Total Betti numbers of modules of finite projective dimension

Abstract

The Buchsbaum-Eisenbud-Horrocks Conjecture predicts that the $i^{\rm th}$ Betti number $\beta_i(M)$ of a nonzero module $M$ of finite length and finite projective dimension over a local ring $R$ of dimension $d$ should be at least ${d \choose i}$. It would follow from the validity of this conjecture that $\sum_i \beta_i(M) \geq 2^{d}$. We prove the latter inequality holds in a large number of cases and that, when $R$ is a complete intersection in which $2$ is invertible, equality holds if and only if $M$ is isomorphic to the quotient of $R$ by a regular sequence of elements.

Note: To view the article, click on the URL link for the DOI number.

  • [BMTW] Go to document M. K. Brown, C. Miller, P. Thompson, and M. E. Walker, "Cyclic Adams operations," J. Pure Appl. Algebra, vol. 221, iss. 7, pp. 1589-1613, 2017.
    @ARTICLE{BMTW,
      author = {Brown, Michael K. and Miller, Claudia and Thompson, Peder and Walker, Mark E.},
      title = {Cyclic {A}dams operations},
      journal = {J. Pure Appl. Algebra},
      fjournal = {Journal of Pure and Applied Algebra},
      volume = {221},
      number = {7},
      year = {2017},
      pages = {1589--1613},
      zblnumber = {1360.19006},
      mrnumber = {3614968},
      doi = {10.1016/j.jpaa.2016.12.018},
      }
  • [BrunsHerzog] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cambridge, 1993, vol. 39.
    @BOOK{BrunsHerzog,
      author = {Bruns, Winfried and Herzog, Jürgen},
      title = {Cohen-{M}acaulay Rings},
      series = {Cambridge Stud. Adv. Math.},
      volume = {39},
      publisher = {Cambridge University Press, Cambridge},
      year = {1993},
      pages = {xii+403},
      isbn = {0-521-41068-1},
      mrclass = {13H10 (13-02)},
      mrnumber = {1251956},
      mrreviewer = {Matthew Miller},
      zblnumber = {0788.13005},
      }
  • [BE] Go to document D. A. Buchsbaum and D. Eisenbud, "Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension $3$," Amer. J. Math., vol. 99, iss. 3, pp. 447-485, 1977.
    @ARTICLE{BE,
      author = {Buchsbaum, David A. and Eisenbud, David},
      title = {Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension {$3$}},
      journal = {Amer. J. Math.},
      fjournal = {American Journal of Mathematics},
      volume = {99},
      year = {1977},
      number = {3},
      pages = {447--485},
      issn = {0002-9327},
      mrclass = {13D15},
      mrnumber = {0453723},
      mrreviewer = {M. Nagata},
      doi = {10.2307/2373926},
      url = {http://dx.doi.org/10.2307/2373926},
      zblnumber = {0373.13006},
      }
  • [EGA] Go to document A. Grothendieck, Éléments de Géométrie Algébrique. I. Le Langage des Schémas, , 1960, vol. 4.
    @BOOK{EGA,
      author = {Grothendieck, A.},
      title = {Éléments de Géométrie Algébrique. {I}. {L}e Langage des Schémas},
      SERIES = {Inst. Hautes Études Sci. Publ. Math.},
      VOLUME = {4},
      year = {1960},
      pages = {228},
      issn = {0073-8301},
      mrclass = {14.05},
      mrnumber = {0163908},
      url = {http://www.numdam.org/item?id=PMIHES_1960__4__5_0},
      zblnumber = {0118.36206},
      }
  • [GS87] Go to document H. Gillet and C. Soulé, "Intersection theory using Adams operations," Invent. Math., vol. 90, iss. 2, pp. 243-277, 1987.
    @ARTICLE{GS87,
      author = {Gillet, H. and Soulé, C.},
      title = {Intersection theory using {A}dams operations},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {90},
      year = {1987},
      number = {2},
      pages = {243--277},
      issn = {0020-9910},
      mrclass = {14C17 (13D05 14B15 14C40 19E08)},
      mrnumber = {0910201},
      mrreviewer = {G. Horrocks},
      doi = {10.1007/BF01388705},
      url = {http://dx.doi.org/10.1007/BF01388705},
      zblnumber = {0632.14009},
      }
  • [Ha] Go to document R. Hartshorne, "Algebraic vector bundles on projective spaces: a problem list," Topology, vol. 18, iss. 2, pp. 117-128, 1979.
    @ARTICLE{Ha,
      author = {Hartshorne, Robin},
      title = {Algebraic vector bundles on projective spaces: a problem list},
      journal = {Topology},
      fjournal = {Topology. An International Journal of Mathematics},
      volume = {18},
      year = {1979},
      number = {2},
      pages = {117--128},
      issn = {0040-9383},
      mrclass = {14F05 (14D20 32G13 32L10)},
      mrnumber = {0544153},
      mrreviewer = {M. Schneider},
      doi = {10.1016/0040-9383(79)90030-2},
      url = {http://dx.doi.org/10.1016/0040-9383(79)90030-2},
      zblnumber = {0417.14011},
      }
  • [KuranoRoberts] Go to document K. Kurano and P. C. Roberts, "Adams operations, localized Chern characters, and the positivity of Dutta multiplicity in characteristic $0$," Trans. Amer. Math. Soc., vol. 352, iss. 7, pp. 3103-3116, 2000.
    @ARTICLE{KuranoRoberts,
      author = {Kurano, Kazuhiko and Roberts, Paul C.},
      title = {Adams operations, localized {C}hern characters, and the positivity of {D}utta multiplicity in characteristic {$0$}},
      journal = {Trans. Amer. Math. Soc.},
      fjournal = {Transactions of the American Mathematical Society},
      volume = {352},
      year = {2000},
      number = {7},
      pages = {3103--3116},
      issn = {0002-9947},
      mrclass = {13A35 (13D15 14C17 14C35)},
      mrnumber = {1707198},
      mrreviewer = {Jaime-Luis Garcia-Roig},
      doi = {10.1090/S0002-9947-00-02589-7},
      url = {http://dx.doi.org/10.1090/S0002-9947-00-02589-7},
      zblnumber = {0959.13004},
      }
  • [PS] Go to document C. Peskine and L. Szpiro, "Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck," Inst. Hautes Études Sci. Publ. Math., iss. 42, pp. 47-119, 1973.
    @ARTICLE{PS,
      author = {Peskine, C. and Szpiro, L.},
      title = {Dimension projective finie et cohomologie locale. {A}pplications à la démonstration de conjectures de {M}. {A}uslander, {H}. {B}ass et {A}. {G}rothendieck},
      journal = {Inst. Hautes Études Sci. Publ. Math.},
      fjournal = {Institut des Hautes Études Scientifiques. Publications Mathématiques},
      number = {42},
      year = {1973},
      pages = {47--119},
      issn = {0073-8301},
      mrclass = {14B15 (13D05 13H10)},
      mrnumber = {0374130},
      mrreviewer = {Melvin Hochster},
      url = {http://www.numdam.org/item?id=PMIHES_1973__42__47_0},
      zblnumber = {0268.13008},
      }
  • [RobertsBook] Go to document P. C. Roberts, Multiplicities and Chern Classes in Local Algebra, Cambridge Univ. Press, Cambridge, 1998, vol. 133.
    @BOOK{RobertsBook,
      author = {Roberts, Paul C.},
      title = {Multiplicities and {C}hern Classes in Local Algebra},
      series = {Cambridge Tracts in Math.},
      volume = {133},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {1998},
      pages = {xii+303},
      isbn = {0-521-47316-0},
      mrclass = {13D22 (13H15 14C17)},
      mrnumber = {1686450},
      mrreviewer = {Hans-BjÂ\c{ }rn Foxby},
      doi = {10.1017/CBO9780511529986},
      url = {http://dx.doi.org/10.1017/CBO9780511529986},
      zblnumber = {0917.13007},
      }

Authors

Mark E. Walker

University of Nebraska, Lincoln, NE