, S. and Yang, F.},
      title = {Universal hierarchical structure of eigenfunctions of the {M}aryland model},
      note = {in preparation},
      zblnumber = {},
      }
  • [helf] B. Helffer and J. Sjöstrand, "Semiclassical analysis for Harper’s equation. III. Cantor structure of the spectrum," Mém. Soc. Math. France (N.S.), iss. 39, pp. 1-124, 1989.
    @ARTICLE{helf,
      author = {Helffer, B. and Sjöstrand, J.},
      title = {Semiclassical analysis for {H}arper's equation. {III}. {C}antor structure of the spectrum},
      journal = {Mém. Soc. Math. France (N.S.)},
      fjournal = {Mémoires de la Société Mathématique de France. Nouvelle Série},
      number = {39},
      year = {1989},
      pages = {1--124},
      issn = {0037-9484},
      mrclass = {35A27 (35J10 35P05 47B39 47G30 47N50 58G07 81Q20)},
      mrnumber = {1041490},
      zblnumber = {0725.34099},
      }
  • [hof] Go to document D. R. Hofstadter, "Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields," Physical Review B, vol. 14, iss. 6, p. 2239, 1976.
    @ARTICLE{hof, title = {Energy levels and wave functions of {B}loch electrons in rational and irrational magnetic fields},
      author = {Hofstadter, Douglas R},
      journal = {Physical {R}eview B},
      volume = {14},
      number = {6},
      pages = {2239},
      year = {1976},
      publisher = {APS},
      zblnumber = {},
      doi = {10.1103/PhysRevB.14.2239},
      }
  • [jkl] S. Jitomirskaya, H. Krüger, and W. Liu, Exact dynamical exponent for the almost Mathieu operator.
    @MISC{jkl, title = {Exact dynamical exponent for the almost {M}athieu operator},
      author = {Jitomirskaya, Svetlana and Krüger, H. and Liu, W.},
      note = {preprint},
      zblnumber = {},
      sortyear={2018},
      }
  • [jl3] S. Jitomirskaya and W. Liu.
    @misc{jl3,
      author = {Jitomirskaya, Svetlana and Liu, W.},
      note = {in preparation},
      zblnumber = {},
      sortyear={2018},
      }
  • [jl2] S. Jitomirskaya and W. Liu, Universal reflective-hierarchical structure of quasiperiodic eigenfunctions and sharp spectral transition in phase, 2018.
    @MISC{jl2, title = {Universal reflective-hierarchical structure of quasiperiodic eigenfunctions and sharp spectral transition in phase},
      author = {Jitomirskaya, Svetlana and Liu, W.},
      arxiv={1802.00781},
      year={2018},
     }
  • [jlt] S. Jitomirskaya, W. Liu, and S. Tcheremchantzev, Wavepacket spreading and fractal spectral dimension of quasiperiodic operators with singular continuous spectrum.
    @misc{jlt, title = {Wavepacket spreading and fractal spectral dimension of quasiperiodic operators with singular continuous spectrum},
      author = {Jitomirskaya, Svetlana and Liu, W. and Tcheremchantzev, S.},
      note = {preprint},
      zblnumber = {},
      sortyear={2018},
     }
  • [Conjecture] S. Jitomirskaya, "Almost everything about the almost Mathieu operator. II," in XIth International Congress of Mathematical Physics, Int. Press, Cambridge, MA, 1995, pp. 373-382.
    @INCOLLECTION{Conjecture,
      author = {Jitomirskaya, Svetlana},
      title = {Almost everything about the almost {M}athieu operator. {II}},
      booktitle = {X{I}th {I}nternational {C}ongress of {M}athematical {P}hysics},
      venue = {{P}aris, 1994},
      pages = {373--382},
      publisher = {Int. Press, Cambridge, MA},
      year = {1995},
      mrclass = {82B44 (39A70 47B39 47B50 81Q10 81Q50)},
      mrnumber = {1370694},
      mrreviewer = {Nariyuki Minami},
      zblnumber = {1052.82539},
      }
  • [jitomirskaya1999metal] Go to document S. Jitomirskaya, "Metal-insulator transition for the almost Mathieu operator," Ann. of Math. (2), vol. 150, iss. 3, pp. 1159-1175, 1999.
    @ARTICLE{jitomirskaya1999metal,
      author = {Jitomirskaya, Svetlana},
      title = {Metal-insulator transition for the almost {M}athieu operator},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {150},
      year = {1999},
      number = {3},
      pages = {1159--1175},
      issn = {0003-486X},
      mrclass = {81Q10 (39A70 47B36 47B39 47N50)},
      mrnumber = {1740982},
      mrreviewer = {Jean-Michel Ghez},
      doi = {10.2307/121066},
      zblnumber = {0946.47018},
      }
  • [sim60] Go to document S. Jitomirskaya, "Ergodic Schrödinger operators (on one foot)," in Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, Amer. Math. Soc., Providence, RI, 2007, vol. 76, pp. 613-647.
    @INCOLLECTION{sim60,
      author = {Jitomirskaya, Svetlana},
      title = {Ergodic {S}chrödinger operators (on one foot)},
      booktitle = {Spectral Theory and Mathematical Physics: A {F}estschrift in Honor of {B}arry {S}imon's 60th Birthday},
      series = {Proc. Sympos. Pure Math.},
      volume = {76},
      pages = {613--647},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {2007},
      mrclass = {82B44 (39A70 47B36 47B80 47N50 81-02 81Q10)},
      mrnumber = {2307750},
      mrreviewer = {François Germinet},
      doi = {10.1090/pspum/076.2/2307750},
      zblnumber = {1129.82018},
      }
  • [jitomirskaya20152] Go to document S. Jitomirskaya and I. Kachkovskiy, "$L^2$-reducibility and localization for quasiperiodic operators," Math. Res. Lett., vol. 23, iss. 2, pp. 431-444, 2016.
    @ARTICLE{jitomirskaya20152,
      author = {Jitomirskaya, Svetlana and Kachkovskiy, Ilya},
      title = {{$L^2$}-reducibility and localization for quasiperiodic operators},
      journal = {Math. Res. Lett.},
      fjournal = {Mathematical Research Letters},
      volume = {23},
      year = {2016},
      number = {2},
      pages = {431--444},
      issn = {1073-2780},
      mrclass = {47F05 (47A10)},
      mrnumber = {3512893},
      mrreviewer = {Andrea Posilicano},
      doi = {10.4310/MRL.2016.v23.n2.a7},
      zblnumber = {1351.81048},
      }
  • [jitomirskaya1994operators] Go to document S. Jitomirskaya and B. Simon, "Operators with singular continuous spectrum. III. Almost periodic Schrödinger operators," Comm. Math. Phys., vol. 165, iss. 1, pp. 201-205, 1994.
    @ARTICLE{jitomirskaya1994operators,
      author = {Jitomirskaya, Svetlana and Simon, B.},
      title = {Operators with singular continuous spectrum. {III}. {A}lmost periodic {S}chrödinger operators},
      journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      volume = {165},
      year = {1994},
      number = {1},
      pages = {201--205},
      issn = {0010-3616},
      mrclass = {47-02 (34L05 47E05 81Q10)},
      mrnumber = {1298948},
      mrreviewer = {Horst Behncke},
      doi = {10.1007/BF02099743},
      zblnumber = {0830.34074},
      }
  • [last] Go to document Y. Last, "Spectral theory of Sturm-Liouville operators on infinite intervals: a review of recent developments," in Sturm-Liouville Theory, Birkhäuser, Basel, 2005, pp. 99-120.
    @INCOLLECTION{last,
      author = {Last, Yoram},
      title = {Spectral theory of {S}turm-{L}iouville operators on infinite intervals: a review of recent developments},
      booktitle = {Sturm-{L}iouville Theory},
      pages = {99--120},
      publisher = {Birkhäuser, Basel},
      year = {2005},
      mrclass = {47E05 (34B40 34L40)},
      mrnumber = {2145079},
      doi = {10.1007/3-7643-7359-8_5},
      zblnumber = {1098.39011},
      }
  • [last1999eigenfunctions] Go to document Y. Last and B. Simon, "Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators," Invent. Math., vol. 135, iss. 2, pp. 329-367, 1999.
    @ARTICLE{last1999eigenfunctions,
      author = {Last, Yoram and Simon, Barry},
      title = {Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional {S}chrödinger operators},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {135},
      year = {1999},
      number = {2},
      pages = {329--367},
      issn = {0020-9910},
      mrclass = {47B39 (34L05 34L40 47E05 81Q10)},
      mrnumber = {1666767},
      mrreviewer = {Günter Stolz},
      doi = {10.1007/s002220050288},
      zblnumber = {0931.34066},
      }
  • [MR3340177] Go to document W. Liu and X. Yuan, "Anderson localization for the almost Mathieu operator in the exponential regime," J. Spectr. Theory, vol. 5, iss. 1, pp. 89-112, 2015.
    @ARTICLE{MR3340177,
      author = {Liu, Wencai and Yuan, Xiaoping},
      title = {Anderson localization for the almost {M}athieu operator in the exponential regime},
      journal = {J. Spectr. Theory},
      fjournal = {Journal of Spectral Theory},
      volume = {5},
      year = {2015},
      number = {1},
      pages = {89--112},
      issn = {1664-039X},
      mrclass = {47A10 (34L40 39A12)},
      mrnumber = {3340177},
      mrreviewer = {Jussi Behrndt},
      doi = {10.4171/JST/92},
      zblnumber = {1319.47029},
      }
  • [MR3292353] Go to document W. Liu and X. Yuan, "Anderson localization for the completely resonant phases," J. Funct. Anal., vol. 268, iss. 3, pp. 732-747, 2015.
    @ARTICLE{MR3292353,
      author = {Liu, Wencai and Yuan, Xiaoping},
      title = {Anderson localization for the completely resonant phases},
      journal = {J. Funct. Anal.},
      fjournal = {Journal of Functional Analysis},
      volume = {268},
      year = {2015},
      number = {3},
      pages = {732--747},
      issn = {0022-1236},
      mrclass = {47F05 (11J04 39A70 47B36 81Q05 81Q10)},
      mrnumber = {3292353},
      mrreviewer = {Hitoshi Kitada},
      doi = {10.1016/j.jfa.2014.10.024},
      zblnumber = {1333.47025},
      }
  • [jitomirskaya2015dynamics] Go to document C. A. Marx and S. Jitomirskaya, "Dynamics and spectral theory of quasi-periodic Schrödinger-type operators," Ergodic Theory Dynam. Systems, vol. 37, iss. 8, pp. 2353-2393, 2017.
    @ARTICLE{jitomirskaya2015dynamics,
      author = {Marx, C. A. and Jitomirskaya, S.},
      title = {Dynamics and spectral theory of quasi-periodic {S}chrödinger-type operators},
      journal = {Ergodic Theory Dynam. Systems},
      fjournal = {Ergodic Theory and Dynamical Systems},
      volume = {37},
      year = {2017},
      number = {8},
      pages = {2353--2393},
      issn = {0143-3857},
      mrclass = {35J10 (35B15 35P05 47A10)},
      mrnumber = {3719264},
      doi = {10.1017/etds.2016.16},
      zblnumber = {06823073},
      }
  • [peierls1933theorie] Go to document R. Peierls, "Zur Theorie des Diamagnetismus von Leitungselektronen," Z. Physik, vol. 80, iss. 11-12, pp. 763-791, 1933.
    @ARTICLE{peierls1933theorie, title = {Zur {T}heorie des {D}iamagnetismus von {L}eitungselektronen},
      author = {Peierls, Rudolph},
      journal = {Z. Physik},
      volume = {80},
      number = {11-12},
      pages = {763--791},
      year = {1933},
      zblnumber = {0006.19204},
      doi = {10.1007/BF01342591},
      }
  • [simon1985almost] Go to document B. Simon, "Almost periodic Schrödinger operators. IV. The Maryland model," Ann. Physics, vol. 159, iss. 1, pp. 157-183, 1985.
    @ARTICLE{simon1985almost,
      author = {Simon, Barry},
      title = {Almost periodic {S}chrödinger operators. {IV}. {T}he {M}aryland model},
      journal = {Ann. Physics},
      fjournal = {Annals of Physics},
      volume = {159},
      year = {1985},
      number = {1},
      pages = {157--183},
      issn = {0003-4916},
      mrclass = {81C10 (34B25)},
      mrnumber = {0776654},
      mrreviewer = {W. O. Amrein},
      doi = {10.1016/0003-4916(85)90196-4},
      zblnumber = {0595.35032},
      }
  • [simonsproblems] Go to document B. Simon, "Schrödinger operators in the twenty-first century," in Mathematical Physics 2000, Imp. Coll. Press, London, 2000, pp. 283-288.
    @INCOLLECTION{simonsproblems,
      author = {Simon, Barry},
      title = {Schrödinger operators in the twenty-first century},
      booktitle = {Mathematical Physics 2000},
      pages = {283--288},
      publisher = {Imp. Coll. Press, London},
      year = {2000},
      mrclass = {81Q10 (81-02)},
      mrnumber = {1773049},
      mrreviewer = {Hiroshi Isozaki},
      doi = {10.1142/9781848160224_0014},
      zblnumber = {1074.81521},
      }
  • [sin] Go to document . Y. G. Sinai, "Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential," J. Statist. Phys., vol. 46, iss. 5-6, pp. 861-909, 1987.
    @ARTICLE{sin,
      author = {Sinai, {\relax Ya. G}},
      title = {Anderson localization for one-dimensional difference {S}chrödinger operator with quasiperiodic potential},
      journal = {J. Statist. Phys.},
      fjournal = {Journal of Statistical Physics},
      volume = {46},
      year = {1987},
      number = {5-6},
      pages = {861--909},
      issn = {0022-4715},
      mrclass = {82A05 (39A12 58F30)},
      mrnumber = {0893122},
      mrreviewer = {Eugen Belokolos},
      doi = {10.1007/BF01011146},
      zblnumber = {0682.34023},
      }
  • [thou] D. J. Thouless, "Quantized Hall conductance, particle transport and topological invariants," in XIIIth International Colloquium on Group Theoretical Methods in Physics, World Sci. Publishing, Singapore, 1984, pp. 319-323.
    @INCOLLECTION{thou,
      author = {Thouless, D. J.},
      title = {Quantized {H}all conductance, particle transport and topological invariants},
      booktitle = {X{III}th International Colloquium on Group Theoretical Methods in Physics},
      venue = {{C}ollege {P}ark, {M}d., 1984},
      pages = {319--323},
      publisher = {World Sci. Publishing, Singapore},
      year = {1984},
      mrclass = {81H20},
      mrnumber = {0815710},
      zblnumber = {},
      }
  • [wieg] Go to document P. B. Wiegmann and A. V. Zabrodin, "Quantum group and magnetic translations Bethe ansatz for the Asbel-Hofstadter problem," Nuclear Phys. B, vol. 422, iss. 3, pp. 495-514, 1994.
    @ARTICLE{wieg,
      author = {Wiegmann, P. B. and Zabrodin, A. V.},
      title = {Quantum group and magnetic translations {B}ethe ansatz for the {A}sbel-{H}ofstadter problem},
      journal = {Nuclear Phys. B},
      fjournal = {Nuclear Physics. B. Theoretical, Phenomenological, and Experimental High Energy Physics. Quantum Field Theory and Statistical Systems},
      volume = {422},
      year = {1994},
      number = {3},
      pages = {495--514},
      issn = {0550-3213},
      mrclass = {82B20 (33D80 81R50 82B23 82D35)},
      mrnumber = {1287576},
      mrreviewer = {Yu Kui Zhou},
      doi = {10.1016/0550-3213(94)90443-X},
      zblnumber = {0990.82506},
      }
  • [you2013embedding] Go to document J. You and Q. Zhou, "Embedding of analytic quasi-periodic cocycles into analytic quasi-periodic linear systems and its applications," Comm. Math. Phys., vol. 323, iss. 3, pp. 975-1005, 2013.
    @ARTICLE{you2013embedding,
      author = {You, Jiangong and Zhou, Qi},
      title = {Embedding of analytic quasi-periodic cocycles into analytic quasi-periodic linear systems and its applications},
      journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      volume = {323},
      year = {2013},
      number = {3},
      pages = {975--1005},
      issn = {0010-3616},
      mrclass = {34C25 (34L40 37C55 37J40 37N20 39A70 82B44)},
      mrnumber = {3106500},
      mrreviewer = {Dieter H. Mayer},
      doi = {10.1007/s00220-013-1800-4},
      zblnumber = {1286.37004},
      }
  • [lsy] Go to document L. -S. Young, "Lyapunov exponents for some quasi-periodic cocycles," Ergodic Theory Dynam. Systems, vol. 17, iss. 2, pp. 483-504, 1997.
    @ARTICLE{lsy,
      author = {Young, L.-S.},
      title = {Lyapunov exponents for some quasi-periodic cocycles},
      journal = {Ergodic Theory Dynam. Systems},
      fjournal = {Ergodic Theory and Dynamical Systems},
      volume = {17},
      year = {1997},
      number = {2},
      pages = {483--504},
      issn = {0143-3857},
      mrclass = {58F15 (58F11)},
      mrnumber = {1444065},
      mrreviewer = {Oliver Knill},
      doi = {10.1017/S0143385797079170},
      zblnumber = {0873.28013},
      }
  • [zhi] Y. S. Zhitomirskaya, "Singular spectral properties of a one-dimensional Schrödinger operator with almost periodic potential," in Dynamical Systems and Statistical Mechanics, Amer. Math. Soc., Providence, RI, 1991, vol. 3, pp. 215-254.
    @INCOLLECTION{zhi,
      author = {Zhitomirskaya, S. Ya.},
      title = {Singular spectral properties of a one-dimensional {S}chrödinger operator with almost periodic potential},
      booktitle = {Dynamical Systems and Statistical Mechanics},
      venue = {{M}oscow, 1991},
      series = {Adv. Soviet Math.},
      volume = {3},
      pages = {215--254},
      note = {Translated from the Russian by V. E. Naza{\u\i}kinski{\u\i}},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {1991},
      mrclass = {81Q10 (34L40 35J10 35P05 47B39 47N20 82B44)},
      mrnumber = {1118164},
      mrreviewer = {Nariyuki Minami},
      zblnumber = {0734.34075},
      }

Authors

Svetlana Jitomirskaya

University of California, Irvine, CA

Wencai Liu

University of California, Irvine, CA