Chern’s conjecture for special affine manifolds

Abstract

An affine manifold $X$ in the sense of differential geometry is a differentiable manifold admitting an atlas of charts with value in an affine space, with locally constant affine change of coordinates. Equivalently, it is a manifold whose tangent bundle admits a flat torsion free connection. Around 1955 Chern conjectured that the Euler characteristic of any compact affine manifold has to vanish. In this paper we prove Chern’s conjecture in the case where $X$ moreover admits a parallel volume form.

  • [And] Go to document A. Andrada, "Complex product structures and affine foliations," Ann. Global Anal. Geom., vol. 27, iss. 4, pp. 377-405, 2005.
    @ARTICLE{And, mrkey = {2155381},
      number = {4},
      issn = {0232-704X},
      author = {Andrada, Adrián},
      mrclass = {53C15 (53C07 53C50 53C56)},
      doi = {10.1007/s10455-005-3897-y},
      journal = {Ann. Global Anal. Geom.},
      zblnumber = {1083.53030},
      volume = {27},
      mrnumber = {2155381},
      fjournal = {Annals of Global Analysis and Geometry},
      mrreviewer = {Fernando Etayo Gordejuela},
      title = {Complex product structures and affine foliations},
      year = {2005},
      pages = {377--405},
      }
  • [Ben] Go to document J. P. Benzécri, Variétés localement plates, 1955.
    @MISC{Ben,
      author = {{B}enzécri, J. P.},
      note = {Ph.D. thesis, Princeton University},
      title = {Variétés localement plates},
      year = {1955},
      url = {https://search.proquest.com/docview/302014496?accountid=13314},
      }
  • [BT] R. Bott and L. W. Tu, Differential Forms in Algebraic Topology, New York: Springer-Verlag, 1982, vol. 82.
    @BOOK{BT, mrkey = {0658304},
      author = {Bott, Raoul and Tu, Loring W.},
      mrclass = {57R19 (55-02 58-01 58A12)},
      series = {Grad. Texts in Math.},
      address = {New York},
      isbn = {0-387-90613-4},
      publisher = {Springer-Verlag},
      zblnumber = {0496.55001},
      volume = {82},
      mrnumber = {0658304},
      mrreviewer = {Hansklaus Rummler},
      title = {Differential Forms in Algebraic Topology},
      year = {1982},
      pages = {xiv+331},
      }
  • [BG] Go to document M. Bucher and T. Gelander, "The generalized Chern conjecture for manifolds that are locally a product of surfaces," Adv. Math., vol. 228, iss. 3, pp. 1503-1542, 2011.
    @ARTICLE{BG, mrkey = {2824562},
      number = {3},
      issn = {0001-8708},
      author = {Bucher, Michelle and Gelander, Tsachik},
      mrclass = {53C23 (53C35 57R22)},
      doi = {10.1016/j.aim.2011.06.022},
      journal = {Adv. Math.},
      zblnumber = {1226.53034},
      volume = {228},
      mrnumber = {2824562},
      fjournal = {Advances in Mathematics},
      mrreviewer = {Thilo Kuessner},
      title = {The generalized {C}hern conjecture for manifolds that are locally a product of surfaces},
      year = {2011},
      pages = {1503--1542},
      }
  • [car] Go to document Y. Carrière, "Autour de la conjecture de L. Markus sur les variétés affines," Invent. Math., vol. 95, iss. 3, pp. 615-628, 1989.
    @ARTICLE{car, mrkey = {0979369},
      number = {3},
      issn = {0020-9910},
      author = {Carrière, Yves},
      mrclass = {53C50 (53C05)},
      doi = {10.1007/BF01393894},
      journal = {Invent. Math.},
      zblnumber = {0682.53051},
      volume = {95},
      mrnumber = {0979369},
      fjournal = {Inventiones Mathematicae},
      mrreviewer = {William Goldman},
      title = {Autour de la conjecture de {L}. {M}arkus sur les variétés affines},
      year = {1989},
      pages = {615--628},
      }
  • [ChengYau] S. Y. Cheng and S. Yau, "The real Monge-Ampère equation and affine flat structures," in Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, Vol. 1, 2, 3, Beijing, 1982, pp. 339-370.
    @INPROCEEDINGS{ChengYau, mrkey = {0714338},
      author = {Cheng, Shiu Yuen and Yau, Shing-Tung},
      mrclass = {53C55 (35J65 53C45 58G30)},
      address = {Beijing},
      publisher = {Sci. Press Beijing},
      zblnumber = {0517.35020},
      mrnumber = {0714338},
      booktitle = {Proceedings of the 1980 {B}eijing {S}ymposium on {D}ifferential {G}eometry and {D}ifferential {E}quations, {V}ol. 1, 2, 3},
      venue = {{B}eijing, 1980},
      mrreviewer = {Philippe DelanoÂ$\ll$},
      title = {The real {M}onge-{A}mpère equation and affine flat structures},
      pages = {339--370},
      year = {1982},
      }
  • [CFG] Go to document V. Cruceanu, P. Fortuny, and P. M. Gadea, "A survey on paracomplex geometry," Rocky Mountain J. Math., vol. 26, iss. 1, pp. 83-115, 1996.
    @ARTICLE{CFG, mrkey = {1386154},
      number = {1},
      issn = {0035-7596},
      author = {Cruceanu, V. and Fortuny, P. and Gadea, P. M.},
      mrclass = {53C56 (53C15)},
      doi = {10.1216/rmjm/1181072105},
      journal = {Rocky Mountain J. Math.},
      zblnumber = {0856.53049},
      volume = {26},
      mrnumber = {1386154},
      fjournal = {The Rocky Mountain Journal of Mathematics},
      mrreviewer = {Sorin Dragomir},
      title = {A survey on paracomplex geometry},
      year = {1996},
      pages = {83--115},
      }
  • [Do] Go to document P. Dombrowski, "On the geometry of the tangent bundle," J. Reine Angew. Math., vol. 210, pp. 73-88, 1962.
    @ARTICLE{Do, mrkey = {0141050},
      issn = {0075-4102},
      author = {Dombrowski, Peter},
      mrclass = {53.50},
      doi = {10.1515/crll.1962.210.73},
      journal = {J. Reine Angew. Math.},
      zblnumber = {0105.16002},
      volume = {210},
      mrnumber = {0141050},
      fjournal = {Journal für die Reine und Angewandte Mathematik},
      mrreviewer = {T. J. Willmore},
      title = {On the geometry of the tangent bundle},
      year = {1962},
      pages = {73--88},
      }
  • [GH] Go to document W. M. Goldman and M. W. Hirsch, "Flat bundles with solvable holonomy," Proc. Amer. Math. Soc., vol. 82, iss. 3, pp. 491-494, 1981.
    @ARTICLE{GH, mrkey = {0612747},
      number = {3},
      issn = {0002-9939},
      author = {Goldman, William M. and Hirsch, Morris W.},
      mrclass = {57R15 (55R15 57R22)},
      doi = {10.2307/2043968},
      journal = {Proc. Amer. Math. Soc.},
      zblnumber = {0474.55014},
      volume = {82},
      mrnumber = {0612747},
      fjournal = {Proceedings of the American Mathematical Society},
      mrreviewer = {R. E. Stong},
      title = {Flat bundles with solvable holonomy},
      year = {1981},
      pages = {491--494},
      }
  • [G-ICM] Go to document W. M. Goldman, "Locally homogeneous geometric manifolds," in Proceedings of the International Congress of Mathematicians. Volume II, New Delhi, 2011, pp. 717-744.
    @inproceedings {G-ICM, MRKEY={2827816},
      AUTHOR = {Goldman, William M.},
      TITLE = {Locally homogeneous geometric manifolds},
      BOOKTITLE = {Proceedings of the {I}nternational {C}ongress of {M}athematicians. {V}olume {II}},
      PAGES = {717--744},
      PUBLISHER = {Hindustan Book Agency},
      ADDRESS={New Delhi},
      YEAR = {2011},
      MRCLASS = {57M50 (57N16)},
      MRNUMBER = {2827816},
      MRREVIEWER = {Bruno P. Zimmermann},
      doi = {10.1142/9789814324359_0071},
      zblnumber={1234.57001},
     }
  • [ht] M. W. Hirsch and W. P. Thurston, "Foliated bundles, invariant measures and flat manifolds," Ann. Math., vol. 101, pp. 369-390, 1975.
    @ARTICLE{ht, mrkey = {0370615},
      author = {Hirsch, Morris W. and Thurston, William P.},
      mrclass = {57D30},
      journal = {Ann. Math.},
      zblnumber = {0321.57015},
      volume = {101},
      mrnumber = {0370615},
      mrreviewer = {D. B. Fuks},
      title = {Foliated bundles, invariant measures and flat manifolds},
      year = {1975},
      pages = {369--390},
      }
  • [IvZa] Go to document S. Ivanov and S. Zamkovoy, "Parahermitian and paraquaternionic manifolds," Differential Geom. Appl., vol. 23, iss. 2, pp. 205-234, 2005.
    @ARTICLE{IvZa, mrkey = {2158044},
      number = {2},
      issn = {0926-2245},
      author = {Ivanov, Stefan and Zamkovoy, Simeon},
      mrclass = {53C15 (53C26)},
      doi = {10.1016/j.difgeo.2005.06.002},
      journal = {Differential Geom. Appl.},
      zblnumber = {1115.53022},
      volume = {23},
      mrnumber = {2158044},
      fjournal = {Differential Geometry and its Applications},
      mrreviewer = {RamÂ${}^3$n VÂ!`zquez-Lorenzo},
      title = {Parahermitian and paraquaternionic manifolds},
      year = {2005},
      pages = {205--234},
      }
  • [KS] Go to document M. Kashiwara and P. Schapira, Sheaves on Manifolds, New York: Springer-Verlag, 1990, vol. 292.
    @BOOK{KS, mrkey = {1074006},
      author = {Kashiwara, Masaki and Schapira, Pierre},
      mrclass = {58G07 (18F20 32C38 35A27)},
      series = {Grundl. Math. Wissen.},
      address = {New York},
      isbn = {3-540-51861-4},
      publisher = {Springer-Verlag},
      doi = {10.1007/978-3-662-02661-8},
      zblnumber = {0709.18001},
      volume = {292},
      mrnumber = {1074006},
      mrreviewer = {Michael M. Kapranov},
      title = {Sheaves on Manifolds},
      year = {1990},
      pages = {x+512},
      }
  • [kiss] Go to document B. Kostant and D. Sullivan, "The Euler characteristic of an affine space form is zero," Bull. Amer. Math. Soc., vol. 81, iss. 5, pp. 937-938, 1975.
    @ARTICLE{kiss, mrkey = {0375341},
      number = {5},
      issn = {0002-9904},
      author = {Kostant, B. and Sullivan, D.},
      mrclass = {57D20},
      doi = {10.1090/S0002-9904-1975-13896-1},
      journal = {Bull. Amer. Math. Soc.},
      zblnumber = {0313.57009},
      volume = {81},
      mrnumber = {0375341},
      fjournal = {Bulletin of the American Mathematical Society},
      mrreviewer = {W. S. Piper},
      title = {The {E}uler characteristic of an affine space form is zero},
      year = {1975},
      pages = {937--938},
      }
  • [mil] Go to document J. Milnor, "On the existence of a connection with curvature zero," Comment. Math. Helv., vol. 32, pp. 215-223, 1958.
    @ARTICLE{mil, mrkey = {0095518},
      issn = {0010-2571},
      author = {Milnor, John},
      mrclass = {53.00},
      doi = {10.1007/BF02564579},
      journal = {Comment. Math. Helv.},
      zblnumber = {0196.25101},
      volume = {32},
      mrnumber = {0095518},
      fjournal = {Commentarii Mathematici Helvetici},
      mrreviewer = {L. Auslander},
      title = {On the existence of a connection with curvature zero},
      year = {1958},
      pages = {215--223},
      }
  • [MS] J. W. Milnor and J. D. Stasheff, Characteristic Classes, Princeton, NJ: Princeton Univ. Press, 1974, vol. 76.
    @BOOK{MS, mrkey = {0440554},
      author = {Milnor, John W. and Stasheff, James D.},
      mrclass = {57-01 (55-02 55F40 57D20)},
      series = {Ann. of Math. Stud.},
      address = {Princeton, NJ},
      publisher = {Princeton Univ. Press},
      zblnumber = {1079.57504},
      volume = {76},
      mrnumber = {0440554},
      mrreviewer = {F. Hirzebruch},
      title = {Characteristic Classes},
      year = {1974},
      pages = {vii+331},
      }
  • [Sal] Go to document S. M. Salamon, "Differential geometry of quaternionic manifolds," Ann. Sci. École Norm. Sup., vol. 19, iss. 1, pp. 31-55, 1986.
    @ARTICLE{Sal, mrkey = {0860810},
      number = {1},
      issn = {0012-9593},
      author = {Salamon, S. M.},
      mrclass = {53C55 (32L99 53C10 58G05)},
      url = {http://www.numdam.org/item?id=ASENS_1986_4_19_1_31_0},
      journal = {Ann. Sci. École Norm. Sup.},
      zblnumber = {0616.53023},
      volume = {19},
      mrnumber = {0860810},
      fjournal = {Annales Scientifiques de l'École Normale Supérieure. Quatrième Série},
      mrreviewer = {Claude LeBrun},
      title = {Differential geometry of quaternionic manifolds},
      year = {1986},
      pages = {31--55},
      }
  • [smi] Go to document J. Smillie, "Flat manifolds with non-zero Euler characteristics," Comment. Math. Helv., vol. 52, iss. 3, pp. 453-455, 1977.
    @ARTICLE{smi, mrkey = {0461521},
      number = {3},
      issn = {0010-2571},
      author = {Smillie, John},
      mrclass = {57D20},
      doi = {10.1007/BF02567378},
      journal = {Comment. Math. Helv.},
      zblnumber = {0357.53021},
      volume = {52},
      mrnumber = {0461521},
      fjournal = {Commentarii Mathematici Helvetici},
      mrreviewer = {C. B. Thomas},
      title = {Flat manifolds with non-zero {E}uler characteristics},
      year = {1977},
      pages = {453--455},
      }
  • [To97] Go to document P. Tondeur, Geometry of Foliations, Basel: Birkhäuser, 1997, vol. 90.
    @BOOK{To97, mrkey = {1456994},
      author = {Tondeur, Philippe},
      mrclass = {53C12 (57R30 58A10)},
      series = {Monogr. Math.},
      isbn = {3-7643-5741-X},
      address = {Basel},
      publisher = {Birkhäuser},
      doi = {10.1007/978-3-0348-8914-8},
      zblnumber = {0905.53002},
      volume = {90},
      mrnumber = {1456994},
      mrreviewer = {John C. Wood},
      title = {Geometry of Foliations},
      year = {1997},
      pages = {viii+305},
      }
  • [Ver] Go to document M. Verbitsky, "Hypercomplex varieties," Comm. Anal. Geom., vol. 7, iss. 2, pp. 355-396, 1999.
    @ARTICLE{Ver, mrkey = {1685582},
      number = {2},
      issn = {1019-8385},
      author = {Verbitsky, Misha},
      mrclass = {32J27 (32L25 32Q15 53C26)},
      doi = {10.4310/CAG.1999.v7.n2.a8},
      journal = {Comm. Anal. Geom.},
      zblnumber = {0935.32022},
      volume = {7},
      mrnumber = {1685582},
      fjournal = {Communications in Analysis and Geometry},
      mrreviewer = {Daniel Huybrechts},
      title = {Hypercomplex varieties},
      year = {1999},
      pages = {355--396},
      }
  • [Wa] A. G. Walker, "Almost-product structures," in Proc. Sympos. Pure Math., Vol. III, Providence, RI: Amer. Math. Soc., 1961, pp. 94-100.
    @INCOLLECTION{Wa, mrkey = {0123993},
      author = {Walker, A. G.},
      mrclass = {53.52},
      address = {Providence, RI},
      publisher = {Amer. Math. Soc.},
      mrnumber = {0123993},
      booktitle = {Proc. {S}ympos. {P}ure {M}ath., {V}ol. {III}},
      mrreviewer = {T. J. Willmore},
      title = {Almost-product structures},
      pages = {94--100},
      year = {1961},
      zblnumber = {0103.38801},
      }

Authors

Bruno Klingler

Institut de Mathématiques de Jussieu, Paris, France and Institut Universitaire de France, Paris, France