Harmonic quasi-isometric maps between rank one symmetric spaces

Abstract

We prove that a quasi-isometric map between rank one symmetric spaces is within bounded distance from a unique harmonic map. In particular, this completes the proof of the Schoen-Li-Wang conjecture.

  • [AndSchoen85] Go to document M. T. Anderson and R. Schoen, "Positive harmonic functions on complete manifolds of negative curvature," Ann. of Math., vol. 121, iss. 3, pp. 429-461, 1985.
    @ARTICLE{AndSchoen85, mrkey = {0794369},
      number = {3},
      issn = {0003-486X},
      author = {Anderson, Michael T. and Schoen, Richard},
      mrclass = {58G20 (31C12 53C21 58E20)},
      doi = {10.2307/1971181},
      journal = {Ann. of Math.},
      zblnumber = {0587.53045},
      volume = {121},
      mrnumber = {0794369},
      fjournal = {Annals of Mathematics. Second Series},
      mrreviewer = {H. C. J. Sealey},
      coden = {ANMAAH},
      title = {Positive harmonic functions on complete manifolds of negative curvature},
      year = {1985},
      pages = {429--461},
      }
  • [Ballmann95] Go to document W. Ballmann, Lectures on Spaces of Nonpositive Curvature, Birkhäuser, Basel, 1995, vol. 25.
    @BOOK{Ballmann95, mrkey = {1377265},
      author = {Ballmann, Werner},
      mrclass = {53C21 (58F17)},
      series = {DMV Seminar},
      isbn = {3-7643-5242-6},
      publisher = {Birkhäuser, Basel},
      doi = {10.1007/978-3-0348-9240-7},
      zblnumber = {0834.53003},
      volume = {25},
      mrnumber = {1377265},
      mrreviewer = {Boris Hasselblatt},
      title = {Lectures on Spaces of Nonpositive Curvature},
      year = {1995},
      pages = {viii+112},
      }
  • [BonkHeiKos01] M. Bonk, J. Heinonen, and P. Koskela, Uniformizing Gromov Hyperbolic Spaces, Paris: Math. Soc. France, 2001, vol. 270.
    @BOOK{BonkHeiKos01, mrkey = {1829896},
      issn = {0303-1179},
      author = {Bonk, Mario and Heinonen, Juha and Koskela, Pekka},
      mrclass = {30C65 (30C62 30F10 30F45)},
      series = {Astérisque},
      address = {Paris},
      publisher = {Math. Soc. France},
      zblnumber = {0970.30010},
      volume = {270},
      mrnumber = {1829896},
      fjournal = {Astérisque},
      mrreviewer = {David A. Herron},
      title = {Uniformizing {G}romov Hyperbolic Spaces},
      year = {2001},
      pages = {viii+99},
      }
  • [BonkSchramm01] Go to document M. Bonk and O. Schramm, "Embeddings of Gromov hyperbolic spaces," Geom. Funct. Anal., vol. 10, iss. 2, pp. 266-306, 2000.
    @ARTICLE{BonkSchramm01, mrkey = {1771428},
      number = {2},
      issn = {1016-443X},
      author = {Bonk, Mario and Schramm, O.},
      mrclass = {53C23 (54E40 57M07)},
      doi = {10.1007/s000390050009},
      journal = {Geom. Funct. Anal.},
      zblnumber = {0972.53021},
      volume = {10},
      mrnumber = {1771428},
      fjournal = {Geometric and Functional Analysis},
      mrreviewer = {Michel Coornaert},
      title = {Embeddings of {G}romov hyperbolic spaces},
      year = {2000},
      pages = {266--306},
      }
  • [BonSch10] Go to document F. Bonsante and J. Schlenker, "Maximal surfaces and the universal Teichmüller space," Invent. Math., vol. 182, iss. 2, pp. 279-333, 2010.
    @ARTICLE{BonSch10, mrkey = {2729269},
      number = {2},
      issn = {0020-9910},
      author = {Bonsante, Francesco and Schlenker, Jean-Marc},
      mrclass = {30F60},
      doi = {10.1007/s00222-010-0263-x},
      journal = {Invent. Math.},
      zblnumber = {1222.53063},
      volume = {182},
      mrnumber = {2729269},
      fjournal = {Inventiones Mathematicae},
      coden = {INVMBH},
      title = {Maximal surfaces and the universal {T}eichmüller space},
      year = {2010},
      pages = {279--333},
      }
  • [BourdonPajot03] Go to document M. Bourdon and H. Pajot, "Cohomologie $l_p$ et espaces de Besov," J. Reine Angew. Math., vol. 558, pp. 85-108, 2003.
    @ARTICLE{BourdonPajot03, mrkey = {1979183},
      issn = {0075-4102},
      author = {Bourdon, Marc and Pajot, Herv{é}},
      mrclass = {20F67 (30F45 46E30)},
      doi = {10.1515/crll.2003.043},
      journal = {J. Reine Angew. Math.},
      zblnumber = {1044.20026},
      volume = {558},
      mrnumber = {1979183},
      fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
      mrreviewer = {Jeremy T. Tyson},
      coden = {JRMAA8},
      title = {Cohomologie {$l\sb p$} et espaces de {B}esov},
      year = {2003},
      pages = {85--108},
      }
  • [Cheng80] S. Y. Cheng, "Liouville theorem for harmonic maps," in Geometry of the Laplace Operator, Providence, RI: Amer. Math. Soc., 1980, vol. XXXVI, pp. 147-151.
    @INCOLLECTION{Cheng80, mrkey = {0573431},
      author = {Cheng, Shiu Yuen},
      mrclass = {58E20 (31B99 53C21)},
      series = {Proc. Sympos. Pure Math.},
      address = {Providence, RI},
      publisher = {Amer. Math. Soc.},
      volume = {XXXVI},
      mrnumber = {0573431},
      booktitle = {Geometry of the {L}aplace Operator},
      mrreviewer = {John C. Wood},
      venue = {{P}roc. {S}ympos. {P}ure {M}ath., {U}niv. {H}awaii, {H}onolulu, {H}awaii, 1979},
      title = {Liouville theorem for harmonic maps},
      pages = {147--151},
      year = {1980},
      zblnumber = {0455.58009},
     }
  • [donn94] Go to document H. Donnelly, "Dirichlet problem at infinity for harmonic maps: rank one symmetric spaces," Trans. Amer. Math. Soc., vol. 344, iss. 2, pp. 713-735, 1994.
    @ARTICLE{donn94, mrkey = {1250817},
      number = {2},
      issn = {0002-9947},
      author = {Donnelly, Harold},
      mrclass = {58E20},
      doi = {10.2307/2154503},
      journal = {Trans. Amer. Math. Soc.},
      zblnumber = {0812.58020},
      volume = {344},
      mrnumber = {1250817},
      fjournal = {Transactions of the American Mathematical Society},
      coden = {TAMTAM},
      title = {Dirichlet problem at infinity for harmonic maps: rank one symmetric spaces},
      year = {1994},
      pages = {713--735},
      }
  • [EeLem78] Go to document J. Eells and L. Lemaire, "A report on harmonic maps," Bull. London Math. Soc., vol. 10, iss. 1, pp. 1-68, 1978.
    @ARTICLE{EeLem78, mrkey = {0495450},
      number = {1},
      issn = {0024-6093},
      author = {Eells, J. and Lemaire, L.},
      mrclass = {58E20 (31C25)},
      doi = {10.1112/blms/10.1.1},
      journal = {Bull. London Math. Soc.},
      zblnumber = {0401.58003},
      volume = {10},
      mrnumber = {0495450},
      fjournal = {The Bulletin of the London Mathematical Society},
      mrreviewer = {V. L. Hansen},
      coden = {LMSBBT},
      title = {A report on harmonic maps},
      year = {1978},
      pages = {1--68},
      }
  • [EskinFarb97] Go to document A. Eskin and B. Farb, "Quasi-flats and rigidity in higher rank symmetric spaces," J. Amer. Math. Soc., vol. 10, iss. 3, pp. 653-692, 1997.
    @ARTICLE{EskinFarb97, mrkey = {1434399},
      number = {3},
      issn = {0894-0347},
      author = {Eskin, Alex and Farb, Benson},
      mrclass = {22E40 (53C35)},
      doi = {10.1090/S0894-0347-97-00238-5},
      journal = {J. Amer. Math. Soc.},
      zblnumber = {0893.22004},
      volume = {10},
      mrnumber = {1434399},
      fjournal = {Journal of the American Mathematical Society},
      mrreviewer = {Alexander Starkov},
      title = {Quasi-flats and rigidity in higher rank symmetric spaces},
      year = {1997},
      pages = {653--692},
      }
  • [FarrellOR00] Go to document F. T. Farrell, P. Ontaneda, and M. S. Raghunathan, "Non-univalent harmonic maps homotopic to diffeomorphisms," J. Differential Geom., vol. 54, iss. 2, pp. 227-253, 2000.
    @ARTICLE{FarrellOR00, mrkey = {1818179},
      number = {2},
      issn = {0022-040X},
      author = {Farrell, F. T. and Ontaneda, P. and Raghunathan, M. S.},
      mrclass = {58E20 (53C24 57R50)},
      url = {http://projecteuclid.org/euclid.jdg/1214341646},
      journal = {J. Differential Geom.},
      zblnumber = {1035.58014},
      volume = {54},
      mrnumber = {1818179},
      fjournal = {Journal of Differential Geometry},
      mrreviewer = {Martin Scharlemann},
      coden = {JDGEAS},
      title = {Non-univalent harmonic maps homotopic to diffeomorphisms},
      year = {2000},
      pages = {227--253},
      }
  • [GHL04] Go to document S. Gallot, D. Hulin, and J. Lafontaine, Riemannian Geometry, Third ed., New York: Springer-Verlag, 2004.
    @BOOK{GHL04, mrkey = {2088027},
      author = {Gallot, Sylvestre and Hulin, Dominique and Lafontaine, Jacques},
      mrclass = {53-01 (53C20 53C21 53C23)},
      series = {Universitext},
      edition = {Third},
      address = {New York},
      isbn = {3-540-20493-8},
      publisher = {Springer-Verlag},
      doi = {10.1007/978-3-642-18855-8},
      zblnumber = {1068.53001},
      mrnumber = {2088027},
      mrreviewer = {Joseph E. Borzellino},
      title = {Riemannian Geometry},
      year = {2004},
      pages = {xvi+322},
      }
  • [GhysHarp90] Go to document ’E. Ghys and P. de la Harpe, Sur les groupes Hyperboliques d’après Mikhael Gromov, Boston: Birkhäuser, 1990, vol. 83.
    @BOOK{GhysHarp90,
      author={Ghys, \’E. and de~la Harpe, P.},
      mrkey = {1086648},
      mrclass = {53C23 (20F32 57M05 57S30)},
      series = {Progr. Math.},
      isbn = {0-8176-3508-4},
      address = {Boston},
      publisher = {Birkhäuser},
      doi = {10.1007/978-1-4684-9167-8},
      volume = {83},
      mrnumber = {1086648},
      mrreviewer = {Viktor Schroeder},
      title = {Sur les groupes Hyperboliques d'après {M}ikhael {G}romov},
      year = {1990},
      pages = {xii+285},
      zblnumber = {0731.20025},
      }
  • [Gromov87] Go to document M. Gromov, "Hyperbolic groups," in Essays in Group Theory, New York: Springer-Verlag, 1987, vol. 8, pp. 75-263.
    @INCOLLECTION{Gromov87, mrkey = {0919829},
      author = {Gromov, M.},
      mrclass = {20F32 (20F06 20F10 22E40 53C20 57R75 58F17)},
      series = {Math. Sci. Res. Inst. Publ.},
      address = {New York},
      publisher = {Springer-Verlag},
      doi = {10.1007/978-1-4613-9586-7_3},
      volume = {8},
      mrnumber = {0919829},
      booktitle = {Essays in Group Theory},
      mrreviewer = {Christopher W. Stark},
      title = {Hyperbolic groups},
      pages = {75--263},
      year = {1987},
      }
  • [HardtWolf97] Go to document R. Hardt and M. Wolf, "Harmonic extensions of quasiconformal maps to hyperbolic space," Indiana Univ. Math. J., vol. 46, iss. 1, pp. 155-163, 1997.
    @ARTICLE{HardtWolf97, mrkey = {1462800},
      number = {1},
      issn = {0022-2518},
      author = {Hardt, Robert and Wolf, Michael},
      mrclass = {30C65 (30C70 30F45)},
      doi = {10.1512/iumj.1997.46.1351},
      journal = {Indiana Univ. Math. J.},
      zblnumber = {0881.30015},
      volume = {46},
      mrnumber = {1462800},
      fjournal = {Indiana University Mathematics Journal},
      mrreviewer = {Kiyoko Nishizawa},
      coden = {IUMJAB},
      title = {Harmonic extensions of quasiconformal maps to hyperbolic space},
      year = {1997},
      pages = {155--163},
      }
  • [Jost84] J. Jost, Harmonic Mappings Between Riemannian Manifolds, Canberra: Australian National Univ., Centre for Math. Anal., 1984, vol. 4.
    @BOOK{Jost84, mrkey = {0756629},
      author = {Jost, J{ü}rgen},
      mrclass = {58E20 (35J99 53C20)},
      series = {Proc. Centre Math. Anal., Australian National Univ.},
      isbn = {0-86784-403-5},
      address = {Canberra},
      publisher = {Australian National Univ., Centre for Math. Anal.},
      volume = {4},
      mrnumber = {0756629},
      mrreviewer = {H. C. J. Sealey},
      title = {Harmonic Mappings Between {R}iemannian Manifolds},
      year = {1984},
      pages = {iv+177},
      }
  • [Karcher89] H. Karcher, "Riemannian comparison constructions," in Global Differential Geometry, Washington, DC: Math. Assoc. America, 1989, vol. 27, pp. 170-222.
    @INCOLLECTION{Karcher89, mrkey = {1013810},
      author = {Karcher, Hermann},
      mrclass = {53C20},
      series = {MAA Stud. Math.},
      address = {Washington, DC},
      publisher = {Math. Assoc. America},
      zblnumber = {0683.53040},
      volume = {27},
      mrnumber = {1013810},
      booktitle = {Global Differential Geometry},
      mrreviewer = {Viktor Schroeder},
      title = {Riemannian comparison constructions},
      pages = {170--222},
      year = {1989},
      }
  • [KleinerLeeb97] Go to document B. Kleiner and B. Leeb, "Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings," Inst. Hautes Études Sci. Publ. Math., vol. 86, pp. 115-197, 1997.
    @ARTICLE{KleinerLeeb97, mrkey = {1608566},
      volume = {86},
      issn = {0073-8301},
      author = {Kleiner, Bruce and Leeb, Bernhard},
      mrclass = {53C35 (20E42 20F32 53C23 57M07)},
      url = {http://www.numdam.org/item?id=PMIHES_1997__86__115_0},
      journal = {Inst. Hautes Études Sci. Publ. Math.},
      zblnumber = {0910.53035},
      mrnumber = {1608566},
      fjournal = {Institut des Hautes Études Scientifiques. Publications Mathématiques},
      mrreviewer = {Lee Mosher},
      coden = {PMIHA6},
      title = {Rigidity of quasi-isometries for symmetric spaces and {E}uclidean buildings},
      year = {1997},
      pages = {115--197},
      }
  • [Markon] M. Lemm and V. Markovic, Heat flows on hyperbolic spaces, 2015.
    @misc{Markon,
      author = {Lemm, M. and Markovic, V.},
      title = {Heat flows on hyperbolic spaces},
      YEAR = {2015},
      ARXIV={1506.04345},
      note={{\em J. Differential Geom.},
      to appear} ,}
  • [LiTam93] Go to document P. Li and L. Tam, "Uniqueness and regularity of proper harmonic maps. II," Indiana Univ. Math. J., vol. 42, iss. 2, pp. 591-635, 1993.
    @ARTICLE{LiTam93, mrkey = {1237061},
      number = {2},
      issn = {0022-2518},
      author = {Li, Peter and Tam, Luen-Fai},
      mrclass = {58E20 (35D10 35J65)},
      doi = {10.1512/iumj.1993.42.42027},
      journal = {Indiana Univ. Math. J.},
      zblnumber = {0790.58011},
      volume = {42},
      mrnumber = {1237061},
      fjournal = {Indiana University Mathematics Journal},
      mrreviewer = {Andrea Ratto},
      coden = {IUMJAB},
      title = {Uniqueness and regularity of proper harmonic maps. {II}},
      year = {1993},
      pages = {591--635},
      }
  • [LiWang98] Go to document P. Li and J. Wang, "Harmonic rough isometries into Hadamard space," Asian J. Math., vol. 2, iss. 3, pp. 419-442, 1998.
    @ARTICLE{LiWang98, mrkey = {1724623},
      number = {3},
      issn = {1093-6106},
      author = {Li, Peter and Wang, Jiaping},
      mrclass = {53C24 (58E20)},
      doi = {10.4310/AJM.1998.v2.n3.a2},
      journal = {Asian J. Math.},
      zblnumber = {0944.58011},
      volume = {2},
      mrnumber = {1724623},
      fjournal = {Asian Journal of Mathematics},
      mrreviewer = {Mingliang Cai},
      title = {Harmonic rough isometries into {H}adamard space},
      year = {1998},
      pages = {419--442},
      }
  • [LinWang08] Go to document F. Lin and C. Wang, The Analysis of Harmonic Maps and their Heat Flows, Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd., 2008.
    @BOOK{LinWang08, mrkey = {2431658},
      author = {Lin, Fanghua and Wang, Changyou},
      mrclass = {58E20 (53C44 58J35)},
      isbn = {978-981-277-952-6; 981-277-952-3},
      address = {Hackensack, NJ},
      publisher = {World Scientific Publishing Co. Pte. Ltd.},
      doi = {10.1142/9789812779533},
      zblnumber = {1203.58004},
      mrnumber = {2431658},
      title = {The Analysis of Harmonic Maps and their Heat Flows},
      year = {2008},
      pages = {xii+267},
      }
  • [Markovic02] Go to document V. Markovic, "Harmonic diffeomorphisms of noncompact surfaces and Teichmüller spaces," J. London Math. Soc., vol. 65, iss. 1, pp. 103-114, 2002.
    @ARTICLE{Markovic02, mrkey = {1875138},
      number = {1},
      issn = {0024-6107},
      author = {Markovic, Vladimir},
      mrclass = {32G15 (58E20)},
      doi = {10.1112/S002461070100268X},
      journal = {J. London Math. Soc.},
      zblnumber = {1041.30020},
      volume = {65},
      mrnumber = {1875138},
      fjournal = {Journal of the London Mathematical Society. Second Series},
      mrreviewer = {Yoichi Imayoshi},
      coden = {JLMSAK},
      title = {Harmonic diffeomorphisms of noncompact surfaces and {T}eichmüller spaces},
      year = {2002},
      pages = {103--114},
      }
  • [Marko2] Go to document V. Markovic, Harmonic maps and the Schoen conjecture, 2015.
    @misc{Marko2,
      author = {Markovic, Vladimir},
      title = {Harmonic maps and the {S}choen conjecture},
      year={2015},
      note= {preprint},
      url = {www.its.caltech.edu/~markovic/preprints.html},
      }
  • [Marko3] Go to document V. Markovic, "Harmonic maps between 3-dimensional hyperbolic spaces," Invent. Math., vol. 199, iss. 3, pp. 921-951, 2015.
    @ARTICLE{Marko3, mrkey = {3314518},
      number = {3},
      issn = {0020-9910},
      author = {Markovic, Vladimir},
      mrclass = {53C43 (30C65 30F45)},
      doi = {10.1007/s00222-014-0536-x},
      journal = {Invent. Math.},
      zblnumber = {1316.53072},
      volume = {199},
      mrnumber = {3314518},
      fjournal = {Inventiones Mathematicae},
      mrreviewer = {Anestis Fotiadis},
      title = {Harmonic maps between 3-dimensional hyperbolic spaces},
      year = {2015},
      pages = {921--951},
      }
  • [Mostow73] G. D. Mostow, Strong Rigidity of Locally Symmetric Spaces, Princeton, NJ: Princeton Univ. Press, 1973, vol. 78.
    @BOOK{Mostow73, mrkey = {0385004},
      author = {Mostow, G. D.},
      mrclass = {22E40 (53C35)},
      series = {Ann. of Math. Stud.},
      address = {Princeton, NJ},
      publisher = {Princeton Univ. Press},
      volume = {78},
      mrnumber = {0385004},
      mrreviewer = {M. S. Raghunathan},
      title = {Strong Rigidity of Locally Symmetric Spaces},
      year = {1973},
      pages = {v+195},
      }
  • [Pansu89] Go to document P. Pansu, "Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un," Ann. of Math., vol. 129, iss. 1, pp. 1-60, 1989.
    @ARTICLE{Pansu89, mrkey = {0979599},
      number = {1},
      issn = {0003-486X},
      author = {Pansu, Pierre},
      mrclass = {53C20 (22E40)},
      doi = {10.2307/1971484},
      journal = {Ann. of Math.},
      zblnumber = {0678.53042},
      volume = {129},
      mrnumber = {0979599},
      fjournal = {Annals of Mathematics. Second Series},
      mrreviewer = {Gudlaugur Thorbergsson},
      coden = {ANMAAH},
      title = {Métriques de {C}arnot-{C}arathéodory et quasiisométries des espaces symétriques de rang un},
      year = {1989},
      pages = {1--60},
      }
  • [Paulin96] Go to document F. Paulin, "Un groupe hyperbolique est déterminé par son bord," J. London Math. Soc., vol. 54, iss. 1, pp. 50-74, 1996.
    @ARTICLE{Paulin96, mrkey = {1395067},
      number = {1},
      issn = {0024-6107},
      author = {Paulin, Fr{é}d{é}ric},
      mrclass = {20F32 (30C65 53C23 57M07)},
      doi = {10.1112/jlms/54.1.50},
      journal = {J. London Math. Soc.},
      volume = {54},
      mrnumber = {1395067},
      fjournal = {Journal of the London Mathematical Society. Second Series},
      mrreviewer = {Michel Coornaert},
      coden = {JLMSAK},
      title = {Un groupe hyperbolique est déterminé par son bord},
      year = {1996},
      pages = {50--74},
      }
  • [Rivet99] B. Rivet, Applications harmoniques laminées et rigidité des feuilletages, 1999.
    @MISC{Rivet99,
      author = {Rivet, B.},
      note = {Ph.D. thesis, Orsay},
      title = {Applications harmoniques laminées et rigidité des feuilletages},
      year = {1999},
      }
  • [Schoen77] R. M. Schoen, Existence and regularity for some geometric variational problems, 1977.
    @MISC{Schoen77,
      author = {Schoen, Richard M.},
      note = {Ph.D. thesis, Stanford Univ.},
      title = {Existence and regularity for some geometric variational problems},
      year = {1977},
      }
  • [Schoen90] R. M. Schoen, "The role of harmonic mappings in rigidity and deformation problems," in Complex Geometry, New York: Dekker, 1993, vol. 143, pp. 179-200.
    @INCOLLECTION{Schoen90, mrkey = {1201611},
      author = {Schoen, Richard M.},
      mrclass = {58E20 (32C17 53C21)},
      series = {Lecture Notes in Pure and Appl. Math.},
      address = {New York},
      publisher = {Dekker},
      zblnumber = {0806.58013},
      volume = {143},
      mrnumber = {1201611},
      booktitle = {Complex Geometry},
      venue = {{O}saka, 1990},
      title = {The role of harmonic mappings in rigidity and deformation problems},
      pages = {179--200},
      year = {1993},
      }
  • [SchoenUhl82] Go to document R. M. Schoen and K. Uhlenbeck, "A regularity theory for harmonic maps," J. Differential Geom., vol. 17, iss. 2, pp. 307-335, 1982.
    @ARTICLE{SchoenUhl82, mrkey = {0664498},
      number = {2},
      issn = {0022-040X},
      author = {Schoen, Richard M. and Uhlenbeck, Karen},
      mrclass = {58E20 (35J20)},
      url = {http://projecteuclid.org/euclid.jdg/1214436923},
      journal = {J. Differential Geom.},
      zblnumber = {0521.58021},
      volume = {17},
      mrnumber = {0664498},
      fjournal = {Journal of Differential Geometry},
      mrreviewer = {J. Eells},
      coden = {JDGEAS},
      title = {A regularity theory for harmonic maps},
      year = {1982},
      pages = {307--335},
      }
  • [SchoenUhl83] Go to document R. M. Schoen and K. Uhlenbeck, "Boundary regularity and the Dirichlet problem for harmonic maps," J. Differential Geom., vol. 18, iss. 2, pp. 253-268, 1983.
    @ARTICLE{SchoenUhl83, mrkey = {0710054},
      number = {2},
      issn = {0022-040X},
      author = {Schoen, Richard M. and Uhlenbeck, Karen},
      mrclass = {58E20},
      url = {http://projecteuclid.org/euclid.jdg/1214437663},
      journal = {J. Differential Geom.},
      zblnumber = {0547.58020},
      volume = {18},
      mrnumber = {0710054},
      fjournal = {Journal of Differential Geometry},
      mrreviewer = {Liane Valere Bouche},
      coden = {JDGEAS},
      title = {Boundary regularity and the {D}irichlet problem for harmonic maps},
      year = {1983},
      pages = {253--268},
      }
  • [SchoenYau97] R. M. Schoen and S. T. Yau, Lectures on Harmonic Maps, Cambridge, MA: International Press, 1997, vol. II.
    @BOOK{SchoenYau97, mrkey = {1474501},
      author = {Schoen, Richard M. and Yau, S. T.},
      mrclass = {58E20 (53C42)},
      series = {Conf. Proc. Lecture Notes Geom. Topology},
      isbn = {1-57146-002-0},
      address = {Cambridge, MA},
      publisher = {International Press},
      zblnumber = {0886.53004},
      volume = {II},
      mrnumber = {1474501},
      mrreviewer = {John C. Wood},
      title = {Lectures on Harmonic Maps},
      year = {1997},
      pages = {vi+394},
      }
  • [Simon96] Go to document L. Simon, Theorems on Regularity and Singularity of Energy Minimizing Maps, Basel: Birkhäuser, 1996.
    @BOOK{Simon96, mrkey = {1399562},
      author = {Simon, Leon},
      mrclass = {58E20 (35J60 49N60 58G03)},
      series = {Lectures in Mathematics ETH Zürich},
      isbn = {3-7643-5397-X},
      address = {Basel},
      publisher = {Birkhäuser},
      doi = {10.1007/978-3-0348-9193-6},
      zblnumber = {0864.58015},
      mrnumber = {1399562},
      mrreviewer = {Nathan Smale},
      title = {Theorems on Regularity and Singularity of Energy Minimizing Maps},
      year = {1996},
      pages = {viii+152},
      }
  • [TamWan95] Go to document L. Tam and T. Y. H. Wan, "Quasi-conformal harmonic diffeomorphism and the universal Teichmüller space," J. Differential Geom., vol. 42, iss. 2, pp. 368-410, 1995.
    @ARTICLE{TamWan95, mrkey = {1366549},
      number = {2},
      issn = {0022-040X},
      author = {Tam, Luen-Fai and Wan, Tom Y. H.},
      mrclass = {32G15 (30C65 30F60)},
      url = {http://projecteuclid.org/euclid.jdg/1214457235},
      journal = {J. Differential Geom.},
      zblnumber = {0873.32019},
      volume = {42},
      mrnumber = {1366549},
      fjournal = {Journal of Differential Geometry},
      mrreviewer = {William P. Minicozzi, II},
      coden = {JDGEAS},
      title = {Quasi-conformal harmonic diffeomorphism and the universal {T}eichmüller space},
      year = {1995},
      pages = {368--410},
      }
  • [Tukia85] Go to document P. Tukia, "Quasiconformal extension of quasisymmetric mappings compatible with a Möbius group," Acta Math., vol. 154, iss. 3-4, pp. 153-193, 1985.
    @ARTICLE{Tukia85, mrkey = {0781586},
      number = {3-4},
      issn = {0001-5962},
      author = {Tukia, Pekka},
      mrclass = {30C60 (30F35)},
      doi = {10.1007/BF02392471},
      journal = {Acta Math.},
      zblnumber = {0562.30018},
      volume = {154},
      mrnumber = {0781586},
      fjournal = {Acta Mathematica},
      mrreviewer = {Gaven J. Martin},
      coden = {ACMAA8},
      title = {Quasiconformal extension of quasisymmetric mappings compatible with a {M}öbius group},
      year = {1985},
      pages = {153--193},
      }
  • [Wan92] Go to document T. Y. Wan, "Constant mean curvature surface, harmonic maps, and universal Teichmüller space," J. Differential Geom., vol. 35, iss. 3, pp. 643-657, 1992.
    @ARTICLE{Wan92, mrkey = {1163452},
      number = {3},
      issn = {0022-040X},
      author = {Wan, Tom Yau-Heng},
      mrclass = {58E20 (32G15 53A10)},
      url = {http://projecteuclid.org/euclid.jdg/1214448260},
      journal = {J. Differential Geom.},
      zblnumber = {0808.53056},
      volume = {35},
      mrnumber = {1163452},
      fjournal = {Journal of Differential Geometry},
      mrreviewer = {A. J. Tromba},
      coden = {JDGEAS},
      title = {Constant mean curvature surface, harmonic maps, and universal {T}eichmüller space},
      year = {1992},
      pages = {643--657},
      }

Authors

Yves Benoist

CNRS & Université Paris-Sud, Orsay, France

Dominique Hulin

Université Paris-Sud, Orsay, France