On the growth of $L^2$-invariants for sequences of lattices in Lie groups

Abstract

We study the asymptotic behaviour of Betti numbers, twisted torsion and other spectral invariants of sequences of locally symmetric spaces. Our main results are uniform versions of the DeGeorge–Wallach Theorem, of a theorem of Delorme and various other limit multiplicity theorems.

A basic idea is to adapt the notion of Benjamini–Schramm convergence (BS-convergence), originally introduced for sequences of finite graphs of bounded degree, to sequences of Riemannian manifolds, and analyze the possible limits. We show that BS-convergence of locally symmetric spaces $\Gamma\backslash G/K$ implies convergence, in an appropriate sense, of the normalized relative Plancherel measures associated to $L^2 (\Gamma\backslash G)$. This then yields convergence of normalized multiplicities of unitary representations, Betti numbers and other spectral invariants. On the other hand, when the corresponding Lie group $G$ is simple and of real rank at least two, we prove that there is only one possible BS-limit; i.e., when the volume tends to infinity, locally symmetric spaces always BS-converge to their universal cover $G/K$. This leads to various general uniform results.

When restricting to arbitrary sequences of congruence covers of a fixed arithmetic manifold we prove a strong quantitative version of BS-convergence, which in turn implies upper estimates on the rate of convergence of normalized Betti numbers in the spirit of Sarnak–Xue.

An important role in our approach is played by the notion of Invariant Random Subgroups. For higher rank simple Lie groups $G$, we exploit rigidity theory and, in particular, the Nevo–Stück–Zimmer theorem and Kazhdan`s property (T), to obtain a complete understanding of the space of IRS’s of $G$.

Note: To view the article, click on the URL link for the DOI number.

  • [1] M. Fraczyk, Strong limit multiplicity for arithmetic hyperbolic surfaces and 3-manifolds, 2016.
    @misc{1,
      author={Fraczyk, M.},
      TITLE={Strong limit multiplicity for arithmetic hyperbolic surfaces and 3-manifolds},
      ARXIV={1612.05354},
      YEAR={2016},
     }
  • [2] J. Raimbault, On the convergence of arithmetic orbifolds, 2013.
    @misc{2,
      author={Raimbault, J.},
      TITLE={On the convergence of arithmetic orbifolds},
      YEAR={2013},
      ARXIV={1311.5375},
     }
  • [3] A. Levit, On the Benjamini-Schramm limit of congruence subgroups in products.
    @misc{3,
      author={Levit, A.},
      TITLE={On the {B}enjamini-{S}chramm limit of congruence subgroups in products},
      NOTE={preprint},
      SORTYEAR={2018},
     }
  • [Miklos1] Go to document M. Abert, Y. Glasner, and B. Virág, "The measurable Kesten theorem," Ann. Probab., vol. 44, iss. 3, pp. 1601-1646, 2016.
    @ARTICLE{Miklos1, mrkey = {3502591},
      number = {3},
      issn = {0091-1798},
      author = {Abert, Miklos and Glasner, Yair and Virág, Bálint},
      mrclass = {05C50 (05C81 60G50)},
      doi = {10.1214/14-AOP937},
      journal = {Ann. Probab.},
      zblnumber = {1339.05365},
      volume = {44},
      mrnumber = {3502591},
      fjournal = {The Annals of Probability},
      mrreviewer = {B. Sury},
      title = {The measurable {K}esten theorem},
      year = {2016},
      pages = {1601--1646},
      }
  • [ABBG] M. Abert, N. Bergeron, I. Biringer, and T. Gelander.
    @MISC{ABBG,
      author = {Abert, Miklos and Bergeron, Nicolas and Biringer, Ian and Gelander, Tsachi},
      note = {in preparation},
      sortyear={2018},
      }
  • [sevens] M. Abert, N. Bergeron, I. Biringer, T. Gelander, N. Nikolov, J. Raimbault, and I. Samet, , 2012.
    @misc{sevens,
      author = {Abert, Miklos and Bergeron, Nicolas and Biringer, Ian and Gelander, Tsachi and Nikolov, N. and {Raimbault},
      J. and {Samet},
      I.},
      ARXIV = {1210.2961},
      Year ={ 2012},
     }
  • [cras] Go to document M. Abert, N. Bergeron, I. Biringer, T. Gelander, N. Nikolov, J. Raimbault, and I. Samet, "On the growth of Betti numbers of locally symmetric spaces," C. R. Math. Acad. Sci. Paris, vol. 349, iss. 15-16, pp. 831-835, 2011.
    @ARTICLE{cras, mrkey = {2835886},
      number = {15-16},
      issn = {1631-073X},
      author = {Abert, Miklos and Bergeron, Nicolas and Biringer, Ian and Gelander, Tsachik and Nikolov, Nikolay and Raimbault, Jean and Samet, Iddo},
      mrclass = {58J37 (22E40 53C35)},
      doi = {10.1016/j.crma.2011.07.013},
      journal = {C. R. Math. Acad. Sci. Paris},
      zblnumber = {1223.53039},
      volume = {349},
      mrnumber = {2835886},
      fjournal = {Comptes Rendus Mathématique. Académie des Sciences. Paris},
      mrreviewer = {B. Sury},
      title = {On the growth of {B}etti numbers of locally symmetric spaces},
      year = {2011},
      pages = {831--835},
      }
  • [Abertinvariant] M. Abert and I. Biringer, Unimodular measures on the space of all Riemannian manifolds, 2016.
    @MISC{Abertinvariant,
      author = {Abert, Miklos and Biringer, Ian},
      note = {preprint},
      title = {Unimodular measures on the space of all {R}iemannian manifolds},
      year = {2016},
      arxiv = {1606.03360},
      }
  • [Abertmatchings] Go to document M. Abért, P. Csikvári, P. E. Frenkel, and G. Kun, "Matchings in Benjamini-Schramm convergent graph sequences," Trans. Amer. Math. Soc., vol. 368, iss. 6, pp. 4197-4218, 2016.
    @ARTICLE{Abertmatchings, mrkey = {3453369},
      author = {Miklós {Abért} and Péter {Csikvári} and Péter E. {Frenkel} and Gábor {Kun}},
      title= {Matchings in {B}enjamini-{S}chramm convergent graph sequences},
      fjournal = {Transactions of the American Mathematical Society},
      journal = {Trans. Amer. Math. Soc.},
      ISSN = {0002-9947; 1088-6850/e},
      volume = {368},
      number = {6},
      pages = {4197--4218},
      year = {2016},
      publisher = {Amer. Math. Soc.},
      address = {Providence, RI},
      doi = {10.1090/tran/6464},
      zblnumber = {1331.05176},
      mrnumber = {3453369},
      }
  • [Miklos2] Go to document M. Abert, Y. Glasner, and B. Virág, "Kesten’s theorem for invariant random subgroups," Duke Math. J., vol. 163, iss. 3, pp. 465-488, 2014.
    @ARTICLE{Miklos2, mrkey = {3165420},
      number = {3},
      issn = {0012-7094},
      author = {Abert, Miklos and Glasner, Yair and Virág, Bálint},
      mrclass = {20F69 (05C25 05C81 35P20 53C24)},
      doi = {10.1215/00127094-2410064},
      journal = {Duke Math. J.},
      zblnumber = {1344.20061},
      volume = {163},
      mrnumber = {3165420},
      fjournal = {Duke Mathematical Journal},
      mrreviewer = {B. Sury},
      title = {Kesten's theorem for invariant random subgroups},
      year = {2014},
      pages = {465--488},
      }
  • [Abertbenjamini] Go to document M. Abert and T. Hubai, "Benjamini-Schramm convergence and the distribution of chromatic roots for sparse graphs," Combinatorica, vol. 35, iss. 2, pp. 127-151, 2015.
    @ARTICLE{Abertbenjamini, mrkey = {3347464},
      number = {2},
      issn = {0209-9683},
      author = {Abert, Miklos and Hubai, Tamás},
      mrclass = {05C31 (05C15 05C60 82B20)},
      doi = {10.1007/s00493-014-3066-7},
      journal = {Combinatorica},
      zblnumber = {06626069},
      volume = {35},
      mrnumber = {3347464},
      fjournal = {Combinatorica. An International Journal on Combinatorics and the Theory of Computing},
      mrreviewer = {Joseph Raymond Chaffee},
      title = {Benjamini-{S}chramm convergence and the distribution of chromatic roots for sparse graphs},
      year = {2015},
      pages = {127--151},
      }
  • [Agol] Go to document I. Agol, "Criteria for virtual fibering," J. Topol., vol. 1, iss. 2, pp. 269-284, 2008.
    @ARTICLE{Agol, mrkey = {2399130},
      number = {2},
      issn = {1753-8416},
      author = {Agol, Ian},
      mrclass = {57M50 (57N10)},
      doi = {10.1112/jtopol/jtn003},
      journal = {J. Topol.},
      zblnumber = {1148.57023},
      volume = {1},
      mrnumber = {2399130},
      fjournal = {Journal of Topology},
      mrreviewer = {Darren D. Long},
      title = {Criteria for virtual fibering},
      year = {2008},
      pages = {269--284},
      }
  • [Aldousprocesses] Go to document D. Aldous and R. Lyons, "Processes on unimodular random networks," Electron. J. Probab., vol. 12, p. no. 54, 1454-1508, 2007.
    @ARTICLE{Aldousprocesses, mrkey = {2354165},
      issn = {1083-6489},
      author = {Aldous, David and Lyons, Russell},
      mrclass = {60C05 (05C80 60G50)},
      doi = {10.1214/EJP.v12-463},
      journal = {Electron. J. Probab.},
      zblnumber = {1131.60003},
      volume = {12},
      mrnumber = {2354165},
      fjournal = {Electronic Journal of Probability},
      mrreviewer = {Jean-FranÂ\S ois Delmas},
      title = {Processes on unimodular random networks},
      year = {2007},
      pages = {no. 54, 1454--1508},
      }
  • [Allday] Go to document C. Allday and S. Halperin, "Lie group actions on spaces of finite rank," Quart. J. Math. Oxford Ser., vol. 29, iss. 113, pp. 63-76, 1978.
    @ARTICLE{Allday, mrkey = {0501046},
      number = {113},
      issn = {0033-5606},
      author = {Allday, Christopher and Halperin, Stephen},
      mrclass = {57E99 (55D99)},
      doi = {10.1093/qmath/29.1.63},
      journal = {Quart. J. Math. Oxford Ser.},
      zblnumber = {0395.57024},
      volume = {29},
      mrnumber = {0501046},
      fjournal = {The Quarterly Journal of Mathematics. Oxford. Second Series},
      mrreviewer = {G. E. Bredon},
      title = {Lie group actions on spaces of finite rank},
      year = {1978},
      pages = {63--76},
      }
  • [BGS] Go to document W. Ballmann, M. Gromov, and V. Schroeder, Manifolds of Nonpositive Curvature, Boston: Birkhäuser, 1985, vol. 61.
    @BOOK{BGS, mrkey = {0823981},
      author = {Ballmann, Werner and Gromov, Mikhael and Schroeder, Viktor},
      mrclass = {53C20},
      series = {Progr. Math.},
      isbn = {0-8176-3181-X},
      address = {Boston},
      publisher = {Birkhäuser},
      doi = {10.1007/978-1-4684-9159-3},
      zblnumber = {0591.53001},
      volume = {61},
      mrnumber = {0823981},
      mrreviewer = {Gudlaugur Thorbergsson},
      title = {Manifolds of Nonpositive Curvature},
      year = {1985},
      pages = {vi+263},
      }
  • [VandenBan] Go to document E. P. van den Ban, "Induced representations and the Langlands classification," in Representation Theory and Automorphic Forms, Providence, RI: Amer. Math. Soc., 1997, vol. 61, pp. 123-155.
    @INCOLLECTION{VandenBan, mrkey = {1476496},
      author = {van den Ban, E. P.},
      mrclass = {22E46},
      series = {Proc. Sympos. Pure Math.},
      address = {Providence, RI},
      publisher = {Amer. Math. Soc.},
      doi = {10.1090/pspum/061/1476496},
      zblnumber = {0888.22009},
      volume = {61},
      mrnumber = {1476496},
      booktitle = {Representation Theory and Automorphic Forms},
      mrreviewer = {D. MiliÄŤić},
      venue = {{E}dinburgh, 1996},
      title = {Induced representations and the {L}anglands classification},
      pages = {123--155},
      year = {1997},
      }
  • [BarbaschMoscovici] Go to document D. Barbasch and H. Moscovici, "$L^{2}$-index and the Selberg trace formula," J. Funct. Anal., vol. 53, iss. 2, pp. 151-201, 1983.
    @ARTICLE{BarbaschMoscovici, mrkey = {0722507},
      number = {2},
      issn = {0022-1236},
      author = {Barbasch, Dan and Moscovici, Henri},
      mrclass = {58G10 (22E46)},
      doi = {10.1016/0022-1236(83)90050-2},
      journal = {J. Funct. Anal.},
      zblnumber = {0537.58039},
      volume = {53},
      mrnumber = {0722507},
      fjournal = {Journal of Functional Analysis},
      mrreviewer = {Roberto J. Miatello},
      title = {{$L\sp{2}$}-index and the {S}elberg trace formula},
      year = {1983},
      pages = {151--201},
      }
  • [Tbook] Go to document B. Bekka, P. de la Harpe, and A. Valette, Kazhdan’s Property (T), Cambridge: Cambridge Univ. Press, 2008, vol. 11.
    @BOOK{Tbook, mrkey = {2415834},
      author = {Bekka, Bachir and de la Harpe, Pierre and Valette, Alain},
      mrclass = {22-02 (22E40 28D15 37A15 43A07 43A35)},
      series = {New Math. Monogr.},
      isbn = {978-0-521-88720-5},
      address = {Cambridge},
      publisher = {Cambridge Univ. Press},
      doi = {10.1017/CBO9780511542749},
      zblnumber = {1146.22009},
      volume = {11},
      mrnumber = {2415834},
      mrreviewer = {Markus Neuhauser},
      title = {Kazhdan's Property ({T})},
      year = {2008},
      pages = {xiv+472},
      }
  • [BT] Go to document M. V. Belolipetsky and S. A. Thomson, "Systoles of hyperbolic manifolds," Algebr. Geom. Topol., vol. 11, iss. 3, pp. 1455-1469, 2011.
    @ARTICLE{BT, mrkey = {2821431},
      number = {3},
      issn = {1472-2747},
      author = {Belolipetsky, Mikhail V. and Thomson, Scott A.},
      mrclass = {53C23 (57M50)},
      doi = {10.2140/agt.2011.11.1455},
      journal = {Algebr. Geom. Topol.},
      zblnumber = {1248.22004},
      volume = {11},
      mrnumber = {2821431},
      fjournal = {Algebraic & Geometric Topology},
      mrreviewer = {Mikhail G. Katz},
      title = {Systoles of hyperbolic manifolds},
      year = {2011},
      pages = {1455--1469},
      }
  • [Benedetti-Petronio] Go to document R. Benedetti and C. Petronio, Lectures on Hyperbolic Geometry, New York: Springer-Verlag, 1992.
    @BOOK{Benedetti-Petronio, mrkey = {1219310},
      author = {Benedetti, Riccardo and Petronio, Carlo},
      mrclass = {57M50 (30F40 30F60 51M10 57N10)},
      series = {Universitext},
      address = {New York},
      isbn = {3-540-55534-X},
      publisher = {Springer-Verlag},
      doi = {10.1007/978-3-642-58158-8},
      zblnumber = {0768.51018},
      mrnumber = {1219310},
      mrreviewer = {Colin C. Adams},
      title = {Lectures on Hyperbolic Geometry},
      year = {1992},
      pages = {xiv+330},
      }
  • [Benjaminigroup] Go to document I. Benjamini, R. Lyons, Y. Peres, and O. Schramm, "Group-invariant percolation on graphs," Geom. Funct. Anal., vol. 9, iss. 1, pp. 29-66, 1999.
    @ARTICLE{Benjaminigroup, mrkey = {1675890},
      number = {1},
      issn = {1016-443X},
      author = {Benjamini, I. and Lyons, R. and Peres, Y. and Schramm, O.},
      mrclass = {60K35 (60B99)},
      doi = {10.1007/s000390050080},
      journal = {Geom. Funct. Anal.},
      zblnumber = {0924.43002},
      volume = {9},
      mrnumber = {1675890},
      fjournal = {Geometric and Functional Analysis},
      mrreviewer = {Olle HÂggstrÂ\P m},
      title = {Group-invariant percolation on graphs},
      year = {1999},
      pages = {29--66},
      }
  • [localconvergence] Go to document I. Benjamini and O. Schramm, "Recurrence of distributional limits of finite planar graphs," Electron. J. Probab., vol. 6, p. 23, 2001.
    @ARTICLE{localconvergence, mrkey = {1873300},
      issn = {1083-6489},
      author = {Benjamini, Itai and Schramm, Oded},
      mrclass = {82B41 (05C80 52C26 60G50)},
      doi = {10.1214/EJP.v6-96},
      journal = {Electron. J. Probab.},
      zblnumber = {1010.82021},
      volume = {6},
      mrnumber = {1873300},
      fjournal = {Electronic Journal of Probability},
      mrreviewer = {Olle HÂggstrÂ\P m},
      title = {Recurrence of distributional limits of finite planar graphs},
      year = {2001},
      pages = {no. 23, 13pp.},
      }
  • [BSV] Go to document N. Bergeron, M. H. cSengün, and A. Venkatesh, "Torsion homology growth and cycle complexity of arithmetic manifolds," Duke Math. J., vol. 165, iss. 9, pp. 1629-1693, 2016.
    @ARTICLE{BSV, mrkey = {3513571},
      number = {9},
      issn = {0012-7094},
      author = {Bergeron, Nicolas and \c{S}engün, Mehmet Haluk and Venkatesh, Akshay},
      mrclass = {11F67 (57M50)},
      doi = {10.1215/00127094-3450429},
      journal = {Duke Math. J.},
      zblnumber = {1351.11031},
      volume = {165},
      mrnumber = {3513571},
      fjournal = {Duke Mathematical Journal},
      mrreviewer = {Dominic A. Lanphier},
      title = {Torsion homology growth and cycle complexity of arithmetic manifolds},
      year = {2016},
      pages = {1629--1693},
      }
  • [BC] N. Bergeron and L. Clozel, Spectre Automorphe des VariĂ©tĂ©s Hyperboliques et Applications Topologiques, Paris: Math. Soc. France, 2005, vol. 303.
    @BOOK{BC, mrkey = {2245761},
      issn = {0303-1179},
      author = {Bergeron, Nicolas and Clozel, Laurent},
      mrclass = {22E55 (11F72 11F75 11G18)},
      series = {Astérisque},
      address = {Paris},
      publisher = {Math. Soc. France},
      zblnumber = {1098.11035},
      volume = {303},
      mrnumber = {2245761},
      mrreviewer = {Erez M. Lapid},
      title = {Spectre Automorphe des Variétés Hyperboliques et Applications Topologiques},
      year = {2005},
      pages = {xx+218},
      }
  • [BHW] Go to document N. Bergeron, F. Haglund, and D. T. Wise, "Hyperplane sections in arithmetic hyperbolic manifolds," J. Lond. Math. Soc., vol. 83, iss. 2, pp. 431-448, 2011.
    @ARTICLE{BHW, mrkey = {2776645},
      number = {2},
      issn = {0024-6107},
      author = {Bergeron, Nicolas and Haglund, Frédéric and Wise, Daniel T.},
      mrclass = {57M50 (11F75 53C23)},
      doi = {10.1112/jlms/jdq082},
      journal = {J. Lond. Math. Soc.},
      zblnumber = {1236.57021},
      volume = {83},
      mrnumber = {2776645},
      fjournal = {Journal of the London Mathematical Society. Second Series},
      mrreviewer = {Pablo SuÂ!`rez-Serrato},
      title = {Hyperplane sections in arithmetic hyperbolic manifolds},
      year = {2011},
      pages = {431--448},
      }
  • [BMM] Go to document N. Bergeron, J. Millson, and C. Moeglin, "Hodge Type Theorems for Arithmetic Manifolds Associated to Orthogonal Groups," Internat. Math. Res. Not., p. 130.
    @article{BMM,
      author = {Bergeron, Nicolas and Millson, J. and Moeglin, C.},
      title={Hodge Type Theorems for Arithmetic Manifolds Associated to Orthogonal Groups},
      sortyear = {2016},
      journal={Internat. Math. Res. Not.},
      pages={130pp.},
      note={published online 13 {J}uly 2016},
      doi={10.1093/imrn/rnw067},
      }
  • [BV] Go to document N. Bergeron and A. Venkatesh, "The asymptotic growth of torsion homology for arithmetic groups," J. Inst. Math. Jussieu, vol. 12, iss. 2, pp. 391-447, 2013.
    @ARTICLE{BV, mrkey = {3028790},
      number = {2},
      issn = {1474-7480},
      author = {Bergeron, Nicolas and Venkatesh, Akshay},
      mrclass = {57M25 (22E47)},
      doi = {10.1017/S1474748012000667},
      journal = {J. Inst. Math. Jussieu},
      zblnumber = {1266.22013},
      volume = {12},
      mrnumber = {3028790},
      fjournal = {Journal of the Institute of Mathematics of Jussieu. JIMJ. Journal de l'Institut de Mathématiques de Jussieu},
      mrreviewer = {Paul E. Gunnells},
      title = {The asymptotic growth of torsion homology for arithmetic groups},
      year = {2013},
      pages = {391--447},
      }
  • [Biringerfiniteness] Go to document I. Biringer and J. Souto, "A finiteness theorem for hyperbolic 3-manifolds," J. Lond. Math. Soc., vol. 84, iss. 1, pp. 227-242, 2011.
    @ARTICLE{Biringerfiniteness, mrkey = {2819698},
      number = {1},
      issn = {0024-6107},
      author = {Biringer, Ian and Souto, Juan},
      mrclass = {57M50},
      doi = {10.1112/jlms/jdq106},
      journal = {J. Lond. Math. Soc.},
      zblnumber = {1233.57008},
      volume = {84},
      mrnumber = {2819698},
      fjournal = {Journal of the London Mathematical Society. Second Series},
      mrreviewer = {Bruno P. Zimmermann},
      title = {A finiteness theorem for hyperbolic 3-manifolds},
      year = {2011},
      pages = {227--242},
      }
  • [Biringerunimodularity] I. Biringer and O. Tamuz, Unimodularity of invariant random subgroups, 2014.
    @MISC{Biringerunimodularity,
      author = {Biringer, Ian and Tamuz, O.},
      arxiv = {1402.1042},
      title = {Unimodularity of invariant random subgroups},
      year = {2014},
      }
  • [BorelWallach] Go to document A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Second ed., Providence, RI: Amer. Math. Soc., 2000, vol. 67.
    @BOOK{BorelWallach, mrkey = {1721403},
      author = {Borel, A. and Wallach, N.},
      mrclass = {22E41 (22-02 22E40 22E45 57T15)},
      series = {Math. Surv. Monogr.},
      edition = {Second},
      isbn = {0-8218-0851-6},
      address = {Providence, RI},
      publisher = {Amer. Math. Soc.},
      doi = {10.1090/surv/067},
      zblnumber = {0980.22015},
      volume = {67},
      mrnumber = {1721403},
      mrreviewer = {F. E. A. Johnson},
      title = {Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups},
      year = {2000},
      pages = {xviii+260},
      }
  • [borel] Go to document A. Borel, "Density properties for certain subgroups of semi-simple groups without compact components," Ann. of Math., vol. 72, pp. 179-188, 1960.
    @ARTICLE{borel, mrkey = {0123639},
      issn = {0003-486X},
      author = {Borel, Armand},
      mrclass = {22.50},
      doi = {10.2307/1970150},
      journal = {Ann. of Math.},
      zblnumber = {0094.24901},
      volume = {72},
      mrnumber = {0123639},
      fjournal = {Annals of Mathematics. Second Series},
      mrreviewer = {B. Kostant},
      title = {Density properties for certain subgroups of semi-simple groups without compact components},
      year = {1960},
      pages = {179--188},
      }
  • [Bowen1] Go to document L. Bowen, "Invariant random subgroups of the free group," Groups Geom. Dyn., vol. 9, iss. 3, pp. 891-916, 2015.
    @ARTICLE{Bowen1, mrkey = {3420547},
      number = {3},
      issn = {1661-7207},
      author = {Bowen, Lewis},
      mrclass = {37A15 (20E05 22F10 37A20)},
      doi = {10.4171/GGD/331},
      journal = {Groups Geom. Dyn.},
      zblnumber = {06496571},
      volume = {9},
      mrnumber = {3420547},
      fjournal = {Groups, Geometry, and Dynamics},
      mrreviewer = {RÂ\copyright{}mi Boutonnet},
      title = {Invariant random subgroups of the free group},
      year = {2015},
      pages = {891--916},
      }
  • [BGdense] Go to document E. Breuillard and T. Gelander, "On dense free subgroups of Lie groups," J. Algebra, vol. 261, iss. 2, pp. 448-467, 2003.
    @ARTICLE{BGdense, mrkey = {1966638},
      number = {2},
      issn = {0021-8693},
      author = {Breuillard, E. and Gelander, T.},
      mrclass = {22E15},
      doi = {10.1016/S0021-8693(02)00675-0},
      journal = {J. Algebra},
      zblnumber = {1014.22007},
      volume = {261},
      mrnumber = {1966638},
      fjournal = {Journal of Algebra},
      mrreviewer = {Alexander Lubotzky},
      title = {On dense free subgroups of {L}ie groups},
      year = {2003},
      pages = {448--467},
      }
  • [BrockDunfield] Go to document J. F. Brock and N. M. Dunfield, "Injectivity radii of hyperbolic integer homology 3-spheres," Geom. Topol., vol. 19, iss. 1, pp. 497-523, 2015.
    @ARTICLE{BrockDunfield, mrkey = {3318758},
      number = {1},
      issn = {1465-3060},
      author = {Brock, Jeffrey F. and Dunfield, Nathan M.},
      mrclass = {57M50 (30F40)},
      doi = {10.2140/gt.2015.19.497},
      journal = {Geom. Topol.},
      zblnumber = {1312.57022},
      volume = {19},
      mrnumber = {3318758},
      fjournal = {Geometry & Topology},
      mrreviewer = {Hongbin Sun},
      title = {Injectivity radii of hyperbolic integer homology 3-spheres},
      year = {2015},
      pages = {497--523},
      }
  • [Busernote] Go to document P. Buser, "A note on the isoperimetric constant," Ann. Sci. École Norm. Sup., vol. 15, iss. 2, pp. 213-230, 1982.
    @ARTICLE{Busernote, mrkey = {0683635},
      number = {2},
      issn = {0012-9593},
      author = {Buser, Peter},
      mrclass = {58G25 (52A40 53C20)},
      url = {http://www.numdam.org/item?id=ASENS_1982_4_15_2_213_0},
      journal = {Ann. Sci. École Norm. Sup.},
      zblnumber = {0501.53030},
      volume = {15},
      mrnumber = {0683635},
      fjournal = {Annales Scientifiques de l'École Normale Supérieure. Quatrième Série},
      mrreviewer = {Scott Wolpert},
      title = {A note on the isoperimetric constant},
      year = {1982},
      pages = {213--230},
      }
  • [ECG] R. D. Canary, D. B. A. Epstein, and P. Green, "Notes on notes of Thurston," in Analytical and Geometric Aspects of Hyperbolic Space, Cambridge: Cambridge Univ. Press, 1987, vol. 111, pp. 3-92.
    @INCOLLECTION{ECG, mrkey = {0903850},
      author = {Canary, R. D. and Epstein, D. B. A. and Green, P.},
      mrclass = {57N10 (32G15 32G99 54A20 57M99 58F17)},
      series = {London Math. Soc. Lecture Note Ser.},
      address = {Cambridge},
      publisher = {Cambridge Univ. Press},
      volume = {111},
      mrnumber = {0903850},
      booktitle = {Analytical and Geometric Aspects of Hyperbolic Space},
      mrreviewer = {William Dunbar},
      venue = {{C}oventry/{D}urham, 1984},
      title = {Notes on notes of {T}hurston},
      pages = {3--92},
      year = {1987},
      zblnumber = {0612.57009},
     }
  • [Chabauty] Go to document C. Chabauty, "Limite d’ensembles et gĂ©omĂ©trie des nombres," Bull. Soc. Math. France, vol. 78, pp. 143-151, 1950.
    @ARTICLE{Chabauty, mrkey = {0038983},
      issn = {0037-9484},
      author = {Chabauty, Claude},
      mrclass = {20.0X},
      url = {http://www.numdam.org/item?id=BSMF_1950__78__143_0},
      journal = {Bull. Soc. Math. France},
      zblnumber = {0039.04101},
      volume = {78},
      mrnumber = {0038983},
      fjournal = {Bulletin de la Société Mathématique de France},
      mrreviewer = {I. E. Segal},
      title = {Limite d'ensembles et géométrie des nombres},
      year = {1950},
      pages = {143--151},
      }
  • [Cheeger] Go to document J. Cheeger, "Analytic torsion and the heat equation," Ann. of Math., vol. 109, iss. 2, pp. 259-322, 1979.
    @ARTICLE{Cheeger, mrkey = {0528965},
      number = {2},
      issn = {0003-486X},
      author = {Cheeger, Jeff},
      mrclass = {58G10},
      doi = {10.2307/1971113},
      journal = {Ann. of Math.},
      zblnumber = {0412.58026},
      volume = {109},
      mrnumber = {0528965},
      fjournal = {Annals of Mathematics. Second Series},
      title = {Analytic torsion and the heat equation},
      year = {1979},
      pages = {259--322},
      }
  • [Cheegerstructure] Go to document J. Cheeger and T. H. Colding, "On the structure of spaces with Ricci curvature bounded below. I," J. Differential Geom., vol. 46, iss. 3, pp. 406-480, 1997.
    @ARTICLE{Cheegerstructure, mrkey = {1484888},
      number = {3},
      issn = {0022-040X},
      author = {Cheeger, Jeff and Colding, Tobias H.},
      mrclass = {53C21 (53C20)},
      url = {http://projecteuclid.org/euclid.jdg/1214459974},
      journal = {J. Differential Geom.},
      zblnumber = {0902.53034},
      volume = {46},
      mrnumber = {1484888},
      fjournal = {Journal of Differential Geometry},
      mrreviewer = {William P. Minicozzi, II},
      title = {On the structure of spaces with {R}icci curvature bounded below. {I}},
      year = {1997},
      pages = {406--480},
      }
  • [Cheegerfinite] Go to document J. Cheeger, M. Gromov, and M. Taylor, "Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds," J. Differential Geom., vol. 17, iss. 1, pp. 15-53, 1982.
    @ARTICLE{Cheegerfinite, mrkey = {0658471},
      number = {1},
      issn = {0022-040X},
      author = {Cheeger, Jeff and Gromov, Mikhail and Taylor, Michael},
      mrclass = {58G30 (53C21)},
      url = {http://projecteuclid.org/euclid.jdg/1214436699},
      journal = {J. Differential Geom.},
      zblnumber = {0493.53035},
      volume = {17},
      mrnumber = {0658471},
      fjournal = {Journal of Differential Geometry},
      mrreviewer = {Helga Baum},
      title = {Finite propagation speed, kernel estimates for functions of the {L}aplace operator, and the geometry of complete {R}iemannian manifolds},
      year = {1982},
      pages = {15--53},
      }
  • [Clozel] Go to document L. Clozel, "On limit multiplicities of discrete series representations in spaces of automorphic forms," Invent. Math., vol. 83, iss. 2, pp. 265-284, 1986.
    @ARTICLE{Clozel, mrkey = {0818353},
      number = {2},
      issn = {0020-9910},
      author = {Clozel, Laurent},
      mrclass = {22E45 (11F70 22E55)},
      doi = {10.1007/BF01388963},
      journal = {Invent. Math.},
      zblnumber = {0582.22012},
      volume = {83},
      mrnumber = {0818353},
      fjournal = {Inventiones Mathematicae},
      mrreviewer = {Marie-France VignÂ\copyright{}ras},
      title = {On limit multiplicities of discrete series representations in spaces of automorphic forms},
      year = {1986},
      pages = {265--284},
      }
  • [Corlette] Go to document K. Corlette, "Archimedean superrigidity and hyperbolic geometry," Ann. of Math., vol. 135, iss. 1, pp. 165-182, 1992.
    @ARTICLE{Corlette, mrkey = {1147961},
      number = {1},
      issn = {0003-486X},
      author = {Corlette, Kevin},
      mrclass = {57S30 (22E40 53C25 57M50 58E20)},
      doi = {10.2307/2946567},
      journal = {Ann. of Math.},
      zblnumber = {0768.53025},
      volume = {135},
      mrnumber = {1147961},
      fjournal = {Annals of Mathematics. Second Series},
      mrreviewer = {Christopher W. Stark},
      title = {Archimedean superrigidity and hyperbolic geometry},
      year = {1992},
      pages = {165--182},
      }
  • [CossuttaMarshall] M. Cossutta and S. Marshall, "Theta lifting and cohomology growth in $p$-adic towers," Int. Math. Res. Not., vol. 2013, iss. 11, pp. 2601-2623, 2013.
    @ARTICLE{CossuttaMarshall, mrkey = {3065089},
      number = {11},
      issn = {1073-7928},
      author = {Cossutta, Mathieu and Marshall, Simon},
      mrclass = {11F70},
      journal = {Int. Math. Res. Not.},
      zblnumber = {06438720},
      volume = {2013},
      mrnumber = {3065089},
      fjournal = {International Mathematics Research Notices. IMRN},
      mrreviewer = {Neven Grbac},
      title = {Theta lifting and cohomology growth in {$p$}-adic towers},
      year = {2013},
      pages = {2601--2623},
      }
  • [Coxpoint] D. R. Cox and V. Isham, Point Processes, New York: Chapman & Hall, 1980.
    @BOOK{Coxpoint, mrkey = {0598033},
      author = {Cox, David Roxbee and Isham, Valerie},
      mrclass = {60G55 (60K05)},
      series = {Monogr. Appl. Prob. Stat.},
      isbn = {0-412-21910-7},
      address = {New York},
      publisher = {Chapman \& Hall},
      mrnumber = {0598033},
      mrreviewer = {D. Vere-Jones},
      title = {Point Processes},
      year = {1980},
      pages = {viii+188},
      zblnumber = {0441.60053},
      }
  • [CrPe] Go to document D. Creutz and J. Peterson, Stabilizers of ergodic actions of lattices and commensurators, 2016.
    @MISC{CrPe,
      author = {Creutz, D. and Peterson, J.},
      title = {Stabilizers of ergodic actions of lattices and commensurators},
      doi = {10.1090/tran/6836},
      note = {published electronically: November 8, 2016},
      year = {2016},
     }
  • [Daleyintroduction] D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes. Vol. I. Elementary Theory and Methods, Second ed., New York: Springer-Verlag, 2003.
    @BOOK{Daleyintroduction, mrkey = {1950431},
      author = {Daley, D. J. and Vere-Jones, D.},
      mrclass = {60-01 (60G10 60G55 60K05 60K35)},
      series = {Probab. Appl. (N.Y.)},
      edition = {Second},
      address = {New York},
      isbn = {0-387-95541-0},
      publisher = {Springer-Verlag},
      zblnumber = {1026.60061},
      mrnumber = {1950431},
      mrreviewer = {Volker Schmidt},
      title = {An Introduction to the Theory of Point Processes. {V}ol. {I}. Elementary Theory and Methods},
      year = {2003},
      pages = {xxii+469},
      }
  • [DeGeorge] Go to document D. L. DeGeorge, "On a theorem of Osborne and Warner. Multiplicities in the cuspidal spectrum," J. Funct. Anal., vol. 48, iss. 1, pp. 81-94, 1982.
    @ARTICLE{DeGeorge, mrkey = {0671316},
      number = {1},
      issn = {0022-1236},
      author = {DeGeorge, David Lee},
      mrclass = {22E45 (10D40 22E40)},
      doi = {10.1016/0022-1236(82)90062-3},
      journal = {J. Funct. Anal.},
      zblnumber = {0503.22008},
      volume = {48},
      mrnumber = {0671316},
      fjournal = {Journal of Functional Analysis},
      mrreviewer = {Wen Ch'ing Winnie Li},
      title = {On a theorem of {O}sborne and {W}arner. {M}ultiplicities in the cuspidal spectrum},
      year = {1982},
      pages = {81--94},
      }
  • [DeitmarHoffman] Go to document A. Deitmar and W. Hoffmann, "On limit multiplicities for spaces of automorphic forms," Canad. J. Math., vol. 51, iss. 5, pp. 952-976, 1999.
    @ARTICLE{DeitmarHoffman, mrkey = {1718672},
      number = {5},
      issn = {0008-414X},
      author = {Deitmar, Anton and Hoffmann, Werner},
      mrclass = {11F72 (22E30 22E40 43A85)},
      doi = {10.4153/CJM-1999-042-8},
      journal = {Canad. J. Math.},
      zblnumber = {0941.22004},
      volume = {51},
      mrnumber = {1718672},
      fjournal = {Canadian Journal of Mathematics. Journal Canadien de Mathématiques},
      mrreviewer = {Shin-ya Koyama},
      title = {On limit multiplicities for spaces of automorphic forms},
      year = {1999},
      pages = {952--976},
      }
  • [Delorme] Go to document P. Delorme, "Formules limites et formules asymptotiques pour les multiplicitĂ©s dans $L^2(G/\Gamma)$," Duke Math. J., vol. 53, iss. 3, pp. 691-731, 1986.
    @ARTICLE{Delorme, mrkey = {0860667},
      number = {3},
      issn = {0012-7094},
      author = {Delorme, Patrick},
      mrclass = {22E46 (22E30 22E40 58G25)},
      doi = {10.1215/S0012-7094-86-05338-X},
      journal = {Duke Math. J.},
      zblnumber = {0623.22012},
      volume = {53},
      mrnumber = {0860667},
      fjournal = {Duke Mathematical Journal},
      mrreviewer = {J. Szmidt},
      title = {Formules limites et formules asymptotiques pour les multiplicités dans {$L^2(G/\Gamma)$}},
      year = {1986},
      pages = {691--731},
      }
  • [SSM] Go to document J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic pro-$p$ groups, Second ed., Cambridge: Cambridge Univ. Press, 1999, vol. 61.
    @BOOK{SSM, mrkey = {1720368},
      author = {Dixon, J. D. and du Sautoy, M. P. F. and Mann, A. and Segal, D.},
      mrclass = {20E18 (20G30)},
      series = {Cambridge Stud. Adv. Math.},
      edition = {Second},
      isbn = {0-521-65011-9},
      address = {Cambridge},
      publisher = {Cambridge Univ. Press},
      doi = {10.1017/CBO9780511470882},
      zblnumber = {0934.20001},
      volume = {61},
      mrnumber = {1720368},
      mrreviewer = {Alexander Lubotzky},
      title = {Analytic pro-{$p$} groups},
      year = {1999},
      pages = {xviii+368},
      }
  • [Donnellytowers] Go to document H. Donnelly, "On the spectrum of towers," Proc. Amer. Math. Soc., vol. 87, iss. 2, pp. 322-329, 1983.
    @ARTICLE{Donnellytowers, mrkey = {0681842},
      number = {2},
      issn = {0002-9939},
      author = {Donnelly, Harold},
      mrclass = {58G25},
      doi = {10.2307/2043710},
      journal = {Proc. Amer. Math. Soc.},
      zblnumber = {0512.58038},
      volume = {87},
      mrnumber = {0681842},
      fjournal = {Proceedings of the American Mathematical Society},
      mrreviewer = {Andreas Nestke},
      title = {On the spectrum of towers},
      year = {1983},
      pages = {322--329},
      }
  • [Donnellylower] Go to document H. Donnelly and P. Li, "Lower bounds for the eigenvalues of Riemannian manifolds," Michigan Math. J., vol. 29, iss. 2, pp. 149-161, 1982.
    @ARTICLE{Donnellylower, mrkey = {0654476},
      number = {2},
      issn = {0026-2285},
      author = {Donnelly, Harold and Li, Peter},
      mrclass = {58G25 (58G11)},
      journal = {Michigan Math. J.},
      zblnumber = {0488.58022},
      volume = {29},
      mrnumber = {0654476},
      fjournal = {The Michigan Mathematical Journal},
      mrreviewer = {GÂ\copyright{}rard Besson},
      title = {Lower bounds for the eigenvalues of {R}iemannian manifolds},
      year = {1982},
      pages = {149--161},
      doi = {10.1307/mmj/1029002668},
      }
  • [DFJ] Go to document N. M. Dunfield, S. Friedl, and N. Jackson, "Twisted Alexander polynomials of hyperbolic knots," Exp. Math., vol. 21, iss. 4, pp. 329-352, 2012.
    @ARTICLE{DFJ, mrkey = {3004250},
      number = {4},
      issn = {1058-6458},
      author = {Dunfield, Nathan M. and Friedl, Stefan and Jackson, Nicholas},
      mrclass = {57M25},
      doi = {10.1080/10586458.2012.669268},
      journal = {Exp. Math.},
      zblnumber = {1266.57008},
      volume = {21},
      mrnumber = {3004250},
      fjournal = {Experimental Mathematics},
      title = {Twisted {A}lexander polynomials of hyperbolic knots},
      year = {2012},
      pages = {329--352},
      }
  • [Erlichcontinuity] P. E. Ehrlich, "Continuity properties of the injectivity radius function," Compositio Math., vol. 29, pp. 151-178, 1974.
    @ARTICLE{Erlichcontinuity, mrkey = {0417977},
      issn = {0010-437X},
      author = {Ehrlich, Paul E.},
      mrclass = {53C20 (58H05 58D15 57D70)},
      journal = {Compositio Math.},
      zblnumber = {0289.53034},
      volume = {29},
      mrnumber = {0417977},
      fjournal = {Compositio Mathematica},
      mrreviewer = {John Bolton},
      title = {Continuity properties of the injectivity radius function},
      year = {1974},
      pages = {151--178},
      }
  • [FinLa] T. Finis and E. Lapid, An approximation principle for congruence subgroups.
    @MISC{FinLa,
      author = {Finis, T. and Lapid, E.},
      arxiv = {1308.3604},
      title = {An approximation principle for congruence subgroups},
      note={to appear in {\em JEMS}},
      },
     
  • [FL2015] T. Finis and E. Lapid, An approximation principle for congruence subgroups II: application to the limit multiplicity problem, 2015.
    @MISC{FL2015,
      author = {Finis, T. and Lapid, E.},
      arxiv = {1504.04795},
      title = {An approximation principle for congruence subgroups {II}: application to the limit multiplicity problem},
      year = {2015},
      }
  • [FLM] Go to document T. Finis, E. Lapid, and W. Mueller, "Limit multiplicities for principal congruence subgroups of GL(n)," J. Inst. Math. Jussieu, vol. 14, pp. 589-638, 2015.
    @article{FLM,
      author = {Finis, T. and Lapid, E. and {Mueller},
      W.},
      title = {Limit multiplicities for principal congruence subgroups of {GL}(n)},
      journal={J. Inst. Math. Jussieu},
      VOLUME={14},
      PAGES={589--638},
      year = {2015},
      mrnumber = {3352530},
      zblnumber = {06455849},
      doi = {10.1017/S1474748014000103},
     }
  • [FriedlJackson] S. Friedl and N. Jackson, Approximations to the volume of hyperbolic knots.
    @MISC{FriedlJackson,
      author = {Friedl, S. and Jackson, N.},
      arxiv = {1102.3742},
      title = {Approximations to the volume of hyperbolic knots},
      }
  • [Friedman] Go to document J. S. Friedman, "Regularized determinants of the Laplacian for cofinite Kleinian groups with finite-dimensional unitary representations," Comm. Math. Phys., vol. 275, iss. 3, pp. 659-684, 2007.
    @ARTICLE{Friedman, mrkey = {2336359},
      number = {3},
      issn = {0010-3616},
      author = {Friedman, Joshua S.},
      mrclass = {58J52 (30F40)},
      doi = {10.1007/s00220-007-0330-3},
      journal = {Comm. Math. Phys.},
      zblnumber = {1168.30022},
      volume = {275},
      mrnumber = {2336359},
      fjournal = {Communications in Mathematical Physics},
      title = {Regularized determinants of the {L}aplacian for cofinite {K}leinian groups with finite-dimensional unitary representations},
      year = {2007},
      pages = {659--684},
      }
  • [Furstenberg1] Go to document H. Furstenberg, "A note on Borel’s density theorem," Proc. Amer. Math. Soc., vol. 55, iss. 1, pp. 209-212, 1976.
    @ARTICLE{Furstenberg1, mrkey = {0422497},
      number = {1},
      issn = {0002-9939},
      author = {Furstenberg, Harry},
      mrclass = {22E40 (28A65)},
      doi = {10.2307/2041874},
      journal = {Proc. Amer. Math. Soc.},
      zblnumber = {0319.22010},
      volume = {55},
      mrnumber = {0422497},
      fjournal = {Proceedings of the American Mathematical Society},
      mrreviewer = {Yves Guivarc'h},
      title = {A note on {B}orel's density theorem},
      year = {1976},
      pages = {209--212},
      }
  • [WUD] T. Gelander, Kazhdan-Margulis theorem for invarant random subgroups, 2015.
    @MISC{WUD,
      author = {Gelander, Tsachik},
      note = {preprint, to appear in {\em Adv. Math.}},
      title = {Kazhdan-{M}argulis theorem for invarant random subgroups},
      year = {2015},
      }
  • [Gel:HV] Go to document T. Gelander, "Homotopy type and volume of locally symmetric manifolds," Duke Math. J., vol. 124, iss. 3, pp. 459-515, 2004.
    @ARTICLE{Gel:HV, mrkey = {2084613},
      number = {3},
      issn = {0012-7094},
      author = {Gelander, Tsachik},
      mrclass = {53C24 (22E40 53C20 57N16)},
      doi = {10.1215/S0012-7094-04-12432-7},
      journal = {Duke Math. J.},
      zblnumber = {1076.53040},
      volume = {124},
      mrnumber = {2084613},
      fjournal = {Duke Mathematical Journal},
      mrreviewer = {Dave Witte Morris},
      title = {Homotopy type and volume of locally symmetric manifolds},
      year = {2004},
      pages = {459--515},
      }
  • [OW-Lecture] T. Gelander, Lecture notes on Invariant Random Subgroups and Lattices in rank one and higher rank, 2015.
    @MISC{OW-Lecture,
      author = {Gelander, Tsachik},
      title = {Lecture notes on Invariant Random Subgroups and Lattices in rank one and higher rank},
      year = {2015},
      }
  • [Gelander-Levit] T. Gelander and A. Levit, Invariant random subgroups over nonarchimedean local fields, 2015.
    @MISC{Gelander-Levit,
      author = {Gelander, Tsachik and Levit, A.},
      note = {in preperation},
      title = {Invariant random subgroups over nonarchimedean local fields},
      year = {2015},
      }
  • [DeGeorgeWallach] Go to document D. L. de George and N. R. Wallach, "Limit formulas for multiplicities in $L^{2}(\Gamma \backslash G)$," Ann. of Math., vol. 107, iss. 1, pp. 133-150, 1978.
    @ARTICLE{DeGeorgeWallach, mrkey = {0492077},
      number = {1},
      issn = {0003-486X},
      author = {de George, David L. and Wallach, Nolan R.},
      mrclass = {22E45 (58G99)},
      doi = {10.2307/1971140},
      journal = {Ann. of Math.},
      zblnumber = {0397.22007},
      volume = {107},
      mrnumber = {0492077},
      fjournal = {Annals of Mathematics. Second Series},
      mrreviewer = {J. J. Duistermaat},
      title = {Limit formulas for multiplicities in {$L\sp{2}(\Gamma \backslash G)$}},
      year = {1978},
      pages = {133--150},
      }
  • [GlasnerKazhdan] Go to document E. Glasner and B. Weiss, "Kazhdan’s property T and the geometry of the collection of invariant measures," Geom. Funct. Anal., vol. 7, iss. 5, pp. 917-935, 1997.
    @ARTICLE{GlasnerKazhdan, mrkey = {1475550},
      number = {5},
      issn = {1016-443X},
      author = {Glasner, E. and Weiss, B.},
      mrclass = {28D15 (22D40 47A35 54H15)},
      doi = {10.1007/s000390050030},
      journal = {Geom. Funct. Anal.},
      zblnumber = {0899.22006},
      volume = {7},
      mrnumber = {1475550},
      fjournal = {Geometric and Functional Analysis},
      mrreviewer = {Alain Valette},
      title = {Kazhdan's property {T} and the geometry of the collection of invariant measures},
      year = {1997},
      pages = {917--935},
      }
  • [Gromovgroups] Go to document M. Gromov, "Groups of polynomial growth and expanding maps," Inst. Hautes Études Sci. Publ. Math., vol. 53, pp. 53-73, 1981.
    @ARTICLE{Gromovgroups, mrkey = {0623534},
      volume = {53},
      issn = {0073-8301},
      author = {Gromov, Mikhael},
      mrclass = {53C20 (22E40 58F15)},
      url = {http://www.numdam.org/item?id=PMIHES_1981__53__53_0},
      journal = {Inst. Hautes Études Sci. Publ. Math.},
      zblnumber = {0474.20018},
      mrnumber = {0623534},
      fjournal = {Institut des Hautes Études Scientifiques. Publications Mathématiques},
      mrreviewer = {J. A. Wolf},
      title = {Groups of polynomial growth and expanding maps},
      year = {1981},
      pages = {53--73},
      }
  • [Gr-Sc] Go to document M. Gromov and R. Schoen, "Harmonic maps into singular spaces and $p$-adic superrigidity for lattices in groups of rank one," Inst. Hautes Études Sci. Publ. Math., iss. 76, pp. 165-246, 1992.
    @ARTICLE{Gr-Sc, mrkey = {1215595},
      number = {76},
      issn = {0073-8301},
      author = {Gromov, Mikhail and Schoen, Richard},
      mrclass = {58E20 (22E40)},
      url = {http://www.numdam.org/item?id=PMIHES_1992__76__165_0},
      journal = {Inst. Hautes Études Sci. Publ. Math.},
      zblnumber = {0896.58024},
      mrnumber = {1215595},
      fjournal = {Institut des Hautes Études Scientifiques. Publications Mathématiques},
      mrreviewer = {Caio J. C. Negreiros},
      title = {Harmonic maps into singular spaces and {$p$}-adic superrigidity for lattices in groups of rank one},
      year = {1992},
      pages = {165--246},
      }
  • [Harpenotes] P. de la Harpe, Spaces of closed subgroups of locally compact groups, 2008.
    @MISC{Harpenotes,
      author = {de la Harpe, P.},
      arxiv = {0807.2030},
      title = {Spaces of closed subgroups of locally compact groups},
      year = {2008},
      }
  • [Iwaniec1] H. Iwaniec, "Nonholomorphic modular forms and their applications," in Modular Forms, Horwood, Chichester, 1984, pp. 157-196.
    @INCOLLECTION{Iwaniec1, mrkey = {0803367},
      author = {Iwaniec, Henryk},
      mrclass = {11F11 (11F30 11F66 11F72)},
      series = {Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res.},
      publisher = {Horwood, Chichester},
      zblnumber = {0558.10018},
      mrnumber = {0803367},
      booktitle = {Modular Forms},
      venue = {{D}urham, 1983},
      mrreviewer = {Peter Sarnak},
      title = {Nonholomorphic modular forms and their applications},
      pages = {157--196},
      year = {1984},
      }
  • [Iwaniec2] H. Iwaniec, "Small eigenvalues of Laplacian for $\Gamma_0(N)$," Acta Arith., vol. 56, iss. 1, pp. 65-82, 1990.
    @ARTICLE{Iwaniec2, mrkey = {1067982},
      number = {1},
      issn = {0065-1036},
      author = {Iwaniec, Henryk},
      mrclass = {11F72 (11F12 11F30)},
      journal = {Acta Arith.},
      zblnumber = {0702.11034},
      volume = {56},
      mrnumber = {1067982},
      fjournal = {Polska Akademia Nauk. Instytut Matematyczny. Acta Arithmetica},
      mrreviewer = {Dorian Goldfeld},
      title = {Small eigenvalues of {L}aplacian for {$\Gamma_0(N)$}},
      year = {1990},
      pages = {65--82},
      }
  • [Kazhdan] D. Kajdan, "Arithmetic varieties and their fields of quasi-definition," in Actes du Congrès International des Mathématiciens, Tome 2, Gauthier-Villars, Paris, 1971, pp. 321-325.
    @incollection{Kazhdan, mrkey = {0435081},
      author = {Kajdan, D.},
      mrclass = {14G25},
      publisher = {Gauthier-Villars, Paris},
      zblnumber = {0223.14025},
      mrnumber = {0435081},
      booktitle = {Actes du {C}ongrès {I}nternational des {M}athématiciens, {T}ome 2},
      VENUE={{N}ice, 1970},
      mrreviewer = {Yasutaka Ihara},
      title = {Arithmetic varieties and their fields of quasi-definition},
      pages = {321--325},
      year = {1971},
      }
  • [Kechris] Go to document A. S. Kechris, Classical Descriptive Set Theory, New York: Springer-Verlag, 1995, vol. 156.
    @BOOK{Kechris, mrkey = {1321597},
      author = {Kechris, Alexander S.},
      mrclass = {03E15 (03-01 03-02 04A15 28A05 54H05 90D44)},
      series = {Grad. Texts in Math.},
      address = {New York},
      isbn = {0-387-94374-9},
      publisher = {Springer-Verlag},
      doi = {10.1007/978-1-4612-4190-4},
      zblnumber = {0819.04002},
      volume = {156},
      mrnumber = {1321597},
      mrreviewer = {Jakub Jasi\AA „ski},
      title = {Classical Descriptive Set Theory},
      year = {1995},
      pages = {xviii+402},
      }
  • [Knapp] A. W. Knapp, Representation Theory of Semisimple Groups. An Overview Based on Examples, Princeton, NJ: Princeton Univ. Press, 2001.
    @BOOK{Knapp, mrkey = {1880691},
      author = {Knapp, Anthony W.},
      mrclass = {22E46 (22-01 22E30)},
      series = {Princeton Landmarks in Math.},
      isbn = {0-691-09089-0},
      address = {Princeton, NJ},
      publisher = {Princeton Univ. Press},
      zblnumber = {0993.22001},
      mrnumber = {1880691},
      titlenote = {reprint of the 1986 original},
      title = {Representation Theory of Semisimple Groups. An Overview Based on Examples},
      year = {2001},
      pages = {xx+773},
      }
  • [Knieper] Go to document G. Knieper, "On the asymptotic geometry of nonpositively curved manifolds," Geom. Funct. Anal., vol. 7, iss. 4, pp. 755-782, 1997.
    @ARTICLE{Knieper, mrkey = {1465601},
      number = {4},
      issn = {1016-443X},
      author = {Knieper, G.},
      mrclass = {53C20 (53C21 53C22 58F17)},
      doi = {10.1007/s000390050025},
      journal = {Geom. Funct. Anal.},
      zblnumber = {0896.53033},
      volume = {7},
      mrnumber = {1465601},
      fjournal = {Geometric and Functional Analysis},
      mrreviewer = {Nantian Qian},
      title = {On the asymptotic geometry of nonpositively curved manifolds},
      year = {1997},
      pages = {755--782},
      }
  • [Kuranishi] Go to document M. Kuranishi, "On everywhere dense imbedding of free groups in Lie groups," Nagoya Math. J., vol. 2, pp. 63-71, 1951.
    @ARTICLE{Kuranishi, mrkey = {0041145},
      issn = {0027-7630},
      author = {Kuranishi, Masatake},
      mrclass = {20.0X},
      url = {http://projecteuclid.org/euclid.nmj/1118764740},
      journal = {Nagoya Math. J.},
      zblnumber = {0045.31003},
      volume = {2},
      mrnumber = {0041145},
      fjournal = {Nagoya Mathematical Journal},
      mrreviewer = {D. Montgomery},
      title = {On everywhere dense imbedding of free groups in {L}ie groups},
      year = {1951},
      pages = {63--71},
      }
  • [Larsen] Go to document M. J. Larsen and R. Pink, "Finite subgroups of algebraic groups," J. Amer. Math. Soc., vol. 24, iss. 4, pp. 1105-1158, 2011.
    @ARTICLE{Larsen, mrkey = {2813339},
      number = {4},
      issn = {0894-0347},
      author = {Larsen, Michael J. and Pink, Richard},
      mrclass = {20H20 (20G20)},
      doi = {10.1090/S0894-0347-2011-00695-4},
      journal = {J. Amer. Math. Soc.},
      zblnumber = {1241.20054},
      volume = {24},
      mrnumber = {2813339},
      fjournal = {Journal of the American Mathematical Society},
      mrreviewer = {Peter A. Brooksbank},
      title = {Finite subgroups of algebraic groups},
      year = {2011},
      pages = {1105--1158},
      }
  • [Le] Go to document T. Le, "Homology torsion growth and Mahler measure," Comment. Math. Helv., vol. 89, iss. 3, pp. 719-757, 2014.
    @ARTICLE{Le, mrkey = {3260847},
      number = {3},
      issn = {0010-2571},
      author = {Le, Thang},
      mrclass = {57M10 (37B10 37B50 57M25 57Q10)},
      doi = {10.4171/CMH/332},
      journal = {Comment. Math. Helv.},
      zblnumber = {1302.57005},
      volume = {89},
      mrnumber = {3260847},
      fjournal = {Commentarii Mathematici Helvetici. A Journal of the Swiss Mathematical Society},
      mrreviewer = {Dave Auckly},
      title = {Homology torsion growth and {M}ahler measure},
      year = {2014},
      pages = {719--757},
      }
  • [Lessareeb] Go to document P. Lessa, "Reeb stability and the Gromov-Hausdorff limits of leaves in compact foliations," Asian J. Math., vol. 19, iss. 3, pp. 433-463, 2015.
    @ARTICLE{Lessareeb, mrkey = {3361278},
      number = {3},
      issn = {1093-6106},
      author = {Lessa, Pablo},
      mrclass = {53C12 (57R30)},
      doi = {10.4310/AJM.2015.v19.n3.a3},
      journal = {Asian J. Math.},
      zblnumber = {1323.57017},
      volume = {19},
      mrnumber = {3361278},
      fjournal = {Asian Journal of Mathematics},
      mrreviewer = {A. Ya. Narmanov},
      title = {Reeb stability and the {G}romov-{H}ausdorff limits of leaves in compact foliations},
      year = {2015},
      pages = {433--463},
      }
  • [Leuzinger] Go to document E. Leuzinger, "Kazhdan’s property (T), $L^2$-spectrum and isoperimetric inequalities for locally symmetric spaces," Comment. Math. Helv., vol. 78, iss. 1, pp. 116-133, 2003.
    @ARTICLE{Leuzinger, mrkey = {1966754},
      number = {1},
      issn = {0010-2571},
      author = {Leuzinger, Enrico},
      mrclass = {53C24 (22E40 58J65)},
      doi = {10.1007/s000140300005},
      journal = {Comment. Math. Helv.},
      zblnumber = {1027.22015},
      volume = {78},
      mrnumber = {1966754},
      fjournal = {Commentarii Mathematici Helvetici},
      mrreviewer = {A. I. Danilenko},
      title = {Kazhdan's property ({T}), {$L^2$}-spectrum and isoperimetric inequalities for locally symmetric spaces},
      year = {2003},
      pages = {116--133},
      }
  • [Levit] A. Levit, The Nevo-Zimmer intermediate factor theorem over local fields.
    @misc{Levit,
      author = {Levit, A.},
      title = {The {N}evo-{Z}immer intermediate factor theorem over local fields},
      note={\emph{{G}eom. {D}edicata},
      first online: 09 {A}ugust 2016},
      }
  • [shalev] Go to document M. W. Liebeck and J. Saxl, "Minimal degrees of primitive permutation groups, with an application to monodromy groups of covers of Riemann surfaces," Proc. London Math. Soc., vol. 63, iss. 2, pp. 266-314, 1991.
    @ARTICLE{shalev, mrkey = {1114511},
      number = {2},
      issn = {0024-6115},
      author = {Liebeck, Martin W. and Saxl, Jan},
      mrclass = {20B15 (20G40 30F99)},
      doi = {10.1112/plms/s3-63.2.266},
      journal = {Proc. London Math. Soc.},
      zblnumber = {0696.20004},
      volume = {63},
      mrnumber = {1114511},
      fjournal = {Proceedings of the London Mathematical Society. Third Series},
      mrreviewer = {Ulrich Dempwolff},
      title = {Minimal degrees of primitive permutation groups, with an application to monodromy groups of covers of {R}iemann surfaces},
      year = {1991},
      pages = {266--314},
      }
  • [sg] Go to document A. Lubotzky and D. Segal, Subgroup Growth, Basel: Birkhäuser, 2003, vol. 212.
    @BOOK{sg, mrkey = {1978431},
      author = {Lubotzky, Alexander and Segal, Dan},
      mrclass = {20E07 (20E18 20E26 20F69)},
      series = {Progr. Math.},
      isbn = {3-7643-6989-2},
      address = {Basel},
      publisher = {Birkhäuser},
      doi = {10.1007/978-3-0348-8965-0},
      zblnumber = {1071.20033},
      volume = {212},
      mrnumber = {1978431},
      mrreviewer = {Avinoam Mann},
      title = {Subgroup Growth},
      year = {2003},
      pages = {xxii+453},
      }
  • [Luckschick] Go to document W. Lück and T. Schick, "$L^2$-torsion of hyperbolic manifolds of finite volume," Geom. Funct. Anal., vol. 9, iss. 3, pp. 518-567, 1999.
    @ARTICLE{Luckschick, mrkey = {1708444},
      number = {3},
      issn = {1016-443X},
      author = {Lück, W. and Schick, T.},
      mrclass = {58J52 (58J35)},
      doi = {10.1007/s000390050095},
      journal = {Geom. Funct. Anal.},
      zblnumber = {0947.58024},
      volume = {9},
      mrnumber = {1708444},
      fjournal = {Geometric and Functional Analysis},
      mrreviewer = {Thomas Schick},
      title = {{$L^2$}-torsion of hyperbolic manifolds of finite volume},
      year = {1999},
      pages = {518--567},
      }
  • [LuckBook] W. Lück, $L^2$-Invariants: Theory and Applications to Geometry and $K$-theory, Berlin: Springer-Verlag, 2002, vol. 44.
    @BOOK{LuckBook, mrkey = {1926649},
      author = {L{ü}ck, Wolfgang},
      mrclass = {58J22 (19K56 46L80 57Q10 57R20 58J52)},
      series = {Ergeb. Math. Grenzgeb.},
      address = {Berlin},
      isbn = {3-540-43566-2},
      publisher = {Springer-Verlag},
      zblnumber = {1009.55001},
      volume = {44},
      mrnumber = {1926649},
      mrreviewer = {Thomas Schick},
      title = {{$L^2$}-Invariants: Theory and Applications to Geometry and {$K$}-theory},
      year = {2002},
      pages = {xvi+595},
      }
  • [Mar-arithmeticity] Go to document G. A. Margulis, "Arithmeticity of the irreducible lattices in the semisimple groups of rank greater than $1$," Invent. Math., vol. 76, iss. 1, pp. 93-120, 1984.
    @ARTICLE{Mar-arithmeticity, mrkey = {0739627},
      number = {1},
      issn = {0020-9910},
      author = {Margulis, G. A.},
      mrclass = {22E40 (20G25)},
      doi = {10.1007/BF01388494},
      journal = {Invent. Math.},
      zblnumber = {0551.20028},
      volume = {76},
      mrnumber = {0739627},
      fjournal = {Inventiones Mathematicae},
      mrreviewer = {James E. Humphreys},
      title = {Arithmeticity of the irreducible lattices in the semisimple groups of rank greater than {$1$}},
      year = {1984},
      pages = {93--120},
      }
  • [margulis:book] G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, New York: Springer-Verlag, 1991, vol. 17.
    @BOOK{margulis:book, mrkey = {1090825},
      author = {Margulis, G. A.},
      mrclass = {22E40 (20Hxx 22-02 22D40)},
      series = {Ergeb. Math. Grenzgeb.},
      address = {New York},
      isbn = {3-540-12179-X},
      publisher = {Springer-Verlag},
      volume = {17},
      mrnumber = {1090825},
      mrreviewer = {Gopal Prasad},
      title = {Discrete Subgroups of Semisimple {L}ie Groups},
      year = {1991},
      pages = {x+388},
      zblnumber = {0732.22008},
     }
  • [Weisfeiler] Go to document C. R. Matthews, L. N. Vaserstein, and B. Weisfeiler, "Congruence properties of Zariski-dense subgroups. I," Proc. London Math. Soc., vol. 48, iss. 3, pp. 514-532, 1984.
    @ARTICLE{Weisfeiler, mrkey = {0735226},
      number = {3},
      issn = {0024-6115},
      author = {Matthews, C. R. and Vaserstein, L. N. and Weisfeiler, B.},
      mrclass = {20G35 (11R37 14G25 14L99)},
      doi = {10.1112/plms/s3-48.3.514},
      journal = {Proc. London Math. Soc.},
      zblnumber = {0551.20029},
      volume = {48},
      mrnumber = {0735226},
      fjournal = {Proceedings of the London Mathematical Society. Third Series},
      mrreviewer = {Jean-Pierre Wintenberger},
      title = {Congruence properties of {Z}ariski-dense subgroups. {I}},
      year = {1984},
      pages = {514--532},
      }
  • [Mueller] Go to document W. Müller, "Analytic torsion and $R$-torsion of Riemannian manifolds," Adv. in Math., vol. 28, iss. 3, pp. 233-305, 1978.
    @ARTICLE{Mueller, mrkey = {0498252},
      number = {3},
      issn = {0001-8708},
      author = {Müller, Werner},
      mrclass = {58G10},
      doi = {10.1016/0001-8708(78)90116-0},
      journal = {Adv. in Math.},
      zblnumber = {0395.57011},
      volume = {28},
      mrnumber = {0498252},
      fjournal = {Advances in Mathematics},
      mrreviewer = {JÂ${}^3$zef Dodziuk},
      title = {Analytic torsion and {$R$}-torsion of {R}iemannian manifolds},
      year = {1978},
      pages = {233--305},
      }
  • [MP] Go to document W. Müller and J. Pfaff, "Analytic torsion of complete hyperbolic manifolds of finite volume," J. Funct. Anal., vol. 263, iss. 9, pp. 2615-2675, 2012.
    @ARTICLE{MP, mrkey = {2967302},
      number = {9},
      issn = {0022-1236},
      author = {Müller, Werner and Pfaff, Jonathan},
      mrclass = {57N16 (58J52)},
      doi = {10.1016/j.jfa.2012.08.020},
      journal = {J. Funct. Anal.},
      zblnumber = {1277.58018},
      volume = {263},
      mrnumber = {2967302},
      fjournal = {Journal of Functional Analysis},
      mrreviewer = {Inkang Kim},
      title = {Analytic torsion of complete hyperbolic manifolds of finite volume},
      year = {2012},
      pages = {2615--2675},
      }
  • [Nevogeneralization] Go to document A. Nevo and R. J. Zimmer, "A generalization of the intermediate factors theorem," J. Anal. Math., vol. 86, pp. 93-104, 2002.
    @ARTICLE{Nevogeneralization, mrkey = {1894478},
      issn = {0021-7670},
      author = {Nevo, Amos and Zimmer, Robert J.},
      mrclass = {22E46},
      doi = {10.1007/BF02786645},
      journal = {J. Anal. Math.},
      zblnumber = {1015.22002},
      volume = {86},
      mrnumber = {1894478},
      fjournal = {Journal d'Analyse Mathématique},
      mrreviewer = {Tuong Ton That},
      title = {A generalization of the intermediate factors theorem},
      year = {2002},
      pages = {93--104},
      }
  • [Nori] Go to document M. V. Nori, "On subgroups of ${ GL}_n({\bf F}_p)$," Invent. Math., vol. 88, iss. 2, pp. 257-275, 1987.
    @ARTICLE{Nori, mrkey = {0880952},
      number = {2},
      issn = {0020-9910},
      author = {Nori, Madhav V.},
      mrclass = {20G40 (20G30 20J06)},
      doi = {10.1007/BF01388909},
      journal = {Invent. Math.},
      zblnumber = {0632.20030},
      volume = {88},
      mrnumber = {0880952},
      fjournal = {Inventiones Mathematicae},
      mrreviewer = {James E. Humphreys},
      title = {On subgroups of {${\rm GL}_n({\bf F}_p)$}},
      year = {1987},
      pages = {257--275},
      }
  • [Olbrich] M. Olbrich, "$L^2$-invariants of locally symmetric spaces," Doc. Math., vol. 7, pp. 219-237, 2002.
    @ARTICLE{Olbrich, mrkey = {1938121},
      issn = {1431-0635},
      author = {Olbrich, Martin},
      mrclass = {58J35 (22E46 57R19)},
      journal = {Doc. Math.},
      zblnumber = {1029.58019},
      volume = {7},
      mrnumber = {1938121},
      fjournal = {Documenta Mathematica},
      mrreviewer = {Thomas Schick},
      title = {{$L^2$}-invariants of locally symmetric spaces},
      year = {2002},
      pages = {219--237},
      }
  • [Papadima] Go to document S. \c. Papadima, "Discrete symmetry, toral symmetry and the Euler characteristic of manifolds," Proc. Amer. Math. Soc., vol. 103, iss. 2, pp. 612-614, 1988.
    @ARTICLE{Papadima, mrkey = {0943092},
      number = {2},
      issn = {0002-9939},
      author = {Papadima, \c Stefan},
      mrclass = {57S17 (57S15)},
      doi = {10.2307/2047187},
      journal = {Proc. Amer. Math. Soc.},
      zblnumber = {0669.57021},
      volume = {103},
      mrnumber = {0943092},
      fjournal = {Proceedings of the American Mathematical Society},
      mrreviewer = {H.-T. Ku},
      title = {Discrete symmetry, toral symmetry and the {E}uler characteristic of manifolds},
      year = {1988},
      pages = {612--614},
      }
  • [Plat] V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory, Boston: Academic Press, 1994, vol. 139.
    @BOOK{Plat, mrkey = {1278263},
      author = {Platonov, Vladimir and Rapinchuk, Andrei},
      mrclass = {11E57 (11-02 20Gxx)},
      series = {Pure Appl. Math.},
      isbn = {0-12-558180-7},
      address = {Boston},
      publisher = {Academic Press},
      zblnumber = {0841.20046},
      volume = {139},
      mrnumber = {1278263},
      title = {Algebraic Groups and Number Theory},
      year = {1994},
      pages = {xii+614},
      }
  • [Porti] Go to document J. Porti, "Torsion de Reidemeister pour les variĂ©tĂ©s hyperboliques," Mem. Amer. Math. Soc., vol. 128, iss. 612, p. x, 1997.
    @ARTICLE{Porti, mrkey = {1396960},
      number = {612},
      issn = {0065-9266},
      author = {Porti, Joan},
      mrclass = {57Q10 (57M50)},
      doi = {10.1090/memo/0612},
      journal = {Mem. Amer. Math. Soc.},
      volume = {128},
      mrnumber = {1396960},
      fjournal = {Memoirs of the American Mathematical Society},
      mrreviewer = {Alexander Felâ€${}^2$shtyn},
      title = {Torsion de {R}eidemeister pour les variétés hyperboliques},
      year = {1997},
      pages = {x+139},
      zblnumber = {0881.57020},
     }
  • [PurcellSouto] Go to document J. S. Purcell and J. Souto, "Geometric limits of knot complements," J. Topol., vol. 3, iss. 4, pp. 759-785, 2010.
    @ARTICLE{PurcellSouto, mrkey = {2746337},
      number = {4},
      issn = {1753-8416},
      author = {Purcell, Jessica S. and Souto, Juan},
      mrclass = {57M25 (37F40 57M50)},
      doi = {10.1112/jtopol/jtq020},
      journal = {J. Topol.},
      zblnumber = {1267.57022},
      volume = {3},
      mrnumber = {2746337},
      fjournal = {Journal of Topology},
      mrreviewer = {Athanase Papadopoulos},
      title = {Geometric limits of knot complements},
      year = {2010},
      pages = {759--785},
      }
  • [Raghunathan] M. S. Raghunathan, Discrete Subgroups of Lie Groups, New York: Springer-Verlag, 1972, vol. 68.
    @BOOK{Raghunathan, mrkey = {0507234},
      author = {Raghunathan, M. S.},
      mrclass = {22E40},
      series = {Ergeb. Math. Grenzgeb.},
      address = {New York},
      publisher = {Springer-Verlag},
      volume = {68},
      mrnumber = {0507234},
      mrreviewer = {J. S. Joel},
      title = {Discrete {S}ubgroups of {L}ie {G}roups},
      year = {1972},
      zblnumber = {0254.22005},
      pages = {ix+227},
      }
  • [RohlfsSpeh] Go to document J. Rohlfs and B. Speh, "On limit multiplicities of representations with cohomology in the cuspidal spectrum," Duke Math. J., vol. 55, iss. 1, pp. 199-211, 1987.
    @ARTICLE{RohlfsSpeh, mrkey = {0883670},
      number = {1},
      issn = {0012-7094},
      author = {Rohlfs, Jürgen and Speh, Birgit},
      mrclass = {22E46 (22E70)},
      doi = {10.1215/S0012-7094-87-05511-6},
      journal = {Duke Math. J.},
      zblnumber = {0626.22008},
      volume = {55},
      mrnumber = {0883670},
      fjournal = {Duke Mathematical Journal},
      mrreviewer = {Roberto J. Miatello},
      title = {On limit multiplicities of representations with cohomology in the cuspidal spectrum},
      year = {1987},
      pages = {199--211},
      }
  • [Rohlin] V. A. Rohlin, "On the fundamental ideas of measure theory," Amer. Math. Soc. Translation, vol. 1952, iss. 71, p. 55, 1952.
    @ARTICLE{Rohlin, mrkey = {0047744},
      number = {71},
      issn = {0065-9290},
      author = {Rohlin, V. A.},
      mrclass = {27.2X},
      journal = {Amer. Math. Soc. Translation},
      volume = {1952},
      mrnumber = {0047744},
      fjournal = {American Mathematical Society Translations},
      title = {On the fundamental ideas of measure theory},
      year = {1952},
      pages = {55pp.},
      }
  • [Sarnak] P. Sarnak, A note on the spectrum of cusp forms for congruence subgroups, 1983.
    @MISC{Sarnak,
      author = {Sarnak, Peter},
      note = {preprint},
      title = {A note on the spectrum of cusp forms for congruence subgroups},
      year = {1983},
      }
  • [SarnakXue] Go to document P. Sarnak and X. X. Xue, "Bounds for multiplicities of automorphic representations," Duke Math. J., vol. 64, iss. 1, pp. 207-227, 1991.
    @ARTICLE{SarnakXue, mrkey = {1131400},
      number = {1},
      issn = {0012-7094},
      author = {Sarnak, Peter and Xue, Xiao Xi},
      mrclass = {22E45 (11F70 11F72 22E40)},
      doi = {10.1215/S0012-7094-91-06410-0},
      journal = {Duke Math. J.},
      zblnumber = {0741.22010},
      volume = {64},
      mrnumber = {1131400},
      fjournal = {Duke Mathematical Journal},
      mrreviewer = {David Joyner},
      title = {Bounds for multiplicities of automorphic representations},
      year = {1991},
      pages = {207--227},
      }
  • [duS] Go to document M. P. F. du Sautoy, "Finitely generated groups, $p$-adic analytic groups and PoincarĂ© series," Ann. of Math., vol. 137, iss. 3, pp. 639-670, 1993.
    @ARTICLE{duS, mrkey = {1217350},
      number = {3},
      issn = {0003-486X},
      author = {du Sautoy, Marcus P. F.},
      mrclass = {20E18 (20G25 22E35)},
      doi = {10.2307/2946534},
      journal = {Ann. of Math.},
      zblnumber = {0790.20044},
      volume = {137},
      mrnumber = {1217350},
      fjournal = {Annals of Mathematics. Second Series},
      mrreviewer = {Alexander Lubotzky},
      title = {Finitely generated groups, {$p$}-adic analytic groups and {P}oincaré series},
      year = {1993},
      pages = {639--670},
      }
  • [Sauvageot] Go to document F. Sauvageot, "Principe de densitĂ© pour les groupes rĂ©ductifs," Compositio Math., vol. 108, iss. 2, pp. 151-184, 1997.
    @ARTICLE{Sauvageot, mrkey = {1468833},
      number = {2},
      issn = {0010-437X},
      author = {Sauvageot, François},
      mrclass = {22E50 (22E55 43A05 43A70)},
      doi = {10.1023/A:1000216412619},
      journal = {Compositio Math.},
      volume = {108},
      mrnumber = {1468833},
      fjournal = {Compositio Mathematica},
      mrreviewer = {Volker J. Heiermann},
      title = {Principe de densité pour les groupes réductifs},
      year = {1997},
      pages = {151--184},
      zblnumber = {0882.22019},
      }
  • [Savin] Go to document G. Savin, "Limit multiplicities of cusp forms," Invent. Math., vol. 95, iss. 1, pp. 149-159, 1989.
    @ARTICLE{Savin, mrkey = {0969416},
      number = {1},
      issn = {0020-9910},
      author = {Savin, Gordan},
      mrclass = {22E40 (11F70 22E45)},
      doi = {10.1007/BF01394147},
      journal = {Invent. Math.},
      zblnumber = {0673.22003},
      volume = {95},
      mrnumber = {0969416},
      fjournal = {Inventiones Mathematicae},
      mrreviewer = {Roberto J. Miatello},
      title = {Limit multiplicities of cusp forms},
      year = {1989},
      pages = {149--159},
      }
  • [Sengun] Go to document M. H. cSengün, "On the integral cohomology of Bianchi groups," Exp. Math., vol. 20, iss. 4, pp. 487-505, 2011.
    @ARTICLE{Sengun, mrkey = {2859903},
      number = {4},
      issn = {1058-6458},
      author = {\c{S}engün, Mehmet Haluk},
      mrclass = {22E40 (11F41 11F75 20H10 20J06)},
      doi = {10.1080/10586458.2011.594671},
      journal = {Exp. Math.},
      zblnumber = {1269.22007},
      volume = {20},
      mrnumber = {2859903},
      fjournal = {Experimental Mathematics},
      mrreviewer = {Albert Ruiz},
      title = {On the integral cohomology of {B}ianchi groups},
      year = {2011},
      pages = {487--505},
      }
  • [Shin] Go to document S. W. Shin, "Automorphic Plancherel density theorem," Israel J. Math., vol. 192, iss. 1, pp. 83-120, 2012.
    @ARTICLE{Shin, mrkey = {3004076},
      number = {1},
      issn = {0021-2172},
      author = {Shin, Sug Woo},
      mrclass = {22E35 (43A85)},
      doi = {10.1007/s11856-012-0018-z},
      journal = {Israel J. Math.},
      zblnumber = {1300.22006},
      volume = {192},
      mrnumber = {3004076},
      fjournal = {Israel Journal of Mathematics},
      mrreviewer = {ValeriÄ- Vladimirovich Volchkov},
      title = {Automorphic {P}lancherel density theorem},
      year = {2012},
      pages = {83--120},
      }
  • [stewart] Go to document C. L. Stewart, "On the number of solutions of polynomial congruences and Thue equations," J. Amer. Math. Soc., vol. 4, iss. 4, pp. 793-835, 1991.
    @ARTICLE{stewart, mrkey = {1119199},
      number = {4},
      issn = {0894-0347},
      author = {Stewart, C. L.},
      mrclass = {11D72 (11J25)},
      doi = {10.2307/2939289},
      journal = {J. Amer. Math. Soc.},
      zblnumber = {0744.11016},
      volume = {4},
      mrnumber = {1119199},
      fjournal = {Journal of the American Mathematical Society},
      mrreviewer = {T. N. Shorey},
      title = {On the number of solutions of polynomial congruences and {T}hue equations},
      year = {1991},
      pages = {793--835},
      }
  • [stuckzimmer] Go to document G. Stuck and R. J. Zimmer, "Stabilizers for ergodic actions of higher rank semisimple groups," Ann. of Math., vol. 139, iss. 3, pp. 723-747, 1994.
    @ARTICLE{stuckzimmer, mrkey = {1283875},
      number = {3},
      issn = {0003-486X},
      author = {Stuck, Garrett and Zimmer, Robert J.},
      mrclass = {22D40 (22E46 28D15 57R30)},
      doi = {10.2307/2118577},
      journal = {Ann. of Math.},
      zblnumber = {0836.22018},
      volume = {139},
      mrnumber = {1283875},
      fjournal = {Annals of Mathematics. Second Series},
      mrreviewer = {Alain Valette},
      title = {Stabilizers for ergodic actions of higher rank semisimple groups},
      year = {1994},
      pages = {723--747},
      }
  • [Th] W. P. Thurston, Three-Dimensional Geometry and Topology. Vol. 1, Princeton, NJ: Princeton Univ. Press, 1997, vol. 35.
    @BOOK{Th, mrkey = {1435975},
      author = {Thurston, William P.},
      mrclass = {57M50 (53A35 57M25 57M60 57N10)},
      series = {Princeton Math. Ser.},
      isbn = {0-691-08304-5},
      address = {Princeton, NJ},
      publisher = {Princeton Univ. Press},
      zblnumber = {0873.57001},
      volume = {35},
      mrnumber = {1435975},
      note = {edited by Silvio Levy},
      mrreviewer = {Athanase Papadopoulos},
      title = {Three-Dimensional Geometry and Topology. {V}ol. 1},
      year = {1997},
      pages = {x+311},
      }
  • [Toyama] Go to document H. Toyama, "On discrete subgroups of a Lie group," Kōdai Math. Sem. Rep.,, vol. 1, iss. 2, pp. 36-37, 1949.
    @ARTICLE{Toyama, mrkey = {0029918},
      number = {2},
      issn = {0023-2599},
      author = {Toyama, Hiraku},
      mrclass = {20.0X},
      doi = {10.2996/kmj/1138833432},
      journal = {Kōdai Math. Sem. Rep.,},
      zblnumber = {0045.00703},
      volume = {1},
      mrnumber = {0029918},
      note = {volume numbers not printed on issues until Vol. {{\bf{7}}},
      (1955)},
      fjournal = {Kōdai Mathematical Seminar Reports},
      mrreviewer = {D. Montgomery},
      title = {On discrete subgroups of a {L}ie group},
      year = {1949},
      pages = {36--37},
      }
  • [Vershik] Go to document A. M. Vershik, "Totally nonfree actions and the infinite symmetric group," Mosc. Math. J., vol. 12, iss. 1, pp. 193-212, 2012.
    @ARTICLE{Vershik, mrkey = {2952431},
      number = {1},
      issn = {1609-3321},
      author = {Vershik, A. M.},
      mrclass = {37A15 (20B35)},
      journal = {Mosc. Math. J.},
      zblnumber = {1294.37004},
      volume = {12},
      mrnumber = {2952431},
      fjournal = {Moscow Mathematical Journal},
      mrreviewer = {Akihito Hora},
      title = {Totally nonfree actions and the infinite symmetric group},
      year = {2012},
      pages = {193--212},
      url = {http://www.ams.org/distribution/mmj/vol12-1-2012/vershik.pdf},
      }
  • [Vogan] D. A. Vogan Jr., "Isolated unitary representations," in Automorphic Forms and Applications, Providence, RI: Amer. Math. Soc., 2007, vol. 12, pp. 379-398.
    @INCOLLECTION{Vogan, mrkey = {2331349},
      author = {Vogan, Jr., David A.},
      mrclass = {22E47 (22E45)},
      series = {IAS/Park City Math. Ser.},
      address = {Providence, RI},
      publisher = {Amer. Math. Soc.},
      zblnumber = {1161.22009},
      volume = {12},
      mrnumber = {2331349},
      booktitle = {Automorphic Forms and Applications},
      mrreviewer = {Hadi Salmasian},
      title = {Isolated unitary representations},
      pages = {379--398},
      year = {2007},
      }
  • [wang] H. C. Wang, "Topics on totally discontinuous groups," in Symmetric Spaces, New York: Dekker, 1972, vol. 8, pp. 459-487.
    @incollection{wang, mrkey = {0414787},
      author = {Wang, Hsien Chung},
      mrclass = {22E40},
      series = {Pure Appl. Math.},
      address = {New York},
      publisher = {Dekker},
      volume = {8},
      mrnumber = {0414787},
      booktitle = {Symmetric Spaces},
      mrreviewer = {A. L. Oniscik},
      venue = {{S}hort {C}ourses, {W}ashington {U}niv., {S}t. {L}ouis, {M}o., 1969--1970},
      title = {Topics on totally discontinuous groups},
      pages = {459--487},
      year = {1972},
      zblnumber = {0232.22018},
      }
  • [Zimmer] Go to document R. J. Zimmer, Ergodic Theory and Semisimple Groups, Basel: Birkhäuser, 1984, vol. 81.
    @BOOK{Zimmer, mrkey = {0776417},
      author = {Zimmer, Robert J.},
      mrclass = {22E40 (22D40 28D15)},
      series = {Monogr. Math.},
      isbn = {3-7643-3184-4},
      address = {Basel},
      publisher = {Birkhäuser},
      doi = {10.1007/978-1-4684-9488-4},
      volume = {81},
      mrnumber = {0776417},
      mrreviewer = {S. G. Dani},
      title = {Ergodic Theory and Semisimple Groups},
      year = {1984},
      pages = {x+209},
      zblnumber = {0571.58015},
      }

Authors

Miklos Abert

MTA Alfréd Rényi Institute of Mathematics, Budapest, Hungary

Nicolas Bergeron

Sorbonne Universités UPMC Université Paris 06, Institut de Mathématiques de Jussieu-Paris Rive Gauche, UMR 7586 CNRS, Université Paris Diderot, Sorbonne Paris Cité FR-75005 Paris

Ian Biringer

Boston College, Chestnut Hill, MA

Tsachik Gelander

Faculty of Mathematics and Computer Science, The Weizmann Institute of Science, Rehovot 76100, Israel

Nikolay Nikolov

University College, Oxford, OX1 4BH, United Kingdom

Jean Raimbault

Institut de Mathématiques de Toulouse, UMR5219 Université de Toulouse, CNRS, UPS IMT, Toulouse, France

Iddo Samet