Geometric monodromy — semisimplicity and maximality

Abstract

Let $X$ be a connected scheme, smooth and separated over an algebraically closed field $k$ of characteristic $p\geq 0$, let $f:Y\rightarrow X$ be a smooth proper morphism and $x$ a geometric point on $X$. We prove that the tensor invariants of bounded length $\leq d$ of $\pi_1(X,x)$ acting on the étale cohomology groups $H^*(Y_x,\mathbb{F}_\ell)$ are the reduction modulo-$\ell$ of those of $\pi_1(X,x)$ acting on $H^*(Y_x,\mathbb{Z}_\ell)$ for $\ell $ greater than a constant depending only on $f:Y\rightarrow X$, $d$. We apply this result to show that the geometric variant with $\mathbb{F}_\ell$-coefficients of the Grothendieck-Serre semisimplicity conjecture — namely, that $\pi_1(X,x)$ acts semisimply on $H^*(Y_x,\mathbb{F}_\ell)$ for $\ell\gg 0$ — is equivalent to the condition that the image of $\pi_1(X,x)$ acting on $H^*(Y_x,\mathbb{Q}_\ell)$ is `almost maximal’ (in a precise sense; what we call `almost hyperspecial’) with respect to the group of $\mathbb{Q}_\ell$-points of its Zariski closure. Ultimately, we prove the geometric variant with $\mathbb{F}_\ell$-coefficients of the Grothendieck-Serre semisimplicity conjecture.

  • [Shu12] Go to document J. Suh, "Symmetry and parity in Frobenius action on cohomology," Compos. Math., vol. 148, iss. 1, pp. 295-303, 2012.
    @article{Shu12, MRKEY={2881317},
      AUTHOR = {Suh, Junecue},
      TITLE = {Symmetry and parity in {F}robenius action on cohomology},
      JOURNAL = {Compos. Math.},
      FJOURNAL = {Compositio Mathematica},
      VOLUME = {148},
      YEAR = {2012},
      NUMBER = {1},
      PAGES = {295--303},
      ISSN = {0010-437X},
      MRCLASS = {14F30 (11G25)},
      MRNUMBER = {2881317},
      MRREVIEWER = {Alan G. B. Lauder},
      DOI = {10.1112/S0010437X11007056},
      ZBLNUMBER = {1258.14023},
      }
  • [Ba01] Go to document Y. Bazlov, "Graded multiplicities in the exterior algebra," Adv. Math., vol. 158, iss. 2, pp. 129-153, 2001.
    @ARTICLE{Ba01, mrkey = {1822681},
      number = {2},
      issn = {0001-8708},
      author = {Bazlov, Yuri},
      mrclass = {17B10 (05E05)},
      doi = {10.1006/aima.2000.1969},
      journal = {Adv. Math.},
      zblnumber = {0979.17003},
      volume = {158},
      mrnumber = {1822681},
      fjournal = {Advances in Mathematics},
      mrreviewer = {Hiro-Fumi Yamada},
      title = {Graded multiplicities in the exterior algebra},
      year = {2001},
      pages = {129--153},
      }
  • [Berthelot] P. Berthelot, "Altérations de variétés algébriques (d’après A. J. de Jong)," in Séminaire Bourbaki, Vol. 1995/96, , 1997, vol. 241, p. exp. no. 815, 5, 273-311.
    @INCOLLECTION{Berthelot, mrkey = {1472543},
      issn = {0303-1179},
      author = {Berthelot, Pierre},
      mrclass = {14F30 (14E15)},
      series = {Astérisque},
      zblnumber = {0924.14007},
      volume = {241},
      mrnumber = {1472543},
      booktitle = {Séminaire Bourbaki, Vol. 1995/96},
      fjournal = {Astérisque},
      mrreviewer = {Willem Veys},
      title = {Altérations de variétés algébriques (d'après {A}. {J}. de {J}ong)},
      year = {1997},
      pages = {Exp. No. 815, 5, 273--311},
      }
  • [BT84] Go to document F. Bruhat and J. Tits, "Groupes réductifs sur un corps local: II. Schémas en groupes. Existence d’une donnée radicielle valuée.," Inst. Hautes Etudes Sci. Publ. Math., vol. 60, pp. 197-376, 1984.
    @ARTICLE{BT84, mrkey = {0756316},
      volume = {60},
      author = {Bruhat, F. and Tits, J.},
      title = {Groupes réductifs sur un corps local: {II. S}chémas en groupes. {E}xistence d'une donnée radicielle valuée.},
      pages = {197--376},
      year = {1984},
      journal = {Inst. Hautes Etudes Sci. Publ. Math.},
      mrnumber = {0756316},
      zblnumber = {0597.14041},
      url = {http://www.numdam.org/item?id=SB_1988-1989__31__7_0},
      }
  • [Adelic] Go to document A. Cadoret, "An open adelic image theorem for abelian schemes," Int. Math. Res. Not., vol. 2015, iss. 20, pp. 10208-10242, 2015.
    @ARTICLE{Adelic, mrkey = {3455865},
      number = {20},
      issn = {1073-7928},
      author = {Cadoret, Anna},
      mrclass = {14K15 (14G20 14G32 14G40)},
      doi = {10.1093/imrn/rnu259},
      journal = {Int. Math. Res. Not.},
      zblnumber = {1352.14030},
      volume = {2015},
      mrnumber = {3455865},
      fjournal = {International Mathematics Research Notices. IMRN},
      mrreviewer = {Arvid Siqveland},
      title = {An open adelic image theorem for abelian schemes},
      year = {2015},
      pages = {10208--10242},
      }
  • [Genus1] Go to document A. Cadoret and A. Tamagawa, "On a weak variant of the geometric torsion conjecture," J. Algebra, vol. 346, pp. 227-247, 2011.
    @ARTICLE{Genus1, mrkey = {2842079},
      issn = {0021-8693},
      author = {Cadoret, Anna and Tamagawa, Akio},
      mrclass = {14K15 (14H30)},
      doi = {10.1016/j.jalgebra.2011.09.002},
      journal = {J. Algebra},
      zblnumber = {1273.14088},
      volume = {346},
      mrnumber = {2842079},
      fjournal = {Journal of Algebra},
      mrreviewer = {Alessandra Bertapelle},
      title = {On a weak variant of the geometric torsion conjecture},
      year = {2011},
      pages = {227--247},
      }
  • [UOI1] Go to document A. Cadoret and A. Tamagawa, "A uniform open image theorem for $\ell$-adic representations, I," Duke Math. J., vol. 161, iss. 13, pp. 2605-2634, 2012.
    @ARTICLE{UOI1, mrkey = {2988904},
      number = {13},
      issn = {0012-7094},
      author = {Cadoret, Anna and Tamagawa, Akio},
      mrclass = {14H30 (14K15 22E50)},
      doi = {10.1215/00127094-1812954},
      journal = {Duke Math. J.},
      zblnumber = {1305.14016},
      volume = {161},
      mrnumber = {2988904},
      fjournal = {Duke Mathematical Journal},
      mrreviewer = {Lei Fu},
      title = {A uniform open image theorem for {$\ell$}-adic representations, {I}},
      year = {2012},
      pages = {2605--2634},
      }
  • [JN] A. Cadoret and A. Tamagawa, On the geometric image of $\mathbb{F}_{\ell}$-linear representations of étale fundamental groups, 2013.
    @MISC{JN,
      author = {Cadoret, Anna and Tamagawa, Akio},
      note = {preprint},
      title = {On the geometric image of $\mathbb{F}_{\ell}$-linear representations of étale fundamental groups},
      year = {2013},
      }
  • [TI] Go to document A. Cadoret and A. Tamagawa, "Genus of abstract modular curves with level-$\ell$ structures," J. reine angew. Math..
    @article{TI,
      author = {Cadoret, Anna and Tamagawa, Akio},
      journal = {J. reine angew. Math.},
      note = {published online: 2016-11-08},
      title = {Genus of abstract modular curves with level-$\ell$ structures},
      doi = {10.1515/crelle-2016-0057},
      sortyear={2016},
      key={CT16},
      }
  • [Ca72] R. W. Carter, Simple Groups of Lie Type, New York: John Wiley & Sons, 1972, vol. 28.
    @BOOK{Ca72, mrkey = {0407163},
      author = {Carter, Roger W.},
      mrclass = {20G15 (20D05 22E20)},
      series = {Pure Appl. Math.},
      address = {New York},
      publisher = {John Wiley \& Sons},
      volume = {28},
      mrnumber = {0407163},
      mrreviewer = {Louis Solomon},
      title = {Simple Groups of {L}ie Type},
      year = {1972},
      pages = {viii+331},
      zblnumber = {0248.20015},
      }
  • [Conrad] B. Conrad, "Reductive group schemes," in Autour des Schémas en Groupes. Vol. I, Paris: Soc. Math. France, 2014, vol. 42-43, pp. 93-444.
    @INCOLLECTION{Conrad, mrkey = {3362641},
      author = {Conrad, Brian},
      mrclass = {14L15},
      series = {Panor. Synthèses},
      address = {Paris},
      publisher = {Soc. Math. France},
      zblnumber = {1349.14151},
      volume = {42-43},
      mrnumber = {3362641},
      booktitle = {Autour des Schémas en Groupes. {V}ol. {I}},
      title = {Reductive group schemes},
      pages = {93--444},
      year = {2014},
      }
  • [DeligneHodge2] Go to document P. Deligne, "Théorie de Hodge. II," Inst. Hautes Études Sci. Publ. Math., vol. 40, pp. 5-57, 1971.
    @ARTICLE{DeligneHodge2, mrkey = {0498551},
      issn = {0073-8301},
      author = {Deligne, Pierre},
      mrclass = {14C30 (14F15)},
      url = {http://www.numdam.org/item?id=PMIHES_1971__40__5_0},
      journal = {Inst. Hautes Études Sci. Publ. Math.},
      zblnumber = {0219.14007},
      volume = {40},
      mrnumber = {0498551},
      fjournal = {Institut des Hautes Études Scientifiques. Publications Mathématiques},
      title = {Théorie de {H}odge. {II}},
      year = {1971},
      pages = {5--57},
      }
  • [Weil2] Go to document P. Deligne, "La conjecture de Weil. II," Inst. Hautes Études Sci. Publ. Math., vol. 52, pp. 137-252, 1980.
    @ARTICLE{Weil2, mrkey = {0601520},
      issn = {0073-8301},
      author = {Deligne, Pierre},
      mrclass = {14G13 (10H10)},
      url = {http://www.numdam.org/item?id=PMIHES_1980__52__137_0},
      journal = {Inst. Hautes Études Sci. Publ. Math.},
      zblnumber = {0456.14014},
      volume = {52},
      mrnumber = {0601520},
      fjournal = {Institut des Hautes Études Scientifiques. Publications Mathématiques},
      mrreviewer = {Spencer J. Bloch},
      title = {La conjecture de {W}eil. {II}},
      year = {1980},
      pages = {137--252},
      }
  • [Gabber] O. Gabber, "Sur la torsion dans la cohomologie $\ell$-adique d’une variété," C. R. Acad. Sci. Paris Ser. I Math., vol. 297, pp. 179-182, 1983.
    @ARTICLE{Gabber, zblnumber = {0574.14019},
      volume = {297},
      author = {Gabber, O.},
      title = {Sur la torsion dans la cohomologie $\ell$-adique d'une variété},
      pages = {179--182},
      year = {1983},
      journal = {C. R. Acad. Sci. Paris Ser. I Math.},
      mrnumber = {0725400},
     }
  • [Geisser] T. Geisser, "Applications of de Jong’s theorem on alterations," in Resolution of Singularities, Basel: Birkhäuser, 2000, vol. 181, pp. 299-314.
    @INCOLLECTION{Geisser, mrkey = {1748625},
      author = {Geisser, Thomas},
      mrclass = {14E15 (14F20 14F42 32S45)},
      series = {Progr. Math.},
      address = {Basel},
      publisher = {Birkhäuser},
      zblnumber = {1022.14007},
      volume = {181},
      mrnumber = {1748625},
      booktitle = {Resolution of Singularities},
      mrreviewer = {Piotr Jaworski},
      venue = {{O}bergurgl, 1997},
      title = {Applications of de {J}ong's theorem on alterations},
      pages = {299--314},
      year = {2000},
      }
  • [Gille] Go to document . P. Gille, Introduction to reductive group schemes over rings, 2013.
    @MISC{Gille,
      author = {Gille, {\relax Ph}.},
      note = {Toronto (Fields Institute), preprint},
      title = {Introduction to reductive group schemes over rings},
      year = {2013},
      URL = {https://www.fields.utoronto.ca/programs/scientific/12-13/torsors/lietheory/Notes/Gille-Notes.pdf},
      }
  • [Hall] Go to document C. Hall, "Big symplectic or orthogonal monodromy modulo $l$," Duke Math. J., vol. 141, iss. 1, pp. 179-203, 2008.
    @ARTICLE{Hall, mrkey = {2372151},
      number = {1},
      issn = {0012-7094},
      author = {Hall, Chris},
      mrclass = {11G05 (11G10 12F12 14D05 14K15)},
      doi = {10.1215/S0012-7094-08-14115-8},
      journal = {Duke Math. J.},
      zblnumber = {1205.11062},
      volume = {141},
      mrnumber = {2372151},
      fjournal = {Duke Mathematical Journal},
      mrreviewer = {Jeffrey D. Achter},
      title = {Big symplectic or orthogonal monodromy modulo {$l$}},
      year = {2008},
      pages = {179--203},
      }
  • [SGA3] Schémas en groupes. III: Structure des schémas en groupes réductifs, Demazure, M. and Grothendieck, A., Eds., New York: Springer-Verlag, 1970, vol. 153.
    @BOOK{SGA3, volume = {153},
      TITLE = {Schémas en groupes. {III}: {S}tructure des schémas en groupes réductifs},
      TITLENOTE = {Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3)},
      EDITOR={Demazure, M. and Grothendieck, A.},
      series = {Lecture Notes in Math.},
      address = {New York},
      PUBLISHER = {Springer-Verlag},
      YEAR = {1970},
      PAGES = {viii+529},
      MRCLASS = {14.50},
      MRNUMBER = {0274460},
      ZBLNUMBER = {0212.52810},
     }
  • [Jantzen] J. C. Jantzen, "Low-dimensional representations of reductive groups are semisimple," in Algebraic Groups and Lie Groups, Cambridge: Cambridge Univ. Press, 1997, vol. 9, pp. 255-266.
    @INCOLLECTION{Jantzen, mrkey = {1635685},
      author = {Jantzen, Jens Carsten},
      mrclass = {20G05 (20G40)},
      series = {Austral. Math. Soc. Lect. Ser.},
      address = {Cambridge},
      publisher = {Cambridge Univ. Press},
      zblnumber = {0877.20029},
      volume = {9},
      mrnumber = {1635685},
      booktitle = {Algebraic Groups and {L}ie Groups},
      mrreviewer = {Bhama Srinivasan},
      title = {Low-dimensional representations of reductive groups are semisimple},
      pages = {255--266},
      year = {1997},
      }
  • [dJ] Go to document A. J. de Jong, "Smoothness, semi-stability and alterations," Inst. Hautes Études Sci. Publ. Math., vol. 83, pp. 51-93, 1996.
    @ARTICLE{dJ, mrkey = {1423020},
      issn = {0073-8301},
      author = {de Jong, A. J.},
      mrclass = {14E15 (14B05 14H10)},
      url = {http://www.numdam.org/item?id=PMIHES_1996__83__51_0},
      journal = {Inst. Hautes Études Sci. Publ. Math.},
      zblnumber = {0916.14005},
      volume = {83},
      mrnumber = {1423020},
      fjournal = {Institut des Hautes Études Scientifiques. Publications Mathématiques},
      mrreviewer = {Marko Roczen},
      title = {Smoothness, semi-stability and alterations},
      year = {1996},
      pages = {51--93},
      }
  • [Jouanolou] J. Jouanolou, Théorèmes de Bertini et Applications, Boston: Birkhäuser, 1983, vol. 42.
    @BOOK{Jouanolou, mrkey = {0725671},
      author = {Jouanolou, Jean-Pierre},
      mrclass = {13C10 (14-02 14C99)},
      series = {Progr. Math.},
      isbn = {0-8176-3164-X},
      address = {Boston},
      publisher = {Birkhäuser},
      zblnumber = {0519.14002},
      volume = {42},
      mrnumber = {0725671},
      mrreviewer = {Allen B. Altman},
      title = {Théorèmes de {B}ertini et Applications},
      year = {1983},
      pages = {ii+127},
      }
  • [Lang] Go to document S. Lang, "Algebraic groups over finite fields," Amer. J. Math., vol. 78, pp. 555-563, 1956.
    @ARTICLE{Lang, mrkey = {0086367},
      issn = {0002-9327},
      author = {Lang, Serge},
      mrclass = {14.0X},
      doi = {10.2307/2372673},
      journal = {Amer. J. Math.},
      zblnumber = {0073.37901},
      volume = {78},
      mrnumber = {0086367},
      fjournal = {American Journal of Mathematics},
      mrreviewer = {P. Roquette},
      title = {Algebraic groups over finite fields},
      year = {1956},
      pages = {555--563},
      }
  • [LarsenMax] Go to document M. Larsen, "Maximality of Galois actions for compatible systems," Duke Math. J., vol. 80, iss. 3, pp. 601-630, 1995.
    @ARTICLE{LarsenMax, mrkey = {1370110},
      number = {3},
      issn = {0012-7094},
      author = {Larsen, Michael},
      mrclass = {11G09 (11G10 11S37 20G25)},
      doi = {10.1215/S0012-7094-95-08021-1},
      journal = {Duke Math. J.},
      zblnumber = {0912.11026},
      volume = {80},
      mrnumber = {1370110},
      fjournal = {Duke Mathematical Journal},
      mrreviewer = {Ernst-Wilhelm Zink},
      title = {Maximality of {G}alois actions for compatible systems},
      year = {1995},
      pages = {601--630},
      }
  • [LarsenSS] Go to document M. Larsen, "On the semisimplicity of low-dimensional representations of semisimple groups in characteristic $p$," J. Algebra, vol. 173, iss. 2, pp. 219-236, 1995.
    @ARTICLE{LarsenSS, mrkey = {1325773},
      number = {2},
      issn = {0021-8693},
      author = {Larsen, Michael},
      mrclass = {20G05 (20G15)},
      doi = {10.1006/jabr.1995.1085},
      journal = {J. Algebra},
      zblnumber = {0834.20045},
      volume = {173},
      mrnumber = {1325773},
      fjournal = {Journal of Algebra},
      mrreviewer = {Timo Neuvonen},
      title = {On the semisimplicity of low-dimensional representations of semisimple groups in characteristic {$p$}},
      year = {1995},
      pages = {219--236},
      }
  • [LarsenpAdicNori] Go to document M. Larsen, "Exponential generation and largeness for compact $p$-adic Lie groups," Algebra Number Theory, vol. 4, iss. 8, pp. 1029-1038, 2010.
    @ARTICLE{LarsenpAdicNori, mrkey = {2832632},
      number = {8},
      issn = {1937-0652},
      author = {Larsen, Michael},
      mrclass = {20G25 (20G40)},
      doi = {10.2140/ant.2010.4.1029},
      journal = {Algebra Number Theory},
      zblnumber = {1219.22011},
      volume = {4},
      mrnumber = {2832632},
      fjournal = {Algebra \& Number Theory},
      title = {Exponential generation and largeness for compact {$p$}-adic {L}ie groups},
      year = {2010},
      pages = {1029--1038},
      }
  • [LP] Go to document M. Larsen and R. Pink, "On $l$-independence of algebraic monodromy groups in compatible systems of representations," Invent. Math., vol. 107, iss. 3, pp. 603-636, 1992.
    @ARTICLE{LP, mrkey = {1150604},
      number = {3},
      issn = {0020-9910},
      author = {Larsen, Michael and Pink, R.},
      mrclass = {22E50 (11F80 20G25)},
      doi = {10.1007/BF01231904},
      journal = {Invent. Math.},
      zblnumber = {0778.11036},
      volume = {107},
      mrnumber = {1150604},
      fjournal = {Inventiones Mathematicae},
      mrreviewer = {Jean-Yves Âtesse},
      title = {On {$l$}-independence of algebraic monodromy groups in compatible systems of representations},
      year = {1992},
      pages = {603--636},
      }
  • [LarsenPinkAV] Go to document M. Larsen and R. Pink, "Abelian varieties, $l$-adic representations, and $l$-independence," Math. Ann., vol. 302, iss. 3, pp. 561-579, 1995.
    @ARTICLE{LarsenPinkAV, mrkey = {1339927},
      number = {3},
      issn = {0025-5831},
      author = {Larsen, Michael and Pink, R.},
      mrclass = {14K15 (11G10)},
      doi = {10.1007/BF01444508},
      journal = {Math. Ann.},
      zblnumber = {0867.14019},
      volume = {302},
      mrnumber = {1339927},
      fjournal = {Mathematische Annalen},
      title = {Abelian varieties, {$l$}-adic representations, and {$l$}-independence},
      year = {1995},
      pages = {561--579},
      }
  • [MR] Go to document J. S. Milne and N. Ramachandran, "Integral motives and special values of zeta functions," J. Amer. Math. Soc., vol. 17, iss. 3, pp. 499-555, 2004.
    @ARTICLE{MR, mrkey = {2053950},
      number = {3},
      issn = {0894-0347},
      author = {Milne, James S. and Ramachandran, Niranjan},
      mrclass = {14G10 (11G09 14F20 14F30)},
      doi = {10.1090/S0894-0347-04-00458-8},
      journal = {J. Amer. Math. Soc.},
      zblnumber = {1077.11043},
      volume = {17},
      mrnumber = {2053950},
      fjournal = {Journal of the American Mathematical Society},
      mrreviewer = {Annette Huber},
      title = {Integral motives and special values of zeta functions},
      year = {2004},
      pages = {499--555},
      }
  • [Mor85] L. Moret-Bailly, Pinceaux de Variétés Abeliennes, Paris: Soc. Math. France, 1985, vol. 129.
    @book{Mor85,
      author={Moret-Bailly, L.},
      TITLE={Pinceaux de {V}ariétés {A}beliennes},
      SERIES={Astérisque},
      VOLUME={129},
      PUBLISHER={Soc. Math. France},
      ADDRESS={Paris},
      YEAR={1985},
      mrnumber = {0797982},
      zblnumber = {0595.14032},
     }
  • [Nori] Go to document M. V. Nori, "On subgroups of ${ GL}_n({\bf F}_p)$," Invent. Math., vol. 88, iss. 2, pp. 257-275, 1987.
    @ARTICLE{Nori, mrkey = {0880952},
      number = {2},
      issn = {0020-9910},
      author = {Nori, Madhav V.},
      mrclass = {20G40 (20G30 20J06)},
      doi = {10.1007/BF01388909},
      journal = {Invent. Math.},
      zblnumber = {0632.20030},
      volume = {88},
      mrnumber = {0880952},
      fjournal = {Inventiones Mathematicae},
      mrreviewer = {James E. Humphreys},
      title = {On subgroups of {${\rm GL}_n({\bf F}_p)$}},
      year = {1987},
      pages = {257--275},
      }
  • [Orgogozo] F. Orgogozo, Constructibilité et modération uniformes en cohomologie étale, 2016.
    @misc{Orgogozo,
      author = {Orgogozo, F.},
      note = {preprint},
      title={Constructibilité et modération uniformes en cohomologie étale},
      YEAR={2016},
      arxiv = {1703.10850},
     }
  • [SerreCL] . J-P. Serre, Corps Locaux, Paris: Hermann, 1968.
    @BOOK{SerreCL, mrkey = {0354618},
      mrnumber = {0354618},
      author = {Serre, {\relax J-P}},
      mrclass = {12BXX (14GXX)},
      address = {Paris},
      title = {Corps Locaux},
      publisher = {Hermann},
      pages = {245},
      year = {1968},
      }
  • [SerreSS] Go to document . J-P. Serre, "Sur la semi-simplicité des produits tensoriels de représentations de groupes," Invent. Math., vol. 116, iss. 1-3, pp. 513-530, 1994.
    @ARTICLE{SerreSS, mrkey = {1253203},
      number = {1-3},
      issn = {0020-9910},
      author = {Serre, {\relax J-P}},
      mrclass = {20G05 (17B10 20C20)},
      doi = {10.1007/BF01231571},
      journal = {Invent. Math.},
      zblnumber = {0816.20014},
      volume = {116},
      mrnumber = {1253203},
      fjournal = {Inventiones Mathematicae},
      mrreviewer = {James E. Humphreys},
      title = {Sur la semi-simplicité des produits tensoriels de représentations de groupes},
      year = {1994},
      pages = {513--530},
      }
  • [SZ] Go to document A. N. Skorobogatov and . Y. G. Zarhin, "A finiteness theorem for the Brauer group of K3 surfaces in odd characteristic," Int. Math. Res. Not., vol. 2015, iss. 21, pp. 11404-11418, 2015.
    @ARTICLE{SZ, mrkey = {3456048},
      number = {21},
      issn = {1073-7928},
      author = {Skorobogatov, Alexei N. and Zarhin, {\relax Yu} G.},
      mrclass = {14F22 (14G17 14J28)},
      doi = {10.1093/imrn/rnv030},
      journal = {Int. Math. Res. Not.},
      zblnumber = {1347.14003},
      volume = {2015},
      mrnumber = {3456048},
      fjournal = {International Mathematics Research Notices. IMRN},
      mrreviewer = {Stefan SchrÂ\P er},
      title = {A finiteness theorem for the {B}rauer group of {K}3 surfaces in odd characteristic},
      year = {2015},
      pages = {11404--11418},
      }
  • [Springer] Go to document T. A. Springer, "Weyl’s character formula for algebraic groups," Invent. Math., vol. 5, pp. 85-105, 1968.
    @ARTICLE{Springer, mrkey = {0227178},
      issn = {0020-9910},
      author = {Springer, T. A.},
      mrclass = {14.50 (20.00)},
      doi = {10.1007/BF01425541},
      journal = {Invent. Math.},
      zblnumber = {0159.31802},
      volume = {5},
      mrnumber = {0227178},
      fjournal = {Inventiones Mathematicae},
      mrreviewer = {R. Steinberg},
      title = {Weyl's character formula for algebraic groups},
      year = {1968},
      pages = {85--105},
      }
  • [Steinberg] R. Steinberg, Endomorphisms of Linear Algebraic Groups, Providence, RI: Amer. Math. Soc., 1968, vol. 80.
    @BOOK{Steinberg, mrkey = {0230728},
      author = {Steinberg, Robert},
      mrclass = {14.50 (22.00)},
      series = {Mem. Amer. Math. Soc.},
      address = {Providence, RI},
      publisher = {Amer. Math. Soc.},
      zblnumber = {0164.02902},
      volume = {80},
      mrnumber = {0230728},
      mrreviewer = {E. Abe},
      title = {Endomorphisms of Linear Algebraic Groups},
      year = {1968},
      pages = {108},
      }
  • [St67] R. Steinberg, Lectures on Chevalley Groups, Yale University, New Haven, Conn., 1968.
    @BOOK{St67, zblnumber = {1196.22001},
      mrkey = {0466335},
      mrnumber = {0466335},
      author = {Steinberg, Robert},
      mrclass = {20G15 (14LXX)},
      mrreviewer = {J. E. Humphreys},
      title = {Lectures on {C}hevalley Groups},
      publisher = {Yale University, New Haven, Conn.},
      pages = {iii+277},
      year = {1968},
      }
  • [TateWH] J. T. Tate, "Algebraic cycles and poles of zeta functions," in Arithmetical Algebraic Geometry, New York: Harper & Row, 1965, pp. 93-110.
    @INCOLLECTION{TateWH, mrkey = {0225778},
      author = {Tate, John T.},
      mrclass = {14.05},
      address = {New York},
      publisher = {Harper \& Row},
      zblnumber = {0213.22804},
      mrnumber = {0225778},
      booktitle = {Arithmetical {A}lgebraic {G}eometry},
      venue = {{P}roc. {C}onf. {P}urdue {U}niv., 1963},
      mrreviewer = {A. Mattuck},
      title = {Algebraic cycles and poles of zeta functions},
      pages = {93--110},
      year = {1965},
      }
  • [TitsSimple] Go to document J. Tits, "Algebraic and abstract simple groups," Ann. of Math., vol. 80, pp. 313-329, 1964.
    @ARTICLE{TitsSimple, mrkey = {0164968},
      issn = {0003-486X},
      author = {Tits, J.},
      mrclass = {14.50 (20.75)},
      doi = {10.2307/1970394},
      journal = {Ann. of Math.},
      zblnumber = {0131.26501},
      volume = {80},
      mrnumber = {0164968},
      fjournal = {Annals of Mathematics. Second Series},
      mrreviewer = {J. DieudonnÂ\copyright{}},
      title = {Algebraic and abstract simple groups},
      year = {1964},
      pages = {313--329},
      }
  • [Tits] J. Tits, "Reductive groups over local fields," in Automorphic Forms, Representations and $L$-Functions, Providence, RI: Amer. Math. Soc., 1979, vol. XXXIII, pp. 29-69.
    @INCOLLECTION{Tits, mrkey = {0546588},
      author = {Tits, J.},
      mrclass = {20G25 (20G10)},
      series = {Proc. Sympos. Pure Math.},
      address = {Providence, RI},
      publisher = {Amer. Math. Soc.},
      volume = {XXXIII},
      mrnumber = {0546588},
      booktitle = {Automorphic Forms, Representations and {$L$}-Functions},
      venue = {{P}roc. {S}ympos. {P}ure {M}ath., {O}regon {S}tate {U}niv., {C}orvallis, {O}re., 1977, {P}art 1},
      title = {Reductive groups over local fields},
      pages = {29--69},
      year = {1979},
      zblnumber = {0415.20035},
      }
  • [Zar14] Go to document . Y. G. Zarhin, "Abelian varieties over fields of finite characteristic," Cent. Eur. J. Math., vol. 12, iss. 5, pp. 659-674, 2014.
    @article{Zar14,
      author = {Zarhin, {\relax Yu. G}.},
      title={Abelian varieties over fields of finite characteristic},
      JOURNAL={Cent. Eur. J. Math.},
      VOLUME={12},
      YEAR={2014},
      NUMBER={5},
      PAGES={659--674},
      mrnumber = {3165576},
      DOI = {10.2478/s11533-013-0370-1},
      ZBLNUMBER = {1296.11068},
     }
  • [Zarhin] . Y. G. Zarhin, "Endomorphisms of abelian varieties and points of finite order in characteristic $P$," Mat. Zametki, vol. 21, iss. 6, pp. 737-744, 1977.
    @ARTICLE{Zarhin, mrkey = {0485893},
      number = {6},
      issn = {0025-567X},
      author = {Zarhin, {\relax Yu. G}.},
      mrclass = {14K15},
      journal = {Mat. Zametki},
      zblnumber = {0358.14011},
      volume = {21},
      mrnumber = {0485893},
      fjournal = {Akademiya Nauk SSSR. Matematicheskie Zametki},
      mrreviewer = {Daniel Coray},
      title = {Endomorphisms of abelian varieties and points of finite order in characteristic {$P$}},
      year = {1977},
      pages = {737--744},
      }

Authors

Anna Cadoret

Centre de Mathématiques Laurent Schwartz (UMR 7640), Ecole Polytechnique, 91128 Palaiseau, France

Chun-Yin Hui

VU University Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Akio Tamagawa

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan