Global well-posedness for the Yang-Millsequation in $4+1$ dimensions. Small energy

Abstract

We consider the hyperbolic Yang-Mills equation on the Minkowski space $\mathbb{R}^{4+1}$. Our main result asserts that this problem is globally well-posed for all initial data whose energy is sufficiently small. This solves a longstanding open problem.

  • [BH1] I. Bejenaru and S. Herr, On global well-posedness and scattering for the massive Dirac-Klein-Gordon system, 2014.
    @MISC{BH1,
      author = {Bejenaru, Ioan and Herr, Sebastian},
      arxiv = {1409.1778},
      title = {On global well-posedness and scattering for the massive {D}irac-{K}lein-{G}ordon system},
      year = {2014},
      }
  • [ChoChr] Go to document Y. Choquet-Bruhat and D. Christodoulou, "Existence of global solutions of the Yang-Mills, Higgs and spinor field equations in $3+1$ dimensions," Ann. Sci. École Norm. Sup., vol. 14, iss. 4, pp. 481-506 (1982), 1981.
    @ARTICLE{ChoChr, mrkey = {0654209},
      number = {4},
      issn = {0012-9593},
      author = {Choquet-Bruhat, Yvonne and Christodoulou, Demetrios},
      mrclass = {81E10 (58D25 58G16 83C05)},
      url = {http://www.numdam.org/item?id=ASENS_1981_4_14_4_481_0},
      journal = {Ann. Sci. École Norm. Sup.},
      zblnumber = {0499.35076},
      volume = {14},
      mrnumber = {0654209},
      fjournal = {Annales Scientifiques de l'École Normale Supérieure. Quatrième Série},
      mrreviewer = {Philippe-A. Dionne},
      coden = {ASENAH},
      title = {Existence of global solutions of the {Y}ang-{M}ills, {H}iggs and spinor field equations in {$3+1$} dimensions},
      year = {1981},
      pages = {481--506 (1982)},
      }
  • [MR649158] Go to document D. M. Eardley and V. Moncrief, "The global existence of Yang-Mills-Higgs fields in $4$-dimensional Minkowski space. I. Local existence and smoothness properties," Comm. Math. Phys., vol. 83, iss. 2, pp. 171-191, 1982.
    @ARTICLE{MR649158, mrkey = {0649158},
      number = {2},
      issn = {0010-3616},
      author = {Eardley, Douglas M. and Moncrief, Vincent},
      mrclass = {35Q20 (58D25 58E20 81E10)},
      doi = {10.1007/BF01976040},
      journal = {Comm. Math. Phys.},
      zblnumber = {0496.35061},
      volume = {83},
      mrnumber = {0649158},
      fjournal = {Communications in Mathematical Physics},
      mrreviewer = {R. Glassey},
      coden = {CMPHAY},
      title = {The global existence of {Y}ang-{M}ills-{H}iggs fields in {$4$}-dimensional {M}inkowski space. {I}. {L}ocal existence and smoothness properties},
      year = {1982},
      pages = {171--191},
      }
  • [MR649159] Go to document D. M. Eardley and V. Moncrief, "The global existence of Yang-Mills-Higgs fields in $4$-dimensional Minkowski space. II. Completion of proof," Comm. Math. Phys., vol. 83, iss. 2, pp. 193-212, 1982.
    @ARTICLE{MR649159, mrkey = {0649159},
      number = {2},
      issn = {0010-3616},
      author = {Eardley, Douglas M. and Moncrief, Vincent},
      mrclass = {35Q20 (58D25 58E20 81E10)},
      doi = {10.1007/BF01976041},
      journal = {Comm. Math. Phys.},
      zblnumber = {0496.35062},
      volume = {83},
      mrnumber = {0649159},
      fjournal = {Communications in Mathematical Physics},
      mrreviewer = {R. Glassey},
      coden = {CMPHAY},
      title = {The global existence of {Y}ang-{M}ills-{H}iggs fields in {$4$}-dimensional {M}inkowski space. {II}. {C}ompletion of proof},
      year = {1982},
      pages = {193--212},
      }
  • [Klainerman:1995] Go to document S. Klainerman and M. Machedon, "Finite energy solutions of the Yang-Mills equations in $\Bbb R^{3+1}$," Ann. of Math., vol. 142, iss. 1, pp. 39-119, 1995.
    @ARTICLE{Klainerman:1995, mrkey = {1338675},
      number = {1},
      issn = {0003-486X},
      author = {Klainerman, S. and Machedon, M.},
      mrclass = {58G16 (35L70 58E15)},
      doi = {10.2307/2118611},
      journal = {Ann. of Math.},
      zblnumber = {0827.53056},
      volume = {142},
      mrnumber = {1338675},
      fjournal = {Annals of Mathematics. Second Series},
      mrreviewer = {David M. A. Stuart},
      coden = {ANMAAH},
      title = {Finite energy solutions of the {Y}ang-{M}ills equations in {$\bold R\sp {3+1}$}},
      year = {1995},
      pages = {39--119},
      }
  • [Klainerman:1999do] Go to document S. Klainerman and D. Tataru, "On the optimal local regularity for Yang-Mills equations in ${\bf R}^{4+1}$," J. Amer. Math. Soc., vol. 12, iss. 1, pp. 93-116, 1999.
    @ARTICLE{Klainerman:1999do, mrkey = {1626261},
      number = {1},
      issn = {0894-0347},
      author = {Klainerman, Sergiu and Tataru, Daniel},
      mrclass = {58J45 (35L70 35Q75)},
      doi = {10.1090/S0894-0347-99-00282-9},
      journal = {J. Amer. Math. Soc.},
      zblnumber = {0924.58010},
      volume = {12},
      mrnumber = {1626261},
      fjournal = {Journal of the American Mathematical Society},
      mrreviewer = {Thierry Cazenave},
      title = {On the optimal local regularity for {Y}ang-{M}ills equations in {${\bf R}\sp {4+1}$}},
      year = {1999},
      pages = {93--116},
      }
  • [KL] Go to document J. Krieger and J. Lührmann, "Concentration compactness for the critical Maxwell-Klein-Gordon equation," Ann. PDE, vol. 1, iss. 1, 2015.
    @ARTICLE{KL, mrkey = {3479062},
      number = {1},
      issn = {2199-2576},
      author = {Krieger, Joachim and L{ü}hrmann, Jonas},
      mrclass = {35Q60 (35B45 35B65 35P25)},
      journal = {Ann. PDE},
      volume = {1},
      mrnumber = {3479062},
      fjournal = {Annals of PDE. Journal Dedicated to the Analysis of Problems from Physical Sciences},
      title = {Concentration compactness for the critical {M}axwell-{K}lein-{G}ordon equation},
      year = {2015},
      note = {Art. 5, 208 pp.},
      doi = {10.1007/s40818-015-0004-y},
      }
  • [Krieger:2009uy] Go to document J. Krieger and W. Schlag, Concentration Compactness for Critical Wave Maps, European Mathematical Society (EMS), Zürich, 2012.
    @BOOK{Krieger:2009uy, mrkey = {2895939},
      author = {Krieger, Joachim and Schlag, Wilhelm},
      mrclass = {58J45 (35L52 58E20)},
      series = {EMS Monogr. Math.},
      isbn = {978-3-03719-106-4},
      publisher = {European Mathematical Society (EMS), Zürich},
      doi = {10.4171/106},
      zblnumber = {06004782},
      mrnumber = {2895939},
      mrreviewer = {Terence Tao},
      title = {Concentration Compactness for Critical Wave Maps},
      year = {2012},
      pages = {vi+484},
      }
  • [Krieger:2005wh] Go to document J. Krieger and J. Sterbenz, "Global regularity for the Yang-Mills equations on high dimensional Minkowski space," Mem. Amer. Math. Soc., vol. 223, iss. 1047, p. vi, 2013.
    @ARTICLE{Krieger:2005wh, mrkey = {3087010},
      number = {1047},
      issn = {0065-9266},
      author = {Krieger, Joachim and Sterbenz, Jacob},
      mrclass = {35Q41 (35B65 35L70 70S15)},
      isbn = {978-0-8218-4489-2},
      doi = {10.1090/S0065-9266-2012-00566-1},
      journal = {Mem. Amer. Math. Soc.},
      zblnumber = {1304.35005},
      volume = {223},
      mrnumber = {3087010},
      fjournal = {Memoirs of the American Mathematical Society},
      mrreviewer = {Thierry Cazenave},
      title = {Global regularity for the {Y}ang-{M}ills equations on high dimensional {M}inkowski space},
      year = {2013},
      pages = {vi+99},
      }
  • [MKG] Go to document J. Krieger, J. Sterbenz, and D. Tataru, "Global well-posedness for the Maxwell-Klein-Gordon equation in $4+1$ dimensions: small energy," Duke Math. J., vol. 164, iss. 6, pp. 973-1040, 2015.
    @ARTICLE{MKG, mrkey = {3336839},
      number = {6},
      issn = {0012-7094},
      author = {Krieger, Joachim and Sterbenz, Jacob and Tataru, Daniel},
      mrclass = {35L70 (35B30 70S15)},
      doi = {10.1215/00127094-2885982},
      journal = {Duke Math. J.},
      zblnumber = {1329.35209},
      volume = {164},
      mrnumber = {3336839},
      fjournal = {Duke Mathematical Journal},
      mrreviewer = {N. Duruk Mutluba{\c{s}}},
      title = {Global well-posedness for the {M}axwell-{K}lein-{G}ordon equation in {$4+1$} dimensions: small energy},
      year = {2015},
      pages = {973--1040},
      }
  • [Machedon:2004cu] Go to document M. Machedon and J. Sterbenz, "Almost optimal local well-posedness for the $(3+1)$-dimensional Maxwell-Klein-Gordon equations," J. Amer. Math. Soc., vol. 17, iss. 2, pp. 297-359, 2004.
    @ARTICLE{Machedon:2004cu, mrkey = {2051613},
      number = {2},
      issn = {0894-0347},
      author = {Machedon, Matei and Sterbenz, Jacob},
      mrclass = {35Q60 (35B30 35L70)},
      doi = {10.1090/S0894-0347-03-00445-4},
      journal = {J. Amer. Math. Soc.},
      zblnumber = {1048.35115},
      volume = {17},
      mrnumber = {2051613},
      fjournal = {Journal of the American Mathematical Society},
      mrreviewer = {Nikos M. Stavrakakis},
      title = {Almost optimal local well-posedness for the {$(3+1)$}-dimensional {M}axwell-{K}lein-{G}ordon equations},
      year = {2004},
      pages = {297--359},
      }
  • [Oh12] Go to document S. Oh, "Gauge choice for the Yang-Mills equations using the Yang-Mills heat flow and local well-posedness in $H^1$," J. Hyperbolic Differ. Equ., vol. 11, iss. 1, pp. 1-108, 2014.
    @ARTICLE{Oh12, mrkey = {3190112},
      number = {1},
      issn = {0219-8916},
      author = {Oh, Sung-Jin},
      mrclass = {35L71 (35B30 58E15 81T13)},
      doi = {10.1142/S0219891614500015},
      journal = {J. Hyperbolic Differ. Equ.},
      zblnumber = {1295.35328},
      volume = {11},
      mrnumber = {3190112},
      fjournal = {Journal of Hyperbolic Differential Equations},
      mrreviewer = {Yisong Yang},
      title = {Gauge choice for the {Y}ang-{M}ills equations using the {Y}ang-{M}ills heat flow and local well-posedness in {$H\sp 1$}},
      year = {2014},
      pages = {1--108},
      }
  • [OT1] Go to document S. Oh and D. Tataru, "Local well-posedness of the $(4 + 1)$-dimensional Maxwell-Klein-Gordon equation at energy regularity," Ann. PDE, vol. 2, iss. 1, 2016.
    @ARTICLE{OT1, mrkey = {3462105},
      number = {1},
      issn = {2199-2576},
      author = {Oh, Sung-Jin and Tataru, Daniel},
      mrclass = {35Q60 (35B30 35B65 35Q61)},
      doi = {10.1007/s40818-016-0006-4},
      journal = {Ann. PDE},
      volume = {2},
      mrnumber = {3462105},
      fjournal = {Annals of PDE. Journal Dedicated to the Analysis of Problems from Physical Sciences},
      title = {Local well-posedness of the {$(4 + 1)$}-dimensional {M}axwell-{K}lein-{G}ordon equation at energy regularity},
      year = {2016},
      note = {Art. 2, 70 pp.},
      }
  • [OT2] S. Oh and D. Tataru, Energy dispersed solutions for the $(4+1)$-dimensional Maxwell-Klein-Gordon equation at energy regularity, 2015.
    @MISC{OT2,
      author = {Oh, Sung-Jin and Tataru, Daniel},
      note = {preprint},
      title = {Energy dispersed solutions for the $(4+1)$-dimensional {M}axwell-{K}lein-{G}ordon equation at energy regularity},
      year = {2015},
      arxiv = {1503.01561},
      }
  • [OT3] Go to document S. Oh and D. Tataru, "Global well-posedness and scattering of the $(4+1)$-dimensional Maxwell-Klein-Gordon equation," Invent. Math., vol. 205, iss. 3, pp. 781-877, 2016.
    @ARTICLE{OT3, mrkey = {3539926},
      number = {3},
      issn = {0020-9910},
      author = {Oh, Sung-Jin and Tataru, Daniel},
      mrclass = {35Q60 (35B30 35P25 81U10)},
      doi = {10.1007/s00222-016-0646-8},
      journal = {Invent. Math.},
      zblnumber = {06641858},
      volume = {205},
      mrnumber = {3539926},
      fjournal = {Inventiones Mathematicae},
      coden = {INVMBH},
      title = {Global well-posedness and scattering of the {$(4+1)$}-dimensional {M}axwell-{K}lein-{G}ordon equation},
      year = {2016},
      pages = {781--877},
      }
  • [MR2100060] Go to document I. Rodnianski and T. Tao, "Global regularity for the Maxwell-Klein-Gordon equation with small critical Sobolev norm in high dimensions," Comm. Math. Phys., vol. 251, iss. 2, pp. 377-426, 2004.
    @ARTICLE{MR2100060, mrkey = {2100060},
      number = {2},
      issn = {0010-3616},
      author = {Rodnianski, Igor and Tao, Terence},
      mrclass = {35Q60 (35L15 81Q05 81T13)},
      doi = {10.1007/s00220-004-1152-1},
      journal = {Comm. Math. Phys.},
      zblnumber = {1106.35073},
      volume = {251},
      mrnumber = {2100060},
      fjournal = {Communications in Mathematical Physics},
      mrreviewer = {Tohru Ozawa},
      coden = {CMPHAY},
      title = {Global regularity for the {M}axwell-{K}lein-{G}ordon equation with small critical {S}obolev norm in high dimensions},
      year = {2004},
      pages = {377--426},
      }
  • [2013arXiv1309.1977S] Go to document S. Selberg and A. Tesfahun, "Null structure and local well-posedness in the energy class for the Yang-Mills equations in Lorenz gauge," J. Eur. Math. Soc. $($JEMS$)$, vol. 18, iss. 8, pp. 1729-1752, 2016.
    @ARTICLE{2013arXiv1309.1977S, mrkey = {3519539},
      number = {8},
      issn = {1435-9855},
      author = {Selberg, Sigmund and Tesfahun, Achenef},
      mrclass = {35Q40 (35B30 35L70 70S15)},
      doi = {10.4171/JEMS/627},
      journal = {J. Eur. Math. Soc. $($JEMS$)$},
      zblnumber = {06617139},
      volume = {18},
      mrnumber = {3519539},
      fjournal = {Journal of the European Mathematical Society (JEMS)},
      title = {Null structure and local well-posedness in the energy class for the {Y}ang-{M}ills equations in {L}orenz gauge},
      year = {2016},
      pages = {1729--1752},
      }
  • [MR2657817] Go to document J. Sterbenz and D. Tataru, "Energy dispersed large data wave maps in $2+1$ dimensions," Comm. Math. Phys., vol. 298, iss. 1, pp. 139-230, 2010.
    @ARTICLE{MR2657817, mrkey = {2657817},
      number = {1},
      issn = {0010-3616},
      author = {Sterbenz, Jacob and Tataru, Daniel},
      mrclass = {58J45 (35L60)},
      doi = {10.1007/s00220-010-1061-4},
      journal = {Comm. Math. Phys.},
      zblnumber = {1218.35129},
      volume = {298},
      mrnumber = {2657817},
      fjournal = {Communications in Mathematical Physics},
      mrreviewer = {Michael Ruzhansky},
      coden = {CMPHAY},
      title = {Energy dispersed large data wave maps in {$2+1$} dimensions},
      year = {2010},
      pages = {139--230},
      }
  • [MR2657818] Go to document J. Sterbenz and D. Tataru, "Regularity of wave-maps in dimension $2+1$," Comm. Math. Phys., vol. 298, iss. 1, pp. 231-264, 2010.
    @ARTICLE{MR2657818, mrkey = {2657818},
      number = {1},
      issn = {0010-3616},
      author = {Sterbenz, Jacob and Tataru, Daniel},
      mrclass = {58E20},
      doi = {10.1007/s00220-010-1062-3},
      journal = {Comm. Math. Phys.},
      zblnumber = {1218.35057},
      volume = {298},
      mrnumber = {2657818},
      fjournal = {Communications in Mathematical Physics},
      mrreviewer = {Michael Ruzhansky},
      coden = {CMPHAY},
      title = {Regularity of wave-maps in dimension {$2+1$}},
      year = {2010},
      pages = {231--264},
      }
  • [Tao:2001gb] Go to document T. Tao, "Global regularity of wave maps. II. Small energy in two dimensions," Comm. Math. Phys., vol. 224, iss. 2, pp. 443-544, 2001.
    @ARTICLE{Tao:2001gb, mrkey = {1869874},
      number = {2},
      issn = {0010-3616},
      author = {Tao, Terence},
      mrclass = {58J45 (35B60 35B65 35L15 58J47)},
      doi = {10.1007/PL00005588},
      journal = {Comm. Math. Phys.},
      zblnumber = {1020.35046},
      volume = {224},
      mrnumber = {1869874},
      fjournal = {Communications in Mathematical Physics},
      mrreviewer = {Joachim Krieger},
      coden = {CMPHAY},
      title = {Global regularity of wave maps. {II}. {S}mall energy in two dimensions},
      year = {2001},
      pages = {443--544},
      arxiv = {0011173},
      }
  • [Tao:2008wn] T. Tao, Global regularity of wave maps III. Large energy from $\mathrm{R}^{1+2}$ to hyperbolic spaces, 2008.
    @MISC{Tao:2008wn,
      author = {Tao, Terence},
      title = {Global regularity of wave maps {III. L}arge energy from {$\mathrm{R}^{1+2}$} to hyperbolic spaces},
      year = {2008},
      arxiv = {0805.4666},
      }
  • [Tao:2008tz] T. Tao, Global regularity of wave maps IV. Absence of stationary or self-similar solutions in the energy class, 2008.
    @MISC{Tao:2008tz,
      author = {Tao, Terence},
      title = {Global regularity of wave maps {IV. A}bsence of stationary or self-similar solutions in the energy class},
      year = {2008},
      arxiv = {0806.3592},
      }
  • [Tao:2008wo] T. Tao, Global regularity of wave maps V. Large data local wellposedness and perturbation theory in the energy class, 2008.
    @MISC{Tao:2008wo,
      author = {Tao, Terence},
      title = {Global regularity of wave maps {V. L}arge data local wellposedness and perturbation theory in the energy class},
      year = {2008},
      arxiv = {0808.0368},
      }
  • [Tao:2009ta] T. Tao, Global regularity of wave maps VI. Abstract theory of minimal-energy blowup solutions, 2009.
    @MISC{Tao:2009ta,
      author = {Tao, Terence},
      title = {Global regularity of wave maps {VI. A}bstract theory of minimal-energy blowup solutions},
      year = {2009},
      arxiv = {0906.2833},
      }
  • [Tao:2009ua] T. Tao, Global regularity of wave maps VII. Control of delocalised or dispersed solutions, 2009.
    @MISC{Tao:2009ua,
      author = {Tao, Terence},
      title = {Global regularity of wave maps {VII. C}ontrol of delocalised or dispersed solutions},
      year = {2009},
      arxiv = {0908.0776},
      }
  • [MR1827277] Go to document D. Tataru, "On global existence and scattering for the wave maps equation," Amer. J. Math., vol. 123, iss. 1, pp. 37-77, 2001.
    @ARTICLE{MR1827277, mrkey = {1827277},
      number = {1},
      issn = {0002-9327},
      author = {Tataru, Daniel},
      mrclass = {58J45 (35L70 35P25)},
      journal = {Amer. J. Math.},
      zblnumber = {0979.35100},
      volume = {123},
      mrnumber = {1827277},
      fjournal = {American Journal of Mathematics},
      mrreviewer = {Kenji Nakanishi},
      coden = {AJMAAN},
      title = {On global existence and scattering for the wave maps equation},
      year = {2001},
      pages = {37--77},
      doi = {10.1353/ajm.2001.0005},
      }
  • [wm] Go to document D. Tataru, "Rough solutions for the wave maps equation," Amer. J. Math., vol. 127, iss. 2, pp. 293-377, 2005.
    @ARTICLE{wm, mrkey = {2130618},
      number = {2},
      issn = {0002-9327},
      author = {Tataru, Daniel},
      mrclass = {58J45 (35B30 35L15)},
      journal = {Amer. J. Math.},
      zblnumber = {1330.58021},
      volume = {127},
      mrnumber = {2130618},
      fjournal = {American Journal of Mathematics},
      mrreviewer = {Terence C. Tao},
      coden = {AJMAAN},
      title = {Rough solutions for the wave maps equation},
      year = {2005},
      pages = {293--377},
      doi = {10.1353/ajm.2005.0014},
      }

Authors

Joachim Krieger

École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Daniel Tataru

The University of California at Berkeley, Berkeley, CA